WO2014038735A1 - Magnet-attached polyhedral construction toy - Google Patents

Magnet-attached polyhedral construction toy Download PDF

Info

Publication number
WO2014038735A1
WO2014038735A1 PCT/KR2012/007197 KR2012007197W WO2014038735A1 WO 2014038735 A1 WO2014038735 A1 WO 2014038735A1 KR 2012007197 W KR2012007197 W KR 2012007197W WO 2014038735 A1 WO2014038735 A1 WO 2014038735A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyhedron
magnet
magnets
flow
center
Prior art date
Application number
PCT/KR2012/007197
Other languages
French (fr)
Korean (ko)
Inventor
조은님
Original Assignee
Cho Eun-Nim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cho Eun-Nim filed Critical Cho Eun-Nim
Priority to PCT/KR2012/007197 priority Critical patent/WO2014038735A1/en
Publication of WO2014038735A1 publication Critical patent/WO2014038735A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/04Building blocks, strips, or similar building parts
    • A63H33/046Building blocks, strips, or similar building parts comprising magnetic interaction means, e.g. holding together by magnetic attraction

Definitions

  • the present invention relates to a magnet-attached polyhedral assembly toy, and in detail, it is possible to combine with other polyhedrons in all directions while minimizing the number of magnets made of expensive rare earth minerals, as well as to improve the bonding force and maintain a stable coupling state.
  • toys for the development of children's spatial perception and creativity are called various names, such as building blocks, polyhedrons, puzzles.
  • a magnet is inserted into a polyhedron block or a magnetic pad is attached to each other so as to be mutually coupled by magnetic force, which is also called a magnet block or a magnet block, and in the present invention, the magnet It is collectively called an attachable polyhedron assembly toy.
  • Nd magnets are classified into alico magnets, ferrite magnets, rare earth magnets, etc.
  • rare earth magnets have superior magnetic properties compared to the other two types.
  • the properties of Nd magnets are 10 times better than ferrite magnets.
  • Nd magnets are composed of about 60% Fe, about 30% Nd, and the rest of Dy and other additive elements.
  • the Dy content depends on the use of the magnet.
  • Dy has a crust present mass ratio of 4.8 ppm, which is higher than Au (0.004 ppm) and Pt (0.01 ppm), but is very low compared to Nd (25 ppm).
  • the mining mines are almost limited to China, and China has recently adhered to the export restriction policy, heavy rare earth supply and demand problems are occurring. The more serious problem is that this supply and demand problem is expected to intensify in the future.
  • Applicants have searched in the prior art related to the present invention, by creating a rotating space in which the magnet can rotate to rotate the magnet according to the polarity of the magnet to generate repulsion with other magnets, or to allow the magnet to flow in the flow space It is installed as a block with a teaching material magnet of Japanese Utility Model Registration No. 3069505, a toy block for construction of Japanese Patent Publication No. 2010-234050, a toy of Japanese Patent Publication No. 2011-92321, a panel-type magnetic play toy of Korean Patent No. 24154, Korea A three-dimensional magnetic play toy of Patent No. 575571, a polyhedral block toy in which a magnet of Korean Patent No. 629306 is combined, and the like are disclosed.
  • the object of the present invention is a magnet-attached polyhedral assembly toy comprising a hexahedron, such as a square pillar, a triangular pillar, a cylinder, a cone;
  • the present invention provides a magnet-attached polyhedral assembly toy with an improved structure that can be combined with other polyhedrons in all directions while minimizing the number of magnets.
  • the present invention also enables the visually impaired and the like to be used by the user to plan and reduce trial and error before assembling or in the assembling process by allowing the user to grasp the magnet arrangement structure inside the assembled toy by touch, not by sight. It is to provide a magnetized polyhedral assembly toy that can be quickly.
  • the present invention relates to a polyhedral assembly toy in which a magnet is installed to be movable in an interior of a polyhedron having three or more plane or curved surfaces;
  • the magnet flows from the center of one face of the polyhedron to one side of the face so that one magnet can exert magnetic force on two faces selectively or simultaneously as the movement and magnetic poles are reversed. It provides a magnet-attached polyhedral assembly toy that minimizes and improves cohesion with adjacent polyhedrons and maintains a stable coupling state.
  • the polyhedron includes a hexahedron, a pentahedron, a cylinder, and a cone, and of course, a polyhedron having a hexahedron or more may be included.
  • the polyhedron is composed of a hexahedron, and the hexahedron includes a cube, a cube, a parallelepiped, a rhombohedron (rhombus), and the like, and in these cubes, all six surfaces are arranged by magnetic force.
  • the hexagonal magnet arrangement allows the magnet to flow from two opposing surfaces, for example, from the center of the upper and lower surfaces to the side of the right side, and from the center of the front and rear to the side of the left side.
  • Four flow spaces are formed, and each flow space has a structure in which a bar magnet that can flow along the flow space and inverts magnetic poles is embedded.
  • the polyhedron may be made of a hard material including wood or synthetic resin (plastic), a soft material including foam or rubber, and the flow space formed in the polyhedron is filled with the interior of the polyhedron.
  • a hard material including wood or synthetic resin (plastic)
  • a soft material including foam or rubber
  • the flow space formed in the polyhedron is filled with the interior of the polyhedron.
  • the polyhedron is composed of a pentagonal body including a triangular prism, a triangular pyramid, a square pyramid, and the like, and in these pentagonal surfaces, all five surfaces can exert magnetic force by arranging four magnets.
  • the magnet arrangement structure of the pentagonal body has two flow spaces, for example, in which a magnet can flow from the center of the upper and lower surfaces facing each other in a triangular prism to one side, for example, the side in contact with the front surface, and each flow space.
  • the polyhedron consists of a cylindrical body including a semi-cylindrical body or a quarter-cylindrical body, and in these cylindrical bodies, three planes (upper, The lower and front sides of the cylinders are capable of exerting magnetic force on all four planes (upper, lower, left and right).
  • the magnet arrangement of the cylindrical body is the front (half) at the center of the upper and lower surfaces. Cylinders) or two flow spaces for magnets to flow to the sides in contact with the left and right sides (1/4 cylinders), and each flow space is movable along the flow space and capable of reversing the magnetic pole.
  • the bar magnet is built in, and additionally, a fixed magnet may be attached to the outer curved center.
  • the polyhedron is composed of a conical body including a semi-conical body or a quarter-conical body, and these conical bodies may also exert magnetic force in two or three planes by arranging two magnets.
  • Its arrangement structure is such that a single flow space is formed in which the magnet can flow from the center of the lower surface to the side contacting the front surface (semiconical body) or the left and right side surfaces (1/4 cone body).
  • the space has a built-in bar magnet that can flow along the flow space and that can be reversed.
  • a stator magnet may be attached to the top of the cone and the center of the outer surface of the cone.
  • the present invention can minimize the number of magnets required to enable various polyhedral blocks to be coupled to each other by mutual magnetic force, thereby reducing the manufacturing cost of the magnet-attached polyhedral assembly toys, while also allowing stable coupling in all directions with other polyhedrons. Even the bonding force can be improved, and the magnet's arrangement structure is different from the surface texture of the flow space and the surface texture of the other parts. As a result, it is possible to quickly assemble without trial and error, and this has a useful effect such that the visually impaired can play with the magnet assembly toy and improve the understanding of the space and the creativity.
  • FIG. 1 is a perspective view illustrating a magnet arrangement structure of a hexahedron as an embodiment of a magnet-attached polyhedral assembly toy according to the present invention
  • FIG. 2 is a cross-sectional view taken along line AA ′ of FIG. 1;
  • FIG. 3 is a perspective view illustrating a state in which two hexahedrons of FIG. 1 are combined;
  • Figure 4 is a perspective view of a plurality of hexahedron of Figure 1 stacked in a block state
  • FIG. 5 is a perspective view illustrating a magnet arranging structure of a pentagram according to another embodiment of the present invention.
  • FIG. 6 is a rear perspective view of the pentagram shown in FIG. 5;
  • FIGS. 5 and 6 are combined;
  • FIG. 8 is a perspective view illustrating a magnet arrangement structure of a cylinder according to another embodiment of the present invention.
  • FIG. 9 is a rear perspective view of FIG. 8;
  • FIG. 10 is a perspective view of the coupled state of the cylindrical body shown in FIG.
  • FIG. 11 is a perspective view showing a magnet arrangement structure of a quarter cylinder as a modification of FIG. 8;
  • FIG. 12 is a perspective view illustrating a magnet arrangement structure of a semiconical body according to another embodiment of the present invention.
  • FIG. 13 is a perspective view illustrating a magnet arrangement structure of a quarter cone as a modification of FIG. 12;
  • the upper, lower, front, rear, left, and right surfaces are arbitrarily named for convenience of description of the surface of the polyhedron, and the surface may be arranged according to an embodiment or according to each embodiment.
  • the term 'surface' which is expressed differently or collectively, is described as “surface”, and although the term “surface” is supported as a specific term for any surface, the scope of the present invention is not limited as it is.
  • Magnets and stationary magnets are classified and collectively referred to as 'magnets'.
  • the present invention is not limited to this expression, and specific terms for the polyhedron exist. If so, it should be interpreted in the same sense.
  • the polyhedral assembly toy of the present embodiment is made of a hexahedron having a rectangular pillar shape.
  • the hexahedron polyhedron (P) is capable of exerting magnetic force on all six surfaces (front, rear, left, right, top, bottom) by placing four bar magnets (M1, M2, M3, M4).
  • the hexahedral magnet arrangement structure is provided in two opposing surfaces, for example, from the center of the upper surface F1 and the lower surface F2 to the sides E1 and E2 contacting the right surface F3 and the front surface as shown in the drawing.
  • the polyhedron P according to the present embodiment has four rectangular surfaces (upper, lower, front, rear) and two rectangular surfaces (left and right) formed on the outer side, and as shown in FIG.
  • the upper surface is manufactured so as to form a cube by being coupled to each other in a butt-type manner, and the flow spaces S1 and S2 formed on the upper and lower surfaces F1 and F2 are shown in the sectional view taken along the line A-A 'of FIG.
  • the bar magnets M1 and M2 are allowed to flow from the longitudinal centers of the upper and lower surfaces F1 and F2 to the sides E1 and E2 contacting the right surface F3, and the rod magnets M1.
  • M2 has a width and a thickness smaller than the height of the top and bottom of the flow space (S1, S2), and consists of a rod shape consisting of a length smaller than the width before and after the flow space (S1, S2).
  • the bar magnets M1 and M2 in the flow spaces S1 and S2 formed in the upper and lower surfaces S1 and S2 are located at the center positions of the upper and lower surfaces F1 and F2 as shown in FIG. 2.
