WO2014040387A1 - 一种生物菌液及其应用 - Google Patents

一种生物菌液及其应用 Download PDF

Info

Publication number
WO2014040387A1
WO2014040387A1 PCT/CN2013/001088 CN2013001088W WO2014040387A1 WO 2014040387 A1 WO2014040387 A1 WO 2014040387A1 CN 2013001088 W CN2013001088 W CN 2013001088W WO 2014040387 A1 WO2014040387 A1 WO 2014040387A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
fiber
bacterial liquid
raw materials
bacterial
Prior art date
Application number
PCT/CN2013/001088
Other languages
English (en)
French (fr)
Inventor
贾平
Original Assignee
北京天安生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210342555.5A external-priority patent/CN103074253B/zh
Priority claimed from CN2012103427512A external-priority patent/CN103074220A/zh
Priority claimed from CN2012103426223A external-priority patent/CN103074217A/zh
Application filed by 北京天安生物科技有限公司 filed Critical 北京天安生物科技有限公司
Publication of WO2014040387A1 publication Critical patent/WO2014040387A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F5/00Fertilisers from distillery wastes, molasses, vinasses, sugar plant or similar wastes or residues, e.g. from waste originating from industrial processing of raw material of agricultural origin or derived products thereof
    • C05F5/002Solid waste from mechanical processing of material, e.g. seed coats, olive pits, almond shells, fruit residue, rice hulls
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F7/00Fertilisers from waste water, sewage sludge, sea slime, ooze or similar masses
    • C05F7/005Waste water from industrial processing material neither of agricultural nor of animal origin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01CCHEMICAL OR BIOLOGICAL TREATMENT OF NATURAL FILAMENTARY OR FIBROUS MATERIAL TO OBTAIN FILAMENTS OR FIBRES FOR SPINNING; CARBONISING RAGS TO RECOVER ANIMAL FIBRES
    • D01C1/00Treatment of vegetable material
    • D01C1/04Bacteriological retting
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas
    • C12R2001/39Pseudomonas fluorescens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the invention relates to a biological bacterial liquid and the use thereof in preparing textile fibers, cellulose for additives and pulping of biological bacteria liquid.
  • hemp fiber has been favored by consumers because of its ecological and environmental protection characteristics. Its demand is increasing year by year, and the global natural fiber growth rate is 8% per year.
  • the main feature of hemp fiber raw materials is high fiber content, slender fiber is good for interlacing, good strength; small cell cavity, thick cell wall, large wall cavity ratio, poor fiber flexibility, smooth and soft paper, strong book Good; because the hemp fiber cell is fine, the fiber is fine and the opacity is high.
  • the disadvantage is that the fibers are not easily separated into filaments, resulting in low paper permeability.
  • the fiber is prepared from the hemp raw material, and the waste liquid generated by the chemical method and the chemical method is polluted, destroys the land, pollutes the air, and has high energy consumption, power consumption and large water consumption.
  • the waste liquid generated in chemical pulp production pollutes the environment, destroys the land and pollutes the air.
  • Waste liquid discharge is large; waste that cannot be reused can only be discharged to the outside. Does not comply with national energy conservation and emission reduction policies. Substances cannot be effectively recycled. Chemical preparations cannot be separated from waste liquids, organic substances are mixed with chemical preparations, and organic substances cannot be reused, resulting in a large loss.
  • bio-fiber technology it is necessary to develop bio-fiber technology to fundamentally solve the above-mentioned pollution problems, save energy and reduce emissions, save water, reduce production costs and increase the use rate of materials.
  • An object of the present invention is to overcome the above-mentioned drawbacks of the prior art chemical fiber-making fibers and to provide a novel biological bacteria for preparing fibers.
  • the inventors obtained a biological bacterium suitable for the production of fibers capable of achieving the above object by a long screening operation.
  • the present invention provides a composite flora comprising Rheinheimera tangshane is, deposited under the accession number CGMCC No. 5972, Acinetobacter IwoffiD, deposited under the accession number CGMCC No. 5973 (Acinetobacter IwoffiD, accession number Pseudomonas fluorescens for CGMCC No. 5974
  • the composite flora can be used for preparing textile fibers, cellulose for additives, and biological bacterial liquid pulping.
  • the invention also provides a method for preparing textile fibers, which mainly comprises the steps of:
  • the above-mentioned composite bacterial group is configured as a mixed bacterial aqueous solution according to the following mass ratio, that is, the bacterial liquid:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal for 1-2: 1-2: 1-2: 2-3;
  • Raw material processing cutting the hemp raw material into segments, and swelling the raw materials into the soaking pool; preferably, the hemp raw materials are flax, ramie, yellow kenaf or sisal;
  • Biodegradation Soak the raw material after dissolving into the configured bacterial liquid
  • the biodegradable raw materials are removed from the bacterial liquid, drained, and steamed; the fiber is obtained: the sterilized raw material is subjected to coarse grinding to form a fiber bundle; Two-stage fine grinding to disperse the fiber bundle into a single fiber; screening and filtering the fiber bundle in the slurry after a rough grinding and two fine grinding, and re-pulping to make a single fiber;
  • Drying, carding The fibers obtained above are soaked in warm water, then dried and carded for the preparation of textile fibers.
  • the invention also provides a method for preparing cellulose for additives, which mainly comprises the steps of:
  • the above-mentioned composite bacterial group is configured as a mixed bacterial aqueous solution according to the following mass ratio, that is, the bacterial liquid:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal for 1-2: 1-2: 1-2: 2-3;
  • Raw material processing After peeling the woody raw materials, or cutting the herbal raw materials into segments, the cut raw materials are placed in the soaking pool to swell;
  • Disintegration squeezing the swollen raw material and/or squeezing
  • Biodegradation Soak the raw material after dissolving into the configured bacterial liquid
  • the biodegradable raw materials are removed from the bacterial liquid, drained, and steamed; the fiber is obtained: the sterilized raw material is subjected to coarse grinding to form a fiber bundle; Two-stage fine grinding to disperse the fiber bundle into a single fiber; screening and filtering the fiber bundle in the slurry after a rough grinding and two fine grinding, and re-pulping to make a single fiber;
  • Sterilization Soak the fiber prepared above in warm water, then dry and sterilize;
