WO2014038594A1 - 生体情報処理システム、ウェアラブル装置、サーバーシステム、生体情報処理システムの制御方法及びプログラム - Google Patents
生体情報処理システム、ウェアラブル装置、サーバーシステム、生体情報処理システムの制御方法及びプログラム Download PDFInfo
- Publication number
- WO2014038594A1 WO2014038594A1 PCT/JP2013/073809 JP2013073809W WO2014038594A1 WO 2014038594 A1 WO2014038594 A1 WO 2014038594A1 JP 2013073809 W JP2013073809 W JP 2013073809W WO 2014038594 A1 WO2014038594 A1 WO 2014038594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- heart rate
- rate information
- health
- stress
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7278—Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1118—Determining activity level
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/165—Evaluating the state of mind, e.g. depression, anxiety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4812—Detecting sleep stages or cycles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4866—Evaluating metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/681—Wristwatch-type devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7246—Details of waveform analysis using correlation, e.g. template matching or determination of similarity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7282—Event detection, e.g. detecting unique waveforms indicative of a medical condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
- A61B5/743—Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
- A61B5/7435—Displaying user selection data, e.g. icons in a graphical user interface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7475—User input or interface means, e.g. keyboard, pointing device, joystick
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02405—Determining heart rate variability
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/0245—Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
Definitions
- the present invention relates to a biological information processing system, a wearable device, a server system, a biological information processing system control method, a program, and the like.
- the heart rate information may be acquired based on sensor information acquired from, for example, a pulse sensor or a heart rate sensor.
- Patent Document 1 discloses a method of calculating a calorie consumption amount of a user based on heart rate information and presenting it to the user. Patent Document 1 is characterized in that the calorie consumption calculation process is changed particularly at rest and during exercise.
- Patent Document 1 based on the obtained heart rate information from the heart rate sensor or the like, minute oxygen consumption of the user (VO 2) was estimated from the estimated VO 2 and obtains the consumed calorie, the estimation of VO 2 In this case, VO 2m that is the maximum value of minute oxygen consumption, HR m that is the maximum value of heart rate, and HR r that is the heart rate at rest are used as calculation parameters.
- VO 2m and HR m are difficult to obtain by actual measurement, and statistical values (virtual values) are used. For this reason, individual differences are not considered in the conventional method, and the reliability of the calorie consumption required by some people is low.
- this method is a theory applied only during exercise and cannot measure the total calorie consumption per day.
- the heart rate HR increases not only by physical exercise but also by mental activity (for example, brain activity when performing mental arithmetic). Therefore, although HR r may vary depending on the activity state of the brain or the like even at rest, Patent Document 1 does not take into account the variation, so that it is possible to calculate calorie consumption with high accuracy in daily activities. It was difficult.
- Patent Document 1 a system for performing calculations related to the calorie consumption is widely known as in Patent Document 1 and the like.
- sleep, activity (calorie consumption), stress, and life rhythm are important factors in daily life habits of users (health level or quality of life QOL).
- health information such as calorie consumption per day, deep sleep time information and stress information (especially mental stress information), using information during non-movement .
- a biological information processing system a wearable device, a server system, a control method for a biological information processing system, a program, and the like that accurately calculate health information by using basal heart rate information
- a control method for a biological information processing system a program, and the like that accurately calculate health information by using basal heart rate information
- One aspect of the present invention includes a basal heart rate information acquisition unit that acquires basal heart rate information representing a heart rate in a deep sleep state, a heart rate information acquisition unit that acquires heart rate information, and the basal heart rate information,
- the present invention relates to a biological information processing system including a health information calculating unit that obtains relative information with respect to the heart rate information, and obtains health information that represents health based on the relative information.
- health level information is calculated based on relative information of base heart rate information and heart rate information. Unlike the resting heart rate information that changes depending on the mental state, the base heart rate information can be obtained with good reproducibility, so that the health information can be obtained with high accuracy.
- the health level information calculation unit may obtain calorie consumption information as the health level information based on the relative information between the base heart rate information and the heart rate information. .
- a body motion information acquisition unit that acquires body motion information in daily activities is included, and the health degree information calculation unit is determined to be in a body motion state based on the body motion information.
- the calorie consumption information is obtained based on the first coefficient and the relative information, and if it is determined that the body movement state is based on the body movement information, the first coefficient and The calorie consumption information may be obtained based on a different second coefficient and the relative information.
- the calorie consumption with respect to the heart rate varies depending on whether the body movement state or the non-body movement state, but the coefficient can be appropriately switched accordingly, so that the amount of calorie consumption can be obtained with high accuracy.
- the health information calculating unit obtains difference information between the base heart rate information and the heart rate information as the relative information, and the first coefficient or the second coefficient
- the product of the difference information and the reference calorie consumption per heartbeat may be obtained, and the sum of the obtained product and the calorie consumption corresponding to the basal metabolism may be obtained as the calorie consumption information.
- the heart rate information acquisition unit acquires the heart rate information in a given body motion state
- the health level information calculation unit includes the health level information calculation unit in the given body motion state.
- the first coefficient may be obtained based on heart rate information, the basal heart rate information, the relative information, and the calorie consumption corresponding to basal metabolism.
- the health level information calculation unit may obtain deep sleep time information as the health level information based on the relative information of the base heart rate information and the heart rate information. Good.
- the health information calculating unit is configured to obtain the deep sleep time information based on the relative information of the heart rate information and a value obtained by multiplying the base heart rate information by a sleep coefficient. You may ask for.
- the health level information calculation unit performs an integration process of time during which the value of the heart rate information is equal to or less than a value obtained by multiplying the base heart rate information by the sleep coefficient.
- the deep sleep time information may be obtained.
- the health information calculating unit may obtain stress information as the health information based on the relative information between the base heart rate information and the heart rate information.
- a body movement information acquisition unit that acquires body movement information is included, and the health degree information calculation unit is determined to be in a body movement state based on the body movement information. Is based on the relative information of the heart rate information and a value obtained by multiplying the base heart rate information by a stress coefficient, and obtains physical stress information as the stress information. Based on the body motion information, the non-body motion state If it is determined that the stress information is determined, mental stress information may be obtained as the stress information based on the relative information of the heart rate information and a value obtained by multiplying the base heart rate information by the stress coefficient. .
- the health level information calculation unit determines that the body motion state is based on the body motion information
- the value of the heart rate information indicates the base heart rate.
- the physical stress information may be obtained by performing integration processing of time that is equal to or greater than a value obtained by multiplying the information by the stress coefficient.
- the value of the heart rate information is the basal heart rate.
- the mental stress information may be obtained by performing integration processing for a time that is equal to or greater than a value obtained by multiplying the number information by the stress coefficient.
- the basal heart rate information acquisition unit may acquire the basal heart rate information based on information measured by a heart rate sensor such as an electrocardiogram or a pulse sensor.
- Another aspect of the present invention provides a heart rate information acquisition unit that acquires heart rate information, a body motion information acquisition unit that acquires body motion information, a depth based on the heart rate information and the body motion information.
- Health level information calculation unit for obtaining sleep time information, calorie consumption information, and stress information, the obtained deep sleep time information, the calorie consumption information, and information representing time distribution or frequency distribution of the stress information
- the present invention relates to a biological information processing system that includes a display control unit that performs control to display a message on a display unit.
- Another aspect of the present invention relates to a wearable device including the above biological information processing system.
- Another aspect of the present invention relates to a server system including the biological information processing system described above.
- a base heart rate information acquisition process for acquiring base heart rate information representing a heart rate in a deep sleep state is performed, a heart rate information acquisition process for acquiring heart rate information is performed, and the base
- the present invention relates to a control method of a biological information processing system that obtains relative information between heart rate information and the heart rate information, and performs health degree information calculation processing for obtaining health degree information that represents health degree based on the relative information.
- the other aspect of this invention performs the heart rate information acquisition process which acquires heart rate information, performs the body motion information acquisition process which acquires body motion information, Based on the said heart rate information and the said body motion information , Deep sleep time information, calorie consumption information, and health information calculation processing for obtaining stress information, and the obtained deep sleep time information, the calorie consumption information, and the time distribution or frequency distribution of the stress information.
- the present invention relates to a control method of a biological information processing system that performs control to display information representing the information on a display unit.
- a basal heart rate information acquisition unit that acquires basal heart rate information representing a heart rate in a deep sleep state
- a heart rate information acquisition unit that acquires heart rate information
- the basal heart rate The present invention relates to a program that causes a computer to function as a health degree information calculation unit that obtains relative information between information and the heart rate information, and obtains health degree information that represents health degree based on the relative information.
- Another aspect of the present invention provides a heart rate information acquisition unit that acquires heart rate information, a body motion information acquisition unit that acquires body motion information, a depth based on the heart rate information and the body motion information.
- Health level information calculation unit for obtaining sleep time information, calorie consumption information, and stress information, the obtained deep sleep time information, the calorie consumption information, and information representing time distribution or frequency distribution of the stress information
- the present invention relates to a program that causes a computer to function as a display control unit that performs control to display a message on a display unit.
- FIG. 1 is a system configuration example of a biological information processing system.
- FIG. 2 shows an example of a specific system including a biological information processing system.
- FIG. 3 is an example of a technique for calculating basal heart rate information based on the distribution of heart rate information during sleep.
- 4 (A) and 4 (B) are explanatory diagrams regarding coefficients during body movement and non-body movement.
- FIG. 5 shows the correlation between the basal metabolism calculated by the conventional method and the method of this embodiment.
- FIG. 6 is an example of a home screen displayed on the display unit.
- FIG. 7 shows an example of a coefficient setting screen displayed on the display unit.
- FIG. 8 is an example of a heart rate trend screen displayed on the display unit.
- 9A and 9B are examples of screens that intuitively present health level information.
- FIG. 10 shows an example of an analysis screen displayed on the display unit.
- Patent Document 1 a technique is known in which heart rate information (HR) is actually measured with a heart rate sensor or the like, and calorie consumption is obtained from minute oxygen consumption (VO 2 ) estimated based on heart rate information. It has been. When the calorie intake exceeds the calorie consumption, the user can determine that the metabolic syndrome is suspected of worsening, so the calorie consumption can be used as health information indicating the user's health status. .
- HR heart rate information
- VO 2 minute oxygen consumption
- Patent Document 1 the following equation (1) or the like is used when estimating the minute oxygen consumption from the heart rate information.
- VO 2m is the maximum value of minute oxygen consumption
- VO 2r is the minute oxygen consumption in a resting state
- HR m is the maximum value of heart rate information
- HR r is the heart rate information of resting state. Value.
- each value of VO 2m , VO 2r , HR m , and HR r is obtained, and VO 2 is obtained from these values and the actually measured HR. Since there is a given relationship between VO 2 and the amount of calories consumed, the amount of calories consumed can be determined from the estimated VO 2 .
- VO 2m is the maximum value of minute oxygen consumption, it is not realistic to cause the subject to exercise at such a high load that the minute oxygen consumption seems to be maximized. Therefore, VO 2m cannot be obtained from the actual measurement value, and a given statistical value (virtual value) is used. Similarly, HR m cannot be obtained from an actual measurement value, and a given statistical value is used. Therefore, individual differences among users are not considered for VO 2m and HR m . Therefore, the above formula (1) is effective when calculating the tendency of the calorie consumption of a group for a certain number of people, but when calculating the calorie consumption per person, the above formula (1 ) Remains a problem.
- HR r that is the value of heart rate information at rest is used for estimation of VO 2 based on the above equation (1), but there is also a problem with HR r .
- mental activities can be considered as human activities that involve energy consumption.
- the value of the heart rate information rises and the calorie consumption also increases. In other words, even if the user is physically resting, there is no mental activity (for example, sleeping), and there is mental activity (for example, performing complex thinking such as calculation, or tension)
- the value of HR r is different from that in the case of being in a state.
- the comparison between the calorie intake amount and the calorie consumption amount needs to be performed in units of a given period (for example, 24 consecutive hours) including resting time.
- a given period for example, 24 consecutive hours
- the technique used is not appropriate.
- the present applicant proposes a method for calculating the calorie consumption without using VO 2m , VO 2r , HR m , HR r and the like.
- basal heart rate information HR 0
- HR m heart rate information when the user is in a deep sleep state
- the calorie consumption and the like are calculated using the basal heart rate information.
- the base heart rate information when using the base heart rate information, it is possible to obtain not only the calorie consumption but also other health level information. Specifically, it may be determined whether or not the user is in a deep sleep state using the heart rate information and the basal heart rate information, and deep sleep time information indicating the time in the deep sleep state from the determination You may ask for. Alternatively, it may be determined whether or not the user is stressed using the heart rate information and the base heart rate information, and the stress information indicating the time during which stress is applied is obtained from the determination. Also good.
- FIG. 1 shows a system configuration example of a biological information processing system according to this embodiment.
- the biological information processing system includes a heart rate sensor (or a pulse sensor) 10, a body motion sensor 20, a heart rate information acquisition unit 110, a basal heart rate information acquisition unit 120, a health information calculation unit 130, and body motion information.
- the acquisition unit 140, the display control unit 150, and the display unit 30 are included.
- the biological information processing system is not limited to the configuration of FIG. 1, and various modifications such as omitting some of these components or adding other components are possible.
- the heart rate sensor (pulse sensor) 10 is connected to the heart rate information acquisition unit 110, and the body motion sensor 20 is connected to the body motion information acquisition unit 140.
- the heart rate information acquisition unit 110 is connected to the basal heart rate information acquisition unit 120 and the health level information calculation unit 130.
- the base heart rate information acquisition unit 120 and the body motion information acquisition unit 140 are connected to the health degree information calculation unit 130.
- the health information calculation unit 130 is connected to the display control unit 150, and the display control unit 150 is connected to the display unit 30.
- the heart rate sensor (pulse sensor) 10 for example, a photoelectric sensor is used.
- a method of detecting reflected light or transmitted light of the light irradiated on the living body with the photoelectric sensor can be considered. Since the amount of light absorbed and reflected by the living body varies depending on the blood flow in the blood vessel, the sensor information detected by the photoelectric sensor becomes a signal corresponding to the blood flow, etc. Information about beats can be acquired.
- the heart rate sensor 10 is not limited to a photoelectric sensor, and other sensors such as an electrocardiograph and an ultrasonic sensor may be used.
- the body motion sensor 20 is a sensor that detects a user's body motion.
- an acceleration sensor, an angular velocity sensor, or the like can be used, but other sensors may be used.
- the display unit 30 is for displaying a display screen for presenting the calculated health degree information, and can be realized by, for example, a liquid crystal display or an organic EL display.
- the heart rate information acquisition unit 110 acquires heart rate information based on the sensor information from the heart rate sensor (pulse sensor) 10.
- the heart rate information acquisition unit 110 acquires heart rate information at a rate according to the operation rate of the heart rate sensor 10, the calculation rate of the heart rate information acquisition unit 110 itself, and the like.
- the basal heart rate information acquisition unit 120 acquires basal heart rate information representing the heart rate in the deep sleep state. A method for acquiring the base heart rate information will be described later.
- the acquisition of the base heart rate information may be performed based on the heart rate information from the heart rate information acquisition unit 110, or may be performed based on the sensor information from the heart rate sensor 10.
- the health level information calculation unit 130 calculates health level information representing the health status of the user.
- the calculation of the health degree information is performed based on heart rate information, basal heart rate information, body motion information, and the like, and details will be described later.
- the body motion information acquisition unit 140 acquires body motion information based on sensor information from the body motion sensor. It is known that noise may occur in the heart rate sensor 10 due to the user's body movement, and the body movement information is calculated not only for the health level information but also for the heart rate information (noise reduction). May be used.
- the display control unit 150 performs control to display the calculated health degree information on the display unit 30. Even if heart rate information or the like is presented as it is, it is not easy for a general user who does not have medical knowledge or the like to grasp his / her health condition. Therefore, it is desirable that the display control unit presents the user's health state represented by the health level information in a form that can be easily grasped. An example of the display screen will be described later.
- the acquisition of biological information is not limited to when exercising, and it is assumed that the user is monitored as much as possible, including at rest and during sleep. Therefore, the heart rate sensor 10 and the body motion sensor 20 are worn by the user due to their properties, but it is necessary to use a device with a low degree of invasiveness (which is always easy to wear). For example, as shown by the name “Health Watcher” in FIG. 2, a watch-type wearable device may be used.
- the watch-type wearable device includes a heart rate information acquisition unit 110, a base heart rate information acquisition unit 120, in addition to the heart rate sensor 10 and the body motion sensor 20 illustrated in FIG.
- the health degree information calculation unit 130, the body motion information acquisition unit 140, and the display control unit 150 may be included therein.