  • the magnetic force is generated in the horizontal direction at the same time as the vertical upper and lower directions of the upper and lower surfaces F1 and F2, so that the surface coupling with adjacent other polyhedrons is possible.
  • the bar magnets M3 and M4 in the flow spaces S3 and S4 formed in the front and rear surfaces F4 and F5 are front and rear surfaces, as can be seen from the A-A 'cross-sectional views of FIGS. 1 and 2.
  • the magnetic force is generated only in the horizontal direction of the front and rear surfaces F4 and F5 by coming to the center position of F4 and F5, or on the front and rear surfaces F4 and F5 as in the block engagement state of FIG.
  • the contact surface F6 as close as possible to the front and rear of the front and rear surfaces (F4, F5) simultaneously with the magnetic force generated in the lateral direction of the seat surface (F6) so as to enable a chain coupling with the adjacent other polyhedron. It is.
  • the flow spaces S1 and S2 adjacent to the right surface F3 and the flow spaces S3 and S4 adjacent to the left surface F6 are arranged to be shifted by 90 ° to each other, so that the blocks are joined horizontally and vertically. Rotation in the direction allows coupling with adjacent polyhedrons in either direction.
  • the polyhedron (P) is preferably made of a hard material including wood or synthetic resin (plastic), but the present invention is not limited thereto, and according to the age group of the user or the characteristics of the user, foam or rubber Of course, it can also be made of a soft material, including, the flow space (S1 ⁇ S4) formed in the polyhedron (P), in the case where the interior of the polyhedron (P) is filled to form a flow space by removing the filled portion If the inside of the polyhedron (P) is empty, it can be formed by embedding and attaching a fluid space forming a separate fluid space in the empty inner space, the formation method or structure of such a fluid space There is no special restriction on.
  • the surface texture of the flow spaces S1, S2, S3, and S4 that is, the surface of the polyhedron and the outer surface of the flow spaces S1 to S4 have different textures, for example, smoothing the surface of the polyhedron.
  • the surface of the flow spaces (S1 to S4) is formed to have a slightly rough feeling, or vice versa, so that the user can recognize the position of the flow space, that is, the position of the magnet, by hand sense only without looking at the eyes. Blocks can be quickly combined without making mistakes, or the visually impaired can also play with building toys and develop spatial perception and creativity.
  • the cube is not limited to the shape of the cube shown in the drawings, the cube form such as combining the two cubes shown in the drawings, a cube of another form that is divided into the vertically half of the cube shown in the figure vertically
  • the two corresponding surfaces are not rectangular or square, but the trapezoidal hexahedral shape, such as the shape of the magnet can be applied to various hexahedron.
  • the magnets in the corresponding flow space are coupled as closely as possible to each other, whereby another block is placed up, down, left.
  • the magnetic force is doubled, so that the combined state of the block is made more robust, and thus, a more stable block can be assembled.
  • the polyhedral assembly toy of this embodiment is made of a hexahedron in the form of a triangular prism, P) has four magnets (M1, M2, m3, m4) arranged to be able to exert magnetic force on all five surfaces (front, left, right, top and bottom).
  • Two flow spaces S1 and S2 through which the bar magnets M1 and M2 can flow from the center of the upper and lower surfaces F1 and F2 to the sides E1 and E2 in contact with the front surface F4 are formed.
  • rod magnets M1 and M2 which are movable along the flow space and are capable of reversing magnetic poles, are built in the centers of the left and right surfaces F6 and F3. ) Consists of installed structure.
  • the upper and lower surfaces F1 and F2 have an equilateral triangle
  • the front surface F4 and the left and right surfaces F6 and F3 have a rectangular shape.
  • the upper and lower surfaces may be formed to have the same appearance as in the present embodiment by making two equilateral triangles of the equilateral triangle divided by two and combining them.
  • the center of the upper and lower surfaces (F1, F2) means the center of gravity
  • the flow space (S1, S2) formed in the upper and lower surfaces (F1, F2) is a bar magnet (M1, M2) It is designed to flow from the center of gravity of the upper and lower surfaces (F1, F2) to the sides (E1, E2) in contact with the front surface (F4)
  • the rod magnets (M1, M2) of the flow space (S1, S2) It has a width and thickness smaller than the height of the upper and lower, and consists of a bar of a length smaller than the front, rear width of the flow space (S1, S2).
  • the bar magnets M1 and M2 in the flow spaces S1 and S2 formed in the upper and lower surfaces S1 and S2 are located at the center positions of the upper and lower surfaces F1 and F2 so that the upper and lower surfaces F1
  • the magnetic force is generated in the vertical direction only in F2), or the upper and lower vertical directions of the upper and lower surfaces (F1, F2) are as close as possible to the upper and lower portions of the front surface F4 in contact with the upper and lower surfaces (F1, F2).
  • a magnetic force is generated in the front direction F4 in the horizontal direction, and as shown in FIG. 7, chain coupling with adjacent polyhedrons is possible.
  • the left and right surfaces (F6, F3), except for the front surface (F4) is attached to the stationary magnet (m3, m4) as shown in Fig. It is possible.
  • the polyhedron (P) of the present embodiment consists of a semi-cylindrical body, in the semi-cylindrical body to arrange three magnets
  • the three planes (upper, lower and front) and one curved surface (outer surface) are capable of exerting magnetic force.
  • the magnet arrangement of the semi-cylindrical body has a front surface at the center of the upper and lower surfaces (F1, F2).
  • Two flow spaces S1 and S2 through which the bar magnets M1 and M2 flow to the sides E1 and E2 in contact with F4) are formed, and each flow space S1 and S2 is formed along the flow space.
  • the bar magnets M1 and M2 that are movable and capable of reversing magnetic poles are built in, and the stator magnet m1 is disposed at the center of the outer curved surface F7.
  • the semi-cylindrical body of the present embodiment configured as described above has a cylindrical body as the front surface F4 is joined in a butt manner as shown in FIG. 10, and these cylindrical bodies are continuously coupled up and down to have a desired length when stacked.
  • the bar magnets (M1, M2) located in the flow spaces (S1, S2) of the upper and lower surfaces (F1, F2) are engaged with the magnets of the corresponding polyhedron.
  • two magnets are combined into one of the upper and lower surfaces of the cylindrical body to stack a cylindrical cylinder having a stable structure.
  • FIG. 11 is a modified example of FIG. 8, in which a magnet arrangement structure of a quarter cylinder is illustrated.
  • the semicylindrical body of FIG. 8 is vertically divided into two, divided top and bottom surfaces (F1, F2).
  • the rod magnets (M1, M2) are installed in a flowable manner, and the outer curved surface (F7) has a structure in which a fixed magnet (m1) is attached.
  • the first and the second cylindrical bodies 2 are formed so that the flow spaces S1 and S2 formed on the upper and lower surfaces F1 and F2 are in contact with the sides E3 and E4 in contact with the left surface F6 along the longitudinal direction.
  • the seating surface (F6) is coupled to each other in a butting manner, and the magnets (M1, M2) of the upper and lower surfaces (F1, F2) are laterally combined to form a unit, and the two semi-cylindrical bodies thus joined again Combined to form a cylindrical body as shown in FIG.
  • the curved surface F7 may be added with a stator magnet as shown in FIG. 9, and the attachment position of the stator magnet is a middle part or one side of the curved surface F, that is, two 1 / s.
  • the four-cylindrical body When the four-cylindrical body is coupled, it may be attached to a position such as the stator magnet (m1) shown in FIG.
  • FIG. 12 illustrates another example of the conical magnet arrangement structure.
  • the bar magnet M1 is moved from the center of the bottom surface F2 of the semiconical body to the side contacting the front surface F4.
  • the flow space (S1) is formed to be possible, and the top of the polyhedron (P) has a structure in which the stator magnet (m1) is attached to the magnet of the lower surface (F2) by butt-bonding the two semi-conical body
  • the magnets of the M1 and the spigot V are each capable of forming a conical body by the attraction force.
  • FIG. 13 is a modified example of FIG. 12, in which a magnet arrangement structure of a quarter cone is shown.
  • the semicone body of FIG. 12 is vertically divided into two, and the divided bottom surface F2 has a bar magnet ( M1) is installed in a flowable manner, and has a structure in which the stator magnet (m1) is attached to the nipple (V), and the two polyhedrons (P) formed of these quarter cylinders are butt-coupled to each other, as shown in FIG.
  • the semiconical polyhedron of the present embodiment can be made.
  • the flow space S1 formed on the lower surface F2 is formed to be in contact with the side surface E4 in contact with the seat surface F6 along the longitudinal direction, so that two 1/4 cone bodies are coupled.
  • the seat surface (F6) is coupled to each other in a butt manner when the magnet (M1) of the lower surface (F1) is laterally combined to form an integral, so that the two semi-conical bodies are combined again to form a conical body Will be.
  • the polyhedron of the present invention may be manufactured in various shapes and sizes, and the arrangement structure of the bar magnets and the stationary magnets may be arranged according to the same principle as in the above-described embodiment. .
  • the polyhedral assembly toy of the present invention configured as described above has a magnetic force in a polyhedron having three or more surfaces, each of which has a magnetic force, and thus, the required number of magnets may be combined with another adjacent polyhedron. Since it can be less than the number corresponding to the surface of the surface, it is possible to reduce the manufacturing cost by minimizing the use of expensive and rare rare earths, as well as the magnets to be combined into blocks by reversing the flow and magnetic poles in the flow space.
  • the corresponding magnets are combined into one magnet and at the same time, the coupling position is located at the center of the surface where the magnetic force is generated or the balance is arranged on the upper, lower, left and right sides of the corresponding surface to maintain a stable coupling state.
  • the paper has a useful effect that can help you improve your spatial perception, creativity and teamwork and social skills while playing for the construction blocks with a child or several children alone.

Landscapes

  • Toys (AREA)

Abstract

The present invention relates to a magnet-attached polyhedral construction toy, in which a polyhedral body toy can be coupled to another polyhedral body in every direction while minimizing the number of required magnets, and the coupling force is improved, and the polyhedral body having a surface with three or more planes or curved surfaces has movable magnets therein. Each magnet (M) moves from the center of one side of the polyhedral body (P) to the edge of the side. Therefore, differently from conventional hexahedrons which require six magnets in total, i.e., one for each side of the hexahedron, the construction toy of the present invention enables a hexahedron to be coupled with another hexahedron in any direction using only four magnets, and the polar structures of the magnets are firmly formed when blocks are stacked, thus achieving a stable block structure.

