WO2014040388A1 - 一种复合菌群及其应用 - Google Patents

一种复合菌群及其应用 Download PDF

Info

Publication number
WO2014040388A1
WO2014040388A1 PCT/CN2013/001089 CN2013001089W WO2014040388A1 WO 2014040388 A1 WO2014040388 A1 WO 2014040388A1 CN 2013001089 W CN2013001089 W CN 2013001089W WO 2014040388 A1 WO2014040388 A1 WO 2014040388A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
bacterial liquid
fiber
raw materials
bacterial
Prior art date
Application number
PCT/CN2013/001089
Other languages
English (en)
French (fr)
Inventor
贾平
Original Assignee
北京天安生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210343985.9A external-priority patent/CN103074224B/zh
Priority claimed from CN201210343936.5A external-priority patent/CN103074223B/zh
Priority claimed from CN201210343984.4A external-priority patent/CN102876602B/zh
Application filed by 北京天安生物科技有限公司 filed Critical 北京天安生物科技有限公司
Priority to CA2885478A priority Critical patent/CA2885478A1/en
Publication of WO2014040388A1 publication Critical patent/WO2014040388A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/002Solid waste from mechanical processing of material, e.g. seed coats, olive pits, almond shells, fruit residue, rice hulls
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F7/00Fertilisers from waste water, sewage sludge, sea slime, ooze or similar masses
    • C05F7/005Waste water from industrial processing material neither of agricultural nor of animal origin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01CCHEMICAL OR BIOLOGICAL TREATMENT OF NATURAL FILAMENTARY OR FIBROUS MATERIAL TO OBTAIN FILAMENTS OR FIBRES FOR SPINNING; CARBONISING RAGS TO RECOVER ANIMAL FIBRES
    • D01C1/00Treatment of vegetable material
    • D01C1/04Bacteriological retting
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/39Pseudomonas fluorescens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to a composite flora and its application and application method in preparing textile fibers, cellulose for additives, and slurry of biological bacteria. Background technique
  • Cellulose is a polysaccharide compound and is the most valuable natural renewable resource for humans. Cellulose chemistry and industry began with
  • hemp fiber has been favored by consumers because of its ecological and environmental protection characteristics. Its demand is increasing year by year, and the global natural fiber annual growth rate is 8%.
  • hemp fiber raw materials are high fiber content, slender fiber is good for interlacing, and good strength; fiber cell cavity is small, cell wall thickness, wall cavity ratio is large; because hemp fiber cell cavity is fine, fiber is fine, so opacity is high.
  • the disadvantage is that the fibers are not easily separated into filaments, resulting in a low fabric permeability.
  • cellulose is prepared, and the waste liquid generated by the chemical method and the chemical method is polluted, destroys the land, pollutes the air, and has high energy consumption, power consumption and large water consumption. Does not comply with national energy conservation and emission reduction policies. The substance cannot be effectively recycled. Chemicals cannot be separated from the waste liquid, and the organic matter is mixed with the chemical agent, and the organic matter cannot be reused, causing a large loss.
  • An object of the present invention is to overcome the above-mentioned drawbacks of the prior art chemical process cellulose production and to provide a novel biological bacteria for the preparation of cellulose.
  • the inventors obtained a biological bacterium suitable for the preparation of cellulose capable of achieving the above object by a long screening operation.
  • the present invention provides a composite flora comprising Bacillus sp. with the accession number CGMCC No. 5971 and Rheinheimera tangshanensis under the accession number CGMCC No. 5972. Acinetobacter lwoffii of CGMCC No. 5973.
  • the composite flora can be used for preparing cellulose for packaging, textile fibers, and biological bacterial liquid pulping.
  • the invention also provides a method for preparing cellulose for additives, which mainly comprises the steps of:
  • the above-mentioned composite bacterial group is configured as a mixed bacterial aqueous solution according to the following mass ratio, that is, the bacterial liquid:
  • Raw material processing The woody raw materials are peeled and sliced, or the herbal raw materials are cut into segments, and the cut raw materials are placed in a soaking pool to swell;
  • Disintegration squeezing the swollen raw material and/or squeezing
  • Biodegradation Soak the raw material after dissolving into the configured bacterial liquid
  • the biodegradable raw materials are removed from the bacterial liquid, drained, and steamed; the fiber is obtained: the sterilized raw material is subjected to coarse grinding to form a fiber bundle; Two-stage fine grinding to disperse the fiber bundle into a single fiber; screening and filtering the fiber bundle in the slurry after a rough grinding and two fine grinding, and re-pulping to make a single fiber;
  • Sterilization Soak the fiber prepared above in warm water, then dry and sterilize;
  • the sterilized fibers are ground into cellulose as an additive.
  • the invention also provides a method for preparing cellulose for additives, which mainly comprises the steps of:
  • the above-mentioned composite bacterial group is configured as a mixed bacterial aqueous solution according to the following mass ratio, that is, the bacterial liquid:
  • Raw material processing The woody raw materials are peeled and sliced, or the herbal raw materials are cut into segments, and the cut raw materials are placed in a soaking pool to swell;
  • Disintegration squeezing the swollen raw material and/or squeezing
  • Biodegradation Soak the raw material after dissolving into the configured bacterial liquid
  • the biodegradable raw materials are removed from the bacterial liquid, drained, and steamed; the fiber is obtained: the sterilized raw material is subjected to coarse grinding to form a fiber bundle; Two-stage fine grinding to disperse the fiber bundle into a single fiber; screening and filtering the fiber bundle in the slurry after a rough grinding and two fine grinding, and re-pulping to make a single fiber;
  • Sterilization Soak the fiber prepared above in warm water, then dry and sterilize;
  • the sterilized fibers are ground into cellulose as an additive.
  • the invention also provides a biological bacterial liquid paddle method, which mainly comprises the steps -
  • the above-mentioned composite bacterial group is configured as a mixed bacterial aqueous solution according to the following mass ratio, that is, the bacterial liquid:
  • Raw material processing After peeling or cutting the woody raw materials, or cutting the herbal raw materials into sections, the cut raw materials are put into the soaking pool to swell;
  • Disintegration squeezing the swollen raw material and/or squeezing
  • Biodegradation Soak the raw material after dissolving into the configured bacterial liquid
