WO2014038446A1 - 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置 - Google Patents

硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置 Download PDF

Info

Publication number
WO2014038446A1
WO2014038446A1 PCT/JP2013/073005 JP2013073005W WO2014038446A1 WO 2014038446 A1 WO2014038446 A1 WO 2014038446A1 JP 2013073005 W JP2013073005 W JP 2013073005W WO 2014038446 A1 WO2014038446 A1 WO 2014038446A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
curable epoxy
weight
group
Prior art date
Application number
PCT/JP2013/073005
Other languages
English (en)
French (fr)
Inventor
平川裕之
前津成俊
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2014534319A priority Critical patent/JP6082746B2/ja
Publication of WO2014038446A1 publication Critical patent/WO2014038446A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/40Polyesters derived from ester-forming derivatives of polycarboxylic acids or of polyhydroxy compounds, other than from esters thereof
    • C08G63/42Cyclic ethers; Cyclic carbonates; Cyclic sulfites; Cyclic orthoesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/06Triglycidylisocyanurates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention provides a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, and a cured product of the curable epoxy resin composition (an optical semiconductor sealing resin composition).
  • the present invention relates to an optical semiconductor device in which a semiconductor element is sealed.
  • a sealing agent for forming a sealing material having high heat resistance for example, a composition containing monoallyl diglycidyl isocyanurate and a bisphenol A type epoxy resin is known (see Patent Document 1).
  • the coloring of the sealant proceeds by light and heat emitted from the optical semiconductor element and should be output originally. As a result, the light is absorbed, and as a result, the intensity of the light output from the optical semiconductor device is lowered with time.
  • -Liquid alicyclic epoxy resins having an alicyclic skeleton such as an adduct of epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate and ⁇ -caprolactone and 1,2,8,9-diepoxylimonene are known. ing.
  • the cured products of these alicyclic epoxy resins are vulnerable to various stresses, and cracks occur when a thermal shock such as a cooling cycle (repeating heating and cooling periodically) is applied. Etc. had occurred.
  • an optical semiconductor device for example, a surface-mount type optical semiconductor device
  • a reflow process for joining the electrodes of the optical semiconductor device to a wiring board by soldering.
  • lead-free solder having a high melting point has been used as a solder as a bonding material, and the heat treatment in the reflow process has become a higher temperature (for example, the peak temperature is 240 to 260 ° C.).
  • the peak temperature is 240 to 260 ° C.
  • the sealing material in the optical semiconductor device has high heat resistance and light resistance, and also has a characteristic that cracks are not easily generated when a thermal shock is applied (sometimes referred to as “thermal shock resistance”), and Further, there is a demand for characteristics in which cracks and peeling are unlikely to occur even when heat treatment is performed in the reflow process.
  • the optical semiconductor device is kept under a high humidity condition for a certain period of time (for example, 30 ° C., 70% RH for 168 hours; 60 ° C., 60% RH).
  • a high humidity condition for example, 30 ° C., 70% RH for 168 hours; 60 ° C., 60% RH
  • the above-mentioned cracks and peeling are not likely to occur even when heat treatment is performed in the reflow process after absorbing moisture after being placed under the above conditions (for 40 hours, etc.) (this characteristic is sometimes referred to as “moisture absorption reflow resistance”). ) Is required.
  • an object of the present invention is to provide a curable epoxy resin composition that is excellent in heat resistance, light resistance, and moisture absorption reflow resistance, and in particular, can form a cured product (sealing material) excellent in thermal shock resistance. It is in.
  • Another object of the present invention is to provide a cured product having excellent heat resistance, light resistance, and moisture absorption reflow resistance, and in particular, excellent thermal shock resistance.
  • Another object of the present invention is to suppress deterioration caused by light and heat emitted from the optical semiconductor element and high-temperature processes such as a reflow process, and particularly deterioration such as a decrease in luminous intensity even when a thermal shock is applied.
  • An object of the present invention is to provide an optical semiconductor device that is less likely to cause the occurrence of the problem.
  • the inventors of the present invention contain an alicyclic epoxy compound, a monoallyl diglycidyl isocyanurate compound, and a curing agent, and include a specific compound as a curing agent.
  • the epoxy resin composition it was found that a cured product (sealing material) excellent in heat resistance, light resistance and moisture absorption reflow property, and particularly excellent in thermal shock resistance, could be formed, and the present invention was completed.
  • the present invention relates to an alicyclic epoxy compound (A) and the following formula (1).
  • R 11 ⁇ R 16 are the same or different, represent a hydrogen atom or an alkyl group
  • a succinic anhydride content in the total amount of the curing agent (C) is 0.4% by weight or less.
  • curable epoxy resin composition further containing norbornane-2,3-dicarboxylic acid anhydride as a curing agent (C) is provided.
  • the said curable epoxy resin composition containing a hardening accelerator (D) is provided.
  • the curable epoxy resin composition is provided in which the alicyclic epoxy compound (A) is a compound having a cyclohexene oxide group.
  • the alicyclic epoxy compound (A) has the following formula (I-1)
  • the said curable epoxy resin composition which is a compound represented by these is provided.
  • curable epoxy resin composition containing a siloxane derivative having two or more epoxy groups in the molecule is provided.
  • the curable epoxy resin composition containing the alicyclic polyester resin is provided.
  • the present invention also provides a cured product obtained by curing the curable epoxy resin composition.
  • the said curable epoxy resin composition which is a resin composition for optical semiconductor sealing is provided.
  • the present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition.
  • the curable epoxy resin composition of the present invention Since the curable epoxy resin composition of the present invention has the above-described configuration, it is excellent in heat resistance, light resistance, and moisture absorption reflow resistance by curing the resin composition, and in particular, a cured product excellent in thermal shock resistance. (Sealing material) can be formed. For this reason, when the curable epoxy resin composition of the present invention is used as a resin composition for encapsulating an optical semiconductor, deterioration due to light and heat emitted from the optical semiconductor element and deterioration in a high temperature process such as a reflow process are suppressed. In particular, it is possible to obtain an optical semiconductor device excellent in durability and quality, in which deterioration such as a decrease in luminous intensity does not easily occur even when a thermal shock is applied.
  • FIG. 1 It is the schematic which shows one Embodiment of the optical semiconductor device by which the optical semiconductor element was sealed with the hardened
  • the left figure (a) is a perspective view
  • the right figure (b) is a sectional view. It is an example of the surface temperature profile (temperature profile in one heat processing among two heat processing) of the optical semiconductor device in the solder heat resistance test of an Example.
  • the curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) and the following formula (1). [Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
  • the resin composition which contains the monoallyl diglycidyl isocyanurate compound (B) represented by these, and a hardening
  • the alicyclic epoxy compound (A) in the curable epoxy resin composition of the present invention is a compound having at least an alicyclic (aliphatic ring) structure and an epoxy group in the molecule (in one molecule).
  • the alicyclic epoxy compound (A) specifically, (i) The compound which has an epoxy group (alicyclic epoxy group) comprised by two adjacent carbon atoms and oxygen atoms which comprise an alicyclic ring. And (ii) compounds in which an epoxy group is directly bonded to the alicyclic ring with a single bond.
  • the alicyclic epoxy compound (A) does not include a siloxane derivative having two or more epoxy groups in the molecule described later.
  • the compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring (i) is arbitrarily selected from known or commonly used compounds. Can be used. Especially, as said alicyclic epoxy group, a cyclohexene oxide group is preferable.
  • a compound having a cyclohexene oxide group is preferable from the viewpoint of transparency and heat resistance.
  • a compound (alicyclic epoxy compound) represented by the following formula (I) is preferable.
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and a group in which a plurality of these are linked.
  • Examples of the epoxy compound (A) in which X in the above formula (I) is a single bond include 3,4,3 ′, 4′-diepoxybicyclohexane.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic hydrocarbon group.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group, and cyclohexylidene group.
  • the linking group X is particularly preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—; A group in which a plurality of groups are linked; a group in which one or more of these groups are linked to one or more of divalent hydrocarbon groups, and the like.
  • Examples of the divalent hydrocarbon group include those exemplified above.
  • Typical examples of the alicyclic epoxy compound represented by the above formula (I) include compounds represented by the following formulas (I-1) to (I-10).
  • l and m each represents an integer of 1 to 30.
  • R in the following formula (I-5) is an alkylene group having 1 to 8 carbon atoms, and is a methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, s-butylene group, pentylene group, hexylene.
  • linear or branched alkylene groups such as a group, a heptylene group, and an octylene group.
  • linear or branched alkylene groups having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an isopropylene group are preferable.
  • N1 to n6 in the following formulas (I-9) and (I-10) each represents an integer of 1 to 30.
  • Examples of the compound (ii) in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (II).
  • R ′ is a group obtained by removing p —OH from a p-valent alcohol, and p and n each represent a natural number.
  • the p-valent alcohol [R ′-(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms, etc.).
  • p is preferably 1 to 6, and n is preferably 1 to 30.
  • n in each () (in parentheses) may be the same or different.
  • the alicyclic epoxy compound (A) can be used singly or in combination of two or more.
  • commercial items such as brand name "Celoxide 2021P” and “Celoxide 2081” (above, Daicel Corporation make), for example, can also be used.
  • Examples of the alicyclic epoxy compound (A) include 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate represented by the above formula (I-1), trade name “Celoxide 2021P” ) Manufactured by Daicel) is particularly preferable.
  • the content (blending amount) of the alicyclic epoxy compound (A) in the curable epoxy resin composition of the present invention is not particularly limited, but is 5 to 70 with respect to the curable epoxy resin composition (100% by weight). % By weight is preferred, more preferably 10 to 60% by weight, still more preferably 15 to 50% by weight. When the content of the alicyclic epoxy compound (A) is less than 5% by weight, the heat resistance, light resistance, thermal shock resistance, and moisture absorption reflow resistance of the cured product may be lowered.
  • the content (blending amount) of the alicyclic epoxy compound (A) with respect to the total amount of the compound having an epoxy group contained in the curable epoxy resin composition (total epoxy compound) (100 wt%) is not particularly limited, but 10 It is preferably -95% by weight, more preferably 20-92% by weight, still more preferably 30-90% by weight. When the content of the alicyclic epoxy compound (A) is less than 10% by weight, the heat resistance, light resistance, thermal shock resistance, and moisture absorption reflow resistance of the cured product may be lowered.
  • the monoallyl diglycidyl isocyanurate compound (B) in the curable epoxy resin composition of the present invention is a compound represented by the following formula (1).
  • the monoallyl diglycidyl isocyanurate compound (B) improves the toughness of the cured product, and provides thermal shock resistance and moisture absorption reflow resistance (especially crack resistance in heat treatment in the reflow process after moisture absorption (occurs cracks). It plays a role of improving difficult characteristics)).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, pentyl, hexyl, heptyl, octyl and the like. Examples thereof include a chain or branched alkyl group. Of these, a linear or branched alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group is preferable.
  • R 1 and R 2 in the above formula (1) are particularly preferably hydrogen atoms.
  • monoallyl diglycidyl isocyanurate compound (B) examples include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2- Methylpropenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, and the like.
  • monoallyl diglycidyl isocyanurate compound (B) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the monoallyl diglycidyl isocyanurate compound (B) may be modified in advance by adding a compound that reacts with an epoxy group such as alcohol or acid anhydride.
  • the content (blending amount) of the monoallyl diglycidyl isocyanurate compound (B) is not particularly limited, but is based on the total amount (100% by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. It is preferably 5 to 60% by weight, more preferably 8 to 55% by weight, still more preferably 10 to 50% by weight.
  • the content of the monoallyl diglycidyl isocyanurate compound (B) exceeds 60% by weight, the solubility of the monoallyl diglycidyl isocyanurate compound (B) in the curable epoxy resin composition is lowered, and the physical properties of the cured product are reduced. There may be adverse effects.
  • the content of the monoallyl diglycidyl isocyanurate compound (B) is less than 5% by weight, the thermal shock resistance and moisture absorption reflow resistance of the cured product may be lowered.
  • the content (blending amount) of the monoallyl diglycidyl isocyanurate compound (B) with respect to the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is particularly Although not limited, it is preferably 5 to 60% by weight, more preferably 8 to 55% by weight, and still more preferably 10 to 50% by weight.
  • the content of the monoallyl diglycidyl isocyanurate compound (B) exceeds 60% by weight, the solubility of the monoallyl diglycidyl isocyanurate compound (B) in the curable epoxy resin composition is lowered, and the physical properties of the cured product are reduced. There may be adverse effects.
  • the content of the monoallyl diglycidyl isocyanurate compound (B) is less than 5% by weight, the thermal shock resistance and moisture absorption reflow resistance of the cured product may be lowered.
  • the curing agent (C) in the curable epoxy resin composition of the present invention is a compound having a function of curing a compound having an epoxy group.
  • the curable epoxy resin composition of the present invention contains methylnorbornane-2,3-dicarboxylic acid anhydride as an essential component as a curing agent (C).
  • methylnorbornane-2,3-dicarboxylic acid anhydride is a generic name for isomers having different methyl bond positions on the norbornane ring.
  • Typical examples of methylnorbornane-2,3-dicarboxylic acid anhydride include 5-methylnorbornane-2,3-dicarboxylic acid anhydride.
  • Methylnorbornane-2,3-dicarboxylic acid anhydride has exo and endo stereoisomers.
  • the exo form ratio of methylnorbornane-2,3-dicarboxylic acid anhydride is increased, it tends to be liquid at room temperature, so that it can be easily handled as the curing agent (C).
  • the methylnorbornane-2,3-dicarboxylic acid anhydride preferably contains an exo isomer as an essential component.
  • the abundance ratio of the exo isomer in the methylnorbornane-2,3-dicarboxylic acid anhydride is preferably 40% by weight or more, more preferably 50% by weight or more. It is. If the abundance ratio of the exo isomer is less than 40% by weight, the methylnorbornane-2,3-dicarboxylic acid anhydride tends to be a solid at room temperature, which may make handling difficult.
  • Methylnorbornane-2,3-dicarboxylic acid anhydride can be obtained by hydrogenating methylnorbornene-2,3-dicarboxylic acid anhydride.
  • methylnorbornane-2,3-dicarboxylic acid anhydride is obtained by converting part or all of methylnorbornene-2,3-dicarboxylic acid anhydride into methylenenorbornane-2,3-dicarboxylic acid anhydride in the presence of an acid catalyst. It is preferable to produce the product by isomerization to a product, followed by hydrogenation (see, for example, JP-A-6-25207).
  • the content (ratio) of methylnorbornane-2,3-dicarboxylic acid anhydride in the curing agent (C) (total amount of the curing agent (C) contained in the curable epoxy resin composition: 100% by weight) is particularly limited. However, it is preferably 5 to 80% by weight, more preferably 10 to 70% by weight, still more preferably 20 to 60% by weight. If the content of methylnorbornane-2,3-dicarboxylic acid anhydride is less than 5% by weight, the moisture absorption reflow resistance and thermal shock resistance of the cured product may be lowered.
  • the curable epoxy resin composition of this invention contains the compound (glutaric acid anhydride or its derivative (s)) represented by following formula (2) as an essential component as a hardening
  • the moisture absorption reflow resistance and the thermal shock resistance of the cured product are improved.
  • R 11 to R 16 represent a hydrogen atom or an alkyl group.
  • the alkyl group as R 11 to R 16 include a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, pentyl group, hexyl group, heptyl group, octyl group, 2 -Linear or branched alkyl groups such as ethylhexyl group, nonyl group, decyl group and the like.
  • R 11 to R 16 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the R 11 ⁇ R 16 in the formula (2) may be the same or different.
  • the compound represented by the above formula (2) include glutaric anhydride, 2,4-diethylglutaric anhydride, 2,4-dimethylglutaric anhydride, 3-methylglutaric acid.
  • a commercial product such as a trade name “jER cure YH1120” (manufactured by Mitsubishi Chemical Corporation) may be used.
  • the compound represented by the said Formula (2) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the 2,4-diethylglutaric anhydride is represented by the following formula.
  • the total amount of these is not particularly limited, but is preferably 1 to 60% by weight, more preferably 5 to 50% by weight, and still more preferably 10 to 40% by weight.
  • the content of the compound represented by the formula (2) is less than 1% by weight, the moisture absorption reflow resistance and the thermal shock resistance of the cured product may be deteriorated.
  • the content of the compound represented by the above formula (2) exceeds 60% by weight, the heat resistance of the cured product may be lowered.
  • the curable epoxy resin composition of the present invention may further contain norbornane-2,3-dicarboxylic acid anhydride as the curing agent (C).
  • norbornane-2,3-dicarboxylic acid anhydride there are isomers of exo and endo in the same manner as methylnorbornane-2,3-dicarboxylic acid anhydride.
  • norbornane-2,3-dicarboxylic acid anhydride preferably contains an exo isomer as an essential component.
  • the abundance ratio of the exo isomer in the norbornane-2,3-dicarboxylic anhydride is preferably 30% by weight or more, more preferably 40% by weight or more. is there. If the abundance ratio of the exo isomer is less than 30% by weight, the norbornane-2,3-dicarboxylic acid anhydride tends to be a solid at room temperature, which may make handling difficult.
