WO2014038060A1 - Dc power supply device, and control method for dc power supply device - Google Patents

Dc power supply device, and control method for dc power supply device Download PDF

Info

Publication number
WO2014038060A1
WO2014038060A1 PCT/JP2012/072854 JP2012072854W WO2014038060A1 WO 2014038060 A1 WO2014038060 A1 WO 2014038060A1 JP 2012072854 W JP2012072854 W JP 2012072854W WO 2014038060 A1 WO2014038060 A1 WO 2014038060A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
circuit
voltage
short
current
Prior art date
Application number
PCT/JP2012/072854
Other languages
French (fr)
Japanese (ja)
Inventor
譲原 逸男
俊幸 安達
真一 小玉
Original Assignee
株式会社京三製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社京三製作所 filed Critical 株式会社京三製作所
Priority to CN201280075694.4A priority Critical patent/CN104604337B/en
Priority to PL12884110T priority patent/PL2879471T3/en
Priority to JP2013555675A priority patent/JP5634626B2/en
Priority to EP12884110.3A priority patent/EP2879471B1/en
Priority to US14/414,816 priority patent/US9137885B2/en
Priority to IN3106KON2014 priority patent/IN2014KN03106A/en
Priority to PCT/JP2012/072854 priority patent/WO2014038060A1/en
Priority to KR1020157006021A priority patent/KR101579416B1/en
Priority to DE12884110.3T priority patent/DE12884110T1/en
Priority to TW102116690A priority patent/TWI491317B/en
Publication of WO2014038060A1 publication Critical patent/WO2014038060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32027DC powered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • H01J37/32045Circuits specially adapted for controlling the glow discharge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/22DC, AC or pulsed generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation

Definitions

  • the present invention relates to a DC power supply device, for example, a DC power supply device used for a load such as a plasma generator, and a control method for the DC power supply device.
  • a plasma processing process using plasma as a processing target such as a substrate is known.
  • DC power is supplied from the DC power supply device to the plasma generator, plasma is generated by, for example, converting the processing gas into plasma in the space inside the plasma generator, and the generated plasma forms a film on the surface of the substrate. Processing and etching are performed.
  • a plasma generator corresponds to an electrical load for a DC power supply device.
  • a circuit using a resonance converter or a circuit using chopper control is known as a circuit for generating an ignition voltage for generating plasma discharge.
  • FIG. 12A and 12B show an ignition voltage generation circuit using a resonant converter
  • FIG. 12A shows a circuit example of a series resonant converter
  • FIG. 12B shows a parallel resonant converter circuit example.
  • an LC series resonance circuit is connected between an inverter circuit and a converter composed of a diode rectifier circuit.
  • An LC parallel resonant circuit is connected to a converter composed of a rectifier circuit.
  • An ignition voltage generating circuit using a resonant converter raises the ignition voltage by resonance.
  • FIG. 12C shows a circuit example of chopper control, in which a chopper circuit is provided between the DC source (Ein) and the inverter circuit.
  • the ignition voltage is controlled by the on-duty ratio of the switching element provided in the chopper circuit.
  • JP2010-250661 (paragraph [0006]) JP-A-11-229138 (paragraph [0009]) JP 2002-173772 A (paragraph [0032])
  • plasma is generated by applying a voltage larger than a set discharge voltage for a certain period, and in the device described in Patent Document 3, a voltage exceeding the rated value is instantaneously applied.
  • the plasma discharge is ignited by application.
  • the voltage applied to ignite the plasma is a voltage greater than the discharge voltage or the rated voltage applied for a certain period or momentarily.
  • the occurrence of plasma discharge varies, and when the applied voltage is low, it is necessary to set the application time longer.
  • the DC power supply device that supplies DC power to the plasma generator has a problem that the DC power supply device becomes complicated and large in order to increase the voltage used to generate plasma discharge.
  • the inverter circuit when the chopper control is used, the inverter circuit is not provided with a resonance circuit, so that there is a problem that the maximum value of the ignition voltage can be obtained only up to the input DC voltage Ein in the step-down chopper circuit.
  • An object of the present invention is to solve the above-described conventional problems, and to simplify and miniaturize a device configuration for forming a high voltage for generating plasma discharge in a DC power supply device that supplies DC power to a plasma generator. .
  • a step of generating a plasma discharge in the plasma generator when the power is turned on or restarted is performed.
  • a voltage higher than the voltage applied during normal operation called an ignition voltage, is applied from the DC power supply device to the plasma generator to generate plasma discharge.