- the biological information processing system is realized by a watch-type wearable device.
- the display area of the watch-type wearable device has a small display area, it is difficult to display a lot of health information at a time. Therefore, information selected by the user among a plurality of pieces of information included in the health level information may be displayed on the watch-type wearable device. For example, when the user selects health information (stress information, etc.) that the user wants to pay attention on the watch-type wearable device on a daily basis, the health information may be displayed on the display unit 30 of the watch-type wearable device. . This makes it easy to check the health information that the user wants to pay attention to.
- health information stress information, etc.
- the display unit of the watch-type wearable device with a small display area may display information visibility, etc.
- the display unit 30 may be a display unit such as a tablet terminal instead of the display unit of the watch-type wearable device.
- the processing of the display control unit 150 may be performed by a watch-type wearable device, and the tablet terminal or the like may perform only display.
- the watch-type wearable device stores and transmits the sensor information from the heart rate sensor 10 and the body motion sensor 20, and the heart rate information acquisition unit 110, the basal heart rate information acquisition unit 120, the health degree information calculation unit 130, the body
- the dynamic information acquisition unit 140, the display control unit 150, and the display unit 30 may be included in a tablet terminal or the like.
- the use of health information is not limited to browsing by the user himself.
- it may be transmitted to the health information analysis center as shown in FIG. 2 using a communication function of a tablet terminal or the like.
- the health level information is transmitted to and stored in a server system provided in the analysis center.
- a server system provided in the analysis center.
- the user's attending physician or family members can view health information (access to the server system, etc.), even if the user does not visit the attending physician or family member, The user's family can grasp the health status of the user.
- the organization that supports the user's clothing, food, and shelter is permitted to view the health information, the organization can provide life support for the user.
- the server system may acquire health level information calculated by the health level information calculation unit 130 such as a watch-type wearable device or a tablet terminal.
- the health level information calculation unit 130 such as a watch-type wearable device or a tablet terminal.
- sensor information from the heart rate sensor 10 and the body motion sensor 20 is acquired, and a heart rate information acquisition unit 110, a basal heart rate information acquisition unit 120, a health degree information calculation unit 130, and a body motion information acquisition unit included in the server system.
- the health degree information may be calculated by 140 or the like.
- each user may use a device that transmits sensor information and receives health level information that is the processing result for the sensor information. There is also an advantage that a large processing capacity is not required.
- the basal heart rate information is heart rate information in a basal state, and specifically, heart rate information in a deep sleep state.
- the value of the heart rate information increases due to physical activity and mental activity, and as described above for HR r , the value may fluctuate even in a resting state.
- the heart rate information in the deep sleep state is a minimum value (eigen value) with less fluctuation compared to the shallow sleep state and the awake state (including body motion and non-body motion), and If the user is the same value, the daily fluctuation is small.
- the value is based on the actually measured heart rate information, and thus becomes a value that takes into account individual differences between users and once (for example, one If basal heart rate information is acquired (by sleep), the value at that time can be used for a long time.
- FIG. 3 is a graph of the value of heart rate information during sleep with the value of heart rate information on the horizontal axis and the number (frequency) of occurrence of the value on the vertical axis. It is known that the value of heart rate information during sleep is a distribution close to a gamma distribution (a distribution having a zero point).
- the 1% lower limit value of the heart rate frequency distribution during non-body movement is defined as the base heart rate.
- the area of the distribution divided into two by using a certain boundary line is obtained, and the area on the left side (S L ) and the area on the right side (S R )) Is determined to be 1:99 (in other words, the area on the left side is 1% of the total area). Then, it is sufficient the value of the heart rate information corresponding to the boundary point between the base heart rate information HR 0.
- the minimum value of the heart rate information is due to the influence of noise and the like.
- the value of the heart rate information may be extremely small.
- EE represents the calorie consumption per minute
- EE 0 represents EE in the ground state
- EE m represents the maximum value of EE.
- EE 0 is a value corresponding to the user's minute basal metabolic rate, and since it is known that the basal metabolic rate BM per day can be calculated by various methods, EE 0 is also determined in advance. You can ask for it. Further, HR 0 can be determined from the actually measured value as described above, and the value of the heart rate information measured at that time may be used for HR. Therefore, in the above equation (3), if the value of the part indicated by x is determined, the calorie consumption (minute calorie consumption EE) can be obtained.
- FIGS. Shown in B graphs in which values are plotted with ⁇ EE of the above equation (3) on the vertical axis and ( ⁇ HR / HR 0 ) ⁇ EE 0 of the above equation (3) on the horizontal axis are shown in FIGS. Shown in B).
- FIG. 4A corresponds to a diagram in which values during activity (also expressed as exercise or body movement) are plotted
- FIG. 4B illustrates inactivity (when resting or during non-movement). Specifically, it corresponds to a diagram in which values of resting position, sitting position, standing position, etc.) are plotted.
- the slope of the straight line represents the coefficient x.
- the slope of the straight line in FIG. 4 (A) corresponding to the coefficient at the time of body movement is the same as that of FIG. 4 (B) corresponding to the coefficient at the time of non-body movement. Larger than the slope of the straight line. This means that the value of the coefficient x is greater during activity than during inactivity, and when determining energy consumption (calorie consumption), change the coefficient depending on whether it is active or inactive. Indicates that it is necessary to perform an operation.
- HR-HR 0 is used as an index value ⁇ HR representing the degree of variation with respect to the reference value of the heart rate information.
- the reference value has become a base heart rate information HR 0.
- HR heart rate
- the following formulas (4) and (5) are proposed as formulas for calculating calorie consumption.
- the following equation (4) is an equation for calculating the calorie consumption during body movement
- the following equation (5) is an equation for calculating the calorie consumption during non-body movement.
- the coefficient x is used during body movement, and the coefficient y is used during non-body movement.
- x is a correction factor for an increase in SV during body movement, that is, mainly due to muscle exercise (SV represents a single cardiac output, which is the amount of blood released per heartbeat).
- y is due to a difference indicating a correction coefficient for an increase in SV due to non-body movement, that is, mental activity or posture change.
- ⁇ is a correction of a resting heart rate during arousal during body movement.
- CO 0 6.9 ⁇ Age ⁇ 0.25 ⁇ BSA (6)
- the above formula (6) and the standard blood hemoglobin concentration (male 15 g / dl, female 13.5 g / dl), arterial oxygen saturation (97.5%) and venous oxygen saturation (75%) From the amount of oxygen bound to 1 g of hemoglobin (1.34 ml), oxygen consumption can be estimated, and EE can be estimated from VO 2 .
- the basal metabolic rate BM can be estimated from the oxygen consumption corresponding to CO 0 .
- the estimated basal metabolic rate BM is obtained by the following equation (7), and Hb
- the male basal metabolism estimate BM m and the female basal metabolism estimate BM f are expressed by the following equation (8).
- BM CO 0 x Hb x 1.34 x (0.975-0.75) x 10 x 60 x 24 x 5/1000 (7)
- Male BM m 325.6 ⁇ CO 0
- Female BM f 293.0 ⁇ CO 0 (8)
- the basal metabolism determined by the conventional Harris-Benedict formula is taken on the vertical axis, and the estimated basal metabolism obtained by the above formulas (6) and (8) is taken on the horizontal axis.
- x takes a value close to (EE m / EE 0 ⁇ 1) / (HR m / HR 0 ⁇ 1).
- EE m is statistically from 20 to 70 years of age (Age), and it is known that males have a value of 49-0.29 Age, females have a value of 41-0.33 Age, and HR m is 220-Age. It is known to take a value.
- EE 0 can be obtained from the above-mentioned BM m or BM f
- HR can be obtained using an actual measurement value from a heartbeat sensor or the like.
- the value of x may be obtained from an actual measurement value.
- the following expression (9) is obtained by modifying the above expression (4).
- HR 0 and EE 0 on the right side can be obtained by the above-described method, and it has been found that it is preferable to use 1.2 for ⁇ . Further, since the value of the heart rate information HR is also obtained from a heart rate sensor or the like, if the value of EE can be obtained, x can be determined from the actual measurement value.
- the value of EE cannot be determined.
- the exercise is known to be a predetermined exercise load, the calorie consumption EE due to the exercise can be calculated in advance. For example, when the stepping exercise of 2 steps for 1 second is continued for 3 minutes (exercise of about 3 Mets), it is known that the calorie consumption per minute EE satisfies the following formula (10).
- the sleep time is an important index value in lifestyle assessment.
- the time of a deep sleep state (or a brain wave slow wave sleep state) in a deeper sleep among sleep states is important as an index value representing the sleep state. For example, if the sleep time itself is long but the deep sleep time is short, there is an adverse effect on health, and this may lead to subjective symptoms such as being unable to get tired even though it should be sleeping.
- information about whether or not the user is in a deep sleep state is also calculated as health degree information.
- the value of the heart rate information HR takes a value close to the value of the base heart rate information HR 0 . Therefore, it is only necessary to determine whether or not the user is in a deep sleep state by comparing HR and HR 0 .
- the value of HR is greater than HR 0 is sufficiently considered. Therefore, the value used for comparison with HR is not HR 0 itself, but has a certain margin and uses the value of HR 0 ⁇ (sleep coefficient). That is, when the following formula (11) holds, it is determined that the user is in a deep sleep state, and the integrated value of the time when the following formula (11) is met in 24 hours is set as the deep sleep time.
- the sleep coefficient of the following formula (11) is different for each user, for example, a statistically calculated value such as 1.12 may be used.
- Stress information representing the load applied to the user can also be used as an index value representing the degree of health.
- stress information physical stress caused by physical activity during physical movement (physical stress) and psychological stress caused by mental activity during non-physical movement (mental stress) You could think so.
- the degree of load due to physical stress and mental stress is greatly reflected in the value of the heart rate information HR.
- HR heart rate information
- physical stress represents the load on the user during body movement, and its value can be obtained mainly by considering the increase in heart rate due to muscle activity. Specifically, similar to the above-described mental stress, the determination by the above equation (12) may be performed. However, in the case of physical stress, the difference is that the body motion is targeted.
- the processing may be performed based on sensor information from a body motion sensor. If the body motion sensor is an acceleration sensor, it can be determined that the body is moving when the acceleration detection value, which is sensor information from the sensor, is large, and if the acceleration detection value is smaller than the body motion, non-body motion is detected. It can be determined that it is time. Alternatively, instead of the magnitude of the acceleration detection value itself, the frequency characteristic of the acceleration detection value (e.g., corresponding to the pitch during walking or running exercise) may be obtained, and whether it is during body movement or non-body movement may be determined therefrom. .
- the acceleration detection value which is sensor information from the sensor
- the body motion sensor of the present embodiment is sufficient if it is a sensor that can determine whether it is body motion or non-body motion in the calculation of stress information, and an acceleration sensor may be used, or other sensors may be used. It may be used. A method for determining whether the body is moving or not based on the sensor information is also arbitrary.
- the stress information obtained in this way is preferable for mental stress as the accumulated time value is smaller, and for physical stress, the accumulated time is a reasonable value (large enough to prevent exercise shortage and not overloaded). It can be used as an index value for determining that a smaller value is preferable.
- the calorie consumption, deep sleep time, and stress information can be acquired as health information.
- the acquired health level information may not be easily understood by simply displaying the value of the health level information. Therefore, in the present embodiment, the obtained health degree information is presented in a form that is easy to understand at a glance for a user (or a user's attending physician, health advisor, or the like) using a technique such as graphing.
- a display screen for information presentation may be displayed on the display unit of the watch-type wearable device.
- FIG. 6 shows an example of a home screen displayed when a watch-type wearable device and a tablet terminal are connected.
- cover information such as personal information input mode such as age, gender, height, weight, ID, data file management, input / output management by communication, basal heart rate information (HR 0 ) setting and initial coefficient setting is displayed. Yes. This will be specifically described below.
- settings for the watch-type wearable device are performed. Specifically, when the watch-type wearable device and the tablet terminal are connected, the information acquired by the watch-type wearable device is taken into the tablet terminal by pressing the capture button A11.
- the information to be captured may be only information that is a result of calculation based on HR and HR 0 , such as calorie consumption, deep sleep time, and stress information, or sensor information of the heart rate sensor 10 and the body motion sensor 20. All of the above may be targeted, and various modifications can be made.
- A12 user information can be registered and the clock can be set. Detailed description of the function of A12 is omitted.
- A2 represents the file name under which the information imported by the A11 import button is saved. Specifically, the latest data file may be displayed at A21, and the data file captured in the past may be displayed at A22.
- A3 is a button for displaying a time change (HR trend) of heart rate information, an analysis result, etc. based on the acquired information (assuming that all HR values are acquired here). is there.
- An example of a display screen when these buttons are pressed will be described later.
- A4 is a button for instructing to save and delete the data file.
- A5 is an area for preparing in advance for calculating health information.
- A51 is a button for calling a screen for setting coefficients for obtaining health information, and when A51 is pressed, the screen transitions to the screen of FIG.
- HR 0 values coefficients used for calculating calorie consumption such as x, y, ⁇ , and ⁇
- sleep coefficients used for calculating deep sleep time and stress coefficients used for calculating stress information Etc.
- x can be set from an actual measurement value. In this case, the user may press a x calculation button indicated by B1 to start a given exercise.
- the acceleration coefficient is a value that represents a threshold value of an acceleration detection value for determining whether the body motion is in motion or non-body motion when an acceleration sensor is used as the body motion sensor. Note that the value of the acceleration coefficient in FIG. 7 varies depending on the range of the acceleration sensor, and the unit is not g or m / s 2 based on the standard gravitational acceleration.
- A52 is a button used when HR 0 is set. As described above, since HR 0 has little daily fluctuation if it is the same user, there is no problem even if the value is continuously used once measured. However, there are cases where the setting from the actual measurement value of HR 0 has never been performed, or when the resetting is performed according to an explicit instruction from the user. Therefore, when the A52 button is pressed, the setting of HR 0 Perform the setting process.
- the method for setting HR 0 is as described above with reference to FIG.
- FIG. 8 is an example of a screen displayed when the HR trend button A31 in FIG. 6 is pressed.
- Figure 8 is a diagram showing the time variation of the time change, and on the basis of HR and HR 0 computed consumed calorie values of the heart rate information HR at 24 hours continuous.
- the graph indicated by C1 represents the time change of HR
- the graph indicated by C2 represents the time change of the calorie consumption. Even from FIG. 8, it is possible to know the user's biological information (lifestyle information) such as being in a sleep state from about 0:00 to about 3:1.
- the display screens of FIGS. 9A and 9B are displayed in the area indicated by A6 in FIG. It is good also as a thing (FIG. 6 is an example which displayed the screen of FIG. 9 (B)).
- FIG. 9B is a graph that displays the daily calorie consumption, deep sleep time, and stress information together.
- the deep sleep time in FIG. 9B is a time when the user is in a deep sleep state
- ACT ( ⁇ ) is a time when the body is not moving and no mental stress is applied.
- MentalS represents the time during non-movement and in a state where mental stress is applied.
- PhysicalS represents the time during physical movement and physical stress
- ACT (+) represents the time during physical movement and no physical stress.
- the calorie consumption per 24 hours is displayed at the center of the pie chart.
- FIG. 9B it becomes possible to intuitively understand the ratio of the deep sleep time of 24 hours, the time when mental stress was applied, the time when physical stress was applied, and the like. Specifically, a healthy lifestyle has sufficient rest (sleep), moderate physical activity (physical stress), little mental stress (mental stress), and a balance between calorie intake and calorie consumption. Since it is considered that the user is in a good state, the user's health condition can be easily grasped by looking at FIG. 9B from such a viewpoint.
- the watch-type wearable device according to the present embodiment may not be worn continuously for 24 hours in consideration of charging of the device.
- consideration is given to presenting the relative relationship of each time in an easy-to-see form in FIG. 9B, even if the data is less than 24 hours, it is converted into 24 hours and presented ( For example, when the wearing time is 12 hours, processing such as doubling the value of each time is performed). For this reason, it may be assumed that the actual time becomes difficult to understand.
- both the vertical axis and the horizontal axis are time (unit: hour), D1 is mental stress, D2 is non-body motion (and does not feel mental stress), and D3 is body motion ( D4 represents the physical time of physical stress).
- the deep sleep time may be expressed by a triangular area in FIG.
- the deep sleep time is expressed not by the area of the triangular area but by the color or the like. For example, if the deep sleep time is sufficient (7 hours or more (including the value)), if it is slightly less (4 to 7 hours), it is yellow. If it is clearly insufficient (4 hours or less (including the value) )) May be color-coded such as red.
- the graph display of FIG. 9A, FIG. 9B and the like has an intuitive and easy-to-understand characteristic, but it is difficult to grasp an accurate value. Therefore, when the analysis button shown in A32 of FIG. 6 is pressed, the analysis screen shown in FIG. 10 may be displayed.