  • Norbornane-2,3-dicarboxylic acid anhydride is obtained by hydrogenating norbornene-2,3-dicarboxylic acid anhydride obtained by Diels-Alder reaction of cyclopentadiene and maleic anhydride.
  • norbornene-2,3-dicarboxylic acid anhydride usually obtained by Diels-Alder reaction of cyclopentadiene and maleic anhydride has an end-body content of 95% by weight or more, so it is heated to 150 ° C. or higher.
  • norbornane-2,3-dicarboxylic acid anhydride By performing a hydrogenation reaction after isomerization (thermal isomerization) of the exo isomer, norbornane-2,3-dicarboxylic acid anhydride (for example, the exo isomer abundance ratio is 30% by weight) The above norbornane-2,3-dicarboxylic acid anhydride) can be produced.
  • the curing agent (C) includes methyl norbornane-2,3-dicarboxylic acid anhydride and norbornane-2,3-dicarboxylic acid anhydride
  • methyl norbornane-2,3-dicarboxylic acid anhydride and norbornane-2 3-dicarboxylic anhydride mixtures can be used.
  • the above mixture can be prepared by mixing methylnorbornane-2,3-dicarboxylic acid anhydride and norbornane-2,3-dicarboxylic acid anhydride, or methylnorbornene-2,3-dicarboxylic acid anhydride.
  • a mixture obtained by mixing norbornene-2,3-dicarboxylic anhydride can also be produced by isomerization and hydrogenation.
  • the content (ratio) of norbornane-2,3-dicarboxylic acid anhydride in the curing agent (C) (total amount of the curing agent (C) contained in the curable epoxy resin composition: 100% by weight) is not particularly limited. However, 0 to 30% by weight is preferable, more preferably 0 to 25% by weight, and still more preferably 0 to 20% by weight. If the content of norbornane-2,3-dicarboxylic acid anhydride exceeds 30% by weight, the moisture absorption reflow resistance of the cured product may be lowered.
  • the total content of methylnorbornane-2,3-dicarboxylic acid anhydride and norbornane-2,3-dicarboxylic acid anhydride is not particularly limited, but is preferably 50 to 99% by weight, more preferably 60 to 90% by weight with respect to the total amount (100% by weight) of the curing agent (C). If the total content is less than 50% by weight, the moisture absorption reflow resistance and thermal shock resistance of the cured product may be lowered. On the other hand, when the total content exceeds 99% by weight, the content of the compound represented by the above formula (2) is relatively decreased, and the thermal shock resistance of the cured product may be lowered.
  • the curable epoxy resin composition of the present invention comprises, as a curing agent (C), methylnorbornane-2,3-dicarboxylic acid anhydride, a compound represented by the above formula (2), norbornane-2,3-dicarboxylic acid anhydride
  • a curing agent C
  • methylnorbornane-2,3-dicarboxylic acid anhydride a compound represented by the above formula (2)
  • Other curing agents (sometimes referred to as “other curing agents”) may be included.
  • the other curing agent include acid anhydrides liquid at 25 ° C.
  • phthalic anhydride examples thereof include solid acid anhydrides at room temperature (about 25 ° C.) such as tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylcyclohexene dicarboxylic acid anhydride.
  • an anhydride of a saturated monocyclic hydrocarbon dicarboxylic acid (a ring having a substituent such as an alkyl group bonded thereto) Including).
  • the content of the other curing agent is preferably 20% by weight or less (for example, 0 to 20% by weight), more preferably 10% by weight or less (more preferably 5%) in the curing agent (C) (100% by weight). % By weight or less).
  • Examples of the other curing agent include, for example, trade names “Rikacid MH-700” (manufactured by Shin Nippon Rika Co., Ltd.), “Rikacid MH-700F” (manufactured by Shin Nippon Rika Co., Ltd.), trade names “HN-5500 ”(Manufactured by Hitachi Chemical Co., Ltd.) can also be used.
  • a trade name “HN-7200” manufactured by Hitachi Chemical Co., Ltd.
  • a trade name “HN-5700” Hitachi Chemical Industry Co., Ltd.
  • Commercial products such as (manufactured by Co., Ltd.) can also be used.
  • the content (ratio) of succinic anhydride in the total amount of the curing agent (C) is 0.4% by weight or less, preferably 0.2% by weight or less. It is.
  • the content of succinic anhydride may be 0% by weight.
  • succinic anhydride is precipitated in the curing agent (C) or the curable epoxy resin composition, and workability is reduced, or a curing accelerator (D ) May cause problems such as coloring of the cured product.
  • the succinic anhydride in the curing agent (C) is methylnorbornene-2,3-dicarboxylic anhydride, norbornene-2,3-dicarboxylic anhydride, or a mixture thereof isomerized and hydrogenated to methyl It is formed as a by-product in forming norbornane-2,3-dicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, or a mixture thereof. More specifically, since the isomerization is carried out at a high temperature of about 180 ° C.
  • Examples of a method for controlling the content of succinic anhydride in the total amount of the curing agent (C) to 0.4 wt% or less include, for example, methylnorbornane-2,3-dicarboxylic acid anhydride, norbornane-2,3-dicarboxylic acid Examples thereof include a method in which an acid anhydride or a mixture thereof is distilled under reduced pressure. More specifically, for example, there may be mentioned a method in which the initial distillation is cut by 5 to 10% under the conditions of 138 ° C. and 0.27 kPa, and the remainder is distilled under the conditions of 173 ° C. and 0.27 kPa.
  • the content (blending amount) of the curing agent (C) is not particularly limited, but is 50 to 200 with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition of the present invention. Part by weight is preferred, more preferably 80 to 180 parts by weight, and still more preferably 100 to 170 parts by weight. More specifically, 0.5 to 1.7 equivalents (more preferably, 1.2 to 1 equivalent) per equivalent of epoxy groups in all compounds having an epoxy group contained in the curable epoxy resin composition of the present invention. .6 equivalents) is preferably used.
  • curing agent (C) is less than 50 weight part, hardening will become inadequate and there exists a tendency for the toughness of hardened
  • curing agent (C) exceeds 200 weight part, hardened
  • the “content of the curing agent (C)” means the total amount of the curing agent (C) contained in the curable epoxy resin composition.
  • the curable epoxy resin composition of the present invention may contain a curing accelerator (D).
  • the curing accelerator (D) is a compound having a function of accelerating the curing rate when the compound having an epoxy group is cured by the curing agent (C).
  • the curing accelerator (D) known or conventional curing accelerators can be used.
  • 1,8-diazabicyclo [5.4.0] undecene-7 DBU or a salt thereof (for example, phenol) Salt, octylate, p-toluenesulfonate, formate, tetraphenylborate, etc.); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or a salt thereof (eg, phenol salt, Octylate, p-toluenesulfonate, formate, tetraphenylborate, etc.); tertiary such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine Amines; imidazoles such as 2-ethyl-4-methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole; Esters, phosphines such as triphenyl phosphine
  • the content (blending amount) of the curing accelerator (D) is not particularly limited, but is 0.05 to 0.05 based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the amount is preferably 5 parts by weight, more preferably 0.1 to 3 parts by weight, still more preferably 0.2 to 3 parts by weight, particularly preferably 0.25 to 2.5 parts by weight.
  • content of the curing accelerator (D) is less than 0.05 parts by weight, the curing accelerating effect may be insufficient.
  • the curable epoxy resin composition of the present invention may further contain an alicyclic polyester resin.
  • an alicyclic polyester resin By containing the alicyclic polyester resin, particularly, the heat resistance and light resistance of the cured product are improved, and the light intensity of the optical semiconductor device tends to be further suppressed.
  • the alicyclic polyester resin is a polyester resin having at least an alicyclic structure (aliphatic ring structure).
  • the alicyclic polyester resin is preferably an alicyclic polyester resin having an alicyclic ring (alicyclic structure) in the main chain.
  • the alicyclic structure in the alicyclic polyester resin is not particularly limited, and examples thereof include a monocyclic hydrocarbon structure and a bridged ring hydrocarbon structure (for example, a bicyclic hydrocarbon). Among these, a saturated monocyclic hydrocarbon structure or a saturated bridged ring hydrocarbon structure in which the alicyclic skeleton is entirely composed of carbon-carbon single bonds is preferable.
  • the alicyclic structure in the alicyclic polyester resin may be introduced into only one of the structural unit derived from dicarboxylic acid and the structural unit derived from diol, or both may be introduced, It is not limited.
  • the alicyclic polyester resin has a structural unit derived from a monomer component having an alicyclic structure.
  • the monomer having an alicyclic structure include diols and dicarboxylic acids having a known or commonly used alicyclic structure, and are not particularly limited.
  • the alicyclic polyester resin may have a structural unit derived from a monomer component having no alicyclic structure.
  • the monomer having no alicyclic structure include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid and naphthalenedicarboxylic acid (including derivatives such as acid anhydrides); adipic acid, sebacic acid and azelaic acid Aliphatic dicarboxylic acids such as succinic acid, fumaric acid and maleic acid (including derivatives such as acid anhydrides); ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3- Butanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 3-methylpentanediol, diethylene glycol, 3-methyl-1,5-pent
  • a monomer having a suitable substituent for example, an alkyl group, an alkoxy group, a halogen atom, etc.
  • a monomer having a suitable substituent for example, an alkyl group, an alkoxy group, a halogen atom, etc.
  • the ratio of the monomer unit having an alicyclic ring to the total monomer units (total monomer components) (100 mol%) constituting the alicyclic polyester resin is not particularly limited, but is 10 mol% or more (for example, 10 to 80 mol%). ), Preferably 25 to 70 mol%, more preferably 40 to 60 mol%. When the ratio of the monomer unit having an alicyclic ring is less than 10 mol%, the heat resistance, light resistance, thermal shock resistance, and moisture absorption reflow resistance of the cured product may be lowered.
  • the alicyclic polyester resin is particularly preferably an alicyclic polyester resin containing at least one structural unit represented by the following formulas (3) to (5).
  • R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms.
  • R 4 to R 7 each independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 are combined to form a ring. You may do it. ]
  • R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms.
  • R 4 to R 7 each independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 are combined to form a ring. You may do it. ]
  • R 3 represents a linear, branched or cyclic alkylene group having 2 to 15 carbon atoms.
  • R 4 to R 7 each independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and two selected from R 4 to R 7 are combined to form a ring. You may do it. ]
  • Preferred specific examples of the structural units represented by the above formulas (3) to (5) include, for example, a structure derived from 4-methyl-1,2-cyclohexanedicarboxylic acid and ethylene glycol represented by the following formula (6) Units are listed.
  • the alicyclic polyester resin having the structural unit can be obtained, for example, by polycondensation of methylhexahydrophthalic anhydride and ethylene glycol.
  • the structural units represented by the above formulas (3) to (5) include, for example, those derived from 1,4-cyclohexanedicarboxylic acid and neopentyl glycol represented by the following formula (7):
  • a structural unit is mentioned.
  • the alicyclic polyester resin having the structural unit can be obtained, for example, by polycondensation of 1,4-cyclohexanedicarboxylic acid and neopentyl glycol.
  • the total content of the structural units Is not particularly limited, but is 20 mol% or more (for example, 20 to 100 mol%) with respect to the total constitutional units (100 mol%; all monomer units constituting the alicyclic polyester resin) of the alicyclic polyester resin. More preferably, it is 50 to 100 mol%, still more preferably 80 to 100 mol%.
  • the content of the structural units represented by the above formulas (3) to (5) is less than 20 mol%, the heat resistance, light resistance, thermal shock resistance, and moisture absorption reflow resistance of the cured product may be lowered. .
  • the number average molecular weight of the alicyclic polyester resin is not particularly limited, but is preferably 300 to 100,000, more preferably 300 to 30,000. If the number average molecular weight of the alicyclic polyester resin is less than 300, the toughness of the cured product may not be sufficient, and the thermal shock resistance and moisture absorption reflow resistance may decrease. On the other hand, when the number average molecular weight of the alicyclic polyester resin exceeds 100,000, the compatibility with the curing agent (C) may be lowered, and the transparency of the cured product may be lowered.
  • the number average molecular weight of alicyclic polyester resin can be measured as a value of standard polystyrene conversion, for example by GPC (gel permeation chromatography) method.
  • the said alicyclic polyester resin can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the alicyclic polyester resin is not particularly limited, and can be produced by a known or common method. More specifically, for example, the alicyclic polyester resin may be obtained by polycondensation of the above dicarboxylic acid and diol by a conventional method, or a derivative of the above dicarboxylic acid (an acid anhydride, ester, acid). It may be obtained by polycondensing a halide or the like) and a diol by a conventional method.
  • the content (blending amount) of the alicyclic polyester resin is not particularly limited, but is the total amount (100% by weight) of the alicyclic polyester resin and the curing agent (C). ) To 1 to 60% by weight, more preferably 5 to 30% by weight. If the content of the alicyclic polyester resin is less than 1% by weight, the thermal shock resistance and moisture absorption reflow resistance of the cured product may be insufficient. On the other hand, if the content of the alicyclic polyester resin exceeds 60% by weight, the transparency and heat resistance of the cured product may be lowered.
  • the content (blending amount) of the alicyclic polyester resin with respect to 100 parts by weight of the alicyclic epoxy compound (A) is not particularly limited, but is preferably 5 to 60 parts by weight, more preferably 10 to 50 parts by weight. More preferably, it is 15 to 50 parts by weight.
  • the content of the alicyclic polyester resin is less than 5 parts by weight, the heat resistance, light resistance, thermal shock resistance, and moisture absorption reflow resistance of the cured product may be insufficient.
  • the content of the alicyclic polyester resin exceeds 60 parts by weight, the thermal shock resistance and moisture absorption reflow resistance of the cured product may be deteriorated.
  • the curable epoxy resin composition of the present invention may further contain a siloxane derivative having two or more epoxy groups in the molecule (in one molecule).
  • a siloxane derivative having two or more epoxy groups in the molecule particularly, the heat resistance and light resistance of the cured product can be improved to a higher level.
  • the siloxane skeleton (Si—O—Si skeleton) in the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited.
  • a polysiloxane skeleton such as polysilsesquioxane.
  • a cyclic siloxane skeleton and a linear silicone skeleton are preferable from the viewpoint of improving the heat resistance and light resistance of the cured product and suppressing the decrease in luminous intensity.
  • the siloxane derivative having two or more epoxy groups in the molecule is preferably a cyclic siloxane having two or more epoxy groups in the molecule or a linear silicone having two or more epoxy groups in the molecule.
  • numerator can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the number of Si—O units forming the siloxane ring is not particularly limited, but is preferably 2 to 12 and more preferably 4 to 8 from the viewpoint of improving the heat resistance and light resistance of the cured product.
  • the weight average molecular weight of the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited, but is preferably 100 to 3000, more preferably 180 to 2000, from the viewpoint of improving the heat resistance and light resistance of the cured product. It is.
  • the number of epoxy groups in one molecule of the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited as long as it is two or more. From the viewpoint of improving the heat resistance and light resistance of the cured product, 2 ⁇ 4 (2, 3, or 4) are preferred.
  • the epoxy equivalent (based on JIS K7236) of the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited, but is preferably 180 to 400 from the viewpoint of improving the heat resistance and light resistance of the cured product. It is preferably 240 to 400, more preferably 240 to 350.
  • the epoxy group in the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited. From the viewpoint of improving the heat resistance and light resistance of the cured product, two adjacent carbon atoms constituting the aliphatic ring and An epoxy group (alicyclic epoxy group) composed of an oxygen atom is preferable, and among them, a cyclohexene oxide group is particularly preferable.
  • siloxane derivative having two or more epoxy groups in the molecule examples include 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl]- 2,4,6,6,8,8-hexamethyl-cyclotetrasiloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,2,4 , 6,6,8-hexamethyl-cyclotetrasiloxane, 2,4-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -6,8-dipropyl-2,4 6,8-tetramethyl-cyclotetrasiloxane, 4,8-di [2- (3- ⁇ oxabicyclo [4.1.0] heptyl ⁇ ) ethyl] -2,6-dipropyl-2,4,6 8-tetramethyl-cyclote
  • siloxane derivative having two or more epoxy groups in the molecule examples include alicyclic epoxy group-containing silicone resins described in JP-A-2008-248169, and one described in JP-A-2008-19422.
  • An organopolysilsesquioxane resin having at least two epoxy functional groups in the molecule can also be used.
  • siloxane derivative having two or more epoxy groups in the molecule examples include a trade name “X-40-2678” (manufactured by Shin-Etsu Chemical Co., Ltd.), which is a cyclic siloxane having two or more epoxy groups in the molecule.
  • Commercial products such as trade name “X-40-2670” (manufactured by Shin-Etsu Chemical Co., Ltd.) and trade name “X-40-2720” (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used.
  • the content (blending amount) of the siloxane derivative having two or more epoxy groups in the molecule is not particularly limited, but is based on the total amount (100% by weight) of the compounds having an epoxy group contained in the curable epoxy resin composition.
  • the content is preferably 5 to 60% by weight, more preferably 8 to 55% by weight, still more preferably 10 to 50% by weight, and particularly preferably 15 to 40% by weight.
  • the content of the siloxane derivative having two or more epoxy groups in the molecule is less than 5% by weight, the heat resistance and light resistance of the cured product may be insufficient.
  • the content of the siloxane derivative having two or more epoxy groups in the molecule exceeds 60% by weight, the thermal shock resistance and moisture absorption reflow resistance of the cured product may be lowered.
  • the content (blending amount) of the siloxane derivative having two or more epoxy groups in the molecule with respect to 100 parts by weight of the alicyclic epoxy compound (A) is not particularly limited, but is preferably 10 to 200 parts by weight, The amount is preferably 20 to 180 parts by weight, more preferably 30 to 150 parts by weight, and particularly preferably 35 to 145 parts by weight.
  • the content of the siloxane derivative having two or more epoxy groups in the molecule is less than 10 parts by weight, the heat resistance and light resistance of the cured product may be insufficient.