  • the present invention relates to a DC power supply that generates a voltage to be applied to a plasma generator in order to generate a plasma discharge, and a control method for the DC power supply.
  • the direct current power supply device of the present invention repeats the process of passing a current through the current source step-down chopper unit included in the direct current power supply device a plurality of times, and sequentially increases the output voltage using the energy of each current to set the ignition set voltage. Boost to.
  • the direct current power supply device of the present invention cuts off the current path from the current source step-down chopper section to the output terminal of the direct current power supply device for a short time in order to allow a current to flow in the current source step-down chopper section for a short time.
  • a short circuit current is passed through the chopper. Since the current path to the output terminal of the DC power supply device is interrupted, the current of the current source step-down chopper unit is temporarily accumulated in the inductor included in the current source step-down chopper unit.
  • the DC power supply is generated by the energy accumulated in the inductor.
  • Boost the voltage at the output of the device is boosted to the ignition set voltage by repeating boosting of the output terminal by accumulating and releasing current.
  • FIG. 1 is a diagram for explaining an operation for generating a short-circuit current and a step-up operation for an output voltage due to the short-circuit current according to the present invention.
  • FIG. 1A is a diagram for explaining an operation of generating a short-circuit current.
  • a short circuit current ⁇ i is caused to flow through the current source step-down chopper unit by short-circuiting the positive voltage side and the negative voltage side.
  • the energy of the short circuit current ⁇ i is stored in the inductance L.
  • FIG. 1B is a diagram for explaining the output voltage boosting operation.
  • the energy stored in the inductance L is converted into a voltage, and the output voltage is boosted.
  • the voltage of the output capacitor Co is boosted.
  • the load side has a capacitor
  • the output voltage is boosted by a parallel circuit of the output capacitor Co and the load side capacitor.
  • the DC power supply device of the present invention controls the switching element of the bridge circuit of the multiphase inverter connected to the current source step-down chopper unit to short-circuit the positive voltage side and the negative voltage side.
  • a switching element is connected between the positive voltage side and the negative voltage side of the output terminal, and this switching element can be controlled to short-circuit the positive voltage side and the negative voltage side.
  • the direct current power supply device of the present application accumulates the current flowing in the current source step-down chopper by the short circuit in the inductance L, and converts the accumulated current into energy to boost the output voltage. Since the step-up due to a single short circuit is small, the output voltage is increased stepwise by repeating the step-up process due to the short circuit a plurality of times, and is increased to the ignition set voltage. In addition, the amount of boost due to a single short-circuit can be increased by extending the short-circuit time for short-circuiting the positive voltage side and the negative voltage side. However, the smaller the boost amount, the higher the output voltage. In this case, the boosting width can be finely adjusted, the boosting resolution can be increased, and this is advantageous in controlling the output voltage.
  • the short time current path formed in the current source step-down chopper section is obtained by simply short-circuiting the positive voltage side and the negative voltage side in the circuit of the current source step-down chopper section or the circuit of the multiphase inverter section connected to this circuit. Since it can be formed, the DC power supply device can be made simple and compact.
  • a DC power supply apparatus for supplying DC power to a plasma generator according to the present invention includes a current source step-down chopper unit constituting a DC source, and the DC output of the current source step-down chopper unit by using a plurality of switching elements to operate multi-phase AC power.
  • a multi-phase inverter unit that converts the output of the multi-phase inverter unit into an AC / DC converter, a rectifier unit that supplies the obtained direct current to a load, a chopper control unit that controls the current source step-down chopper unit, and a multi-phase inverter unit
  • the control part which has an inverter control part which controls is provided.
  • the control unit has two controls: switching control for switching the operation mode and intermittent short-circuit control for forming a current path in the circuit of the current source step-down chopper unit for a very short time.
  • the switching control switches between an ignition mode for supplying an ignition voltage for generating a plasma discharge in the plasma generator and a steady operation mode for supplying a steady operation current for continuing the plasma discharge of the plasma generator.
  • intermittent short-circuit control the positive and negative voltage sides of the current source step-down chopper and / or multiphase inverter are intermittently shorted, and this short circuit forms a current path in the current source step-down chopper circuit for a very short time. To pass a short-circuit current.
  • the control unit causes a short-circuit current to flow through the current source step-down chopper unit by performing intermittent short-circuit control in the ignition mode.
  • the energy of this short-circuit current is temporarily stored in the inductor provided in the current source step-down chopper unit.
  • the accumulated energy boosts the output voltage of the DC power supply device via the multiphase inverter unit and the rectifier unit during the period until the next short circuit.
  • Control is performed to increase the output voltage applied to the plasma generation device by repeating the boosting operation of accumulating current energy due to this short circuit and boosting the output voltage due to conduction.
