WO2014038332A1 - 高速応答性フォトリフラクティブポリマー素子 - Google Patents

高速応答性フォトリフラクティブポリマー素子 Download PDF

Info

Publication number
WO2014038332A1
WO2014038332A1 PCT/JP2013/071190 JP2013071190W WO2014038332A1 WO 2014038332 A1 WO2014038332 A1 WO 2014038332A1 JP 2013071190 W JP2013071190 W JP 2013071190W WO 2014038332 A1 WO2014038332 A1 WO 2014038332A1
Authority
WO
WIPO (PCT)
Prior art keywords
photorefractive
transparent electrode
dark current
weight
polymer element
Prior art date
Application number
PCT/JP2013/071190
Other languages
English (en)
French (fr)
Inventor
堤 直人
憲司 木梨
啓令 新開
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to JP2014534252A priority Critical patent/JP6214006B2/ja
Priority to US14/425,621 priority patent/US9500932B2/en
Publication of WO2014038332A1 publication Critical patent/WO2014038332A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/397Amplification of light by wave mixing involving an interference pattern, e.g. using photorefractive material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3611Organic materials containing Nitrogen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3505Coatings; Housings; Supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/50Reactivity or recording processes
    • G03H2260/54Photorefractive reactivity wherein light induces photo-generation, redistribution and trapping of charges then a modification of refractive index, e.g. photorefractive polymer