  • Fine-grinding paddle The above-mentioned one-stage coarse refining is subjected to two-stage fine refining to disperse the fiber bundle into a single fiber; slurry screening: screening and filtering through a slurry after a coarse refining and two-stage fine refining The fiber bundle is repulped and made into a single fiber:
  • the density of the bacterial liquid formed in the step 1) is 60 million / ml or more.
  • the cut wood material has a length of 3-4 cm, and the cut herb material has a length of 4-5 cm.
  • the swelling time is 10-12h.
  • the biodegradation temperature of step 3 is maintained at 35-40 Torr for 32-36 hours.
  • the mass ratio of the raw material to the bacterial solution after the disintegration is 1 : 6-9.
  • the steam sterilization is autoclaved for 10-30 minutes.
  • step 2) the soaking liquid after soaking the raw material is flocculated and precipitated, and the supernatant is recovered and reused, and the precipitate is input into the biogas tank to be fermented to generate biogas.
  • the advantages of the method for biological preparation of cellulose and biopulping provided by the invention are as follows: 1) no pollution to the environment: the waste liquid is directly converted into organic fertilizer to achieve zero discharge and zero pollution. 2)
  • the biological method protects the fiber. Compared with the conventional chemical method, the method can recover both the whole fiber and the half fiber, thereby increasing the yield. 3)
  • the biological method performs lignin degradation under normal pressure, energy saving, emission reduction, and low carbon. 4) Low production cost and high economic efficiency.
  • the by-product of the present invention is sent to a sedimentation tank for flocculation and sedimentation, and the supernatant liquid is returned to secondary use, and then used as a pre-dip liquid.
  • the floc is rich in various organic substances such as lignin and phytonutrients such as 1 ⁇ , P, K, floc and old bacteria liquid (multiple degradation of raw material viscous bacteria liquid, also contains N, P, K, Fe and
  • the trace elements are mixed, acidified, and then discharged into a biogas fermentation tank to produce biogas.
  • the biogas residue, the biogas slurry and the pulverized boiler ash are mixed and granulated to make a granular organic fertilizer, and finally discharged to the factory to achieve zero discharge.
  • the present invention further improves by providing the above-mentioned biological bacteria obtained by the inventor after a long period of creative labor.
  • the existing technology for preparing cellulose reduces the reaction time and improves the purity and yield of the produced fiber, so that the technology can be widely applied in practical production.
  • the application of the biological bacteria degrades the lignin in the plant body to obtain the fiber in a short time, the secondary product is converted into biogas twice, and the biogas is supplied to the coal and gas dual-purpose boiler for combustion and heating, thereby saving the coal consumption.
  • the biogas residue is made into organic fertilizer, which forms a new economic cycle model of “substance organic transformation”, which achieves no waste discharge, that is, zero emissions.
  • the problem of pollution of chemically prepared fibers in the prior art is fundamentally solved. Energy saving and emission reduction, saving water, reducing production costs and increasing the use rate of materials.
  • FIG. 1 is a flow chart of preparing cellulose for an additive according to an embodiment of the present invention
  • FIG. 2 is a flow chart of preparing cellulose for an additive according to another embodiment of the present invention.
  • FIG. 3 is a flow chart of preparing textile fibers in accordance with an embodiment of the present invention.
  • FIG. 4 is a flow chart of a biological bacterial liquid pulping method according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of a biological bacterial liquid pulping process in accordance with another embodiment of the present invention. detailed description
  • Example 1 The setting of the bacterial liquid
  • the biological bacteria used in the present invention were deposited on April 6, 2012 at the General Microbiology Center of China Microbial Culture Collection Management Committee (CGMCC, No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing), which contains the deposit number CGMCC. No. 5971, Bacillus (BaciUus sp., Rheinheimera tangshcmensis, deposited under CGMCC No. 5972), Acinetobacter Iwojfii, deposited under CGMCC No. 5973.
  • the above complex bacteria group is arranged as a mixed bacteria aqueous solution according to the following mass ratio, that is, the bacterial liquid:
  • Bacillus R. jejuni: Acinetobacter rufii 2-3: 1-2: 1-2; The density of the formed bacterial liquid is 60 million / ml or more, and is reserved.
  • the preparation method of cellulose when using woody raw materials is specifically described.
  • the preparation process of the remaining woody materials, such as poplar and willow, can be carried out by referring to the process.
  • the complex flora is configured according to the following mass ratio: Bacillus: R. jejuni: Acinetobacter rufii is 3:1:2; when poplar is used, the complex is carried out according to the following mass ratio Configuration: Bacillus: R. jejuni: Acinetobacter rufii is 2: 1 : 2; When using willow, the complex is configured according to the following mass ratio: Bacillus: Tangshan Rheinme Bacteria: Acinetobacter rufii is 3:2:1.
  • the above four steps can be intermittent or interlocking.
  • Disintegration The swollen branches are input into the reeling machine or squeezed and smashed to modify the wood structure to loosen into a wood-like shape, which is beneficial to the penetration of the biological bacteria and exerts its degradation effect.
  • Biodegradation The decomposed raw materials are input into the biological bacteria degradation tank or tank, and immersed in the bacterial liquid prepared in Example 1.
  • the mass ratio of the decomposed raw materials to the bacterial liquid is 1:6, and the temperature is maintained at 35- 4 (TC, time 32-36 hours.
  • TC time 32-36 hours.
  • the sterilized raw material is subjected to a rough grinding to form a fiber bundle; the above-mentioned one-stage coarse grinding is subjected to two-stage fine grinding to disperse the fiber bundle into a single fiber; screening, filtering through a rough grinding and two The fiber bundle in the finely ground slurry is reground to make a single fiber.
  • the lignin is removed by conventional techniques known to those skilled in the art (for example, the dilute alkali method), and then sterilized and ground into cellulose 11) for food or medical or Japanese. Use chemical additives 12).
  • the caragana peels separated in A and 3 are rich in nutrients and fermented into cattle and sheep feed.
  • the ferment is input into the biogas digester to produce biogas, and the gas is fed into the dual-purpose boiler for fuel, which can save energy and reduce consumption.
