WO2014038753A1 - Method for cultivating and harvesting adhesive microalgae from sewage or waste water to utilize same as biomass - Google Patents

Method for cultivating and harvesting adhesive microalgae from sewage or waste water to utilize same as biomass Download PDF

Info

Publication number
WO2014038753A1
WO2014038753A1 PCT/KR2012/010935 KR2012010935W WO2014038753A1 WO 2014038753 A1 WO2014038753 A1 WO 2014038753A1 KR 2012010935 W KR2012010935 W KR 2012010935W WO 2014038753 A1 WO2014038753 A1 WO 2014038753A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
biomass
sewage
adherent
medium
Prior art date
Application number
PCT/KR2012/010935
Other languages
French (fr)
Korean (ko)
Inventor
오희목
안치용
이승훈
김희식
이형관
조범호
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority claimed from KR1020120146379A external-priority patent/KR101388241B1/en
Publication of WO2014038753A1 publication Critical patent/WO2014038753A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a technology that can be easily cultured and harvested adherent microalgae contained in the sewage water can be utilized as biomass.
  • Microalgae are photosynthetic microorganisms that fix carbon dioxide to reduce greenhouse gases in the atmosphere, and can be cultured in non-cultivated land using sewage and wastewater, and are non-food resources, and biomass production and lipid production per unit area are terrestrial plants. It is much higher than that.
  • Microalgae grows rapidly, and biodiesel can be produced from microalgae biomass because it is synthesized and stored as 20 ⁇ 50% of neutral lipid in neutral lipids.
  • microalgae use photosynthesis using solar energy and carbon dioxide in the atmosphere, it has emerged as an alternative that can simultaneously solve the reduction effect of atmospheric carbon dioxide and greenhouse gases, which are the main causes of global warming.
  • microalgae The discharge of sewage and wastewater containing high concentrations of organic matter and inorganic substances such as phosphorus and nitrogen is a major factor in eutrophication.
  • Cultivation of microalgae using sewage and wastewater can simultaneously produce microalgae biomass for the treatment of biological sewage and wastewater and the production of biodiesel.
  • treatment of wastewater using microalgae is an environmentally friendly process that does not generate secondary pollutants, if all of the generated biomass is used.
  • Microalgae cultivation is divided into raceway pond and photobioreactor.
  • a raceway pond is much less expensive than a photobioreactor and has the advantage of being easily installed.
  • the method has low productivity per unit area of the microalgae, and the depth of the raceway pond is about 30 cm or less in order to prevent light shortage when the microalgae are cultured.
  • it is difficult and expensive to harvest cultured unicellular or floating microalgae for the discharge of sewage and wastewater and the use of microalgal biomass.
  • the present inventors completed the present invention by developing a technology that can be utilized as biomass energy by culturing and harvesting microalgae with high efficiency from sewage and wastewater to overcome the problems of the prior art and produce microalgae-derived biodiesel. It was.
  • an object of the present invention is to provide a method of increasing the processing capacity of microalgae per unit area and providing a technique for culturing and harvesting microalgae at low cost and increasing biomass energy production efficiency.
  • the present invention provides a method for utilizing the adherent microalgae as a biomass, comprising the following steps: 1) vertically attached to the sewage storage Culturing the sex microalgae; 2) harvesting the cultured adherent microalgae by simply lifting the attachment medium; And 3) drying the harvested adherent microalgae for use as biomass energy.
  • the attachment medium may be made of a frame 10, a mesh 20, and a hook hole 30.
  • the frame may be acrylic or aluminum.
  • the mesh may be a material selected from the group consisting of polyester, stainless steel, acrylic, nylon, and polyurethane.
  • the mesh may be made of stainless steel or nylon.
  • the drying may be natural drying or lyophilization.
  • the method can remove nutrients from the wastewater by using nutrients for the growth of adherent microalgae.
  • the present invention by culturing adherent microalgae in sewage and wastewater, nutrients in sewage and wastewater can be removed, and the cultured adherent microalgae can be easily harvested to improve biomass (biofuel) and lipid production efficiency. There is an effect that can be increased.
  • the present invention can improve the productivity of microalgae by increasing the area that can be attached to the microalgae per unit area by using the attachment medium, and because the adhered microalgae grows by attaching to the attachment medium, sunlight can transmit more deeply.
  • the present invention can improve the productivity of microalgae by increasing the area that can be attached to the microalgae per unit area by using the attachment medium, and because the adhered microalgae grows by attaching to the attachment medium, sunlight can transmit more deeply.
  • cultivation of adherent microalgae using sewage and wastewater increases the removal rate of nitrogen and phosphorus as compared to the cultivation method of floating microalgae, thereby satisfying the discharge standard of the discharged water and reducing the eutrophication of the discharged water.
  • the green algae can be suppressed, and the culture medium itself remains transparent, so that the sewage of nitrogen and phosphorus-free sewage can be discharged without any special harvesting process.
  • Figure 1 shows the difference in the adhesion rate of the microalgae according to the type, luminous intensity, and flow rate of the attachment medium.
  • Figure 2 shows the difference in transparency between the adherent microalgae culture tank (A) and the floating microalgae culture tank (B).
  • Figure 3 shows the light transmittance difference between the adherent microalgae culture and the floating microalgae culture tank.
  • Figure 4 compares the biomass productivity per unit area of floating microalgae and adherent microalgae.
  • Figure 5 compares the removal rate of nutrients in suspended microalgae and adherent microalgae.
  • Figure 6 shows the culture, harvesting and drying of adherent microalgae.
  • Figure 7 shows a comparison of fatty acid composition of microalgae after natural drying and lyophilization.
  • Figure 8 schematically shows the attachment medium of the present invention (10: frame, 20: mesh, 30: hook hole).
  • the present inventors have studied to improve light shortage and low productivity, which are disadvantages in conventional microalgae cultivation, and as a result, it is possible to harvest microalgae that can be utilized as biomass even at low cost.
  • the present invention was completed by developing a method for culturing and harvesting adherent microalgae using an attachment medium in wastewater.
  • Attached microalgae has a large number of diatoms and filamentous algae, so it grows well even at relatively low water temperatures, so there is an advantage that the microalgae can be used as bioenergy by cultivating and harvesting microalgae even in autumn or spring when the water temperature is low.
  • a polycarbonate plate, a nylon mesh, a stainless mesh, and an OHP are used as an attachment medium.
  • the adhesion rate of adherent microalgae was used according to the type of medium, and the difference of the flow rate of the raceway pond and the adhesion rate according to the presence or absence of light were compared. It was found that the rate was the highest, and it was confirmed that the adhesion rate of the adherent microalgae could be increased under conditions exposed to light (see Example 1).
  • the present inventors cultivated the adherent microalgae by vertically installing a nylon mesh as an attachment medium in a raceway pond containing effluent from the sewage treatment plant, and when culturing floating microalgae More excellent transparency of the culture tank can increase the unit production of microalgae, nutrients such as nitrogen and phosphorus in the sewage is used to remove and remove the microalgae, and after cultivation simply contains a medium for attachment It was confirmed that the harvesting can be easily performed by raising (see Example 2). That is, it is designed to increase productivity by installing the attachment medium vertically and vertically (see FIG. 2A) when culturing microalgae in a channel-type pond (see FIG.
  • attachment medium on which the harvested microalgae are cultured is placed in the sun or in a dryer or connected to a connecting line. It can be easily dried at low cost by hanging and drying, so that the economic effect is excellent.
  • the present invention may provide a method for utilizing the adherent microalgae as a biomass comprising the following steps:
  • the "attachment medium” of the present invention consists of a frame 10, a mesh 20, and a hook hole 30 (see FIG. 8), which is shaped like a window frame, preferably acrylic or aluminum It may be made of a material such as, but can be used without being limited to those that can support the net.
  • the mesh may preferably be a material such as polyester, stainless steel, acrylic, nylon, or polyurethane, and more preferably stainless steel or nylon may be used, but is not limited thereto. Any material that can be made into a net that can grow can be used.
  • the adherent microalgae according to the method of the present invention may preferably be dried by natural drying or lyophilization, and most preferably by natural drying in sunlight, but is not limited thereto. .
  • the present inventors In order to establish the optimum culture conditions for utilizing microalgae as biomass energy, the present inventors have established the adhesion rate of adherent microalgae according to the type of medium, the flow rate in a raceway pond, and the presence or absence of light. The difference was compared. Polycarbonate plates, nylon mesh, stainless mesh, and OHP film are used as attachment media, respectively, and the light is present when the flow rate is fast or slow. The difference in adhesion rate according to (Light or Dark) was compared.
  • the adhesion rate is low regardless of the flow rate or the light in the medium that is water-resistant, such as polycarbonate and OHP film among the four adhesion medium, stainless steel mesh and nylon mesh In, the adhesion rate of the adherent microalgae was markedly high.
  • the flow rate in the channel pond did not significantly affect the adhesion rate of adherent microalgae, but the difference in adhesion rate with or without light appeared to be large. That is, it was confirmed that the adhesion rate of the adhesive microalgae was significantly higher than the light blocking condition.
  • the adherent microalgae can be cultured with high efficiency in the net material, especially stainless steel net or nylon net, and it has been confirmed that the light transmittance has a great influence on the culture efficiency. You can see that it is important.
  • the present inventors operate a 5-ton raceway pond using the discharged water from the sewage treatment plant and harvest the adherent microalgae according to the method of the present invention. Since it was incubated at room temperature in November-December, the water temperature was maintained below 10 degrees, and total nitrogen and total phosphorus concentrations were maintained at approximately 10-15 mg-N / L and 0.1-2 mg-P / L levels, respectively. It allowed species to grow naturally already present in sewage without inoculating certain species. Two water channel ponds were operated as a control and a treatment, which allowed the floating microalgae to grow without the attachment medium, and the treatment was installed vertically and vertically with a nylon mesh in the culture medium (effluent).
  • Adherent microalgae were attached to the medium and allowed to grow, and the waterway pond was operated in a semi-continuous culture, replacing one fifth of the total capacity with fresh effluent daily.
  • Total nitrogen, total phosphorus, total dissolved nitrogen, total dissolved phosphorus concentration, chlorophyll-a, and microalgae dry weight were measured at intervals of 3 to 4 days, and nitrogen, phosphorus removal rate, and biomass productivity were calculated and compared. .
  • the transparency of the adherent microalgae culture tank (treatment) was higher than that of the floating microalgae culture tank (control), and the bottom was clear.
  • the light transmittance of the adherent microalgae and the floating microalgae culture tank is not significantly different from the light transmittance of the total light amount on the water surface, when looking at the light transmittance at the bottom, floating microalgae At the bottom of the culture tank, the light transmittance was about 5% between 4 to 10 days and after 10 days of culture, the light transmittance was very low, while the light transmittance at the bottom of the adherent microalgal culture tank was 10 to 20%.
  • the light transmittance between the adhesion medium is 10 to 5%, indicating that the light transmittance is much higher than that of the floating microalgal culture tank, and the amount of light between the adhesion medium after 10 days of culture is 82 to 55 ⁇ mol photon m ⁇ . 2 s -1 is much higher than the floating (2 ⁇ 24 ⁇ mol photon m -2 s -1 ), it can be seen that sufficient light is supplied for the growth of microalgae.
  • the microalgae was harvested simply and quickly without any other processing step, and the microalgae attached medium on the connected line and dried It was.
  • the drying time may be different depending on the weather, but on average, it is completely dried in two to three days with it attached to the medium.
  • the adherent microalgae by culturing the adherent microalgae according to the method of the present invention can remove the nutrients of the wastewater, the cultured adherent microalgae can be easily harvested, useful for producing biomass by natural drying in sunlight It can be used to make it easy.
  • the adhesive microalgae culturing method of the present invention enables the cultivation of microalgae using sewage water, and can be used for treating green algae from sewage water because it can remove nutrients from the wastewater with higher efficiency than the floating culture method.
  • the lipid production efficiency is increased, which can be useful for producing biomass energy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to a method for readily converting adhesive microalgae contained in sewage or waste water into biomass, and more specifically, to a method for utilizing adhesive microalgae as biomass at a high efficiency and at low costs by vertically installing a dimensional medium for adhesion of a mesh structure in sewage or waste water before being discharged, carrying out cultivation for a predetermined time period to allow the adhesive microalgae existing in the sewage or the waste water to adhere to the medium for adhesion and grow, and only lifting the medium for adhesion so as to simply and rapidly harvest microalgae without other processes.