- the analysis screen displays the user's personal information and the parameters used for the calculation of the health information, and also displays the specific values of the actually measured health information. .
- a graph such as FIG. 9B may be displayed at the same time.
- the biological information processing system acquires the heart rate information, and the base heart rate information acquisition unit 120 that acquires the base heart rate information indicating the heart rate in the deep sleep state, as shown in FIG.
- a heart rate information acquisition unit 110 and a health degree information calculation unit 130 that obtains relative information between the base heart rate information and the heart rate information and obtains health degree information representing the health degree based on the relative information are included.
- the deep sleep state is a state in which the user is in deep sleep (also referred to as slow wave sleep) and represents a deep sleep state. Specifically, when sleep is divided into REM sleep and non-REM sleep, and non-REM sleep is divided into sleep stages 1 to 4 from a relatively shallow sleep on the electroencephalogram, sleep stages are divided into a total of 5 sleep stages. 3 and a sleep state corresponding to sleep stage 4.
- the base heart rate information is information corresponding to the heart rate information in the deep sleep state, and as described with reference to FIG. It has been confirmed that a small value with high reproducibility (minimum value or a value close to it if no noise or the like is taken into consideration) is obtained.
- the health level information is information serving as an index value representing the health level of the user who is the measurement target, such as heart rate information, and is information including calorie consumption, deep sleep time information, and stress information.
- the relative information between the base heart rate information and the heart rate information is information determined by the relative relationship between the base heart rate information and the heart rate information.
- difference information including a difference value between the values of the base heart rate information and the heart rate information may be used, or ratio information including a ratio between the values of the base heart rate information and the heart rate information may be used.
- the difference information and the ratio information are not limited to those using the base heart rate information HR 0 and the heart rate information HR as they are (specifically, HR-HR 0 , HR / HR 0 ), and are not limited to the difference value or the ratio. It includes other information determined by the difference or ratio, such as a product obtained by multiplying a given coefficient or a product obtained by multiplying at least one of HR and HR 0 by a given coefficient and taking a difference value.
- the basal heart rate information assumes a value in a state where there is almost no mental activity
- the resting heart rate information (HR) used as the reference value of the heart rate information in the above equation (1) or the like Unlike r 2 )
- HR resting heart rate information
- the same user has the advantage of less daily fluctuation. Therefore, by using the base heart rate information, the health level information can be obtained with high accuracy.
- the health level information calculation unit 130 may obtain calorie consumption information as health level information based on relative information between the base heart rate information and the heart rate information.
- the calorie consumption may be a value per unit time (EE) such as during exercise or may be a value per day.
- EE unit time
- the comparison with the user's basal metabolic rate BM is useful for evaluating obesity, metabolic syndrome, and the like.
- the biological information processing system may include a body motion information acquisition unit 140 that acquires body motion information as shown in FIG. And when it determines with it being a body movement state based on body movement information, the health information calculation part 130 calculates
- requiring calorie consumption can be switched appropriately at the time of body movement and the time of non-body movement.
- the inclination (corresponding to the coefficient) when linearly approximating the plotted values during body movement and non-body movement is considered to be greatly different. Is.
- SV ⁇ ⁇ SV 0 (SV 0 is the value of SV in the ground state) It can also be estimated that the increase degree of ⁇ in the equation ( ⁇ is related to x ⁇ EE 0 / HR 0 ) is caused by being larger at the time of physical activity than at the time of mental activity.
- the health level information calculation unit 130 obtains difference information between the base heart rate information and the heart rate information as relative information, the first coefficient (x) or the second coefficient (y), and the difference information ( ⁇ HR). And the standard calorie consumption per heart rate (EE 0 / HR 0 ) may be obtained, and the sum of the obtained product and the calorie consumption (EE 0 ) corresponding to the basal metabolism may be obtained as calorie consumption information. .
- the heart rate information acquisition unit 110 acquires heart rate information in a given body movement state, and the health level information calculation unit 130 includes heart rate information in a given body movement state, basal heart rate information,
- the first coefficient may be obtained based on the relative information and the calorie consumption corresponding to the basal metabolism.
- the above equation (3) is an equation for obtaining EE with x already known, but if EE is known, x can be obtained by the above equation (9) obtained by modifying the above equation (3). In that case, in order to make the EE known, any movement is not allowed, but it is necessary to have the user perform a given movement that can be estimated by the EE.
- the health level information calculation unit 130 may obtain deep sleep time information as health level information based on relative information between the base heart rate information and the heart rate information.
- the deep sleep time information is not limited to the integrated value of the time when the user is determined to be in the deep sleep state (for example, the integrated value of 24 hours).
- the variation of the date of the time information when the user enters the deep sleep state can also be used for the determination of the health level, the time information from when the user rests to the transition to the deep sleep state, or falling asleep
- Time information from time to transition to the deep sleep state is also useful for determining the health level, and the deep sleep time information includes all of these information.
- the base heart rate information which is heart rate information in the deep sleep state
- the base heart rate information is used for the calculation
- whether or not the user is in the deep sleep state is determined based on the base heart rate information and the heart rate information. It can be easily determined by comparison.
- the health level information calculation unit 130 may obtain deep sleep time information based on relative information between heart rate information and a value obtained by multiplying the base heart rate information by a sleep coefficient.
- This enables determination based on relative information between heart rate information and a value obtained by multiplying the base heart rate information by a sleep coefficient. Since it has been confirmed that the value of heart rate information can fluctuate even in a deep sleep state, an appropriate determination can be made by setting a value that absorbs the fluctuation and does not become excessively large as the sleep coefficient. It can be carried out.
- the health level information calculation unit 130 may obtain deep sleep time information by performing a time integration process in which the value of the heart rate information is equal to or less than the value obtained by multiplying the base heart rate information by the sleep coefficient.
- the health level information calculation unit 130 may obtain stress information as health level information based on relative information between the base heart rate information and the heart rate information.
- the stress information is information indicating whether a load (physical load or mental load) is applied to the user to an extent that can be distinguished from the normal time. It is known that when the user is under load, whether the load is physical or mental, an increase in the value of the heart rate information is known. Is possible.
- the base heart rate information that takes a small value with high reproducibility (a minimum value or a value close to it if noise is not taken into consideration) is obtained, the base heart rate information and the heart rate information Relative information may be used.
- the biological information processing system includes a body motion information acquisition unit 140 that acquires body motion information, and when the health degree information calculation unit 130 is determined to be in a body motion state based on the body motion information, Physical stress information may be obtained as stress information based on relative information between the heart rate information and a value obtained by multiplying the base heart rate information by a stress coefficient.
- the relative value between the heart rate information and the value obtained by multiplying the base heart rate information by the stress coefficient Based on the information, mental stress information may be obtained as stress information.
- the health level information calculation unit 130 determines that the body motion state is based on the body motion information, the time during which the value of the heart rate information is equal to or greater than the value obtained by multiplying the base heart rate information by the stress coefficient.