  • Bio-organic fertilizer The biogas residue and biogas slurry fermented by the biogas tank are rich in bio-organic fertilizer.
  • the liquid is used as crop topdressing and flower nutrient solution, and solid granulation is used as base fertilizer, which is green fertilizer.
  • the results of the physical properties of the obtained cellulose are shown in Table 1 below: Table 1
  • the wheat straw is used as a raw material, and the preparation method of the cellulose when the herbal raw material is used is specifically described.
  • the preparation process of the remaining herbal materials, such as straw and reed, can be carried out by referring to the process.
  • the composite flora When wheatgrass is used, the composite flora is configured according to the following mass ratio: Bacillus licheniformis: R. jejuni: 3:2:1 of Acinetobacter ruta; when using straw, the complex is based on the following mass ratio Configuration: Bacillus: R. jejuni: Acinetobacter sinensis is 2:2:2; When reeds are used, the complex flora is configured according to the following mass ratio: Bacillus licheniformis: Rhein-Herb, Tangshan: Lu Acinetobacter baumannii is 3:1:1
  • the composite flora was configured according to the following mass ratio: Bacillus: R. jejuni: Acinetobacter rufii was 3:1:1.
  • the flow of the fiber preparation method is divided into three stages: preparation stage, fiber section and sub-wide section.
  • Biodegradation The decomposed raw materials are input into the biological bacteria degradation tank or tank, and immersed in the bacterial liquid prepared in Example 1.
  • the mass ratio of the decomposed raw materials to the bacterial liquid is 1:8, and the temperature is maintained at 35- 4 (TC, time 32-36 hours. Degradation reaction occurs under the conditions of biological bacteria, and its specific effect is exerted.
  • Re-screening Screening and filtering the fiber bundles in a slurry after a coarse grinding and a second-stage fine grinding, and re-pulping them to make a single fiber.
  • the raw material residues separated in A and 3 are rich in nutrients and fermented into cattle and sheep feed.
  • Bio-organic fertilizer The biogas residue and biogas slurry fermented by the biogas tank are rich in bio-organic fertilizer. The liquid is used as crop topdressing and flower nutrient solution, and solid granulation is used as base fertilizer, which is green fertilizer.
  • the specific preparation process is the same as in Example 2.
  • the difference is that the composite flora is configured according to the following mass ratio: Bacillus: R. jejuni: Acinetobacter rufii is 3:1:2; Biodegradable, the quality of the raw materials and bacteria after decontamination The ratio is 1:7.
  • the specific preparation process is the same as in Example 2.
  • the difference is that the composite flora is configured according to the following mass ratio: Bacillus: R. jejuni: Acinetobacter rufii is 3:2: 1 ; When biodegrading, the quality of the raw materials and bacteria after disintegration The ratio is 1:8.5.
  • the specific preparation process is the same as in Example 6.
  • the difference is that the composite flora is configured according to the following mass ratio: Bacillus: R. jejuni: Acinetobacter rufii is 2: 1 : 2; When biodegrading, the quality of the raw materials and bacteria after decontamination The ratio is 1:9.
  • the biological bacterial liquid pulping method when using woody raw materials is specifically described.
  • the biopulping process of the remaining woody materials such as poplar and eucalyptus, can be carried out with reference to the process.
  • the composite flora is configured according to the following mass ratio: Bacillus: R. jejuni: Acinetobacter rufii is 3:1:2;
  • the composite flora is subjected to the following mass ratio Configuration: Bacillus: R.
  • jejuni Acinetobacter rufii is 3:2: 1;
  • the complex flora is configured according to the following mass ratio: Bacillus: R. serrata: Roussillon The bacillus is 2:2:1.
  • Figure 4 The flow of the biological bacterial liquid paddle method is divided into three stages: preparation stage, pulping section and sub-wide section.
  • the above four steps can be intermittent or interlocking.
  • Disintegration The swollen branches are fed into a silk reeling machine or squeezed and smashed to modify the wood structure to loosen into a wood-like shape, which is beneficial to the penetration of biological bacteria and exerts its degradation effect.
  • Biodegradation The decomposed raw materials are input into the biological bacteria degradation tank or tank, and immersed in the bacterial liquid prepared in Example 1.
  • the mass ratio of the decomposed raw materials to the bacterial liquid is 1:6, and the temperature is maintained at 35- 40 ° C, time 32-36 hours.
  • the lignin reaction is degraded under the conditions of biological bacteria, and its specific effect is exerted.
  • Fine refining From the above-mentioned crude slurry, it is then transferred to a high-concentration refiner for fine refining to disperse the fiber bundle into a single fiber.
  • the slurry contains a small number of fiber bundles, which are screened, filtered, and re-slurry to reach a single fiber.
  • Paperboard The paper pulp prepared above is fed into a paper machine, and paperboard is produced by a papermaking process.
  • the caragana peels separated in A and 3 are rich in nutrients and fermented into cattle and sheep feed.
  • Bio-organic fertilizer The biogas residue and biogas slurry fermented by the biogas tank are rich in bio-organic fertilizer. The liquid is used as crop topdressing and flower nutrient solution, and solid granulation is used as base fertilizer, which is green fertilizer.
  • the biological bacterial liquid pulping method when using herbal raw materials is specifically described.
  • the remaining herbaceous materials, such as wheat straw, straw, and corn stalks, can be referred to the process.
  • the composite flora When wheat straw is used, the composite flora is configured according to the following mass ratio: Bacillus: R. jejuni: 2:2:1 of Acinetobacter ruta; when straw is used, the complex is performed according to the following mass ratio Configuration: Bacillus: R. jejuni: Acinetobacter rufii is 1:3:1; When using corn stalks, the complex flora is configured according to the following mass ratio: Bacillus: R. jejuni: R. Acinetobacter is 2:2:2.
  • the process of the biological bacterial slurry method is divided into three stages: preparation stage, pulping section and by-product section.
  • Preparation stage 1, 4 Cut the wheat straw into 4-5cm cut sections, input into the soaking tank or soaking tank for washing and cold soaking. First, wash away the foreign materials such as the outer surface of the raw materials, and soak them at the same time.
  • the water temperature is natural temperature, and the time is soaked and swelled. Prevail, 10-12h. After the liquid is turbid after repeated immersion, the supernatant can be reused after flocculation and precipitation.
  • the sediment is fed into a biogas tank to produce biogas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Paper (AREA)