Description

하폐수로부터 부착성 미세조류를 배양 및 수확하여 바이오매스로 활용하는 방법Method of cultivating and harvesting adherent microalgae from sewage water to use as biomass
본 발명은 하폐수에 포함된 부착성 미세조류를 손쉽게 배양 및 수확하여 바이오매스로 활용할 수 있는 기술에 관한 것이다.The present invention relates to a technology that can be easily cultured and harvested adherent microalgae contained in the sewage water can be utilized as biomass.
산업화와 인구증가로 인한 에너지 수요의 폭발적 증가로 한정된 화석에너지 자원이 고갈되고 있으며, 이는 전 세계적으로 이슈가 되고 있다. 이에 따라 증가하는 에너지 수요를 충족하기 위해서는 대체에너지자원의 개발이 절실히 요구된다. 최근 대체에너지자원의 원료 중에서 미세조류를 이용한 바이오디젤 생산이 많은 관심을 받고 있다. 미세조류는 광합성 미생물로서 이산화탄소를 고정하여 대기 중 온실기체를 저감시키고, 하·폐수를 이용하여 비경작지에서 배양이 가능하고, 비-식량 자원이며, 단위면적 당 바이오매스 생산량과 지질생산량이 육상식물에 비해 훨씬 높다는 장점이 있다.Limited fossil energy resources are being depleted due to the explosive increase in energy demand due to industrialization and population growth, which is a global issue. Accordingly, development of alternative energy resources is urgently needed to meet the increasing energy demand. Recently, biodiesel production using microalgae has been attracting much attention as a raw material of alternative energy resources. Microalgae are photosynthetic microorganisms that fix carbon dioxide to reduce greenhouse gases in the atmosphere, and can be cultured in non-cultivated land using sewage and wastewater, and are non-food resources, and biomass production and lipid production per unit area are terrestrial plants. It is much higher than that.
미세조류는 빠르게 성장하며, 세포내 함유하고 있는 지질체 중에서 20~ 50% 가까이를 중성지질로 합성, 축적하여 저장하고 있기 때문에 미세조류의 바이오매스로부터 바이오디젤의 생산이 가능하다. 뿐만 아니라, 미세조류는 태양에너지와 대기 중의 이산화탄소를 이용하여 광합성을 하기 때문에 지구온난화의 주요 원인이 되는 대기 중 이산화탄소 및 온실가스의 저감효과를 동시에 해결할 수 있는 대안으로 떠오르고 있다.Microalgae grows rapidly, and biodiesel can be produced from microalgae biomass because it is synthesized and stored as 20 ~ 50% of neutral lipid in neutral lipids. In addition, since microalgae use photosynthesis using solar energy and carbon dioxide in the atmosphere, it has emerged as an alternative that can simultaneously solve the reduction effect of atmospheric carbon dioxide and greenhouse gases, which are the main causes of global warming.
높은 농도의 유기 물질과 인과 질소와 같은 무기 물질이 포함되어 있는 하·폐수의 방류는 부영양화의 주된 요인이다. 하·폐수에 포함된 영양염류를 미세조류의 생장에 필요한 영양소로 사용하여 미세조류를 배양함으로써, 이와 같은 범지구적인 문제를 해결할 수 있다. 하·폐수를 이용한 미세조류의 배양은 생물학적인 하·폐수의 처리와 바이오디젤의 생산을 위한 미세조류 바이오매스 생산을 동시에 이룰 수 있다. 또한, 미세조류를 이용한 하폐수의 처리는 생성된 바이오매스를 모두 사용한다면, 이차 오염물질이 발생되지 않는 환경 친화적인 과정이다. Chlorella, Scenedesmus, Phormidium, Botryococcus, Chlamydomonas, Spirulina 등과 같은 다양한 종류의 미세조류의 하폐수를 이용한 배양과 동시에 하폐수의 처리가 보고되고 있다(Rawat et al. Applied Energy 88: 3411-3424. 2011).The discharge of sewage and wastewater containing high concentrations of organic matter and inorganic substances such as phosphorus and nitrogen is a major factor in eutrophication. By cultivating microalgae using nutrients contained in sewage and wastewater as nutrients necessary for the growth of microalgae, such a global problem can be solved. Cultivation of microalgae using sewage and wastewater can simultaneously produce microalgae biomass for the treatment of biological sewage and wastewater and the production of biodiesel. In addition, treatment of wastewater using microalgae is an environmentally friendly process that does not generate secondary pollutants, if all of the generated biomass is used. Treatment of wastewater at the same time as cultivation with wastewater of various types of microalgae , such as Chlorella, Scenedesmus, Phormidium, Botryococcus, Chlamydomonas, and Spirulina , has been reported (Rawat et al. Applied Energy 88: 3411-3424. 2011).
미세조류를 배양하는 방법은 raceway pond 와 photobioreactor 의 형태로 나누어진다. 미세조류의 대량배양을 위해서는 raceway pond 가 photobioreactor 보다 훨씬 비용이 적게 들며, 쉽게 설치할 수 있는 장점이 있다. 하지만, 상기 방법은 미세조류의 단위면적 당 생산성이 낮으며, 미세조류의 배양 시 광부족 현상을 막기 위하여 raceway pond의 깊이는 약 30 cm 이하로 하여 처리용량에 제한이 있다. 또한, 하·폐수의 방류와 미세조류 바이오매스의 이용을 위한 배양된 단세포성 또는 부유성 미세조류를 수확하는 것은 어렵고, 비용이 많이 드는 문제점이 있다.Microalgae cultivation is divided into raceway pond and photobioreactor. For the mass cultivation of microalgae, a raceway pond is much less expensive than a photobioreactor and has the advantage of being easily installed. However, the method has low productivity per unit area of the microalgae, and the depth of the raceway pond is about 30 cm or less in order to prevent light shortage when the microalgae are cultured. In addition, it is difficult and expensive to harvest cultured unicellular or floating microalgae for the discharge of sewage and wastewater and the use of microalgal biomass.
이에 본 발명자들은 종래기술의 문제점을 극복하고, 미세조류 유래 바이오디젤을 생산할 수 있도록 하·폐수로부터 높은 효율로 미세조류를 배양하고 수확하여 바이오매스 에너지로 활용할 수 있는 기술을 개발함으로써 본 발명을 완성하였다.Accordingly, the present inventors completed the present invention by developing a technology that can be utilized as biomass energy by culturing and harvesting microalgae with high efficiency from sewage and wastewater to overcome the problems of the prior art and produce microalgae-derived biodiesel. It was.