- the physical stress information may be obtained by performing the integration process.
- the value of the heart rate information is equal to or greater than the value obtained by multiplying the base heart rate information by the stress coefficient.
- Mental stress information may be obtained by performing time integration processing.
- the integrated value of the time determined to be stressed is used as physical stress information and mental stress information.
- the integrated value, which is physical stress information may be an intermediate value in consideration of avoiding lack of exercise and an overload state. However, if the integrated period is a fixed value such as one day, the health value It is possible to set a range of allowable values when considering the above.
- the basal heart rate information acquisition unit 120 may acquire basal heart rate information based on information measured by the heart rate sensor or the pulse sensor.
- the base heart rate information can be obtained based on the heart rate sensor (pulse sensor) 10.
- the specific method is as described above with reference to FIG.
- the base heart rate information acquisition unit 120 may acquire sensor information directly from the heart rate sensor 10 or the like.
- noise reduction processing is performed using both sensor information from the heart rate sensor 10 and sensor information from the body motion sensor 20.
- the base heart rate information acquisition unit 120 is The base heart rate information may be obtained based on the output (heart rate information) after the noise reduction process.
- the biological information processing system includes a heart rate information acquisition unit 110 that acquires heart rate information, a body motion information acquisition unit 140 that acquires body motion information, and heart rate information and body motion information.
- Health level information calculation unit 130 for obtaining deep sleep time information, calorie consumption information, and stress information based on the above, the obtained deep sleep time information, calorie consumption information, and time distribution or frequency distribution of stress information May include a display control unit 150 that performs control to display information representing the information on the display unit 30.
- the above-described embodiment can also be applied to a wearable device including the biological information processing system or a server system including the biological information processing system.
- the wearable device may be, for example, the watch-type wearable device shown in FIG. 2, and in this case, a biological information acquisition unit (the heart rate sensor 10 and the body motion sensor 20 in FIG. 1) and a processing unit (health degree information calculation unit 130). Etc.) can be included in the integrated device, and the processing can be completed by the wearable device alone.
- the server system may be a server system provided in the analysis center shown in FIG. 2, for example. In this case, the biometric information acquisition unit is on the wearable device side, and the processing unit is on the server system side. Therefore, the processing load can be distributed, and the wearable device can be simplified and reduced in price.
- the biological information processing system and the like of this embodiment may realize part or most of the processing by a program.
- the biological information processing system and the like of the present embodiment are realized by a processor such as a CPU executing a program.
- a program stored in the information storage medium is read, and a processor such as a CPU executes the read program.
- the information storage medium (computer-readable medium) stores programs, data, and the like, and functions as an optical disk (DVD, CD, etc.), HDD (hard disk drive), or memory (card type). It can be realized by memory, ROM, etc.
- a processor such as a CPU performs various processes according to the present embodiment based on a program (data) stored in the information storage medium.
- a program for causing a computer an apparatus including an operation unit, a processing unit, a storage unit, and an output unit
- a program for causing the computer to execute processing of each unit Is memorized.
- heart rate sensors 10 heart rate sensors, 20 body motion sensors, 30 display units, 110 heart rate information acquisition units, 120 basal heart rate information acquisition units, 130 health information calculation units, 140 body motion information acquisition units, 150 display control units, BM basal metabolism Amount, CI heart rate coefficient, CO minute cardiac output, EE calorie consumption per minute, HR heart rate information, HR 0 base heart rate information, VO oxygen consumption at 2 minutes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Cardiology (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Child & Adolescent Psychology (AREA)
- Pulmonology (AREA)
- Developmental Disabilities (AREA)
- Educational Technology (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Social Psychology (AREA)
- Obesity (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Human Computer Interaction (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
基底心拍数情報を用いることで、精度よく健康度情報の演算を行う生体情報処理システム、ウェアラブル装置、サーバーシステム、生体情報処理システムの制御方法及びプログラム等を提供する。 生体情報処理システムは、深睡眠状態における心拍数を表す基底心拍数情報を取得する基底心拍数情報取得部120と、心拍数情報を取得する心拍数情報取得部110と、基底心拍数情報と心拍数情報との相対情報に基づいて健康度を表す健康度情報を求める健康度情報演算部130を含む。
Description
本発明は、生体情報処理システム、ウェアラブル装置、サーバーシステム、生体情報処理システムの制御方法及びプログラム等に関する。
従来、所与の装置を用いてユーザーの心拍数情報を取得し、取得した情報に基づいて、ユーザーの健康等に関する情報を提供する装置やシステムが用いられている。心拍数情報は、例えば脈拍センサーや心拍センサーから取得されたセンサー情報に基づいて取得すればよい。
心拍数情報そのもの(例えば心拍数の値)も、ユーザーの健康状態を表す指標値として用いることができるものであるが、心拍数情報を用いた所与の演算を行うことで、ユーザーの日常の生活習慣に関する情報を求めることもできる。例えば特許文献1では、心拍数情報に基づいてユーザーの消費カロリー量を算出し、ユーザーに提示する手法が開示されている。特許文献1では、特に安静時と運動時とで消費カロリー量の算出処理を変更することを特徴としている。
特許文献1では、心拍センサー等から取得した心拍数情報に基づいて、ユーザーの分時酸素消費量(VO2)を推定し、推定したVO2から消費カロリー量を求めており、VO2の推定の際に、計算パラメーターとして分時酸素消費量の最大値であるVO2m、心拍数の最大値であるHRm、安静時の心拍数であるHRrを用いる。しかし、VO2mやHRmは実際に測定して求めることが困難であり、統計値(仮想値)を用いている。そのため、従来手法では個人差が考慮されておらず、人によっては求められる消費カロリー量の信頼性が低い。また、この方法は運動時のみに適用される理論で、一日の総消費カロリー量を測定できない。
また、心拍数HRは身体的な運動だけではなく精神的な活動(例えば暗算を行う際の脳の活動)によっても上昇する。そのため、安静時であっても脳等の活動状態によってHRrが変動する可能性があるが、特許文献1ではその変動を考慮していないため、日常活動における精度のよい消費カロリー量の演算が困難であった。
さらに、消費カロリー量に関する演算を行うシステムは特許文献1等のように広く知られている。しかし、ユーザーの日常の生活習慣(以下、健康度ないし生活の質QOLと略す)には、睡眠、活動(消費カロリー)と、ストレスそして生活リズムなどが重要な要素となるが、このような情報を取得するために、非体動時の情報を用いて、一日の消費カロリー量や深睡眠時間情報やストレス情報(特にメンタルストレス情報)のように幅広い健康度情報を演算するシステムはなかった。
本発明の幾つかの態様によれば、基底心拍数情報を用いることで、精度よく健康度情報の演算を行う生体情報処理システム、ウェアラブル装置、サーバーシステム、生体情報処理システムの制御方法及びプログラム等を提供することができる。
本発明の一態様は、深睡眠状態における心拍数を表す基底心拍数情報を取得する基底心拍数情報取得部と、心拍数情報を取得する心拍数情報取得部と、前記基底心拍数情報と、前記心拍数情報との相対情報を求め、前記相対情報に基づいて健康度を表す健康度情報を求める健康度情報演算部と、を含む生体情報処理システムに関係する。
本発明の一態様では、基底心拍数情報と心拍数情報の相対情報に基づいて健康度情報を演算する。基底心拍数情報は、精神状態によって変化してしまう安静時心拍数情報等と異なり、その値を再現性良くに求めることができるため、健康度情報を精度よく求めること等が可能になる。
また、本発明の他の態様では、前記健康度情報演算部は、前記基底心拍数情報と前記心拍数情報との前記相対情報に基づいて、前記健康度情報として消費カロリー情報を求めてもよい。
これにより、健康度情報として消費カロリー量を求めることが可能になる。
また、本発明の他の態様では、日常活動における体動情報を取得する体動情報取得部を含み、前記健康度情報演算部は、前記体動情報に基づいて体動状態であると判定された場合には、第1の係数と前記相対情報に基づいて前記消費カロリー情報を求め、前記体動情報に基づいて非体動状態であると判定された場合には、前記第1の係数とは異なる第2の係数と前記相対情報に基づいて前記消費カロリー情報を求めてもよい。
これにより、体動状態か非体動状態かで、心拍数に対する消費カロリーが異なるが、それに応じて適切に係数を切り替えることができるため、消費カロリー量を精度よく求めること等が可能になる。
また、本発明の他の態様では、前記健康度情報演算部は、前記基底心拍数情報と前記心拍数情報との差分情報を前記相対情報として求め、前記第1の係数又は前記第2の係数と、前記差分情報と、1心拍当たりの基準消費カロリーとの積を求め、求めた積と基礎代謝に対応する消費カロリー量との和を前記消費カロリー情報として求めてもよい。
これにより、差分情報等を用いて具体的且つ容易に消費カロリー量を求めることが可能になる。
また、本発明の他の態様では、前記心拍数情報取得部は、所与の体動状態における前記心拍数情報を取得し、前記健康度情報演算部は、前記所与の体動状態における前記心拍数情報と、前記基底心拍数情報と、前記相対情報と、基礎代謝に対応する消費カロリー量とに基づいて、前記第1の係数を求めてもよい。
これにより、所与の体動状態を対象とすることで、第1の係数の値を実測値から求めること等が可能になる。
また、本発明の他の態様では、前記健康度情報演算部は、前記基底心拍数情報と前記心拍数情報との前記相対情報に基づいて、前記健康度情報として深睡眠時間情報を求めてもよい。
これにより、健康度情報として深睡眠時間情報を求めることが可能になる。
また、本発明の他の態様では、前記健康度情報演算部は、前記心拍数情報と、前記基底心拍数情報に睡眠係数をかけた値との前記相対情報に基づいて、前記深睡眠時間情報を求めてもよい。
これにより、睡眠係数を用いて適切に深睡眠時間情報を求めること等が可能になる。
また、本発明の他の態様では、前記健康度情報演算部は、前記心拍数情報の値が、前記基底心拍数情報に前記睡眠係数をかけた値以下となる時間の積算処理を行うことで、前記深睡眠時間情報を求めてもよい。
これにより、深睡眠時間情報として、深睡眠状態にあると判定された時間の積算値等を用いることが可能になる。
また、本発明の他の態様では、前記健康度情報演算部は、前記基底心拍数情報と前記心拍数情報との前記相対情報に基づいて、前記健康度情報としてストレス情報を求めてもよい。
これにより、健康度情報としてストレス情報を求めることが可能になる。
また、本発明の他の態様では、体動情報を取得する体動情報取得部を含み、前記健康度情報演算部は、前記体動情報に基づいて体動状態であると判定された場合には、前記心拍数情報と、前記基底心拍数情報にストレス係数をかけた値との前記相対情報に基づいて、前記ストレス情報としてフィジカルストレス情報を求め、前記体動情報に基づいて非体動状態であると判定された場合には、前記心拍数情報と、前記基底心拍数情報に前記ストレス係数をかけた値との前記相対情報に基づいて、前記ストレス情報としてメンタルストレス情報を求めてもよい。
これにより、体動情報に応じて、フィジカルストレス情報又はメンタルストレス情報を、ストレス情報として求めること等が可能になる。
また、本発明の他の態様では、前記健康度情報演算部は、前記体動情報に基づいて前記体動状態であると判定された場合に、前記心拍数情報の値が、前記基底心拍数情報に前記ストレス係数をかけた値以上となる時間の積算処理を行うことで、前記フィジカルストレス情報を求めてもよい。
これにより、フィジカルストレス情報として、フィジカルストレスがかかっていると判定された時間の積算値等を用いることが可能になる。
また、本発明の他の態様では、前記健康度情報演算部は、前記体動情報に基づいて前記非体動状態であると判定された場合に、前記心拍数情報の値が、前記基底心拍数情報に前記ストレス係数をかけた値以上となる時間の積算処理を行うことで、前記メンタルストレス情報を求めてもよい。
これにより、メンタルストレス情報として、メンタルストレスがかかっていると判定された時間の積算値等を用いることが可能になる。
また、本発明の他の態様では、前記基底心拍数情報取得部は、心電図などの心拍センサー又は脈拍センサーにおいて測定された情報に基づいて、前記基底心拍数情報を取得してもよい。
これにより、心拍センサー又は脈拍センサーを用いて基底心拍数情報を求めることが可能になる。
また、本発明の他の態様は、心拍数情報を取得する心拍数情報取得部と、体動情報を取得する体動情報取得部と、前記心拍数情報と前記体動情報に基づいて、深睡眠時間情報と、消費カロリー情報と、ストレス情報とを求める健康度情報演算部と、求められた前記深睡眠時間情報と、前記消費カロリー情報と、前記ストレス情報の時間分布又は頻度分布を表す情報を表示部に表示する制御を行う表示制御部と、を含む生体情報処理システムに関係する。
また、本発明の他の態様は、上記の生体情報処理システムを含むウェアラブル装置に関係する。
また、本発明の他の態様は、上記の生体情報処理システムを含むサーバーシステムに関係する。
また、本発明の他の態様は、深睡眠状態における心拍数を表す基底心拍数情報を取得する基底心拍数情報取得処理を行い、心拍数情報を取得する心拍数情報取得処理を行い、前記基底心拍数情報と、前記心拍数情報との相対情報を求め、前記相対情報に基づいて健康度を表す健康度情報を求める健康度情報演算処理を行う生体情報処理システムの制御方法に関係する。
また、本発明の他の態様は、心拍数情報を取得する心拍数情報取得処理を行い、体動情報を取得する体動情報取得処理を行い、前記心拍数情報と前記体動情報に基づいて、深睡眠時間情報と、消費カロリー情報と、ストレス情報とを求める健康度情報演算処理を行い、求められた前記深睡眠時間情報と、前記消費カロリー情報と、前記ストレス情報の時間分布又は頻度分布を表す情報を表示部に表示する制御を行う生体情報処理システムの制御方法に関係する。
また、本発明の他の態様は、深睡眠状態における心拍数を表す基底心拍数情報を取得する基底心拍数情報取得部と、心拍数情報を取得する心拍数情報取得部と、前記基底心拍数情報と、前記心拍数情報との相対情報を求め、前記相対情報に基づいて健康度を表す健康度情報を求める健康度情報演算部として、コンピューターを機能させるプログラムに関係する。