Definitions

  • the present invention relates to a photorefractive polymer element, and more particularly to a high-speed responsive photorefractive polymer element using a triphenylamine polymer as a host polymer.
  • the photorefractive effect is one of nonlinear optical effects, and is a phenomenon in which a substance absorbs light and its refractive index changes.
  • the mechanism of expression of the photorefractive effect will be described.
  • This spatial electric field causes a Pockels effect which is a first-order electro-optic effect, and a periodic refractive index grating is formed. Since a phase difference of ⁇ occurs spatially between the refractive index grating and the optical interference paper, asymmetric energy transfer is observed between the two light waves, and optical amplification (optical gain) is obtained.
  • nonlinear optical information including phase conjugation, imaging from distorted media, real-time holography, super-multiplex hologram recording, 3D display, 3D printer, optical amplification, and optical neutral network
  • processing, pattern recognition, optical limiting, storage of high-density optical data, and the like are expected.
  • an inorganic crystal material such as lithium niobate (LiNbO3) has been used as a photorefractive material that exhibits the above effects.
  • this inorganic crystal material has a problem of poor workability.
  • development of photorefractive materials made of organic substances has been active.
  • Organic photorefractive materials have many advantages over inorganic photorefractive materials. Advantages include easy optimization of the composition ratio and high workability, as well as large optical nonlinearity, low dielectric constant, low cost, light weight, flexibility, and the like. Other important characteristics that may be desirable depending on the application include long shelf life of recorded data, optical quality, and thermal stability. Such organic photorefractive materials are becoming important materials for advanced information communication technology. Among these, carbazoles (see, for example, Patent Document 1) and triphenylamines are known.
  • Patent Document 2 describes a photorefractive element in which a layer containing a photorefractive material and a layer containing an electron / ion mixed conductor are sandwiched between two transparent electrode substrates.
  • the photorefractive material constituting the photorefractive element of Patent Document 2 is made of an inorganic crystal material such as lithium niobate or a polymer material, and the electron / ion mixed conductor is made of silver sulfide.
  • an inorganic crystal material such as lithium niobate or a polymer material
  • the electron / ion mixed conductor is made of silver sulfide.
  • an object of the present invention is to provide a high-speed responsive photorefractive polymer element with significantly improved responsiveness.
  • the present inventors have intensively studied to solve the above problems. In order to improve responsiveness, it is important to select a compound that provides high responsiveness for constructing a photorefractive polymer element, and to suppress the generation of dark current associated with the selection of this compound. Pay attention. As a result, the inventors have found that the above-described problems can be solved by selecting a triphenylamine polymer as a photorefractive polymer and further including a self-assembled monomolecular film in the constitution, and the present invention has been completed.
  • the fast response photorefractive polymer element of the present invention includes an insulating substrate, a transparent electrode formed on one surface of the insulating substrate, a dark current control layer formed on the surface of the transparent electrode, and the insulating substrate.
  • the photorefractive composite material provided through the transparent electrode and the dark current control layer is provided.
  • the fast responsive photorefractive polymer element of the present invention includes another insulating substrate disposed substantially parallel to the insulating substrate, another transparent electrode formed on the inner surface of the other insulating substrate, Another dark current control layer formed on the inner surface of another transparent electrode, and the photorefractive composite material is interposed between the pair of insulating substrates via the transparent electrode and the dark current control layer. It is characterized by being pinched.
  • the dark current control layer formed on the surface of the transparent electrode and the photorefractive composite material provided on the insulating substrate via the transparent electrode and the dark current control layer.
  • Generation of dark current can be suppressed by the dark current control layer while exhibiting high responsiveness by the composite material.
  • a photorefractive polymer element with significantly improved responsiveness can be obtained.
  • the dark current control layer is not limited, but is preferably a single-layer monomolecular film or a plurality of monolayers formed on the surface of the transparent electrode.
  • the Fermi potential of the transparent electrode is made shallow by providing a monolayer or monolayer of a single layer between the transparent electrode and the photorefractive composite material, for example, generation of dark current due to the selection of the photorefractive polymer. Can be efficiently suppressed.
  • the monolayer monolayer or monolayer monolayer is not limited, but is preferably formed by chemically modifying a silane compound on the surface of the transparent electrode.
  • the silane compound is not limited, but 3-aminopropyltrimethoxysilane is preferable. By selecting 3-aminopropyltrimethoxysilane as the silane compound, the generation of dark current can be minimized.
  • the single-layer monomolecular film or the multi-layer monolayer can be formed by various methods.
  • the monomolecular film is obtained by chemically modifying 3-aminopropyltrimethoxysilane, it is preferably formed by the following method. That is, the transparent electrode substrate on which the transparent electrode is formed on the insulating substrate is hydrophilized by immersing it in a mixed solution of ammonia water and hydrogen peroxide or in a piranha solution.
  • an integrated precursor is produced by immersion in a mixed solvent of aminopropyltrimethoxysilane, and the surface of the integrated precursor is washed with alcohol to remove excess molecules.
  • a single-layer monomolecular film or a multi-layer monomolecular film is formed using the above method, ordered monolayers can be obtained, and the effect of suppressing dark current can be improved.
  • the thickness is preferably equal to or more than one molecule of the silane compound in order to obtain a high dark current suppressing effect.
  • the photorefractive composite material preferably contains a photorefractive polymer represented by the following formula (1).
  • the photorefractive composite material further includes a nonlinear optical dye, a sensitizer, and a plasticizer.
  • the photorefractive polymer is contained in 10 to 50% by weight
  • the nonlinear optical dye is contained in 20 to 50% by weight
  • the sensitizer is contained in 0.1 to 3% by weight
  • the plasticizer is contained in 10 to 40% by weight.
  • it is.
  • a dark current control layer formed on the surface of the transparent electrode and a photorefractive composite material provided on the insulating substrate via the transparent electrode and the dark current control layer are provided.
  • the dark current control layer can suppress the generation of dark current while exhibiting high responsiveness by the photorefractive polymer. As a result, a photorefractive polymer element with significantly improved responsiveness can be obtained.
  • FIG. 1 is a schematic cross-sectional view of a fast responsive photorefractive polymer element according to an embodiment of the present invention. It is a figure for demonstrating the problem in the case of selecting PTAA as a photorefractive composite material. It is a figure for demonstrating the method of solving the problem in the case of selecting PTAA as a photorefractive composite material. It is a conceptual diagram at the time of forming a self-assembled monomolecular film on an ITO electrode substrate. It is the schematic for demonstrating the four-wave mixing method for measuring diffraction efficiency.
  • 3 is a graph showing the relationship between the electric field strength and diffraction efficiency of Example 1.
  • 3 is a graph showing time response of diffraction efficiency of Example 1.
  • FIG. 1 is a schematic cross-sectional view of a fast responsive photorefractive polymer element 1 (hereinafter referred to as a photorefractive polymer element) according to an embodiment of the present invention.
  • the photorefractive polymer element 1 of the present embodiment is formed on a pair of insulating substrates 2 and 2 arranged substantially parallel to each other as shown in FIG. 1 and on the inner surfaces 2a and 2a of the pair of insulating substrates 2 and 2, respectively.
  • the photorefractive composite material 5 is interposed between the photorefractive composite material 5 and a spacer 6 provided around the photorefractive composite material 5.
  • each layer is shown thicker than actual for description.
  • Each insulating substrate 2 and each transparent electrode 3 formed on the inner surface 2a of each insulating substrate 2 constitute a pair of transparent electrode substrates 7 and 7 arranged in parallel to each other.
  • the insulating substrate 2 is not limited, and specific examples of the insulating substrate 2 include, for example, soda lime glass, silica glass, borosilicate glass, gallium nitride, gallium arsenide, sapphire, quartz glass, polyethylene terephthalate, and polycarbonate.
  • a composite substrate appropriately combined can be used.
  • Each transparent electrode 3 formed on the inner surface 2a of each insulating substrate 2 is a conductive film, and can be selected from a metal oxide film, a metal film, an organic film, and the like.
  • indium tin oxide (ITO) is selected as the transparent electrode 3 and configured as an ITO electrode, but is not limited thereto.
  • Other specific examples of the transparent electrode 3 include tin oxide, zinc oxide, polythiophene, gold, silver, platinum, copper, aluminum, polyaniline, lithium, magnesium, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, carbon What consists of carbon, such as nanofiber, and those combination is mentioned.
  • the photorefractive composite material 5 of the present embodiment can be obtained by adding a sensitizer, a nonlinear optical dye, and a plasticizer to the photorefractive polymer that is a main component.
  • a sensitizer e.g., a nonlinear optical dye
  • a plasticizer e.g., a plasticizer
  • very high diffraction efficiency and gain coefficient can be obtained.
  • charge transport in a stable and uniform film can be efficiently used, and a very high degree of photorefractive effect that cannot be achieved conventionally can be obtained.
  • the sensitizer has performance as an electron acceptor and is blended in order to enhance photorefractive properties.
  • a sensitizer is blended, a charge transfer complex is formed by the sensitizer and the photorefractive polymer, and useful photorefractive properties are expressed.
  • [6,6] -phenyl C 61 butanoic acid methyl ester (PCBM) represented by the following formula (2) is used as a sensitizer.
  • sensitizer examples include (2,4,7-trinitro-9-flurenylidene) malonitrile (TNF-DM), 2,4,7-trinitro-9-fluorenone (TNF), fullerene C 60 , fullerene.
  • TCBN tetracyanobenzene
  • TCNQ tetracyanoquinodinomethane
  • BQ benzoquinone
  • MQ 2,6-dimethyl-p-benzoquinone
  • Cl 2 Q 2,5-dichloro-p-benzoquinone
  • chloranil 2,3,5,6-tetrachloro-p-benzoquinone
  • DDQ 2,3-dichloro-5,6-p-benzoquinone
  • DDQ 2,3-dichloro-5,6-p-benzoquinone
  • a sensitizer may be used individually by 1 type and may use 2 or more types together.
  • the content of the sensitizer is preferably 0.1% by weight and more preferably 0.3% by weight as a lower limit with respect to 100% by weight of the photorefractive composite material.
  • the upper limit is preferably 3% by weight, more preferably 1% by weight, and most preferably 0.6% by weight.
  • the optimum content of the sensitizer is about 0.5% by weight.
  • the content of the sensitizer is 0.1% by weight or less, the photorefractive property is lowered.
  • the concentration of the charge transfer complex due to the sensitizer is increased, leading to an increase in light absorption and a significant decrease in light transmittance.
  • the nonlinear optical dye is a donor-acceptor type molecule exhibiting second-order nonlinear optical characteristics, that is, a material whose refractive index changes with an electric field (second-order nonlinear optical material).
  • second-order nonlinear optical material a material whose refractive index changes with an electric field.
  • [[4- (hexahydro-1H-azepin-1-yl) phenyl] methylene] propanedinitrile (7-DCST) represented by the following formula (3) is used as the nonlinear optical dye.
  • PDCST 4-piperidinobenzylidene-malononitrile
  • 2- (4- (azepan-1-yl) represented by the following formula (5)
  • FDCST -Fluoro-benzylidene
  • nonlinear optical dyes include 2,5-dimethyl-4- (p-nitrophenylazo) anisole (DMNPAA), 4-amino-4′-nitroazobenzene (ANAB), s-( ⁇ )-1 -(4-nitrophenyl) -2-pyrrolidine-methanol (NPP), 4- (diethylamino)-(E) - ⁇ -nitrostyrene (DEANST), (diethylamino) benzaldehyde diphenylhydrazone (DEH), AODCST, TDDCST, And aminocyanostyrenes such as DCDHF-6.
  • dye may be used individually by 1 type, and may use 2 or more types together.
  • the content of the nonlinear optical dye is preferably 20% by weight, more preferably 25% by weight, more preferably 50% by weight, and preferably 40% by weight as the lower limit with respect to 100% by weight of the photorefractive composite material. % Is more preferable, and 30% by weight is most preferable. If the content of the nonlinear optical dye is less than 20% by weight, the diffraction efficiency and gain coefficient necessary for the photorefractive effect may not be obtained. If the content of the nonlinear optical dye is more than 50% by weight, an imbalance in the amount ratio with other components may occur, which may adversely affect the design of the photorefractive composite.
  • the plasticizer serves to lower the glass transition temperature of the matrix.
  • ethyl carbazole (ECz) represented by the following formula (6) is used as a sensitizer.
  • plasticizer is (2,4,6-trimethylphenyl) diphenylamine (TAA) represented by the following formula (7).
  • plasticizers include carbazoyl ethyl propionate (CzEPA), triphenylamine (TPA), benzyl butyl phthalate (BBP), dicyclohexyl phthalate (DCP) tricresyl phosphate (TCP), diphenyl phthalate ( DPP), N -methyl- 1 -pyrrolidone, N -octyl- 1 -pyrrolidone, N--alkyl- 1 -pyrrolidones such as N-dodecyl-1-pyrrolidone, and 2-(1,2-cyclohexanedicarboximide) Ethyl propionate (AX22), 2- (1,2-cyclohexanedicarboximido) ethyl butyrate, 2- (1,2-cyclohexanedicarboximido) ethyl benzoate, 2- (1,2-cyclohexanedicarboximide) ) Ethyl propionate
  • the content of the plasticizer is preferably 10% by weight, more preferably 15% by weight, and more preferably 40% by weight, and 30% by weight as the lower limit with respect to 100% by weight of the photorefractive composite material. Is more preferred, with 20% by weight being most preferred. If the plasticizer content is less than 10% by weight, the glass transition temperature of the photorefractive polymer does not decrease, and the diffraction efficiency and gain coefficient required for the photorefractive effect may not be obtained. When the content of the plasticizer is more than 40% by weight, an unbalance is generated in the amount ratio with other components, which may adversely affect the design of the photorefractive composite.
  • the photorefractive polymer is not limited, but is a triarylamine-based amorphous polymer polytriarylamine (PTAA) represented by the following formula (1) used in this embodiment: Poly [bis (4-phenyl) (2 , 4,6-trimethylphenyl) amine]. This is also called polytriarylamine semiconductors.
  • PTAA triarylamine-based amorphous polymer polytriarylamine
  • Poly [bis (4-phenyl) (2,4,6-trimethylphenyl) amine] is an amorphous P-type semiconductor with high carrier mobility.
  • the mobility is 10 ⁇ 2 to 10 ⁇ 3 cm 2 / Vs, and when used in the photorefractive polymer element 1, very high responsiveness can be exhibited.
  • a photorefractive polymer having a tetraphenyldiaminobiphenyl moiety also exhibits high responsiveness.
  • the content of the photorefractive polymer represented by the above formula (1) is preferably 10% by weight, more preferably 20% by weight, and more preferably 30% by weight with respect to 100% by weight of the photorefractive composite material.
  • the upper limit is preferably 50% by weight, and more preferably 40% by weight.
  • the content is less than 10% by weight, the glass transition point may not be sufficiently lowered.
  • other components may adversely affect the design of the photorefractive composite material.