따라서 본 발명의 목적은 단위 면적당 미세조류의 처리 용량을 증가시키고, 저비용으로 손쉽게 미세조류를 배양 및 수확할 수 있는 기술을 제공하여 바이오매스 에너지 생산 효율을 증가시킬 수 있는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method of increasing the processing capacity of microalgae per unit area and providing a technique for culturing and harvesting microalgae at low cost and increasing biomass energy production efficiency.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위해서, 본 발명은 다음의 단계를 포함하는 부착성 미세조류를 바이오매스로 활용하기 위한 방법을 제공한다: 1) 하폐수장에 부착용 매질을 수직으로 설치하여 부착성 미세조류를 배양하는 단계; 2) 상기 부착용 매질을 단순히 들어올림으로써 배양한 부착성 미세조류를 수확하는 단계; 및 3) 상기 수확한 부착성 미세조류를 바이오매스 에너지로 사용하기 위해 건조하는 단계.In order to achieve the object of the present invention as described above, the present invention provides a method for utilizing the adherent microalgae as a biomass, comprising the following steps: 1) vertically attached to the sewage storage Culturing the sex microalgae; 2) harvesting the cultured adherent microalgae by simply lifting the attachment medium; And 3) drying the harvested adherent microalgae for use as biomass energy.
본 발명의 일실시예에 있어서, 상기 부착용 매질은 프레임(10), 그물망(20), 및 걸이용 구멍(30)으로 이루어진 것일 수 있다.In one embodiment of the present invention, the attachment medium may be made of a frame 10, a mesh 20, and a hook hole 30.
본 발명의 다른 일실시예에 있어서, 상기 프레임은 아크릴 또는 알루미늄인 것일 수 있다.In another embodiment of the present invention, the frame may be acrylic or aluminum.
본 발명의 또 다른 일실시예에 있어서, 상기 그물망은 폴리에스테르, 스테인리스, 아크릴, 나일론, 및 폴리우레탄으로 이루어진 군으로부터 선택되는 소재일 수 있다.In another embodiment of the present invention, the mesh may be a material selected from the group consisting of polyester, stainless steel, acrylic, nylon, and polyurethane.
본 발명의 또 다른 일실시예에 있어서, 상기 그물망은 스테인리스 또는 나일론 소재일 수 있다.In another embodiment of the present invention, the mesh may be made of stainless steel or nylon.
본 발명의 또 다른 일실시예에 있어서, 상기 건조는 자연건조 또는 동결건조일 수 있다.In another embodiment of the present invention, the drying may be natural drying or lyophilization.
본 발명의 또 다른 일실시예에 있어서, 상기 방법은 부착성 미세조류의 생장에 영양염류를 사용함으로써 하폐수로부터 영양염류가 제거될 수 있다.In another embodiment of the present invention, the method can remove nutrients from the wastewater by using nutrients for the growth of adherent microalgae.
본 발명은 하·폐수에서 부착성 미세조류를 배양함으로써, 하·폐수의 영양염류를 제거할 수 있으며, 배양한 부착성 미세조류를 손쉽게 수확할 수 있어서 바이오매스(바이오연료) 및 지질 생산 효율을 증가시킬 수 있는 효과가 있다.In the present invention, by culturing adherent microalgae in sewage and wastewater, nutrients in sewage and wastewater can be removed, and the cultured adherent microalgae can be easily harvested to improve biomass (biofuel) and lipid production efficiency. There is an effect that can be increased.
또한, 본 발명은 부착용 매질을 이용함으로써 단위 면적당 미세조류가 부착 가능한 면적을 높여 미세조류의 생산성을 향상시킬 수 있으며, 부착성 미세조류가 부착용 매질에 부착하여 자라므로 태양광이 더욱 깊게 투과할 수 있어서 높은 광도부터 낮은 광도까지 광도별 최적화된 서로 다른 미세조류를 배양할 수 있고, 종래보다 더 많은 양의 하폐수를 처리할 수 있는 장점이 있다.In addition, the present invention can improve the productivity of microalgae by increasing the area that can be attached to the microalgae per unit area by using the attachment medium, and because the adhered microalgae grows by attaching to the attachment medium, sunlight can transmit more deeply. In order to cultivate different microalgae optimized for each light from high light to low light, there is an advantage that can treat a larger amount of wastewater than conventional.
이에 더하여, 하·폐수를 이용하여 부착성 미세조류를 배양하면 부유성 미세조류의 배양방법에 비해 질소와 인의 제거율이 높아짐으로써, 배출수의 방류기준 충족 및 방류수역의 부영양화 저감 효과로 인근 호소 및 하천의 녹조 발생을 억제할 수 있으며, 배양액 자체는 투명하게 유지되므로 질소와 인이 제거된 하수의 방류가 별다른 수확과정 없이도 가능하다.In addition, cultivation of adherent microalgae using sewage and wastewater increases the removal rate of nitrogen and phosphorus as compared to the cultivation method of floating microalgae, thereby satisfying the discharge standard of the discharged water and reducing the eutrophication of the discharged water. The green algae can be suppressed, and the culture medium itself remains transparent, so that the sewage of nitrogen and phosphorus-free sewage can be discharged without any special harvesting process.
도 1은 부착 매질의 종류, 광도, 및 유속에 따른 미세조류의 부착율의 차이를 나타낸 것이다. Figure 1 shows the difference in the adhesion rate of the microalgae according to the type, luminous intensity, and flow rate of the attachment medium.
도 2는 부착성 미세조류 배양조(A)와 부유성 미세조류 배양조(B)의 투명도 차이를 나타낸 것이다.Figure 2 shows the difference in transparency between the adherent microalgae culture tank (A) and the floating microalgae culture tank (B).
도 3은 부착성 미세조류 배양조와 부유성 미세조류 배양조의 빛 투과율 차이를 나타낸 것이다.Figure 3 shows the light transmittance difference between the adherent microalgae culture and the floating microalgae culture tank.
도 4는 부유성 미세조류와 부착성 미세조류의 단위면적당 바이오매스 생산성을 비교한 것이다.Figure 4 compares the biomass productivity per unit area of floating microalgae and adherent microalgae.
도 5는 부유성 미세조류와 부착성 미세조류에서 영양염류의 제거율을 비교한 것이다.Figure 5 compares the removal rate of nutrients in suspended microalgae and adherent microalgae.
도 6은 부착성 미세조류의 배양, 수확 및 건조를 나타낸 것이다.Figure 6 shows the culture, harvesting and drying of adherent microalgae.
도 7은 자연건조 및 동결건조 후 미세조류의 지방산 조성 비교를 나타낸 것이다.Figure 7 shows a comparison of fatty acid composition of microalgae after natural drying and lyophilization.
도 8은 본 발명의 부착용 매질을 개략적으로 나타낸 것이다(10 : 프레임, 20 : 그물망, 30 : 걸이용 구멍).Figure 8 schematically shows the attachment medium of the present invention (10: frame, 20: mesh, 30: hook hole).
[부호의 설명][Description of the code]
10 : 프레임 20 : 그물망10 frame 20 net
30 : 걸이용 구멍30: hook hole
본 발명자들은 종래 미세조류 배양 시 단점인 광 부족 및 이로 인한 낮은 생산성을 개선하기 위하여 연구한 결과, 저비용으로도 바이오매스로 활용 가능한 미세조류를 수확할 수 있는, 수로형 연못(raceway pond)의 하·폐수에서 부착용 매질을 이용하여 부착성 미세조류를 배양 및 수확하는 방법을 개발함으로써 본 발명을 완성하였다.The present inventors have studied to improve light shortage and low productivity, which are disadvantages in conventional microalgae cultivation, and as a result, it is possible to harvest microalgae that can be utilized as biomass even at low cost. The present invention was completed by developing a method for culturing and harvesting adherent microalgae using an attachment medium in wastewater.