  • the sterilized fibers are ground into cellulose as an additive.
  • the invention also provides a biological bacterial liquid pulping method, which mainly comprises the steps of: 1) Disposition of the bacterial liquid:
  • the above-mentioned composite bacterial group is configured as a mixed bacterial aqueous solution according to the following mass ratio, that is, the bacterial liquid:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal 1-3: 1-2: 1-2: 2-3;
  • Raw material processing After peeling the woody raw materials, or cutting the herbal raw materials into segments, the cut raw materials are placed in the soaking pool to swell;
  • Disintegration squeezing the swollen raw material and/or squeezing
  • Biodegradation Soak the raw material after dissolving into the configured bacterial liquid
  • Fine refining The above-mentioned one-stage coarse refining is subjected to two-stage fine refining to disperse the fiber bundle into a single fiber; slurry screening: screening, filtering through a slurry after a coarse refining and two-stage fine refining The fiber bundle is repulped and made into a single fiber;
  • Submersible, washing The pulp obtained above is soaked in warm water and used for making cardboard.
  • the density of the bacterial liquid formed in the step 1) is 6 X 10 7 /ml or more.
  • the swelling time is 10-12 h.
  • the biodegradation temperature of step 3) is maintained at 35-40 ° C for 30-34 hours.
  • the mass ratio of the raw material to the bacterial liquid after the disintegration is 1:6-9.
  • the steam sterilization is autoclaved for 10-30 minutes.
  • step 2) the soaking liquid after soaking the raw material is flocculated and precipitated, and the supernatant is recovered and reused, and the precipitate is input into the biogas tank to be fermented to generate biogas.
  • the biological method provided by the invention has the advantages of: 1) no pollution to the environment: the waste liquid is directly converted into an organic fertilizer, achieving zero discharge and zero pollution. 2)
  • the biological method can protect the fiber. Compared with the traditional chemical method, the method can recover both the whole fiber and the half fiber, thereby increasing the yield. 3) Biological methods are degraded under normal pressure, energy saving, emission reduction, and low carbon. 4) Low production costs and high economic returns.
  • the by-product of the present invention is sent to a sedimentation tank for flocculation and sedimentation, and the supernatant liquid is returned to secondary use, and then used as a pre-dip liquid.
  • the floc is rich in a variety of organic matter and phytonutrients such as N, P, K, and the floc is mixed with the old bacterial liquid (multiple degradation of the raw viscous liquid, also containing N, P, K, Fe and trace elements). , acidified, and then discharged into the biogas fermentation tank to produce biogas.
  • the biogas residue, the biogas slurry and the pulverized boiler ash are mixed and granulated to form a granular organic fertilizer, and finally discharged to the factory to achieve zero discharge.
  • the present invention further improves the existing techniques for preparing cellulose and biopulping by providing the above-mentioned biological bacteria obtained by the inventor after a long period of creative labor, which reduces the reaction time and improves the purity and yield of the obtained fiber.
  • This enables the technology to be widely applied in actual production.
  • the application of the biological bacteria degrades the plant to obtain the fiber in a short time, and the biological bacteria degrade the lignin in the plant body to produce pulp and paper in a short time, and the by-product is converted into biogas twice, and the biogas is supplied to the coal and gas boiler for combustion and heating. Save coal consumption.
  • biogas residue system As an organic fertilizer, it has formed a new economic cycle of “substance organic transformation”, achieving no waste discharge, that is, zero emissions.
  • the problem of pollution of chemically prepared fibers in the prior art is fundamentally solved. Energy saving and emission reduction, saving water, reducing production costs and increasing the use rate of materials.
  • FIG. 1 is a flow chart of preparing textile fibers in accordance with an embodiment of the present invention
  • FIG. 2 is a flow chart of preparing cellulose for an additive according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of preparing cellulose for an additive according to another embodiment of the present invention.
  • FIG. 4 is a flow chart of a biological bacterial liquid pulping method according to an embodiment of the present invention.
  • Figure 5 is a flow chart of a biological bacterial liquid pulping process in accordance with another embodiment of the present invention.
  • the biological bacteria used in the present invention was deposited on April 6, 2012 at the General Microbiology Center of the China Microbial Culture Collection Management Committee (CGMCC, No. 3, No. 1 Beichen West Road, Chaoyang District, Beijing), which contains the deposit number CGMCC. No. 5972, Einheimem tangshanensis, No. 5972, C. cinerea cinetobacter lwoffif, CGMCC No. 5973, Pseudomo fluorescens, deposited under CGMCC No. 5974, preserved No. 5975 of CGMCC No. 5975 is a mixed solution of the above-mentioned composite bacteria in the following mass ratio, which is a bacterial solution:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal 1-2 : 1-2 : 1-2 : 2-3;
  • the density of the formed bacteria is 6 X 10 7 / More than ml bacteria, spare.
  • the composite flora was configured according to the following mass ratios: R. jejuni: Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal 1 : 1 : 2:3.
  • the flow of the fiber preparation method is divided into three stages: preparation stage, fiber section and by-product section.
  • Biodegradation The decomposed raw materials are input into the biological bacteria degradation tank or tank, and immersed in the bacterial liquid prepared in Example 1. The mass ratio of the decomposed raw materials to the bacterial liquid is 1:8, and the temperature is maintained at 35- 40 ° C, time 30-34 hours. The degradation reaction occurs under the conditions of the biological bacteria, and its specific effect is exerted.
  • Re-screening Screening and filtering the fiber bundles in a slurry after a coarse grinding and a second-stage fine grinding, and re-pulping them to make a single fiber.
  • the residue of the raw materials separated in A and 3 is rich in nutrients, and is fermented and converted into cattle and sheep.
  • the liquid After immersing and washing the liquid in B and 4, the liquid is turbid, and after flocculation and sedimentation, the supernatant is recovered and reused.
  • the sediment is input into the biogas tank to produce biogas, which is fed into the gas dual-purpose boiler for fuel, which can save energy. Consumption.
  • Bio-organic fertilizer The biogas residue and biogas slurry fermented by the biogas tank are rich in bio-organic fertilizer.