  • the content of the siloxane derivative having two or more epoxy groups in the molecule exceeds 200 parts by weight, the thermal shock resistance and moisture absorption reflow resistance of the cured product may be lowered.
  • the curable epoxy resin composition of the present invention may further contain rubber particles.
  • the rubber particles include rubber particles such as particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxyl group NBR (CTBN), metal-free NBR, and particulate SBR (styrene-butadiene rubber).
  • the rubber particles are preferably rubber particles having a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion.
  • the rubber particles are particularly composed of a polymer (polymer) having (meth) acrylic acid ester as an essential monomer component, and react with a compound having an epoxy group such as an alicyclic epoxy compound (A) on the surface.
  • Rubber particles having a hydroxyl group and / or a carboxyl group (either one or both of a hydroxyl group and a carboxyl group) as the functional group to be obtained are preferred.
  • the cured product becomes clouded by a thermal shock such as a cold cycle and the transparency is lowered, which is not preferable.
  • the polymer constituting the core portion having rubber elasticity in the rubber particles is not particularly limited, but (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate are used.
  • the essential monomer component is preferred.
  • examples of the polymer constituting the core portion having rubber elasticity include other aromatic vinyls such as styrene and ⁇ -methylstyrene, nitriles such as acrylonitrile and methacrylonitrile, conjugated dienes such as butadiene and isoprene, ethylene, propylene, Isobutene or the like may be contained as a monomer component.
  • the polymer which comprises the said core part which has the rubber elasticity contains 1 type, or 2 or more types selected from the group which consists of aromatic vinyl, a nitrile, and a conjugated diene with a (meth) acrylic acid ester as a monomer component. It is preferable to include it in combination. That is, as the polymer constituting the core part, for example, (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene and other binary copolymers; (meth) acrylic acid ester / aromatic And terpolymers such as group vinyl / conjugated dienes.
  • the polymer constituting the core part may contain silicone such as polydimethylsiloxane and polyphenylmethylsiloxane, polyurethane, and the like.
  • the polymer constituting the core part includes, as other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc.
  • One monomer (one molecule) may contain a reactive crosslinking monomer having two or more reactive functional groups.
  • the core part of the rubber particles is a core part composed of a (meth) acrylic ester / aromatic vinyl binary copolymer (particularly butyl acrylate / styrene). It is preferable in that the rate can be easily adjusted.
  • the core portion of the rubber particles can be manufactured by a commonly used method, for example, by a method of polymerizing the monomer by an emulsion polymerization method.
  • the whole amount of the monomer may be charged at once and may be polymerized, or after polymerizing a part of the monomer, the remainder may be added continuously or intermittently to polymerize,
  • a polymerization method using seed particles may be used.
  • the polymer constituting the shell layer of the rubber particles is preferably a polymer different from the polymer constituting the core portion.
  • the shell layer preferably has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as the alicyclic epoxy compound (A).
  • the polymer constituting the shell layer preferably contains a (meth) acrylate ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate as an essential monomer component.
  • a (meth) acrylate ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate as an essential monomer component.
  • a (meth) acrylate ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate as an essential monomer component.
  • a (meth) acrylate ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate
  • an essential monomer component for example, when butyl acrylate is used as the (meth) acrylic acid ester in the core
  • Examples of the monomer component that may be contained in addition to the (meth) acrylic acid ester include aromatic vinyl such as styrene and ⁇ -methylstyrene, and nitrile such as acrylonitrile and methacrylonitrile.
  • aromatic vinyl such as styrene and ⁇ -methylstyrene
  • nitrile such as acrylonitrile and methacrylonitrile.
  • the rubber particles as a monomer component constituting the shell layer, it is preferable to contain the monomer alone or in combination of two or more, together with (meth) acrylic acid ester, and particularly at least aromatic vinyl. Is preferable in that the refractive index of the rubber particles can be easily adjusted.
  • the polymer constituting the shell layer forms a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A) as a monomer component.
  • Hydroxyl group-containing monomers for example, hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate
  • carboxyl group-containing monomers for example, ⁇ , ⁇ -unsaturated acids such as (meth) acrylic acid, ⁇ , ⁇ -unsaturated acid anhydride such as maleic anhydride
  • the polymer constituting the shell layer in the rubber particles preferably contains one or more selected from the above monomers in combination with (meth) acrylic acid ester as a monomer component. That is, the shell layer is composed of, for example, a ternary copolymer such as (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl / ⁇ , ⁇ -unsaturated acid.
  • a shell layer composed of a polymer or the like is preferable.
  • the polymer constituting the shell layer includes, as the other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, trimethyl, as well as the above-described monomer.
  • a reactive crosslinking monomer having two or more reactive functional groups may be contained in one monomer (one molecule) such as allyl cyanurate, diallyl phthalate, or butylene glycol diacrylate.
  • the rubber particles can be obtained by covering the core portion with a shell layer.
  • the method of coating the core part with a shell layer include a method of coating the surface of the core part having rubber elasticity obtained by the above method by applying a copolymer constituting the shell layer, and the above method Examples thereof include a graft polymerization method in which the core portion having rubber elasticity obtained by the above is used as a trunk component, and each component constituting the shell layer is used as a branch component.
  • the average particle diameter of the rubber particles is not particularly limited, but is preferably 10 to 500 nm, more preferably 20 to 400 nm.
  • the maximum particle size of the rubber particles is not particularly limited, but is preferably 50 to 1000 nm, more preferably 100 to 800 nm. If the average particle diameter exceeds 500 nm or the maximum particle diameter exceeds 1000 nm, the dispersibility of the rubber particles in the cured product may be reduced, and crack resistance may be reduced. On the other hand, if the average particle size is less than 10 nm or the maximum particle size is less than 50 nm, the effect of improving the crack resistance of the cured product may be difficult to obtain.
  • the refractive index of the rubber particles is not particularly limited, but is preferably 1.40 to 1.60, more preferably 1.42 to 1.58.
  • the difference between the refractive index of the rubber particles and the refractive index of the cured product obtained by curing the curable epoxy resin composition (the curable epoxy resin composition of the present invention) containing the rubber particles is ⁇ 0.03. Is preferably within.
  • the difference in refractive index exceeds ⁇ 0.03, the transparency of the cured product decreases, sometimes it becomes cloudy, the light intensity of the optical semiconductor device tends to decrease, and the function of the optical semiconductor device is lost. There is.
  • the refractive index of the rubber particles is, for example, by casting 1 g of rubber particles into a mold and compression molding at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test piece having a length of 20 mm ⁇ width of 6 mm And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the refractive index of the cured product of the curable epoxy resin composition of the present invention is, for example, a test piece having a length of 20 mm ⁇ width of 6 mm ⁇ thickness of 1 mm from a cured product obtained by the heat curing method described in the section of cured product below. And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the content (blending amount) of the rubber particles in the curable epoxy resin composition of the present invention is not particularly limited, but is based on the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the amount is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight.
  • the content of the rubber particles is less than 0.5 parts by weight, the crack resistance of the cured product may be insufficient.
  • the content of the rubber particles exceeds 30 parts by weight, the heat resistance of the cured product tends to decrease.
  • the curable epoxy resin composition of the present invention may contain various additives as long as the effects of the present invention are not impaired.
  • a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin
  • the reaction can be allowed to proceed slowly.
  • Other silane coupling agents such as silicone-based and fluorine-based antifoaming agents, leveling agents, ⁇ -glycidoxypropyltrimethoxysilane and 3-mercaptopropyltrimethoxysilane as long as the viscosity and transparency are not impaired.
  • the curable epoxy resin composition of the present invention only needs to contain at least the above-described alicyclic epoxy compound (A), monoallyl diglycidyl isocyanurate compound (B), and curing agent (C).
  • the production method (preparation method) is not particularly limited.
  • each component can be stirred and mixed at a predetermined ratio, and defoamed under vacuum as necessary, or the alicyclic epoxy compound (A), monoallyl A composition containing a compound having an epoxy group such as a diglycidyl isocyanurate compound (B) as an essential component (sometimes referred to as “epoxy resin”) and a composition containing a curing agent (C) as an essential component (“epoxy” May also be referred to as a “curing agent”), and the epoxy resin and the epoxy curing agent may be stirred and mixed at a predetermined ratio and defoamed under vacuum as necessary. it can.
  • a compound having an epoxy group such as a diglycidyl isocyanurate compound (B) as an essential component (sometimes referred to as “epoxy resin”)
  • a composition containing a curing agent (C) as an essential component
  • the temperature at the time of stirring and mixing when preparing the epoxy resin is not particularly limited, but is preferably 30 to 150 ° C, more preferably 35 to 130 ° C.
  • the temperature at the time of stirring and mixing in preparing the epoxy curing agent is not particularly limited, but is preferably 30 to 100 ° C, more preferably 35 to 80 ° C.
  • a known device such as a rotation / revolution mixer, a planetary mixer, a kneader, or a dissolver can be used.
  • the alicyclic polyester resin and the curing agent (C) are mixed in advance from the viewpoint of obtaining a uniform composition.
  • an epoxy curing agent was prepared by blending the mixture with a curing accelerator (D) and other additives. It is preferable to prepare by mixing the epoxy curing agent and a separately prepared epoxy resin.
  • the temperature at which the alicyclic polyester resin and the curing agent (C) are mixed is not particularly limited, but is preferably 60 to 130 ° C, more preferably 90 to 120 ° C.
  • the mixing time is not particularly limited, but is preferably 30 to 100 minutes, and more preferably 45 to 80 minutes. Although mixing is not specifically limited, It is preferable to carry out in nitrogen atmosphere. Moreover, the above-mentioned well-known apparatus can be used for mixing.
  • a cured product having excellent heat resistance, light resistance, and thermal shock resistance, and particularly excellent in moisture absorption reflow resistance can be obtained.
  • the heating temperature (curing temperature) during curing is not particularly limited, but is preferably 45 to 200 ° C, more preferably 100 to 190 ° C, and still more preferably 100 to 180 ° C.
  • the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes. When the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient.
  • the resin component may be decomposed.
  • the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased.
  • the curable epoxy resin composition of the present invention can be preferably used as a resin composition for optical semiconductor encapsulation.
  • a resin composition for optical semiconductor encapsulation an optical semiconductor device in which an optical semiconductor element is sealed with a cured product having excellent heat resistance, light resistance, and moisture absorption reflow resistance, and particularly excellent thermal shock resistance is obtained. It is done. Even if the above optical semiconductor device is provided with a high-output, high-brightness optical semiconductor element, the light intensity is unlikely to decrease with time, especially when it is heated in a reflow process after being stored under high humidity conditions. Even when a thermal shock such as a thermal cycle is applied, deterioration such as a decrease in luminous intensity is unlikely to occur.
  • the optical semiconductor device of the present invention is an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition (resin composition for optical semiconductor sealing) of the present invention.
  • the optical semiconductor element is sealed by injecting the curable epoxy resin composition prepared by the above-described method into a predetermined mold and heat-curing under predetermined conditions. Thereby, the optical semiconductor device with which the optical semiconductor element was sealed with the hardened
  • the curing temperature and the curing time can be set in the same range as at the time of preparing the cured product.
  • the curable epoxy resin composition of the present invention is not limited to the above-mentioned optical semiconductor element sealing application, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, It can also be used for applications such as transparent substrates, transparent sheets, transparent films, optical elements, optical lenses, optical members, optical modeling, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, etc. .
  • Production Example 1 Manufacture of rubber particles
  • 500 g of ion-exchanged water and 0.68 g of sodium dioctylsulfosuccinate were charged, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream.
  • a monomer mixture consisting of 9.5 g of butyl acrylate, 2.57 g of styrene, and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion is added here.
  • 9.5 mg of potassium peroxodisulfate was added and stirred for 1 hour for initial seed polymerization.
  • 0.3 g of sodium dioctylsulfosuccinate was dissolved in 60 g of methyl methacrylate, 1.5 g of acrylic acid and 0.3 g of allyl methacrylate.
  • the monomer mixture was continuously added over 30 minutes to perform seed polymerization. Then, it aged for 1 hour and formed the shell layer which coat
  • the mixture was cooled to room temperature (25 ° C.) and filtered through a plastic mesh having an opening of 120 ⁇ m to obtain a latex containing rubber particles having a core-shell structure.
  • the obtained latex was frozen at ⁇ 30 ° C., dehydrated and washed with a suction filter, and then blown and dried at 60 ° C. overnight to obtain rubber particles.
  • the resulting rubber particles had an average particle size of 254 nm and a maximum particle size of 486 nm.
  • the average particle size and the maximum particle size of the rubber particles are determined based on a nanotrac TM particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) was used to measure the sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is 0 The maximum particle size at the time of exceeding 0.000 was defined as the maximum particle size.
  • a nanotrac TM particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) was used to measure the sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is 0
  • Production Example 2 Manufacture of rubber particle-dispersed epoxy compounds
  • a dissolver 1000 rpm, 60 minutes
  • the trade name “Celoxide 2021P” alicyclic epoxy compound
  • dispersed in 56 parts by weight and vacuum degassed to obtain a rubber particle-dispersed epoxy compound.
  • Example 1 In order to obtain the blending ratio (unit: parts by weight) shown in Table 1, the epoxy resin obtained in Production Example 3 and the epoxy curing agent obtained in Production Example 4 were mixed with a self-revolving stirrer (trade name “Awatori”). Using Nertaro AR-250 "(manufactured by Shinky Co., Ltd.), the mixture was uniformly mixed and defoamed to obtain a curable epoxy resin composition. Further, the curable epoxy resin composition obtained above was cast into an optical semiconductor lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) shown in FIG. 1, and then in an oven (resin curing oven) at 120 ° C.
  • an optical semiconductor lead frame InGaN element, 3.5 mm ⁇ 2.8 mm
  • FIG. 1 100 is a reflector (light reflecting resin composition), 101 is a metal wiring, 102 is an optical semiconductor element, 103 is a bonding wire, and 104 is a cured product (sealing material).
  • Examples 2 and 3 and Comparative Examples 1 to 3 A curable epoxy resin composition was prepared in the same manner as in Example 1 except that the composition of the curable epoxy resin composition was changed to the composition shown in Table 1. In addition, an optical semiconductor device was fabricated in the same manner as in Example 1.
  • FIG. 2 shows an example of a surface temperature profile (temperature profile in one of the two heat treatments) of the optical semiconductor device when heated by the reflow furnace. Thereafter, the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Co., Ltd.), whether or not a crack having a length of 90 ⁇ m or more occurred in the cured product, and It was evaluated whether or not electrode peeling (peeling of the cured product from the electrode surface) occurred.
  • the number of optical semiconductor devices having a crack of 90 ⁇ m or longer in the cured product is shown in the column of “Solder heat resistance test [number of cracks]” in Table 1, and electrode peeling occurred.
  • the number of optical semiconductor devices is shown in the column of “Solder heat resistance test [number of electrode peelings]” in Table 1.
  • Thermal shock test The optical semiconductor devices obtained in the examples and comparative examples (two were used for each curable epoxy resin composition) were exposed in an atmosphere of ⁇ 40 ° C. for 30 minutes, and then in an atmosphere of 120 ° C. A thermal shock with one cycle of exposure to 30 minutes was applied for 200 cycles using a thermal shock tester. After that, the length of cracks generated in the cured product in the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation), and cured among the two optical semiconductor devices. The number of optical semiconductor devices in which cracks having a length of 90 ⁇ m or more occurred in the object was measured. The results are shown in the column of “thermal shock test [number of cracks]” in Table 1.
  • Example and the comparative example is as follows.
  • MA-DGIC monoallyl diglycidyl isocyanurate, manufactured by Shikoku Chemicals Co., Ltd.
  • X-40-2678 Siloxane derivatives having two epoxy groups in the molecule, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Test equipment Resin curing oven Espec Co., Ltd. GPHH-201 -Thermostatic chamber ESPEC Co., Ltd. Small high temperature chamber ST-120B1 ⁇ Total luminous flux measuring machine Optronic Laboratories Multi-spectral Radiation Measurement System OL771 ⁇ Thermal shock tester Espec Co., Ltd. Small thermal shock device TSE-11-A ⁇ Reflow furnace manufactured by Nippon Antom Co., Ltd., UNI-5016F
  • the curable epoxy resin composition of the present invention can be preferably used as a resin composition for optical semiconductor encapsulation.
  • the curable epoxy resin composition of the present invention includes, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, a transparent substrate, a transparent sheet, a transparent film, and an optical element.
  • an adhesive for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, a transparent substrate, a transparent sheet, a transparent film, and an optical element.
  • Optical lenses, optical members stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)