부착성 미세조류는 규조와 사상체 조류가 대다수라서 상대적으로 낮은 수온에서도 잘 자라므로 수온이 낮은 가을이나 봄에도 계속해서 미세조류를 배양 및 수확하여 바이오에너지로 활용할 수 있는 장점이 있다.Attached microalgae has a large number of diatoms and filamentous algae, so it grows well even at relatively low water temperatures, so there is an advantage that the microalgae can be used as bioenergy by cultivating and harvesting microalgae even in autumn or spring when the water temperature is low.
본 발명자들은 상기와 같은 장점이 있는 부착성 미세조류를 고효율로 배양 및 수확하기 위하여, 부착용 매질로 폴리카보네이트(polycarbonate) 재질의 판, 나일론 망(nylon mesh), 스테인리스 망(stainless mesh), 및 OHP 필름을 사용하고 매질의 종류에 따른 부착성 미세조류의 부착율을 비교하였으며, 수로형 연못(raceway pond)의 유속의 차이와 빛의 유무에 따른 부착율도 비교한 결과, 스테인리스 망 또는 나일론 망 사용시 부착율이 가장 높은 것을 알 수 있었으며, 빛에 노출된 조건에서 부착성 미세조류의 부착율을 높일 수 있음을 확인하였다(실시예 1 참조).In order to cultivate and harvest the adherent microalgae having the above advantages with high efficiency, a polycarbonate plate, a nylon mesh, a stainless mesh, and an OHP are used as an attachment medium. The adhesion rate of adherent microalgae was used according to the type of medium, and the difference of the flow rate of the raceway pond and the adhesion rate according to the presence or absence of light were compared. It was found that the rate was the highest, and it was confirmed that the adhesion rate of the adherent microalgae could be increased under conditions exposed to light (see Example 1).
또한, 본 발명자들은 하수처리장의 방류수가 담긴 수로형 연못(raceway pond)에 부착용 매질로 나일론 망(nylon mesh)을 수직으로 설치하여 부착성 미세조류를 배양한 결과, 부유성 미세조류를 배양할 때 보다 배양조의 투명도가 우수하여 미세조류의 단위 생산량을 증가시킬 수 있고, 하수 내 질소, 인과 같은 영양염류가 부착성 미세조류의 생장에 사용되어 제거되는 효과가 있으며, 배양 후에는 부착용 매질을 단순히 들어올림으로써 손쉽게 수확할 수 있음을 확인하였다(실시예 2 참조). 즉, 수로형 연못에서 미세조류 배양시 부착용 매질을 수직 세로로 설치하여(도 2A 참조) 수직가로 또는 수평으로 설치하는 것보다 배양조의 평면 단위면적당 부착용 매질의 면적을 넓힘으로써 생산성을 높일 수 있도록 설계한 것이며, 미세조류 배양을 위한 추가적인 부지면적을 줄일 수 있도록 하였다. 또한 미세조류 배양 후 상기 기재한 바와 같이 부착용 매질을 단지 들어올림으로 다른 처리공정 없이 간단하고 신속하게 수확이 가능하며, 수확된 미세조류가 배양된 부착용 매질은 태양 빛 아래 또는 건조기 내에 세우거나 연결선에 걸어 건조함으로써 저비용으로 손쉽게 건조가 가능하므로 경제적 효과가 우수하도록 하였다.In addition, the present inventors cultivated the adherent microalgae by vertically installing a nylon mesh as an attachment medium in a raceway pond containing effluent from the sewage treatment plant, and when culturing floating microalgae More excellent transparency of the culture tank can increase the unit production of microalgae, nutrients such as nitrogen and phosphorus in the sewage is used to remove and remove the microalgae, and after cultivation simply contains a medium for attachment It was confirmed that the harvesting can be easily performed by raising (see Example 2). That is, it is designed to increase productivity by installing the attachment medium vertically and vertically (see FIG. 2A) when culturing microalgae in a channel-type pond (see FIG. 2A), and by increasing the area of the attachment medium per planar unit area of the culture tank. It was to reduce the additional site area for microalgal culture. In addition, by simply lifting the attachment medium as described above after the microalgae cultivation, it is possible to harvest simply and quickly without any other processing.The attachment medium on which the harvested microalgae are cultured is placed in the sun or in a dryer or connected to a connecting line. It can be easily dried at low cost by hanging and drying, so that the economic effect is excellent.
따라서 본 발명은 하기 단계를 포함하는 부착성 미세조류를 바이오매스로 활용하기 위한 방법을 제공할 수 있다:Accordingly, the present invention may provide a method for utilizing the adherent microalgae as a biomass comprising the following steps:
1) 하폐수장에 부착용 매질을 수직으로 설치하여 부착성 미세조류를 배양하는 단계;1) culturing the adherent microalgae by vertically installing the attachment medium in the sewage storage;
2) 상기 부착용 매질을 단순히 들어올림으로써 배양한 부착성 미세조류를 수확하는 단계; 및2) harvesting the cultured adherent microalgae by simply lifting the attachment medium; And
3) 상기 수확한 부착성 미세조류를 바이오매스 에너지로 사용하기 위해 건조하는 단계.3) drying the harvested adherent microalgae for use as biomass energy.
본 발명의 “부착용 매질”은 프레임(10), 그물망(20), 및 걸이용 구멍(30)으로 구성(도 8 참조)되며, 상기 프레임은 창문틀과 같은 모양으로, 바람직하게는 아크릴 또는 알루미늄 등의 소재로 제조될 수 있으나, 그물망을 지지할 수 있는 것이라면 이에 한정되지 않고 사용할 수 있다. 또한, 상기 그물망은 바람직하게는 폴리에스테르, 스테인리스, 아크릴, 나일론, 또는 폴리우레탄 등의 소재일 수 있고, 더욱 바람직하게는 스테인리스 또는 나일론을 사용할 수 있으나, 이에 한정되는 것은 아니며 부착성 미세조류가 부착하여 자랄 수 있는 그물망으로 만들 수 있는 소재라면 모두 사용 가능하다.The "attachment medium" of the present invention consists of a frame 10, a mesh 20, and a hook hole 30 (see FIG. 8), which is shaped like a window frame, preferably acrylic or aluminum It may be made of a material such as, but can be used without being limited to those that can support the net. In addition, the mesh may preferably be a material such as polyester, stainless steel, acrylic, nylon, or polyurethane, and more preferably stainless steel or nylon may be used, but is not limited thereto. Any material that can be made into a net that can grow can be used.