また、本発明の他の態様は、心拍数情報を取得する心拍数情報取得部と、体動情報を取得する体動情報取得部と、前記心拍数情報と前記体動情報に基づいて、深睡眠時間情報と、消費カロリー情報と、ストレス情報とを求める健康度情報演算部と、求められた前記深睡眠時間情報と、前記消費カロリー情報と、前記ストレス情報の時間分布又は頻度分布を表す情報を表示部に表示する制御を行う表示制御部として、コンピューターを機能させるプログラムに関係する。
以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
1.本実施形態の手法
まず本実施形態の手法について説明する。特許文献1に示したように、心拍数情報(HR)を心拍センサー等で実測し、心拍数情報に基づいて推定された分時酸素消費量(VO2)から消費カロリー量を求める手法が知られている。摂取カロリー量が消費カロリー量を上回っている場合、そのユーザーはメタボリックシンドロームの増悪する疑いがあるという判定等が可能になるため、消費カロリー量はユーザーの健康状態を表す健康度情報として用いることできる。
まず本実施形態の手法について説明する。特許文献1に示したように、心拍数情報(HR)を心拍センサー等で実測し、心拍数情報に基づいて推定された分時酸素消費量(VO2)から消費カロリー量を求める手法が知られている。摂取カロリー量が消費カロリー量を上回っている場合、そのユーザーはメタボリックシンドロームの増悪する疑いがあるという判定等が可能になるため、消費カロリー量はユーザーの健康状態を表す健康度情報として用いることできる。
特許文献1では、心拍数情報から分時酸素消費量を推定する際に、下式(1)等を用いている。
上式(1)のVO2mは分時酸素消費量の最大値、VO2rは安静状態における分時酸素消費量、HRmは心拍数情報の最大値、HRrは安静状態における心拍数情報の値である。特許文献1では、VO2m、VO2r、HRm、HRrの各値を求めておき、それらの値と実測されたHRとからVO2を求めている。VO2と消費カロリー量には所与の関係があるため、推定したVO2から消費カロリー量を求めることが可能になる。
しかし、VO2mは分時酸素消費量の最大値であるが、被験者に対して分時酸素消費量が最大になると思われる程度の高負荷の運動をさせることは現実的ではない。そのため、VO2mは実測値から求めることはできず、所与の統計値(仮想値)を用いることになる。同様にHRmについても実測値から求めることはできず、所与の統計値を用いる。そのため、VO2m、HRmについてはユーザー間の個人差が考慮されていない。よって、ある程度の人数を対象として、集団の消費カロリー量の傾向等を求める場合には上式(1)は有効であるが、1人1人の消費カロリー量を求める場合には上式(1)を用いることには問題が残る。
また、上式(1)に基づくVO2の推定には、安静時の心拍数情報の値であるHRrが用いられているが、HRrについても問題がある。エネルギーの消費を伴う人間の活動には、フィジカルな活動(運動)の他にメンタルな活動が考えられる。そして、このメンタル活動においても、心拍数情報の値が上昇し、消費カロリー量も増大する。つまり、身体的にユーザーが安静状態にあったとしても、メンタル活動がない場合(例えば寝ているような状態)と、メンタル活動がある場合(例えば計算等の複雑な思考を行っていたり、緊張状態にある場合)とではHRrの値は異なるものになる。
特許文献1では、メンタル面でのHRrの変動は考慮されていなかった。そのため、比較的高負荷の運動を行っている場合等では上式(1)は有効であるが、運動していない状態等では正確な消費カロリー量の計算ができない。従来は、消費カロリー量の計算は運動中を対象とすることが想定されていたため、上式(1)による問題は大きくなかった。例えば、従来はランニング等の運動を行った場合に、当該運動でどれくらいのエネルギーを消費できたのか、ということをユーザーに通知できればよく、安静時にまで消費カロリー量を測定することは重要視されていない。しかし、ユーザーの日常活動における健康度判定においては安静時での消費カロリー量も重要な指標となる。例えば、上述したメタボリックシンドローム増悪度の判定では、摂取カロリー量と消費カロリー量との比較は安静時も含む所与の期間(例えば連続する24時間)を単位として行う必要がある。その他、種々の健康度情報を考慮した場合にも、安静時の精神活動などによる消費カロリー量を正確に算出する必要性は高く、その場合安静時の精度が問題となる上式(1)を用いる手法は適切と言えない。
そこで本出願人は、VO2m、VO2r、HRm、HRr等を用いずに消費カロリー量を算出する手法を提案する。具体的には、ユーザーが深睡眠状態にある場合の心拍数情報である基底心拍数情報(HR0)を求め、当該基底心拍数情報を用いて消費カロリー量等を計算する。基底心拍数情報を求める手法は後述するが、基底心拍数情報は深睡眠状態の心拍数情報であるため、HRrとは異なりメンタル活動での変動は生じず、運動時(体動時)だけでなく安静時(非体動時)においても精度よく消費カロリー量を算出することが可能になる。消費カロリー量の演算手法の詳細は後述する。
また、基底心拍数情報を用いた場合、消費カロリー量だけではなく他の健康度情報を求めることも可能になる。具体的には、心拍数情報と基底心拍数情報を用いて、ユーザーが深睡眠状態にあるか否かの判定を行ってもよく、当該判定から深睡眠状態にある時間を表す深睡眠時間情報を求めてもよい。或いは、心拍数情報と基底心拍数情報を用いて、ユーザーに対してストレスがかかっているか否かの判定を行ってもよく、当該判定からストレスがかかっていた時間等を表すストレス情報を求めてもよい。
以下、生体情報処理システムの構成例について説明した後、基底心拍数情報を求める手法について述べる。その後基底心拍数情報から求められる健康度情報の具体例として、消費カロリー量情報、深睡眠時間情報、ストレス情報について説明し、最後に求めた健康度情報のユーザーへの提示(表示部への表示制御)の例について説明する。
2.システム構成例
図1に本実施形態に係る生体情報処理システムのシステム構成例を示す。生体情報処理システムは、心拍センサー(又は脈拍センサー)10と、体動センサー20と、心拍数情報取得部110と、基底心拍数情報取得部120と、健康度情報演算部130と、体動情報取得部140と、表示制御部150と、表示部30とを含む。ただし、生体情報処理システムは図1の構成に限定されず、これらの一部の構成要素を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
図1に本実施形態に係る生体情報処理システムのシステム構成例を示す。生体情報処理システムは、心拍センサー(又は脈拍センサー)10と、体動センサー20と、心拍数情報取得部110と、基底心拍数情報取得部120と、健康度情報演算部130と、体動情報取得部140と、表示制御部150と、表示部30とを含む。ただし、生体情報処理システムは図1の構成に限定されず、これらの一部の構成要素を省略したり、他の構成要素を追加するなどの種々の変形実施が可能である。
心拍センサー(脈拍センサー)10は、心拍数情報取得部110に接続され、体動センサー20は、体動情報取得部140に接続されている。心拍数情報取得部110は、基底心拍数情報取得部120と、健康度情報演算部130に接続されている。基底心拍数情報取得部120、及び体動情報取得部140は、健康度情報演算部130に接続されている。健康度情報演算部130は、表示制御部150に接続され、表示制御部150は、表示部30に接続されている。
心拍センサー(脈拍センサー)10としては例えば光電センサーが用いられる。この場合には、生体に対して照射された光の反射光又は透過光を当該光電センサーで検出する手法等が考えられる。血管内の血流量に応じて、照射された光の生体での吸収量、反射量が異なるため、光電センサーで検出したセンサー情報は血流量等に対応した信号となり、当該信号を解析することで拍動に関する情報を取得することができる。ただし、心拍センサー10は光電センサーに限定されず、心電計や超音波センサー等、他のセンサーを用いてもよい。
体動センサー20は、ユーザーの体動を検出するセンサーである。体動センサー20としては、加速度センサーや角速度センサー等を用いることが考えられるが、他のセンサーを用いてもよい。
表示部30は、演算された健康度情報等を提示する表示画面を表示するためのものであり、例えば液晶ディスプレイや有機ELディスプレイなどにより実現できる。
心拍数情報取得部110は、心拍センサー(脈拍センサー)10からのセンサー情報に基づいて、心拍数情報を取得する。心拍数情報取得部110は、心拍センサー10の動作レートや、心拍数情報取得部110自体の演算レート等に応じたレートで心拍数情報を取得する。
基底心拍数情報取得部120は、深睡眠状態における心拍数を表す基底心拍数情報を取得する。基底心拍数情報の取得手法については後述する。基底心拍数情報の取得は、心拍数情報取得部110からの心拍数情報に基づいて行われてもよいし、心拍センサー10からのセンサー情報に基づいて行われてもよい。
健康度情報演算部130は、ユーザーの健康状態を表す健康度情報を演算する。健康度情報の演算は、心拍数情報、基底心拍数情報、及び体動情報等に基づいて行われるものであり、詳細については後述する。
体動情報取得部140は、体動センサーからのセンサー情報に基づいて体動情報を取得する。なお、ユーザーの体動に起因して心拍センサー10にノイズが生じる可能性があることが知られており、体動情報は健康度情報の演算だけでなく、心拍数情報の演算(ノイズ低減)に用いられてもよい。
表示制御部150は、演算された健康度情報を表示部30に表示する制御を行う。心拍数情報等をそのまま提示したとしても、医療知識等を持たない一般ユーザーが自身の健康状態を把握することは容易ではない。よって表示制御部は、健康度情報により表されるユーザーの健康状態を容易に把握可能な形態で提示することが望ましい。表示画面の一例については後述する。
次に、図2を用いて本実施形態の生体情報処理システムの典型的な使用例について説明する。本実施形態では、生体情報の取得は運動時に限定されるものではなく、安静時、睡眠時等を含め、可能な限りユーザーをモニタリングすることを想定している。よって、心拍センサー10や体動センサー20は、その性質上、ユーザーが装着することになるが、侵襲度の低い(常時装着が容易である)装置を用いる必要がある。例えば、図2に「Health Watcher」という名称で示したように、時計型のウェアラブル装置を用いればよい。
通常の時計型ウェアラブル装置は表示部30を有するため、時計型ウェアラブル装置は図1に示した心拍センサー10及び体動センサー20に加え、心拍数情報取得部110、基底心拍数情報取得部120、健康度情報演算部130、体動情報取得部140、及び表示制御部150を、その内部に含んでもよい。この場合、生体情報処理システムは時計型ウェアラブル装置により実現される。
ただし、時計型ウェアラブル装置の表示部は表示領域が小さいために、一度に多くの健康度情報を表示することは難しい。そこで、健康度情報に含まれる複数の情報のうち、ユーザーが選択した情報を時計型ウェアラブル装置で表示するように構成してもよい。例えば、時計型ウェアラブル装置上でユーザーが日常的に注目したい健康度情報(ストレス情報など)を選択すると、その健康度情報を時計型ウェアラブル装置の表示部30に表示するように構成してもよい。これによりユーザーが注目したい健康度情報の確認が容易になる。
しかし、図6~図10等で後述するような、1度に多くの情報を提示する表示画面を表示する場合には、表示領域が小さい時計型ウェアラブル装置の表示部は、情報の視認性等に問題が残る。よって、表示部30は、時計型ウェアラブル装置の表示部ではなく、タブレット端末等の表示部を用いてもよい。この場合、表示制御部150の処理まで時計型ウェアラブル装置で行い、タブレット端末等は表示のみを行うという形態でもよい。或いは、時計型ウェアラブル装置は、心拍センサー10と体動センサー20からのセンサー情報の記憶、送信を行い、心拍数情報取得部110、基底心拍数情報取得部120、健康度情報演算部130、体動情報取得部140、表示制御部150、及び表示部30がタブレット端末等に含まれるものであってもよい。
また、健康度情報の用途はユーザー自身による閲覧に限定されるものではない。例えば、タブレット端末等の通信機能を利用して、図2に示したような健康度情報の解析センターに送信されてもよい。健康度情報は、解析センターに設けられたサーバーシステムに送信され、蓄積される。例えば、ユーザーの主治医や家族等による健康度情報の閲覧(サーバーシステムへのアクセス等)を許可すれば、主治医や家族の元にユーザーが出向かなくても、当該主治医による健康状態の診断や、ユーザーの家族による当該ユーザーの健康状態の把握等が可能になる。或いは、ユーザーの衣食住等をサポートする組織に対して健康度情報の閲覧を許可すれば、当該組織によるユーザーに対する生活サポート等も可能になる。
なお、サーバーシステムを利用する場合には、当該サーバーシステムは時計型ウェアラブル装置又はタブレット端末等の健康度情報演算部130により演算された健康度情報を取得するものであってもよい。或いは、心拍センサー10と体動センサー20からのセンサー情報を取得し、サーバーシステムに含まれる心拍数情報取得部110、基底心拍数情報取得部120、健康度情報演算部130、体動情報取得部140等により健康度情報の演算を行ってもよい。健康度情報の演算をサーバーシステムで行う場合、各ユーザーはセンサー情報の送信、及びセンサー情報に対する処理結果である健康度情報の受信を行うデバイスを利用すればよく、ユーザーの保持するデバイスには高度な処理能力が要求されなくなるという利点もある。
3.基底心拍数情報
次に基底心拍数情報の取得手法について説明する。基底心拍数情報とは、基底状態の心拍数情報のことであり、具体的には深睡眠状態における心拍数情報である。心拍数情報の値は、フィジカル活動及びメンタル活動により上昇し、HRrについて上述したように、安静状態にあったとしても値の変動が起こりうる。しかし、深睡眠状態での心拍数情報は、浅い睡眠状態や覚醒状態(体動時、非体動時を含む)に比べて変動が少ない最小値(固有値)となることがわかっており、且つその値は同一ユーザーであれば日差変動が小さい。つまり、深睡眠状態での心拍数情報から基底心拍数情報を求めれば、その値は実測された心拍数情報に基づいているため、ユーザー間の個人差を考慮した値となり、且つ一度(例えば一回の睡眠により)基底心拍数情報が取得されれば、その際の値を長期間使い続けることができる。
次に基底心拍数情報の取得手法について説明する。基底心拍数情報とは、基底状態の心拍数情報のことであり、具体的には深睡眠状態における心拍数情報である。心拍数情報の値は、フィジカル活動及びメンタル活動により上昇し、HRrについて上述したように、安静状態にあったとしても値の変動が起こりうる。しかし、深睡眠状態での心拍数情報は、浅い睡眠状態や覚醒状態(体動時、非体動時を含む)に比べて変動が少ない最小値(固有値)となることがわかっており、且つその値は同一ユーザーであれば日差変動が小さい。つまり、深睡眠状態での心拍数情報から基底心拍数情報を求めれば、その値は実測された心拍数情報に基づいているため、ユーザー間の個人差を考慮した値となり、且つ一度(例えば一回の睡眠により)基底心拍数情報が取得されれば、その際の値を長期間使い続けることができる。
基底心拍数情報の算出手法は種々考えられるが、例えば図3のように求めればよい。図3は睡眠中の心拍数情報の値について、横軸に心拍数情報の値、縦軸に当該値が現れた回数(頻度)をとったグラフである。睡眠中の心拍数情報の値についてはガンマ分布に近い分布(ゼロ点を持つ分布)となることが知られている。ここでは、非体動時の心拍数頻度分布の1%下限値を基底心拍数とする。
具体的には、図3に示したようにある境界線(縦軸に平行な線)を用いて2分した分布の面積を求め、その左側の面積(SL)と右側の面積(SR)との比率が1:99となる(言い換えれば左側の面積が全面積の1%となる)境界点を決定する。そして、その境界点に対応する心拍数情報の値を基底心拍数情報HR0とすればよい。
ここで、基底心拍数情報として心拍数情報の最小値を用いないのはノイズ等の影響を考慮したものである。例えば、センサー情報等にノイズが乗れば、心拍数情報の値が極端に小さい値となる可能性はあり得る。しかし、人はその生物的な特性から心拍数が20~30といった低い値をとることは考えにくく、そのような値を基底心拍数とするのは問題である。よって本実施形態では、ノイズ等の影響を抑止するために、心拍数情報の最小値ではなく上述の手法により求めた値を基底心拍数情報として用いるものとする。
4.消費カロリー量の演算
4.1 消費カロリー量の演算手法
上述したように、従来手法では心拍数(HR)、最大VO2(VO2m)、最大HR(HRm)、安静時VO2(VO2r)、安静時HR(HRr)から、上式(1)に基づいてVO2を推定し、分時エネルギー(カロリー)消費量EE(EE=VO2×5/1000kcal)を求めていた。しかし、VO2m、HRm、VO2r、HRrは個人差をあまり考慮してなく、しかもVO2m、HRmは実際には測定できず、動作(ACT)による影響も考慮していないため信頼性が低い。特に、体動時、非体動時を問わずに長期間(例えば丸一日)におけるユーザーの健康状態のモニタリング等の用途を考えた場合に、上式(1)を用いる手法の問題は大きい。
4.1 消費カロリー量の演算手法
上述したように、従来手法では心拍数(HR)、最大VO2(VO2m)、最大HR(HRm)、安静時VO2(VO2r)、安静時HR(HRr)から、上式(1)に基づいてVO2を推定し、分時エネルギー(カロリー)消費量EE(EE=VO2×5/1000kcal)を求めていた。しかし、VO2m、HRm、VO2r、HRrは個人差をあまり考慮してなく、しかもVO2m、HRmは実際には測定できず、動作(ACT)による影響も考慮していないため信頼性が低い。特に、体動時、非体動時を問わずに長期間(例えば丸一日)におけるユーザーの健康状態のモニタリング等の用途を考えた場合に、上式(1)を用いる手法の問題は大きい。
そこで、本実施形態では上述した基底心拍数情報HR0を基準に消費カロリー量を演算する。具体的には、上式(1)を基底心拍数情報HR0に相当する分時エネルギー消費量EE0を用いて、下式(2)のように変換する。下式(2)のEEは分時消費カロリー量、EE0は基底状態でのEE、EEmはEEの最大値を表す。
そして、上式(2)をEEについて解くことで下式(3)のようになる。
ここでEE0は、ユーザーの分時基礎代謝量に相当する値であり、一日当たりの基礎代謝量BMは種々の手法により算出可能であることが知られていることから、EE0も事前に求めておくことができる。また、HR0は上述したように実測値から決定可能であり、HRはそのときの実測された心拍数情報の値を用いればよい。よって、上式(3)において、xで示した部分の値が決定されれば、消費カロリー量(分時消費カロリー量EE)を求めることができる。
ここで、縦軸に上式(3)のΔEE、横軸に上式(3)の(ΔHR/HR0)×EE0をとって値をプロットしたグラフを図4(A)、図4(B)に示す。図4(A)は、活動中(運動中、或いは体動時とも表記する)の値をプロットした図に対応し、図4(B)は非活動中(安静時、或いは非体動時とも表記する。具体的には安静臥位、坐位、立位時等)の値をプロットした図に対応する。
縦軸、横軸の値と、上式(3)からわかるように、プロットされた点を直線近似した場合に、当該直線の傾きは係数xを表すことになる。図4(A)と図4(B)を比較した場合、体動時の係数に相当する図4(A)の直線の傾きは、非体動時の係数に相当する図4(B)の直線の傾きに比べて大きい。これはつまり、係数xの値は活動時の方が非活動時より大きな値であり、エネルギー消費量(消費カロリー量)を求める際に、活動時か非活動時かに応じて係数を変えて演算する必要があることを示している。
また、上式(3)では、心拍数情報の基準値に対する変動度合いを表す指標値ΔHRとしてHR-HR0を用いている。つまり、基準値は基底心拍数情報HR0となっている。しかし、覚醒時には体動・非体動を問わず、ユーザーは立位あるいは坐位をとっていることが多い。その場合、圧受容体感受性が働くことになり、仮にフィジカル活動とメンタル活動のいずれも非常に弱い状況であったとしても、心拍数はHR0に比べて増加している。よって、実際にはΔHRを決定する際の心拍数情報の基準値としてはHR0そのものではなく、上記の増加分を考慮した値を用いることが望ましい。そこで本実施形態では1以上(その値を含む)の係数α及びβを設定し、体動時にはΔHR=HR-αHR0。非体動時にはΔHR=HR-βHR0を用いるものとする。
以上、係数xは体動時と非体動時で異なる値とすべき点、ΔHRはHR-HR0ではなく基準値の増加分α及びβを用いるべき点を考慮して、本出願人は消費カロリー量の計算式として下式(4)及び下式(5)を提案する。下式(4)が体動時の消費カロリー量を演算する式であり、下式(5)が非体動時の消費カロリー量を演算する式である。
図4(A)、図4(B)を用いて上述したように、体動時には係数xを用い、非体動時には係数yを用いる。これは、xが体動時、つまり主に筋肉運動によるSV(SVは心拍1回当たりの血液放出量である1回心拍出量を表す)増加の補正係数を示しているのに対し、yは非体動時、つまり精神活動あるいは体位変動によるSV増加の補正係数を示すという差異に起因するということもできる。つまり、分時消費カロリー量(EE)は心拍出量(CO)に比例するが(EE∝CO=SV×HR)、HRの増加に対するSVの増加が、体動時と非体動時とでことなるため、それぞれにx,yの異なる係数を用いる。
また、上述したようにαは体動時の覚醒における安静心拍の補正である。ここで、安静時でも覚醒と立位により、心拍数は基底心拍数情報の値HR0に比べて約1.2倍程度増加することが実験的に確認された。従って本実施形態のαは、α=1.2を通常の値として用いる。それに対して、βは非体動時の精神活動あるいは体位変動前の初期値の補正であるが、通常は安静に近いと考えられ、本実施形態ではβ=1.0を通常の値として用いるものとする。
4.2 基底心拍数情報HR0に対応する分時消費カロリー量EE0
上述したように、上式(4)、(5)から消費カロリー量を求めるためには、基底心拍数情報HR0に対応する分時消費カロリー量EE0の値を決定しておく必要がある。1日当たりの基礎代謝量BMから1分当たりの値を求めれば、求めた値がEE0に対応することになり、BMを求める手法は広く知られているHarris-Benedict式を用いてもよい。
上述したように、上式(4)、(5)から消費カロリー量を求めるためには、基底心拍数情報HR0に対応する分時消費カロリー量EE0の値を決定しておく必要がある。1日当たりの基礎代謝量BMから1分当たりの値を求めれば、求めた値がEE0に対応することになり、BMを求める手法は広く知られているHarris-Benedict式を用いてもよい。