Abstract

提供了一种复合菌群及其在制备纤维素添加剂、纺织纤维、生物菌液制浆中的应用方法。该复合菌群包含保藏号为CGMCC No.5971的芽孢杆菌、保藏号为CGMCC No.5972的唐山莱茵默氏菌、保藏号为CGMCC No.5973的鲁氏不动杆菌。该应用方法包括菌液的配置;原料处理;纤维的制备或制浆。

Description

说 明 书
一种复合菌群及其应用 技术领域 本发明涉及一种复合菌群及其在制备纺织纤维、添加剂用纤维素、生物菌液制浆 中的应用及应用方法。 背景技术
纤维素是多糖化合物, 是人类最宝贵的天然可再生资源。 纤维素化学与工业始于
160 多年前, 是高分子化学诞生及发展时期的主要研究对象, 纤维素的主要生理作用 是吸附大量水分, 增加粪便量, 促进肠蠕动, 加快粪便的排泄, 使致癌物质在肠道内 的停留时间缩短, 对肠道的不良剌激减少, 从而可以预防肠癌发生。 近年来, 随着石 化资源的日益枯竭, 麻类纤维因具有生态、 环保等优良特性而备受消费者的钟爱, 其 需求在逐年增长, 全球天然纤维每年增速 8%。 麻类纤维原料最大特点是纤维含量高, 纤维细长有利于交织, 强度好; 纤维胞腔小、 胞壁厚、 壁腔比大; 由于麻类纤维细胞 腔细、 纤维细故不透明度高。 但其缺点是纤维不容易分丝帚化, 使制成的织物透气度 低。
现有技术中制备纤维素, 多通过化学方法,化学方法生产中产生的废液污染化境, 破坏土地, 污染空气, 而且耗能高, 耗电及用水量大。 不符合国家节能减排政策。 物 质不能达到有效循环再利用。 化学制剂无法从废液中分离, 有机物与化学制剂混合在 一起, 有机物也无法得到再利用, 造成大量损失。
因此, 有必要开发生物制纤维素技术, 从根本上解决上述污染难题, 节能减排, 省水, 降低生产成本且提高物质的使用率。 发明内容
本发明的目的是克服现有技术的化学法制纤维素的上述缺陷, 提供一种新的制备 纤维素用生物菌。 发明人通过长时间的筛选工作, 获得了适合用于制备纤维素的能够 实现上述发明目的的生物菌。
具体地, 本发明提供一种复合菌群, 其包含保藏号为 CGMCC No. 5971的芽孢杆 菌 (Bacillus sp. )、 保藏号为 CGMCC No. 5972 的唐山莱茵默氏菌 (Rheinheimera tangshanensis) 保藏号为 CGMCC No. 5973的鲁氏不动杆菌 ( Acinetobacter lwoffii)。 所述的复合菌群能够用于制备添加剂用纤维素、 纺织用纤维、 生物菌液制浆。 本发明还提供一种制备添加剂用纤维素的方法, 其主要包含步骤:
1 )菌液的配置: 将上述的复合菌群按照下述质量比配置成复合菌水溶液, 即为菌 液:
芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2-3 : 1-2 : 1-2;
2)原料处理: 将木本原料去皮后切片, 或将草本原料切成段, 将切好的原料放入 浸泡池中润胀;
3) 纤维的制备, 其包含步骤:
疏解: 将润胀的原料搓丝和 /或挤碾;
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进行 二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆液 中的纤维束, 再次磨浆使其制成单根纤维;
灭菌: 将上述制得的纤维在温水中浸泡, 然后烘干、 灭菌;
研磨: 将灭菌后的纤维研磨成纤维素, 作为添加剂。
本发明还提供一种制备添加剂用纤维素的方法, 其主要包含步骤:
1 )菌液的配置: 将上述的复合菌群按照下述质量比配置成复合菌水溶液, 即为菌 液:
芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2-3 : 1-2 : 1-2;
2)原料处理: 将木本原料去皮后切片, 或将草本原料切成段, 将切好的原料放入 浸泡池中润胀;
3 ) 纤维的制备, 其包含步骤:
疏解: 将润胀的原料搓丝和 /或挤碾;
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进行 二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆液 中的纤维束, 再次磨浆使其制成单根纤维;
灭菌: 将上述制得的纤维在温水中浸泡, 然后烘干、 灭菌;
研磨: 将灭菌后的纤维研磨成纤维素, 作为添加剂。 本发明还提供一种生物菌液制桨法, 其主要包含步骤-
1 )菌液的配置: 将上述的复合菌群按照下述质量比配置成复合菌水溶液, 即为菌 液:
芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2-3 : 1-2 : 1-2;
2)原料处理: 将木本原料去皮后切段或切片, 或将草本原料切成段, 将切好的原 料放入浸泡池中润胀;
3 ) 制浆, 其包含步骤:
疏解: 将润胀的原料搓丝和 /或挤碾;
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 粗磨浆: 将灭菌后的原料进行一段粗磨浆, 成为纤维束;
细磨桨: 将上述一段粗磨浆进行二段细磨浆, 使纤维束分散成单根纤维; 浆料筛选: 筛选、 过滤经过一段粗磨浆和二段细磨浆后的浆料中的纤维束, 再次 磨浆使其制成单根纤维:
消潜、 洗桨: 将上述制得的纸浆在温水中浸泡, 用于制纸板。
其中, 上述方法中, 步骤 1 ) 中形成的菌液的密度为 6000万个 /ml菌以上。 步骤 2) 中, 切好的木本原料长度为 3-4cm, 切好的草本原料长度为 4-5cm。 所述 的润胀时间为 10-12h。
步骤 3 )所述的生物降解温度保持在 35-40Ό , 时间 32-36小时。 疏解后的原料与 菌液的质量比为 1 : 6-9。 所述的蒸汽灭菌为常压水蒸汽灭菌 10-30分钟。
进一步地, 步骤 2) 中浸泡原料后的浸泡液经絮凝、 沉淀, 上清液回收再利用, 沉淀物输入沼气池发酵产生沼气。
本发明提供的生物制备纤维素和生物制浆的方法的优点是: 1 )不污染环境: 废液 直接转化成有机肥料, 达到零排放, 零污染。 2)生物方法对纤维能起到保护作用, 与 传统的化学方法相比, 本方法能够将全纤维和半纤维都回收, 因此提高了得率。 3 )生 物方法在常压下进行木素降解, 节能、 减排、 低碳。 4) 生产成本低, 经济效益高。
本发明的副产品输送到沉淀池絮凝、 沉淀, 上清液返回二次利用, 再作预浸液使 用。 絮凝物中含有丰富的木质素等多种有机物和1^、 P、 K等植物营养素, 絮凝物再与 老菌液(多次降解原料粘稠菌液, 也含有 N、 P、 K、 Fe及微量元素)混合, 酸化, 然 后一同排入沼气发酵池中, 生产沼气。 将沼渣、 沼液与粉碎的锅炉灰混合造粒, 制成 颗粒有机肥, 最后出厂, 实现零排放。
本发明通过提供上述的发明人经过长时间的创造劳动获得的生物菌, 进一步完善 了现有的制备纤维素的技术, 降低了反应时间, 提高了制得纤维的纯度和得率, 使得 该技术能在实际生产中大规模地推广应用。 本发明应用生物菌在短时间内降解植物体 中木质素获得纤维, 副产品二次转化成沼气, 沼气供煤、 气两用锅炉燃烧加热, 节省 用煤量。 最后, 沼渣制成有机肥料, 形成了一个 "物质有机转化"的经济循环新模式, 达到无废物排放, 也就是零排放。 从根本上解决了现有技术中的化学制备纤维的污染 难题。 节能减排, 省水, 降低了生产成本, 提高了物质的使用率。
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例, 并配合附图, 作详细说明如下。 附图说明
图 1是根据本发明的一实施例的制备添加剂用纤维素的流程图;
图 2是根据本发明的另一实施例的制备添加剂用纤维素的流程图;
图 3是根据本发明的一实施例的制备纺织用纤维的流程图;
图 4是根据本发明的一实施例的生物菌液制浆法的流程图;
图 5是根据本发明的另一实施例的生物菌液制浆法的流程图。 具体实施方式
实施例 1 菌液的紀置