  • the thickness of the photorefractive composite material 5 is preferably 50 to 100 ⁇ m. If the thickness is less than 50 ⁇ m, it is difficult to satisfy the Bragg diffraction condition, and if it exceeds 100 ⁇ m, the applied voltage may increase or the absorption may increase. .
  • the spacer 6 is not limited as long as it can maintain the thickness of the photorefractive composite material.
  • a fluorine resin such as polyimide, PTFE, or PFA is preferable from the viewpoint of chemical resistance and heat resistance.
  • Each dark current control layer 4 of the present embodiment is formed on the inner surface 7a of each transparent electrode substrate 7 (ITO electrode substrate) and covers the inner surface 7a. Therefore, each dark current control layer 4 is interposed between each transparent electrode substrate 7 and the photorefractive composite material 5, and each transparent electrode 3 and the photorefractive composite material 5 are not in contact with each other. .
  • the dark current control layer 4 is preferably formed on both of the transparent electrode substrates 7, but may be formed only on one of the transparent electrode substrates depending on the performance to be exhibited.
  • FIG. 2 is a diagram for explaining a problem when PTAA is selected as the photorefractive composite material 5
  • FIG. 3 illustrates a method for solving the problem when PTAA is selected as the photorefractive composite material 5.
  • the HOMO of PVCz is ⁇ 5.9 eV and the Fermi level of ITO is ⁇ 4.8 eV as shown on the left side of FIG.
  • the potential difference ( ⁇ E FH ) is 1.1 eV.
  • the HOMO of PTAA is ⁇ 5.2 eV as shown on the right of FIG. Since the Fermi level is ⁇ 4.8 eV, the energy level difference ( ⁇ E FH ) is as small as 0.4 eV. Therefore, when PTAA is selected, a large dark current is easily generated.
  • the dark current control layer 4 is formed on the surface 3a of the ITO electrode 3 to solve the above-mentioned problems.
  • the Fermi level of the ITO electrode 3 becomes shallow (upward in the figure) as shown in the left to right diagrams of FIG.
  • the Fermi level of the ITO electrode 3 becomes shallow (above)
  • the energy level difference between the HOMO of PTAA and the Fermi level increases (from 0.4 eV to 0.9 eV in the figure), Generation of dark current can be suppressed.
  • a single monolayer or a plurality of monolayers formed on the surface 3 a of the ITO electrode 3 is suitable for the dark current control layer 4.
  • the single-layer monomolecular film or the plurality of monolayers are not necessarily formed uniformly over the entire surface 3 a of the ITO electrode 3. That is, even if the surface 3a of the ITO electrode 3 partially has a region where a single-layer monomolecular film or a plurality of monolayers are not formed, an improvement effect was recognized.
  • a part of the surface 3a of the ITO electrode 3 may be a monomolecular film, and the other part of the surface 3a may be a multi-layer monomolecular film.
  • a self-assembled monolayer that self-assembles on the ITO electrode 3 is used.
  • the single-layer monomolecular film or the plurality of monolayers are not limited to self-assembled monolayers.
  • the self-assembled monomolecular film is formed by chemically modifying the inner surface 3a of the transparent electrode 3 with a silane compound.
  • a silane compound is not limited, and 3-aminopropyltrimethoxysilane (APTMS) is most preferable.
  • Examples of other self-assembled monolayers include trichlorosilanes and dimethylchlorosilanes.
  • the self-assembled monomolecular film is a monomolecular film formed by self-assembly or self-assembly, and is a molecular aggregate formed on the solid surface in the process of chemical adsorption of organic molecules. Due to the interaction between adsorbed molecules, the constituent molecules of the aggregate are densely assembled. As a result, a structure having a highly regular molecular orientation and molecular arrangement is spontaneously formed.
  • FIG. 4 is a conceptual diagram when a self-assembled monomolecular film (SAM) as the dark current control layer 4 is formed on the ITO electrode substrate 7.
  • SAM self-assembled monomolecular film
  • a SAM-coated ITO electrode substrate can be obtained.
  • the film formation conditions such as the mixing ratio of each component in the hydrophilized solution, the solvent, the immersion time, and the cleaning component when forming the SAM can be appropriately changed according to the type of the transparent electrode. If a self-assembled monomolecular film is formed using the above method, ordered monomolecular films can be obtained, and the effect of suppressing dark current can be improved.
  • An integrated precursor molecule that becomes a SAM has a head group and a terminal group. These are connected by a hydrocarbon chain. SAM is formed by dissolving these in a solvent and immersing the surface on which the film is to be formed. Unlike the simple adhesion phenomenon to the surface, the place where the integrated precursor molecules spontaneously form a two-dimensional fine structure on the adsorption surface is called a self-assembled monolayer.
  • a self-assembled monolayer In addition to dipping in a liquid as a film forming method, there are a method of evaporating in a high vacuum to form a film, and spraying with a spray or the like.
  • the bonding portion can be classified into three types: thiol (mainly HS-group), silane (mainly X3Si-group), and acetic acid (mainly COOH-group). Different substances are adsorbed.
  • the properties of the surface after SAM film formation change depending on the end group.
  • the methyl group (CH 3 group), amino group (NH 2 group), carboxyl group (COOH group) as the end group, ferrocene, quinone, porphyrin, and the like are variously synthesized depending on the application.
  • the thickness of the self-assembled monomolecular film it is preferable that the thickness is one molecule of the silane compound in order to obtain a high dark current suppressing effect.
  • the photorefractive polymer element 1 of the present embodiment includes a dissolving step for dissolving the photorefractive polymer in a solvent, a solvent distilling step for distilling off the solvent, and a sandwich type device forming step for forming a sandwich type device. Manufactured by a manufacturing method.
  • a photorefractive polymer, a nonlinear optical dye, a plasticizer, and a sensitizer are dissolved in a solvent at a predetermined ratio.
  • the solvent is not particularly limited, and tetrahydrofuran (THF), chloroform, N-methylpyrrolidone (NMP), dimethylformamide and the like are used, and THF is preferable.
  • THF tetrahydrofuran
  • the dissolution temperature may be about room temperature.
  • the solution may be stirred as necessary.
  • the method of stirring this solution is not limited, and for example, it is performed by a method using a stirrer chip.
  • the solvent is removed.
  • the method for removing the solvent is not particularly limited, and for example, a cast film may be obtained. Specifically, an ITO electrode is formed on an insulating substrate to obtain an ITO electrode substrate, and then a SAM that is a dark current control layer is formed on the surface of the ITO electrode substrate to obtain a SAM-coated ITO electrode substrate. Then, a solution in which each component is dissolved is cast on the surface, and then the solvent is evaporated at room temperature, followed by natural drying overnight, followed by vacuum drying at about 80 ° C. for 12 hours. Evaporate.
  • spacers polyimide, thickness: 50 ⁇ m
  • another SAM-coated ITO electrode substrate that has been separately manufactured is placed on top.
  • a sandwich-type photorefractive element is produced by pressure bonding with a vacuum press while applying temperature.
  • the thickness of the photorefractive composite material in the element is preferably 50 to 100 ⁇ m. If it is less than 50 ⁇ m, it is difficult to satisfy the Bragg diffraction condition, and if it exceeds 100 ⁇ m, the applied voltage may increase or the absorption may increase.
  • the photorefractive element obtained by the above manufacturing method is, for example, recording / reproduction of moving images such as video images, real-time holograms, wavefront and phase manipulation of light, pattern recognition, optical amplification, nonlinear optical information processing, super multiplexing It can be used for hologram recording, high-density optical data recording, optical correlation systems, optical computers, and the like.
  • the dark current control layers 4 and 4 formed on the inner surfaces 7a and 7a of the pair of ITO electrode substrates 7 and 7 and the photorefractive composite material 5 mainly composed of PTAA are provided.
  • the dark current control layer 4 suppresses the generation of dark current and does not cause dielectric breakdown while expressing high responsiveness by PTAA. Thereby, the photorefractive polymer element 1 with significantly improved responsiveness can be obtained.
  • the Fermi potential of the ITO electrode 3 is made shallow, and the generation of dark current accompanying the selection of PTAA is efficiently performed. Can be suppressed. Since the self-assembled monomolecular film constituting the dark current control layer 4 is formed by chemically modifying 3-aminopropyltrimethoxysilane on the surface 3a of the ITO electrode 3, generation of dark current is minimized. The limit can be suppressed, and the dielectric breakdown can be surely prevented.
  • the photorefractive polymer elements of Examples 1 to 6 were manufactured. SAM was used for the dark current control layers of Examples 1 to 6. The thickness of the photorefractive composite was adjusted to 80 to 115 ⁇ m.
  • the components of the photorefractive composite in each example are as follows.
  • Photorefractive polymer PTAA / 44% by weight
  • Nonlinear optical dye 7-DCST / 35% by weight
  • Plasticizer ECz / 20% by weight
  • Sensitizer PCBM / 1% by weight
  • Photorefractive polymer PTAA / 42% by weight
  • Nonlinear optical dye PDCST / 35% by weight
  • Plasticizer TAA / 20% by weight
  • Sensitizer PCBM / 3 wt%
  • Photorefractive polymer PTAA / 44% by weight
  • Nonlinear optical dye PDCST / 35% by weight
  • Plasticizer TAA / 20% by weight
  • Sensitizer PCBM / 1% by weight
  • Photorefractive polymer PTAA / 44.5% by weight
  • Nonlinear optical dye PDCST / 35% by weight
  • Plasticizer TAA / 20% by weight
  • Sensitizer PCBM / 0.5% by weight
  • Photorefractive polymer PTAA / 44.7% by weight
  • Nonlinear optical dye PDCST / 35% by weight
  • Plasticizer TAA / 20% by weight
  • Sensitizer PCBM / 0.3% by weight
  • Photorefractive polymer PTAA / 44.9% by weight
  • Nonlinear optical dye PDCST / 35% by weight
  • Plasticizer TAA / 20% by weight
  • Sensitizer PCBM / 0.1% by weight
  • the photorefractive polymer elements of Comparative Examples 1 to 4 were manufactured. In Comparative Example 2 and Comparative Example 3, no dark current control layer was provided, and in Comparative Example 1 and Comparative Example 4, SAM, which was a dark current control layer, was provided. The thickness of the photorefractive composite was adjusted to 80 to 115 ⁇ m.
  • the components of the photorefractive composite in each example are as follows.
  • Photorefractive polymer PTAA / 45% by weight
  • Nonlinear optical dye PDCST / 35% by weight
  • Plasticizer TAA / 20% by weight
  • Sensitizer PCBM / 0% by weight
  • Photorefractive polymer PVCz (Mw: 370000) / 44% by weight
  • Nonlinear optical dye 7-DCST / 35% by weight
  • Plasticizer ECz / 20% by weight
  • Sensitizer TNF / 1% by weight
  • Photorefractive polymer PVCz (Mw: 370000) / 44% by weight
  • Nonlinear optical dye 7-DCST / 35% by weight
  • Plasticizer ECz / 20% by weight
  • Sensitizer TNF / 1% by weight
  • FIG. 5 is a schematic diagram for explaining a four-wave mixing method (DFWM) for measuring diffraction efficiency (%).
  • the diffraction efficiency (%) was measured by a four-wave mixing method with an electric field applied (45 V / ⁇ m) to the photorefractive polymer element.
  • a 632.8 nm He—Ne laser was used for the measurement.
  • the diffraction efficiency (%) generated by the photorefractive effect, that is, the refractive index change magnitude ⁇ n can be evaluated from the Bragg diffraction intensity measurement (diffraction efficiency measurement).
  • the diffraction efficiency can be measured by making low-power probe light incident on the sample film in which the refractive index grating is generated by the writing light and measuring the intensity of light diffracted by the refractive index grating.
  • the normalized diffraction efficiency ⁇ norm is shown and evaluated by the following equation (1).
  • the diffraction efficiency is measured by inclining the photorefractive polymer element so that the angle ⁇ between the normal H of the photorefractive polymer element (Sample) and the bisector of the two interference beams is 50 °.
  • the normalized diffraction efficiency ⁇ norm can be related to the magnitude of refractive index change: ⁇ n by Kugelnick's coupled wave theory in a thick medium.
  • the normalized diffraction efficiency ⁇ norm and the refractive index change magnitude ⁇ n can be approximately expressed by one expression, and the refractive index change magnitude ⁇ n can be evaluated from the normalized diffraction efficiency ⁇ norm .
  • the intensity I diffracted of the diffracted light is a high-speed bench meter (for example, manufactured by Agilent; 34411 digital multimeter), and the transmitted light intensity I transmitted is the high-speed bench meter (for example, manufactured by Agilent; 34411 digital Measure using a multimeter.
  • Table 1 shows the measurement results of diffraction efficiency and response time.
  • FIG. 6 shows a graph showing the relationship between the electric field intensity and diffraction efficiency of Example 1
  • FIG. 7 shows a graph showing the time response of the diffraction efficiency of Example 1
  • FIG. 8 shows the relationship between the applied electric field and dark current.
  • the graph to represent is shown. From FIG. 6, the diffraction efficiency was 6% at 25 V / ⁇ m.
  • FIG. 7 shows a time-resolved diffraction efficiency of 20 V / ⁇ m. The response speed at this time was 11.3 ms ( ⁇ value in the figure indicates dispersion).
  • ⁇ value in the figure indicates dispersion
  • FIG. 9 is a graph showing the relationship between the concentration of PCBM as a sensitizer, the external diffraction efficiency, and the grating formation speed.
  • FIG. 10 is a graph showing the relationship between the concentration of PCBM as a sensitizer and sensitivity.
  • Sensitivity S represented by the following formula (5) can be used as an index of photorefractive performance. The sensitivity S increases as the diffraction efficiency increases, the laser energy per unit area decreases, and the response time decreases. That is, the higher sensitivity S means that the hologram image becomes brighter and the speed at which the hologram image is formed increases.
  • the photorefractive composite material of the photorefractive polymer element may contain other components in addition to the above components within a range not impairing the photorefractive property.
  • examples of such other components include an antioxidant and an ultraviolet absorber.
  • the invention includes an insulating substrate, a transparent electrode formed on one surface of the insulating substrate, a dark current control layer formed on the surface of the transparent electrode, and a transparent electrode and a dark current control layer formed on the insulating substrate.
  • a photorefractive composite material provided through a high-speed responsive photorefractive polymer element.
  • the present invention can be of any form as long as it is a fast response photorefractive polymer element in which a dark current control layer is interposed between the transparent electrode on the transparent electrode substrate and the photorefractive composite material. There may be.
  • ITO electrodes have been used for photorefractive polymer elements because side chain carbazole and side chain triphenylamine-based HOMOs are sufficiently deeper than ITO.
  • the photorefractive polymer element is required to have further high-speed response, and the demand for the photorefractive polymer element provided with the SAM as in the present invention is expected to increase.
  • indium which is the main component of ITO, is a rare metal, and its stable supply is feared, and its price is expected to rise. Therefore, when considering industrialization, selection of a transparent electrode other than the ITO electrode is desired from the viewpoint of cost and environment.
  • ITO As an alternative material for ITO, some of them are listed above, but ZnO: ⁇ 5.8 eV (Fermi level), Ga 2 O 3 / ZnO: ⁇ 5.1 eV, GaN: ⁇ 5.5 eV, MgO / C: Unknown, graphene sheet: -4.4 eV, PEDOT / PPS: -5.8 eV, and the like. These have deeper Fermi levels than ITO: -4.8 eV, and are not suitable for photorefractive polymer elements in the prior art. However, by applying the present invention, it is possible to select such an ITO substitute material, and the present invention is considered to greatly contribute to the information industry and the like.
  • Photorefractive polymer element 1 Photorefractive polymer element 2 Insulating substrate 3 Transparent electrode (ITO electrode) 4 Dark current control layer (SAM) 5 Photorefractive composite material 6 Spacer 7 Transparent electrode substrate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Holo Graphy (AREA)