또한, 본 발명자들이 수확한 부착성 미세조류를 바이오매스 에너지로 사용하기 위해 건조할 때, 건조방법에 따라 지방산의 손실이 일어나는지 알아보기 위해 태양 빛에서 자연건조 하는 방법 및 동결건조 하는 방법을 비교한 결과, 동결건조한 경우 보다 태양 빛에 자연건조하였을 때 지방산 함량이 증가(특히, 팔미트산 함량 증가)하는 것으로 나타나, 자연건조 방법이 바이오디젤 같은 바이오매스 에너지로 사용하기에 더 적합함을 확인하였다(실시예 2 참조).In addition, when the dried microalgae harvested by the present inventors are dried for use as biomass energy, a method of freeze-drying and freeze-drying in sunlight to see if fatty acid loss occurs according to the drying method As a result, fatty acid content (particularly, palmitic acid content) increased when it was naturally dried in sunlight than freeze-drying, and it was confirmed that the natural drying method is more suitable for use as biomass energy such as biodiesel. (See Example 2).
이에 따라 본 발명의 방법에 따른 부착성 미세조류는 바람직하게는 자연건조 또는 동결건조 방법으로 건조할 수 있으며, 가장 바람직하게는 태양 빛에서 자연건조 하는 방법으로 건조할 수 있으나, 이에 제한되는 것은 아니다.Accordingly, the adherent microalgae according to the method of the present invention may preferably be dried by natural drying or lyophilization, and most preferably by natural drying in sunlight, but is not limited thereto. .
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
[실시예 1]Example 1
부착성 미세조류 배양 조건의 수립Establishment of adherent microalgal culture conditions
본 발명자들은 미세조류를 바이오매스 에너지로 활용하기 위한 최적의 배양 조건을 수립하기 위하여, 매질의 종류, 수로형 연못(raceway pond)에서의 유속, 및 빛의 유무에 따른 부착성 미세조류의 부착율 차이를 비교하였다. 폴리카보네이트(polycarbonate) 재질의 판, 나일론 망(nylon mesh), 스테인리스 망(stainless mesh), 및 OHP 필름을 각각 부착용 매질로 사용하고, 유속을 빠르게(Fast) 하거나 느리게(Slow) 하였을 때 빛의 유무(Light or Dark)에 따른 부착율의 차이를 비교하였다.In order to establish the optimum culture conditions for utilizing microalgae as biomass energy, the present inventors have established the adhesion rate of adherent microalgae according to the type of medium, the flow rate in a raceway pond, and the presence or absence of light. The difference was compared. Polycarbonate plates, nylon mesh, stainless mesh, and OHP film are used as attachment media, respectively, and the light is present when the flow rate is fast or slow. The difference in adhesion rate according to (Light or Dark) was compared.
그 결과, 도 1에 나타낸 바와 같이, 네 가지 부착용 매질 중 폴리카보네이트와 OHP 필름과 같은 물의 저항을 받는 매질에서는 유속이나 빛의 유무에 상관없이 부착율이 저조한 것으로 나타났으며, 스테인리스 망 및 나일론 망에서는 부착성 미세조류의 부착율이 현저하게 높은 것으로 나타났다.As a result, as shown in Figure 1, the adhesion rate is low regardless of the flow rate or the light in the medium that is water-resistant, such as polycarbonate and OHP film among the four adhesion medium, stainless steel mesh and nylon mesh In, the adhesion rate of the adherent microalgae was markedly high.
또한, 수로형 연못에서의 유속은 부착성 미세조류의 부착율에 큰 영향을 미치지 않는 것으로 나타났으나, 빛에 유무에 따른 부착율의 차이는 큰 것으로 나타났다. 즉, 부착성 미세조류가 빛에 노출된 조건이 빛이 차단된 조건에 비해 현저하게 부착율이 높은 것을 확인하였다.In addition, the flow rate in the channel pond did not significantly affect the adhesion rate of adherent microalgae, but the difference in adhesion rate with or without light appeared to be large. That is, it was confirmed that the adhesion rate of the adhesive microalgae was significantly higher than the light blocking condition.
상기로부터 부착성 미세조류는 망 소재, 특히 스테인리스 망 또는 나일론 망에서 고효율로 배양할 수 있으며, 배양시 빛의 투과율이 배양 효율에 큰 영향을 미친다는 것을 확인하였으므로 빛이 충분하게 통과하는 조건을 수립하는 것이 중요하다는 것을 알 수 있다.From the above, the adherent microalgae can be cultured with high efficiency in the net material, especially stainless steel net or nylon net, and it has been confirmed that the light transmittance has a great influence on the culture efficiency. You can see that it is important.
[실시예 2]Example 2
바이오매스로의 전환을 위한 부착성 미세조류 배양 및 수확Adherent Microalgae Cultivation and Harvesting for Conversion to Biomass
본 발명자들은 하수처리장의 방류수를 이용하여 5톤 규모의 수로형 연못(raceway pond)을 운영하며 본 발명의 방법에 따라 부착성 미세조류를 수확하였다. 11-12월 상온에서 배양하였으므로 수온은 10도 미만으로 유지되었고, 총 질소, 총 인 농도는 각각 대략 10~15 mg-N/L, 0.1~2 mg-P/L 수준에서 유지되었으며, 미세조류는 특정 종을 접종하지 않고 하수에 자연적으로 이미 존재하는 종이 성장하도록 하였다. 두 개의 수로형 연못을 대조구와 처리구로 운영하였는데, 대조구로는 부착용 매질 없이 부유성 미세조류가 성장하도록 하였고, 처리구는 부착용 매질로 나일론 망(nylon mesh)을 배양액(방류수) 안에 수직 세로로 설치하여 부착성 미세조류가 매질 위에 부착하여 성장하도록 하였으며, 수로형 연못은 매일 전체 용량의 1/5을 새로운 방류수로 교체하는 반(半)연속배양(semi-continuous culture) 형태로 운영하였다. 3-4일 간격으로 총 질소, 총 인, 총 용존질소, 총 용존인 농도와 엽록소-a, 미세조류 건조중량 등을 측정하였으며, 이로부터 질소, 인 제거율, 바이오매스 생산성 등을 계산하여 비교하였다.The present inventors operate a 5-ton raceway pond using the discharged water from the sewage treatment plant and harvest the adherent microalgae according to the method of the present invention. Since it was incubated at room temperature in November-December, the water temperature was maintained below 10 degrees, and total nitrogen and total phosphorus concentrations were maintained at approximately 10-15 mg-N / L and 0.1-2 mg-P / L levels, respectively. It allowed species to grow naturally already present in sewage without inoculating certain species. Two water channel ponds were operated as a control and a treatment, which allowed the floating microalgae to grow without the attachment medium, and the treatment was installed vertically and vertically with a nylon mesh in the culture medium (effluent). Adherent microalgae were attached to the medium and allowed to grow, and the waterway pond was operated in a semi-continuous culture, replacing one fifth of the total capacity with fresh effluent daily. Total nitrogen, total phosphorus, total dissolved nitrogen, total dissolved phosphorus concentration, chlorophyll-a, and microalgae dry weight were measured at intervals of 3 to 4 days, and nitrogen, phosphorus removal rate, and biomass productivity were calculated and compared. .