本发明中采用的生物菌己于 2012年 4月 6日在中国微生物菌种保藏管理委员会普 通微生物中心 (CGMCC, 北京市朝阳区北辰西路 1 号院 3号) 保藏, 其包含保藏号 为 CGMCC No. 5971的芽孢杆菌 (BaciUus sp. 、保藏号为 CGMCC No. 5972的唐山莱 茵默氏菌 Rheinheimera tangshcmensis )、 保藏号为 CGMCC No. 5973的鲁氏不动杆菌 (Acinetobacter Iwojfii ) 。
将上述的复合菌群按照下述质量比配置成复合菌水溶液, 即为菌液:
芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2-3: 1-2: 1-2; 形成的菌液的密度 为 6000万个 /ml菌以上, 备用。
实施例 2 从木本原料中制备纤维
以柠条为原料, 具体说明采用木本原料时的纤维素制备方法。 其余木本原料, 例 如杨树、 柳树的纤维素制备方法可参照该工艺进行。 其中采用柠条时, 复合菌群按照 下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 3: 1 :2; 采用杨树 时, 复合菌群按照下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌 为 2: 1 :2; 采用柳树时, 复合菌群按照下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏 菌: 鲁氏不动杆菌为 3:2:1。
具体请参照图 1, 纤维素制备方法的流程分为三个阶段: 准备阶段、 纤维素工段 和副产品工段。
(一) 准备阶段: 1-4
1) -2) : 将收割回来的柠条进行皮杆分离。 采用风选机或其它机械分离均可。 皮 杆分离后, 将皮输入有机饲料车间加工饲料, 脱皮后的杆输入下一程序。
3) 将杆在切割机上切段, 长度为 3-4 cm, 斜口为好, 以增大渗透面积。
4) 将脱皮后的枝段输入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料外表泥 土等杂物洗去, 同时进行浸泡, 水温为自然温度, 时间以浸透、 润胀为准, 10-12h。 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
以上四步可以是间歇式也可以是连动式。
(二) 纤维素工段: 5-12
5) 疏解: 将润胀的枝段输入搓丝机或挤碾、 揉搓机来改性木段结构, 使之松散成 木丝状, 有利于生物菌渗透, 发挥其降解作用。
6) 生物降解: 将疏解后的原料输入生物菌降解仓或罐中, 浸泡在实施例 1制备的 菌液内, 疏解后的原料与菌液的质量比为 1:6 , 温度保持在 35-4(TC, 时间 32-36小 时。 在生物菌的条件下发生降解木素反应, 发挥其专一作用。
7) 蒸汽杀菌: 原料预处理完成后,将原料从菌液中捞出、沥水,输入到蒸汽仓中, 通入常压水蒸汽 10-30分钟灭菌。 下端将原料输入磨浆机。
8) 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进 行二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆 液中的纤维束, 再次磨浆使其制成单根纤维。
9) 灭菌: 经粗磨和细磨后的纤维, 受机械摩擦, 大部分打弯、 扭曲变形, 经温水 中浸泡消除磨浆造成的纤维挠曲, 使之舒展, 然后烘干、 灭菌。
10) 研磨: 将灭菌后的纤维经本领域的技术人员公知的常规技术手段 (例如稀碱 法) 除去木质素后, 再次灭菌并研磨成纤维素 11 ), 作为食品用或医用或日用化工用 添加剂 12) 。
(三) 副产品阶段: A-C
A、 3中分离出的柠条皮含有丰富的营养成分, 发酵转化成牛、 羊饲料。
B、 4中经多次浸泡、 洗涤的液体浑浊后, 经絮凝、 沉淀, 上清液回收再利用, 沉 淀物输入沼气池发酵产生沼气, 通入煤气两用锅炉做燃料, 可起到节能降耗作用。
C、 生物有机肥: 经沼气池发酵后的沼渣、 沼液是丰富的生物有机肥, 液体作为 农作物追肥和花卉营养液使用, 固体造粒做基肥使用, 均是绿色肥料。 获得的纤维素 的物理性能指标测定结果请详见下表 1 : 表 1
柠条 杨树 柳树
560 520 500
表观比容 cm3/g 7.5 7.3 7.2
平均粒度 μηι 200 180 190
实施例 3 从草本原料中制备纤维素
以麦草为原料, 具体说明采用草本原料时的纤维素制备方法。 其余草本原料, 例 如稻草、 芦苇的纤维素制备方法可参照该工艺进行。
其中采用麦草时, 复合菌群按照下述质量比进行配置: 芽抱杆菌: 唐山莱茵默氏 菌: 鲁氏不动杆菌为 3:2:1 ; 采用稻草时, 复合菌群按照下述质量比进行配置: 芽孢杆 菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2:2:2; 采用芦苇时, 复合菌群按照下述质量比 进行配置: 芽抱杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 3:1:1
具体请参照图 2, 纤维素制备方法的流程分为三个阶段: 准备阶段、 纤维素工段 和副产品工段。
(一) 准备阶段: 1 4
将麦草切成 4-5cm的切段, 输入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料 外表泥土等杂物洗去,同时进行浸泡,水温为自然温度,时间以浸透、润胀为准, 10-12h 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
(二) 纤维素工段: 5-12和 (三) 副产品阶段: A-C同实施例 2, 其中所使用的 生物菌如实施例 1在此不再赘述, 其中生物降解时, 疏解后的原料与菌液的质量比为 1:8
获得的纤维素的物理性能指标测定结果请详见下表 2: ¾ 2 麦草 稻草 芦苇 聚合度 480 450 440 表观比容 cm3/g 7 6.6 6.8 平均粒度 μηι 180 150 160 实施例 4 从亚麻中制备纤维
以亚麻为原料, 具体说明纤维的制备方法。 复合菌群按照下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 3:1:1。
具体请参照图 3, 纤维的制备方法的流程分为三个阶段: 准备阶段、 纤维工段和 副广品工段。
(一) 准备阶段: 1、 4
将收割回来的亚麻浸入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料外表泥土 等杂物洗去, 同时进行浸泡, 水温为自然温度, 时间以浸透、 润胀为准, 10-12小时。 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
(二) 纤维工段: 6-12
6) 生物降解: 将疏解后的原料输入生物菌降解仓或罐中, 浸泡在实施例 1制备的 菌液内, 疏解后的原料与菌液的质量比为 1:8 , 温度保持在 35-4(TC, 时间 32-36小 时。 在生物菌的条件下发生降解反应, 发挥其专一作用。
7) 蒸汽杀菌: 原料预处理完成后,将原料从菌液中捞出、沥水,输入到蒸汽仓中, 通入常压水蒸汽 10-30分钟灭菌。 下端将原料输入磨浆机。
8) 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束。
9) 将上述一段粗磨进行二段细磨, 使纤维束分散成单根纤维。
10) 复筛: 筛选、 过滤经过一段粗磨和二段细磨后的浆液中的纤维束, 再次磨浆 使其制成单根纤维。
11) 干燥、 梳理: 将上述制得的纤维在温水中浸泡, 然后烘干, 梳理, 牵伸, 使 纤维进一步伸直平行。
12)制备纺织用纤维:将上述获得的纤维采用进一步的工艺技术制备纺织用纤维。
(三) 副产品阶段: A-C