ただし本実施形態では、分時心拍出量CO(COは心拍数HRと1回心拍出量SVの積)に基づいてEE0を求めてもよい。酸素は肺でヘモグロビンに結合して、心臓によって運ばれ、組織(脳や筋肉)で放出利用され、残りは肺にて排泄されるのであり、VO2と分時心拍出量COは比例関係にある(VO2∝CO=HR×SV∝EE)。
本出願人は、脳波の徐波睡眠相(深睡眠時)には、心拍数が基底心拍数HR0をとり、またこの時の心係数CI(体表面積をBSAとした場合、CI=CO/BSA)は個人差が少ないという原理を発見している。そしてその原理を応用して、個人差の少ない値として、睡眠時の心拍出量(CO0)を求める下式(6)を作成した。
CO0=6.9×Age-0.25×BSA ・・・・・(6)
上式(6)と、標準的な血中ヘモグロビン濃度(男性15g/dl、女性13.5g/dl)、動脈血中酸素飽和度(97.5%)と静脈血中酸素飽和度(75%)の差分、1gのヘモグロビンに結合する酸素の量(1.34ml)とから酸素消費量が推定でき、VO2からEEが推定可能なように、
CO0に対応する酸素消費量から基礎代謝量BMが推定できることになる。
上式(6)と、標準的な血中ヘモグロビン濃度(男性15g/dl、女性13.5g/dl)、動脈血中酸素飽和度(97.5%)と静脈血中酸素飽和度(75%)の差分、1gのヘモグロビンに結合する酸素の量(1.34ml)とから酸素消費量が推定でき、VO2からEEが推定可能なように、
CO0に対応する酸素消費量から基礎代謝量BMが推定できることになる。
具体的には、血中ヘモグロビン濃度をHbとして上記の各値を用い、さらに単位換算のための値も含めて計算すると、基礎代謝量推定値BMは下式(7)で求められ、Hbに具体的な値を入れることで、男性の基礎代謝推定値BMmと女性の基礎代謝推定値BMfは下式(8)のようになる。
BM = CO0×Hb×1.34×(0.975-0.75)×10×60×24×5/1000 ・・・・・(7)
男性 BMm = 325.6×CO0
女性 BMf = 293.0×CO0 ・・・・・(8)
種々の年齢、性別の被験者に対して、従来のHarris-Benedict式で求めた基礎代謝量を縦軸にとり、上式(6)及び(8)で求めた基礎代謝推定値を横軸にとった場合の図を図5に示す。この場合、相関係数はr=0.96となり、非常に高い相関関係にあるといえる。つまり、本出願人の提案する上式(6)及び(8)を用いた手法でも、基礎代謝量(及び分時消費カロリー量EE0)は精度よく演算することが可能である。
男性 BMm = 325.6×CO0
女性 BMf = 293.0×CO0 ・・・・・(8)
種々の年齢、性別の被験者に対して、従来のHarris-Benedict式で求めた基礎代謝量を縦軸にとり、上式(6)及び(8)で求めた基礎代謝推定値を横軸にとった場合の図を図5に示す。この場合、相関係数はr=0.96となり、非常に高い相関関係にあるといえる。つまり、本出願人の提案する上式(6)及び(8)を用いた手法でも、基礎代謝量(及び分時消費カロリー量EE0)は精度よく演算することが可能である。
4.3 係数x、yの決定手法
次に上式(4)のx、(5)のyを決定する手法について説明する。具体的には、所与の標準値を用いてもよいし、一定負荷の運動を行った場合の実測値から求めてもよい。
次に上式(4)のx、(5)のyを決定する手法について説明する。具体的には、所与の標準値を用いてもよいし、一定負荷の運動を行った場合の実測値から求めてもよい。
まず標準値を用いる手法について説明する。上式(3)に示したように、xは(EEm/EE0-1)/(HRm/HR0-1)に近い値をとる。EEmは20~70歳で年齢(Age)から統計的に、男性は49-0.29Age、女性は41-0.33Ageの値をとることが知られており、HRmは220-Ageの値をとることが知られている。また、EE0は上述のBMm又はBMfから求めることができ、HRは心拍センサー等からの実測値を用いて取得できる。
これらの値を用いてxを計算したところ、平均は4.8±1.5(標準偏差SD)の値(約5)に近い値であった。従って、xが不明な場合は標準値として5の値を用いるものとする。なお、yの値は精神活動時のHRとVO2を測定して統計的に算出した値を用いるものとし、本実施形態ではyの標準値として1.5を用いる。
ただし、上述のx決定手法では、実測が難しいEEm及びHRmについて、統計値を用いることでxの概算値を求めている。よって、上式(1)等に示した特許文献1の手法と同様に、ユーザー毎の個人差に対応することが困難であるという問題が残る。
そこで本実施形態では、xの値を実測値から求めてもよい。具体的には、上式(4)を変形することで下式(9)を取得する。
右辺のHR0及びEE0は上述した手法により求めることができ、αについても、実験上1.2を用いると良いことが判っている。さらに心拍センサー等から心拍数情報HRの値も求まるため、EEの値を求めることができればxを実測値から決定可能となる。ここで、本実施形態の手法が分時消費カロリー量EEを求めることを目的としていることに鑑みれば、任意の活動状態(体動時、非体動時を含む)を対象としたのでは事前にEEの値を決定することはできない。しかし、所定の運動負荷となることが知られている運動を行う場合に限定すれば、当該運動による消費カロリー量EEを事前に計算することは可能である。例えば、1秒間2ステップの足踏み運動を3分間継続した場合(約3Metsの運動)、その際の分時消費カロリー量EEは下式(10)を満たすことが知られている。
EE=3×1.05×体重/60 ・・・・・(10)
このように、ユーザーに対して所定の運動を行う指示を与えることができる場合には、HR0,EE0,α,HR,EEの全ての値を決定、取得することができるため、上式(9)によりxを実測値から求めることが可能になる。
このように、ユーザーに対して所定の運動を行う指示を与えることができる場合には、HR0,EE0,α,HR,EEの全ての値を決定、取得することができるため、上式(9)によりxを実測値から求めることが可能になる。
5.深睡眠時間情報の演算
睡眠不足(例えば深睡眠時間が4時間以下(その値を含む)の場合)は、翌日の自律神経に大きな影響を与え、健康に悪影響があることが知られているため、ライフスタイルの評価において睡眠時間は重要な指標値となる。特に、睡眠状態のうち、より深い眠りにある深睡眠状態(或いは脳波徐波睡眠状態と表記)の時間等は睡眠状態を表す指標値として重要である。例えば、睡眠時間自体は長いのに深睡眠時間が短い場合には健康に悪影響があり、寝ているはずなのに疲れがとれない等の自覚症状にもつながる。
睡眠不足(例えば深睡眠時間が4時間以下(その値を含む)の場合)は、翌日の自律神経に大きな影響を与え、健康に悪影響があることが知られているため、ライフスタイルの評価において睡眠時間は重要な指標値となる。特に、睡眠状態のうち、より深い眠りにある深睡眠状態(或いは脳波徐波睡眠状態と表記)の時間等は睡眠状態を表す指標値として重要である。例えば、睡眠時間自体は長いのに深睡眠時間が短い場合には健康に悪影響があり、寝ているはずなのに疲れがとれない等の自覚症状にもつながる。
よって本実施形態では、ユーザーが深睡眠状態にあるか否かの情報(狭義には24時間のうち深睡眠状態にある時間である深睡眠時間に関する情報)についても、健康度情報として演算するものとする。
上述したように、深睡眠状態では心拍数情報HRの値は、基底心拍数情報HR0の値に近い値をとることになる。よって、HRとHR0との比較により、ユーザーが深睡眠状態にあるか否かを判定すればよい。ただし、深睡眠状態にあったとしてもHRの値にはばらつきがあるため、HRの値がHR0よりも大きくなることは十分考えられる。よって、HRとの比較に用いる値はHR0そのものではなく、ある程度のマージンを持たせ、HR0×(睡眠係数)の値を用いる。つまり、下式(11)が成り立つ場合には、ユーザーは深睡眠状態にあると判定し、24時間のうち下式(11)が成り立つ時間の積算値を深睡眠時間とする。ここで、下式(11)の睡眠係数はユーザー毎に異なる値となるが、例えば統計的に求めた1.12等の値を用いればよい。
HR≦HR0×(睡眠係数) ・・・・・(11)
6.ストレス情報の演算
ユーザーに対してかかる負荷を表すストレス情報も、健康度を表す指標値として用いることができる。ここでストレス情報としては、体動時の身体的な活動に起因する身体ストレス(フィジカルストレス、physical stress)と、非体動時の精神的な活動に起因する心理ストレス(メンタルストレス、mental stress)とが考えられる。
6.ストレス情報の演算
ユーザーに対してかかる負荷を表すストレス情報も、健康度を表す指標値として用いることができる。ここでストレス情報としては、体動時の身体的な活動に起因する身体ストレス(フィジカルストレス、physical stress)と、非体動時の精神的な活動に起因する心理ストレス(メンタルストレス、mental stress)とが考えられる。
フィジカルストレス及びメンタルストレスによる負荷の程度は心拍数情報HRの値に大きく反映される。ここで、非体動時に心拍数が増加するのは主に脳活動によるものであることが知られていることから、非体動時に一定以上の心拍数上昇が見られた時間を積算することによりメンタルストレスを評価できる。その目安としてストレス係数を設け、HRが下式(12)を満たす場合に、ユーザーに対して注視すべき程度のメンタルストレスがかかっていると判定し、下式(12)が成り立つ時間の積算値をメンタルストレスについての指標値(メンタルストレス情報)とする。
HR≧HR0×(ストレス係数) ・・・・・(12)
ここで、ストレス係数の値は個人により異なるものとなるため、外部から入力するものとしてもよい。ただし、ストレス係数が不明な場合、或いはユーザーによる操作負担の軽減を図る場合等には、統計的に求められた値として、ストレス係数=1.8等を用いてもよい。
ここで、ストレス係数の値は個人により異なるものとなるため、外部から入力するものとしてもよい。ただし、ストレス係数が不明な場合、或いはユーザーによる操作負担の軽減を図る場合等には、統計的に求められた値として、ストレス係数=1.8等を用いてもよい。
一方、フィジカルストレスについては体動時におけるユーザーへの負荷を表すものであり、主に筋肉活動による心拍数増加を考慮することで、その値を求めることが可能である。具体的には、上述したメンタルストレスと同様に、上式(12)による判定を行えばよいが、フィジカルストレスの場合には、体動時を対象とする点が異なる。
なお、体動時か非体動時かの判定手法は種々考えられるが、例えば体動センサーからのセンサー情報に基づいて処理を行えばよい。体動センサーが加速度センサーであれば、当該センサーからのセンサー情報である加速度検出値が大きい場合には体動時であると判定できるし、加速度検出値が体動時よりも小さければ非体動時であると判定できる。或いは、加速度検出値の大きさそのものではなく、加速度検出値の周波数特性(例えば歩行、走行運動時のピッチに相当)を求め、そこから体動時か非体動時かを判定してもよい。つまり、本実施形態の体動センサーは、ストレス情報の演算においては体動時か非体動時かを判定できるセンサーであれば十分であり、加速度センサーを用いてもよいし、他のセンサーを用いてもよい。また、センサー情報に基づいて体動時か非体動時かの判定を行う手法も任意である。
このようにして求めたストレス情報は、メンタルストレスについてはその積算時間の値が小さいほど好ましく、フィジカルストレスについてはその積算時間が適度な値(運動不足にならない程度に大きく、過負荷とならない程度に小さい値)となるほど好ましいと判定する指標値として用いることができる。
7.表示制御
上述したように、本実施形態の手法では消費カロリー量、深睡眠時間、及びストレス情報を健康度情報として取得することができる。取得した健康度情報は、その値を単純に表示するのではユーザーの健康状態の理解が容易でない可能性も考えられる。よって本実施形態では、取得した健康度情報をグラフ化する等の手法を用いて、ユーザー(或いは当該ユーザーの主治医、健康アドバイザー等)にとって一見して理解しやすい形で提示する。
上述したように、本実施形態の手法では消費カロリー量、深睡眠時間、及びストレス情報を健康度情報として取得することができる。取得した健康度情報は、その値を単純に表示するのではユーザーの健康状態の理解が容易でない可能性も考えられる。よって本実施形態では、取得した健康度情報をグラフ化する等の手法を用いて、ユーザー(或いは当該ユーザーの主治医、健康アドバイザー等)にとって一見して理解しやすい形で提示する。
以下、図6~図10を用いて表示画面の具体例を説明するが、本実施形態での表示画面の形式はこれに限定されるものではない。また、一度にある程度の情報量を提供することに鑑み、図6等の画面は図2のタブレット端末等に表示することを想定しているが、時計型ウェアラブル装置の表示部の改良や、表示画面の簡素化等によっては、時計型ウェアラブル装置の表示部に情報提示用の表示画面を表示してもよい。
図6が時計型ウェアラブル装置とタブレット端末等が接続された際に表示されるホーム画面の例である。ホーム画面では、年齢、性別、身長、体重、IDなど個人情報入力モード、データファイル管理、通信による入出力管理、基底心拍数情報(HR0)設定や初期係数設定などのカバー情報がディスプレイされている。以下具体的に説明する。
図6のA1の領域では、時計型ウェアラブル装置についての設定等を行う。具体的には、時計型ウェアラブル装置とタブレット端末が接続された状態で、A11の取り込みボタンを押すことで、時計型ウェアラブル装置で取得された情報がタブレット端末に取り込まれる。取り込まれる情報は、消費カロリー量、深睡眠時間及びストレス情報のように、HRとHR0に基づく演算の結果である情報だけであってもよいし、心拍センサー10や体動センサー20のセンサー情報を全て対象としてもよく、種々の変形実施が可能である。
A12ではユーザー情報の登録や、時計合わせ等を行うことができる。A12の機能については詳細な説明は省略する。
A2はA11の取り込みボタンにより取り込まれた情報が、どのようなファイル名で保存されるかを表すものである。具体的には、A21で最新のデータファイルを表示するとともに、A22で過去に取り込んだデータファイルを表示してもよい。
A3は取得した情報(ここではHRの値を全て取得していることを前提としている)のうち、心拍数情報の時間変化(HRトレンド)や、それに基づく分析結果等を表示するためのボタンである。これらのボタンが押された場合の表示画面例については後述する。
A4はデータファイルの保存、削除を指示するためのボタンである。
A5は健康度情報の演算における事前準備を行うための領域である。具体的には、A51は、健康度情報を求めるための係数を設定する画面を呼び出すボタンであり、A51が押された場合には、図7の画面に遷移することになる。図7では、HR0の値や、x、y、α、βといった消費カロリー量の演算に用いられる係数、或いは深睡眠時間の演算に用いられる睡眠係数や、ストレス情報の演算に用いられるストレス係数等を設定することができる。また、xについては上述したように実測値から設定することもでき、その場合にはユーザーはB1で示したx計算ボタンを押して、所与の運動を開始すればよい。xの実測値からの設定の際に行われる運動(上述の例であれば1秒間2ステップの足踏み運動を3分間継続)の負荷の値を設定することもでき、これはB2の校正消費カロリー(Mets)に対応する。加速度係数は、体動センサーとして加速度センサーを用いる場合に、体動時か非体動時かの判定を行う際の加速度検出値の閾値を表す値である。なお、図7の加速度係数の値は加速度センサーのレンジ等でも異なるものであり、単位は標準重力加速度を基準とするgや、m/s2というわけではない。
A52はHR0を設定する際に用いるボタンである。上述したように、HR0は同一ユーザーであれば日差変動が少ないため、一度測定すればその値を使い続けても問題はない。しかし、HR0の実測値からの設定が一度も行われていない場合や、ユーザーの明示の指示により再設定を行う場合等が考えられるため、A52のボタンが押下された場合にはHR0の設定処理を行う。なお、HR0の設定手法については図3を用いて上述したとおりである。
図8は、図6のA31のHRトレンドボタンが押された場合に表示される画面の例である。図8は連続する24時間における心拍数情報HRの値の時間変化、及びHRとHR0に基づき演算された消費カロリー量の時間変化を表す図である。図8のうち、C1で示されるグラフがHRの時間変化を表し、C2で示されるグラフが消費カロリー量の時間変化を表す。図8からでも、0時頃から6時半頃まで睡眠状態にあること等、ユーザーの生体情報(生活習慣情報)を知ることができる。
ただし、健康度情報はある程度まとめてわかりやすく提示することが望ましく、本実施形態においては図6のA6に示した領域等に、図9(A)、図9(B)の表示画面を表示するものとしてもよい(図6は図9(B)の画面を表示した例である)。
図9(B)は1日の消費カロリー量、深睡眠時間、ストレス情報をまとめて表示するグラフである。図9(B)の深睡眠時間は、ユーザーが深睡眠状態にある時間であり、ACT(-)は非体動時であり、且つメンタルストレスがかかっていない状態の時間である。MentalSは非体動時であり、且つメンタルストレスがかかっている状態の時間を表す。また、PhisicalSは体動時であり、且つフィジカルストレスがかかっている状態の時間を表し、ACT(+)は体動時であり、且つフィジカルストレスがかかっていない状態の時間を表す。また、円グラフの中央部に24時間当たりの消費カロリー量が表示される。
図9(B)を用いることで、24時間のうちの深睡眠時間、メンタルストレスのかかっていた時間、フィジカルストレスのかかっていた時間等の比率を直感的に理解させることが可能になる。具体的には、健康に良いライフスタイルとは充分な休養(睡眠)が取られ、身体活動(フィジカルストレス)は適度に多く、精神ストレス(メンタルストレス)が少なく、摂取カロリーと消費カロリーのバランスがとれている状態と考えられるため、そのような観点から図9(B)を見ることで、ユーザーの健康状態を容易に把握できる。
ただし本実施形態の時計型ウェアラブル装置等は、当該装置の充電等を考慮すると、24時間連続で着用されないケースも考えられる。その場合、図9(B)では各時間の相対的な関係を見やすい形で提示することを考慮しているため、24時間に満たないデータであっても、24時間に換算して提示する(例えば装着時間が12時間であった場合には、各時間の値を2倍する等の処理が行われる)。そのため、実時間がわかりにくくなる場合も想定される。
よって、24時間基準に換算せず、図9(A)のように実際の時間をそのまま表示する手法をとってもよい。図9(A)は縦軸、横軸ともに時間(単位はhour)をとっており、D1がメンタルストレス、D2が非体動時(且つメンタルストレスを感じていない)、D3が体動時(且つフィジカルストレスを感じていない)、D4がフィジカルストレス、の各実時間を表している。
また、深睡眠時間については図9(A)の三角形の領域で表現してもよい。この場合、深睡眠時間は三角形の領域の面積ではなく、色等により表現されることが想定される。例えば、深睡眠時間が十分であれば(7時間以上(その値を含む))緑色、やや少なければ(4~7時間)黄色、明らかに不足している場合(4時間以下(その値を含む))には赤色等の色分けを行えばよい。
また、図9(A)、図9(B)等のグラフ表示は、直感的でわかりやすいという特徴がある反面、正確な値を把握することが困難である。そこで、図6のA32に示した分析ボタンが押された場合には、図10に示した分析画面を表示してもよい。分析画面では例えば、図10に示したようにユーザーの個人情報や、健康度情報の演算に用いたパラメーターを表示するとともに、実際に測定された健康度情報の具体的な値を表示している。この際、図9(B)等のグラフを同時に表示してもよい。図10等の分析画面を表示することで、より正確な値を知ることが可能になる。
以上の本実施形態では、生体情報処理システムは図1に示したように、深睡眠状態における心拍数を表す基底心拍数情報を取得する基底心拍数情報取得部120と、心拍数情報を取得する心拍数情報取得部110と、基底心拍数情報と心拍数情報との相対情報を求め、相対情報に基づいて健康度を表す健康度情報を求める健康度情報演算部130を含む。
ここで深睡眠状態とは、ユーザーが深睡眠(徐波睡眠とも呼ばれる)にある状態であり、深い睡眠状態にあることを表す。具体的には、睡眠をレム睡眠とノンレム睡眠に分け、さらにノンレム睡眠を脳波上の睡眠の比較的浅い方から睡眠段階1~4に分けることで合計5つの睡眠段階に分けた場合、睡眠段階3及び睡眠段階4に相当する睡眠状態である。
また、基底心拍数情報とは、上記深睡眠状態における心拍数情報に対応する情報であり、図3を用いて説明したように、本出願人により連続24時間の心拍数情報の値のうちで再現性の高い小さい値(ノイズ等を考慮しなければ最小値或いはそれに近い値)を取ることが確認されている。
また、健康度情報とは、心拍数情報等の測定対象となっているユーザーの健康度合いを表す指標値となる情報であり、消費カロリー量、深睡眠時間情報、ストレス情報を含む情報である。
また、基底心拍数情報と心拍数情報との相対情報とは、基底心拍数情報と心拍数情報の相対的な関係により決定される情報である。具体的には、基底心拍数情報と心拍数情報の値の差分値を含む差分情報であってもよいし、基底心拍数情報と心拍数情報の値の比を含む比率情報であってもよい。また、差分情報及び比率情報は、基底心拍数情報HR0と心拍数情報HRをそのまま用いるもの(具体的にはHR-HR0,HR/HR0)に限定されず、差分値或いは比に所与の係数を乗じたものや、HRとHR0の少なくとも一方に所与の係数を乗じた上で差分値を取ったもの等、差分や比によって決定される他の情報を含むものである。
これにより、基底心拍数情報を用いて生活習慣に関する健康度情報を求めることが可能になる。基底心拍数情報は精神的な活動がほとんどないと見なせる状態での値を想定しているため、上式(1)等で心拍数情報の基準値として用いている安静時の心拍数情報(HRr)とは異なり、値の変動を考慮しなくてもよい。さらに同一ユーザーでは日差変動が少ないという利点もある。よって、基底心拍数情報を用いることで、健康度情報を精度よく求めることが可能になる。
また、健康度情報演算部130は、基底心拍数情報と心拍数情報との相対情報に基づいて、健康度情報として消費カロリー情報を求めてもよい。