  • the liquid is used as crop topdressing and flower nutrient solution, and solid granulation is used as base fertilizer, which is green fertilizer.
  • the specific preparation process is the same as in Example 2.
  • the difference is that the composite flora is configured according to the following mass ratios: R. jejuni: Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal 1:2:2:2; Biodegradation, resolving
  • the mass ratio of the raw material to the bacterial liquid is 1:7.
  • the specific preparation process is the same as in Example 2.
  • the difference is that the composite flora is configured according to the following mass ratios: R. jejuni: Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal is 2: 1 : 2:2; when biodegrading, resolving
  • the mass ratio of the raw material to the bacterial liquid was 1:8.5.
  • the specific preparation process is the same as in Example 2.
  • the difference is that the complex flora is configured according to the following mass ratios: R. jejuni: Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal 1:2:2:3; Biodegradation, sparse
  • the mass ratio of the raw material to the bacterial liquid is 1:9.
  • the measurement results of the physical properties of the obtained fibers are shown in Table 1.
  • the complex flora is configured according to the following mass ratio:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal is 1 : 2: 2: 2;
  • the composite flora is configured according to the following mass ratio:
  • the composite flora is configured according to the following mass ratio:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal is 2: 1 : 2:2.
  • the above four steps can be intermittent or interlocking.
  • Disintegration The swollen branches are fed into a silking machine or squeezed and smashed to modify the wood structure to loosen into a woody shape, which is beneficial to the penetration of biological bacteria and exerts its degradation.
  • Biodegradation The decomposed raw materials are input into the biological bacteria degradation tank or tank, and immersed in the bacterial liquid prepared in Example 1. The mass ratio of the decomposed raw materials to the bacterial liquid is 1:6, and the temperature is maintained at 35- 40 ° C, time 30-34 hours. The lignin reaction is degraded under the conditions of biological bacteria, and its specific effect is exerted.
  • the sterilized raw material is subjected to a rough grinding to form a fiber bundle; the above-mentioned one-stage coarse grinding is subjected to two-stage fine grinding to disperse the fiber bundle into a single fiber; screening, filtering through a rough grinding and two The fiber bundle in the finely ground slurry is reground to make a single fiber.
  • the caragana peel isolated from A 3 is rich in nutrients and fermented into cattle and sheep.
  • the flocculation and sedimentation are carried out, and the supernatant is recovered and reused.
  • the sediment is input into the biogas digester to produce biogas, and the gas is used as a dual-purpose boiler to make fuel, which can save energy and reduce consumption. effect.
  • Bio-organic fertilizer The biogas residue and biogas slurry fermented by the biogas tank are rich in bio-organic fertilizer.
  • the liquid is used as crop topdressing and flower nutrient solution, and solid granulation is used as base fertilizer, which is green fertilizer.
  • the wheat straw is used as a raw material, and the preparation method of the cellulose when the herbal raw material is used is specifically described.
  • the preparation process of the remaining herbal materials, such as straw and reed, can be carried out by referring to the process.
  • the composite flora is configured according to the following mass ratio:
  • the composite flora When reed is used, the composite flora is configured according to the following mass ratio:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal is 1 : 1 : 3:2.
  • the complex flora is configured according to the following mass ratio:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal is 1 : 2: 2: 2;
  • the composite flora is configured according to the following mass ratio:
  • the composite flora is configured according to the following mass ratio:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomalus is 2: 1 : 2:3.
  • the flow of the biological bacterial slurry method is divided into three stages: preparation stage, pulping section and by-product section.
  • the above four steps can be intermittent or interlocking.
  • Disintegration The swollen branches are fed into a silk reeling machine or squeezed and smashed to modify the wood structure to loosen into a wood-like shape, which is beneficial to the penetration of biological bacteria and exerts its degradation effect.
  • Biodegradation The decomposed raw materials are input into the biological bacteria degradation tank or tank, and immersed in the bacterial liquid prepared in Example 1.
  • the mass ratio of the decomposed raw materials to the bacterial liquid is 1:6, and the temperature is maintained at 35- 40 ° C, time 30-34 hours.
  • the lignin reaction is degraded under the conditions of biological bacteria, and its specific effect is exerted.
  • Fine refining From the above-mentioned crude slurry, it is then transferred to a high-concentration refiner for fine refining to disperse the fiber bundle into a single fiber.
  • Slurry screening After two stages of refining, the slurry contains a small number of fiber bundles, which are screened, filtered, and re-slurry to reach a single fiber.
  • Paperboard The paper pulp prepared above is fed into a paper machine, and paperboard is produced by a papermaking process.
  • the caragana peels separated in A and 3 are rich in nutrients, and fermented into cattle and sheep.
  • the liquid After immersing and washing the liquid in B and 4, the liquid is turbid, and after flocculation and sedimentation, the supernatant is recovered and reused.
  • the sediment is input into the biogas tank to produce biogas, which is fed into the gas dual-purpose boiler for fuel, which can save energy. Consumption.
  • Bio-organic fertilizer Biogas residue and biogas slurry fermented by biogas digesters are rich in bio-organic fertilizers, Crop topdressing and flower nutrient solution use, solid granulation for base fertilizer use, are all green fertilizer.
  • the biological bacterial liquid pulping method when using herbal raw materials is specifically described.
  • the biopulping of the remaining herbal materials, such as wheat straw, straw, and corn stalk, can be carried out with reference to the process.
  • the composite flora is configured according to the following mass ratio:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal is 2: 1 : 2:3;
  • the composite flora is configured according to the following mass ratio:
  • R. jejuni Acinetobacter ruta: Pseudomonas fluorescens: Wickerhamomyces anomal is 3: 1 : 2:3;
  • the composite flora is configured according to the following mass ratio:
  • the flow of the biological bacterial slurry method is divided into three stages: preparation stage, pulping section and by-product section.
  • preparation stage 1, 4