A、 3中分离出的原料剩余物含有丰富的营养成分, 发酵转化成牛、 羊饲料。
B、 4中经多次浸泡、 洗涤的液体浑浊后, 经絮凝、 沉淀, 上清液回收再利用, 沉 淀物输入沼气池发酵产生沼气, 通入煤气两用锅炉做燃料, 可起到节能降耗作用。 C、 生物有机肥: 经沼气池发酵后的沼渣、 沼液是丰富的生物有机肥, 液体作为 农作物追肥和花卉营养液使用, 固体造粒做基肥使用, 均是绿色肥料。
获得的纤维的物理性能指标测定结果请详见表 1。
实施例 5 从苎麻中制备纤维素
具体制备工艺同实施例 2。 不同之处在于, 复合菌群按照下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 3: 1 :2; 生物降解时, 疏解后的原料与菌 液的质量比为 1 :7 。
获得的纤维的物理性能指标测定结果请详见表 1。
实施例 6 从黄红麻中制备纤维素
具体制备工艺同实施例 2。 不同之处在于, 复合菌群按照下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 3:2: 1 ; 生物降解时, 疏解后的原料与菌 液的质量比为 1 :8.5 。
获得的纤维的物理性能指标测定结果请详见表 1。
实施例 7 从剑麻中制备纤维素
具体制备工艺同实施例 6。 不同之处在于, 复合菌群按照下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2: 1 :2; 生物降解时, 疏解后的原料与菌 液的质量比为 1:9 。
获得的纤维的物理性能指标测定结果请详见表 3。
表 3
亚麻 淋 黄红麻 剑麻 细度 dtex 5 4.6 4.2 4.3 裂断长 km 6.4 6.1 4.15 3.33 断裂强度 cN/dtex 10.3 9.5 9.3 9 断裂伸长率% 5 4.3 3.6 4 实施例 8 木本原料的生物菌液制浆
以柠条为原料, 具体说明采用木本原料时的生物菌液制浆法。 其余木本原料, 例 如杨树、 桉树的生物制浆法可参照该工艺进行。 其中采用柠条时, 复合菌群按照下述 质量比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 3:1 :2; 采用杨树时, 复合菌群按照下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 3:2: 1; 采用桉树时, 复合菌群按照下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2:2: 1。 具体请参照图 4, 生物菌液制桨法的流程分为三个阶段: 准备阶段、 制浆工段和 副广品工段。
(一) 准备阶段: 1-4
I) -2) : 将收割回来的柠条进行皮杆分离。 采用风选机或其它机械分离均可。 皮 杆分离后, 将皮输入有机饲料车间加工饲料, 脱皮后的杆输入下一程序。
3) 将杆在切割机上切段, 长度为 3-4 cm, 斜口为好, 以增大渗透面积。
4) 将脱皮后的枝段输入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料外表泥 土等杂物洗去, 同时进行浸泡, 水温为自然温度, 时间以浸透、 润胀为准, 10-12h。 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
以上四步可以是间歇式也可以是连动式。
(二) 制浆工段: 5-12
5)疏解: 将润胀的枝段输入搓丝机或挤碾、 揉搓机来改性木段结构, 使之松散成 木丝状, 有利于生物菌渗透, 发挥其降解作用。
6) 生物降解: 将疏解后的原料输入生物菌降解仓或罐中, 浸泡在实施例 1制备的 菌液内, 疏解后的原料与菌液的质量比为 1:6 , 温度保持在 35-40°C, 时间 32-36小 时。 在生物菌的条件下发生降解木素反应, 发挥其专一作用。
7) 蒸汽杀菌: 原料预处理完成后,将原料从菌液中捞出、沥水, 输入到蒸汽仓中, 通入常压水蒸汽 10-30分钟灭菌。 下端将原料输入磨浆机。
8) 粗磨浆: 将灭菌后的原料输入高浓磨浆机中进行一段粗磨浆, 成为粗纤维束。
9) 细磨浆: 从上述输出的粗浆料再进入高浓磨浆机进行细磨浆, 使纤维束分散成 单根纤维。
10) 桨料筛选: 经过两段磨浆后的浆料中, 含有少数纤维束, 需经过筛选、 过滤 纤维束, 再次磨浆已达到单根纤维。
I I) 消潜、 洗浆: 经粗磨浆和细磨浆后的纸浆, 受机械摩擦, 大部分打弯、 扭曲 变形, 经温水中浸泡消除磨浆造成的纤维挠曲, 使之舒展。
12)制纸板: 将上述制备的纸浆液输入抄纸机, 经抄纸等工艺流程后制纸板。
(三) 副产品阶段: A-C
A、 3中分离出的柠条皮含有丰富的营养成分, 发酵转化成牛、 羊饲料。
B、 4中经多次浸泡、 洗涤的液体浑浊后, 经絮凝、 沉淀, 上清液回收再利用, 沉 淀物输入沼气池发酵产生沼气, 通入煤气两用锅炉做燃料, 可起到节能降耗作用。 C、 生物有机肥: 经沼气池发酵后的沼渣、 沼液是丰富的生物有机肥, 液体作为 农作物追肥和花卉营养液使用, 固体造粒做基肥使用, 均是绿色肥料。
磨浆后纸张物理性能指标测定结果请详见下表 4, 各项数据均已达到优等瓦楞纸 AA级水平 (表 6) : 表 4 柠条 桉树 杨树 游离度 /ml 125 215 290 定量 /g/cm2 115 118.5 112.9 白度 /%ISO 40.3 37.98 48.32 松厚度 / cm3/g 1.82 1.85 2.27 撕裂指数 /m^m2/g 7.10 3.96 3.74 抗张指数 N_m/g 39.03 51.3 35.8 耐破指数 / kPa_m2/g 1.62 2.2 1.5 环压强度指数 /NTn/g 9.6 10.2 9.3
实施例 9 草本原料的生物菌液制浆
以麦草为原料, 具体说明采用草本原料时的生物菌液制浆法。 其余草本原料, 例 如麦草、 稻草、 玉米秆的生物制桨法可参照该工艺进行。
其中采用麦草时, 复合菌群按照下述质量比进行配置: 芽孢杆菌: 唐山莱茵默氏 菌: 鲁氏不动杆菌为 2:2:1 ; 采用稻草时, 复合菌群按照下述质量比进行配置: 芽孢杆 菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 1:3:1 ; 采用玉米秆时, 复合菌群按照下述质量 比进行配置: 芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2:2:2。
具体请参照图 5, 生物菌液制浆法的流程分为三个阶段: 准备阶段、 制浆工段和 副产品工段。
(一) 准备阶段: 1、 4 将麦草切成 4-5cm的切段, 输入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料 外表泥土等杂物洗去,同时进行浸泡,水温为自然温度,时间以浸透、润胀为准, 10-12h。 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
(二) 制浆工段: 5-12和 (三) 副产品阶段: A-C同实施例 8, 其中所使用的生 物菌如实施例 1在此不再赘述,其中生物降解时,疏解后的原料与菌液的质量比为 1:8。
磨浆后纸张物理性能指标测定结果请详见下表 5。
表 5 麦草 稻草 玉米秆 打浆度 ASR 48 46 45 定量 /g/cm2 60.2 62.5 57.1 白度 /%ISO 19.9 23.5 20.8 松厚度 /cm3/g 2.08 2.43 2.80 撕裂指数 /mN_m2/g 3.39 4.77 2.92 抗张指数/ N_m/g 70.9 47.8 43.9 耐破指数 / kP^m2/g 3.09 1.97 1.82
表 6瓦楞原纸的质量指标
Figure imgf000014_0001
虽然本发明已以较佳实施例披露如上, 然其并非用以限定本发明, 任何所属技术 领域的技术人员, 在不脱离本发明的精神和范围内, 当可作些许的更动与改进, 因此 本发明的保护范围当视权利要求所界定者为准。