Description

자석 부착식 다면체 조립완구Magnetic Polyhedron Assembly Toys
본 발명은 자석 부착식 다면체 조립완구에 관한 것으로, 상세히는 고가의 희토류 광물로 만들어지는 자석의 소요 개수를 최소화하면서도 타 다면체와 모든 방향으로의 결합이 가능함은 물론 결합력의 향상과 안정된 결합상태를 유지할 수 있도록 함으로써 자라나는 어린이들이 가지고 놀면서 공간지각력의 발달과 창의력의 향상은 물론 협동심과 사회성을 부여할 수 있도록 한 것이다.The present invention relates to a magnet-attached polyhedral assembly toy, and in detail, it is possible to combine with other polyhedrons in all directions while minimizing the number of magnets made of expensive rare earth minerals, as well as to improve the bonding force and maintain a stable coupling state. By allowing children to grow up to play with them, they can contribute to the development of spatial perception and creativity, as well as to give cooperation and sociality.
일반적으로 어린이들의 공간지각력 및 창의력의 발달을 위한 완구는 조립블록, 다면체, 조립퍼즐 등 다양한 이름으로 불리고 있다.In general, toys for the development of children's spatial perception and creativity are called various names, such as building blocks, polyhedrons, puzzles.
이 중에서 본 발명과 관련된 물품은 다면체 블록의 내부에 자석을 삽입하거나 자석 패드를 부착하여 자력에 의해 상호 결합이 가능하도록 한 것인데, 이는 자석 블록 또는 자석 블럭 등으로도 불리고 있으며, 본 발명에서는 이를 자석 부착식 다면체 조립완구라고 통칭한다.Among the articles related to the present invention, a magnet is inserted into a polyhedron block or a magnetic pad is attached to each other so as to be mutually coupled by magnetic force, which is also called a magnet block or a magnet block, and in the present invention, the magnet It is collectively called an attachable polyhedron assembly toy.
한편, 이와 같이 자석이 결합된 다면체가 모든 방향으로 연속으로 결합이 가능하도록 하기 위하여는 각 면마다 최소 하나 이상의 자석을 사용해야 했었으며, 다면체들이 결합되면서 결합된 입체가 커질수록 그 중량의 힘을 견디지 못해 무너지게 됨으로써 자석의 개수를 늘리거나 가우스가 높은 고가의 자석을 사용하여야 하는 문제점이 있었다.On the other hand, in order to be able to combine the magnets in the polyhedron can be continuously combined in all directions, at least one magnet should be used on each side, and as the polyhedrons are combined, the larger the combined solids will not be able to withstand the force of the weight. There is a problem to increase the number of magnets or to use expensive magnets with high Gaussian by collapse.
한편, 영구자석은 알리코 자석, 훼라이트 자석, 희토류 자석 등으로 분류되는데, 이 중에서 희토류 자석은 나머지 두 종류에 비해서 자기특성이 월등히 우수하다. 예를 들면 Nd계 자석의 특성은 페라이트 자석보다 10배 우수한데, Nd계 자석은 Fe가 약 60%, Nd가 약 30%, 나머지가 Dy와 다른 첨가원소로 구성되어 있다. 이 중에서 Dy함량은 자석의 용도에 따라 다르다. 한편, Dy는 지각 존재질량비가 4.8ppm으로 Au(0.004ppm)과 Pt(0.01ppm)보다는 높지만 Nd(25ppm) 비교하여 매우 낮다. 뿐만 아니라, 채광 가능한 광산이 거의 중국에 국한되어 있고 최근 중국이 수출제한 정책을 고수하고 있기 때문에 현재 중희토류 수급문제가 발생하고 있다. 더욱 심각한 문제는 이러한 수급문제가 향후 더욱 심화될 것으로 예상된다는 것이다.On the other hand, permanent magnets are classified into alico magnets, ferrite magnets, rare earth magnets, etc. Among these, rare earth magnets have superior magnetic properties compared to the other two types. For example, the properties of Nd magnets are 10 times better than ferrite magnets. Nd magnets are composed of about 60% Fe, about 30% Nd, and the rest of Dy and other additive elements. Among them, the Dy content depends on the use of the magnet. On the other hand, Dy has a crust present mass ratio of 4.8 ppm, which is higher than Au (0.004 ppm) and Pt (0.01 ppm), but is very low compared to Nd (25 ppm). In addition, due to the fact that the mining mines are almost limited to China, and China has recently adhered to the export restriction policy, heavy rare earth supply and demand problems are occurring. The more serious problem is that this supply and demand problem is expected to intensify in the future.
본 출원인이 검색한 바에 의하면 본 발명과 관련된 종래기술로, 자석이 돌 수 있는 회전공간을 만들어서 자석의 극성에 따라서 자석이 회전해서 다른 자석과 척력이 발생하도록 하거나, 자석이 유동공간에서 유동가능하도록 설치한 것으로는 일본실용신안등록 제3069505호의 교재용 자석이 든 블록, 일본특허공개2010-234050호의 완구조립용 블록, 일본특허공개2011-92321호의 완구, 한국특허 제24154호의 패널형 자석놀이완구, 한국특허 제546071호의 입체형 자석놀이완구, 한국특허 제629306호의 자석이 결합된 다면체 블록완구 등이 개시되어 있다.Applicants have searched in the prior art related to the present invention, by creating a rotating space in which the magnet can rotate to rotate the magnet according to the polarity of the magnet to generate repulsion with other magnets, or to allow the magnet to flow in the flow space It is installed as a block with a teaching material magnet of Japanese Utility Model Registration No. 3069505, a toy block for construction of Japanese Patent Publication No. 2010-234050, a toy of Japanese Patent Publication No. 2011-92321, a panel-type magnetic play toy of Korean Patent No. 24154, Korea A three-dimensional magnetic play toy of Patent No. 575571, a polyhedral block toy in which a magnet of Korean Patent No. 629306 is combined, and the like are disclosed.
한편, 상기한 종래기술에 의한 자석 부착식 블록 완구에 있어서는 자석 수를 줄이면서도 기존의 결합력을 그대로 유지하거나 또는 증대시킬 수 있는 방안이 제시되지 못하였으며, 오히려 자석의 소요 개수가 많아지게 되는 구조로 이루어져 있고, 또한, 위에서 언급한 종래기술에 있어서는 자석이 들어 있어서 자력이 작용하는 면과 자석이 없어서 자력이 작용하지 않는 면의 표면을 구별하여 사용자가 조립 전에 미리 계획하고 시행착오를 줄일 수 있도록 하기 위한 어떠한 기술도 제시되어 있지 않았다.On the other hand, in the magnetic block toy according to the prior art described above can not reduce the number of magnets while maintaining or increasing the existing bonding force is not proposed, but rather the structure required to increase the number of magnets In addition, in the above-mentioned prior art, a magnet is included so that the surface of the magnetic force can be distinguished from the surface of the magnetic force not acting so that the user can plan in advance and reduce trial and error before assembling. No technique has been presented.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 사각기둥과 같은 육면체, 삼각기둥과 같은 오면체, 원기둥체, 원뿔체를 포함하는 자석 부착식 다면체 조립완구에서; 자석의 소요 개수를 최소화하면서도 타 다면체와 전방향으로의 결합이 가능함은 물론 결합력의 향상과 더불어 결합상태도 안정적으로 유지할 수 있는 개선된 구조의 자석 부착식 다면체 조립완구를 제공하는데 있다.The present invention has been made to solve the above problems, the object of the present invention is a magnet-attached polyhedral assembly toy comprising a hexahedron, such as a square pillar, a triangular pillar, a cylinder, a cone; The present invention provides a magnet-attached polyhedral assembly toy with an improved structure that can be combined with other polyhedrons in all directions while minimizing the number of magnets.
본 발명은 또, 시각이 아닌 촉감 등에 의해 조립완구 내부의 자석 배치구조를 파악할 수 있도록 함으로써 조립 전 또는 조립 과정에서 사용자가 미리 계획하고 시행착오를 줄일 수 있도록 함으로써 시각장애인 등도 사용이 가능하고 조립 또한 신속하게 할 수 있는 자석 부착식 다면체 조립완구를 제공하는 데 있다.The present invention also enables the visually impaired and the like to be used by the user to plan and reduce trial and error before assembling or in the assembling process by allowing the user to grasp the magnet arrangement structure inside the assembled toy by touch, not by sight. It is to provide a magnetized polyhedral assembly toy that can be quickly.
상기한 목적을 달성하기 위하여 본 발명은 3개 이상의 평면 또는 곡면으로 된 표면을 갖는 다면체의 내부에 자석이 유동가능하게 설치된 다면체 조립완구에 있어서; 상기 자석은 다면체의 어느 한 면의 중심에서 해당 면의 일 측변까지 유동되도록 하여 하나의 자석이 이동 및 자극이 반전되면서 2개의 면에 대하여 선택적으로 또는 동시에 자력을 발휘할 수 있도록 함으로써 자석의 소요 개수는 최소화하면서도 인접하는 타 다면체와 결합력의 향상과 안정적인 결합상태를 유지할 수 있도록 한 자석 부착식 다면체 조립완구를 제공한다.In order to achieve the above object, the present invention relates to a polyhedral assembly toy in which a magnet is installed to be movable in an interior of a polyhedron having three or more plane or curved surfaces; The magnet flows from the center of one face of the polyhedron to one side of the face so that one magnet can exert magnetic force on two faces selectively or simultaneously as the movement and magnetic poles are reversed. It provides a magnet-attached polyhedral assembly toy that minimizes and improves cohesion with adjacent polyhedrons and maintains a stable coupling state.
본 발명에서 상기 다면체는 육면체, 오면체, 원기둥체, 원뿔체를 포함하며, 육면체 이상의 면을 갖는 다면체 또한 포함할 수 있음은 물론이다.In the present invention, the polyhedron includes a hexahedron, a pentahedron, a cylinder, and a cone, and of course, a polyhedron having a hexahedron or more may be included.
본 발명의 구체적인 실시 예에서 상기 다면체는 육면체로 이루어지며, 육면체는 정육면체, 직육면체, 평행육면체, 능면체(마름모) 등을 포함하고, 이들 육면체에서는 4개의 자석을 배치하는 것에 의해 6개의 표면 모두 자력을 발휘할 수 있도록 되어 있는데, 육면체 자석 배치구조는 대향하는 2개의 표면 예를 들면, 상면과 하면의 중심부에서 우측면과 접하는 변까지, 그리고 전면과 후면의 중심부에서 좌측면과 접하는 변까지 자석이 유동할 수 있는 4개의 유동공간이 형성되고, 각각의 유동공간에는 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석이 내장된 구조로 이루어진다.In a specific embodiment of the present invention, the polyhedron is composed of a hexahedron, and the hexahedron includes a cube, a cube, a parallelepiped, a rhombohedron (rhombus), and the like, and in these cubes, all six surfaces are arranged by magnetic force. The hexagonal magnet arrangement allows the magnet to flow from two opposing surfaces, for example, from the center of the upper and lower surfaces to the side of the right side, and from the center of the front and rear to the side of the left side. Four flow spaces are formed, and each flow space has a structure in which a bar magnet that can flow along the flow space and inverts magnetic poles is embedded.
본 발명에서 상기 다면체는 목재나 합성수지(플라스틱)를 포함하는 경질 소재, 발포 폼(foam)이나 고무를 포함하는 연질 소재 등으로 제작될 수 있으며, 다면체에 형성되는 유동공간은 다면체의 내부가 채워진 상태의 경우에는 채워진 부분을 제거하여 유동공간을 형성할 수 있고, 다면체의 내부가 비어있는 경우에는 비어있는 내부 공간에 별도의 유동공간을 형성하는 유동공간체를 내장하는 방법으로 형성할 수 있으며, 유동공간의 형성방법이나 구조에 대한 제한은 없다.In the present invention, the polyhedron may be made of a hard material including wood or synthetic resin (plastic), a soft material including foam or rubber, and the flow space formed in the polyhedron is filled with the interior of the polyhedron. In the case of removing the filled portion to form a flow space, if the inside of the polyhedron can be formed by embedding the flow space forming a separate flow space in the empty inner space, flow There is no restriction on the formation method or structure of the space.