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Textile Engineering (AREA)
  • Paper (AREA)

Abstract

提供了一种复合菌群及其在制备纺织纤维、添加剂用纤维素、生物菌液制浆中的应用方法。该复合菌群包含保藏号为CGMCC No.5972的唐山莱茵默氏菌、保藏号为CGMCC No.5973的鲁氏不动杆菌、保藏号为CGMCC No.5974的荧光假单胞菌以及保藏号为CGMCC No.5975的Wickerhamomyces anomalus。该方法包含菌液的配置、原料处理、纤维的制备或制浆。

Description

种生物菌液及其应用
技术领域
本发明涉及一种生物菌液及其在制备纺织纤维、 添加剂用纤维素、 生物菌液制浆 中的应用。
背景技术
近年来, 随着石化资源的日益枯竭说, 麻类纤维因具有生态、 环保等优良特性而备 受消费者的钟爱, 其需求在逐年增长, 全球天然纤维每年增速 8%。麻类纤维原料最大 特点是纤维含量高, 纤维细长有利于交织, 强度好; 纤维胞腔小、 胞壁厚、 壁腔比大, 纤维的柔韧性差、 纸面光滑纸质柔软细腻, 强度书好; 由于麻类纤维细胞腔细、 纤维细 故不透明度高。 但其缺点是纤维不容易分丝帚化, 使成纸透气度低。
现有技术中从麻原料中制备纤维, 多通过化学方法, 化学方法生产中产生的废液 污染化境, 破坏土地, 污染空气, 而且耗能高, 耗电及用水量大。 根据中国目前制浆 业的现状, 应用于生产中主要以化学浆占主导地位, 化学浆生产中产生的废液污染化 境, 破坏土地, 污染空气; 在制浆中加入大量的氢氧化钠 (烧碱), 漂白过程中也使用 化学有害元素, 产生废液无法全部回收利用。 而且耗能高, 耗电及用水量大; 在整个 生产过程中都在使用大量的电, 致使成为耗电大户。 废液排污量大; 无法再利用的废 液只能向外排放。 不符合国家节能减排政策。 物质不能达到有效循环再利用。 化学制 剂无法从废液中分离, 有机物与化学制剂混合在一起, 有机物也无法得到再利用, 造 成大量损失。
因此, 有必要开发生物制纤维技术, 从根本上解决上述污染难题, 节能减排, 省 水, 降低生产成本且提高物质的使用率。
发明内容
本发明的目的是克服现有技术的化学法制纤维的上述缺陷, 提供一种新的制备纤 维用生物菌。 发明人通过长时间的筛选工作, 获得了适合用于制备纤维的能够实现上 述发明目的的生物菌。
具体地, 本发明提供一种复合菌群, 其包含保藏号为 CGMCC No. 5972的唐山莱 茵默氏菌 Rheinheimera tangshane is 、 保藏号为 CGMCC No. 5973的鲁氏不动杆菌 (Acinetobacter IwoffiD , 保藏号为 CGMCC No. 5974的荧光假单胞菌
Figure imgf000002_0001
fluorescens )、 保藏号为 CGMCC No. 5975 的 Wickerhamomyces anomalus (该
Figure imgf000002_0002
细胞球形、卵形、 腊肠形, 大小为 (4.8-14.4 ) X ( 3.6-7.2 ) μΐη , 有沉淀形成。 麦芽汁琼脂斜面 25 °C培 养一个月, 菌落奶酪状, 乳白色, 表面平滑, 不反光, 边缘根状。 玉米粉琼脂 Dalmau 平板培养, 产生假菌丝)。
所述的复合菌群能够用于制备纺织纤维、 添加剂用纤维素、 生物菌液制浆。 本发明还提供一种制备纺织纤维的方法, 其主要包含步骤:
1 )菌液的配置: 将上述的复合菌群按照下述质量比配置成复合菌水溶液, 即为菌 液:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1-2: 1-2: 1-2 : 2-3;
2 )原料处理: 将麻类原料切成段, 并将原料放入浸泡池中润胀; 优选地, 所述的 麻类原料为亚麻、 苎麻、 黄红麻或剑麻;
3 ) 纤维的制备, 其包含步骤:
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进行 二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆液 中的纤维束, 再次磨浆使其制成单根纤维;
干燥、 梳理: 将上述制得的纤维在温水中浸泡, 然后烘干、 梳理, 用于制备纺织 纤维。
本发明还提供一种制备添加剂用纤维素的方法, 其主要包含步骤:
1 )菌液的配置: 将上述的复合菌群按照下述质量比配置成复合菌水溶液, 即为菌 液:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1-2: 1-2: 1-2 : 2-3;
2 )原料处理: 将木本原料去皮后切片, 或将草本原料切成段, 将切好的原料放入 浸泡池中润胀;
3 ) 纤维的制备, 其包含步骤:
疏解: 将润胀的原料搓丝和 /或挤碾;
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进行 二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆液 中的纤维束, 再次磨浆使其制成单根纤维;
灭菌: 将上述制得的纤维在温水中浸泡, 然后烘干、 灭菌;
研磨: 将灭菌后的纤维研磨成纤维素, 作为添加剂。
本发明还提供一种生物菌液制浆法, 其主要包含步骤: 1 )菌液的配置: 将上述的复合菌群按照下述质量比配置成复合菌水溶液, 即为菌 液:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1-3: 1-2: 1-2 : 2-3;
2 )原料处理: 将木本原料去皮后切片, 或将草本原料切成段, 将切好的原料放入 浸泡池中润胀;
3 ) 制浆, 其包含步骤:
疏解: 将润胀的原料搓丝和 /或挤碾;
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 粗磨浆: 将灭菌后的原料进行一段粗磨浆, 成为纤维束;
细磨浆: 将上述一段粗磨浆进行二段细磨浆, 使纤维束分散成单根纤维; 浆料筛选: 筛选、 过滤经过一段粗磨浆和二段细磨浆后的浆料中的纤维束, 再次 磨浆使其制成单根纤维;
消潜、 洗浆: 将上述制得的纸浆在温水中浸泡, 用于制纸板。
其中, 上述方法中, 步骤 1 )中形成的菌液的密度为 6 X 107个 /ml菌以上。步骤 2 ) 中, 所述的润胀时间为 10-12h。 其中, 步骤 3 ) 所述的生物降解温度保持在 35-40 °C, 时间 30-34小时。 疏解后的原料与菌液的质量比为 1 : 6-9。 所述的蒸汽灭菌为常压水 蒸汽灭菌 10-30分钟。
进一步地, 步骤 2 ) 中浸泡原料后的浸泡液经絮凝、 沉淀, 上清液回收再利用, 沉淀物输入沼气池发酵产生沼气。
本发明提供的生物方法制备纤维的优点是: 1 )不污染环境: 废液直接转化成有机 肥料, 达到零排放, 零污染。 2 )生物方法对纤维能起到保护作用, 与传统的化学方法 相比, 本方法能够将全纤维和半纤维都回收, 因此提高了得率。 3 )生物方法在常压下 进行降解, 节能、 减排、 低碳。 4 ) 生产成本低, 经济效益高。
本发明的副产品输送到沉淀池絮凝、 沉淀, 上清液返回二次利用, 再作预浸液使 用。絮凝物中含有丰富的多种有机物和 N、 P、 K等植物营养素,絮凝物再与老菌液(多 次降解原料粘稠菌液, 也含有 N、 P、 K、 Fe及微量元素)混合, 酸化, 然后一同排入 沼气发酵池中, 生产沼气。 将沼渣、 沼液与粉碎的锅炉灰混合造粒, 制成颗粒有机肥, 最后出厂, 实现零排放。
本发明通过提供上述的发明人经过长时间的创造劳动获得的生物菌, 进一步完善 了现有的制备纤维素和生物制浆的技术, 降低了反应时间, 提高了制得纤维的纯度和 得率, 使得该技术能在实际生产中大规模地推广应用。 本发明应用生物菌在短时间内 降解植物获得纤维, 应用生物菌在短时间内降解植物体中木质素生产纸浆、 造纸, 副 产品二次转化成沼气, 沼气供煤、 气两用锅炉燃烧加热, 节省用煤量。 最后, 沼渣制 成有机肥料, 形成了一个 "物质有机转化" 的经济循环新模式, 达到无废物排放, 也 就是零排放。 从根本上解决了现有技术中的化学制备纤维的污染难题。 节能减排, 省 水, 降低了生产成本, 提高了物质的使用率。