Claims

权 利 要 求 书
1.一种复合菌群, 其包含保藏号为 CGMCC No. 5971的芽孢杆菌 (Bacillus sp. )、 保藏号为 CGMCC No. 5972的唐山莱茵默氏菌 (R einheimera tangshanensis)、 保藏号 为 CGMCC No. 5973的鲁氏不动杆菌 (Acinetobacter lwoffii)。
2. 权利要求 1所述的复合菌群在制备添加剂用纤维素、纺织用纤维或生物菌液制 浆中的应用。
3. 一种制备添加剂用纤维素的方法, 其特征在于, 包含步骤:
1 )菌液的配置:将权利要求 1所述的复合菌群按照下述质量比配置成复合菌水溶 液, 即为菌液:
芽抱杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2-3 : 1-2 : 1-2;
2)原料处理: 将木本原料去皮后切片, 或将草本原料切成段, 将切好的原料放入 浸泡池中润胀;
3) 纤维的制备, 其包含步骤:
疏解: 将润胀的原料搓丝和 /或挤碾;
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进行 二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆液 中的纤维束, 再次磨浆使其制成单根纤维;
灭菌: 将上述制得的纤维在温水中浸泡, 然后烘干、 灭菌;
研磨: 将灭菌后的纤维研磨成纤维素, 作为添加剂。
4. 一种制备纺织纤维的方法, 其特征在于, 包含步骤:
1 )菌液的配置:将权利要求 1所述的复合菌群按照下述质量比配置成复合菌水溶 液, 即为菌液:
芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 2-3 : 1-2 : 1-2;
2) 原料处理: 将麻类原料切成段, 并将原料放入浸泡池中润胀;
3) 纤维的制备, 其包含步骤:
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进行 二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆液 中的纤维束, 再次磨浆使其制成单根纤维;
干燥、 梳理: 将上述制得的纤维在温水中浸泡, 然后烘干、 梳理, 用于制备纺织 纤维。
5. 一种生物菌液制浆法, 其特征在于, 包含步骤-
1 )菌液的配置: 将权利要求 1所述的复合菌群按照下述质量比配置成复合菌水溶 液, 即为菌液:
芽孢杆菌: 唐山莱茵默氏菌: 鲁氏不动杆菌为 1-3 : 1-3 : 1-2;
2)原料处理: 将木本原料去皮后切片, 或将草本原料切成段, 将切好的原料放入 浸泡池中润胀;
3) 制桨, 其包含步骤:
疏解: 将润胀的原料搓丝和 /或挤碾;
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 粗磨浆: 将灭菌后的原料进行一段粗磨浆, 成为纤维束;
细磨浆: 将上述一段粗磨浆进行二段细磨浆, 使纤维束分散成单根纤维; 浆料筛选: 筛选、 过滤经过一段粗磨桨和二段细磨浆后的浆料中的纤维束, 再次 磨浆使其制成单根纤维;
消潜、 洗桨: 将上述制得的纸浆在温水中浸泡, 用于制纸板。
6. 根据权利要求 3至 5中任一项所述的方法, 其特征在于, 步骤 1 ) 中形成的菌 液的密度为 6000万个 /ml菌以上。
7. 根据权利要求 3至 5任一项所述的方法, 其特征在于, 步骤 2) 所述的润胀时 间为 10-12h。
8. 根据权利要求 3至 5任一项所述的方法, 其特征在于, 步骤 3 ) 所述的生物降 解温度保持在 3540 °C, 时间 32-36小时。
9. 根据权利要求 3至 5任一项所述的方法, 其特征在于, 步骤 3 ) 所述的生物降 解中, 疏解后的原料与菌液的质量比为 1 : 6-9 。
10. 根据权利要求 3至 5任一项所述的方法, 其特征在于, 步骤 2)中浸泡原料后 的浸泡液经絮凝、 沉淀, 上清液回收再利用, 沉淀物输入沼气池发酵产生沼气。
PCT/CN2013/001089 2012-09-17 2013-09-16 一种复合菌群及其应用 WO2014040388A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2885478A CA2885478A1 (en) 2012-09-17 2013-09-16 Complex microbial flora and application thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201210343985.9A CN103074224B (zh) 2012-09-17 2012-09-17 一种用于生物制备纺织纤维的复合菌群及其应用
CN201210343936.5A CN103074223B (zh) 2012-09-17 2012-09-17 一种用于生物制备纤维素添加剂的复合菌群及其应用
CN201210343984.4 2012-09-17
CN201210343984.4A CN102876602B (zh) 2012-09-17 2012-09-17 一种用于生物菌液制浆的复合菌群及其应用
CN201210343936.5 2012-09-17
CN201210343985.9 2012-09-17