Abstract

 耐熱性、耐光性、及び耐吸湿リフロー性に優れ、特に、耐熱衝撃性に優れた硬化物(封止材)を形成できる硬化性エポキシ樹脂組成物を提供する。 脂環式エポキシ化合物(A)と、下記式(1)で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、硬化剤(C)とを含み、硬化剤(C)としてメチルノルボルナン-2,3-ジカルボン酸無水物及び下記式(2)で表される化合物を含み、硬化剤(C)全量中のコハク酸無水物の含有量が0.4重量%以下であることを特徴とする硬化性エポキシ樹脂組成物。

Description

硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置
 本発明は、硬化性エポキシ樹脂組成物、該硬化性エポキシ樹脂組成物を硬化して得られる硬化物、及び該硬化性エポキシ樹脂組成物(光半導体封止用樹脂組成物)の硬化物により光半導体素子が封止された光半導体装置に関する。
 近年、光半導体装置の高出力化が進んでおり、このような光半導体装置において光半導体素子を被覆する樹脂(封止材)には、高い耐熱性、耐光性が求められている。従来、耐熱性が高い封止材を形成するための封止剤として、例えば、モノアリルジグリシジルイソシアヌレートとビスフェノールA型エポキシ樹脂を含む組成物が知られている(特許文献1参照)。しかしながら、上記組成物を高出力の青色・白色光半導体用の封止剤として用いた場合には、光半導体素子から発せられる光及び熱によって封止材の着色が進行し、本来出力されるべき光が吸収されてしまい、その結果、光半導体装置から出力される光の光度が経時で低下するという問題が生じていた。
 高い耐熱性及び耐光性を有し、黄変しにくい硬化物(封止材)を形成する封止剤として、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートとε-カプロラクトンの付加物、1,2,8,9-ジエポキシリモネンなどの脂環骨格を有する液状の脂環式エポキシ樹脂が知られている。しかし、これらの脂環式エポキシ樹脂の硬化物は各種応力に弱く、冷熱サイクル(加熱と冷却を周期的に繰り返すこと)のような熱衝撃が加えられた場合に、クラック(ひび割れ)が発生する等の問題が生じていた。
 また、光半導体装置(例えば、表面実装型の光半導体装置)は、はんだ付けにより光半導体装置の電極を配線基板に接合するためのリフロー工程を経るのが一般的である。近年、接合材としてのはんだとして、融点の高い無鉛はんだが使用されるようになってきており、リフロー工程での加熱処理がより高温(例えば、ピーク温度が240~260℃)になってきている。このような状況下、従来の光半導体装置においては、リフロー工程での加熱処理により封止材が光半導体装置のリードフレームから剥離したり、封止材にクラックが生じたりする等の劣化の問題が生じていた。
 このため、光半導体装置における封止材には、高い耐熱性、耐光性に加え、熱衝撃が加えられた場合にもクラックが生じにくい特性(「耐熱衝撃性」と称する場合がある)、及び、リフロー工程において加熱処理された際にもクラックや剥離が生じにくい特性が求められている。特に、近年、封止材のより高い信頼性確保の観点から、光半導体装置を高湿条件下で一定時間(例えば、30℃、70%RHの条件下で168時間;60℃、60%RHの条件下で40時間など)置いて吸湿させた後にリフロー工程で加熱処理した場合にもなお上述のクラックや剥離が生じにくいこと(このような特性を「耐吸湿リフロー性」と称する場合がある)が求められている。
特開2000-344867号公報
 従って、本発明の目的は、耐熱性、耐光性、及び耐吸湿リフロー性に優れ、特に、耐熱衝撃性に優れた硬化物(封止材)を形成できる硬化性エポキシ樹脂組成物を提供することにある。
 また、本発明の他の目的は、耐熱性、耐光性、及び耐吸湿リフロー性に優れ、特に、耐熱衝撃性に優れた硬化物を提供することにある。
 また、本発明の他の目的は、光半導体素子から発せられる光及び熱による劣化やリフロー工程等の高温工程における劣化が抑制され、特に、熱衝撃が加えられた場合にも光度低下等の劣化が生じにくい光半導体装置を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討した結果、脂環式エポキシ化合物と、モノアリルジグリシジルイソシアヌレート化合物と、硬化剤とを含有し、硬化剤として特定の化合物を含む硬化性エポキシ樹脂組成物によると、耐熱性、耐光性、及び耐吸湿リフロー性に優れ、特に、耐熱衝撃性に優れた硬化物(封止材)を形成できることを見出し、本発明を完成させた。
 すなわち、本発明は、脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000004
[式中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、硬化剤(C)とを含み、
 硬化剤(C)としてメチルノルボルナン-2,3-ジカルボン酸無水物及び下記式(2)
Figure JPOXMLDOC01-appb-C000005
[式中、R11~R16は、同一又は異なって、水素原子又はアルキル基を示す]
で表される化合物を含み、硬化剤(C)全量中のコハク酸無水物の含有量が0.4重量%以下であることを特徴とする硬化性エポキシ樹脂組成物を提供する。
 さらに、硬化剤(C)として、さらにノルボルナン-2,3-ジカルボン酸無水物を含む前記の硬化性エポキシ樹脂組成物を提供する。
 さらに、硬化促進剤(D)を含む前記の硬化性エポキシ樹脂組成物を提供する。
 さらに、脂環式エポキシ化合物(A)が、シクロヘキセンオキシド基を有する化合物である前記の硬化性エポキシ樹脂組成物を提供する。
 さらに、脂環式エポキシ化合物(A)が、下記式(I-1)
Figure JPOXMLDOC01-appb-C000006
で表される化合物である前記の硬化性エポキシ樹脂組成物を提供する。
 さらに、分子内に2以上のエポキシ基を有するシロキサン誘導体を含む前記の硬化性エポキシ樹脂組成物を提供する。
 さらに、脂環式ポリエステル樹脂を含む前記の硬化性エポキシ樹脂組成物を提供する。
 また、本発明は、前記の硬化性エポキシ樹脂組成物を硬化して得られる硬化物を提供する。
 さらに、光半導体封止用樹脂組成物である前記の硬化性エポキシ樹脂組成物を提供する。
 また、本発明は、前記の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を提供する。
 本発明の硬化性エポキシ樹脂組成物は上記構成を有するため、該樹脂組成物を硬化させることにより、耐熱性、耐光性、及び耐吸湿リフロー性に優れ、特に、耐熱衝撃性に優れた硬化物(封止材)を形成することができる。このため、本発明の硬化性エポキシ樹脂組成物を光半導体封止用樹脂組成物として使用した場合には、光半導体素子から発せられる光及び熱による劣化やリフロー工程等の高温工程における劣化が抑制され、特に、熱衝撃が加えられた場合にも光度低下等の劣化が生じにくい、耐久性及び品質に優れた光半導体装置を得ることができる。
本発明の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。 実施例のはんだ耐熱性試験における光半導体装置の表面温度プロファイル(二度の加熱処理のうち一方の加熱処理における温度プロファイル)の一例である。
<硬化性エポキシ樹脂組成物>
 本発明の硬化性エポキシ樹脂組成物は、脂環式エポキシ化合物(A)と、下記式(1)
[式中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、硬化剤(C)とを必須成分として含む樹脂組成物である。
[脂環式エポキシ化合物(A)]
 本発明の硬化性エポキシ樹脂組成物における脂環式エポキシ化合物(A)は、分子内(一分子中)に脂環(脂肪族環)構造とエポキシ基とを少なくとも有する化合物である。上記脂環式エポキシ化合物(A)としては、具体的には、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物、(ii)脂環にエポキシ基が直接単結合で結合している化合物などが挙げられる。但し、脂環式エポキシ化合物(A)には、後述の分子内に2以上のエポキシ基を有するシロキサン誘導体は含まれないものとする。
 上述の(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物としては、公知乃至慣用のものの中から任意に選択して使用することができる。中でも、上記脂環エポキシ基としては、シクロヘキセンオキシド基が好ましい。
 上述の(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する化合物としては、透明性、耐熱性の観点で、シクロヘキセンオキシド基を有する化合物が好ましく、特に、下記式(I)で表される化合物(脂環式エポキシ化合物)が好ましい。
Figure JPOXMLDOC01-appb-C000008
 上記式(I)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示す。上記連結基としては、例えば、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基などが挙げられる。
 上記式(I)中のXが単結合であるエポキシ化合物(A)としては、3,4,3',4'-ジエポキシビシクロヘキサンが挙げられる。
 上記2価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基などが挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基などが挙げられる。上記2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基などの2価のシクロアルキレン基(シクロアルキリデン基を含む)などが挙げられる。
 上記連結基Xとしては、特に、酸素原子を含有する連結基が好ましく、具体的には、-CO-、-O-CO-O-、-COO-、-O-、-CONH-;これらの基が複数個連結した基;これらの基の1又は2以上と2価の炭化水素基の1又は2以上とが連結した基などが挙げられる。2価の炭化水素基としては上記で例示したものが挙げられる。
 上記式(I)で表される脂環式エポキシ化合物の代表的な例としては、下記式(I-1)~(I-10)で表される化合物などが挙げられる。なお、下記式(I-5)、(I-7)中のl、mは、それぞれ1~30の整数を表す。下記式(I-5)中のRは炭素数1~8のアルキレン基であり、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、s-ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等の直鎖又は分岐鎖状のアルキレン基が挙げられる。これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(I-9)、(I-10)中のn1~n6は、それぞれ1~30の整数を示す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 上述の(ii)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(II)中、R′はp価のアルコールからp個の-OHを除した基であり、p、nはそれぞれ自然数を表す。p価のアルコール[R′-(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコールなど(炭素数1~15のアルコール等)が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(丸括弧内)の基におけるnは同一でもよいし、異なっていてもよい。上記化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、商品名「EHPE3150」((株)ダイセル製)などが挙げられる。
 本発明の硬化性エポキシ樹脂組成物において、脂環式エポキシ化合物(A)は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、上記脂環式エポキシ化合物(A)としては、例えば、商品名「セロキサイド2021P」、「セロキサイド2081」(以上、(株)ダイセル製)などの市販品を使用することもできる。
 上記脂環式エポキシ化合物(A)としては、上記式(I-1)で表される3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、商品名「セロキサイド2021P」((株)ダイセル製)が特に好ましい。
 本発明の硬化性エポキシ樹脂組成物における脂環式エポキシ化合物(A)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物(100重量%)に対して、5~70重量%が好ましく、より好ましくは10~60重量%、さらに好ましくは15~50重量%である。脂環式エポキシ化合物(A)の含有量が5重量%未満では、硬化物の耐熱性、耐光性、耐熱衝撃性、耐吸湿リフロー性が低下する場合がある。
 硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量(全エポキシ化合物)(100重量%)に対する脂環式エポキシ化合物(A)の含有量(配合量)は、特に限定されないが、10~95重量%が好ましく、より好ましくは20~92重量%、さらに好ましくは30~90重量%である。脂環式エポキシ化合物(A)の含有量が10重量%未満では、硬化物の耐熱性、耐光性、耐熱衝撃性、耐吸湿リフロー性が低下する場合がある。
[モノアリルジグリシジルイソシアヌレート化合物(B)]
 本発明の硬化性エポキシ樹脂組成物におけるモノアリルジグリシジルイソシアヌレート化合物(B)は、下記式(1)で表される化合物である。モノアリルジグリシジルイソシアヌレート化合物(B)は、特に、硬化物の靭性を向上させ、耐熱衝撃性や耐吸湿リフロー性(特に、吸湿後のリフロー工程での加熱処理における耐クラック性(クラックを生じにくい特性))を向上させる役割を担う。
Figure JPOXMLDOC01-appb-C000012
 上記式(1)中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。中でも、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~3の直鎖又は分岐鎖状のアルキル基が好ましい。上記式(1)中のR1及びR2は、水素原子であることが特に好ましい。
 上記モノアリルジグリシジルイソシアヌレート化合物(B)の代表的な例としては、モノアリルジグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレートなどが挙げられる。なお、モノアリルジグリシジルイソシアヌレート化合物(B)は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 なお、上記モノアリルジグリシジルイソシアヌレート化合物(B)は、アルコールや酸無水物などのエポキシ基と反応する化合物を加えてあらかじめ変性して用いてもよい。
 上記モノアリルジグリシジルイソシアヌレート化合物(B)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量(100重量%)に対して、5~60重量%が好ましく、より好ましくは8~55重量%、さらに好ましくは10~50重量%である。モノアリルジグリシジルイソシアヌレート化合物(B)の含有量が60重量%を超えると、モノアリルジグリシジルイソシアヌレート化合物(B)の硬化性エポキシ樹脂組成物における溶解性が低下し、硬化物の物性に悪影響が及ぶ場合がある。一方、モノアリルジグリシジルイソシアヌレート化合物(B)の含有量が5重量%未満であると、硬化物の耐熱衝撃性や耐吸湿リフロー性が低下する場合がある。
 また、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)の合計量(100重量%)に対するモノアリルジグリシジルイソシアヌレート化合物(B)の含有量(配合量)は、特に限定されないが、5~60重量%が好ましく、より好ましくは8~55重量%、さらに好ましくは10~50重量%である。モノアリルジグリシジルイソシアヌレート化合物(B)の含有量が60重量%を超えると、モノアリルジグリシジルイソシアヌレート化合物(B)の硬化性エポキシ樹脂組成物における溶解性が低下し、硬化物の物性に悪影響が及ぶ場合がある。一方、モノアリルジグリシジルイソシアヌレート化合物(B)の含有量が5重量%未満であると、硬化物の耐熱衝撃性や耐吸湿リフロー性が低下する場合がある。
[硬化剤(C)]
 本発明の硬化性エポキシ樹脂組成物における硬化剤(C)は、エポキシ基を有する化合物を硬化させる働きを有する化合物である。
 本発明の硬化性エポキシ樹脂組成物は、硬化剤(C)としてメチルノルボルナン-2,3-ジカルボン酸無水物を必須成分として含む。これにより、特に、硬化物の耐吸湿リフロー性及び耐熱衝撃性が向上する。なお、本明細書における「メチルノルボルナン-2,3-ジカルボン酸無水物」は、ノルボルナン環上のメチル基の結合位置が異なる各異性体の総称である。メチルノルボルナン-2,3-ジカルボン酸無水物の代表的な例としては、5-メチルノルボルナン-2,3-ジカルボン酸無水物などが挙げられる。
 メチルノルボルナン-2,3-ジカルボン酸無水物には、エキソ体とエンド体の立体異性体が存在する。メチルノルボルナン-2,3-ジカルボン酸無水物のエキソ体の存在比率が増加すると室温で液状となりやすいため、硬化剤(C)としての取り扱いが容易となる。従って、メチルノルボルナン-2,3-ジカルボン酸無水物は、エキソ体を必須成分とすることが好ましい。より詳しくは、メチルノルボルナン-2,3-ジカルボン酸無水物中のエキソ体の存在比率[エキソ体/(エキソ体+エンド体)]は、40重量%以上が好ましく、より好ましくは50重量%以上である。エキソ体の存在比率が40重量%未満であると、メチルノルボルナン-2,3-ジカルボン酸無水物が室温で固体となりやすく、取り扱いが困難となる場合がある。