为让本发明的上述和其它目的、特征和优点能更明显易懂, 下文特举较佳实施例, 并配合附图, 作详细说明如下。
附图说明
图 1是根据本发明的一实施例的制备纺织纤维的流程图;
图 2是根据本发明的一实施例的制备添加剂用纤维素的流程图;
图 3是根据本发明的另一实施例的制备添加剂用纤维素的流程图;
图 4是根据本发明的一实施例的生物菌液制浆法的流程图;
图 5是根据本发明的另一实施例的生物菌液制浆法的流程图。
具体实施方式
实施例 1 菌液的配置
本发明中采用的生物菌已于 2012年 4月 6日在中国微生物菌种保藏管理委员会普 通微生物中心 (CGMCC, 北京市朝阳区北辰西路 1号院 3号) 保藏, 其包含保藏号 为 CGMCC No. 5972 的唐山莱茵默氏菌 einheimem tangshanensis ) , 保藏号为 CGMCC No. 5973的鲁氏不动杆菌 cinetobacter lwoffif)、保藏号为 CGMCC No. 5974 的荧光假单胞菌 ( Pseudomo顧 fluorescens )、 保藏号为 CGMCC No. 5975 的 将上述的复合菌群按照下述质量比配置成复合菌水溶液, 即为菌液:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1-2 : 1-2 : 1-2 : 2-3; 形成的菌液的密度为 6 X 107个 /ml菌以上, 备用。
实施例 2 从亚麻中制备纤维
以亚麻为原料, 具体说明纤维的制备方法。 复合菌群按照下述质量比进行配置: 唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1 : 1 :2:3。
具体请参照图 1, 纤维的制备方法的流程分为三个阶段: 准备阶段、 纤维工段和 副产品工段。
(一) 准备阶段: 1、 4
将收割回来的亚麻浸入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料外表泥土 等杂物洗去, 同时进行浸泡, 水温为自然温度, 时间以浸透、 润胀为准, 10-12小时。 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
(二) 纤维工段: 6-12 6) 生物降解: 将疏解后的原料输入生物菌降解仓或罐中, 浸泡在实施例 1制备的 菌液内, 疏解后的原料与菌液的质量比为 1 :8 , 温度保持在 35-40°C, 时间 30-34小 时。 在生物菌的条件下发生降解反应, 发挥其专一作用。
7) 蒸汽杀菌: 原料预处理完成后, 将原料从菌液中捞出、沥水, 输入到蒸汽仓中, 通入常压水蒸汽 10-30分钟灭菌。 下端将原料输入磨浆机。
8) 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束。
9 ) 将上述一段粗磨进行二段细磨, 使纤维束分散成单根纤维。
10 ) 复筛: 筛选、 过滤经过一段粗磨和二段细磨后的浆液中的纤维束, 再次磨浆 使其制成单根纤维。
1 1) 干燥、 梳理: 将上述制得的纤维在温水中浸泡, 然后烘干, 梳理, 牵伸, 使 纤维进一步伸直平行。
12 ) 制备纺织纤维: 将上述获得的纤维采用进一步的工艺技术制备纺织纤维。 (三) 副产品阶段: A-C
A、 3中分离出的原料剩余物含有丰富的营养成分, 发酵转化成牛、 羊伺料。
B、 4中经多次浸泡、 洗涤的液体浑浊后, 经絮凝、 沉淀, 上清液回收再利用, 沉 淀物输入沼气池发酵产生沼气, 通入煤气两用锅炉做燃料, 可起到节能降耗作用。
C、 生物有机肥: 经沼气池发酵后的沼渣、 沼液是丰富的生物有机肥, 液体作为 农作物追肥和花卉营养液使用, 固体造粒做基肥使用, 均是绿色肥料。
获得的纤维的物理性能指标测定结果请详见表 1。
实施例 3 从苎麻中制备纤维素
具体制备工艺同实施例 2。 不同之处在于, 复合菌群按照下述质量比进行配置: 唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1 :2:2:2; 生物降解时, 疏解后的原料与菌液的质量比为 1 :7 。
获得的纤维的物理性能指标测定结果请详见表 1。
实施例 4 从黄红麻中制备纤维素
具体制备工艺同实施例 2。 不同之处在于, 复合菌群按照下述质量比进行配置: 唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 2: 1 :2:2; 生物降解时, 疏解后的原料与菌液的质量比为 1 :8.5 。
获得的纤维的物理性能指标测定结果请详见表 1。
实施例 5 从剑麻中制备纤维素
具体制备工艺同实施例 2。 不同之处在于, 复合菌群按照下述质量比进行配置: 唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1 :2:2:3; 生物降解时, 疏解后的原料与菌液的质量比为 1 :9 。 获得的纤维的物理性能指标测定结果请详见表 1。
表 1
亚麻 苎麻 黄红麻 剑麻 细度 dtex 5.1 4.5 4.4 4.2 裂断长 km 6.33 6.07 4.09 3.35 断裂强度 cN/dtex 10.5 9.1 9.5 9 断裂伸长率% 5.1 4.5 3.9 4.1 实施例 6 从木本原料中制备纤维
以柠条为原料, 具体说明采用木本原料时的纤维素制备方法。 其余木本原料, 例 如杨树、 柳树的纤维素制备方法可参照该工艺进行。
其中采用柠条时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1 :2:2:2;
采用杨树时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1 :2:2:3;
采用柳树时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 2: 1 :2:2。
具体请参照图 2, 纤维素制备方法的流程分为三个阶段: 准备阶段、 纤维素工段 和副产品工段。
(一) 准备阶段: 1-4
1) -2 ) : 将收割回来的柠条进行皮杆分离。 采用风选机或其它机械分离均可。 皮 杆分离后, 将皮输入有机伺料车间加工伺料, 脱皮后的杆输入下一程序。
3 ) 将杆在切割机上切段, 长度为 3-4 cm, 斜口为好, 以增大渗透面积。
4) 将脱皮后的枝段输入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料外表泥 土等杂物洗去, 同时进行浸泡, 水温为自然温度, 时间以浸透、 润胀为准, 10-12h。 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
以上四步可以是间歇式也可以是连动式。
(二) 纤维素工段: 5-12
5)疏解: 将润胀的枝段输入搓丝机或挤碾、 揉搓机来改性木段结构, 使之松散成 木丝状, 有利于生物菌渗透, 发挥其降解作用。 6) 生物降解: 将疏解后的原料输入生物菌降解仓或罐中, 浸泡在实施例 1制备的 菌液内, 疏解后的原料与菌液的质量比为 1 :6 , 温度保持在 35-40°C, 时间 30-34小 时。 在生物菌的条件下发生降解木素反应, 发挥其专一作用。
7) 蒸汽杀菌: 原料预处理完成后, 将原料从菌液中捞出、沥水, 输入到蒸汽仓中, 通入常压水蒸汽 10-30分钟灭菌。 下端将原料输入磨浆机。
8) 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进 行二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆 液中的纤维束, 再次磨浆使其制成单根纤维。
9) 灭菌: 经粗磨和细磨后的纤维, 受机械摩擦, 大部分打弯、 扭曲变形, 经温水 中浸泡消除磨浆造成的纤维挠曲, 使之舒展, 然后烘干、 灭菌。
10)研磨: 将灭菌后的纤维经本领域的技术人员公知的常规技术手段 (例如稀碱 法) 除去木质素后, 再次灭菌并研磨成纤维素 11 ), 作为食品用或医用或日用化工用 添加剂 12 )
(三) 副产品阶段: A-C
A 3中分离出的柠条皮含有丰富的营养成分, 发酵转化成牛、 羊伺料。