그 결과, 도 2에 나타낸 바와 같이, 부착성 미세조류 배양조(처리구)의 투명도는 부유성 미세조류 배양조(대조구)에 비해 높았으며, 바닥이 깨끗하게 보일 정도였다. 또한, 도 3에 나타낸 바와 같이, 부착성 미세조류 배양조와 부유성 미세조류 배양조의 빛 투과율은 수표면에서는 총 광량에 대한 빛 투과율이 크게 차이나지 않았으나, 바닥에서의 빛 투과율을 살펴보면, 부유성 미세조류 배양조의 바닥에서는 배양 4~10일 사이에는 약 5% 내외이고, 배양 10일 이후에는 1~0%로 빛 투과율이 매우 낮은 반면, 부착성 미세조류 배양조의 바닥에서의 빛 투과율은 10~20% 이고, 부착용 매질 사이의 빛 투과율은 10~5%인 것으로 나타나 부유성 미세조류 배양조 보다 훨씬 빛 투과율이 높은 것을 알 수 있으며, 배양 10일 이후 부착용 매질 사이의 광량은 82~55 μmol photon m-2s-1으로 부유성(2~24 μmol photon m-2s-1) 보다 훨씬 높은 것으로 나타나, 미세조류의 성장에 충분한 빛이 공급되었음을 알 수 있다.As a result, as shown in Figure 2, the transparency of the adherent microalgae culture tank (treatment) was higher than that of the floating microalgae culture tank (control), and the bottom was clear. In addition, as shown in Figure 3, the light transmittance of the adherent microalgae and the floating microalgae culture tank is not significantly different from the light transmittance of the total light amount on the water surface, when looking at the light transmittance at the bottom, floating microalgae At the bottom of the culture tank, the light transmittance was about 5% between 4 to 10 days and after 10 days of culture, the light transmittance was very low, while the light transmittance at the bottom of the adherent microalgal culture tank was 10 to 20%. The light transmittance between the adhesion medium is 10 to 5%, indicating that the light transmittance is much higher than that of the floating microalgal culture tank, and the amount of light between the adhesion medium after 10 days of culture is 82 to 55 μmol photon m −. 2 s -1 is much higher than the floating (2 ~ 24 μmol photon m -2 s -1 ), it can be seen that sufficient light is supplied for the growth of microalgae.
단위면적당 바이오매스의 생산성을 비교한 결과, 도 4에 나타낸 바와 같이, 기울기 값으로 일생산성(daily productivity)을 계산하였을 때 부착성 미세조류는 12.1 g/m2/day, 부유성 미세조류는 1.8 g/m2/day로 부착성 미세조류의 일생산성이 훨씬 높은 것으로 나타났다.As a result of comparing the productivity of biomass per unit area, as shown in FIG. 4, when the daily productivity was calculated by the slope value, the adherent microalgae was 12.1 g / m 2 / day, and the floating microalgae was 1.8. g / m 2 / day showed much higher productivity of adherent microalgae.
질소제거율 및 인제거율 분석 결과, 도 5에 나타낸 바와 같이, 질소제거율의 경우 부착성 미세조류는 평균 31.2%, 부유성 미세조류는 평균 20.5%인 것으로 나타나 차이가 있는 것으로 나타났고, 인제거율의 경우 부착성 미세조류는 평균 77.4%, 부유성 미세조류는 평균 33.3%인 것으로 나타나 두 배 이상의 현저한 차이를 보여 주었다.As a result of analysis of nitrogen removal rate and phosphorus removal rate, as shown in FIG. 5, in the case of nitrogen removal rate, the adherent microalgae was 31.2% on average, and the floating microalgae was 20.5% on average, and there was a difference in the case of phosphorus removal rate. The average value of adherent microalgae was 77.4% and that of suspended microalgae was 33.3%, which was more than double.
또한, 도 6에 나타낸 바와 같이, 부착조류 배양조에서 배양 후 간단하게 부착용 매질을 들어올림으로 다른 처리공정 없이 간단하고 신속하게 미세조류를 수확하였으며, 미세조류가 부착된 매질을 연결된 선에 걸어 건조하였다. 태양 빛에 자연건조하는 경우 건조되는 시간은 날씨에 따라 미차가 있으나 평균적으로 2~3일이면 매질에 부착된 채로 완전히 건조된다. 태양 빛에 자연건조하는 방법과 동결건조하는 방법을 이용하여 수확된 미세조류를 건조한 후 지방산 조성을 비교한 결과, 도 7에 나타낸 바와 같이, 부착매질을 이용하여 태양 빛에 자연건조한 바이오매스의 지방산 함량이 종래의 동결건조 방법으로 건조한 바이오매스의 지방산 함량보다 palmitic acid (C16:0)의 함량이 16% 증가한 것으로 나타나, 태양 빛에 자연건조하는 방법이 바이오디젤 생산에 더욱 적합한 지방산 조성을 가지게 한다는 것을 확인하였다.In addition, as shown in Figure 6, by simply lifting the attachment medium after incubation in the attached algae culture tank, the microalgae was harvested simply and quickly without any other processing step, and the microalgae attached medium on the connected line and dried It was. In the case of natural drying in sunlight, the drying time may be different depending on the weather, but on average, it is completely dried in two to three days with it attached to the medium. As a result of comparing the fatty acid composition after drying the microalgae harvested using the method of natural drying and freeze-drying in sunlight, as shown in Figure 7, the fatty acid content of the biomass naturally dried in sunlight using an adhesion medium The conventional freeze-drying method showed a 16% increase in the content of palmitic acid (C16: 0) compared to the fatty acid content of the dried biomass, confirming that the natural drying method in the sun light has a more suitable fatty acid composition for biodiesel production. It was.
상기로부터, 본 발명의 방법에 따라 부착성 미세조류 배양함으로써 하폐수의 영양염류를 제거할 수 있고, 배양된 부착성 미세조류는 손쉽게 수확할 수 있으며, 태양 빛에 자연건조함으로써 바이오매스를 생산하는데 유용하게 활용할 수 있음을 알 수 있다.From the above, by culturing the adherent microalgae according to the method of the present invention can remove the nutrients of the wastewater, the cultured adherent microalgae can be easily harvested, useful for producing biomass by natural drying in sunlight It can be used to make it easy.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above are to be understood in all respects as illustrative and not restrictive.
본 발명의 부착성 미세조류 배양방법을 이용하면 하폐수를 이용한 미세조류의 배양이 가능하고, 부유성 배양방법보다 높은 효율로 하폐수의 영양염류를 제거할 수 있으므로 하폐수로부터 녹조를 처리하는 용도로 쓰일 수 있으며, 지질 생산 효율이 증가되어 바이오매스 에너지를 생산하는데 유용하게 활용할 수있다.The adhesive microalgae culturing method of the present invention enables the cultivation of microalgae using sewage water, and can be used for treating green algae from sewage water because it can remove nutrients from the wastewater with higher efficiency than the floating culture method. In addition, the lipid production efficiency is increased, which can be useful for producing biomass energy.