 メチルノルボルナン-2,3-ジカルボン酸無水物は、メチルノルボルネン-2,3-ジカルボン酸無水物を水素化することにより得られる。特に、エキソ体の存在比率を増加させて室温で液状とする観点からは、メチルノルボルナン-2,3-ジカルボン酸無水物の製造過程においてエンド体の少なくとも一部をエキソ体に異性化することが好ましい。より詳しくは、メチルノルボルナン-2,3-ジカルボン酸無水物は、メチルノルボルネン-2,3-ジカルボン酸無水物の一部又は全部を酸触媒の存在下でメチレンノルボルナン-2,3-ジカルボン酸無水物へと異性化し、次いで水素化することによって製造することが好ましい(例えば、特開平6-25207号公報参照)。
 硬化剤(C)(硬化性エポキシ樹脂組成物に含まれる硬化剤(C)の全量:100重量%)中のメチルノルボルナン-2,3-ジカルボン酸無水物の含有量(割合)は、特に限定されないが、5~80重量%が好ましく、より好ましくは10~70重量%、さらに好ましくは20~60重量%である。メチルノルボルナン-2,3-ジカルボン酸無水物の含有量が5重量%未満であると、硬化物の耐吸湿リフロー性及び耐熱衝撃性が低下する場合がある。一方、メチルノルボルナン-2,3-ジカルボン酸無水物の含有量が80重量%を超えると、相対的に下記式(2)で表される化合物の含有量が少なくなり、硬化物の耐熱衝撃性が低下する場合がある。
 また、本発明の硬化性エポキシ樹脂組成物は、硬化剤(C)として下記式(2)で表される化合物(グルタル酸無水物又はその誘導体)を必須成分として含む。これにより、特に、硬化物の耐吸湿リフロー性及び耐熱衝撃性が向上する。
Figure JPOXMLDOC01-appb-C000013
 上記式(2)中、R11~R16は、水素原子又はアルキル基を示す。R11~R16としてのアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基などの直鎖又は分岐鎖状のアルキル基が挙げられる。中でも、R11~R16としては、水素原子、炭素数1~6のアルキル基が好ましい。なお、式(2)におけるR11~R16は同一であってもよいし、異なっていてもよい。
 上記式(2)で表される化合物としては、具体的には、例えば、グルタル酸無水物、2,4-ジエチルグルタル酸無水物、2,4-ジメチルグルタル酸無水物、3-メチルグルタル酸無水物、3-エチルグルタル酸無水物、2,2-ジメチルグルタル酸無水物、2,2-ジエチルグルタル酸無水物、3,3-ジメチルグルタル酸無水物、3,3-ジエチルグルタル酸無水物、2-エチル-4-メチルグルタル酸無水物などが挙げられる。上記式(2)で表される化合物としては、例えば、商品名「jERキュア YH1120」(三菱化学(株)製)などの市販品を使用することもできる。なお、上記式(2)で表される化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 なお、上記2,4-ジエチルグルタル酸無水物は、下記式で表される。
Figure JPOXMLDOC01-appb-C000014
 硬化剤(C)(硬化性エポキシ樹脂組成物に含まれる硬化剤(C)の全量:100重量%)中の上記式(2)で表される化合物の含有量(割合;2種以上を含む場合にはこれらの合計量)は、特に限定されないが、1~60重量%が好ましく、より好ましくは5~50重量%、さらに好ましくは10~40重量%である。上記式(2)で表される化合物の含有量が1重量%未満であると、硬化物の耐吸湿リフロー性及び耐熱衝撃性が低下する場合がある。一方、上記式(2)で表される化合物の含有量が60重量%を超えると、硬化物の耐熱性が低下する場合がある。
 本発明の硬化性エポキシ樹脂組成物は、硬化剤(C)として、さらにノルボルナン-2,3-ジカルボン酸無水物を含んでいてもよい。ノルボルナン-2,3-ジカルボン酸無水物には、メチルノルボルナン-2,3-ジカルボン酸無水物と同様に、エキソ体とエンド体の立体異性体が存在する。ノルボルナン-2,3-ジカルボン酸無水物のエキソ体の存在比率が増加すると室温で液状となりやすいため、硬化剤(C)としての取り扱いが容易となる。従って、ノルボルナン-2,3-ジカルボン酸無水物は、エキソ体を必須成分とすることが好ましい。より詳しくは、ノルボルナン-2,3-ジカルボン酸無水物中のエキソ体の存在比率[エキソ体/(エキソ体+エンド体)]は、30重量%以上が好ましく、より好ましくは40重量%以上である。エキソ体の存在比率が30重量%未満であると、ノルボルナン-2,3-ジカルボン酸無水物が室温で固体となりやすく、取り扱いが困難となる場合がある。
 ノルボルナン-2,3-ジカルボン酸無水物は、シクロペンタジエンと無水マレイン酸のディールスアルダー反応により得られるノルボルネン-2,3-ジカルボン酸無水物を水素化することによって得られる。但し、通常、シクロペンタジエンと無水マレイン酸のディールスアルダー反応により得られるノルボルネン-2,3-ジカルボン酸無水物は、エンド体の存在比率が95重量%以上であるため、150℃以上に加熱してエキソ体に異性化(熱異性化)させた後に水素化反応を行うことで、エキソ体の存在比率が多いノルボルナン-2,3-ジカルボン酸無水物(例えば、エキソ体の存在比率が30重量%以上のノルボルナン-2,3-ジカルボン酸無水物)を生成させることができる。
 なお、硬化剤(C)として、メチルノルボルナン-2,3-ジカルボン酸無水物及びノルボルナン-2,3-ジカルボン酸無水物を含む場合、メチルノルボルナン-2,3-ジカルボン酸無水物とノルボルナン-2,3-ジカルボン酸無水物の混合物を用いることができる。上記混合物は、メチルノルボルナン-2,3-ジカルボン酸無水物とノルボルナン-2,3-ジカルボン酸無水物とを混合することによって調製することもできるし、メチルノルボルネン-2,3-ジカルボン酸無水物とノルボルネン-2,3-ジカルボン酸無水物を混合して得られた混合物を、異性化及び水素化することによって製造することもできる。
 硬化剤(C)(硬化性エポキシ樹脂組成物に含まれる硬化剤(C)の全量:100重量%)中のノルボルナン-2,3-ジカルボン酸無水物の含有量(割合)は、特に限定されないが、0~30重量%が好ましく、より好ましくは0~25重量%、さらに好ましくは0~20重量%である。ノルボルナン-2,3-ジカルボン酸無水物の含有量が30重量%を超えると、硬化物の耐吸湿リフロー性が低下する場合がある。特に、硬化剤(C)としてノルボルナン-2,3-ジカルボン酸無水物を含む場合、メチルノルボルナン-2,3-ジカルボン酸無水物とノルボルナン-2,3-ジカルボン酸無水物の含有量の合計(合計含有量)は、特に限定されないが、硬化剤(C)の全量(100重量%)に対して、50~99重量%が好ましく、より好ましくは60~90重量%である。合計含有量が50重量%未満であると、硬化物の耐吸湿リフロー性及び耐熱衝撃性が低下する場合がある。一方、合計含有量が99重量%を超えると、相対的に上記式(2)で表される化合物の含有量が少なくなり、硬化物の耐熱衝撃性が低下する場合がある。
 本発明の硬化性エポキシ樹脂組成物は、硬化剤(C)としてメチルノルボルナン-2,3-ジカルボン酸無水物、上記式(2)で表される化合物、ノルボルナン-2,3-ジカルボン酸無水物以外の硬化剤(「その他の硬化剤」と称する場合がある)を含んでいてもよい。上記その他の硬化剤としては、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸などの25℃で液状の酸無水物;無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物などの常温(約25℃)で固体状の酸無水物などが挙げられる。中でも、上記その他の硬化剤としては、硬化物の耐熱性、耐光性、耐クラック性の観点で、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)が好ましい。上記その他の硬化剤の含有量は、硬化剤(C)(100重量%)中、20重量%以下(例えば、0~20重量%)が好ましく、より好ましくは10重量%以下(さらに好ましくは5重量%以下)である。
 上記その他の硬化剤としては、例えば、商品名「リカシッド MH-700」(新日本理化(株)製)、「リカシッド MH-700F」(新日本理化(株)製)、商品名「HN-5500」(日立化成工業(株)製)等の市販品を使用することもできる。また、例えば、上記その他の硬化剤と後述の脂環式ポリエステル樹脂との混合物である商品名「HN-7200」(日立化成工業(株)製)、商品名「HN-5700」(日立化成工業(株)製)などの市販品を用いることもできる。
 また、本発明の硬化性エポキシ樹脂組成物においては、硬化剤(C)全量中のコハク酸無水物の含有量(割合)が0.4重量%以下であり、好ましくは0.2重量%以下である。コハク酸無水物の含有量は、0重量%であってもよい。コハク酸無水物の含有量が0.4重量%を超えると、硬化剤(C)や硬化性エポキシ樹脂組成物においてコハク酸無水物が析出して作業性が低下したり、硬化促進剤(D)の種類によっては硬化物が着色する等の問題が生じる場合がある。
 なお、硬化剤(C)中のコハク酸無水物は、メチルノルボルネン-2,3-ジカルボン酸無水物、ノルボルネン-2,3-ジカルボン酸無水物、又はこれらの混合物を異性化及び水素化してメチルノルボルナン-2,3-ジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、又はこれらの混合物を生成させる際に副生成物として生じる。より詳しくは、上記異性化を酸触媒の存在下、180℃前後の高温で実施するため、メチルノルボルネン-2,3-ジカルボン酸無水物のマレイン酸無水物とメチルシクロペンタジエンへの解離、ノルボルネン-2,3-ジカルボン酸無水物のマレイン酸無水物とシクロペンタジエンへの解離が進行し、さらに、このようにして生成したマレイン酸無水物が水素化されてコハク酸無水物が生じる。硬化剤(C)全量中のコハク酸無水物の含有量を0.4重量%以下に制御する方法としては、例えば、メチルノルボルナン-2,3-ジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、又はこれらの混合物を減圧蒸留する方法が挙げられる。より詳しくは、例えば、138℃、0.27kPaの条件で初留を5~10%カットし、さらに173℃、0.27kPaの条件で残りを蒸留する方法などが挙げられる。
 硬化剤(C)の含有量(配合量)は、特に限定されないが、本発明の硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、50~200重量部が好ましく、より好ましくは80~180重量部、さらに好ましくは100~170重量部である。より具体的には、本発明の硬化性エポキシ樹脂組成物に含まれる全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5~1.7当量(より好ましくは、1.2~1.6当量)となる割合で使用することが好ましい。硬化剤(C)の含有量が50重量部未満であると、硬化が不十分となり、硬化物の強靱性が低下する傾向がある。一方、硬化剤(C)の含有量が200重量部を上回ると、硬化物が着色して色相が悪化する場合がある。なお、上記「硬化剤(C)の含有量」とは、硬化性エポキシ樹脂組成物に含まれる硬化剤(C)の総量を意味する。
[硬化促進剤(D)]
 本発明の硬化性エポキシ樹脂組成物は、硬化促進剤(D)を含んでいてもよい。硬化促進剤(D)は、エポキシ基を有する化合物が硬化剤(C)により硬化する際に、硬化速度を促進する機能を有する化合物である。硬化促進剤(D)としては、公知乃至慣用の硬化促進剤を使用することができ、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩など);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩など);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール;リン酸エステル、トリフェニルホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物;オクチル酸亜鉛やオクチル酸スズなどの有機金属塩;金属キレートなどが挙げられる。硬化促進剤(D)は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 また、本発明においては、硬化促進剤(D)として、商品名「U-CAT SA 506」、「U-CAT SA 102」、「U-CAT 5003」、「U-CAT 18X」、「12XD」(開発品)、「U-CAT 410」(以上、サンアプロ(株)製)、商品名「TPP-K」、「TPP-MK」(以上、北興化学工業(株)製)、商品名「PX-4ET」(日本化学工業(株)製)等の市販品を使用することもできる。
 上記硬化促進剤(D)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.05~5重量部が好ましく、より好ましくは0.1~3重量部、さらに好ましくは0.2~3重量部、特に好ましくは0.25~2.5重量部である。硬化促進剤(D)の含有量が0.05重量部未満であると、硬化促進効果が不十分となる場合がある。一方、硬化促進剤(D)の含有量が5重量部を超えると、硬化物が着色して色相が悪化する場合がある。
[脂環式ポリエステル樹脂]
 本発明の硬化性エポキシ樹脂組成物は、さらに、脂環式ポリエステル樹脂を含んでいてもよい。上記脂環式ポリエステル樹脂を含有することにより、特に、硬化物の耐熱性、耐光性が向上し、光半導体装置の光度低下がいっそう抑制される傾向がある。上記脂環式ポリエステル樹脂は、脂環構造(脂肪族環構造)を少なくとも有するポリエステル樹脂である。特に、硬化物の耐熱性、耐光性向上の観点で、上記脂環式ポリエステル樹脂は、主鎖に脂環(脂環構造)を有する脂環式ポリエステル樹脂であることが好ましい。
 脂環式ポリエステル樹脂における脂環構造としては、特に限定されないが、例えば、単環炭化水素構造や橋かけ環炭化水素構造(例えば、二環系炭化水素等)などが挙げられる。中でも、特に、脂環骨格が全て炭素-炭素単結合により構成された、飽和単環炭化水素構造や飽和橋かけ環炭化水素構造が好ましい。また、上記脂環式ポリエステル樹脂における脂環構造は、ジカルボン酸由来の構成単位とジオール由来の構成単位のいずれか一方のみに導入されていてもよいし、両方共に導入されていてもよく、特に限定されない。
 上記脂環式ポリエステル樹脂は、脂環構造を有するモノマー成分由来の構成単位を有している。上記脂環構造を有するモノマーとしては、公知乃至慣用の脂環構造を有するジオールやジカルボン酸が挙げられ、特に限定されないが、例えば、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、4-メチル-1,2-シクロヘキサンジカルボン酸、ハイミック酸、1,4-デカヒドロナフタレンジカルボン酸、1,5-デカヒドロナフタレンジカルボン酸、2,6-デカヒドロナフタレンジカルボン酸、2,7-デカヒドロナフタレンジカルボン酸などの脂環構造を有するジカルボン酸(酸無水物等の誘導体も含む)等;1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロペンタンジメタノール、1,3-シクロペンタンジメタノール、ビス(ヒドロキシメチル)トリシクロ[5.2.1.0]デカン等の5員環ジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン等の6員環ジオール、水素添加ビスフェノールAなどの脂環構造を有するジオール(これらの誘導体も含む)等が挙げられる。
 上記脂環式ポリエステル樹脂は、脂環構造を有しないモノマー成分に由来する構成単位を有していてもよい。上記脂環構造を有しないモノマーとしては、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸(酸無水物等の誘導体も含む);アジピン酸、セバシン酸、アゼライン酸、コハク酸、フマル酸、マレイン酸等の脂肪族ジカルボン酸(酸無水物等の誘導体も含む);エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチルペンタンジオール、ジエチレングリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、キシリレングリコール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物などのジオール(これらの誘導体も含む)等が挙げられる。なお、上記の脂環構造を有しないジカルボン酸やジオールに適宜な置換基(例えば、アルキル基、アルコキシ基、ハロゲン原子等)が結合したものも、脂環構造を有しないモノマーに含まれる。
 上記脂環式ポリエステル樹脂を構成する全モノマー単位(全モノマー成分)(100モル%)に対する脂環を有するモノマー単位の割合は、特に限定されないが、10モル%以上(例えば、10~80モル%)が好ましく、より好ましくは25~70モル%、さらに好ましくは40~60モル%である。脂環を有するモノマー単位の割合が10モル%未満であると、硬化物の耐熱性、耐光性、耐熱衝撃性、耐吸湿リフロー性が低下する場合がある。
 上記脂環式ポリエステル樹脂としては、特に、下記式(3)~(5)で表される構成単位を少なくとも1種以上含む脂環式ポリエステル樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000015
[式中、R3は直鎖、分岐鎖、又は環状の炭素数2~15のアルキレン基を表す。また、R4~R7は、それぞれ独立に、水素原子又は直鎖若しくは分岐鎖状の炭素数1~4のアルキル基を表し、R4~R7から選ばれる二つが結合して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000016
[式中、R3は直鎖、分岐鎖、又は環状の炭素数2~15のアルキレン基を表す。また、R4~R7は、それぞれ独立に、水素原子又は直鎖若しくは分岐鎖状の炭素数1~4のアルキル基を表し、R4~R7から選ばれる二つが結合して環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000017
[式中、R3は直鎖、分岐鎖、又は環状の炭素数2~15のアルキレン基を表す。また、R4~R7は、それぞれ独立に、水素原子又は直鎖若しくは分岐鎖状の炭素数1~4のアルキル基を表し、R4~R7から選ばれる二つが結合して環を形成していてもよい。]