본 발명의 구체적인 실시 예에서, 상기 다면체는 삼각기둥, 삼각뿔대, 사각뿔 등을 포함하는 오면체로 이루어지며, 이들 오면체에서는 4개의 자석을 배치하는 것에 의해 5개의 표면 모두 자력을 발휘할 수 있도록 되어 있는데, 오면체의 자석 배치구조는 예를 들면, 삼각기둥에서 대향하는 상면과 하면의 중심부에서 일 측면 예를 들면, 전면과 접하는 변까지 자석이 유동할 수 있는 2개의 유동공간이 형성되고, 각각의 유동공간에는 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석이 내장되며, 나머지 2개의 측면 중심부에는 자석이 고정배치되는 구조로 이루어진다. In a specific embodiment of the present invention, the polyhedron is composed of a pentagonal body including a triangular prism, a triangular pyramid, a square pyramid, and the like, and in these pentagonal surfaces, all five surfaces can exert magnetic force by arranging four magnets. The magnet arrangement structure of the pentagonal body has two flow spaces, for example, in which a magnet can flow from the center of the upper and lower surfaces facing each other in a triangular prism to one side, for example, the side in contact with the front surface, and each flow space. There is a bar magnet that can flow along the flow space and the magnetic pole can be reversed, and the remaining two side centers have a structure in which magnets are fixedly arranged.
본 발명의 구체적인 실시 예에서, 상기 다면체는 반원기둥체 또는 1/4원기둥체를 포함하는 원기둥체로 이루어지며, 이들 원기둥체에서는 2개의 자석을 배치하는 것에 의해 반원기둥체에서는 3개의 평면(상,하면 및 정면)이, 1/4원기둥체에서는 4개의 평면(상,하면 및 좌,우측면)이 모두 자력을 발휘할 수 있도록 되어 있는데, 원기둥체의 자석 배치구조는 상,하면의 중심부에서 전면(반원기둥체) 또는 좌,우 측면(1/4원기둥체)과 접하는 변까지 자석이 유동할 수 있는 2개의 유동공간이 형성되고, 각각의 유동공간에는 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석이 내장되며, 부가적으로 외측의 곡면 중심부에는 고정자석이 부착될 수 있다.In a specific embodiment of the present invention, the polyhedron consists of a cylindrical body including a semi-cylindrical body or a quarter-cylindrical body, and in these cylindrical bodies, three planes (upper, The lower and front sides of the cylinders are capable of exerting magnetic force on all four planes (upper, lower, left and right). The magnet arrangement of the cylindrical body is the front (half) at the center of the upper and lower surfaces. Cylinders) or two flow spaces for magnets to flow to the sides in contact with the left and right sides (1/4 cylinders), and each flow space is movable along the flow space and capable of reversing the magnetic pole. The bar magnet is built in, and additionally, a fixed magnet may be attached to the outer curved center.
본 발명의 구체적인 실시 예에서, 상기 다면체는 반원뿔체, 또는 1/4원뿔체를 포함하는 원뿔체로 이루어지며, 이들 원뿔체도 2개의 자석을 배치하는 것에 의해 2개 또는 3개의 평면이 모두 자력을 발휘할 수 있도록 되어 있는데, 이의 배치구조는 하면의 중심부에서 전면(반원뿔체) 또는 좌,우 측면(1/4원뿔체)과 접하는 변까지 자석이 유동할 수 있는 하나의 유동공간이 형성되고, 이 유동공간에는 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석이 내장되며, 부가적으로 원뿔체의 꼭지와 외측의 곡면 중심부에는 고정자석이 부착될 수 있다.In a specific embodiment of the present invention, the polyhedron is composed of a conical body including a semi-conical body or a quarter-conical body, and these conical bodies may also exert magnetic force in two or three planes by arranging two magnets. Its arrangement structure is such that a single flow space is formed in which the magnet can flow from the center of the lower surface to the side contacting the front surface (semiconical body) or the left and right side surfaces (1/4 cone body). The space has a built-in bar magnet that can flow along the flow space and that can be reversed. A stator magnet may be attached to the top of the cone and the center of the outer surface of the cone.
본 발명은 다양한 다면체 블록을 상호 자력에 의해 결합가능하도록 하기 위하여 소요되는 자석의 개수를 최소화할 수 있으므로 자석 부착식 다면체 조립완구의 제조원가를 절감하면서도 타 다면체와 전방향으로의 안정적인 결합이 가능함은 물론 결합력까지도 향상시킬 수 있으며, 자석의 배치구조는 유동공간의 표면 질감과 타 부위와의 표면 질감이 다르게 형성되어 있으므로 시각에 의존하지 않고도 손감각만으로도 마치 자석의 배치구조를 파악하여 결합방향의 결정이 가능하므로 시행착오를 겪지 않고도 신속한 조립이 가능하며, 이와 같은 점은 시각장애인들도 자석 조립완구를 갖고 놀면서 공간에 대한 이해와 창의력의 향상을 도모할 수 있는 등의 유용한 효과를 갖는다.The present invention can minimize the number of magnets required to enable various polyhedral blocks to be coupled to each other by mutual magnetic force, thereby reducing the manufacturing cost of the magnet-attached polyhedral assembly toys, while also allowing stable coupling in all directions with other polyhedrons. Even the bonding force can be improved, and the magnet's arrangement structure is different from the surface texture of the flow space and the surface texture of the other parts. As a result, it is possible to quickly assemble without trial and error, and this has a useful effect such that the visually impaired can play with the magnet assembly toy and improve the understanding of the space and the creativity.
도 1은 본 발명에 의한 자석 부착식 다면체 조립완구의 일 실시 예로서, 육면체의 자석 배치구조를 도시한 사시도,1 is a perspective view illustrating a magnet arrangement structure of a hexahedron as an embodiment of a magnet-attached polyhedral assembly toy according to the present invention;
도 2는 도 1의 A - A'선 단면도,2 is a cross-sectional view taken along line AA ′ of FIG. 1;
도 3은 도 1의 육면체 2개가 결합된 상태를 도시한 사시도,3 is a perspective view illustrating a state in which two hexahedrons of FIG. 1 are combined;
도 4는 도 1의 육면체 다수개가 블록상태로 적층된 사시도,Figure 4 is a perspective view of a plurality of hexahedron of Figure 1 stacked in a block state,
도 5는 본 발명의 다른 실시 예로서, 오면체의 자석 배치구조를 도시한 사시도,5 is a perspective view illustrating a magnet arranging structure of a pentagram according to another embodiment of the present invention;
도 6은 도 5에 도시된 오면체의 배면 사시도,6 is a rear perspective view of the pentagram shown in FIG. 5;
도 7은 도 5 및 도 6에 도시된 오면체 2개가 결합된 상태를 도시한 사시도,7 is a perspective view illustrating a state in which two pentagons shown in FIGS. 5 and 6 are combined;
도 8은 본 발명의 다른 실시 예로서, 원기둥체의 자석 배치구조를 도시한 사시도,8 is a perspective view illustrating a magnet arrangement structure of a cylinder according to another embodiment of the present invention;
도 9는 도 8의 배면 사시도,9 is a rear perspective view of FIG. 8;
도 10은 도 8에 도시된 원기둥체의 결합상태 사시도, 10 is a perspective view of the coupled state of the cylindrical body shown in FIG.
도 11은 도 8의 변형례로서, 1/4원기둥체의 자석 배치구조를 도시한 사시도,FIG. 11 is a perspective view showing a magnet arrangement structure of a quarter cylinder as a modification of FIG. 8; FIG.
도 12는 본 발명의 다른 실시 예로서, 반원뿔체의 자석 배치구조를 도시한 사시도,12 is a perspective view illustrating a magnet arrangement structure of a semiconical body according to another embodiment of the present invention;
도 13은 도 12의 변형례로서, 1/4원뿔체의 자석 배치구조를 도시한 사시도,FIG. 13 is a perspective view illustrating a magnet arrangement structure of a quarter cone as a modification of FIG. 12; FIG.
이하, 본 발명을 한정하지 않는 바람직한 실시 예를 첨부된 도면에 의하여 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments that do not limit the present invention will be described in detail.
본 발명의 구체적인 실시 예에서 상,하,전,후,좌,우면은 다면체의 표면에 대한 설명의 편의를 위해 임의로 명명한 것으로, 이러한 표면은 실시예에 따라서 또는 각 실시 예에 의한 다면체의 배치에 따라서 다르게 표현되거나 통칭하는 용어인 '표면'으로 설명하며, 임의의 표면에 대해 특정의 용어로 지지칭하였더라도 본 발명의 권리범위가 그대로 제한되는 것은 아님은 물론이며, 자석에 대한 설명에 있어서도 막대자석과 고정자석으로 구분하고, 이들을 통칭하는 경우에는 '자석'으로 표현하였다.In a specific embodiment of the present invention, the upper, lower, front, rear, left, and right surfaces are arbitrarily named for convenience of description of the surface of the polyhedron, and the surface may be arranged according to an embodiment or according to each embodiment. The term 'surface', which is expressed differently or collectively, is described as “surface”, and although the term “surface” is supported as a specific term for any surface, the scope of the present invention is not limited as it is. Magnets and stationary magnets are classified and collectively referred to as 'magnets'.
또한, 다면체의 설명에 있어서도, 반원기둥체, 1/4원기둥체, 반원뿔체, 1/4원뿔체 등과 같이 임의로 표현하였으나, 본 발명은 이러한 표현에 한정되지 않고 해당 다면체에대한 특정의 용어가 존재하는 경우에는 그와 동일한 의미로 해석됨이 마땅하다.In addition, in the description of the polyhedron, although arbitrarily expressed as semi-cylindrical body, quarter-cylindrical body, semi-conical body, quarter-conical body, etc., the present invention is not limited to this expression, and specific terms for the polyhedron exist. If so, it should be interpreted in the same sense.
도 1 내지 도 4에는 본 발명의 일 실시 예에 의한 자석 부착식 다면체 조립완구인 육면체의 자석 배치구조 및 결합상태가 도시되어 있는데, 본 실시 예의 다면체 조립완구는 사각기둥 형태의 육면체로 이루어져 있으며, 육면체로 이루어진 다면체(P)는 4개의 막대자석(M1,M2,M3,M4)을 배치하는 것에 의해 6면(전,후,좌,우,상,하면) 모두 자력을 발휘할 수 있도록 되어 있는데, 이 육면체의 자석 배치구조는 대향하는 2개의 면 예를 들면, 도면에 도시된 바와 같이 상면(F1)과 하면(F2)의 중심부에서 우면(F3)과 접하는 변(E1,E2)까지, 그리고 전면(F4)과 후면(F5)의 중심부에서 좌면(F6)과 접하는 변(E3,E4)까지 자석(M1,M2,M3,M4)이 유동할 수 있는 4개의 유동공간(S1,S2,S3,S4)이 형성되고, 각각의 유동공간(S1,S2,S3,S4)에는 이 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석(M1,M2,M3,M4)이 내장된 구조로 이루어져 있다.1 to 4 illustrate a magnet arrangement structure and a coupling state of a hexahedron of a magnet-attached polyhedral assembly toy according to an embodiment of the present invention. The polyhedral assembly toy of the present embodiment is made of a hexahedron having a rectangular pillar shape. The hexahedron polyhedron (P) is capable of exerting magnetic force on all six surfaces (front, rear, left, right, top, bottom) by placing four bar magnets (M1, M2, M3, M4). The hexahedral magnet arrangement structure is provided in two opposing surfaces, for example, from the center of the upper surface F1 and the lower surface F2 to the sides E1 and E2 contacting the right surface F3 and the front surface as shown in the drawing. Four flow spaces S1, S2, S3, through which the magnets M1, M2, M3, M4 can flow from the center of F4 and the rear surface F5 to the sides E3 and E4 in contact with the left surface F6. S4) is formed, and each flow space (S1, S2, S3, S4) is a rod that can flow along this flow space and the magnetic pole can be reversed It has a structure in which the magnets M1, M2, M3, and M4 are embedded.
본 실시 예에 의한 다면체(P)는 외곽에 직사각형인 4개의 면(상,하,전,후면)과 정사각형인 2개의 면(좌,우면)이 형성되어 있으며, 도 3에 도시된 바와 같이 좌,우면이 상호 맞대기 식으로 결합되는 것에 의해 정육면체를 형성할 수 있도록 제작되어 있는데, 상,하면(F1,F2)에 형성되는 유동공간(S1,S2)은 도 2의 A - A'선 단면도에서 알 수 있는 바와 같이 막대자석(M1,M2)이 상,하면(F1,F2)의 세로중심에서부터 우면(F3)에 접하는 변(E1,E2)까지 유동될 수 있도록 되어 있으며, 상기 막대자석(M1,M2)은 상기 유동공간(S1,S2)의 상,하 높이보다는 작은 폭과 두께를 가지며, 상기 유동공간(S1,S2)의 전,후 폭보다 작은 길이로 이루어진 막대형으로 이루어져 있다.The polyhedron P according to the present embodiment has four rectangular surfaces (upper, lower, front, rear) and two rectangular surfaces (left and right) formed on the outer side, and as shown in FIG. The upper surface is manufactured so as to form a cube by being coupled to each other in a butt-type manner, and the flow spaces S1 and S2 formed on the upper and lower surfaces F1 and F2 are shown in the sectional view taken along the line A-A 'of FIG. As can be seen, the bar magnets M1 and M2 are allowed to flow from the longitudinal centers of the upper and lower surfaces F1 and F2 to the sides E1 and E2 contacting the right surface F3, and the rod magnets M1. , M2 has a width and a thickness smaller than the height of the top and bottom of the flow space (S1, S2), and consists of a rod shape consisting of a length smaller than the width before and after the flow space (S1, S2).