Claims (7)

  1. 하기 단계를 포함하는 부착성 미세조류를 바이오매스로 활용하기 위한 방법:Method for utilizing the adherent microalgae as biomass comprising the following steps:
    1) 하폐수장에 부착용 매질을 수직으로 설치하여 부착성 미세조류를 배양하는 단계;1) culturing the adherent microalgae by vertically installing the attachment medium in the sewage storage;
    2) 상기 부착용 매질을 들어올림으로써 배양한 부착성 미세조류를 수확하는 단계; 및2) harvesting the adherent microalgae cultured by lifting the attachment medium; And
    3) 상기 수확한 부착성 미세조류를 바이오매스 에너지로 사용하기 위해 건조하는 단계.3) drying the harvested adherent microalgae for use as biomass energy.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 부착용 매질은 프레임(10), 그물망(20), 및 걸이용 구멍(30)으로 이루어진 것을 특징으로 하는, 방법.The attachment medium is characterized in that it consists of a frame (10), a mesh (20), and a hook hole (30).
  3. 제 2 항에 있어서,The method of claim 2,
    상기 프레임은 아크릴 또는 알루미늄인 것을 특징으로 하는, 방법.Wherein the frame is acrylic or aluminum.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 그물망은 폴리에스테르, 스테인리스, 아크릴, 나일론, 및 폴리우레탄으로 이루어진 군으로부터 선택되는 소재인 것을 특징으로 하는, 방법.Wherein said mesh is a material selected from the group consisting of polyester, stainless steel, acrylic, nylon, and polyurethane.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 그물망은 스테인리스 또는 나일론 소재인 것을 특징으로 하는, 방법.Wherein said mesh is made of stainless steel or nylon.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 건조는 자연건조 또는 동결건조인 것을 특징으로 하는, 방법.Wherein said drying is natural drying or lyophilization.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 방법은 부착성 미세조류의 생장에 영양염류를 사용함으로써 하폐수로부터 영양염류가 제거되는 것을 특징으로 하는, 방법.The method is characterized in that the nutrients are removed from the wastewater by using the nutrients for the growth of adherent microalgae.
PCT/KR2012/010935 2012-09-07 2012-12-14 Method for cultivating and harvesting adhesive microalgae from sewage or waste water to utilize same as biomass WO2014038753A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120099411 2012-09-07
KR10-2012-0099411 2012-09-07
KR1020120146379A KR101388241B1 (en) 2012-09-07 2012-12-14 Cultivating and harvesting method of attached microalgae from the wastewater and utilizing as the biomass thereof
KR10-2012-0146379 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014038753A1 true WO2014038753A1 (en) 2014-03-13