 上記式(3)~(5)で表される構成単位の好ましい具体例としては、例えば、下記式(6)で表される4-メチル-1,2-シクロヘキサンジカルボン酸及びエチレングリコール由来の構成単位が挙げられる。当該構成単位を有する脂環式ポリエステル樹脂は、例えば、メチルヘキサヒドロ無水フタル酸とエチレングリコールとを重縮合することにより得られる。
Figure JPOXMLDOC01-appb-C000018
 また、上記式(3)~(5)で表される構成単位の他の好ましい具体例としては、例えば、下記式(7)で表される1,4-シクロヘキサンジカルボン酸及びネオペンチルグリコール由来の構成単位が挙げられる。当該構成単位を有する脂環式ポリエステル樹脂は、例えば、1,4-シクロヘキサンジカルボン酸とネオペンチルグリコールとを重縮合することにより得られる。
Figure JPOXMLDOC01-appb-C000019
 上記脂環式ポリエステル樹脂が上記式(3)~(5)で表される構成単位を有する場合、該構成単位の含有量の合計量(合計含有量;該構成単位を構成する全モノマー単位)は、特に限定されないが、脂環式ポリエステル樹脂の全構成単位(100モル%;脂環式ポリエステル樹脂を構成する全モノマー単位)に対し、20モル%以上(例えば、20~100モル%)が好ましく、より好ましくは50~100モル%、さらに好ましくは80~100モル%である。上記式(3)~(5)で表される構成単位の含有量が20モル%未満であると、硬化物の耐熱性、耐光性、耐熱衝撃性、耐吸湿リフロー性が低下する場合がある。
 上記脂環式ポリエステル樹脂の数平均分子量は、特に限定されないが、300~100000が好ましく、より好ましくは300~30000である。脂環式ポリエステル樹脂の数平均分子量が300未満であると、硬化物の強靭性が十分でなく、耐熱衝撃性や耐吸湿リフロー性が低下する場合がある。一方、脂環式ポリエステル樹脂の数平均分子量が100000を超えると、硬化剤(C)との相溶性が低下し、硬化物の透明性が低下する場合がある。なお、脂環式ポリエステル樹脂の数平均分子量は、例えば、GPC(ゲルパーミエーションクロマトグラフィー)法により、標準ポリスチレン換算の値として測定することができる。
 なお、上記脂環式ポリエステル樹脂は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記脂環式ポリエステル樹脂は、特に限定されず、公知乃至慣用の方法により製造することができる。より詳しくは、例えば、上記脂環式ポリエステル樹脂を、上述のジカルボン酸とジオールとを常法により重縮合させることにより得てもよいし、上述のジカルボン酸の誘導体(酸無水物、エステル、酸ハロゲン化物等)とジオールとを常法により重縮合させることにより得てもよい。
 本発明の硬化性エポキシ樹脂組成物において、上記脂環式ポリエステル樹脂の含有量(配合量)は、特に限定されないが、上記脂環式ポリエステル樹脂と硬化剤(C)の合計量(100重量%)に対して、1~60重量%が好ましく、より好ましくは5~30重量%である。脂環式ポリエステル樹脂の含有量が1重量%未満であると、硬化物の耐熱衝撃性や耐吸湿リフロー性が不足する場合がある。一方、脂環式ポリエステル樹脂の含有量が60重量%を超えると、硬化物の透明性や耐熱性が低下する場合がある。
 また、脂環式エポキシ化合物(A)100重量部に対する上記脂環式ポリエステル樹脂の含有量(配合量)は、特に限定されないが、5~60重量部が好ましく、より好ましくは10~50重量部、さらに好ましくは15~50重量部である。脂環式ポリエステル樹脂の含有量が5重量部未満であると、硬化物の耐熱性、耐光性、耐熱衝撃性、耐吸湿リフロー性が不十分となる場合がある。一方、脂環式ポリエステル樹脂の含有量が60重量部を超えると、硬化物の耐熱衝撃性、耐吸湿リフロー性が低下する場合がある。
[分子内に2以上のエポキシ基を有するシロキサン誘導体]
 本発明の硬化性エポキシ樹脂組成物は、さらに、分子内(一分子中)に2以上のエポキシ基を有するシロキサン誘導体を含んでいてもよい。上記分子内に2以上のエポキシ基を有するシロキサン誘導体を含有させることにより、特に、硬化物の耐熱性、耐光性をより高いレベルにまで向上させることができる。
 上記分子内に2以上のエポキシ基を有するシロキサン誘導体におけるシロキサン骨格(Si-O-Si骨格)としては、特に限定されないが、例えば、環状シロキサン骨格;直鎖状のシリコーンや、かご型やラダー型のポリシルセスキオキサンなどのポリシロキサン骨格などが挙げられる。中でも、上記シロキサン骨格としては、硬化物の耐熱性、耐光性を向上させて光度低下を抑制する観点で、環状シロキサン骨格、直鎖状シリコーン骨格が好ましい。即ち、分子内に2以上のエポキシ基を有するシロキサン誘導体としては、分子内に2以上のエポキシ基を有する環状シロキサン、分子内に2以上のエポキシ基を有する直鎖状シリコーンが好ましい。なお、分子内に2以上のエポキシ基を有するシロキサン誘導体は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記分子内に2以上のエポキシ基を有するシロキサン誘導体が、2以上のエポキシ基を有する環状シロキサンである場合、シロキサン環を形成するSi-O単位の数(シロキサン環を形成するケイ素原子の数に等しい)は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、2~12が好ましく、より好ましくは4~8である。
 上記分子内に2以上のエポキシ基を有するシロキサン誘導体の重量平均分子量は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、100~3000が好ましく、より好ましくは180~2000である。
 上記分子内に2以上のエポキシ基を有するシロキサン誘導体の一分子中のエポキシ基の数は、2個以上であれば特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、2~4個(2個、3個、又は4個)が好ましい。
 上記分子内に2以上のエポキシ基を有するシロキサン誘導体のエポキシ当量(JIS K7236に準拠)は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、180~400が好ましく、より好ましくは240~400、さらに好ましくは240~350である。
 上記分子内に2以上のエポキシ基を有するシロキサン誘導体におけるエポキシ基は、特に限定されないが、硬化物の耐熱性、耐光性を向上させる観点で、脂肪族環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)であることが好ましく、中でも、シクロヘキセンオキシド基であることが特に好ましい。
 上記分子内に2以上のエポキシ基を有するシロキサン誘導体としては、具体的には、例えば、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,6,8,8-ヘキサメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,2,4,6,6,8-ヘキサメチル-シクロテトラシロキサン、2,4-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-6,8-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、4,8-ジ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,6-ジプロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,8-トリ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,6,8-ペンタメチル-シクロテトラシロキサン、2,4,8-トリ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-6-プロピル-2,4,6,8-テトラメチル-シクロテトラシロキサン、2,4,6,8-テトラ[2-(3-{オキサビシクロ[4.1.0]ヘプチル})エチル]-2,4,6,8-テトラメチル-シクロテトラシロキサン、分子内に2以上のエポキシ基を有するシルセスキオキサン等が挙げられる。より具体的には、例えば、下記式で表される分子内に2以上のエポキシ基を有する環状シロキサン等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 また、上記分子内に2以上のエポキシ基を有するシロキサン誘導体としては、例えば、特開2008-248169号公報に記載の脂環エポキシ基含有シリコーン樹脂や、特開2008-19422号公報に記載の一分子中に少なくとも2個のエポキシ官能性基を有するオルガノポリシルセスキオキサン樹脂などを用いることもできる。
 上記分子内に2以上のエポキシ基を有するシロキサン誘導体としては、例えば、分子内に2以上のエポキシ基を有する環状シロキサンである商品名「X-40-2678」(信越化学工業(株)製)、商品名「X-40-2670」(信越化学工業(株)製)、商品名「X-40-2720」(信越化学工業(株)製)などの市販品を用いることもできる。
 上記分子内に2以上のエポキシ基を有するシロキサン誘導体の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量(100重量%)に対して、5~60重量%が好ましく、より好ましくは8~55重量%、さらに好ましくは10~50重量%、特に好ましくは15~40重量%である。分子内に2以上のエポキシ基を有するシロキサン誘導体の含有量が5重量%未満であると、硬化物の耐熱性、耐光性が不十分となる場合がある。一方、分子内に2以上のエポキシ基を有するシロキサン誘導体の含有量が60重量%を超えると、硬化物の耐熱衝撃性、耐吸湿リフロー性が低下する場合がある。
 また、脂環式エポキシ化合物(A)100重量部に対する上記分子内に2以上のエポキシ基を有するシロキサン誘導体の含有量(配合量)は、特に限定されないが、10~200重量部が好ましく、より好ましくは20~180重量部、さらに好ましくは30~150重量部、特に好ましくは35~145重量部である。分子内に2以上のエポキシ基を有するシロキサン誘導体の含有量が10重量部未満であると、硬化物の耐熱性、耐光性が不十分となる場合がある。一方、分子内に2以上のエポキシ基を有するシロキサン誘導体の含有量が200重量部を超えると、硬化物の耐熱衝撃性、耐吸湿リフロー性が低下する場合がある。
[ゴム粒子]
 本発明の硬化性エポキシ樹脂組成物は、さらに、ゴム粒子を含んでいてもよい。上記ゴム粒子としては、例えば、粒子状NBR(アクリロニトリル-ブタジエンゴム)、反応性末端カルボキシル基NBR(CTBN)、メタルフリーNBR、粒子状SBR(スチレン-ブタジエンゴム)などのゴム粒子が挙げられる。上記ゴム粒子としては、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とからなる多層構造(コアシェル構造)を有するゴム粒子が好ましい。上記ゴム粒子は、特に、(メタ)アクリル酸エステルを必須モノマー成分とするポリマー(重合体)で構成されており、表面に脂環式エポキシ化合物(A)などのエポキシ基を有する化合物と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基(ヒドロキシル基及びカルボキシル基のいずれか一方又は両方)を有するゴム粒子が好ましい。上記ゴム粒子の表面にヒドロキシル基及び/又はカルボキシル基が存在しない場合、冷熱サイクル等の熱衝撃により硬化物が白濁して透明性が低下するため好ましくない。
 上記ゴム粒子におけるゴム弾性を有するコア部分を構成するポリマーは、特に限定されないが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須のモノマー成分とすることが好ましい。上記ゴム弾性を有するコア部分を構成するポリマーは、その他、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル、アクリロニトリル、メタクリロニトリルなどのニトリル、ブタジエン、イソプレンなどの共役ジエン、エチレン、プロピレン、イソブテンなどをモノマー成分として含んでいてもよい。
 中でも、上記ゴム弾性を有するコア部分を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、芳香族ビニル、ニトリル、及び共役ジエンからなる群より選択された1種又は2種以上を組み合わせて含むことが好ましい。即ち、上記コア部分を構成するポリマーとしては、例えば、(メタ)アクリル酸エステル/芳香族ビニル、(メタ)アクリル酸エステル/共役ジエン等の二元共重合体;(メタ)アクリル酸エステル/芳香族ビニル/共役ジエン等の三元共重合体などが挙げられる。なお、上記コア部分を構成するポリマーには、ポリジメチルシロキサンやポリフェニルメチルシロキサンなどのシリコーンやポリウレタン等が含まれていてもよい。
 上記コア部分を構成するポリマーは、その他のモノマー成分として、ジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどの1モノマー(1分子)中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。
 上記ゴム粒子のコア部分は、中でも、(メタ)アクリル酸エステル/芳香族ビニルの二元共重合体(特に、アクリル酸ブチル/スチレン)より構成されたコア部分であることが、ゴム粒子の屈折率を容易に調整できる点で好ましい。
 上記ゴム粒子のコア部分は、通常用いられる方法で製造することができ、例えば、上記モノマーを乳化重合法により重合する方法などにより製造することができる。乳化重合法においては、上記モノマーの全量を一括して仕込んで重合してもよく、上記モノマーの一部を重合した後、残りを連続的に又は断続的に添加して重合してもよく、さらに、シード粒子を使用する重合方法を使用してもよい。
 上記ゴム粒子のシェル層を構成するポリマーは、上記コア部分を構成するポリマーとは異種のポリマーであることが好ましい。また、上述のように、上記シェル層は、脂環式エポキシ化合物(A)などのエポキシ基を有する化合物と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有することが好ましい。これにより、特に、脂環式エポキシ化合物(A)との界面で接着性を向上させることができ、該シェル層を有するゴム粒子を含む硬化性エポキシ樹脂組成物を硬化させた硬化物に対して、優れた耐クラック性を発揮させることができる。また、硬化物のガラス転移温度の低下を防止することもできる。
 上記シェル層を構成するポリマーは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須のモノマー成分として含むことが好ましい。例えば、上記コア部分における(メタ)アクリル酸エステルとしてアクリル酸ブチルを用いた場合、シェル層を構成するポリマーのモノマー成分として、アクリル酸ブチル以外の(メタ)アクリル酸エステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、メタクリル酸ブチルなど)を使用することが好ましい。(メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル、アクリロニトリル、メタクリロニトリルなどのニトリルなどが挙げられる。上記ゴム粒子においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーを単独で、又は2種以上を組み合わせて含むことが好ましく、特に、少なくとも芳香族ビニルを含むことが、上記ゴム粒子の屈折率を容易に調整できる点で好ましい。
 さらに、上記シェル層を構成するポリマーは、モノマー成分として、脂環式エポキシ化合物(A)などのエポキシ基を有する化合物と反応し得る官能基としてのヒドロキシル基及び/又はカルボキシル基を形成するために、ヒドロキシル基含有モノマー(例えば、2-ヒドロキシエチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートなど)や、カルボキシル基含有モノマー(例えば、(メタ)アクリル酸などのα,β-不飽和酸、マレイン酸無水物などのα,β-不飽和酸無水物など)を含有することが好ましい。
 上記ゴム粒子におけるシェル層を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーから選択された1種又は2種以上を組み合わせて含むことが好ましい。即ち、上記シェル層は、例えば、(メタ)アクリル酸エステル/芳香族ビニル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/芳香族ビニル/α,β-不飽和酸等の三元共重合体などから構成されたシェル層であることが好ましい。
 また、上記シェル層を構成するポリマーは、その他のモノマー成分として、コア部分と同様に、上記モノマーの他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどの1モノマー(1分子)中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。
 上記ゴム粒子(コアシェル構造を有するゴム粒子)は、上記コア部分をシェル層により被覆することで得られる。上記コア部分をシェル層で被覆する方法としては、例えば、上記方法により得られたゴム弾性を有するコア部分の表面に、シェル層を構成する共重合体を塗布することにより被覆する方法、上記方法により得られたゴム弾性を有するコア部分を幹成分とし、シェル層を構成する各成分を枝成分としてグラフト重合する方法などを挙げることができる。
 上記ゴム粒子の平均粒子径は、特に限定されないが、10~500nmが好ましく、より好ましくは20~400nmである。また、上記ゴム粒子の最大粒子径は、特に限定されないが、50~1000nmが好ましく、より好ましくは100~800nmである。平均粒子径が500nmを上回ると、又は、最大粒子径が1000nmを上回ると、硬化物におけるゴム粒子の分散性が低下し、耐クラック性が低下する場合がある。一方、平均粒子径が10nmを下回ると、又は、最大粒子径が50nmを下回ると、硬化物の耐クラック性向上の効果が得られにくくなる場合がある。