Abstract

互いに略平行状に配置された一対の絶縁基板(2、2)と、これら一対の絶縁基板(2、2)の内面(2a、2a)に形成されたITO電極(3、3)と、各ITO電極(3)の内表面(3a)に形成された暗電流制御層(4、4)と、一対の絶縁基板(2、2)間で各ITO電極(3)及び各暗電流制御層(4)を介して挟持されたフォトリフラクティブ複合材料(5)とを備えた高速応答性フォトリフラクティブポリマー素子(1)とする。フォトリフラクティブ複合材料(5)に、フォトリフラクティブポリマーであるポリトリアリールアミン(PTAA)を含有させ、暗電流制御層(4)を単一層の単分子膜又は複数層の単分子膜とすることで、応答性を格段に向上させた高速応答性フォトリフラクティブポリマー素子とした。

Description

高速応答性フォトリフラクティブポリマー素子
 本発明は、フォトリフラクティブポリマー素子に関し、詳細にはホストポリマーにトリフェニルアミンポリマーを用いた高速応答性フォトリフラクティブポリマー素子に関する。
 ある種の物質は、良好な電荷輸送能を有することが知られており、その応用事例として次に示すフォトリフラクティブ効果がある。フォトリフラクティブ効果とは、非線形光学効果の1つであり、物質が光を吸収して屈折率が変化する現象のことである。フォトリフラクティブ効果の発現機構を説明する。光導電性及び2次の非線形光学特性を有する媒体中で2本のレーザー光を干渉させると干渉縞が形成される。この干渉稿の明部において光励起による電荷キャリアが生成され、外部印加電界により正電荷キャリアが媒体中を移動し、暗部にトラップされる。その結果、明部で負、暗部で正、に帯電した電荷密度の周期的な分布ができ、空間電界が形成される。この空間電界は、1次の電気光学効果であるポッケルス効果を引き起こし、周期的な屈折率格子が形成される。この屈折率格子と光干渉稿との間には空間的にφの位相差が生じるため、2光波間で非対称なエネルギー移動が観測され、光増幅(光学利得)が得られる。
 このようなフォトリフラクティブ効果を用いることで、位相共役や、歪曲した媒体からのイメージング、実時間ホログラフィー、超多重ホログラム記録、3Dディスプレイ、3Dプリンター、さらには光増幅、光ニュートラルネットワークを含む非線形光情報処理、パターン認識、光リミッティング、高密度光データの記憶等への応用が期待されている。
 上記効果を発現するフォトリフラクティブ材料として、従来、ニオブ酸リチウム(LiNbO3)等の無機結晶材料が用いられていた。しかし、この無機結晶材料では、加工性が乏しいという問題点があった。そこで、近年、有機物からなるフォトリフラクティブ材料の開発が活発になっている。
 有機フォトリフラクティブ材料は、無機フォトリフラクティブ材料に比べて多くの利点がある。その利点とは、組成比率の最適化が容易、高い加工性の他、例えば、大きな光学非線形性、低誘電率、低コスト、軽量、可撓性などである。また、用途に応じて望ましいものとなり得る他の重要な特性には、記録データの長い貯蔵寿命、光学品質、及び熱安定性がある。このような有機フォトリフラクティブ材料は、高度な情報通信技術にとって重要な材料となりつつある。その中でも、カルバゾール類(例えば、特許文献1参照)、トリフェニルアミン類が知られている。
 ホログラフィックを連続的に書き込み、表示させる装置として、各種のホログラフィック表示装置が知られており、当該表示装置には、上記のようなフォトリフラクティブ材料を備えたフォトリフラクティブ素子が用いられる。例えば、特許文献2には、フォトリフラクティブ材料を含んだ層と、電子・イオン混合伝導体を含んだ層と、を2枚の透明電極基板で挟んだフォトリフラクティブ素子が記載されている。
特開2003-322886号公報 特開2011-158721号公報
 特許文献2のフォトリフラクティブ素子を構成するフォトリフラクティブ材料は、ニオブ酸リチウム等の無機結晶材料や高分子材料からなり、電子・イオン混合伝導体は硫化銀からなる。しかし、かかるフォトリフラクティブ素子を用いた場合、ホログラムの書き込み・表示の応答性が低く、連続的に変化する表示対象物のホログラム像を鮮明に映し出すことが困難であるといった問題がある。従って、高性能のホログラフィック表示装置に適用するための十分な表示性能を得ることができない。
 そこで本発明は、上記従来技術の問題点に鑑み、応答性を格段に向上させた高速応答性フォトリフラクティブポリマー素子を提供することを目的とする。
 本発明者らは上記課題を解決するべく、鋭意検討を行った。応答性の改良には、フォトリフラクティブポリマー素子を構成するための高い応答性が得られる化合物の選択、及びこの化合物の選択に伴う暗電流の発生を抑えることが重要であると考え、この点に着目した。その結果、フォトリフラクティブポリマーとしてトリフェニルアミンポリマーを選択し、さらには自己集積化単分子膜を構成に含ませることで上記課題を解決しうることを見出し、本発明を完成した。
 即ち、本発明の高速応答性フォトリフラクティブポリマー素子は、絶縁基板と、この絶縁基板の片面上に形成された透明電極と、この透明電極の表面に形成された暗電流制御層と、前記絶縁基板上で前記透明電極及び暗電流制御層を介して設けられたフォトリフラクティブ複合材料とを備えることを特徴とする。
 また、本発明の高速応答性フォトリフラクティブポリマー素子は、前記絶縁基板に略平行状に配置された他の絶縁基板と、前記他の絶縁基板の内面上に形成された他の透明電極と、前記他の透明電極の内表面上に形成された他の暗電流制御層と、をさらに備え、前記フォトリフラクティブ複合材料が前記一対の絶縁基板間で前記各透明電極及び各暗電流制御層を介して挟持されていることを特徴とする。
 上記本発明によれば、透明電極の表面に形成された暗電流制御層と、絶縁基板上で透明電極及び暗電流制御層を介して設けられたフォトリフラクティブ複合材料とを備えることから、フォトリフラクティブ複合材料によって高い応答性を発現しつつ、暗電流制御層によって暗電流の発生を抑えることができる。これにより、応答性が格段に向上したフォトリフラクティブポリマー素子を得ることができる。
 前記暗電流制御層は限定されないが、前記透明電極の表面に形成された単一層の単分子膜又複数層の単分子膜であることが好ましい。単一層の単分子膜又複数層の単分子膜を透明電極とフォトリフラクティブ複合材料との間に設けることによって、透明電極のフェルミ電位を浅くし、例えばフォトリフラクティブポリマーの選択に伴う暗電流の発生を効率的に抑えることができる。
 前記単一層の単分子膜又複数層の単分子膜は限定されないが、前記透明電極の表面にシラン化合物を化学修飾して形成されたものであることが好ましい。このシラン化合物は限定されないが、3-アミノプロピルトリメトキシシランであることが好ましい。シラン化合物として、3-アミノプロピルトリメトキシシランを選択することで暗電流の発生を最小限度まで抑えることが可能となる。
 前記単一層の単分子膜又複数層の単分子膜は多様な方法で形成することができる。当該単分子膜が3-アミノプロピルトリメトキシシランを化学修飾したものである場合には、次の方法によって形成することが好ましい。即ち、前記透明電極が前記絶縁基板上に形成された透明電極基板を、アンモニア水及び過酸化水素の混合溶液中、又はピラニア溶液中に浸漬させて親水化し、この親水化電極基板を、3-アミノプロピルトリメトキシシラン混合溶媒中に浸漬させて集積化前駆体を生成し、この集積化前駆体の表面をアルコールで洗浄して余剰分子を除去する方法である。
 上記方法を用いて単一層の単分子膜又複数層の単分子膜を形成すれば、整然と並んだ単分子膜が得られ、暗電流の抑制効果を向上させることができる。
 前記単一層の単分子膜又複数層の単分子膜の膜厚に関し、暗電流の高い抑制効果を得るにはシラン化合物の1分子分以上の厚みであることが好ましい。
 前記フォトリフラクティブ複合材料は、下記式(1)で表されるフォトリフラクティブポリマーを含んでいることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 前記フォトリフラクティブ複合材料は、さらに非線形光学色素と、増感剤と、可塑剤とを含むことが好ましい。これらの含有量に関し、前記フォトリフラクティブポリマーが10~50重量%、非線形光学色素が20~50重量%、増感剤が0.1~3重量%、可塑剤が10~40重量%含まれていることが好ましい。
 上記式(1)で表されるフォトリフラクティブポリマーと、非線形光学色素と、増感剤と、可塑剤とよりなるフォトリフラクティブ複合材料を用いた場合、非常に高い回折効率、利得係数が得られる。これにより、安定で均一な膜中での電荷輸送を効率よく利用でき、従来では達成できなかった非常に高度なフォトリフラクティブ効果を得ることができる。
 上記の通りの本発明によれば、透明電極の表面に形成された暗電流制御層と、絶縁基板上で透明電極及び暗電流制御層を介して設けられたフォトリフラクティブ複合材料とを備えることから、フォトリフラクティブポリマーによって高い応答性を発現しつつ、暗電流制御層によって暗電流の発生を抑えることができる。これにより、応答性が格段に向上したフォトリフラクティブポリマー素子を得ることができる。
本発明の一実施形態に係る高速応答性フォトリフラクティブポリマー素子の模式断面図である。 フォトリフラクティブ複合材料にPTAAを選択する場合の問題点を説明するための図である。 フォトリフラクティブ複合材料にPTAAを選択する場合の問題点を解決する方法を説明するための図である。 ITO電極基板上に自己集積化単分子膜を形成する際の概念図である。 回折効率を測定するための4光波混合法を説明するための概略図である。 実施例1の電界強度と回折効率の関係を表すグラフである。 実施例1の回折効率の時間応答性を表すグラフである。 印加電界と暗電流の関係を表すグラフである。 増感剤であるPCBMの濃度と外部回折効率及び格子形成速度との関係を表すグラフである。 増感剤であるPCBMの濃度と感度との関係を表すグラフである。
 以下、本発明の実施形態について説明する。図1は本発明の一実施形態に係る高速応答性フォトリフラクティブポリマー素子1(以下、フォトリフラクティブポリマー素子という)の模式断面図である。本実施形態のフォトリフラクティブポリマー素子1は、図1のように互いに略平行状に配置された一対の絶縁基板2、2と、これら一対の絶縁基板2、2の内面上2a、2aに形成された透明電極3、3と、各透明電極3の内表面3aに形成された暗電流制御層4、4と、一対の絶縁基板2、2間で各透明電極3及び各暗電流制御層4を介して挟持されたフォトリフラクティブ複合材料5と、このフォトリフラクティブ複合材料5の周囲に設けられたスペーサー6とで構成されている。なお、図1の模式図では説明のため各層を実際よりも厚く図示している。