즉, 상기 상,하면(S1,S2)에 형성된 유동공간(S1,S2) 내의 막대자석(M1,M2)은 도 2에 도시된 바와 같이 상,하면(F1,F2)의 중심위치에 오게 되는 것에 의해 상,하면(F1,F2)에 연직방향으로만 자력을 발생시키거나 도 4의 블록 결합상태에서와 같이 상,하면(F1,F2)에 접하는 우면(F3)의 상,하부에 최대한 근접하여 상,하면(F1,F2)의 연직 상,하방향과 동시에 우면(F3)에도 수평방향으로 자력을 발생시켜 인접하는 타 다면체와의 연쇄적인 면결합이 가능하도록 되어 있다.That is, the bar magnets M1 and M2 in the flow spaces S1 and S2 formed in the upper and lower surfaces S1 and S2 are located at the center positions of the upper and lower surfaces F1 and F2 as shown in FIG. 2. By generating a magnetic force in the vertical direction only in the upper and lower surfaces (F1, F2) or as close as possible to the upper and lower surfaces of the upper and lower surfaces (F3) in contact with the upper and lower surfaces (F1, F2) as in the block engagement state of FIG. Therefore, the magnetic force is generated in the horizontal direction at the same time as the vertical upper and lower directions of the upper and lower surfaces F1 and F2, so that the surface coupling with adjacent other polyhedrons is possible.
또, 상기 전,후면(F4,F5)에 형성된 유동공간(S3,S4)내의 막대자석(M3,M4)은 도 1과 도 2의 A - A'선 단면도에서 알 수 있는 바와 같이 전,후면(F4,F5)의 중심위치에 오게 되는 것에 의해 전,후면(F4,F5)의 수평방향으로만 자력을 발생시키거나, 도 4의 블록 결합상태에서와 같이 전,후면(F4,F5)에 접하는 좌면(F6)에 최대한 근접하여 전,후면(F4,F5)의 전,후방향과 동시에 좌면(F6)의 측방향으로도 자력을 발생시켜 인접하는 타 다면체와의 연쇄적인 면결합이 가능하도록 되어 있다.In addition, the bar magnets M3 and M4 in the flow spaces S3 and S4 formed in the front and rear surfaces F4 and F5 are front and rear surfaces, as can be seen from the A-A 'cross-sectional views of FIGS. 1 and 2. The magnetic force is generated only in the horizontal direction of the front and rear surfaces F4 and F5 by coming to the center position of F4 and F5, or on the front and rear surfaces F4 and F5 as in the block engagement state of FIG. In order to be as close as possible to the contact surface F6 as close as possible to the front and rear of the front and rear surfaces (F4, F5) simultaneously with the magnetic force generated in the lateral direction of the seat surface (F6) so as to enable a chain coupling with the adjacent other polyhedron. It is.
본 실시 예의 육면체에서는 우면(F3)에 인접하는 유동공간(S1,S2)과 좌면(F6)에 인접하는 유동공간(S3,S4)은 상호 90°로 어긋나도록 배치되어 있어 블록 결합시 수평 및 수직방향으로의 회전에 의해 어느 방향으로도 인접한 다면체와 결합이 가능하게 된다. In the hexahedron according to the present embodiment, the flow spaces S1 and S2 adjacent to the right surface F3 and the flow spaces S3 and S4 adjacent to the left surface F6 are arranged to be shifted by 90 ° to each other, so that the blocks are joined horizontally and vertically. Rotation in the direction allows coupling with adjacent polyhedrons in either direction.
본 발명에서 상기 다면체(P)는 목재나 합성수지(플라스틱)를 포함하는 경질 소재로 제작하는 것이 바람직하나 본 발명은 이에 한정되지 않고, 사용자의 연령층이나 사용자의 특성에 따라서 발포 폼(foam)이나 고무를 포함하는 연질 소재 등으로 제작할 수도 있음은 물론이며, 다면체(P)에 형성되는 유동공간(S1~S4)은 다면체(P)의 내부가 채워진 상태의 경우에는 채워진 부분을 제거하여 유동공간을 형성할 수 있고, 다면체(P)의 내부가 비어있는 경우에는 비어있는 내부 공간에 별도의 유동공간을 형성하는 유동공간체를 내장하여 부착하는 방법으로 형성할 수 있으며, 이러한 유동공간의 형성방법이나 구조에 대하여는 특별한 제한을 두지 않는다.In the present invention, the polyhedron (P) is preferably made of a hard material including wood or synthetic resin (plastic), but the present invention is not limited thereto, and according to the age group of the user or the characteristics of the user, foam or rubber Of course, it can also be made of a soft material, including, the flow space (S1 ~ S4) formed in the polyhedron (P), in the case where the interior of the polyhedron (P) is filled to form a flow space by removing the filled portion If the inside of the polyhedron (P) is empty, it can be formed by embedding and attaching a fluid space forming a separate fluid space in the empty inner space, the formation method or structure of such a fluid space There is no special restriction on.
한편, 본 발명에서 상기 유동공간(S1,S2,S3,S4)의 표면 질감 즉, 다면체의 표면과 유동공간(S1~S4)의 외부 표면은 질감을 다르게, 예를 들면 다면체의 표면은 매끄럽게 하고, 유동공간(S1~S4)의 표면은 약간 거친 느낌을 갖도록 형성하거나 그 반대로 질감을 형성하여 사용자가 눈으로 보지 않고도 유동공간의 위치 즉, 자석의 배치상태를 손감각만으로도 인식할 수 있도록 함으로써 시행착오를 겪지 않고도 신속하게 블록 결합을 할 수 있도록 하거나, 시각장애인도 조립완구를 갖고 놀면서 공간지각력과 창의력을 발달시킬 수도 있도록 할 수 있는 것이다.Meanwhile, in the present invention, the surface texture of the flow spaces S1, S2, S3, and S4, that is, the surface of the polyhedron and the outer surface of the flow spaces S1 to S4 have different textures, for example, smoothing the surface of the polyhedron. The surface of the flow spaces (S1 to S4) is formed to have a slightly rough feeling, or vice versa, so that the user can recognize the position of the flow space, that is, the position of the magnet, by hand sense only without looking at the eyes. Blocks can be quickly combined without making mistakes, or the visually impaired can also play with building toys and develop spatial perception and creativity.
또, 본 발명에서 상기 육면체는 도면에 도시된 직육면체의 형태에 한정되지 않으며, 도면에 도시된 직육면체 2개를 결합한 것과 같은 정육면체 형태, 도면에 도시된 직육면체를 세로로 반분한 또 다른 형태의 직육면체로도 제작할 수 있음은 물론, 2개의 대응되는 면이 직사각형이나 정사각형이 아닌 사다리꼴 형태의 육면체 형태 등과 같이 다양한 육면체에도 자석의 배치구조를 동일하게 적용할 수 있다.In addition, in the present invention, the cube is not limited to the shape of the cube shown in the drawings, the cube form such as combining the two cubes shown in the drawings, a cube of another form that is divided into the vertically half of the cube shown in the figure vertically In addition, it is possible to manufacture, of course, the two corresponding surfaces are not rectangular or square, but the trapezoidal hexahedral shape, such as the shape of the magnet can be applied to various hexahedron.
또한, 본 실시 예에서는 도 4의 블록 결합상태에서 알 수 있는 바와 같이, 다면체가 면결합하게 되면 대응되는 유동공간 내의 자석이 상호 최대한 밀착되어 결합되게 됨으로써 여기에 또 다른 블록이 상,하,좌,우측에 결합되게 될 때 자력이 배가되게 됨으로써 블록의 결합상태가 더욱 견고하게 만들어지게 되는 장점이 있으며, 이로 인해 더욱 안정성이 있는 블록을 조립할 수 있는 것이다.In addition, in the present embodiment, as shown in the block coupling state of FIG. 4, when the polyhedrons are surface-bonded, the magnets in the corresponding flow space are coupled as closely as possible to each other, whereby another block is placed up, down, left. When coupled to the right side, the magnetic force is doubled, so that the combined state of the block is made more robust, and thus, a more stable block can be assembled.
도 5 내지 도 7에는 본 발명의 다른 실시 예로서, 오면체의 자석 배치구조 및 이들의 결합상태가 도시되어 있는데, 본 실시 예의 다면체 조립완구는 삼각기둥 형태의 육면체로 이루어져 있으며, 오면체로 이루어진 다면체(P)는 4개의 자석(M1,M2,m3,m4)을 배치하는 것에 의해 5면(전,좌,우,상,하면) 모두 자력을 발휘할 수 있도록 되어 있는데, 이 오면체의 자석 배치구조는 대향하는 상,하면(F1,F2)의 중심부에서 전면(F4)과 접하는 변(E1,E2)까지 막대자석(M1,M2)이 유동할 수 있는 2개의 유동공간(S1,S2)이 형성되고, 이 유동공간(S1,S2)에는 이 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석(M1,M2)이 내장되며, 좌,우면(F6,F3)의 중심부에는 고정자석(m1,m2)이 설치된 구조로 이루어져 있다.5 to 7 illustrate a magnet arrangement structure of the pentahedron and a coupling state thereof, according to another embodiment of the present invention. The polyhedral assembly toy of this embodiment is made of a hexahedron in the form of a triangular prism, P) has four magnets (M1, M2, m3, m4) arranged to be able to exert magnetic force on all five surfaces (front, left, right, top and bottom). Two flow spaces S1 and S2 through which the bar magnets M1 and M2 can flow from the center of the upper and lower surfaces F1 and F2 to the sides E1 and E2 in contact with the front surface F4 are formed. In the flow spaces S1 and S2, rod magnets M1 and M2, which are movable along the flow space and are capable of reversing magnetic poles, are built in the centers of the left and right surfaces F6 and F3. ) Consists of installed structure.
본 실시 예에 의한 다면체(P)는 상,하면(F1,F2)이 정삼각형으로 이루어져 있고, 전면(F4) 및 좌,우면(F6,F3)이 직사각형으로 이루어져 있으나, 본 발명은 오면체로 이루어진 다면체에서 상,하면이 정삼각형을 반분한 직각삼각형태의 오면체로 제작하여 이를 2개 결합시키는 것에 의해 본 실시 예와 동일한 외형을 갖도록 형성할 수도 있음은 물론이다.In the polyhedron P according to the present embodiment, the upper and lower surfaces F1 and F2 have an equilateral triangle, and the front surface F4 and the left and right surfaces F6 and F3 have a rectangular shape. In the upper and lower surfaces may be formed to have the same appearance as in the present embodiment by making two equilateral triangles of the equilateral triangle divided by two and combining them.
본 실시 예에서, 상기 상,하면(F1,F2)의 중심은 무게중심을 의미하며, 상,하면(F1,F2)에 형성되는 유동공간(S1,S2)은 막대자석(M1,M2)이 상,하면(F1,F2)의 무게중심에서부터 전면(F4)에 접하는 변(E1,E2)까지 유동될 수 있도록 되어 있으며, 상기 막대자석(M1,M2)은 상기 유동공간(S1,S2)의 상,하 높이보다는 작은 폭과 두께를 가지며, 상기 유동공간(S1,S2)의 전,후폭보다 작은 길이의 막대형으로 이루어져 있다.In the present embodiment, the center of the upper and lower surfaces (F1, F2) means the center of gravity, the flow space (S1, S2) formed in the upper and lower surfaces (F1, F2) is a bar magnet (M1, M2) It is designed to flow from the center of gravity of the upper and lower surfaces (F1, F2) to the sides (E1, E2) in contact with the front surface (F4), the rod magnets (M1, M2) of the flow space (S1, S2) It has a width and thickness smaller than the height of the upper and lower, and consists of a bar of a length smaller than the front, rear width of the flow space (S1, S2).
즉, 상기 상,하면(S1,S2)에 형성된 유동공간(S1,S2) 내의 막대자석(M1,M2)은 상,하면(F1,F2)의 중심위치에 오게 되는 것에 의해 상,하면(F1,F2)에 연직방향으로만 자력을 발생시키거나, 상,하면(F1,F2)에 접하는 전면(F4)의 상,하부에 최대한 근접하여 상,하면(F1,F2)의 연직 상,하방향과 동시에 전면(F4)에도 수평방향으로 자력을 발생시켜 도 7에 도시된 바와 같이 인접하는 타 다면체와의 연쇄적인 면결합이 가능하도록 되어 있다.That is, the bar magnets M1 and M2 in the flow spaces S1 and S2 formed in the upper and lower surfaces S1 and S2 are located at the center positions of the upper and lower surfaces F1 and F2 so that the upper and lower surfaces F1 The magnetic force is generated in the vertical direction only in F2), or the upper and lower vertical directions of the upper and lower surfaces (F1, F2) are as close as possible to the upper and lower portions of the front surface F4 in contact with the upper and lower surfaces (F1, F2). At the same time, a magnetic force is generated in the front direction F4 in the horizontal direction, and as shown in FIG. 7, chain coupling with adjacent polyhedrons is possible.
본 실시 예에서, 상기 전면(F4)을 제외한 좌,우면(F6,F3)에는 도 6에 도시된 바와 같이 고정자석(m3,m4)이 부착되어 있어서 인접하는 타 다면체와 맞대기 식의 면결합이 가능하도록 되어 있다.In the present embodiment, the left and right surfaces (F6, F3), except for the front surface (F4) is attached to the stationary magnet (m3, m4) as shown in Fig. It is possible.
본 실시 예의 오면체로 이루어진 다면체(P) 또한 도 7에 도시된 바와 같이 2개의 다면체(P)가 맞대기 식으로 결합되게 되면, 상,하면의 중심부에 각각 2개의 자석이 하나로 결합되는 것과 같은 상태가 되게 됨으로써 블록 적층시 보다 강한 자력이 작용하게 됨으로써 결합상태를 더욱 안정적으로 유지할 수 있게 된다.When the polyhedron P made of the pentagonal body of the present embodiment is also coupled to the two polyhedrons P in a butt manner, as shown in FIG. 7, a state in which two magnets are coupled to each other at the center of the upper and lower surfaces is one. As a result, a stronger magnetic force is applied at the time of block stacking, thereby keeping the bonding state more stable.
도 8 내지 도 10은 본 발명의 또 다른 실시 예에 의한 다면체의 자석 배치구조를 도시한 것으로, 본 실시 예의 다면체(P)는 반원기둥체로 이루어지며, 반원기둥체에서는 3개의 자석을 배치하는 것에 의해 3개의 평면(상,하면 및 정면)과 하나의 곡면(외곽면)이 모두 자력을 발휘할 수 있도록 되어 있는데, 반원기둥체의 자석 배치구조는 상,하면(F1,F2)의 중심부에서 전면(F4)과 접하는 변(E1,E2)까지 막대자석(M1,M2)이 유동할 수 있는 2개의 유동공간(S1,S2)이 형성되고, 각각의 유동공간(S1,S2)에는 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석(M1,M2)이 내장되며, 외측의 곡면(F7) 중심부에는 고정자석(m1)이 배치되는 구조로 이루어져 있다.8 to 10 show a magnet arrangement structure of a polyhedron according to another embodiment of the present invention, the polyhedron (P) of the present embodiment consists of a semi-cylindrical body, in the semi-cylindrical body to arrange three magnets The three planes (upper, lower and front) and one curved surface (outer surface) are capable of exerting magnetic force. The magnet arrangement of the semi-cylindrical body has a front surface at the center of the upper and lower surfaces (F1, F2). Two flow spaces S1 and S2 through which the bar magnets M1 and M2 flow to the sides E1 and E2 in contact with F4) are formed, and each flow space S1 and S2 is formed along the flow space. The bar magnets M1 and M2 that are movable and capable of reversing magnetic poles are built in, and the stator magnet m1 is disposed at the center of the outer curved surface F7.
이와 같이 구성된 본 실시 예의 반원기둥체는 도 10에 도시된 바와 같이 전면(F4)이 맞대기 식으로 결합되면서 원기둥체를 완성하게 되고, 이들 원기둥체는 상하로 연속 결합되는 것에 의해 블록적층시 원하는 길이의 원기둥을 형성하게 되며, 반원기둥체가 원기둥체로 결합될 때에는 상,하면(F1,F2)의 유동공간(S1,S2)에 위치한 막대자석(M1,M2)이 대응되는 다면체의 자석과 맞결합되게 되며, 이에 의해 원기둥체의 상,하면 중심부에 2개의 자석이 하나로 결합되어 안정된 구조의 원기둥을 적층할 수 있게 되는 것이다.The semi-cylindrical body of the present embodiment configured as described above has a cylindrical body as the front surface F4 is joined in a butt manner as shown in FIG. 10, and these cylindrical bodies are continuously coupled up and down to have a desired length when stacked. When the semi-cylindrical body is coupled to the cylindrical body, the bar magnets (M1, M2) located in the flow spaces (S1, S2) of the upper and lower surfaces (F1, F2) are engaged with the magnets of the corresponding polyhedron. As a result, two magnets are combined into one of the upper and lower surfaces of the cylindrical body to stack a cylindrical cylinder having a stable structure.
도 11은 도 8의 변형례로서, 1/4원기둥체의 자석 배치구조가 도시되어 있는데, 본 실시 예에서는 도 8의 반원기둥체를 수직으로 2분할하고, 분할된 상,하면(F1,F2)에는 막대자석(M1,M2)을 유동가능하게 설치하고, 외측의 곡면(F7)에는 고정자석(m1)이 부착된 구조로 이루어져 있어, 이들 1/4원기둥체로 이루어진 다면체(P) 2개를 맞대기 결합시키는 것에 의해 도 8에 도시된 실시 예의 반원기둥체형 다면체를 만들 수 있다.FIG. 11 is a modified example of FIG. 8, in which a magnet arrangement structure of a quarter cylinder is illustrated. In this embodiment, the semicylindrical body of FIG. 8 is vertically divided into two, divided top and bottom surfaces (F1, F2). The rod magnets (M1, M2) are installed in a flowable manner, and the outer curved surface (F7) has a structure in which a fixed magnet (m1) is attached. By butt coupling, the semicylindrical polyhedron of the embodiment shown in FIG. 8 can be produced.
본 실시 예에서는 상,하면(F1,F2)에 형성되는 유동공간(S1,S2)이 좌면(F6)에 접하는 변(E3,E4)에 길이방향을 따라 접하도록 형성됨으로써 1/4원기둥체 2개가 결합될 때 좌면(F6)이 서로 맞대기 식으로 결합되면서 상,하면(F1,F2)의 자석(M1,M2)이 측방향으로 결합되면서 일체를 이루게 되며, 이렇게 결합된 반원기둥체 2개가 다시 결합되어 도 10에 도시된 바와같은 원기둥체를 형성할 수 있게 되는 것이다.In the present embodiment, the first and the second cylindrical bodies 2 are formed so that the flow spaces S1 and S2 formed on the upper and lower surfaces F1 and F2 are in contact with the sides E3 and E4 in contact with the left surface F6 along the longitudinal direction. When the dogs are engaged, the seating surface (F6) is coupled to each other in a butting manner, and the magnets (M1, M2) of the upper and lower surfaces (F1, F2) are laterally combined to form a unit, and the two semi-cylindrical bodies thus joined again Combined to form a cylindrical body as shown in FIG.
본 실시 예에서 상기 곡면(F7)에는 도 9에 도시된 바와 같이 고정자석이 부가될 수도 있으며, 이 고정자석의 부착위치는 곡면(F)의 중간부분이나 일 측으로 치우친 위치 즉, 2개의 1/4원기둥체가 결합시 도 9에 도시된 고정자석(m1)과 같은 위치가 되는 위치에 부착될 수도 있다.In the present embodiment, the curved surface F7 may be added with a stator magnet as shown in FIG. 9, and the attachment position of the stator magnet is a middle part or one side of the curved surface F, that is, two 1 / s. When the four-cylindrical body is coupled, it may be attached to a position such as the stator magnet (m1) shown in FIG.
도 12는 본 발명의 다른 실시 예로서, 원뿔체의 자석 배치구조가 도시되어 있는데, 본 실시 예에서는 반원뿔체의 하면(F2) 중심부에서 전면(F4)에 접하는 변까지 막대자석(M1)이 이동가능하도록 유동공간(S1)이 형성되고, 다면체(P)의 꼭지(V)에는 고정자석(m1)이 부착되어 있는 구조로 이루어져 있어서 2개의 반원뿔체를 맞대기 결합시키는 것에 의해 하면(F2)의 자석(M1)과 꼭지(V)의 자석이 각각 인력이 작용하여 원뿔체를 형성할 수 있도록 되어 있다.FIG. 12 illustrates another example of the conical magnet arrangement structure. In the present embodiment, the bar magnet M1 is moved from the center of the bottom surface F2 of the semiconical body to the side contacting the front surface F4. The flow space (S1) is formed to be possible, and the top of the polyhedron (P) has a structure in which the stator magnet (m1) is attached to the magnet of the lower surface (F2) by butt-bonding the two semi-conical body The magnets of the M1 and the spigot V are each capable of forming a conical body by the attraction force.
도 13은 도 12의 변형례로서, 1/4원뿔체의 자석 배치구조가 도시되어 있는데, 본 실시 예에서는 도 12의 반원뿔체를 수직으로 2분할하고, 분할된 하면(F2)에는 막대자석(M1)을 유동가능하게 설치하고, 꼭지(V)에는 고정자석(m1)이 부착된 구조로 이루어져 있어, 이들 1/4원기둥체로 이루어진 다면체(P) 2개를 맞대기 결합시키는 것에 의해 도 12에 도시된 실시 예의 반원뿔체형 다면체를 만들 수 있다.FIG. 13 is a modified example of FIG. 12, in which a magnet arrangement structure of a quarter cone is shown. In this embodiment, the semicone body of FIG. 12 is vertically divided into two, and the divided bottom surface F2 has a bar magnet ( M1) is installed in a flowable manner, and has a structure in which the stator magnet (m1) is attached to the nipple (V), and the two polyhedrons (P) formed of these quarter cylinders are butt-coupled to each other, as shown in FIG. The semiconical polyhedron of the present embodiment can be made.
본 실시 예의 1/4원뿔체에 있어서도 하면(F2)에 형성되는 유동공간(S1)은 좌면(F6)에 접하는 변(E4)에 길이방향을 따라 접하도록 형성됨으로써 1/4원뿔체 2개가 결합될 때 좌면(F6)이 서로 맞대기 식으로 결합되면서 하면(F1)의 자석(M1)이 측방향으로 결합되면서 일체를 이루게 되며, 이렇게 결합된 반원뿔체 2개가 다시 결합되어 원뿔체를 형성할 수 있게 되는 것이다.Also in the 1/4 cone body of the present embodiment, the flow space S1 formed on the lower surface F2 is formed to be in contact with the side surface E4 in contact with the seat surface F6 along the longitudinal direction, so that two 1/4 cone bodies are coupled. When the seat surface (F6) is coupled to each other in a butt manner when the magnet (M1) of the lower surface (F1) is laterally combined to form an integral, so that the two semi-conical bodies are combined again to form a conical body Will be.
첨부된 도면에 도시되고 위에서 설명된 실시 예 외에도 본 발명의 다면체는 다양한 형태와 크기로 제작될 수 있으며, 막대자석 및 고정자석의 배치구조는 상술한 실시 예의 배치에서와 동일한 원리에 따라 배치하면 된다.In addition to the embodiments illustrated in the accompanying drawings and described above, the polyhedron of the present invention may be manufactured in various shapes and sizes, and the arrangement structure of the bar magnets and the stationary magnets may be arranged according to the same principle as in the above-described embodiment. .
이와 같이 구성된 본 발명의 다면체 조립완구는 3개 이상의 표면을 갖는 다양한 형상의 다면체에서 각각의 표면이 자력을 갖도록 하면서 인접하는 타 다면체와 자력에 의해 결합이 이루어질 수 함에 있어서, 자석의 소요 개수를 각각의 면에 대응되는 개수보다도 적게 할 수 있으므로 고가이면서 희소성이 높은 희토류의 사용을 최소화하여 제조비용을 절감할 수 있음은 물론, 자석이 유동공간에서 유동 및 자극이 반전되는 것에 의해 블록으로 결합하게 될 경우 대응되는 자석이 하나의 자석으로 결합됨과 동시에 그 결합위치가 자력이 발생하는 면의 중심부에 위치하거나 또는 대응되는 면의 상,하 또는 좌,우 양측에 균형있게 배치되게 됨으로써 안정적인 결합상태를 유지할 수 있으므로 어떠한 형태의 블록(조형물)을 축조하더라도 안정적인 상태를 유지하게 됨으로써 어린이 혼자 또는 여러 어린이가 함께 블록을 축조하는 놀이를 하면서 공간지각력과 창의력 및 협동심과 사회성을 향상시킬 수 있도록 할 수 있는 유용한 효과를 갖는다.The polyhedral assembly toy of the present invention configured as described above has a magnetic force in a polyhedron having three or more surfaces, each of which has a magnetic force, and thus, the required number of magnets may be combined with another adjacent polyhedron. Since it can be less than the number corresponding to the surface of the surface, it is possible to reduce the manufacturing cost by minimizing the use of expensive and rare rare earths, as well as the magnets to be combined into blocks by reversing the flow and magnetic poles in the flow space. In this case, the corresponding magnets are combined into one magnet and at the same time, the coupling position is located at the center of the surface where the magnetic force is generated or the balance is arranged on the upper, lower, left and right sides of the corresponding surface to maintain a stable coupling state. As it is possible to build any type of block (sculpture) Whereby the paper has a useful effect that can help you improve your spatial perception, creativity and teamwork and social skills while playing for the construction blocks with a child or several children alone.

Claims (9)

  1. 3개 이상의 평면 또는 곡면으로 된 표면을 갖는 다면체의 내부에 자석이 유동가능하게 설치된 다면체 조립완구에 있어서;A polyhedral assembly toy, in which a magnet is fluidly installed in a polyhedron having three or more flat or curved surfaces;
    상기 자석은 다면체의 어느 한 면의 중심에서 해당 면의 일 측변까지 유동되는 것을 특징으로 하는 자석 부착식 다면체 조립완구. The magnet is a magnetized polyhedron assembly toy, characterized in that flow from the center of one side of the polyhedron to one side of the surface.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 다면체는 육면체로 이루어지며, 육면체는 정육면체, 직육면체, 평행육면체, 능면체(마름모)를 포함하고, 상기 육면체에서는 4개의 자석을 배치하는 것에 의해 6면 모두 선택적으로 또는 동시에 자력을 발휘할 수 있도록 된 것을 특징으로 하는 자석 부착식 다면체 조립완구.The polyhedron is composed of a cube, and the cube includes a cube, a cube, a parallelepiped, and a rhombohedron. In the cube, all six surfaces can be selectively or simultaneously exerted by placing four magnets. Magnetic attached polyhedron assembly toy, characterized in that.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 육면체로 이루어진 다면체는 상면과 하면의 중심부에서 우측면과 접하는 변까지, 전면과 후면의 중심부에서 좌측면과 접하는 변까지 자석이 유동할 수 있는 4개의 유동공간이 형성되고, 각각의 유동공간에는 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석이 내장된 것을 특징으로 하는 자석 부착식 다면체 조립완구.The polyhedron consisting of four hexahedrons is formed with four flow spaces through which magnets can flow from the center of the upper and lower surfaces to the sides contacting the right surface, and the sides of the front and rear surfaces contacting the left surface. Magnetic-attached polyhedral assembly toy, characterized in that the rod magnet is movable along the space and the magnetic pole can be reversed.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 다면체는 삼각기둥, 삼각뿔대, 사각뿔을 포함하는 오면체로 이루어지며, 상기 오면체에서는 4개의 자석을 배치하는 것에 의해 5면 모두 선택적으로 또는 동시에 자력을 발휘할 수 있도록 된 것을 특징으로 하는 자석 부착식 다면체 조립완구.The polyhedron is composed of a pentagonal body including a triangular prism, a triangular pyramid, a square pyramid, and in the pentagonal body, magnetically attached polyhedrons characterized in that all five surfaces can be selectively or simultaneously exerted by arranging four magnets. Assembling Toys.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 오면체로 이루어진 다면체는 상면과 하면의 중심부에서 전면과 접하는 변까지 자석이 유동할 수 있는 2개의 유동공간이 형성되고, 각각의 유동공간에는 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석이 내장되며, 나머지 2개의 측면 중심부에는 고정자석이 배치되는 것을 특징으로 하는 자석 부착식 다면체 조립완구.The polyhedron consisting of the pentahedron is formed with two flow spaces through which magnets can flow from the center of the upper surface and the lower surface to the side contacting the front surface, and each of the flow spaces can be moved along the flow space and the magnetic pole can be reversed. It is built-in, the magnet attached polyhedron assembly toy, characterized in that the stator magnet is disposed in the remaining two side center.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 다면체는 반원기둥체나 1/4원기둥체를 포함하는 원기둥체로 이루어지고, 이들 원기둥체에서는 2개의 자석을 배치하는 것에 의해 반원기둥체인 경우에는 3개의 평면(상,하면 및 정면)이, 1/4원기둥체인 경우에는 4개의 평면(상,하면 및 좌,우측면)이 모두 선택적으로 또는 동시에 자력을 발휘할 수 있도록 된 것을 특징으로 하는 자석 부착식 다면체 조립완구.The polyhedron is composed of a semi-cylindrical body or a cylindrical body including a quarter-cylindrical body. In these cylindrical bodies, three planes (upper, lower, and frontal) are arranged in a semi-cylindrical manner by placing two magnets. In the case of a four-cylindrical body, magnetized polyhedral assembly toys, characterized in that all four planes (upper, lower and left and right sides) can exert magnetic force selectively or simultaneously.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 다면체는 상,하면의 중심부에서 전면(반원기둥체) 또는 좌,우 측면(1/4원기둥체)과 접하는 변까지 자석이 유동할 수 있는 2개의 유동공간이 형성되고, 각각의 유동공간에는 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석이 내장되는 것을 특징으로 하는 자석 부착식 다면체 조립완구.The polyhedron has two flow spaces in which the magnet can flow from the center of the upper and lower surfaces to the sides contacting the front surface (semi-cylindrical body) or the left and right side surfaces (1/4 cylindrical body). Magnetic-attached polyhedral assembly toy, characterized in that the rod magnet is movable along the flow space and the magnetic pole can be reversed.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 다면체는 반원뿔체 또는 1/4원뿔체를 포함하는 원뿔체로 이루어지며, 이들 원뿔체는 2개의 자석을 배치하는 것에 의해 2개 또는 3개의 평면과 꼭지가 자력을 발휘할 수 있도록 된 것을 특징으로 하는 자석 부착식 다면체 조립완구.The polyhedron is composed of a conical body including a semi-conical body or a quarter-conical body, and these conical bodies are magnets characterized in that two or three planes and the faucet can exert magnetic force by disposing two magnets. Attachable polyhedron assembly toy.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 다면체는 하면의 중심부에서 전면(반원뿔체) 또는 좌,우 측면(1/4원뿔체)과 접하는 변까지 자석이 유동할 수 있는 하나의 유동공간이 형성되고, 상기 유동공간에는 유동공간을 따라 유동가능하고 자극의 반전이 가능한 막대자석이 내장되며, 원뿔체의 꼭지에는 고정자석이 부착되는 것을 특징으로 하는 자석 부착식 다면체 조립완구.The polyhedron is formed with one flow space through which the magnet can flow from the center of the lower surface to the side contacting the front surface (semiconical body) or the left and right side surfaces (1/4 cone body). Magnetic pole-type polyhedron assembly toy, characterized in that the rod magnet is movable and the magnetic pole can be reversed, and the fixed magnet is attached to the top of the cone.
PCT/KR2012/007197 2012-09-06 2012-09-06 Magnet-attached polyhedral construction toy WO2014038735A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/007197 WO2014038735A1 (en) 2012-09-06 2012-09-06 Magnet-attached polyhedral construction toy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/007197 WO2014038735A1 (en) 2012-09-06 2012-09-06 Magnet-attached polyhedral construction toy

Publications (1)

Publication Number Publication Date
WO2014038735A1 true WO2014038735A1 (en) 2014-03-13

Family

ID=50237328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007197 WO2014038735A1 (en) 2012-09-06 2012-09-06 Magnet-attached polyhedral construction toy

Country Status (1)

Country Link
WO (1) WO2014038735A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021216987A1 (en) * 2020-04-23 2021-10-28 Idea Vault Holdings Inc Magnetically interconnectable block structures and methods for making the same
WO2022035868A1 (en) * 2020-08-13 2022-02-17 Andreas Hoenigschmid Three-dimensional geometric art toys
US11660547B2 (en) 2014-09-16 2023-05-30 Andreas Hoenigschmid Three-dimensional geometric art toy
US11697058B1 (en) 2022-08-21 2023-07-11 Andreas Hoenigschmid Triple inversion geometric transformations
US11878255B2 (en) 2022-01-12 2024-01-23 Kevin Schlapi Puzzle kits

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069505U (en) * 1999-12-08 2000-06-23 株式会社誠文社 Blocks with magnets for teaching materials
KR200394479Y1 (en) * 2005-06-09 2005-08-31 (주)마그넷포유 Three-dimensional type magnetic toys
KR200394484Y1 (en) * 2005-06-10 2005-08-31 (주)마그넷포유 Polyhedron type magnetic toys
WO2008043535A1 (en) * 2006-10-12 2008-04-17 Claudio Vicentelli A set of blocks with freely movable magnetic anchoring elements, for the construction of game assemblies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069505U (en) * 1999-12-08 2000-06-23 株式会社誠文社 Blocks with magnets for teaching materials
KR200394479Y1 (en) * 2005-06-09 2005-08-31 (주)마그넷포유 Three-dimensional type magnetic toys
KR200394484Y1 (en) * 2005-06-10 2005-08-31 (주)마그넷포유 Polyhedron type magnetic toys
WO2008043535A1 (en) * 2006-10-12 2008-04-17 Claudio Vicentelli A set of blocks with freely movable magnetic anchoring elements, for the construction of game assemblies

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11660547B2 (en) 2014-09-16 2023-05-30 Andreas Hoenigschmid Three-dimensional geometric art toy
WO2021216987A1 (en) * 2020-04-23 2021-10-28 Idea Vault Holdings Inc Magnetically interconnectable block structures and methods for making the same
US20210335527A1 (en) * 2020-04-23 2021-10-28 Idea Vault Holdings Inc Magnetically interconnectable block structures and methods for making the same
US11557414B2 (en) 2020-04-23 2023-01-17 Idea Vault Holdings Inc Magnetically interconnectable block structures and methods for making the same
WO2022035868A1 (en) * 2020-08-13 2022-02-17 Andreas Hoenigschmid Three-dimensional geometric art toys
CN116096467A (en) * 2020-08-13 2023-05-09 安德烈亚斯·霍恩希米德 Three-dimensional geometric art toy
JP2023534758A (en) * 2020-08-13 2023-08-10 アンドレアス ヘーニヒシュミット Three-dimensional geometric art toy
JP7389937B2 (en) 2020-08-13 2023-11-30 アンドレアス ヘーニヒシュミット three dimensional geometric art toy
EP4149647A4 (en) * 2020-08-13 2023-12-13 Andreas Hoenigschmid Three-dimensional geometric art toys
US11878255B2 (en) 2022-01-12 2024-01-23 Kevin Schlapi Puzzle kits
US11697058B1 (en) 2022-08-21 2023-07-11 Andreas Hoenigschmid Triple inversion geometric transformations

Similar Documents

Publication Publication Date Title
US10918964B2 (en) Three-dimensional geometric art toy
WO2014038735A1 (en) Magnet-attached polyhedral construction toy
KR101450395B1 (en) Polyhedron erector set with magnet
CN203989874U (en) A kind of block toy that is easy to moulding
CN1187764C (en) Modules creating magnetic anchorage assemblies and relevant assemblies
CN111132743B (en) Magnetic block with improved magnetic properties and assembly kit for such a magnetic block
CN201094867Y (en) Magnetic connecting piece device
CN203989881U (en) A kind of magnetic toy
CN203736855U (en) Magnetic building block toy
CN209771349U (en) Novel combined splicing building block structure
CN208641763U (en) A kind of magnetic playset cell block and construction sets
CN110180194A (en) A kind of magnetic building blocks are combined with plastic cement building blocks mixing interpolation type building blocks
CN205995051U (en) Magnetic splicing building block
CN110665213A (en) Magnetic suction type second-order magic cube corner block and second-order cylindrical magnetic suction building block magic cube
CN207950666U (en) A kind of magnetic building blocks are combined with plastic cement building blocks mixing interpolation type building blocks
WO2023177559A2 (en) Toy construction kit and tile
CN202844591U (en) Combined type magnetic building blocks
CN102949852A (en) Combined magnetic toy bricks
CN217092073U (en) Toy splicing piece
CN102949851A (en) Combined magnetic toy bricks
CN217548999U (en) Building blocks are inhaled to magnetism
KR100740408B1 (en) Studying assembly block
CN201689564U (en) Teaching study tool
WO2017142337A1 (en) Polyhedral block toy
CN214075054U (en) Novel magnetic square building block

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/07/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12884038

Country of ref document: EP

Kind code of ref document: A1