 上記ゴム粒子の屈折率は、特に限定されないが、1.40~1.60が好ましく、より好ましくは1.42~1.58である。また、ゴム粒子の屈折率と、該ゴム粒子を含む硬化性エポキシ樹脂組成物(本発明の硬化性エポキシ樹脂組成物)を硬化して得られる硬化物の屈折率との差は±0.03以内であることが好ましい。屈折率の差が±0.03を上回ると、硬化物の透明性が低下し、時には白濁して、光半導体装置の光度が低下する傾向があり、光半導体装置の機能を消失させてしまう場合がある。
 ゴム粒子の屈折率は、例えば、ゴム粒子1gを型に注型して210℃、4MPaで圧縮成形し、厚さ1mmの平板を得、得られた平板から、縦20mm×横6mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。
 本発明の硬化性エポキシ樹脂組成物の硬化物の屈折率は、例えば、下記硬化物の項に記載の加熱硬化方法により得られた硬化物から、縦20mm×横6mm×厚さ1mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。
 本発明の硬化性エポキシ樹脂組成物における上記ゴム粒子の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.5~30重量部が好ましく、より好ましくは1~20重量部である。ゴム粒子の含有量が0.5重量部を下回ると、硬化物の耐クラック性が不十分となる場合がある。一方、ゴム粒子の含有量が30重量部を上回ると、硬化物の耐熱性が低下する傾向がある。
[添加剤]
 本発明の硬化性エポキシ樹脂組成物は、上記以外にも、本発明の効果を損なわない範囲内で各種添加剤を含有していてもよい。上記添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリンなどの水酸基を有する化合物を含有させると、反応を緩やかに進行させることができる。その他にも、粘度や透明性を損なわない範囲内で、シリコーン系やフッ素系消泡剤、レベリング剤、γ-グリシドキシプロピルトリメトキシシランや3-メルカプトプロピルトリメトキシシランなどのシランカップリング剤、界面活性剤、シリカ、アルミナなどの無機充填剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、蛍光体、離型剤などの慣用の添加剤を使用することができる。
<硬化性エポキシ樹脂組成物の製造方法>
 本発明の硬化性エポキシ樹脂組成物は、上述の脂環式エポキシ化合物(A)と、モノアリルジグリシジルイソシアヌレート化合物(B)と、硬化剤(C)とを少なくとも含んでいればよく、その製造方法(調製方法)は特に限定されない。具体的には、例えば、各成分を所定の割合で攪拌・混合して、必要に応じて真空下で脱泡することにより調製することもできるし、脂環式エポキシ化合物(A)、モノアリルジグリシジルイソシアヌレート化合物(B)等のエポキシ基を有する化合物を必須成分として含む組成物(「エポキシ樹脂」と称する場合がある)と、硬化剤(C)を必須成分として含む組成物(「エポキシ硬化剤」と称する場合がある)とを別々に調製し、当該エポキシ樹脂とエポキシ硬化剤とを所定の割合で攪拌・混合し、必要に応じて真空下で脱泡することにより調製することもできる。
 上記エポキシ樹脂を調製する際の攪拌・混合時の温度は、特に限定されないが、30~150℃が好ましく、より好ましくは35~130℃である。また、上記エポキシ硬化剤を調製する際の攪拌・混合時の温度は、特に限定されないが、30~100℃が好ましく、より好ましくは35~80℃である。攪拌・混合には公知の装置、例えば、自転公転型ミキサー、プラネタリーミキサー、ニーダー、ディゾルバーなどを使用できる。
 特に、硬化性エポキシ樹脂組成物の構成成分として上記脂環式ポリエステル樹脂を用いる場合には、均一な組成物を得る観点で、上記脂環式ポリエステル樹脂と硬化剤(C)とをあらかじめ混合してこれらの混合物(脂環式ポリエステル樹脂と硬化剤(C)の混合物)を得た後、該混合物に硬化促進剤(D)、その他の添加剤を配合してエポキシ硬化剤を調製し、引き続き、該エポキシ硬化剤と別途調製したエポキシ樹脂とを混合することにより調製することが好ましい。上記脂環式ポリエステル樹脂と硬化剤(C)を混合する際の温度は、特に限定されないが、60~130℃が好ましく、より好ましくは90~120℃である。混合時間は、特に限定されないが、30~100分間が好ましく、より好ましくは45~80分間である。混合は、特に限定されないが、窒素雰囲気下で行うことが好ましい。また、混合には、上述の公知の装置を使用できる。
 上記脂環式ポリエステル樹脂と硬化剤(C)を混合した後には、特に限定されないが、さらに適宜な化学処理(例えば、水素添加や脂環式ポリエステル樹脂の末端変性など)等を施してもよい。なお、上記脂環式ポリエステル樹脂と硬化剤(C)の混合物においては、硬化剤(C)の一部が上記脂環式ポリエステル樹脂(例えば、脂環式ポリエステル樹脂の水酸基など)と反応していてもよい。
<硬化物>
 本発明の硬化性エポキシ樹脂組成物を硬化させることにより、耐熱性、耐光性、及び耐熱衝撃性に優れ、特に、耐吸湿リフロー性に優れた硬化物を得ることができる。硬化の際の加熱温度(硬化温度)は、特に限定されないが、45~200℃が好ましく、より好ましくは100~190℃、さらに好ましくは100~180℃である。また、硬化の際に加熱する時間(硬化時間)は、特に限定されないが、30~600分が好ましく、より好ましくは45~540分、さらに好ましくは60~480分である。硬化温度と硬化時間が上記範囲の下限値より低い場合は硬化が不十分となり、逆に上記範囲の上限値より高い場合は樹脂成分の分解が起きる場合があるので、いずれも好ましくない。硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。
<光半導体封止用樹脂組成物>
 本発明の硬化性エポキシ樹脂組成物は、光半導体封止用樹脂組成物として好ましく使用できる。光半導体封止用樹脂組成物として用いることにより、耐熱性、耐光性、及び耐吸湿リフロー性に優れ、特に耐熱衝撃性に優れた硬化物により光半導体素子が封止された光半導体装置が得られる。上記光半導体装置は、高出力、高輝度の光半導体素子を備える場合であっても、経時で光度が低下しにくく、特に、高湿条件下で保管された後にリフロー工程にて加熱された場合や冷熱サイクルなどの熱衝撃が加えられた場合であっても光度低下等の劣化が生じにくい。
<光半導体装置>
 本発明の光半導体装置は、本発明の硬化性エポキシ樹脂組成物(光半導体封止用樹脂組成物)の硬化物により光半導体素子が封止された光半導体装置である。光半導体素子の封止は、上述の方法で調製した硬化性エポキシ樹脂組成物を所定の成形型内に注入し、所定の条件で加熱硬化して行う。これにより、硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置が得られる。硬化温度と硬化時間は、硬化物の調製時と同様の範囲で設定することができる。
 本発明の硬化性エポキシ樹脂組成物は、上述の光半導体素子の封止用途に限定されず、例えば、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリなどの用途にも使用することができる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
 製造例1
(ゴム粒子の製造)
 還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルスルホコハク酸ナトリウム0.68gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、コア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、スチレン2.57g、及びジビニルベンゼン0.39gからなる単量体混合物を一括添加し、20分間撹拌して乳化させた後、ペルオキソ二硫酸カリウム9.5mgを添加し、1時間撹拌して最初のシード重合を行った。続いて、ペルオキソ二硫酸カリウム180.5mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、スチレン48.89g、ジビニルベンゼン7.33gにジオクチルスルホコハク酸ナトリウム0.95gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
 次いで、ペルオキソ二硫酸カリウム60mgを添加して5分間撹拌し、ここに、メタクリル酸メチル60g、アクリル酸1.5g、及びアリルメタクリレート0.3gにジオクチルスルホコハク酸ナトリウム0.3gを溶解させてなる単量体混合物を30分かけて連続的に添加し、シード重合を行った。その後、1時間熟成し、コア部分を被覆するシェル層を形成した。
 次いで、室温(25℃)まで冷却し、目開き120μmのプラスチック製網で濾過することにより、コアシェル構造を有するゴム粒子を含むラテックスを得た。得られたラテックスをマイナス30℃で凍結し、吸引濾過器で脱水洗浄した後、60℃で一昼夜送風乾燥してゴム粒子を得た。得られたゴム粒子の平均粒子径は254nm、最大粒子径は486nmであった。
 なお、ゴム粒子の平均粒子径、最大粒子径は、動的光散乱法を測定原理とした「NanotracTM」形式のナノトラック粒度分布測定装置(商品名「UPA-EX150」、日機装(株)製)を使用して試料を測定し、得られた粒度分布曲線において、累積カーブが50%となる時点の粒子径である累積平均径を平均粒子径、粒度分布測定結果の頻度(%)が0.00%を超えた時点の最大の粒子径を最大粒子径とした。なお、上記試料としては、下記製造例2で得られたゴム粒子分散エポキシ化合物1重量部をテトラヒドロフラン20重量部に分散させたものを用いた。
 製造例2
(ゴム粒子分散エポキシ化合物の製造)
 製造例1で得られたゴム粒子5重量部を、窒素気流下、60℃に加温した状態でディゾルバー(1000rpm、60分間)を使用して、商品名「セロキサイド2021P」(脂環式エポキシ化合物、(株)ダイセル製)56重量部に分散させ、真空脱泡して、ゴム粒子分散エポキシ化合物を得た。
 製造例3
(エポキシ樹脂の製造)
 表1に示す配合割合(単位:重量部)で、商品名「セロキサイド2021P」(脂環式エポキシ化合物、(株)ダイセル製)、モノアリルジグリシジルイソシアヌレート(MA-DGIC、四国化成工業(株))、商品名「X-40-2678」(分子内に2個のエポキシ基を有するシロキサン誘導体、信越化学工業(株)製)、製造例2で得られたゴム粒子分散エポキシ化合物を、自公転式攪拌装置((株)シンキー製、商品名「あわとり練太郎AR-250」)を使用して均一に混合し、脱泡してエポキシ樹脂(組成物)(実施例及び比較例2におけるエポキシ樹脂)を得た。なお、上記混合は、80℃で1時間攪拌することでMA-DGICを溶解させることによって実施した。表1における「-」は、当該成分の配合を行わなかったことを意味し、以下も同様である。
 製造例4
(エポキシ硬化剤の製造)
 表1に示す配合割合(単位:重量部)で、商品名「リカシッド MH-700」(硬化剤、新日本理化(株)製)、商品名「リカシッド HNA-100」(硬化剤、新日本理化(株)製)、商品名「jERキュア YH1120」(硬化剤、三菱化学(株)製)、商品名「U-CAT 18X」(硬化促進剤、サンアプロ(株)製)、エチレングリコール(添加剤、和光純薬工業(株)製)を、自公転式攪拌装置((株)シンキー製、商品名「あわとり練太郎AR-250」)を使用して均一に混合し、脱泡してエポキシ硬化剤(組成物)を得た。
 実施例1
 表1に示す配合割合(単位:重量部)となるように、製造例3で得られたエポキシ樹脂と製造例4で得られたエポキシ硬化剤とを自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して、硬化性エポキシ樹脂組成物を得た。
 さらに、上記で得た硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱することで、上記硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を得た。なお、図1において、100はリフレクター(光反射用樹脂組成物)、101は金属配線、102は光半導体素子、103はボンディングワイヤ、104は硬化物(封止材)を示す。
 実施例2、3、比較例1~3
 硬化性エポキシ樹脂組成物の組成を表1に示す組成に変更したこと以外は実施例1と同様にして、硬化性エポキシ樹脂組成物を調製した。また、実施例1と同様に光半導体装置を作製した。
 <評価>
 実施例及び比較例で得られた光半導体装置について、下記の評価試験を実施した。
 [通電試験]
 実施例及び比較例で得られた光半導体装置の全光束を全光束測定機を用いて測定し、これを「0時間の全光束」とした。さらに、85℃の恒温槽内で100時間、光半導体装置に30mAの電流を流した後の全光束を測定し、これを「100時間後の全光束」とした。そして、次式から光度維持率を算出した。結果を表1の「光度維持率[%]」の欄に示す。
 {光度維持率(%)}
   ={100時間後の全光束(lm)}/{0時間の全光束(lm)}×100
 [はんだ耐熱性試験]
 実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき2個ずつ用いた)を、30℃、70%RHの条件下で192時間静置して吸湿処理した。次いで、上記光半導体装置をリフロー炉に入れ、下記加熱条件にて加熱処理した。その後、上記光半導体装置を室温環境下に取り出して放冷した後、再度リフロー炉に入れて同条件で加熱処理した。即ち、当該はんだ耐熱性試験においては、光半導体装置に対して下記加熱条件による熱履歴を二度与えた。
〔加熱条件(光半導体装置の表面温度基準)〕
(1)予備加熱:150~190℃で60~120秒
(2)予備加熱後の本加熱:217℃以上で60~150秒、最高温度260℃
 但し、予備加熱から本加熱に移行する際の昇温速度は最大で3℃/秒に制御した。
 図2には、リフロー炉による加熱の際の光半導体装置の表面温度プロファイル(二度の加熱処理のうち一方の加熱処理における温度プロファイル)の一例を示す。
 その後、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を使用して光半導体装置を観察し、硬化物に長さが90μm以上のクラックが発生したか否か、及び、電極剥離(電極表面からの硬化物の剥離)が発生したか否かを評価した。光半導体装置2個のうち、硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数を表1の「はんだ耐熱性試験[クラック数]」の欄に示し、電極剥離が発生した光半導体装置の個数を表1の「はんだ耐熱性試験[電極剥離数]」の欄に示した。
 [熱衝撃試験]
 実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき2個ずつ用いた)に対し、-40℃の雰囲気下に30分曝露し、続いて、120℃の雰囲気下に30分曝露することを1サイクルとした熱衝撃を、熱衝撃試験機を用いて200サイクル分与えた。その後、光半導体装置における硬化物に生じたクラックの長さを、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を使用して観察し、光半導体装置2個のうち硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数を計測した。結果を表1の「熱衝撃試験[クラック数]」の欄に示す。
 [総合判定]
 各試験の結果、下記(1)~(4)をいずれも満たすものを○(良好)と判定した。一方、下記(1)~(4)のいずれかを満たさない場合には×(不良)と判定した。
(1)通電試験:光度維持率が90%以上
(2)はんだ耐熱性試験:硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数が0個
(3)はんだ耐熱性試験:電極剥離が発生した光半導体装置の個数が0個
(4)熱衝撃試験:硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数が0個
 結果を表1の「総合判定」の欄に示す。
Figure JPOXMLDOC01-appb-T000021
 なお、実施例、比較例で使用した成分は、以下の通りである。
(エポキシ樹脂)
 セロキサイド2021P:3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製
 MA-DGIC:モノアリルジグリシジルイソシアヌレート、四国化成工業(株)製
 X-40-2678:分子内に2個のエポキシ基を有するシロキサン誘導体、信越化学工業(株)製
(K剤)
 MH-700(リカシッド MH-700):4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30、新日本理化(株)製
 HNA-100(リカシッド HNA-100):メチルノルボルナン-2,3-ジカルボン酸無水物とノルボルナン-2,3-ジカルボン酸無水物の混合物(無水コハク酸の含有量:0.4重量%以下)、新日本理化(株)製
 YH1120(jERキュア YH1120):2,4-ジエチルグルタル酸無水物、三菱化学(株)製
 U-CAT 18X:硬化促進剤、サンアプロ(株)製
 エチレングリコール:和光純薬工業(株)製
 試験機器
 ・樹脂硬化オーブン
  エスペック(株)製 GPHH-201
 ・恒温槽
  エスペック(株)製 小型高温チャンバー ST-120B1
 ・全光束測定機
  オプトロニックラボラトリーズ社製 マルチ分光放射測定システム OL771
 ・熱衝撃試験機
  エスペック(株)製 小型冷熱衝撃装置 TSE-11-A
 ・リフロー炉
  日本アントム(株)製、UNI-5016F
 100:リフレクター(光反射用樹脂組成物)
 101:金属配線
 102:光半導体素子
 103:ボンディングワイヤ
 104:硬化物(封止材)
 本発明の硬化性エポキシ樹脂組成物は、光半導体封止用樹脂組成物として好ましく使用できる。また、本発明の硬化性エポキシ樹脂組成物は、例えば、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリなどの用途にも使用することができる。