これにより、健康度情報として消費カロリー情報(具体的には消費カロリー量)を求めることが可能になる。消費カロリー量は運動時などの単位時間当たりの値(EE)であってもよいし、1日当たりの値であってもよい。1日当たりの値を求めた場合、ユーザーの基礎代謝量BMとの比較は肥満やメタボリックシンドローム等の評価に有用である。
また、生体情報処理システムは図1に示したように、体動情報を取得する体動情報取得部140を含んでもよい。そして健康度情報演算部130は、体動情報に基づいて体動状態であると判定された場合には、第1の係数と相対情報に基づいて消費カロリー情報を求める。また健康度情報演算部130は、体動情報に基づいて非体動状態であると判定された場合には、第1の係数と異なる第2の係数と相対情報に基づいて消費カロリー情報を求める。
これにより、体動時と非体動時とで、消費カロリー量を求める際に用いる係数を適切に切り替えることが可能になる。これは図4(A)、図4(B)で説明した通り、体動時と非体動時ではプロットされた値を直線近似した場合の傾き(係数に対応)が大きく異なることを考慮したものである。これは人の生物的な特徴を考えた場合、心拍1回当たりの血液放出量である1回心拍出量SVを、SV=θ×SV0(SV0はSVの基底状態での値)とした式でのθの増加度合い(θはx×EE0/HR0と関係する)が、身体活動時では精神活動時よりも大きくなることに起因していると推測することもできる。
また、健康度情報演算部130は、基底心拍数情報と心拍数情報との差分情報を相対情報として求め、第1の係数(x)又は第2の係数(y)と、差分情報(ΔHR)と、1心拍当たりの基準消費カロリー(EE0/HR0)との積を求め、求めた積と基礎代謝に対応する消費カロリー量(EE0)との和を消費カロリー情報として求めてもよい。
これにより、上式(4)又(5)を用いて消費カロリー量を求めることが可能になる。なお、式(4)、(5)では、上述したとおりΔHRとしては、HR-HR0ではなく係数α又はβを考慮することで精度を向上させるものとしている。
また、心拍数情報取得部110は、所与の体動状態における心拍数情報を取得し、健康度情報演算部130は、所与の体動状態における心拍数情報と、基底心拍数情報と、相対情報と、基礎代謝に対応する消費カロリー量とに基づいて、第1の係数を求めてもよい。
これにより、上式(9)に基づいて第1の係数xを実測値から求めることが可能になる。上式(3)はxを既知のものとしてEEを求める式であるが、EEが既知であれば上式(3)を変形した上式(9)によりxを求めることができる。その場合、EEを既知とするために、任意の運動が許容されるのではなく、EEが推定可能な所与の運動をユーザーに行わせる必要がある。
また、健康度情報演算部130は、基底心拍数情報と心拍数情報との相対情報に基づいて、健康度情報として深睡眠時間情報を求めてもよい。
ここで、深睡眠時間情報とは、ユーザーが深睡眠状態にあると判定された時間の積算値(例えば24時間のうちの積算値)に限定されるものではない。例えば、ユーザーが深睡眠状態となった時刻情報の日にち毎の変動等も健康度の判定に用いることができるし、ユーザー安静状態になってから深睡眠状態に移行するまでの時間情報、或いは入眠時から深睡眠状態に移行するまでの時間情報等も健康度の判定には有用であり、深睡眠時間情報はこれら全ての情報を含む。
これにより、健康度情報として深睡眠時間情報を求めることが可能になる。本実施形態では深睡眠状態での心拍数情報である基底心拍数情報を演算に用いていることから、ユーザーが深睡眠状態にあるか否かの判定は基底心拍数情報と心拍数情報との比較により容易に判定可能である。
また、健康度情報演算部130は、心拍数情報と、基底心拍数情報に睡眠係数をかけた値との相対情報に基づいて、深睡眠時間情報を求めてもよい。
これにより、心拍数情報と、基底心拍数情報に睡眠係数をかけた値との相対情報に基づく判定が可能になる。深睡眠状態にあっても、心拍数情報の値は変動しうることが確認されているため、当該変動を吸収し、且つ過剰に大きくならない値を睡眠係数として設定することで、適切な判定を行うことができる。
また、健康度情報演算部130は、心拍数情報の値が、基底心拍数情報に睡眠係数をかけた値以下となる時間の積算処理を行うことで、深睡眠時間情報を求めてもよい。
これにより、深睡眠時間情報として、ユーザーが深睡眠状態にある時間の積算値を求めることが可能になる。例えば、1日当たりの積算値を求めれば、ユーザーの睡眠時間が十分であるか否かという判定を行うことが可能になる。
また、健康度情報演算部130は、基底心拍数情報と心拍数情報との相対情報に基づいて、健康度情報としてストレス情報を求めてもよい。
ここでストレス情報とは、ユーザーに対して、平常時と区別可能な程度に負荷(身体的負荷、或いは精神的負荷)がかかっているか否かを表す情報である。ユーザーに負荷がかかっている場合、当該負荷が身体的なものでも精神的なものでも、心拍数情報の値の上昇が見られることが知られているため、心拍数情報の変化に基づき判定が可能である。特に本実施形態では、再現性の高い小さい値(ノイズ等を考慮しなければ最小値或いはそれに近い値)を取る基底心拍数情報を求めているため、当該基底心拍数情報と心拍数情報との相対情報を用いればよい。
これにより、健康度情報としてストレス情報を求めることが可能になる。ストレス情報のうち、身体的な負荷によるもの(フィジカルストレス)は、少なすぎても運動不足となるし、多すぎても疲労の蓄積等につながるため、適度な値となることが望ましい、一方、精神的な負荷によるもの(メンタルストレス)については、少ないほど望ましい状態となる。
また、生体情報処理システムは、体動情報を取得する体動情報取得部140を含み、健康度情報演算部130は、体動情報に基づいて体動状態であると判定された場合には、心拍数情報と、基底心拍数情報にストレス係数をかけた値との相対情報に基づいて、ストレス情報としてフィジカルストレス情報を求めてもよい。また、健康度情報演算部130は、体動情報に基づいて非体動状態であると判定された場合には、心拍数情報と、基底心拍数情報にストレス係数をかけた値との前記相対情報に基づいて、ストレス情報としてメンタルストレス情報を求めてもよい。
これにより、体動情報に基づいて体動時か非体動時かを判定し、体動時であればフィジカルストレス情報を、非体動時であればメンタルストレス情報を、上式(12)から求めることが可能になる。
また、健康度情報演算部130は、体動情報に基づいて体動状態であると判定された場合に、心拍数情報の値が、基底心拍数情報にストレス係数をかけた値以上となる時間の積算処理を行うことで、フィジカルストレス情報を求めてもよい。また、健康度情報演算部130は、体動情報に基づいて非体動状態であると判定された場合に、心拍数情報の値が、基底心拍数情報にストレス係数をかけた値以上となる時間の積算処理を行うことで、メンタルストレス情報を求めてもよい。
これにより、フィジカルストレス情報及びメンタルストレス情報として、それぞれストレスがかかっていると判定される時間の積算値を用いることが可能になる。メンタルストレス情報である積算値は小さいほどよいが、例えば積算期間を1日等の固定値とすれば、健康を配慮した際に許容される上限値等を設定可能であり、ユーザーの健康度合いを適切に判定することができる。また、フィジカルストレス情報である積算値は、運動不足及び過負荷状態を回避することを考慮すれば中間的な値がよいが、これについても積算期間を1日等の固定値とすれば、健康を配慮した際に許容される値の範囲が設定可能である。
また、基底心拍数情報取得部120は、心拍センサー又は脈拍センサーにおいて測定された情報に基づいて、基底心拍数情報を取得してもよい。
これにより、心拍センサー(脈拍センサー)10に基づいて基底心拍数情報を求めることができる。具体的な手法については図3等で上述したとおりである。なお、基底心拍数情報取得部120は、心拍センサー10等から直接センサー情報を取得してもよい。ただし、心拍センサー10に体動に起因するノイズが乗る場合、心拍センサー10からのセンサー情報と体動センサー20からのセンサー情報の両方を用いてノイズ低減処理が行われることが想定される。その場合、心拍数情報取得部110と、基底心拍数情報取得部120とで独立にノイズ低減処理することは非効率であるため、基底心拍数情報取得部120は、心拍数情報取得部110からのノイズ低減処理後の出力(心拍数情報)に基づいて基底心拍数情報を求めてもよい。
また、生体情報処理システムは図1に示したように、心拍数情報を取得する心拍数情報取得部110と、体動情報を取得する体動情報取得部140と、心拍数情報と体動情報に基づいて、深睡眠時間情報と、消費カロリー情報と、ストレス情報とを求める健康度情報演算部130と、求められた深睡眠時間情報と、消費カロリー情報と、ストレス情報の時間分布又は頻度分布を表す情報を表示部30に表示する制御を行う表示制御部150を含んでもよい。
これにより、従来手法では考慮されていなかったストレス情報を求めるとともに、求めた複数の健康度情報を図9(A)、図9(B)のように直感的に理解しやすい形でユーザーに提示することが可能になる。
また以上の本実施形態は、上記の生体情報処理システムを含むウェアラブル装置或いは、上記の生体情報処理システムを含むサーバーシステムにも適用できる。
これにより、種々の対象により本実施形態の手法を実現可能となる。ウェアラブル装置とは例えば図2に示した時計型ウェアラブル装置であってもよく、この場合生体情報の取得部(図1の心拍センサー10や体動センサー20)と処理部(健康度情報演算部130等)を一体の装置内に含めることが可能になり、ウェアラブル装置単体で処理を完結することも可能になる。また、サーバーシステムは例えば図2に示した解析センターに設けられるサーバーシステムであってもよく、この場合生体情報の取得部はウェアラブル装置側となり、処理部がサーバーシステム側となる。よって、処理負荷の分散が可能になりウェアラブル装置の簡素化、低価格化等が可能になる。
なお、本実施形態の生体情報処理システム等は、その処理の一部または大部分をプログラムにより実現してもよい。この場合には、CPU等のプロセッサーがプログラムを実行することで、本実施形態の生体情報処理システム等が実現される。具体的には、情報記憶媒体に記憶されたプログラムが読み出され、読み出されたプログラムをCPU等のプロセッサーが実行する。ここで、情報記憶媒体(コンピューターにより読み取り可能な媒体)は、プログラムやデータなどを格納するものであり、その機能は、光ディスク(DVD、CD等)、HDD(ハードディスクドライブ)、或いはメモリー(カード型メモリー、ROM等)などにより実現できる。そして、CPU等のプロセッサーは、情報記憶媒体に格納されるプログラム(データ)に基づいて本実施形態の種々の処理を行う。即ち、情報記憶媒体には、本実施形態の各部としてコンピューター(操作部、処理部、記憶部、出力部を備える装置)を機能させるためのプログラム(各部の処理をコンピューターに実行させるためのプログラム)が記憶される。
なお、以上のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また生体情報処理システム等の構成、動作も本実施形態で説明したものに限定されず、種々の変形実施が可能である。
10 心拍センサー、20 体動センサー、30 表示部、110 心拍数情報取得部、120 基底心拍数情報取得部、130 健康度情報演算部、140 体動情報取得部、150 表示制御部、BM 基礎代謝量、CI 心係数、CO 分時心拍出量、
EE 分時消費カロリー量、HR 心拍数情報、HR0 基底心拍数情報、
VO2 分時酸素消費量
EE 分時消費カロリー量、HR 心拍数情報、HR0 基底心拍数情報、
VO2 分時酸素消費量
Claims (20)
- 深睡眠状態における心拍数を表す基底心拍数情報を取得する基底心拍数情報取得部と、
心拍数情報を取得する心拍数情報取得部と、
前記基底心拍数情報と、前記心拍数情報との相対情報を求め、前記相対情報に基づいて健康度を表す健康度情報を求める健康度情報演算部と、
を含むことを特徴とする生体情報処理システム。 - 請求項1において、
前記健康度情報演算部は、
前記基底心拍数情報と前記心拍数情報との前記相対情報に基づいて、前記健康度情報として消費カロリー情報を求めることを特徴とする生体情報処理システム。 - 請求項2において、
体動情報を取得する体動情報取得部を含み、
前記健康度情報演算部は、
前記体動情報に基づいて体動状態であると判定された場合には、第1の係数と前記相対情報に基づいて前記消費カロリー情報を求め、
前記体動情報に基づいて非体動状態であると判定された場合には、前記第1の係数とは異なる第2の係数と前記相対情報に基づいて前記消費カロリー情報を求めることを特徴とする生体情報処理システム。 - 請求項3において、
前記健康度情報演算部は、
前記基底心拍数情報と前記心拍数情報との差分情報を前記相対情報として求め、前記第1の係数又は前記第2の係数と、前記差分情報と、1心拍当たりの基準消費カロリーとの積を求め、求めた積と基礎代謝に対応する消費カロリー量との和を前記消費カロリー情報として求めることを特徴とする生体情報処理システム。 - 請求項3又は4において、
前記心拍数情報取得部は、
所与の体動状態における前記心拍数情報を取得し、
前記健康度情報演算部は、
前記所与の体動状態における前記心拍数情報と、前記基底心拍数情報と、前記相対情報と、基礎代謝に対応する消費カロリー量とに基づいて、前記第1の係数を求めることを特徴とする生体情報処理システム。 - 請求項1において、
前記健康度情報演算部は、
前記基底心拍数情報と前記心拍数情報との前記相対情報に基づいて、前記健康度情報として深睡眠時間情報を求めることを特徴とする生体情報処理システム。 - 請求項6において、
前記健康度情報演算部は、
前記心拍数情報と、前記基底心拍数情報に睡眠係数をかけた値との前記相対情報に基づいて、前記深睡眠時間情報を求めることを特徴とする生体情報処理システム。 - 請求項7において、
前記健康度情報演算部は、
前記心拍数情報の値が、前記基底心拍数情報に前記睡眠係数をかけた値以下となる時間の積算処理を行うことで、前記深睡眠時間情報を求めることを特徴とする生体情報処理システム。 - 請求項1において、
前記健康度情報演算部は、
前記基底心拍数情報と前記心拍数情報との前記相対情報に基づいて、前記健康度情報としてストレス情報を求めることを特徴とする生体情報処理システム。 - 請求項9において、
体動情報を取得する体動情報取得部を含み、
前記健康度情報演算部は、
前記体動情報に基づいて体動状態であると判定された場合には、前記心拍数情報と、前記基底心拍数情報にストレス係数をかけた値との前記相対情報に基づいて、前記ストレス情報としてフィジカルストレス情報を求め、
前記体動情報に基づいて非体動状態であると判定された場合には、前記心拍数情報と、前記基底心拍数情報に前記ストレス係数をかけた値との前記相対情報に基づいて、前記ストレス情報としてメンタルストレス情報を求めることを特徴とする生体情報処理システム。 - 請求項10において、
前記健康度情報演算部は、
前記体動情報に基づいて前記体動状態であると判定された場合に、前記心拍数情報の値が、前記基底心拍数情報に前記ストレス係数をかけた値以上となる時間の積算処理を行うことで、前記フィジカルストレス情報を求めることを特徴とする生体情報処理システム。 - 請求項10又は11において、
前記健康度情報演算部は、
前記体動情報に基づいて前記非体動状態であると判定された場合に、前記心拍数情報の値が、前記基底心拍数情報に前記ストレス係数をかけた値以上となる時間の積算処理を行うことで、前記メンタルストレス情報を求めることを特徴とする生体情報処理システム。 - 請求項1乃至12のいずれかにおいて、
前記基底心拍数情報取得部は、
心拍センサー又は脈拍センサーにおいて測定された情報に基づいて、前記基底心拍数情報を取得することを特徴とする生体情報処理システム。 - 心拍数情報を取得する心拍数情報取得部と、
体動情報を取得する体動情報取得部と、
前記心拍数情報と前記体動情報に基づいて、深睡眠時間情報と、消費カロリー情報と、ストレス情報とを求める健康度情報演算部と、
求められた前記深睡眠時間情報と、前記消費カロリー情報と、前記ストレス情報の時間分布又は頻度分布を表す情報を表示部に表示する制御を行う表示制御部と、
を含むことを特徴とする生体情報処理システム。 - 請求項1乃至14のいずれかに記載の生体情報処理システムを含むことを特徴とするウェアラブル装置。
- 請求項1乃至14のいずれかに記載の生体情報処理システムを含むことを特徴とするサーバーシステム。
- 深睡眠状態における心拍数を表す基底心拍数情報を取得する基底心拍数情報取得処理を行い、
心拍数情報を取得する心拍数情報取得処理を行い、
前記基底心拍数情報と、前記心拍数情報との相対情報を求め、前記相対情報に基づいて健康度を表す健康度情報を求める健康度情報演算処理を行う、
ことを特徴とする生体情報処理システムの制御方法。 - 心拍数情報を取得する心拍数情報取得処理を行い、
体動情報を取得する体動情報取得処理を行い、
前記心拍数情報と前記体動情報に基づいて、深睡眠時間情報と、消費カロリー情報と、ストレス情報とを求める健康度情報演算処理を行い、
求められた前記深睡眠時間情報と、前記消費カロリー情報と、前記ストレス情報の時間分布又は頻度分布を表す情報を表示部に表示する制御を行う、
ことを特徴とする生体情報処理システムの制御方法 - 深睡眠状態における心拍数を表す基底心拍数情報を取得する基底心拍数情報取得部と、
心拍数情報を取得する心拍数情報取得部と、
前記基底心拍数情報と、前記心拍数情報との相対情報を求め、前記相対情報に基づいて健康度を表す健康度情報を求める健康度情報演算部として、
コンピューターを機能させることを特徴とするプログラム。 - 心拍数情報を取得する心拍数情報取得部と、
体動情報を取得する体動情報取得部と、
前記心拍数情報と前記体動情報に基づいて、深睡眠時間情報と、消費カロリー情報と、ストレス情報とを求める健康度情報演算部と、
求められた前記深睡眠時間情報と、前記消費カロリー情報と、前記ストレス情報の時間分布又は頻度分布を表す情報を表示部に表示する制御を行う表示制御部として、
コンピューターを機能させることを特徴とするプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380046444.2A CN104602604B (zh) | 2012-09-05 | 2013-09-04 | 生物体信息处理系统、可穿戴装置、服务器系统及生物体信息处理系统的控制方法 |
EP13834655.6A EP2893878A4 (en) | 2012-09-05 | 2013-09-04 | BIOINFORMATION PROCESSING SYSTEM, PORTABLE DEVICE, SERVER SYSTEM AND CONTROL METHOD, AND PROGRAM FOR BIOINFORMATION PROCESSING SYSTEM |
US14/618,459 US20150150516A1 (en) | 2012-09-05 | 2015-02-10 | Biological information processing system, wearable device, server system, method for controlling biological information processing system, and information storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-195035 | 2012-09-05 | ||
JP2012195035A JP6047346B2 (ja) | 2012-09-05 | 2012-09-05 | 生体情報処理システム、ウェアラブル装置、サーバーシステム及びプログラム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/618,459 Continuation US20150150516A1 (en) | 2012-09-05 | 2015-02-10 | Biological information processing system, wearable device, server system, method for controlling biological information processing system, and information storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014038594A1 true WO2014038594A1 (ja) | 2014-03-13 |
Family
ID=50237202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/073809 WO2014038594A1 (ja) | 2012-09-05 | 2013-09-04 | 生体情報処理システム、ウェアラブル装置、サーバーシステム、生体情報処理システムの制御方法及びプログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150150516A1 (ja) |
EP (1) | EP2893878A4 (ja) |
JP (1) | JP6047346B2 (ja) |
CN (1) | CN104602604B (ja) |
WO (1) | WO2014038594A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104188645A (zh) * | 2014-08-08 | 2014-12-10 | 惠州Tcl移动通信有限公司 | 穿戴设备以及基于该穿戴设备的基础心率的测量方法 |
CN104382577A (zh) * | 2014-10-17 | 2015-03-04 | 惠州Tcl移动通信有限公司 | 监测健康状况的方法以及手持设备 |
CN104814791A (zh) * | 2015-03-27 | 2015-08-05 | 惠州Tcl移动通信有限公司 | 一种基于移动终端的健康指数获取方法、系统及移动终端 |
US20170127967A1 (en) * | 2014-07-02 | 2017-05-11 | Koninklijke Philips N.V. | System and method for determining and displaying sleep restoration levels |
EP3107451A4 (en) * | 2014-02-19 | 2017-10-18 | Lumiradx Uk Ltd | Health monitor |
WO2018014498A1 (zh) * | 2016-07-22 | 2018-01-25 | 深圳市元征科技股份有限公司 | 一种穿戴设备的显示方法及装置 |