B 4中经多次浸泡、 洗涤的液体浑浊后, 经絮凝、 沉淀, 上清液回收再利用, 沉 淀物输入沼气池发酵产生沼气, 通入煤气两用锅炉做燃料, 可起到节能降耗作用。
C、 生物有机肥: 经沼气池发酵后的沼渣、 沼液是丰富的生物有机肥, 液体作为 农作物追肥和花卉营养液使用, 固体造粒做基肥使用, 均是绿色肥料。
获得的纤维素的物理性能指标测定结果请详见下表 2:
表 2 柠条 杨树 柳树 n 570 530 500 表观比容 cm3/g 7.3 7.2 7.2 平均粒度 μΐη 200 180 190 实施例 7 从草本原料中制备纤维素
以麦草为原料, 具体说明采用草本原料时的纤维素制备方法。 其余草本原料, 例 如稻草、 芦苇的纤维素制备方法可参照该工艺进行。
其中采用麦草时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 2: 1 :2:2; 采用稻草时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 2:2:2:2;
采用芦苇时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1 : 1 :3:2。
具体请参照图 3, 纤维素制备方法的流程分为三个阶段: 准备阶段、 纤维素工段 和副产品工段。
(一) 准备阶段: 1、 4
将麦草切成 4-5cm的切段, 输入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料 外表泥土等杂物洗去,同时进行浸泡,水温为自然温度,时间以浸透、润胀为准, 10-12ho 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
(二) 纤维素工段: 5-12和 (三) 副产品阶段: A-C同实施例 6, 其中所使用的 生物菌如实施例 1在此不再赘述, 其中生物降解时, 疏解后的原料与菌液的质量比为 1 :8 。
获得的纤维素的物理性能指标测定结果请详见下表 3 :
表 3 麦草 稻草 芦苇 n 又 480 450 440 表观比容 cm3/g 7.3 6.7 6.8 平均粒度 μΐη 190 150 160 实施例 8 木本原料的生物菌液制浆
以柠条为原料, 具体说明采用木本原料时的生物菌液制浆法。 其余木本原料, 例 如杨树、 桉树的生物制浆法可参照该工艺进行。
其中采用柠条时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1 :2:2:2;
采用杨树时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 2: 1 :2:2;
采用桉树时, 复合菌群按照下述质量比进行配置: 唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomalus为 2: 1 :2:3。
具体请参照图 4, 生物菌液制浆法的流程分为三个阶段: 准备阶段、 制浆工段和 副产品工段。
(一) 准备阶段: 1-4
I) -2 ) : 将收割回来的柠条进行皮杆分离。 采用风选机或其它机械分离均可。 皮 杆分离后, 将皮输入有机伺料车间加工伺料, 脱皮后的杆输入下一程序。
3 ) 将杆在切割机上切段, 长度为 3-4 cm, 斜口为好, 以增大渗透面积。
4) 将脱皮后的枝段输入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料外表泥 土等杂物洗去, 同时进行浸泡, 水温为自然温度, 时间以浸透、 润胀为准, 10-12h。 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
以上四步可以是间歇式也可以是连动式。
(二) 制浆工段: 5-12
5)疏解: 将润胀的枝段输入搓丝机或挤碾、 揉搓机来改性木段结构, 使之松散成 木丝状, 有利于生物菌渗透, 发挥其降解作用。
6) 生物降解: 将疏解后的原料输入生物菌降解仓或罐中, 浸泡在实施例 1制备的 菌液内, 疏解后的原料与菌液的质量比为 1 :6 , 温度保持在 35-40°C, 时间 30-34小 时。 在生物菌的条件下发生降解木素反应, 发挥其专一作用。
7) 蒸汽杀菌: 原料预处理完成后, 将原料从菌液中捞出、沥水, 输入到蒸汽仓中, 通入常压水蒸汽 10-30分钟灭菌。 下端将原料输入磨浆机。
8)粗磨浆: 将灭菌后的原料输入高浓磨浆机中进行一段粗磨浆, 成为粗纤维束。
9) 细磨浆: 从上述输出的粗浆料再进入高浓磨浆机进行细磨浆, 使纤维束分散成 单根纤维。
10) 浆料筛选: 经过两段磨浆后的浆料中, 含有少数纤维束, 需经过筛选、 过滤 纤维束, 再次磨浆已达到单根纤维。
I I) 消潜、 洗浆: 经粗磨浆和细磨浆后的纸浆, 受机械摩擦, 大部分打弯、 扭曲 变形, 经温水中浸泡消除磨浆造成的纤维挠曲, 使之舒展。
12)制纸板: 将上述制备的纸浆液输入抄纸机, 经抄纸等工艺流程后制纸板。
(三) 副产品阶段: A-C
A、 3中分离出的柠条皮含有丰富的营养成分, 发酵转化成牛、 羊伺料。
B、 4中经多次浸泡、 洗涤的液体浑浊后, 经絮凝、 沉淀, 上清液回收再利用, 沉 淀物输入沼气池发酵产生沼气, 通入煤气两用锅炉做燃料, 可起到节能降耗作用。
C、 生物有机肥: 经沼气池发酵后的沼渣、 沼液是丰富的生物有机肥, 液体作为 农作物追肥和花卉营养液使用, 固体造粒做基肥使用, 均是绿色肥料。
磨浆后纸张物理性能指标测定结果请详见下表 4, 各项数据均已达到优等瓦楞纸 AA级水平 (表 6 ) :
表 4 柠条 桉树 杨树 游离度 /ml 125 210 290 定量 /g/cm2 1 14 119.4 112.9 白度 /%ISO 40.1 37.98 48.54 松厚度 / cm3/g 1.82 1.85 2.26 撕裂指数 /mN_m2/g 7.12 3.98 3.74 抗张指数/ N_m/g 39.03 51.3 35.9 耐破指数 / kPa_m2/g 1.62 2.15 1.55 环压强度指数 /N_m/g 9.55 10.1 9.3 实施例 9 草本原料的生物菌液制浆
以麦草为原料, 具体说明采用草本原料时的生物菌液制浆法。 其余草本原料, 例 如麦草、 稻草、 玉米秆的生物制浆法可参照该工艺进行。
其中采用麦草时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 2: 1 :2:3;
采用稻草时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 3 : 1 :2:3;
采用玉米秆时, 复合菌群按照下述质量比进行配置:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 2:2: 1 :3。
具体请参照图 5, 生物菌液制浆法的流程分为三个阶段: 准备阶段、 制浆工段和 副产品工段。 (一) 准备阶段: 1、 4
将麦草切成 4-5cm的切段, 输入浸泡仓或浸泡池中进行洗涤、 冷浸, 首先将原料 外表泥土等杂物洗去,同时进行浸泡,水温为自然温度,时间以浸透、润胀为准, 10-12ho 经多次浸泡后的液体浑浊后, 进行絮凝、 沉淀后上清液还可以再次使用。 沉淀物输入 沼气池发酵, 生产沼气。
(二) 制浆工段: 5-12和 (三) 副产品阶段: A-C同实施例 8, 其中所使用的生 物菌如实施例 1 在此不再赘述, 其中生物降解时, 疏解后的原料与菌液的质量比为 1 :8 。
磨浆后纸张物理性能指标测定结果请详见下表 5。
表 5
麦草 稻草 玉米杆 打桨度 /°SR 48 46 45
疋里 /g/cm 60.5 62.5 57.4 白度 /%ISO 19.9 23.7 20.8 松厚度 /cm3/g 2.05 2.43 2.80 撕裂指数 /m^m2/g 3.39 4.75 2.91
抗张指数/ ^m/g 70.7 47.6 43.9 耐破指数 / kPa_m2/g 3.07 1.97 1.83
表 6 瓦楞原纸的质量指标
Figure imgf000013_0001
虽然本发明已以较佳实施例披露如上, 然其并非用以限定本发明, 任何所属技术 领域的技术人员, 在不脱离本发明的精神和范围内, 当可作些许的更动与改进, 因此 本发明的保护范围当视权利要求所界定者为准。