Claims (10)

  1.  脂環式エポキシ化合物(A)と、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す]
    で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、硬化剤(C)とを含み、
     硬化剤(C)としてメチルノルボルナン-2,3-ジカルボン酸無水物及び下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    [式中、R11~R16は、同一又は異なって、水素原子又はアルキル基を示す]
    で表される化合物を含み、硬化剤(C)全量中のコハク酸無水物の含有量が0.4重量%以下であることを特徴とする硬化性エポキシ樹脂組成物。
  2.  硬化剤(C)として、さらにノルボルナン-2,3-ジカルボン酸無水物を含む請求項1に記載の硬化性エポキシ樹脂組成物。
  3.  さらに、硬化促進剤(D)を含む請求項1又は2に記載の硬化性エポキシ樹脂組成物。
  4.  脂環式エポキシ化合物(A)が、シクロヘキセンオキシド基を有する化合物である請求項1~3のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  5.  脂環式エポキシ化合物(A)が、下記式(I-1)
    Figure JPOXMLDOC01-appb-C000003
    で表される化合物である請求項1~4のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  6.  さらに、分子内に2以上のエポキシ基を有するシロキサン誘導体を含む請求項1~5のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  7.  さらに、脂環式ポリエステル樹脂を含む請求項1~6のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  8.  請求項1~7のいずれか1項に記載の硬化性エポキシ樹脂組成物を硬化して得られる硬化物。
  9.  光半導体封止用樹脂組成物である請求項1~7のいずれか1項に記載の硬化性エポキシ樹脂組成物。
  10.  請求項9に記載の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置。
PCT/JP2013/073005 2012-09-07 2013-08-28 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置 WO2014038446A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014534319A JP6082746B2 (ja) 2012-09-07 2013-08-28 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012196851 2012-09-07
JP2012-196851 2012-09-07

Publications (1)

Publication Number Publication Date
WO2014038446A1 true WO2014038446A1 (ja) 2014-03-13

Family

ID=50237058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073005 WO2014038446A1 (ja) 2012-09-07 2013-08-28 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置

Country Status (3)

Country Link
JP (1) JP6082746B2 (ja)
TW (1) TW201418311A (ja)
WO (1) WO2014038446A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050221A (ja) * 2014-08-28 2016-04-11 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP2016053108A (ja) * 2014-09-03 2016-04-14 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP2020164699A (ja) * 2019-03-29 2020-10-08 味の素株式会社 硬化性樹脂組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064530A1 (fr) * 2002-01-25 2003-08-07 Sumitomo Bakelite Co., Ltd. Composition de composite transparent
JP2004131623A (ja) * 2002-10-11 2004-04-30 Kyowa Yuka Co Ltd 樹脂組成物
JP2005068234A (ja) * 2003-08-21 2005-03-17 Japan Epoxy Resin Kk エポキシ樹脂組成物及び発光素子封止材用エポキシ樹脂組成物
WO2012093589A1 (ja) * 2011-01-07 2012-07-12 株式会社ダイセル 硬化性エポキシ樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638812B2 (ja) * 2010-02-01 2014-12-10 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP5852014B2 (ja) * 2011-01-07 2016-02-03 株式会社ダイセル 硬化性エポキシ樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003064530A1 (fr) * 2002-01-25 2003-08-07 Sumitomo Bakelite Co., Ltd. Composition de composite transparent
JP2004131623A (ja) * 2002-10-11 2004-04-30 Kyowa Yuka Co Ltd 樹脂組成物
JP2005068234A (ja) * 2003-08-21 2005-03-17 Japan Epoxy Resin Kk エポキシ樹脂組成物及び発光素子封止材用エポキシ樹脂組成物
WO2012093589A1 (ja) * 2011-01-07 2012-07-12 株式会社ダイセル 硬化性エポキシ樹脂組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050221A (ja) * 2014-08-28 2016-04-11 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP2016053108A (ja) * 2014-09-03 2016-04-14 株式会社ダイセル 硬化性エポキシ樹脂組成物
JP2020164699A (ja) * 2019-03-29 2020-10-08 味の素株式会社 硬化性樹脂組成物
WO2020203750A1 (ja) * 2019-03-29 2020-10-08 味の素株式会社 硬化性樹脂組成物
JP7215300B2 (ja) 2019-03-29 2023-01-31 味の素株式会社 硬化性樹脂組成物

Also Published As

Publication number Publication date
JP6082746B2 (ja) 2017-02-15
JPWO2014038446A1 (ja) 2016-08-08
TW201418311A (zh) 2014-05-16

Similar Documents

Publication Publication Date Title
JP5695269B2 (ja) 硬化性エポキシ樹脂組成物
WO2012086463A1 (ja) 硬化性エポキシ樹脂組成物及びこれを使用した光半導体装置
JP5852014B2 (ja) 硬化性エポキシ樹脂組成物
JP2013213147A (ja) 硬化性エポキシ樹脂組成物
JPWO2018135557A1 (ja) 硬化性エポキシ樹脂組成物
JP6376907B2 (ja) 硬化性エポキシ樹脂組成物
JP6014134B2 (ja) 硬化性エポキシ樹脂組成物
JP6082746B2 (ja) 硬化性エポキシ樹脂組成物及びその硬化物、並びに光半導体装置
JP2016160352A (ja) 硬化性エポキシ樹脂組成物
JP5899025B2 (ja) 硬化性エポキシ樹脂組成物
JP2015096602A (ja) 硬化性エポキシ樹脂組成物
JP5919200B2 (ja) 硬化性エポキシ樹脂組成物
JP6047294B2 (ja) 硬化性エポキシ樹脂組成物
JP2015110772A (ja) 硬化性エポキシ樹脂組成物
JP2015086374A (ja) 硬化性エポキシ樹脂組成物
JP2016050221A (ja) 硬化性エポキシ樹脂組成物
JP2015098586A (ja) 硬化性エポキシ樹脂組成物
JP2015086375A (ja) 硬化性エポキシ樹脂組成物
JP6118313B2 (ja) 硬化性エポキシ樹脂組成物
JP6306483B2 (ja) 硬化性エポキシ樹脂組成物
JP6472754B2 (ja) 硬化性エポキシ樹脂組成物
JP2016108478A (ja) 硬化性エポキシ樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835912

Country of ref document: EP

Kind code of ref document: A1