Publications (1)

Publication Number Publication Date
WO2014040388A1 true WO2014040388A1 (zh) 2014-03-20

Family

ID=50277554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001089 WO2014040388A1 (zh) 2012-09-17 2013-09-16 一种复合菌群及其应用

Country Status (2)

Country Link
CA (1) CA2885478A1 (zh)
WO (1) WO2014040388A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624727A (zh) * 2009-08-06 2010-01-13 华中科技大学 一种基于分段循环的苎麻纤维生产方法
WO2010104794A2 (en) * 2009-03-09 2010-09-16 Novozymes A/S Improved method for methane generation
CN102002468B (zh) * 2010-08-13 2012-07-25 东华大学 一种荧光假单胞菌da4菌株及其获得方法和应用
CN102876602A (zh) * 2012-09-17 2013-01-16 贾平 一种用于生物菌液制浆的复合菌群及其应用
CN103074223A (zh) * 2012-09-17 2013-05-01 贾平 一种用于生物制备纤维素添加剂的复合菌群及其应用
CN103074224A (zh) * 2012-09-17 2013-05-01 贾平 一种用于生物制备纺织纤维的复合菌群及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104794A2 (en) * 2009-03-09 2010-09-16 Novozymes A/S Improved method for methane generation
CN101624727A (zh) * 2009-08-06 2010-01-13 华中科技大学 一种基于分段循环的苎麻纤维生产方法
CN102002468B (zh) * 2010-08-13 2012-07-25 东华大学 一种荧光假单胞菌da4菌株及其获得方法和应用
CN102876602A (zh) * 2012-09-17 2013-01-16 贾平 一种用于生物菌液制浆的复合菌群及其应用
CN103074223A (zh) * 2012-09-17 2013-05-01 贾平 一种用于生物制备纤维素添加剂的复合菌群及其应用
CN103074224A (zh) * 2012-09-17 2013-05-01 贾平 一种用于生物制备纺织纤维的复合菌群及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, YANGDONG ET AL.: "Isolation and Screening of Microbial Strains for Biological Degumming of Ramie and Evaluation of its Effects", JOURNAL OF TEXTILE RESEARCH, vol. 31, no. 5, 31 May 2010 (2010-05-31), pages 69 - 73 *
VARGAS-GARCIA, M.C. ET AL.: "Effect of inoculation in composting processes: Modificationsin lignocellulosic fraction", WASTE MANAGEMENT, no. 27, 25 September 2006 (2006-09-25), pages 1099 - 1107 *
ZHANG, XIAOXIA: "Studies on Polyphasic Taxonomy of Rice Root-associated Bacteria and Description of Rheinheimera Tangshanensis sp. nov.", AGRICULTURE, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, no. 10, 15 October 2009 (2009-10-15), pages D043 - 4 *

Also Published As

Publication number Publication date
CA2885478A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US11834784B2 (en) Method for preparing unbleached biomechanical pulp and fully utilizing by-products by treating straws with heat steam in synergy with biological enzyme
Sun et al. Biological fermentation pretreatment accelerated the depolymerization of straw fiber and its mechanical properties as raw material for mulch film
CN110453519B (zh) 一种食用菌菌渣的制浆方法
CN101792980B (zh) 生物菌液体机械制浆法
Ding et al. Trend of ramie industry development: A review of green degumming and the utilization of processing residues
WO2014040386A1 (zh) 一种生物菌液及其应用
WO2014040380A1 (zh) 复合菌群及其应用
WO2014040387A1 (zh) 一种生物菌液及其应用
WO2014040388A1 (zh) 一种复合菌群及其应用
WO2014040395A1 (zh) 一种复合菌群及其应用
CN102888360A (zh) 一种生物菌及生物菌液制浆法
CN105368894A (zh) 一种农作物秸秆生物发酵法制取纤维工艺
WO2014040383A1 (zh) 一种生物菌液及其应用
WO2014040385A1 (zh) 一种复合菌群及其应用
WO2014040381A1 (zh) 一种生物菌液及其应用
WO2014040375A1 (zh) 一种芽孢杆菌及其应用
WO2014040377A1 (zh) 一种鲁氏不动杆菌及其应用
WO2014040394A1 (zh) 一种复合菌群及其应用
Devi et al. Eco-fibers: product of agri-bio-waste recycling
WO2014040391A1 (zh) 一种复合菌群及其应用
WO2014040378A1 (zh) 一种荧光假单胞菌及其应用
WO2014040389A1 (zh) 一种复合菌群及其应用
WO2014040376A1 (zh) 一种唐山莱茵默氏菌及其应用
WO2014040382A1 (zh) 一种生物菌液及其应用
WO2014040390A1 (zh) 一种复合菌群及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13836670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2885478

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13836670

Country of ref document: EP

Kind code of ref document: A1