 各絶縁基板2と、これら各絶縁基板2の内面上2aに形成された各透明電極3によって、互いに平行状に配置された一対の透明電極基板7、7が構成されている。絶縁基板2は限定されず、当該絶縁基板2の具体例として、例えば、ソーダ石灰ガラス、シリカガラス、ホウケイ酸ガラス、窒化ガリウム、ヒ化ガリウム、サファイア、石英ガラス、ポリエチレンテレフタレート、及びポリカーボネート、これらを適宜組み合わせた複合基板が挙げられる。
 各絶縁基板2の内面上2aに形成された各透明電極3は導電膜であり、金属酸化物膜、金属膜、及び有機膜などから選択できる。本実施形態では透明電極3として、酸化インジウムスズ(ITO)を選択しITO電極として構成しているが、これに限定されない。透明電極3の他の具体例として、酸化スズ、酸化亜鉛、ポリチオフェン、金、銀、白金、銅、アルミニウム、ポリアニリン、リチウム、マグネシウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、カーボンナノファイバー等の炭素及びそれらの組み合わせからなるものが挙げられる。
 本実施形態のフォトリフラクティブ複合材料5は、主成分であるフォトリフラクティブポリマーに、増感剤、非線形光学色素、及び可塑剤を加えることによって得ることができる。かかる組成を有することで、非常に高い回折効率、利得係数が得られる。これにより、安定で均一な膜中での電荷輸送を効率よく利用でき、従来では達成できなかった非常に高度のフォトリフラクティブ効果を得ることができる。
(増感剤)
 増感剤は、電子受容体としての性能を有しており、フォトリフラクティブ性を高めるために配合されるものである。増感剤が配合されると、当該増感剤とフォトリフラクティブポリマーとにより、電荷移動錯体が形成され、有用なフォトリフラクティブ性が発現される。
 本実施形態では、増感剤として下記式(2)で表される[6、6]-フェニルC61ブタン酸メチルエステル(PCBM)を用いている。
Figure JPOXMLDOC01-appb-C000003
 増感剤の他の具体例として、(2、4、7-トリニトロ-9-フルレニィリデン)マロニトリル(TNF-DM)、2、4、7-トリニトロ-9-フルオレノン(TNF)、フラーレンC60、フラーレンC70、テトラシアノベンゼン(TCBN)、テトラシアノキノジノメタン(TCNQ)、ベンゾキノン(BQ)、及びその誘導体、2、6-ジメチル-p-ベンゾキノン(MQ)、2、5-ジクロロ-p-ベンゾキノン(ClQ)、2、3、5、6-テトラクロロ-p-ベンゾキノン(クロラニル)、2、3-ジクロロ-5、6-p-ベンゾキノン(DDQ)等が挙げられる。これら具体例のうち、ホストマトリックスであるフォトリフラクティブポリマーに対する溶解性の点で、上記PCBMの他、2,4,7-トリニトロ-9-フルオレノン(TNF)が好ましい。なお、増感剤は、一種のものを単独で使用してもよく、2種類以上のものを併用しても良い。
 増感剤の含有量としてはフォトリフラクティブ複合材料:100重量%に対して、下限値としては0.1重量%が好ましく、0.3重量%がさらに好ましい。上限値としては3重量%が好ましく、1重量%がさらに好ましく、0.6重量%が最も好ましい。増感剤の最適な含有量は0.5重量%程度である。増感剤の含有量が、0.1重量%以下であるとフォトリフラクティブ性が低くなる。増感剤の含有量が3重量%よりも多いと、増感剤による電荷移動錯体の濃度が高くなるため、光の吸収の増大が招来されて光の透過度が顕著に低下してしまう。
(非線形光学色素)
 非線形光学色素とは、2次の非線形光学特性を示すドナーアクセプター型分子、即ち、電場によって屈折率が変化する材料(2次非線形光学材料)のことである。本実施形態では、非線形光学色素として下記式(3)で表される[[4-(ヘキサヒドロ-1H-アゼピン-1-イル)フェニル]メチレン]プロパンジニトリル(7-DCST)を用いている。
Figure JPOXMLDOC01-appb-C000004
 他の好ましい非線形光学色素として、下記式(4)で表される4-ピペリジノベンジリデン-マロノニトリル(PDCST)、下記式(5)で表される2-(4-(アゼパン-1-イル)-2-フルオロ-ベンジリデン)-マロノニトリル(FDCST)が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 非線形光学色素の他の具体例として、2,5-ジメチル-4-(p-ニトロフェニルアゾ)アニソール(DMNPAA)、4-アミノ-4‘-ニトロアゾベンゼン(ANAB)、s-(-)-1-(4-ニトロフェニル)-2-ピロリジン-メタノール(NPP)、4-(ジエチルアミノ)-(E)-β-ニトロスチレン(DEANST)、(ジエチルアミノ)ベンツアルデヒドジフェニルヒドラゾン(DEH)、AODCST、TDDCST、DCDHF-6等のアミノシアノスチレン類が挙げられる。なお、非線形光学色素は、一種のものを単独で使用してもよく、2種類以上のものを併用しても良い。
 非線形光学色素の含有量としては、フォトリフラクティブ複合材料:100重量%に対して、下限値として、20重量%が好ましく、25重量%がさらに好ましく、上限値として、50重量%が好ましく、40重量%がさらに好ましく、30重量%が最も好ましい。非線形光学色素の含有量が20重量%よりも少ないと、フォトリフラクティブ効果に必要な回折効率や利得係数が得られない場合がある。非線形光学色素の含有量が、50重量%よりも多いと、他の成分との量比にアンバランスが生じて、フォトリフラクティブ複合体の設計に悪影響を及ぼす場合がある。
(可塑剤)
 可塑剤は、マトリックスのガラス転移温度を低下させる役割を果たす。本実施形態では、増感剤として下記式(6)で表されるエチルカルバゾール(ECz)を用いている。
Figure JPOXMLDOC01-appb-C000007
 他の好ましい可塑剤として下記式(7)で表される(2、4、6-トリメチルフェニル)ジフェニルアミン(TAA)が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 可塑剤の他の具体例として、プロピオン酸カルバゾイルエチル(CzEPA)、トリフェニルアミン(TPA)、フタル酸ベンジルブチル(BBP)、フタル酸ジシクロヘキシル(DCP)リン酸トリクレジル(TCP)、フタル酸ジフェニル(DPP)、N -メチル- 1 -ピロリドン、N -オクチル- 1 -ピロリドン、N-ドデシル-1-ピロリドンなどのN -アルキル- 1 -ピロリドン類、ならびに 2 - (1、2-シクロヘキサンジカルボキシイミド)エチルプロピオネート (AX22)、2-(1、2-シクロヘキサンジカルボキシイミド)エチルブチレート、2-(1、2-シクロヘキサンジカルボキシイミド)エチルベンゾエート、2-(1、2-シクロヘキサンジカルボキシイミド)エチルアクリレート、2-(フタルイミド)エチルプロピオネート(AX23) などのイミド化合物等が挙げられる。
 可塑剤の含有量としては、フォトリフラクティブ複合材料:100重量%に対して、下限値として、10重量%が好ましく、15重量%がさらに好ましく、上限値として、40重量%が好ましく、30重量%がさらに好ましく、20重量%が最も好ましい。可塑剤の含有量が、10重量%よりも少ないと、フォトリフラクティブポリマーのガラス転移温度が低下せず、フォトリフラクティブ効果に必要な回折効率や利得係数が得られない場合がある。可塑剤の含有量が、40重量%よりも多いと、他の成分との量比にアンバランスが生じて、フォトリフラクティブ複合体の設計に悪影響を及ぼす場合がある。
(フォトリフラクティブポリマー)
 フォトリフラクティブポリマーは限定されないが、本実施形態で用いる下記式(1)で表されるトリアリールアミン系非結晶質高分子のポリトリアリールアミン(PTAA):Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]が好ましい。これは、ポリトリアリールアミン半導体(Polytriarylamine Semiconductors)ともよばれる。
Figure JPOXMLDOC01-appb-C000009
 ポリ[ビス(4-フェニル)(2、4、6-トリメチルフェニル)アミン]は、高いキャリア移動度を有するアモルファスP型半導体である。その移動度は、10-2~10-3cm/Vsを示し、フォトリフラクティブポリマー素子1に用いた場合、非常に高い応答性を発現させることができる。他のフォトリフラクティブポリマーとして、テトラフェニルジアミノビフェニル部位を有するフォトリフラクティブポリマーでも高い応答性を発現する。
 上記式(1)で表されるフォトリフラクティブポリマーの含有量としては、フォトリフラクティブ複合材料:100重量%に対して、下限値として10重量%が好ましく、20重量%がさらに好ましく、30重量%が最も好ましく、上限値としては、50重量%が好ましく、40重量%がさらに好ましい。上記含有量が10重量%よりも少ないと、ガラス転移点の低下が十分に起こらない場合があり、当該含有量が50重量%よりも多いと、他の成分(非線形光学色素、増感剤、可塑剤)との量比にアンバランスが生じて、フォトリフラクティブ複合材料の設計に悪影響を及ぼす場合がある。
 フォトリフラクティブ複合材料5の厚みは50~100μmが好適であり、厚みが50μm未満であればブラッグ回折条件を満たしにくく、100μmを超えると印加電圧の上昇や吸収の増大を招く恐れがあるからである。
 スペーサー6は、フォトリフラクティブ複合材料の厚みを保持できるものであれば、限定されず、耐薬品性、耐熱性などの点から例えば、ポリイミド、PTFEやPFAなどのフッ素樹脂が好適である。
(暗電流制御層)
 本実施形態の各暗電流制御層4は、各透明電極基板7(ITO電極基板)の内表面7aに形成されており、当該内表面7aを覆っている。従って、各透明電極基板7とフォトリフラクティブ複合材料5との間に各暗電流制御層4が介在しており、各透明電極3とフォトリフラクティブ複合材料5とは接触していない状態となっている。暗電流制御層4は、各透明電極基板7の双方に形成することが好ましいが、発現する性能に応じて何れかの透明電極基板のみに形成してもよい。