Claims

权 利 要 求 书
1. 一种复合菌群, 其包含保藏号为 CGMCC No. 5972 的唐山莱茵默氏菌 ( Rheinheimem tangshanensis ) 保藏号为 CGMCC No. 5973 的鲁氏不动杆菌 (Acinetobacter IwoffiD , 保藏号为 CGMCC No. 5974的荧光假单胞菌
Figure imgf000014_0001
fluorescens )^ 保藏号为 CGMCC No. 5975的 Wickerhamomyces anomalus。
2. 权利要求 1所述的复合菌群在制备纺织纤维、添加剂用纤维素或生物菌液制浆 中的应用。
3. 一种制备纺织纤维的方法, 其特征在于, 包含步骤:
1 )菌液的配置: 将权利要求 1所述的复合菌群按照下述质量比配置成复合菌水溶 液, 即为菌液:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1-2: 1-2: 1-2 : 2-3;
2 ) 原料处理: 将麻类原料切成段, 并将原料放入浸泡池中润胀;
3 ) 纤维的制备, 其包含步骤:
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进行 二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆液 中的纤维束, 再次磨浆使其制成单根纤维;
干燥、 梳理: 将上述制得的纤维在温水中浸泡, 然后烘干、 梳理, 用于制备纺织 纤维。
3. 一种制备添加剂用纤维素的方法, 其特征在于, 包含步骤:
1 )菌液的配置: 将权利要求 1所述的复合菌群按照下述质量比配置成复合菌水溶 液, 即为菌液:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1-2: 1-2: 1-2 : 2-3;
2 )原料处理: 将木本原料去皮后切片, 或将草本原料切成段, 将切好的原料放入 浸泡池中润胀;
3 ) 纤维的制备, 其包含步骤:
疏解: 将润胀的原料搓丝和 /或挤碾;
生物降解: 将疏解后的原料浸泡到配置好的菌液内; 蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 纤维的获取: 将灭菌后的原料进行一段粗磨, 成为纤维束; 将上述一段粗磨进行 二段细磨, 使纤维束分散成单根纤维; 筛选、 过滤经过一段粗磨和二段细磨后的浆液 中的纤维束, 再次磨浆使其制成单根纤维;
灭菌: 将上述制得的纤维在温水中浸泡, 然后烘干、 灭菌;
研磨: 将灭菌后的纤维研磨成纤维素, 作为添加剂。
3. 一种生物菌液制浆法, 其特征在于, 包含步骤:
1 )菌液的配置: 将权利要求 1所述的复合菌群按照下述质量比配置成复合菌水溶 液, 即为菌液:
唐山莱茵默氏菌: 鲁氏不动杆菌: 荧光假单胞菌: Wickerhamomyces anomal 为 1-3: 1-2: 1-2 : 2-3;
2)原料处理: 将木本原料去皮后切片, 或将草本原料切成段, 将切好的原料放入 浸泡池中润胀;
3 ) 制浆, 其包含步骤:
疏解: 将润胀的原料搓丝和 /或挤碾;
生物降解: 将疏解后的原料浸泡到配置好的菌液内;
蒸汽杀菌: 将上述生物降解后的原料从菌液中捞出、 沥水, 通入水蒸汽灭菌; 粗磨浆: 将灭菌后的原料进行一段粗磨浆, 成为纤维束;
细磨浆: 将上述一段粗磨浆进行二段细磨浆, 使纤维束分散成单根纤维; 浆料筛选: 筛选、 过滤经过一段粗磨浆和二段细磨浆后的浆料中的纤维束, 再次 磨浆使其制成单根纤维;
消潜、 洗浆: 将上述制得的纸浆在温水中浸泡, 用于制纸板。
6. 根据权利要求 3至 5任一项所述的方法, 其特征在于, 步骤 1 ) 中形成的菌液 的密度为 6000万个 /ml菌以上。
7. 根据权利要求 3至 5任一项所述的方法, 其特征在于, 步骤 2) 所述的润胀时 间为 10-12ho
8. 根据权利要求 3至 5任一项所述的方法, 其特征在于, 步骤 3 ) 所述的生物降 解温度保持在 35-40 °C, 时间 30-34小时。
9. 根据权利要求 3至 5任一项所述的方法, 其特征在于, 步骤 3 ) 所述的生物降 解中, 疏解后的原料与菌液的质量比为 1 : 6-9。
10. 根据权利要求 3至 5任一项所述的方法, 其特征在于, 步骤 2)中浸泡原料后 的浸泡液经絮凝、 沉淀, 上清液回收再利用, 沉淀物输入沼气池发酵产生沼气。
PCT/CN2013/001088 2012-09-17 2013-09-16 一种生物菌液及其应用 WO2014040387A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201210342555.5A CN103074253B (zh) 2012-09-17 2012-09-17 一种复合菌群及用其制备添加剂用纤维素的方法
CN201210342555.5 2012-09-17
CN201210342751.2 2012-09-17
CN2012103427512A CN103074220A (zh) 2012-09-17 2012-09-17 一种复合菌群及用其制备纺织纤维的方法
CN2012103426223A CN103074217A (zh) 2012-09-17 2012-09-17 一种复合菌群及其在生物菌液制浆工艺中的应用
CN201210342622.3 2012-09-17