Family

ID=50237345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010935 WO2014038753A1 (en) 2012-09-07 2012-12-14 Method for cultivating and harvesting adhesive microalgae from sewage or waste water to utilize same as biomass

Country Status (1)

Country Link
WO (1) WO2014038753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962474A (en) * 2015-06-29 2015-10-07 新奥科技发展有限公司 Algal cell culturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092935A (en) * 2001-09-25 2003-04-02 Koasa Shoji Kk Method for culturing sea algae
KR100983023B1 (en) * 2010-07-07 2010-09-17 한국해양연구원 A method of extracting triglyceride or fatty acid methyl esters from microalgal lipid of microalgae of heterokontophyta or haptophyta, and manufacturing biodiesel using it's extracts
KR100991373B1 (en) * 2008-12-03 2010-11-02 인하대학교 산학협력단 Photobioreactor for marine microalgal mass cultures using permeable menbrane
KR20110112657A (en) * 2010-04-07 2011-10-13 한국과학기술연구원 A device for treating wastewater comprising nitrogen and phosphorus and a method for the same
JP2012157274A (en) * 2011-01-31 2012-08-23 Fujifilm Corp Method for adherent culturing of photosynthetic microorganism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092935A (en) * 2001-09-25 2003-04-02 Koasa Shoji Kk Method for culturing sea algae
KR100991373B1 (en) * 2008-12-03 2010-11-02 인하대학교 산학협력단 Photobioreactor for marine microalgal mass cultures using permeable menbrane
KR20110112657A (en) * 2010-04-07 2011-10-13 한국과학기술연구원 A device for treating wastewater comprising nitrogen and phosphorus and a method for the same
KR100983023B1 (en) * 2010-07-07 2010-09-17 한국해양연구원 A method of extracting triglyceride or fatty acid methyl esters from microalgal lipid of microalgae of heterokontophyta or haptophyta, and manufacturing biodiesel using it's extracts
JP2012157274A (en) * 2011-01-31 2012-08-23 Fujifilm Corp Method for adherent culturing of photosynthetic microorganism

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, SEUNG HOON ET AL.: "Increased microalgae growth and nutrient removal by balanced N, P ratio in wastewater", THE KOREAN JOURNAL OF ENVIRONMENT BIOLOGY, June 2012 (2012-06-01) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962474A (en) * 2015-06-29 2015-10-07 新奥科技发展有限公司 Algal cell culturing method
CN104962474B (en) * 2015-06-29 2019-06-21 新奥科技发展有限公司 A kind of cultural method of alga cells

Similar Documents

Publication Publication Date Title
Ji et al. Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp.
Shen et al. Microalgae mass production methods
CN101285075B (en) Coupling method for biogas fermentation and autotrophic freshwater microalgae culture
CN101921811B (en) Method for culturing microalgae
US9260685B2 (en) System and plant for cultivation of aquatic organisms
Hu et al. Development of microalgal biofilm for wastewater remediation: from mechanism to practical application
CN101280271A (en) Production unit for microalgae industrialization and method for producing microalgae
Van Wagenen et al. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana
CN102382769B (en) By iron trichloride throwing out microalgae and the recycling of cultivating water body
WO2015108279A1 (en) Microalgae culturing system using wastewater and culturing method therefor
CN105174476A (en) Activated sludge and microalgae coupled granular system for waste water treatment and establishment and operation method thereof
CN105712490A (en) Method for treating high ammonia-nitrogen wastewater through nutrition conversion of mixotroph
CN110343605B (en) Ecological floating bed photo-bioreactor and microalgae cultivation and water purification method
CN106630483B (en) Method for efficiently purifying biogas slurry based on algal-bacterial symbiosis
CN107189930A (en) Indoor microalgae culture system and its cultural method
CN111849704B (en) Stepped microalgae biofilm reactor for purifying biogas slurry
CN102533522B (en) Full-plastic airtight modularized airlift light biological reactor
CN104328074A (en) Microalgae cultivation method under low illumination condition
CN113105991B (en) Micro-nano bubble culture and recovery integrated microalgae biofilm reactor and microalgae culture and recovery method thereof
WO2024019516A1 (en) Method for culturing microalgae
WO2014038753A1 (en) Method for cultivating and harvesting adhesive microalgae from sewage or waste water to utilize same as biomass
WO2017111221A1 (en) Multifunctional port for culturing and collecting microalgae
JP4523187B2 (en) Photobioreactor
KR101388241B1 (en) Cultivating and harvesting method of attached microalgae from the wastewater and utilizing as the biomass thereof
US20120070889A1 (en) Hybrid bioreactor for reduction of capital costs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884310

Country of ref document: EP

Kind code of ref document: A1