 暗電流制御層4を、透明電極(ITO電極)3とフォトリフラクティブ複合材料5との間に介在させる理由を説明する。図2はフォトリフラクティブ複合材料5にPTAAを選択する場合の問題点を説明するための図であり、図3はフォトリフラクティブ複合材料5にPTAAを選択する場合の問題点を解決する方法を説明するための図である。
 フォトリフラクティブ複合材料5と、各透明電極基板7の表面7aを覆う金属材料であるITOとの界面における性質上、ショットキー接合又は界面電気二重層を考慮しなければならない。高い応答性が得られるポリトリアリールアミン(PTAA)を選択した場合、電荷発生剤でもあるPTAAの最高被占軌道(HOMO)とITOとのフェルミ準位が近くなる。PTAAの最高被占軌道とITOフェルミ準位とが近くなると、熱励起によって電荷がITO電極から流れだして大きな暗電流を生じさせ、その結果、光導電性を阻害すると同時に、高電界で絶縁破壊を引き起こす。
 比較として、フォトリフラクティブポリマーに下記式(8)で表されるポリビニルカルバゾ-ル(PVCz)を用いた例で説明する。
Figure JPOXMLDOC01-appb-C000010
 図2のように、PVCzとITOとの組み合わせの場合、同図の左に示すようにPVCzのHOMOが-5.9eVであり、ITOのフェルミ準位が-4.8eVであるため、エネルギー準位差(ΔEF-H)は1.1eVとなる。
 PVCzフォトリフラクティブポリマーを用いた場合、暗電流は発生し難い反面、その移動度が10-6-10-7cm/Vsと遅く、ビデオ速度(30s-1)の高速応答性を発現させることは困難である。
 一方、ビデオ速度をはるかに凌ぐ高速応答性を発現可能な本実施形態のPTAAと、ITOとの組み合わせの場合、図2の右に示すようにPTAAのHOMOが-5.2eVであり、ITOのフェルミ準位が-4.8eVであるため、エネルギー準位差(ΔEF-H)が0.4eVと小さくなる。そのため、PTAAを選択すると容易に大きな暗電流が発生する。
 本発明では、ITO電極3の表面3aに暗電流制御層4を形成することで、上述の問題点を解決するに至った。暗電流制御層4を形成すれば、図3の左図から右図に示すようにITO電極3のフェルミ準位が浅く(同図では上に)なる。ITO電極3のフェルミ準位が浅く(上に)なると、PTAAのHOMOと、当該フェルミ準位とのエネルギー準位差が大きくなり(同図では0.4eVから0.9eVになっている)、暗電流の発生を抑制することができる。
 この点に関し、金属清浄表面に成膜した有機薄膜の紫外光電子分光の結果から、金属と有機薄膜の界面では、ショットキー接合又は界面電気二重層の形成によって真空準位のシフトが起こることを利用している。シフト量は有機材料と金属の組み合わせによっては1eVにもなる。界面電気二重層の極性は多くの場合、有機材料が正で金属が負になる。
 その起源として、界面における電荷の移動や鏡像効果、界面準位の存在や永久双極子の配列などが提案されているが、実際の界面ではそれらが複雑に混ざっていると考えられ、シフト量を予測することは容易ではない。また、この原理は金属の表面に鎖状アルカン分子が吸着した系において、分子-電極の距離が重要な要因となっている。つまり第一層目の分子が金属と化学修飾することで電子状態が変化し、フェルミ準位のシフトが可能になる。
 暗電流制御層4として多様な形態のものが選択可能である。ITO電極3の表面3aに形成された単一層の単分子膜又複数層の単分子膜が、暗電流制御層4に好適である。単一層の単分子膜又複数層の単分子膜は、必ずしもITO電極3の表面3aの全面にわたって均一に形成されていなくてもよい。つまり、ITO電極3の表面3aに、単一層の単分子膜又複数層の単分子膜が形成されていない領域が部分的にあっても改善効果が認められた。ITO電極3の表面3aの一部が単分子膜であり、当該表面3aの他の部分が複数層の単分子膜となっていてもよい。ITO電極3の表面3aにおいて、単一層の単分子膜の複数の領域が形成され、それと共に複数層の単分子膜の複数の領域が形成されていてもよい。
 本実施形態の暗電流制御層4として、ITO電極3上で自己組織化する自己集積化単分子膜(Self-Assembled Monolayer:SAM)を用いている。なお単一層の単分子膜又複数層の単分子膜は、自己集積化単分子膜には限定されない。自己集積化単分子膜は、透明電極3の内表面3aにシラン化合物を化学修飾して形成されたものである。かかるシラン化合物は限定されず、3-アミノプロピルトリメトキシシラン(APTMS)が最も好適である。他の自己集積化単分子膜としては、トリクロロシラン類、ジメチルクロロシラン類が挙げられる。
 自己集積化単分子膜は、自己集積化又は自己組織化によって形成される単分子膜であり、有機分子の化学吸着過程で固体表面上に形成される分子会合体である。吸着分子同士の相互作用によって会合体の構成分子が密に集合する。このことにより、高度に規則的な分子配向及び分子配列を有する構造が自発的に形成される。
 自己集積化単分子膜を透明電極3上に形成するには、酸-塩基反応によるもの、シランカップリング反応によるもの、水素終端化シリコン表面によるもの等の多様な方法が挙げられ、次の方法によって形成することが好ましい。
 図4はITO電極基板7上に暗電流制御層4としての自己集積化単分子膜(SAM)を形成する際の概念図である。まず前処理として、ITO電極基板を、アンモニア水及び過酸化水素の混合溶液中、又はピラニア溶液中に、15分間浸漬させて当該ITO電極基板の表面を親水化する。続いてこの親水化ITO電極基板を、1%の3-アミノプロピルトリメトキシシラン(APTMS)のメタノール溶液中に、30分間浸漬させて、図4中央に図示する集積化前駆体を生成する。さらに、この集積化前駆体膜の表面を2-プロパノールで洗浄し余剰分子を除去することによって、SAMを形成する。これにより、SAM被覆ITO電極基板を得ることができる。なお、SAMを形成する際の、親水化溶液中の各成分の混合比率、溶媒、浸漬時間、洗浄成分などの成膜条件は、透明電極の種類などに応じて適宜変更できる。上記方法を用いて自己集積化単分子膜を形成すれば、整然と並んだ単分子膜が得られ、暗電流の抑制効果を向上させることができる。
 SAMとなる集積化前駆体分子は結合部(head group)と末端基(terminal group)を持つ。これらの間は炭化水素鎖で結ばれている。これらを溶媒に溶かし、膜を形成したい表面を浸漬することにより、SAMが形成される。単純な表面への付着現象とは異なり、集積化前駆体分子が吸着表面に2次元的な細密構造を自発的に形成する所が、自己組織化単分子膜と呼ばれる所以である。また成膜方法として液体に浸漬する以外にも、高真空中で蒸発させ成膜する方法や、スプレーなどによる噴霧などもある。結合部としては3種類に分類でき、チオール系(主にHS-基)、シラン系(主にX3Si-基)、酢酸系(主にCOOH-基)がある。それぞれ吸着する物質が異なる。
 末端基によりSAM成膜後の表面の特性が変わる。末端基としてはメチル基(CH基)、アミノ基(NH基)、カルボキシル基(COOH基)の他に、フェロセン、キノン、ポルフィリンなどが用途に応じて様々に合成される。自己集積化単分子膜の膜厚に関し、暗電流の高い抑制効果を得るにはシラン化合物の1分子分の厚みであることが好ましい。
 次にフォトリフラクティブポリマー素子1を製作する方法を説明する。なお、ここで説明する方法は例示であり、他の方法、条件で製作することもできる。本実施形態のフォトリフラクティブポリマー素子1は、フォトリフラクティブポリマーを溶媒に溶解させる溶解工程と、この溶媒を留去する溶媒留去工程と、サンドイッチ型の素子を構成するサンドイッチ型素子作製工程とを含む製造方法により製造される。
 溶解工程では、フォトリフラクティブポリマー、非線形光学色素、可塑剤、及び増感剤を所定の割合にて溶媒に溶解する。この溶媒としては、特に限定されるものではなく、テトラヒドロフラン(THF)、クロロホルム、N-メチルピロリドン(NMP)やジメチルホルムアミド等が使用され、好ましくはTHFである。また、溶解温度としては、室温程度であればよい。必要に応じて溶液を撹拌してもよい。この溶液を撹拌する方法は限定されず、例えばスターラーチップ等を用いた方法で行う。
 溶媒留去工程では、溶媒を除去する。溶媒を除去する方法としては、特に限定されるものではないが、例えばキャストフィルムを得るようにすればよい。具体的には、ITO電極を絶縁基板上に形成してITO電極基板を得た後、このITO電極基板の表面に暗電流制御層であるSAMを形成してSAM被覆ITO電極基板を得る。そして、その表面に各成分が溶解された溶液を流延し、その後、室温で溶媒を蒸発させ、続いてこれを一晩自然乾燥後、約80℃で12時間減圧乾燥を行い、さらに溶媒を蒸発させる。
 サンドイッチ型素子作製工程では、溶媒を留去後、四隅にスペーサー(ポリイミド,厚み:50μm)を配置して、その後、別に製作しておいたもう一枚のSAM被覆ITO電極基板を上に乗せ、温度をかけながら真空プレス機で圧着して、サンドイッチ型のフォトリフラクティブ素子を作製する。素子中のフォトリフラクティブ複合材料の厚みは、50~100μmであることが好ましい。50μm未満であればブラッグ回折条件を満たしにくく、100μmを超えると印加電圧の上昇や吸収の増大を招く恐れがあるからである。
 上記製造方法によって得られたフォトリフラクティブ素子は、例えば、ビデオ画像のような動画の記録・再生、実時間ホログラム、光の波面や位相のマニュピレーション、パターン認識、光増幅、非線形光情報処理、超多重ホログラム記録、高密度光データ記録、光相関システム、光コンピュータ等への利用が可能である。
 上記本発明によれば、一対のITO電極基板7、7の内表面7a、7aに形成された暗電流制御層4、4と、PTAAを主成分とするフォトリフラクティブ複合材料5とを備えることから、PTAAによって高い応答性を発現しつつ、各暗電流制御層4によって暗電流の発生を抑え、絶縁破壊を起こさせることがない。これにより、応答性が格段に向上したフォトリフラクティブポリマー素子1を得ることができる。
 暗電流制御層4をITO電極(透明電極)3とフォトリフラクティブ複合材料5との間に介在させることによって、ITO電極3のフェルミ電位を浅くし、PTAAの選択に伴う暗電流の発生を効率的に抑えることができる。暗電流制御層4を構成する自己集積化単分子膜は、ITO電極3の表面3aに3-アミノプロピルトリメトキシシランを化学修飾して形成されたものであることから、暗電流の発生を最小限度まで抑えることができ、絶縁破壊を確実に防ぐことができる。
 以下、実施例によって本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。実施例1~実施例6のフォトリフラクティブポリマー素子を製作した。実施例1~実施例6の暗電流制御層にはSAMを用いた。フォトリフラクティブ複合体の厚みは80~115μmに調整した。各実施例におけるフォトリフラクティブ複合体の成分は下記のとおりである。
(実施例1)
 フォトリフラクティブポリマー:PTAA/44重量%
 非線形光学色素:7-DCST/35重量%
 可塑剤:ECz/20重量%
 増感剤:PCBM/1重量%
(実施例2)
 フォトリフラクティブポリマー:PTAA/42重量%
 非線形光学色素:PDCST/35重量%
 可塑剤:TAA/20重量%
 増感剤:PCBM/3重量%
(実施例3)
 フォトリフラクティブポリマー:PTAA/44重量%
 非線形光学色素:PDCST/35重量%
 可塑剤:TAA/20重量%
 増感剤:PCBM/1重量%
(実施例4)
 フォトリフラクティブポリマー:PTAA/44.5重量%
 非線形光学色素:PDCST/35重量%
 可塑剤:TAA/20重量%
 増感剤:PCBM/0.5重量%
(実施例5)
 フォトリフラクティブポリマー:PTAA/44.7重量%
 非線形光学色素:PDCST/35重量%
 可塑剤:TAA/20重量%
 増感剤:PCBM/0.3重量%
(実施例6)
 フォトリフラクティブポリマー:PTAA/44.9重量%
 非線形光学色素:PDCST/35重量%
 可塑剤:TAA/20重量%
 増感剤:PCBM/0.1重量%
 比較例1~比較例4のフォトリフラクティブポリマー素子を製作した。比較例2及び比較例3では暗電流制御層を設けず、比較例1及び比較例4では暗電流制御層であるSAMを設けた。フォトリフラクティブ複合体の厚みは80~115μmに調整した。各実施例におけるフォトリフラクティブ複合体の成分は下記のとおりである。
(比較例1)
 フォトリフラクティブポリマー:PTAA/45重量%
 非線形光学色素:PDCST/35重量%
 可塑剤:TAA/20重量%
 増感剤:PCBM/0重量%
(比較例2)
 フォトリフラクティブポリマー:PTAA/45重量%
 非線形光学色素:7-DCST/35重量%
 可塑剤:ECz/20重量%
 増感剤:PCBM/0重量%
(比較例3)
 フォトリフラクティブポリマー:PVCz(Mw:370000)/44重量%
 非線形光学色素:7-DCST/35重量%
 可塑剤:ECz/20重量%
 増感剤:TNF/1重量%
(比較例4)
 フォトリフラクティブポリマー:PVCz(Mw:370000)/44重量%
 非線形光学色素:7-DCST/35重量%
 可塑剤:ECz/20重量%
 増感剤:TNF/1重量%
(回折効率の測定)
 図5は回折効率(%)を測定するための4光波混合法(DFWM)を説明するための概略図である。回折効率(%)の測定は、フォトリフラクティブポリマー素子に電界を印加(45V/μm)した状態で4光波混合法によって測定した。測定には632.8nmのHe-Neレーザーを用いた。フォトリフラクティブ効果によって生じる回折効率(%)、即ち屈折率変化の大きさΔnは、ブラッグ回折の強度測定(回折効率測定)から評価することができる。書き込み光により屈折率格子を生じた試料フィルムに、ブラッグ条件で低出力のプローブ光を入射させて、屈折率格子により回折する光の強度を測定することによって、その回折効率を測定することができる。ここでは規格化回折効率ηnormについて示し、次式(1)により評価する。フォトリフラクティブポリマー素子(Sample)の法線Hと2本の干渉ビームの2等分線との間の角度θが50°となるように、フォトリフラクティブポリマー素子を傾けて回折効率を測定する。
Figure JPOXMLDOC01-appb-M000011
 Idiffracted:屈折率格子による回折光の強度、Itransmitted:透過光強度を示す。規格化回折効率ηnormは、厚い媒体中でのクーゲルニックの結合波理論によって屈折率変化の大きさ:Δnと関連づけることができる。そして、規格化回折効率ηnormと屈折率変化の大きさΔnを近似的に1つの式で表わすことができ、規格化回折効率ηnormから屈折率変化の大きさΔnを評価することができる。なお、上記回折光の強度Idiffractedは、高速ベンチメーター(例えば、アジレント社製;34411型デジタルマルチメーター)を用い、上記透過光強度Itransmittedは、高速ベンチメーター(例えばアジレント社製;34411型デジタルマルチメーター)を用いて計測する。
(応答時間の測定)
 応答時間は、次式(2)に示すKohlrausch-Williams-Watts(KWW)式によるフィッティングで算出された値を用いた。η:回折効率、η:飽和回折効率、t:時間、τ:応答時間、β(0<β≦1):分散を示す。
Figure JPOXMLDOC01-appb-M000012
 回折効率及び応答時間の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000013
 PTAAを用いた実施例1~6では回折効率0.9~24.5%、応答速度3.2~86.0ms、光学利得(利得係数)14.0~63.3cm-1を示した。比較例1では増感剤を含まないため応答時間が大きく、比較例2ではSAMを設けていないため暗電流が多く流れ、測定不能であった。光学利得(利得係数)は次式(3)又は(4)を用いて算出される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 d:サンプル厚、γ0=It A(IB≠0)/It A(IB=0)、β=IB/IA、It A、It B:それぞれ書き込み光の透過強度を示す。
 比較例3と比較例4を比べると、SAMを形成することで性能が若干低下する程度であり、SAMの有無の差違はない。その理由は、元々暗電流の発生がなく、SAMの効果はないからである。
 以上の結果から、実施例1~実施例6で示されるPTAAの選択及びSAMの形成によって、ビデオ速度(30s-1)をはるかに上回る3.2~20.4ms(ビデオ速度にして49~312s-1)の応答速度を得ることができる。
 図6に実施例1の電界強度と回折効率の関係を表すグラフを示し、図7に実施例1の回折効率の時間応答性を表すグラフを示し、図8に印加電界と暗電流の関係を表すグラフを示す。図6から回折効率は25V/μmの時に6%を示した。図7は20V/μmの時間分解回折効率を示す。この時の応答速度は11.3msを示した(図中のβ値は分散を示す)。図8の印加電界と暗電流の関係を表すグラフでは、SAM無しでは電界印加に比例して大きな電流が流れるのに対して、SAM有りでは電流はほとんど流れていないことが認められる。
 図9は増感剤であるPCBMの濃度と外部回折効率及び格子形成速度との関係を表すグラフである。図10は増感剤であるPCBMの濃度と感度との関係を表すグラフである。フォトリフラクティブ性能の指標として次の数式(5)で表される感度Sを用いることができる。回折効率が大きく、単位面積当たりのレーザーエネルギーが小さく、応答時間が短くなると感度Sは高くなる。即ち感度Sが高くなることは、ホログラム像が明るくなり、ホログラム像を形成する速度が大きくなることを意味する。
Figure JPOXMLDOC01-appb-M000016
(η:回折効率、I:単位面積当たりのレーザーエネルギー、τ:応答時間)
 図9から解るように、PCBMの濃度と、外部回折効率及び格子形成速度とには相関性が認められる。PCBMの濃度が高くなるに従って外部回折効率が低下し、格子形成速度が上昇することが認められる。図10から解るように、PCBMの濃度が0.5重量%程度で最も高い感度を示すことが認められる。
 上記で開示した実施形態、実施例は例示であり制限的なものではない。例えばフォトリフラクティブポリマー素子のフォトリフラクティブ複合材料には、上記各成分の他にフォトリフラクティブ性を損なわせない範囲内で、他の成分を含有していてもよい。このような他の成分としては、例えば、酸化防止剤や紫外線吸収剤等が挙げられる。
 上記実施形態では、2枚の透明電極基板を用いた例で説明したが、1枚の透明電極基板上に暗電流制御層、及びフォトリフラクティブポリマー複合体を形成してフォトリフラクティブポリマー素子を構成してもよい。即ち、かかる発明は、絶縁基板と、この絶縁基板の片面上に形成された透明電極と、この透明電極の表面に形成された暗電流制御層と、絶縁基板上で透明電極及び暗電流制御層を介して設けられたフォトリフラクティブ複合材料とを備えることを特徴とする高速応答性フォトリフラクティブポリマー素子である。つまり、本発明は、透明電極基板上の透明電極とフォトリフラクティブ複合材料との間に、暗電流制御層が介在している高速応答性フォトリフラクティブポリマー素子であれば、どのような形態のものであってもよい。
 従来、ITO電極がフォトリフラクティブポリマー素子に用いられてきたのは、側鎖カルバゾールや、側鎖トリフェニルアミン系のHOMOがITOより十分深かったためである。今後、フォトリフラクティブポリマー素子には、更なる高速応答性が求められ、本発明のようにSAMを設けたフォトリフラクティブポリマー素子の需要が高まるものと思われる。一方、ITOの主成分であるインジウムはレアメタルであり安定供給が危惧され、その価格の高騰が予想される。そこで、産業化を考慮した場合、コストと環境といった側面からITO電極以外の透明電極の選択が要望される。
 ITOの代替材料として、上記にも一部挙げたが、ZnO:-5.8eV(フェルミ準位)、Ga/ZnO:-5.1eV、GaN:-5.5eV、MgO/C:不明、グラフェンシート:-4.4eV、PEDOT/PPS:-5.8eVなどが挙げられる。これらは、フェルミ準位がITO:-4.8eVよりも深く、従来の技術ではフォトリフラクティブポリマー素子には適していなかった。しかし、本発明を適用することで、かかるITO代替材料の選択も可能とすることができ、本発明は情報産業などへ大きく寄与するものと考えられる。
 1 フォトリフラクティブポリマー素子
 2 絶縁基板
 3 透明電極(ITO電極)
 4 暗電流制御層(SAM)
 5 フォトリフラクティブ複合材料
 6 スペーサー
 7 透明電極基板

Claims (10)

  1.  絶縁基板と、
     この絶縁基板の片面上に形成された透明電極と、
     この透明電極の表面に形成された暗電流制御層と、
     前記絶縁基板上で前記透明電極及び暗電流制御層を介して設けられたフォトリフラクティブ複合材料と、
     を備えることを特徴とする高速応答性フォトリフラクティブポリマー素子。
  2.  前記絶縁基板に略平行状に配置された他の絶縁基板と、
     前記他の絶縁基板の内面上に形成された他の透明電極と、
     前記他の透明電極の内表面上に形成された他の暗電流制御層と、
     をさらに備え、
     前記フォトリフラクティブ複合材料が前記一対の絶縁基板間で前記各透明電極及び各暗電流制御層を介して挟持されていることを特徴とする請求項1に記載の高速応答性フォトリフラクティブポリマー素子。
  3.  前記暗電流制御層は、前記透明電極の表面に形成された単一層の単分子膜又複数層の単分子膜であることを特徴とする請求項1に記載の高速応答性フォトリフラクティブポリマー素子。
  4.  前記単一層の単分子膜又複数層の単分子膜は、前記透明電極の表面にシラン化合物を化学修飾して形成されたものであることを特徴とする請求項3に記載の高速応答性フォトリフラクティブポリマー素子。
  5.  前記シラン化合物は、3-アミノプロピルトリメトキシシランであることを特徴とする請求項4に記載の高速応答性フォトリフラクティブポリマー素子。
  6.  前記単一層の単分子膜又複数層の単分子膜は、前記透明電極が前記絶縁基板上に形成された透明電極基板を、アンモニア水及び過酸化水素の混合溶液中、又はピラニア溶液中に浸漬させて親水化し、この親水化電極基板を、3-アミノプロピルトリメトキシシラン混合溶媒中に浸漬させて集積化前駆体を生成し、この集積化前駆体の表面をアルコールで洗浄して余剰分子を除去することによって形成されたものであることを特徴とする請求項5に記載の高速応答性フォトリフラクティブポリマー素子。
  7.  前記単一層の単分子膜又複数層の単分子膜の膜厚はシラン化合物の1分子分以上の厚みであることを特徴とする請求項6に記載の高速応答性フォトリフラクティブポリマー素子。
  8.  前記フォトリフラクティブ複合材料は、下記式(1)で表されるフォトリフラクティブポリマーを含んでいることを特徴とする請求項3に記載の高速応答性フォトリフラクティブポリマー素子。
    Figure JPOXMLDOC01-appb-C000001
  9.  前記フォトリフラクティブ複合材料は、非線形光学色素と、増感剤と、可塑剤と、を含んでいることを特徴とする請求項8に記載の高速応答性フォトリフラクティブポリマー素子。
  10.  前記フォトリフラクティブポリマーが10~50重量%、前記非線形光学色素が20~50重量%、前記増感剤が0.1~3重量%、前記可塑剤が10~40重量%含まれていることを特徴とする請求項9に記載の高速応答性フォトリフラクティブポリマー素子。
PCT/JP2013/071190 2012-09-04 2013-08-06 高速応答性フォトリフラクティブポリマー素子 WO2014038332A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014534252A JP6214006B2 (ja) 2012-09-04 2013-08-06 高速応答性フォトリフラクティブポリマー素子
US14/425,621 US9500932B2 (en) 2012-09-04 2013-08-06 Fast-response photorefractive polymer element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012193773 2012-09-04
JP2012-193773 2012-09-04

Publications (1)

Publication Number Publication Date
WO2014038332A1 true WO2014038332A1 (ja) 2014-03-13

Family

ID=50236948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071190 WO2014038332A1 (ja) 2012-09-04 2013-08-06 高速応答性フォトリフラクティブポリマー素子

Country Status (3)

Country Link
US (1) US9500932B2 (ja)
JP (1) JP6214006B2 (ja)
WO (1) WO2014038332A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10534204B2 (en) 2017-11-03 2020-01-14 International Business Machines Corporation Structured photorefractive layer stack
CN113594234B (zh) * 2021-07-30 2023-06-16 西安电子科技大学 一种低开启电压的氧化镓肖特基二极管制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519072A (ja) * 2008-04-29 2011-06-30 プラスティック ロジック リミテッド オフセット上部画素電極構成
JP2011158721A (ja) * 2010-02-01 2011-08-18 Nagaoka Univ Of Technology ホログラム記録素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3973964B2 (ja) 2002-04-30 2007-09-12 独立行政法人科学技術振興機構 フォトリフラクティブ材料およびその製造方法、ならびに、それを用いたホログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519072A (ja) * 2008-04-29 2011-06-30 プラスティック ロジック リミテッド オフセット上部画素電極構成
JP2011158721A (ja) * 2010-02-01 2011-08-18 Nagaoka Univ Of Technology ホログラム記録素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S. TSUJIMURA ET AL.: "High-Speed photorefractive response capability in triphenylamine polymer-based composites", APPLIED PHYSICS EXPRESS, vol. 5, 4 June 2012 (2012-06-04), pages 064101-1 - 064101-3 *
TAKASHI FUJIWARA ET AL.: "Andenryu Seigyo ni yoru Photorefractive Polymer no Kosokuka", DAI 73 KAI EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, 27 August 2012 (2012-08-27), pages 12 - 102 *
X-D. SUN ET AL.: "Enhanced current in nematic liquid crystal cell using alkanethiol self- assembled monolayer", JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 40, 30 August 2007 (2007-08-30), pages 5691 - 5695 *

Also Published As

Publication number Publication date
JPWO2014038332A1 (ja) 2016-08-08
US20150227019A1 (en) 2015-08-13
JP6214006B2 (ja) 2017-10-18
US9500932B2 (en) 2016-11-22

Similar Documents

Publication Publication Date Title
Li et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals
Shrestha et al. A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles
Xiang et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction
Xiang et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes
Zhang et al. π-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection
Yuan et al. Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells
Wu et al. 2D tellurium based high‐performance all‐optical nonlinear photonic devices
Chen et al. On the degradation mechanisms of quantum-dot light-emitting diodes
Liu et al. High responsivity circular polarized light detectors based on quasi two-dimensional chiral perovskite films
Zhao et al. Strong optical response and light emission from a monolayer molecular crystal
Nakanishi et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles
Zhang et al. Establishing charge-transfer excitons in 2D perovskite heterostructures
Shan et al. Monolayer field‐effect transistors of nonplanar organic semiconductors with brickwork arrangement
Jiang et al. Highly efficient organic photovoltaics with enhanced stability through the formation of doping-induced stable interfaces
Kang et al. Efficient exciton generation in atomic passivated CdSe/ZnS quantum dots light-emitting devices
US20040196688A1 (en) Non-volatile memory
Choudhury et al. Effects of Molecular Organization on Photophysical Behavior. 1. Steady-State Fluorescence and Fluorescence Quantum Yield Studies of Langmuir− Blodgett Monolayers of Some Surfactant Porphyrins
Khairoutdinov et al. Persistent photoconductivity in chemically modified single-wall carbon nanotubes
JP6214006B2 (ja) 高速応答性フォトリフラクティブポリマー素子
Li et al. Harnessing strong aromatic conjugation in low-dimensional perovskite heterojunctions for high-performance photovoltaic devices
Yadav et al. Low-threshold reversible electron-induced and selective photoinduced switching of azobenzene derivatives under ambient conditions
Watanabe et al. Ultrafast decay dynamics of excited and charged states in α-sexithienyl film as revealed by femtosecond transient absorption and picosecond fluorescence spectroscopy
Moon et al. Off-resonance photosensitization of a photorefractive polymer composite using PbS nanocrystals
JP6591231B2 (ja) フォトリフラクティブ材料組成物及びフォトリフラクティブポリマー素子
Vijayaraghavan et al. Photovoltaic effect in self-assembled molecular monolayers on gold: influence of orbital energy level alignment on short-circuit current generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534252

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14425621

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835721

Country of ref document: EP

Kind code of ref document: A1