Publications (1)

Publication Number Publication Date
WO2014040387A1 true WO2014040387A1 (zh) 2014-03-20

Family

ID=50277553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001088 WO2014040387A1 (zh) 2012-09-17 2013-09-16 一种生物菌液及其应用

Country Status (1)

Country Link
WO (1) WO2014040387A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106758447A (zh) * 2016-11-30 2017-05-31 北京中科奥倍超声波技术研究院 一种生物超声波制备纺织纤维的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838613A (zh) * 2009-09-30 2010-09-22 河南省恒隆态生物工程股份有限公司 一种快速降解农作物秸秆的腐熟剂菌种组合
CN102002468A (zh) * 2010-08-13 2011-04-06 东华大学 一种荧光假单胞菌da4菌株及其获得方法和应用
CN103074220A (zh) * 2012-09-17 2013-05-01 贾平 一种复合菌群及用其制备纺织纤维的方法
CN103074217A (zh) * 2012-09-17 2013-05-01 贾平 一种复合菌群及其在生物菌液制浆工艺中的应用
CN103074253A (zh) * 2012-09-17 2013-05-01 贾平 一种复合菌群及用其制备添加剂用纤维素的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838613A (zh) * 2009-09-30 2010-09-22 河南省恒隆态生物工程股份有限公司 一种快速降解农作物秸秆的腐熟剂菌种组合
CN102002468A (zh) * 2010-08-13 2011-04-06 东华大学 一种荧光假单胞菌da4菌株及其获得方法和应用
CN103074220A (zh) * 2012-09-17 2013-05-01 贾平 一种复合菌群及用其制备纺织纤维的方法
CN103074217A (zh) * 2012-09-17 2013-05-01 贾平 一种复合菌群及其在生物菌液制浆工艺中的应用
CN103074253A (zh) * 2012-09-17 2013-05-01 贾平 一种复合菌群及用其制备添加剂用纤维素的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, YANGDONG ET AL.: "Isolation and Screening of Microbial Strains for Biological Degumming of Ramie and Evaluation of its Effects", JOURNAL OF TEXTILE RESEARCH, vol. 31, no. 5, 31 May 2010 (2010-05-31), pages 69 - 73 *
ZHANG, XIAOXIA: "Studies on Polyphasic Taxonomy of Rice Root-associated Bacteria and Description of Rheinheimera Tangshanensis sp. nov.", AGRICULTURE, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, no. 10, 15 October 2009 (2009-10-15), pages D043 - 4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106758447A (zh) * 2016-11-30 2017-05-31 北京中科奥倍超声波技术研究院 一种生物超声波制备纺织纤维的方法

Similar Documents

Publication Publication Date Title
WO2014040386A1 (zh) 一种生物菌液及其应用
WO2014040380A1 (zh) 复合菌群及其应用
CN110886118A (zh) 一种造纸用草类秸秆中木质素的分离方法
WO2014040387A1 (zh) 一种生物菌液及其应用
WO2014040395A1 (zh) 一种复合菌群及其应用
WO2014040384A1 (zh) 一种生物菌液及其应用
CN102888360A (zh) 一种生物菌及生物菌液制浆法
WO2014040381A1 (zh) 一种生物菌液及其应用
WO2014040385A1 (zh) 一种复合菌群及其应用
WO2014040383A1 (zh) 一种生物菌液及其应用
WO2014040394A1 (zh) 一种复合菌群及其应用
WO2014040382A1 (zh) 一种生物菌液及其应用
WO2014040391A1 (zh) 一种复合菌群及其应用
WO2014040390A1 (zh) 一种复合菌群及其应用
WO2014040393A1 (zh) 一种复合菌群及其应用
WO2014040375A1 (zh) 一种芽孢杆菌及其应用
WO2014040377A1 (zh) 一种鲁氏不动杆菌及其应用
WO2014040389A1 (zh) 一种复合菌群及其应用
WO2014040392A1 (zh) 一种复合菌群及其应用
WO2014040378A1 (zh) 一种荧光假单胞菌及其应用
WO2014040376A1 (zh) 一种唐山莱茵默氏菌及其应用
WO2014040388A1 (zh) 一种复合菌群及其应用
WO2014040379A1 (zh) 一种生物菌及其应用
CN102888343A (zh) 一种用于生物菌液制浆的复合菌群及其应用
CN102888341A (zh) 一种复合菌群及其在生物菌液制浆工艺中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13838038

Country of ref document: EP

Kind code of ref document: A1