WO2020121831A1 (ja) * | 2018-12-12 | 2020-06-18 | 日本電信電話株式会社 | 活動状態解析装置、活動状態解析方法、および活動状態解析システム |
US10695004B2 (en) | 2011-12-02 | 2020-06-30 | LumiraDX UK, Ltd. | Activity-dependent multi-mode physiological sensor |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016187429A (ja) * | 2015-03-30 | 2016-11-04 | パイオニア株式会社 | 就寝案内装置 |
EP3307165A4 (en) * | 2015-06-15 | 2019-01-02 | Medibio Limited | Method and system for assessing mental state |
WO2016201500A1 (en) * | 2015-06-15 | 2016-12-22 | Medibio Limited | Method and system for monitoring stress conditions |
CN105147243A (zh) * | 2015-06-18 | 2015-12-16 | 深圳市润安科技发展有限公司 | 一种学生体质健康监控方法和学生体质健康监控系统 |
WO2017081829A1 (ja) * | 2015-11-13 | 2017-05-18 | 富士通株式会社 | 行動検知装置、行動検知方法及び行動検知プログラム |
KR102587452B1 (ko) * | 2015-12-09 | 2023-10-11 | 삼성전자주식회사 | 생체 정보에 기반하여 장비를 제어하는 기법 |
RU2017128430A (ru) * | 2015-12-22 | 2019-02-11 | Конинклейке Филипс Н.В. | Устройство, система и способ оценки расходования энергии человеком |
JP2017213249A (ja) * | 2016-06-01 | 2017-12-07 | セイコーエプソン株式会社 | 生体情報表示システム、携帯端末装置、ウェアラブル装置、生体情報表示方法および生体情報表示プログラム |
JP6857975B2 (ja) * | 2016-07-04 | 2021-04-14 | セイコーエプソン株式会社 | 生体情報処理システム及びプログラム |
JP6676499B2 (ja) * | 2016-08-12 | 2020-04-08 | オムロンヘルスケア株式会社 | 疲労度判定装置、疲労度判定方法、疲労度判定プログラム、及び、生体情報測定装置 |
US10537256B2 (en) | 2016-12-09 | 2020-01-21 | Nokia Technologies Oy | Health and fitness monitor for determining a minimum heart rate |
WO2018227239A1 (en) * | 2017-06-12 | 2018-12-20 | Medibio Limited | Mental state indicator |
CN108670223A (zh) * | 2018-04-25 | 2018-10-19 | 上海理工大学 | 一种睡眠质量分析系统及其分析方法 |
KR102570783B1 (ko) * | 2018-07-02 | 2023-08-25 | 삼성전자 주식회사 | 전자 장치 및 이를 이용한 생체 신호에 기초하여 개인화된 생체 정보 제공 방법 |
RU2740899C1 (ru) * | 2020-02-04 | 2021-01-21 | федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) | Способ ультразвуковой коагуляции субмикронных частиц |
EP4011285A1 (en) * | 2020-12-09 | 2022-06-15 | Koninklijke Philips N.V. | Stress detection device, system and method for detecting mental stress of a person |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04180730A (ja) * | 1990-11-16 | 1992-06-26 | Atsufuku Takara | ストレスレベル測定装置 |
JPH08112270A (ja) * | 1994-10-18 | 1996-05-07 | Matsushita Electric Works Ltd | 睡眠状態判定方法 |
JPH0956705A (ja) * | 1995-06-15 | 1997-03-04 | Matsushita Electric Works Ltd | 消費カロリ計 |
JPH09294727A (ja) * | 1996-04-30 | 1997-11-18 | Seiko Epson Corp | 消費カロリー測定装置 |
JP2000000215A (ja) * | 1998-06-15 | 2000-01-07 | Arata Nemoto | 睡眠深さ判定方法および判定装置 |
JP2002149831A (ja) * | 2000-11-15 | 2002-05-24 | Sanyo Electric Co Ltd | 健康管理システム及び情報処理装置 |
JP2004223271A (ja) * | 1996-06-12 | 2004-08-12 | Seiko Epson Corp | 体温測定装置 |
JP2009148372A (ja) * | 2007-12-19 | 2009-07-09 | Panasonic Electric Works Co Ltd | ストレス判定システムおよびストレス改善システム |
JP2009285498A (ja) | 2006-12-11 | 2009-12-10 | Seiko Epson Corp | 生体情報処理装置、生体情報処理方法および制御プログラム |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4566461A (en) * | 1983-02-15 | 1986-01-28 | Michael Lubell | Health fitness monitor |
US6030342A (en) * | 1996-06-12 | 2000-02-29 | Seiko Epson Corporation | Device for measuring calorie expenditure and device for measuring body temperature |
JP3356745B2 (ja) * | 1999-12-07 | 2002-12-16 | ヤーマン株式会社 | カロリー計算機 |
US7460899B2 (en) * | 2003-04-23 | 2008-12-02 | Quiescent, Inc. | Apparatus and method for monitoring heart rate variability |
JP3923035B2 (ja) * | 2003-07-03 | 2007-05-30 | 株式会社東芝 | 生体状態分析装置及び生体状態分析方法 |
US7041049B1 (en) * | 2003-11-21 | 2006-05-09 | First Principles, Inc. | Sleep guidance system and related methods |
US7477934B2 (en) * | 2004-06-29 | 2009-01-13 | Polar Electro Oy | Method of monitoring human relaxation level, and user-operated heart rate monitor |
EP1906812A1 (en) * | 2005-07-28 | 2008-04-09 | Boris Schwartz | Ear-mounted biosensor |
US7310549B1 (en) * | 2006-07-14 | 2007-12-18 | Johnson Outdoors Inc. | Dive computer with heart rate monitor |
EP1886707A1 (en) * | 2006-08-10 | 2008-02-13 | Future Acoustic LLP | Sleep enhancing device |
JP4818035B2 (ja) * | 2006-09-19 | 2011-11-16 | 株式会社タニタ | 睡眠時消費カロリー測定装置 |
US8504145B2 (en) * | 2006-12-11 | 2013-08-06 | Seiko Epson Corporation | Biometric information processing device, biometric information processing method, and control program |
JP4434284B2 (ja) * | 2008-02-06 | 2010-03-17 | ソニー株式会社 | 情報処理装置、表示データ提供方法、およびプログラム |
US20090204668A1 (en) * | 2008-02-12 | 2009-08-13 | Sydney Furan Huang | System and process for distant pulse diagnosis |
DE102011006649B4 (de) * | 2010-04-02 | 2018-05-03 | Tk Holdings Inc. | Lenkrad mit Handsensoren |
FI124973B (fi) * | 2011-02-17 | 2015-04-15 | Suunto Oy | Menetelmä ja laite energian kulutuksen arvioimiseksi |
-
2012
- 2012-09-05 JP JP2012195035A patent/JP6047346B2/ja active Active
-
2013
- 2013-09-04 CN CN201380046444.2A patent/CN104602604B/zh active Active
- 2013-09-04 WO PCT/JP2013/073809 patent/WO2014038594A1/ja active Application Filing
- 2013-09-04 EP EP13834655.6A patent/EP2893878A4/en not_active Withdrawn
-
2015
- 2015-02-10 US US14/618,459 patent/US20150150516A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04180730A (ja) * | 1990-11-16 | 1992-06-26 | Atsufuku Takara | ストレスレベル測定装置 |
JPH08112270A (ja) * | 1994-10-18 | 1996-05-07 | Matsushita Electric Works Ltd | 睡眠状態判定方法 |
JPH0956705A (ja) * | 1995-06-15 | 1997-03-04 | Matsushita Electric Works Ltd | 消費カロリ計 |
JPH09294727A (ja) * | 1996-04-30 | 1997-11-18 | Seiko Epson Corp | 消費カロリー測定装置 |
JP2004223271A (ja) * | 1996-06-12 | 2004-08-12 | Seiko Epson Corp | 体温測定装置 |
JP2000000215A (ja) * | 1998-06-15 | 2000-01-07 | Arata Nemoto | 睡眠深さ判定方法および判定装置 |
JP2002149831A (ja) * | 2000-11-15 | 2002-05-24 | Sanyo Electric Co Ltd | 健康管理システム及び情報処理装置 |
JP2009285498A (ja) | 2006-12-11 | 2009-12-10 | Seiko Epson Corp | 生体情報処理装置、生体情報処理方法および制御プログラム |
JP2009148372A (ja) * | 2007-12-19 | 2009-07-09 | Panasonic Electric Works Co Ltd | ストレス判定システムおよびストレス改善システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2893878A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10695004B2 (en) | 2011-12-02 | 2020-06-30 | LumiraDX UK, Ltd. | Activity-dependent multi-mode physiological sensor |
US11350880B2 (en) | 2011-12-02 | 2022-06-07 | Lumiradx Uk Ltd. | Health-monitor patch |
EP3107451A4 (en) * | 2014-02-19 | 2017-10-18 | Lumiradx Uk Ltd | Health monitor |
US20170127967A1 (en) * | 2014-07-02 | 2017-05-11 | Koninklijke Philips N.V. | System and method for determining and displaying sleep restoration levels |
US10524682B2 (en) * | 2014-07-02 | 2020-01-07 | Koninklijke Philips N.V. | System and method for determining and displaying sleep restoration levels |
CN104188645A (zh) * | 2014-08-08 | 2014-12-10 | 惠州Tcl移动通信有限公司 | 穿戴设备以及基于该穿戴设备的基础心率的测量方法 |
CN104188645B (zh) * | 2014-08-08 | 2019-05-28 | 惠州Tcl移动通信有限公司 | 穿戴设备以及基于该穿戴设备的基础心率的测量方法 |
CN104382577A (zh) * | 2014-10-17 | 2015-03-04 | 惠州Tcl移动通信有限公司 | 监测健康状况的方法以及手持设备 |
CN104814791A (zh) * | 2015-03-27 | 2015-08-05 | 惠州Tcl移动通信有限公司 | 一种基于移动终端的健康指数获取方法、系统及移动终端 |
WO2018014498A1 (zh) * | 2016-07-22 | 2018-01-25 | 深圳市元征科技股份有限公司 | 一种穿戴设备的显示方法及装置 |
WO2020121831A1 (ja) * | 2018-12-12 | 2020-06-18 | 日本電信電話株式会社 | 活動状態解析装置、活動状態解析方法、および活動状態解析システム |
JP2020092804A (ja) * | 2018-12-12 | 2020-06-18 | 日本電信電話株式会社 | 活動状態解析装置、活動状態解析方法、および活動状態解析システム |
Also Published As
Publication number | Publication date |
---|---|
CN104602604B (zh) | 2016-10-05 |
EP2893878A4 (en) | 2016-08-17 |
US20150150516A1 (en) | 2015-06-04 |
CN104602604A (zh) | 2015-05-06 |
JP2014050451A (ja) | 2014-03-20 |
EP2893878A1 (en) | 2015-07-15 |
JP6047346B2 (ja) | 2016-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6047346B2 (ja) | 生体情報処理システム、ウェアラブル装置、サーバーシステム及びプログラム | |
Shei et al. | Wearable activity trackers–advanced technology or advanced marketing? | |
Paalasmaa et al. | Unobtrusive online monitoring of sleep at home | |
US20210137493A1 (en) | Mobile vascular health evaluation devices using doppler ultrasound and correlation of parameters to output recommendations to a wrist-mounted display | |
Al Osman et al. | Ubiquitous biofeedback serious game for stress management | |
JP6531161B2 (ja) | 健康リスク指標決定 | |
US10201308B2 (en) | Portable device for monitoring and reporting of medical information for the evidence-based management of patients with chronic respiratory disease | |
US20170035365A1 (en) | Biological information processing system, electronic apparatus, server system and biological information processing method | |
CA2816517C (en) | Automated health data acquisition, processing and communication system | |
US20140135592A1 (en) | Health band | |
US9402597B1 (en) | Mobile vascular health evaluation processes | |
KR102349961B1 (ko) | 헬스 케어 장치 및 그 동작 방법 | |
JP2015131049A (ja) | 生体情報処理システム、電子機器及びサーバーシステム | |
US12097049B2 (en) | Methods, apparatus and systems for adaptable presentation of sensor data | |
JP2016131604A (ja) | 生体情報測定システム、生体情報測定装置および生体情報測定方法 | |
JP6857975B2 (ja) | 生体情報処理システム及びプログラム | |
Hoevenaars et al. | Accuracy of heart rate measurement by the Fitbit Charge 2 during wheelchair activities in people with spinal cord injury: instrument validation study | |
US10646169B2 (en) | Process of controlling a device for diagnosing and monitoring individual activity, conditions, and diet | |
WO2009138927A1 (en) | A method and apparatus for monitoring blood pressure | |
JP2016535657A (ja) | ハイリスクの被験者において脂肪及びコレステロール代謝を促進する身体活動閾値を測定するための方法及び装置配列体 | |
Nuss et al. | Accuracy of heart rate and energy expenditure estimations of wrist-worn and arm-worn Apple Watches | |
Kinnunen | Studies for the development, validation, and application of wearable technology in the assessment of human health-related behavior | |
RU2725294C1 (ru) | Персонализированная система формирования рекомендаций пользователю в реализации здорового образа жизни | |
WO2024219363A1 (ja) | 運転適性評価装置および運転適性評価方法 | |
US20230293019A1 (en) | Automatically generating protocols or reports based on sensor data from a mobile device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13834655 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013834655 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |