WO2014038244A1 - Graphene structure and method for producing same - Google Patents

Graphene structure and method for producing same Download PDF

Info

Publication number
WO2014038244A1
WO2014038244A1 PCT/JP2013/062507 JP2013062507W WO2014038244A1 WO 2014038244 A1 WO2014038244 A1 WO 2014038244A1 JP 2013062507 W JP2013062507 W JP 2013062507W WO 2014038244 A1 WO2014038244 A1 WO 2014038244A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
graphene
substrate
structure according
vertical
Prior art date
Application number
PCT/JP2013/062507
Other languages
French (fr)
Japanese (ja)
Inventor
川端 章夫
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2014038244A1 publication Critical patent/WO2014038244A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a graphene structure and a manufacturing method thereof.
  • CNT Carbon-NanoTube
  • Graphene graphene
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a highly reliable graphene structure in which graphene grows in a desired fine region with a sufficiently high density and a method for manufacturing the same. To do.
  • the graphene structure of the present invention includes a base, a base formed above the base, and vertical graphene that grows from the base and stands upright in a direction perpendicular to the base surface and is densely superimposed.
  • the method for producing a graphene structure of the present invention includes a step of forming a base above a base, and a step of growing vertical graphene that stands upright in the vertical direction with respect to the surface of the base and is densely superimposed using the base Including.
  • FIG. 1A is a schematic cross-sectional view illustrating the method of manufacturing the graphene structure according to the first embodiment in the order of steps.
  • FIG. 1B is a schematic cross-sectional view illustrating the manufacturing method of the graphene structure according to the first embodiment in the order of steps, following FIG. 1A.
  • FIG. 1C is a schematic cross-sectional view subsequent to FIG. 1B, illustrating the graphene structure manufacturing method according to the first embodiment in the order of steps.
  • FIG. 2 is a schematic diagram showing a vacuum process system for performing a consistent vacuum process in the first embodiment.
  • FIG. 3A is a schematic cross-sectional view illustrating the method of manufacturing the MOS transistor according to the second embodiment in the order of steps.
  • FIG. 3B is a schematic cross-sectional view subsequent to FIG. 3A, illustrating the MOS transistor manufacturing method according to the second embodiment in the order of steps.
  • FIG. 3C is a schematic cross-sectional view subsequent to FIG. 3B, illustrating the method of manufacturing the MOS transistor according to the second embodiment in the order of steps.
  • FIG. 4 is an enlarged schematic cross-sectional view showing a state in the contact hole in the MOS transistor according to the second embodiment.
  • FIG. 5 is a schematic plan view showing an enlarged view of the vertical graphene in the contact hole in the MOS transistor according to the second embodiment.
  • FIGS. 1A to 1C are schematic cross-sectional views illustrating a method of manufacturing a graphene structure according to the first embodiment in the order of steps.
  • FIG. 2 is a schematic diagram showing a vacuum process system for performing a consistent vacuum process.
  • This vacuum process system includes a transfer chamber 101 provided in the center, a load lock chamber 102 for taking in and out a growth substrate, a deposition chamber 103 for forming a base, and a CVD chamber 104 for growing graphene. Yes.
  • the growth substrate is vacuum-transferred to each desired chamber by a robot arm provided in the transfer chamber 101.
  • each process can be performed in-situ consistently without exposing the growth substrate to the outside air.
  • a base 2 is formed on a silicon substrate 1.
  • a silicon substrate 1 is prepared as a growth substrate.
  • the silicon substrate 1 is transferred to the deposition chamber 103 of the vacuum process system.
  • the first layer 2a, the second layer 2b, and the third layer 2c are sequentially stacked on the silicon substrate 1 by vacuum deposition, sputtering, atomic layer deposition (ALD), or the like. To do.
  • the first layer 2a is at least one selected from titanium nitride (TiN), titanium oxide (TiO 2 ), tantalum nitride (TaN), and tantalum oxide (TaO 2 ). It is formed. For example, TaN is deposited to a thickness of about 15 nm to form the first layer 2a.
  • the first layer 2a has a function of preventing the constituent elements of the second layer 2b and the third layer 2c from diffusing to the silicon substrate 1 side.
  • the second layer 2b is at least one selected from titanium (Ti), titanium nitride (TiN), titanium oxide (TiO 2 ), niobium (Nb), and vanadium (V), and has a film shape. It is formed. For example, Ti is deposited to a thickness of about 0.5 nm to 1.5 nm to form the second layer 2b.
  • the second layer 2b has a close contact function with the first layer 2a of the third layer 2c.
  • the third layer 2c is at least one selected from cobalt (Co), nickel (Ni), and iron (Fe), and has a film shape immediately after formation.
  • Co is deposited to a thickness of about 2 nm to 5 nm to form the third layer 2c.
  • the third layer 2c has a direct catalytic function for graphene growth.
  • an integrated structure of horizontal graphene and vertical graphene is continuously formed.
  • the silicon substrate 1 is transferred to the CVD chamber 104.
  • a source gas is introduced into the CVD chamber 104.
  • acetylene (C 2 H 2 ) gas is used as the source gas.
  • the flow rate of C 2 H 2 gas is set to about 50 sccm.
  • the growth temperature (environment temperature in the CVD method 104) is set to a value within a low temperature range of 400 ° C. to 450 ° C., here about 450 ° C.
  • Graphene grows in the horizontal direction (lateral direction) with respect to the surface of the silicon substrate 1 using the Co film of the third layer 2c as a catalyst.
  • This graphene is referred to as lateral graphene 3.
  • the lateral graphene 3 is stacked in one or more layers. The situation at this time is shown in FIG. 1B.
  • the Co film of the third layer 2c aggregates to become particulate or island-shaped Co.
  • the Co of the third layer 2c is in the form of particles or islands
  • graphene grows in a direction perpendicular to the surface of the silicon substrate 1 (longitudinal direction). This graphene is called longitudinal graphene 4.
  • the vertical graphene 4 is integrally formed with the horizontal graphene 3 connected at the top end, and is stacked in a plurality of layers standing upright in the vertical direction and densely superimposed. The state at this time is shown in FIG. 1C.
  • the integrated structure of the lateral graphene 3 and the longitudinal graphene 4 can be formed in one continuous process, and the longitudinal graphene 4 stacked at an extremely high density. Can be obtained.
  • FIG. 3A to FIG. 3C and FIG. 4 are schematic cross-sectional views showing the MOS transistor manufacturing method according to the second embodiment in the order of steps.
  • a transistor element 20 is formed as a functional element on a silicon substrate 10.
  • the element isolation structure 11 is formed on the surface layer of the silicon substrate 10 by, for example, the STI (Shallow Trench Isolation) method to determine the element active region.
  • an impurity of a predetermined conductivity type is ion-implanted into the element active region to form the well 12.
  • a gate insulating film 13 is formed in the element active region by thermal oxidation or the like, a polycrystalline silicon film and a film thickness such as a silicon nitride film are deposited on the gate insulating film 13 by a CVD method, and a silicon nitride film or a polycrystalline silicon film is deposited.
  • the gate electrode 14 is patterned on the gate insulating film 13 by processing the film and the gate insulating film 13 into an electrode shape by lithography and subsequent dry etching.
  • a cap film 15 made of a silicon nitride film is patterned on the gate electrode 14.
  • an impurity having a conductivity type opposite to that of the well 12 is ion-implanted into the element active region to form a so-called extension region 16.
  • a silicon oxide film is deposited on the entire surface by the CVD method, and this silicon oxide film is so-called etched back, thereby leaving the silicon oxide film only on the side surfaces of the gate electrode 14 and the cap film 15 to form the sidewall insulating film 17. Form.
  • the transistor element 20 is formed.
  • an interlayer insulating film 19 is formed. Specifically, for example, silicon oxide is deposited so as to cover the transistor element 20, and the interlayer insulating film 21 is formed. The surface of the interlayer insulating film 19 is polished by CMP.
  • a contact hole 19 a is formed in the interlayer insulating film 19.
  • a resist is applied on the interlayer insulating film 19, and the resist is processed by lithography.
  • a resist mask having an opening in a portion aligned with the source / drain region 18 is formed.
  • the interlayer insulating film 19 is dry-etched using the source / drain region 18 as an etching stopper until a part of the surface of the source / drain region 18 is exposed.
  • a contact hole 19 a is formed in the interlayer insulating film 21.
  • the contact hole 19a is formed with an opening diameter of about 10 nm to 30 nm, here about 10 nm.
  • the contact hole 19a is embedded with an integrated structure of horizontal graphene and vertical graphene.
  • the catalyst formation process, the vertical graphene formation process, and the horizontal graphene formation process are performed in-situ as an integrated vacuum process. To do.
  • the base 2 described in the first embodiment is formed at the bottom of the contact hole 19a.
  • the silicon substrate 1 is transferred to the deposition chamber 103 of the vacuum process system.
  • the first layer 2a, the second layer 2b, and the third layer 2c are sequentially stacked on the bottom of the contact hole 19a by vacuum deposition, sputtering, ALD, or the like.
  • the first layer 2a is formed by depositing, for example, TaN in a film shape with a thickness of about 15 nm.
  • the second layer 2b deposits Ti, for example, in a film shape with a thickness of about 0.5 nm to 1.5 nm.
  • the third layer 2c deposits, for example, Co in a film shape with a thickness of about 2 nm to 5 nm.
  • an integrated structure of the lateral graphene 3 and the longitudinal graphene 4 is continuously formed in the contact hole 19a under the growth conditions described in the first embodiment.
  • the contact hole 19 a is embedded by an integral structure of the lateral graphene 3 and the longitudinal graphene 4 grown at a high density.
  • the vertical graphene 4 stands up in the vertical direction and is densely superimposed.
  • the lateral graphene 3 formed on the interlayer insulating film 19 may be processed into a wiring shape by lithography and dry etching and used as a wiring.
  • the lateral graphene 3 formed on the interlayer insulating film 19 can be removed by etching, and a wiring can be formed using a desired conductive material.
  • a MOS transistor having a highly reliable wiring structure in which graphene is grown in a contact hole that is a fine region with a sufficiently high density is realized.
  • the integrated structure of the lateral graphene and the longitudinal graphene disclosed in the first embodiment can be applied not only to the LSI wiring structure but also to a heat dissipation mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A graphene structure is constituted comprising: a substrate (1); a base (2) which is formed on top of the substrate (1); vertical graphene (4) which grows from the base (2), stands in a vertical direction relative to the surface of the substrate (1) and has a densely layered structure; and horizontal graphene (3) which is joined to the upper end of the vertical graphene (4) and integrally formed with the vertical graphene (4), and grows in a horizontal direction relative to the surface of the substrate (1). Accordingly, a highly reliable graphene structure is achieved in which graphene grows in a desired fine region with a sufficiently high density.

Description

グラフェン構造及びその製造方法Graphene structure and manufacturing method thereof
 本発明は、グラフェン構造及びその製造方法に関するものである。 The present invention relates to a graphene structure and a manufacturing method thereof.
 近年、半導体デバイスにおける配線の微細化に伴い、従来の銅配線において信頼性の低下が懸案となっている。そこで、銅に置き換わる材料として、炭素原子からなる材料であるカーボンナノチューブ(CNT:Carbon NanoTube)やグラフェン(Graphene)の利用が提案されている。グラフェンは、層状の結晶であるグラファイト(Graphite)の1層であって、炭素(C)原子が六角形に結合した理想的な2次元結晶であり、移動度が観測されており、バリスティック伝導が発現する。これらの材料は、ナノカーボン材料として注目されている。配線の微細化が10nm程度まで進行すると、銅からナノカーボン材料に置き換えることが予測される。CNTは、配線と接続されるビアと呼ばれる基板表面に垂直な方向の配線(縦配線)で研究が進んでいる。グラフェンは、透明電極等へ適用する研究が盛んである。 In recent years, with the miniaturization of wiring in semiconductor devices, there has been a concern about a decrease in reliability in conventional copper wiring. Therefore, the use of carbon nanotubes (CNT: Carbon-NanoTube) and graphene (Graphene), which are materials made of carbon atoms, has been proposed as a material to replace copper. Graphene is a layer of graphite, a layered crystal, and is an ideal two-dimensional crystal with carbon (C) atoms bonded to a hexagon. Mobility has been observed and ballistic conduction has been observed. Is expressed. These materials are attracting attention as nanocarbon materials. When the miniaturization of wiring proceeds to about 10 nm, it is predicted that copper will be replaced with a nanocarbon material. Research on CNT is progressing with wiring (vertical wiring) in a direction perpendicular to the substrate surface called a via connected to the wiring. Graphene is actively researched to apply to transparent electrodes.
 従来の技術では、CNTを用いて縦配線を形成することは可能である。ところがこの場合、ビア孔内におけるCNTの密度が不十分であり、抵抗値が高く電流密度が低いという問題がある。 In the conventional technology, it is possible to form vertical wiring using CNT. However, in this case, there is a problem that the density of CNTs in the via hole is insufficient, the resistance value is high, and the current density is low.
 本発明は、上記の課題に鑑みてなされるものであり、グラフェンが十分に高い密度で所期の微細領域に成長してなる信頼性の高いグラフェン構造及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a highly reliable graphene structure in which graphene grows in a desired fine region with a sufficiently high density and a method for manufacturing the same. To do.
 本発明のグラフェン構造は、基体と、前記基体の上方に形成された下地と、前記下地から成長した、前記基体表面に対して垂直方向に起立して稠密に重畳された垂直グラフェンとを含む。 The graphene structure of the present invention includes a base, a base formed above the base, and vertical graphene that grows from the base and stands upright in a direction perpendicular to the base surface and is densely superimposed.
 本発明のグラフェン構造の製造方法は、基体の上方に下地を形成する工程と、前記下地を用いて、前記基体表面に対して垂直方向に起立して稠密に重畳された垂直グラフェンを成長する工程とを含む。 The method for producing a graphene structure of the present invention includes a step of forming a base above a base, and a step of growing vertical graphene that stands upright in the vertical direction with respect to the surface of the base and is densely superimposed using the base Including.
 本発明によれば、グラフェンが十分に高い密度で所期の微細領域に成長してなる信頼性の高いグラフェン構造が実現する。 According to the present invention, it is possible to realize a highly reliable graphene structure in which graphene is grown in a desired fine region with a sufficiently high density.
図1Aは、第1の実施形態によるグラフェン構造の製造方法を工程順に示す概略断面図である。FIG. 1A is a schematic cross-sectional view illustrating the method of manufacturing the graphene structure according to the first embodiment in the order of steps. 図1Bは、図1Aに引き続き、第1の実施形態によるグラフェン構造の製造方法を工程順に示す概略断面図である。FIG. 1B is a schematic cross-sectional view illustrating the manufacturing method of the graphene structure according to the first embodiment in the order of steps, following FIG. 1A. 図1Cは、図1Bに引き続き、第1の実施形態によるグラフェン構造の製造方法を工程順に示す概略断面図である。FIG. 1C is a schematic cross-sectional view subsequent to FIG. 1B, illustrating the graphene structure manufacturing method according to the first embodiment in the order of steps. 図2は、第1の実施形態において、真空一貫プロセスを行うための真空プロセスシステムを示す模式図である。FIG. 2 is a schematic diagram showing a vacuum process system for performing a consistent vacuum process in the first embodiment. 図3Aは、第2の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。FIG. 3A is a schematic cross-sectional view illustrating the method of manufacturing the MOS transistor according to the second embodiment in the order of steps. 図3Bは、図3Aに引き続き、第2の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。FIG. 3B is a schematic cross-sectional view subsequent to FIG. 3A, illustrating the MOS transistor manufacturing method according to the second embodiment in the order of steps. 図3Cは、図3Bに引き続き、第2の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。FIG. 3C is a schematic cross-sectional view subsequent to FIG. 3B, illustrating the method of manufacturing the MOS transistor according to the second embodiment in the order of steps. 図4は、第2の実施形態によるMOSトランジスタのうち、コンタクト孔内の様子を拡大して示す概略断面図である。FIG. 4 is an enlarged schematic cross-sectional view showing a state in the contact hole in the MOS transistor according to the second embodiment. 図5は、第2の実施形態によるMOSトランジスタのうち、コンタクト孔内の縦方向グラフェンの様子を拡大して示す概略平面図である。FIG. 5 is a schematic plan view showing an enlarged view of the vertical graphene in the contact hole in the MOS transistor according to the second embodiment.
  以下、本発明を適用した具体的な諸実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.
 (第1の実施形態)
 本実施形態では、グラフェン構造について、その製造方法と共に開示する。図1A~図1Cは、第1の実施形態によるグラフェン構造の製造方法を工程順に示す概略断面図である。
(First embodiment)
In this embodiment, a graphene structure is disclosed together with its manufacturing method. 1A to 1C are schematic cross-sectional views illustrating a method of manufacturing a graphene structure according to the first embodiment in the order of steps.
 本実施形態では、後述する触媒の形成工程、縦方向グラフェン及び横方向グラフェンの形成工程(図1A~図1Cの全工程)を、真空一貫プロセスとして、in-situで行う。図2は、真空一貫プロセスを行うための真空プロセスシステムを示す模式図である。この真空プロセスシステムは、中央部に設けられた搬送室101と、成長用基板の出し入れを行うロードロック室102と、下地形成を行う堆積室103と、グラフェン成長を行うCVD室104とを備えている。成長用基板は、搬送室101に設けられたロボットアームにより、所期の各室に真空搬送される。真空プロセスシステムでは、成長用基板を外気に晒すことなく、各工程を一貫してin-situで行うことができる。 In this embodiment, the catalyst formation step, the vertical graphene formation step, and the horizontal graphene formation step (all steps in FIGS. 1A to 1C), which will be described later, are performed in-situ as an integrated vacuum process. FIG. 2 is a schematic diagram showing a vacuum process system for performing a consistent vacuum process. This vacuum process system includes a transfer chamber 101 provided in the center, a load lock chamber 102 for taking in and out a growth substrate, a deposition chamber 103 for forming a base, and a CVD chamber 104 for growing graphene. Yes. The growth substrate is vacuum-transferred to each desired chamber by a robot arm provided in the transfer chamber 101. In the vacuum process system, each process can be performed in-situ consistently without exposing the growth substrate to the outside air.
 先ず、図1Aに示すように、シリコン基板1上に下地2を形成する。
 詳細には、成長用基板として、例えばシリコン基板1を用意する。このシリコン基板1を真空プロセスシステムの堆積室103に搬送する。堆積室103において、真空蒸着法又はスパッタ法、原子層堆積法(Atomic Layer Deposition:ALD法)等により、シリコン基板1上に第1層2a、第2層2b、及び第3層2cを順次積層する。
First, as shown in FIG. 1A, a base 2 is formed on a silicon substrate 1.
Specifically, for example, a silicon substrate 1 is prepared as a growth substrate. The silicon substrate 1 is transferred to the deposition chamber 103 of the vacuum process system. In the deposition chamber 103, the first layer 2a, the second layer 2b, and the third layer 2c are sequentially stacked on the silicon substrate 1 by vacuum deposition, sputtering, atomic layer deposition (ALD), or the like. To do.
 第1層2aは、チタン窒化物(TiN)、チタン酸化物(TiO)、タンタル窒化物(TaN)、タンタル酸化物(TaO)のうちから選ばれた少なくとも1種であり、膜状に形成される。例えばTaNを15nm程度の厚みに堆積し、第1層2aが形成される。第1層2aは、第2層2b及び第3層2cの構成元素のシリコン基板1側への拡散を防止する機能を有している。 The first layer 2a is at least one selected from titanium nitride (TiN), titanium oxide (TiO 2 ), tantalum nitride (TaN), and tantalum oxide (TaO 2 ). It is formed. For example, TaN is deposited to a thickness of about 15 nm to form the first layer 2a. The first layer 2a has a function of preventing the constituent elements of the second layer 2b and the third layer 2c from diffusing to the silicon substrate 1 side.
 第2層2bは、チタン(Ti)、チタン窒化物(TiN)、チタン酸化物(TiO)、ニオブ(Nb)、バナジウム(V)のうちから選ばれた少なくとも1種であり、膜状に形成される。例えばTiを0.5nm~1.5nm程度の厚みに堆積し、第2層2bが形成される。第2層2bは、第3層2cの第1層2aとの密着機能を有している。 The second layer 2b is at least one selected from titanium (Ti), titanium nitride (TiN), titanium oxide (TiO 2 ), niobium (Nb), and vanadium (V), and has a film shape. It is formed. For example, Ti is deposited to a thickness of about 0.5 nm to 1.5 nm to form the second layer 2b. The second layer 2b has a close contact function with the first layer 2a of the third layer 2c.
 第3層2cは、コバルト(Co)、ニッケル(Ni)、鉄(Fe)のうちから選ばれた少なくとも1種であり、形成直後は膜状となる。例えばCoを2nm~5nm程度の厚みに堆積し、第3層2cが形成される。第3層2cは、グラフェン成長の直接的な触媒機能を有する。 The third layer 2c is at least one selected from cobalt (Co), nickel (Ni), and iron (Fe), and has a film shape immediately after formation. For example, Co is deposited to a thickness of about 2 nm to 5 nm to form the third layer 2c. The third layer 2c has a direct catalytic function for graphene growth.
 続いて、横方向グラフェンと縦方向グラフェンとの一体構造を連続的に形成する。
 詳細には、シリコン基板1をCVD室104に搬送する。CVD室104内に原料ガスを導入する。原料ガスとしては、アセチレン(C)ガスを用いる。Cガスの流量を50sccm程度とする。成長温度(CVD法104内の環境温度)は、400℃~450℃の低温範囲内の値、ここでは450℃程度に設定する。
Subsequently, an integrated structure of horizontal graphene and vertical graphene is continuously formed.
Specifically, the silicon substrate 1 is transferred to the CVD chamber 104. A source gas is introduced into the CVD chamber 104. As the source gas, acetylene (C 2 H 2 ) gas is used. The flow rate of C 2 H 2 gas is set to about 50 sccm. The growth temperature (environment temperature in the CVD method 104) is set to a value within a low temperature range of 400 ° C. to 450 ° C., here about 450 ° C.
 第3層2cのCo膜を触媒として、シリコン基板1の表面に対して水平方向(横方向)にグラフェンが成長する。このグラフェンを横方向グラフェン3と呼ぶ。横方向グラフェン3は、1層乃至複数層に積層される。このときの様子を図1Bに示す。 Graphene grows in the horizontal direction (lateral direction) with respect to the surface of the silicon substrate 1 using the Co film of the third layer 2c as a catalyst. This graphene is referred to as lateral graphene 3. The lateral graphene 3 is stacked in one or more layers. The situation at this time is shown in FIG. 1B.
 横方向グラフェン3の成長が進むと、第3層2cのCo膜が凝集してゆき、粒子状又は島状のCoとなる。この場合、第3層2cのCoが粒子状又は島状であるため、シリコン基板1の表面に対して垂直方向(縦方向)にグラフェンが成長する。このグラフェンを縦方向グラフェン4と呼ぶ。縦方向グラフェン4は、横方向グラフェン3と上部先端で接続して一体形成され、垂直方向に起立して稠密に重畳された複数層に積層される。このときの様子を図1Cに示す。 As the growth of the lateral graphene 3 progresses, the Co film of the third layer 2c aggregates to become particulate or island-shaped Co. In this case, since the Co of the third layer 2c is in the form of particles or islands, graphene grows in a direction perpendicular to the surface of the silicon substrate 1 (longitudinal direction). This graphene is called longitudinal graphene 4. The vertical graphene 4 is integrally formed with the horizontal graphene 3 connected at the top end, and is stacked in a plurality of layers standing upright in the vertical direction and densely superimposed. The state at this time is shown in FIG. 1C.
 以上のようにして、横方向グラフェン3と縦方向グラフェン4との一体構造が形成される。当該一体構造では、横方向グラフェン3下で複数枚の縦方向グラフェン4が極めて高密度で形成されることが確認された。 As described above, an integral structure of the lateral graphene 3 and the longitudinal graphene 4 is formed. In the integrated structure, it was confirmed that a plurality of longitudinal graphenes 4 were formed at a very high density under the lateral graphene 3.
 以上説明したように、本実施形態によれば、横方向グラフェン3と縦方向グラフェン4との一体構造を、連続した一工程で形成することができ、極めて高密度で積層された縦方向グラフェン4を得ることができる。 As described above, according to the present embodiment, the integrated structure of the lateral graphene 3 and the longitudinal graphene 4 can be formed in one continuous process, and the longitudinal graphene 4 stacked at an extremely high density. Can be obtained.
 (第2の実施形態)
 本実施形態では、第1の実施形態で開示した横方向グラフェンと縦方向グラフェンとの一体構造を、MOSトランジスタの配線構造に適用する場合を例示する。
 図3A~図3C及び図4は、第2の実施形態によるMOSトランジスタの製造方法を工程順に示す概略断面図である。
(Second Embodiment)
In this embodiment, the case where the integrated structure of the lateral graphene and the vertical graphene disclosed in the first embodiment is applied to the wiring structure of the MOS transistor is illustrated.
FIG. 3A to FIG. 3C and FIG. 4 are schematic cross-sectional views showing the MOS transistor manufacturing method according to the second embodiment in the order of steps.
 先ず、図3Aに示すように、シリコン基板10上に機能素子としてトランジスタ素子20を形成する。
 詳細には、シリコン基板10の表層に例えばSTI(Shallow Trench Isolation)法により素子分離構造11を形成し、素子活性領域を確定する。
 次に、素子活性領域に所定の導電型の不純物をイオン注入し、ウェル12を形成する。
First, as shown in FIG. 3A, a transistor element 20 is formed as a functional element on a silicon substrate 10.
Specifically, the element isolation structure 11 is formed on the surface layer of the silicon substrate 10 by, for example, the STI (Shallow Trench Isolation) method to determine the element active region.
Next, an impurity of a predetermined conductivity type is ion-implanted into the element active region to form the well 12.
 次に、素子活性領域に熱酸化等によりゲート絶縁膜13を形成し、ゲート絶縁膜13上にCVD法により多結晶シリコン膜及び膜厚例えばシリコン窒化膜を堆積し、シリコン窒化膜、多結晶シリコン膜、及びゲート絶縁膜13をリソグラフィー及びそれに続くドライエッチングにより電極形状に加工することにより、ゲート絶縁膜13上にゲート電極14をパターン形成する。このとき同時に、ゲート電極14上にはシリコン窒化膜からなるキャップ膜15がパターン形成される。 Next, a gate insulating film 13 is formed in the element active region by thermal oxidation or the like, a polycrystalline silicon film and a film thickness such as a silicon nitride film are deposited on the gate insulating film 13 by a CVD method, and a silicon nitride film or a polycrystalline silicon film is deposited. The gate electrode 14 is patterned on the gate insulating film 13 by processing the film and the gate insulating film 13 into an electrode shape by lithography and subsequent dry etching. At the same time, a cap film 15 made of a silicon nitride film is patterned on the gate electrode 14.
 次に、キャップ膜15をマスクとして素子活性領域にウェル12と逆導電型の不純物をイオン注入し、いわゆるエクステンション領域16を形成する。 Next, using the cap film 15 as a mask, an impurity having a conductivity type opposite to that of the well 12 is ion-implanted into the element active region to form a so-called extension region 16.
 次に、全面に例えばシリコン酸化膜をCVD法により堆積し、このシリコン酸化膜をいわゆるエッチバックすることにより、ゲート電極14及びキャップ膜15の側面のみにシリコン酸化膜を残してサイドウォール絶縁膜17を形成する。 Next, for example, a silicon oxide film is deposited on the entire surface by the CVD method, and this silicon oxide film is so-called etched back, thereby leaving the silicon oxide film only on the side surfaces of the gate electrode 14 and the cap film 15 to form the sidewall insulating film 17. Form.
 次に、キャップ膜15及びサイドウォール絶縁膜17をマスクとして素子活性領域にエクステンション領域16と同じ導電型の不純物をイオン注入し、エクステンション領域16と重畳されるソース/ドレイン領域18を形成する。以上により、トランジスタ素子20が形成される。 Next, using the cap film 15 and the sidewall insulating film 17 as a mask, an impurity having the same conductivity type as that of the extension region 16 is ion-implanted into the element active region to form a source / drain region 18 overlapping the extension region 16. Thus, the transistor element 20 is formed.
 続いて、図3Bに示すように、層間絶縁膜19を形成する。
 詳細には、トランジスタ素子20を覆うように、例えばシリコン酸化物を堆積し、層間絶縁膜21を形成する。層間絶縁膜19は、CMPによりその表面を研磨する。
Subsequently, as shown in FIG. 3B, an interlayer insulating film 19 is formed.
Specifically, for example, silicon oxide is deposited so as to cover the transistor element 20, and the interlayer insulating film 21 is formed. The surface of the interlayer insulating film 19 is polished by CMP.
 続いて、図3Cに示すように、層間絶縁膜19にコンタクト孔19aを形成する。
 詳細には、先ず、層間絶縁膜19上にレジストを塗布し、レジストをリソグラフィーにより加工する。これにより、ソース/ドレイン領域18に位置整合する部分に開口を有するレジストマスクが形成される。
 次に、上記のレジストマスクを用い、ソース/ドレイン領域18をエッチングストッパーとして、ソース/ドレイン領域18の表面の一部が露出するまで層間絶縁膜19をドライエッチングする。これにより、層間絶縁膜21にコンタクト孔19aが形成される。コンタクト孔19aは、その開口径が10nm~30nm程度、ここでは10nm程度に形成される。
Subsequently, as shown in FIG. 3C, a contact hole 19 a is formed in the interlayer insulating film 19.
Specifically, first, a resist is applied on the interlayer insulating film 19, and the resist is processed by lithography. As a result, a resist mask having an opening in a portion aligned with the source / drain region 18 is formed.
Next, using the resist mask, the interlayer insulating film 19 is dry-etched using the source / drain region 18 as an etching stopper until a part of the surface of the source / drain region 18 is exposed. As a result, a contact hole 19 a is formed in the interlayer insulating film 21. The contact hole 19a is formed with an opening diameter of about 10 nm to 30 nm, here about 10 nm.
 続いて、コンタクト孔19aを、横方向グラフェンと縦方向グラフェンとの一体構造で埋め込む。
 本実施形態では、図2の真空プロセスシステムを用いて、触媒の形成工程、縦方向グラフェン及び横方向グラフェンの形成工程(図1A~図1Cの全工程)を、真空一貫プロセスとして、in-situで行う。
Subsequently, the contact hole 19a is embedded with an integrated structure of horizontal graphene and vertical graphene.
In the present embodiment, using the vacuum process system of FIG. 2, the catalyst formation process, the vertical graphene formation process, and the horizontal graphene formation process (all processes in FIGS. 1A to 1C) are performed in-situ as an integrated vacuum process. To do.
 先ず、コンタクト孔19aの底部に、第1の実施形態で説明した下地2を形成する。
 シリコン基板1を真空プロセスシステムの堆積室103に搬送する。堆積室103において、真空蒸着法又はスパッタ法、ALD法等により、コンタクト孔19aの底部に第1層2a、第2層2b、及び第3層2cを順次積層する。ここでは、第1の実施形態と同様に、第1層2aは、例えばTaNを15nm程度の厚みに膜状に堆積する。第2層2bは、例えばTiを0.5nm~1.5nm程度の厚みに膜状に堆積する。第3層2cは、例えばCoを2nm~5nm程度の厚みに膜状に堆積する。
First, the base 2 described in the first embodiment is formed at the bottom of the contact hole 19a.
The silicon substrate 1 is transferred to the deposition chamber 103 of the vacuum process system. In the deposition chamber 103, the first layer 2a, the second layer 2b, and the third layer 2c are sequentially stacked on the bottom of the contact hole 19a by vacuum deposition, sputtering, ALD, or the like. Here, as in the first embodiment, the first layer 2a is formed by depositing, for example, TaN in a film shape with a thickness of about 15 nm. The second layer 2b deposits Ti, for example, in a film shape with a thickness of about 0.5 nm to 1.5 nm. The third layer 2c deposits, for example, Co in a film shape with a thickness of about 2 nm to 5 nm.
 次に、コンタクト孔19a内に、第1の実施形態で説明した成長条件で、横方向グラフェン3と縦方向グラフェン4との一体構造を連続的に形成する。図4に示すように、コンタクト孔19aは、横方向グラフェン3と、高密度に成長した縦方向グラフェン4との一体構造により埋め込まれる。縦方向グラフェン4は、図5に示すように、垂直方向に起立して稠密に重畳されて形成されている。 Next, an integrated structure of the lateral graphene 3 and the longitudinal graphene 4 is continuously formed in the contact hole 19a under the growth conditions described in the first embodiment. As shown in FIG. 4, the contact hole 19 a is embedded by an integral structure of the lateral graphene 3 and the longitudinal graphene 4 grown at a high density. As shown in FIG. 5, the vertical graphene 4 stands up in the vertical direction and is densely superimposed.
 本実施形態では、層間絶縁膜19上に形成された横方向グラフェン3を、リソグラフィー及びドライエッチングにより配線形状に加工し、配線として用いて良い。また、層間絶縁膜19上に形成された横方向グラフェン3をエッチングで除去し、所期の導電材料を用いて配線を形成することも可能である。 In this embodiment, the lateral graphene 3 formed on the interlayer insulating film 19 may be processed into a wiring shape by lithography and dry etching and used as a wiring. In addition, the lateral graphene 3 formed on the interlayer insulating film 19 can be removed by etching, and a wiring can be formed using a desired conductive material.
 以上説明したように、本実施形態によれば、グラフェンが十分に高い密度で微細領域であるコンタクト孔内に成長してなる信頼性の高い配線構造を備えたMOSトランジスタが実現する。 As described above, according to the present embodiment, a MOS transistor having a highly reliable wiring structure in which graphene is grown in a contact hole that is a fine region with a sufficiently high density is realized.
 なお、第1の実施形態で開示した横方向グラフェンと縦方向グラフェンとの一体構造は、LSIの配線構造のみならず、放熱機構等に適用することも可能である。 The integrated structure of the lateral graphene and the longitudinal graphene disclosed in the first embodiment can be applied not only to the LSI wiring structure but also to a heat dissipation mechanism.
 本発明によれば、グラフェンが十分に高い密度で所期の微細領域に成長してなる信頼性の高いグラフェン構造が実現する。 According to the present invention, it is possible to realize a highly reliable graphene structure in which graphene is grown in a desired fine region with a sufficiently high density.

Claims (10)

  1.  基体と、
     前記基体の上方に形成された下地と、
     前記下地から成長した、前記基体表面に対して垂直方向に起立して稠密に重畳された垂直グラフェンと
     を含むことを特徴とするグラフェン構造。
    A substrate;
    A base formed above the substrate;
    A graphene structure comprising: vertical graphene grown from the base and standing in a vertical direction with respect to the substrate surface and densely superimposed thereon.
  2.  前記垂直グラフェンの上部先端に接続して当該垂直グラフェンと一体形成されてなる、前記基体表面に対して水平方向に成長した水平グラフェンを更に含むことを特徴とする請求項1に記載のグラフェン構造。 The graphene structure according to claim 1, further comprising horizontal graphene that is connected to an upper end of the vertical graphene and is integrally formed with the vertical graphene and that is grown in a horizontal direction with respect to the substrate surface.
  3.  前記下地は、第1層、第2層、及び第3層が順次積層されてなり、
     前記第1層は、膜状であって、前記第2層及び前記第3層の構成元素の前記基体側への拡散を防止する機能を有しており、
     前記第2層は、膜状であって、前記第3層の前記第1層との密着機能を有しており、
     前記第3層は、島状であって、グラフェン成長の直接的な触媒機能を有することを特徴とする請求項1に記載のグラフェン構造。
    The base is formed by sequentially laminating a first layer, a second layer, and a third layer,
    The first layer is in the form of a film, and has a function of preventing the constituent elements of the second layer and the third layer from diffusing to the substrate side,
    The second layer is in a film form and has a close contact function with the first layer of the third layer,
    The graphene structure according to claim 1, wherein the third layer has an island shape and has a direct catalytic function for graphene growth.
  4.  前記第1層は、チタン窒化物、チタン酸化物、タンタル窒化物、タンタル酸化物のうちから選ばれた少なくとも1種であり、
     前記第2層は、チタン、チタン窒化物、チタン酸化物、ニオブ、バナジウムのうちから選ばれた少なくとも1種であり、
     前記第3層は、コバルト、ニッケル、鉄のうちから選ばれた少なくとも1種であることを特徴とする請求項3に記載のグラフェン構造。
    The first layer is at least one selected from titanium nitride, titanium oxide, tantalum nitride, and tantalum oxide,
    The second layer is at least one selected from titanium, titanium nitride, titanium oxide, niobium, and vanadium,
    The graphene structure according to claim 3, wherein the third layer is at least one selected from cobalt, nickel, and iron.
  5.  基体の上方に下地を形成する工程と、
     前記下地を用いて、前記基体表面に対して垂直方向に起立して稠密に重畳された垂直グラフェンを成長する工程と
     を含むことを特徴とするグラフェン構造の製造方法。
    Forming a base above the substrate;
    And growing a vertical graphene that stands upright in a direction perpendicular to the surface of the substrate and densely superimposes on the substrate surface using the base.
  6.  前記下地を用いて、前記基体表面に対して水平方向に水平グラフェンを成長し、前記水平グラフェン下に当該水平グラフェンと上部先端で接続して一体形成されてなる前記垂直グラフェンを成長することを特徴とする請求項5に記載のグラフェン構造の製造方法。 Using the foundation, horizontal graphene is grown in a horizontal direction with respect to the substrate surface, and the vertical graphene formed integrally by connecting the horizontal graphene and an upper end under the horizontal graphene is grown. A method for producing a graphene structure according to claim 5.
  7.  前記下地は、第1層、第2層、及び第3層が順次積層されてなり、
     前記第1層は、膜状であって、前記第2層及び前記第3層の構成元素の前記基体側への拡散を防止する機能を有しており、
     前記第2層は、膜状であって、前記第3層の前記第1層との密着機能を有しており、
     前記第3層は、島状であって、グラフェン成長の直接的な触媒機能を有することを特徴とする請求項5に記載のグラフェン構造の製造方法。
    The base is formed by sequentially laminating a first layer, a second layer, and a third layer,
    The first layer is in the form of a film, and has a function of preventing the constituent elements of the second layer and the third layer from diffusing to the substrate side,
    The second layer is in a film form and has a close contact function with the first layer of the third layer,
    6. The method for producing a graphene structure according to claim 5, wherein the third layer is island-shaped and has a direct catalytic function for graphene growth.
  8.  前記第1層は、チタン窒化物、チタン酸化物、タンタル窒化物、タンタル酸化物のうちから選ばれた少なくとも1種であり、
     前記第2層は、チタン、チタン窒化物、チタン酸化物、ニオブ、バナジウムのうちから選ばれた少なくとも1種であり、
     前記第3層は、コバルト、ニッケル、鉄のうちから選ばれた少なくとも1種であることを特徴とする請求項7に記載のグラフェン構造の製造方法。
    The first layer is at least one selected from titanium nitride, titanium oxide, tantalum nitride, and tantalum oxide,
    The second layer is at least one selected from titanium, titanium nitride, titanium oxide, niobium, and vanadium,
    The method for producing a graphene structure according to claim 7, wherein the third layer is at least one selected from cobalt, nickel, and iron.
  9.  グラフェン成長の処理温度が400℃~450℃の範囲内の値であることを特徴とする請求項5に記載のグラフェン構造の製造方法。 6. The method for producing a graphene structure according to claim 5, wherein the processing temperature of graphene growth is a value within a range of 400 ° C. to 450 ° C.
  10.  前記各工程を、所定の真空状態で一貫したin-situで行うことを特徴とする請求項5に記載のグラフェン構造の製造方法。 The method for producing a graphene structure according to claim 5, wherein each of the steps is performed in-situ consistently in a predetermined vacuum state.
PCT/JP2013/062507 2012-09-07 2013-04-26 Graphene structure and method for producing same WO2014038244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012197270A JP2014051412A (en) 2012-09-07 2012-09-07 Graphene structure and production method of the same
JP2012-197270 2012-09-07

Publications (1)

Publication Number Publication Date
WO2014038244A1 true WO2014038244A1 (en) 2014-03-13

Family

ID=50236869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062507 WO2014038244A1 (en) 2012-09-07 2013-04-26 Graphene structure and method for producing same

Country Status (3)

Country Link
JP (1) JP2014051412A (en)
TW (1) TW201410605A (en)
WO (1) WO2014038244A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350220B2 (en) * 2014-10-30 2018-07-04 株式会社デンソー Method for producing graphene

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049103A (en) * 2005-08-05 2007-02-22 Zycube:Kk Semiconductor chip, method for manufacturing same, and semiconductor device
JP2009253052A (en) * 2008-04-07 2009-10-29 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2010062333A (en) * 2008-09-03 2010-03-18 Fujitsu Ltd Integrated circuit device and method of manufacturing the same
JP2012064784A (en) * 2010-09-16 2012-03-29 Toshiba Corp Semiconductor device and method of manufacturing semiconductor device
JP2012166989A (en) * 2011-02-15 2012-09-06 Vision Development Co Ltd Graphene laminated nanocarbon, method for producing the same, and catalyst for production of graphene laminated nanocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049103A (en) * 2005-08-05 2007-02-22 Zycube:Kk Semiconductor chip, method for manufacturing same, and semiconductor device
JP2009253052A (en) * 2008-04-07 2009-10-29 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2010062333A (en) * 2008-09-03 2010-03-18 Fujitsu Ltd Integrated circuit device and method of manufacturing the same
JP2012064784A (en) * 2010-09-16 2012-03-29 Toshiba Corp Semiconductor device and method of manufacturing semiconductor device
JP2012166989A (en) * 2011-02-15 2012-09-06 Vision Development Co Ltd Graphene laminated nanocarbon, method for producing the same, and catalyst for production of graphene laminated nanocarbon

Also Published As

Publication number Publication date
TW201410605A (en) 2014-03-16
JP2014051412A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US20220093772A1 (en) Graphene/nanostructure fet with self-aligned contact and gate
JP5109648B2 (en) Method for manufacturing layered carbon structure and method for manufacturing semiconductor device
TWI443839B (en) Microelectronic transistor having an epitaxial graphene channel layer
JP5245385B2 (en) Graphene sheet manufacturing method, semiconductor device manufacturing method, and semiconductor device
TWI463654B (en) Self-aligned process for nanotube/nanowire fets
US9293596B2 (en) Graphene devices and methods of manufacturing the same
WO2014038243A1 (en) Graphene-cnt structure and method for producing same
US9576907B2 (en) Wiring structure and method of manufacturing the same
WO2011058651A1 (en) Semiconductor device and process for manufacturing same
JP2009070911A (en) Wiring structure, semiconductor device, and manufacturing method of wiring structure
US20120168723A1 (en) Electronic devices including graphene and methods of forming the same
WO2014203547A1 (en) Bonding sheet and process for manufacturing same, and heat dissipating system and production process therefor
JP6330415B2 (en) Manufacturing method of semiconductor device
JP6019640B2 (en) Electronic device and manufacturing method thereof
JP5671896B2 (en) Semiconductor device and manufacturing method thereof
JP6225596B2 (en) Wiring structure manufacturing method and wiring structure
JP5870758B2 (en) Electronic device and manufacturing method thereof
KR20160103420A (en) Method of intercalating insulating layer between metal and graphene layer and method of fabricating semiconductor device using the same
WO2014038244A1 (en) Graphene structure and method for producing same
TWI548041B (en) Semiconductor device and producing metal contact and growing carbon nanotube structure to connect semiconductor terminal with metal layer in a semiconductor
US10899620B2 (en) Carbon conductive structure and method of manufacturing the same
CN107919400A (en) A kind of InSe transistors and preparation method thereof
JP2013098396A (en) Method of manufacturing graphene structure and method of manufacturing semiconductor device using the same
JP5189380B2 (en) Carbon nanotube element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834879

Country of ref document: EP

Kind code of ref document: A1