  • the chopper control unit performs pulse width control and controls the input voltage of the current source step-down chopper unit to a predetermined voltage.
  • the output voltage of the DC power supply device is determined by the step-up by a plurality of short-circuit operations and the input voltage of the current source step-down chopper unit determined by chopper control.
  • the number of short-circuit operations required to boost the voltage to the ignition set voltage is related to the input voltage of the current source step-down chopper section, the time width of the ignition mode, the voltage width boosted by one short-circuit operation, and the like. Therefore, it can be determined based on the configuration and use conditions of the DC power supply device.
  • the control unit of the present invention uses, for example, the on-duty ratio of the chopper control of the chopper control unit and the number of intermittent short-circuit controls as parameters, and controls the input voltage of the current source step-down chopper unit according to the on-duty ratio, and the intermittent short-circuit control
  • the step-up ratio can be controlled by the number of times, and the voltage rise of the output voltage can be controlled by the input voltage of the current source step-down chopper unit and the step-up ratio.
  • the intermittent short-circuit control of the present invention can be performed by an inverter control unit or a chopper control unit.
  • the intermittent short-circuit control by the inverter control unit can be performed in a plurality of forms.
  • the first form of intermittent short-circuit control by the inverter control unit of the present invention generates a gate pulse signal that controls the pulse width of the switching element of the bridge circuit that constitutes the multiphase inverter, and at the same time, the positive voltage side and the negative voltage of the bridge circuit A short circuit pulse signal that intermittently shorts the side is generated, a control signal is generated by superimposing the generated gate pulse signal and the short circuit pulse signal, and the multiphase inverter unit is controlled by this control signal.
  • the gate pulse signal in the control signal converts the direct current into alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter.
  • the short-circuit pulse signal in the control signal is connected to the positive voltage side of the bridge circuit by simultaneously turning on the pair of switching elements that are connected in series between the positive voltage side and the negative voltage side of the bridge circuit. Short-circuit between the terminals on the voltage side.
  • the second form of intermittent short-circuit control by the inverter control unit of the present invention is a gate that generates a gate pulse signal that controls the pulse width of the switching elements of the bridge circuit that constitutes the multiphase inverter, and that turns on each switching element.
  • Switching that is turned on by a gate pulse signal among a pair of switching elements that are connected in series between the positive voltage side and negative voltage side terminals of the bridge circuit at any point within the time width of the pulse signal A pulse signal that turns on the switching element that is paired with the element is generated as a short-circuit pulse signal, and a control signal is generated by superimposing the generated gate pulse signal and the short-circuit pulse signal. Control part.
  • the gate pulse signal in the control signal converts the direct current into alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter.
  • the short-circuit pulse signal in the control signal short-circuits the positive voltage side and the negative voltage side of the bridge circuit by the switching element that is turned on by the gate pulse signal and the switching element that is turned on by the short-circuit pulse signal.
  • the third form of intermittent short-circuit control by the inverter control unit of the present invention is to simultaneously turn on all the switching elements of the bridge circuit and the gate pulse signal for controlling the pulse width of the switching elements of the bridge circuit constituting the multiphase inverter.
  • a pulse signal is generated as a short circuit pulse signal
  • a control signal is generated by superimposing the generated gate pulse signal and the short circuit pulse signal
  • the multiphase inverter unit is controlled by this control signal.
  • the gate pulse signal in the control signal converts the direct current into alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter.
  • the short-circuit pulse signal in the control signal turns on all the switching elements of the bridge circuit and short-circuits the positive voltage side and the negative voltage side of the bridge circuit.
  • the fourth form of intermittent short-circuit control by the inverter control unit of the present invention generates a gate pulse signal for controlling the pulse width of the switching element of the bridge circuit constituting the multiphase inverter, and includes the switching element included in the bridge circuit.
  • a pulse signal is generated as a short-circuit pulse signal that simultaneously turns on at least one pair of switching elements among a pair of switching elements that form a pair by connecting the positive voltage side and negative voltage side terminals of the bridge circuit in series.
  • the generated gate pulse signal and the short-circuit pulse signal are superimposed to generate a control signal, and the multiphase inverter unit is controlled by this control signal.
  • the gate pulse signal in the control signal converts the direct current into alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter.
  • the short-circuit pulse signal in the control signal turns on at least one switching element of the pair of switching elements that form a pair by connecting the positive voltage side and negative voltage side terminals of the bridge circuit in series. The positive voltage side and the negative voltage side are short-circuited.
  • the short circuit current in the current source step-down chopper unit is performed without being affected by the orthogonal transformation operation by the multiphase inverter unit.
  • a short-circuit current path is formed in the current source step-down chopper unit for a very short time width of the short-circuit pulse signal, and short-circuit current flows.
  • the energy of the short circuit current is stored in the inductor in the current source step-down chopper circuit.
  • the short-circuit operation is performed for each short time short-circuit pulse signal, and a plurality of short-circuit operations are performed by intermittently inputting a plurality of short-circuit pulse signals.
  • the current source step-down chopper unit is in conduction with the output terminal of the DC power supply until one short-circuit operation ends and the next short-circuit operation.
  • the energy stored in the inductor is sent to the output terminal of the DC power supply device to boost the output voltage.
  • the energy conversion from current to voltage can be performed by the output capacitor on the output end side of the DC power supply device or the capacitance of the electrode capacity of the plasma generator.
  • the current flow from the current source step-down chopper unit to the output end side is performed by the current path that passes through each part of the multiphase inverter unit, transformer, and rectifier constituting the DC power supply device. It is possible to provide a current path that directly connects the two sides and use this current path. In the configuration in which the current is made to flow to the output end side using the directly connected current path, switching means for conducting in the ignition mode and in the non-conducting state in the normal operation mode is provided.
  • Short-circuit operation is performed based on each short-circuit pulse signal, and the short-circuit current is reset for each short-circuit operation.
  • the output voltage is added to the voltage boosted in the previous short-circuit operation and boosted sequentially.
  • the intermittent short-circuit control of the present invention can be performed by the current source step-down chopper control unit in addition to the mode performed by the inverter control unit as described above.
  • a short-circuit switching element for short-circuiting between the positive voltage side and the negative voltage side is provided between the connection points of the current source step-down chopper unit and the multiphase inverter unit.
  • the intermittent short-circuit control by the current source step-down chopper controller of the present invention generates a short-circuit pulse signal that intermittently shorts the short-circuit switching element.
  • the short-circuit pulse signal short-circuits the positive voltage side and the negative voltage side of the output terminal of the current source step-down chopper by turning on the short-circuit switching element.
  • the inverter control unit generates a gate pulse signal that controls the pulse width of the switching elements of the bridge circuit constituting the multiphase inverter.
  • the gate pulse signal converts the direct current into an alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter.
  • the current source step-down chopper unit In the control of intermittent short circuit between the current source step-down chopper unit and the multi-phase inverter unit, the current source step-down chopper unit is short-circuited at the current source step-down chopper unit side during short circuit operation between the positive voltage side and the negative voltage side. The current flow from the section to the multiphase inverter section is broken. Therefore, the formation of the short-circuit current of the current source step-down chopper unit is performed without being affected by the orthogonal transformation operation of the multiphase inverter unit.
  • a current path is formed in the current source step-down chopper unit for a very short time width of the short-circuit pulse signal, and a short-circuit current flows.
  • the energy of the short-circuit current is stored in the inductor in the current source step-down chopper.
  • the stored short-circuit current energy boosts the output voltage of the DC power supply until the next short-circuit operation.
  • the current flow from the current source step-down chopper unit to the output end side is changed to each part of the multiphase inverter unit, transformer, and rectifier constituting the DC power supply device.
  • the current source step-down chopper unit and the output end side can be directly connected.
  • the short-circuit current is reset for each short-circuit operation, and the output voltage is added to the voltage boosted in the previous short-circuit operation and boosted sequentially.
  • the control unit of the present invention includes a boost control for increasing the output voltage to the ignition set voltage by repeating boosting by a short circuit current a plurality of times in the ignition mode, and a constant voltage for maintaining the output voltage at the ignition set voltage by the chopper control unit. Switch between control and control. The switching from the boost control to the constant voltage control is performed when the output voltage reaches the ignition set voltage.
  • the output voltage rises to a predetermined ignition set voltage by boost control, and is maintained by constant voltage control after reaching the ignition set voltage.
  • boost control boost control
  • constant voltage control after reaching the ignition set voltage.
  • the ignition mode can be switched to the steady operation mode based on the occurrence of plasma discharge in the plasma generator.
  • any one of constant voltage control, constant current control, and constant power control can be selected.
  • the constant voltage control is a control mode in which the set value of the steady operation is switched from the ignition set voltage set in the ignition mode to the steady operation set voltage, and the output voltage is maintained at the steady operation set voltage.
  • the constant current control is a control mode in which the set value for steady operation is switched from the ignition set voltage set in the ignition mode to the steady operation set current, and the output current is maintained at the steady operation set current.
  • the constant power control is a control mode in which the set value for the steady operation is switched from the ignition set voltage set in the ignition mode to the steady operation set power, and the output power is maintained at the steady operation set power.
  • the ignition mode In constant voltage control in the ignition mode, when the output current reaches the ignition set current and the output voltage drops to the plasma generation voltage, the ignition mode is switched to the steady operation mode. Any control selected from current control and constant power control is performed.
  • ⁇ ⁇ ⁇ ⁇ Switching from the ignition mode to the steady operation mode is based on the output current and output voltage. Normally, the occurrence of plasma discharge increases the output current, and the output voltage drops from the voltage at the time of ignition. By detecting the output voltage level and the output current level in the plasma generator from the DC power supply device, it is possible to detect the occurrence of plasma discharge and switch from the ignition mode to the steady operation mode.
  • the DC power supply device includes a current source step-down chopper unit that constitutes a DC source, a multi-phase inverter unit that converts the DC output of the current source step-down chopper unit into multi-phase AC power by operation of a plurality of switching elements, and a multi-phase inverter.
  • a control unit having a rectifying unit that converts the output of the unit into an AC / DC converter and supplies the obtained direct current to the load, a chopper control unit that controls the current source step-down chopper unit, and an inverter control unit that controls the multiphase inverter unit And supply DC power to the plasma generator.
  • the control method of the DC power supply device of the present invention includes control modes of intermittent short-circuit control and switching control.
  • the switching control is a control for switching between an ignition mode for supplying an ignition voltage for generating a plasma discharge in the plasma generator and a steady operation mode for supplying a steady operation current for continuing the plasma discharge of the plasma generator.
  • Intermittent short-circuit control is control in the ignition mode, and intermittently shorts the positive voltage side and negative voltage side of the current source step-down chopper unit or multiphase inverter unit to generate a short-circuit current flowing in the current source step-down chopper unit. .
  • the output voltage of the DC power supply device is boosted using the generated short-circuit current to generate an ignition voltage.
  • a plasma discharge is generated by applying this ignition voltage to the plasma generator.
  • Intermittent short-circuit control is achieved by short-circuiting the positive voltage side and negative voltage side of the bridge circuit by controlling the switching elements of the bridge circuit constituting the multi-phase inverter unit in the inverter control unit, and connecting to the multi-phase inverter unit by this short circuit.
  • a short-circuit current is passed through the current-type step-down chopper.
  • the inverter control unit is configured to intermittently short-circuit the gate pulse signal for controlling the pulse width of the switching element of the bridge circuit constituting the multiphase inverter and the short-circuit pulse for intermittently short-circuiting the positive voltage side and the negative voltage side of the bridge circuit in the intermittent short-circuit control.
  • the control signal is generated by superimposing the gate pulse signal and the short-circuit pulse signal.
  • the control circuit controls the multi-phase inverter, and the short-circuit pulse signal connects the positive voltage side and negative voltage side terminals of the bridge circuit in series to simultaneously turn on the pair of switching elements, and the bridge circuit Short-circuit between the positive voltage side and negative voltage side terminals.
  • the control unit performs boost control for increasing the output voltage to the ignition set voltage by repeating boosting by a short circuit current a plurality of times, and constant voltage control for maintaining the output voltage at the ignition set voltage by the chopper control unit. Change over. Switching from the boost control to the constant voltage control is performed after the output voltage is increased by the boost control and the output voltage reaches the ignition set voltage.
  • the output voltage V o can be controlled by the input voltage in the current source step-down chopper unit and the step-up ratio by step-up control.
  • the input voltage in the current source step-down chopper unit can be controlled using the on-duty ratio of the chopper control of the chopper control unit as a parameter, and the step-up ratio can be controlled using the number of intermittent short-circuit controls as a parameter.
  • the chopper controller controls the input voltage of the current source step-down chopper by the on-duty ratio, controls the boost ratio by the number of intermittent short-circuit controls, and increases the output voltage by these input voltage and boost ratio. Control.
  • the chopper controller performs constant voltage control in the ignition mode, and performs any control selected from constant voltage control, constant current control, and constant power control in the steady operation mode. In control selected from constant voltage control, constant current control, and constant power control, control is performed to maintain the voltage set value, current set value, or power set value, which are set values set in each control.
  • Constant voltage control performed by the ignition mode the output voltage V o is performs control so that the ignition set voltage, the input voltage of the current type step-down chopper unit performs a chopper control so that a predetermined voltage.
  • the control performed in the steady operation mode is a control set value (voltage set value, current setting) in which the output is selected in the steady operation mode so that the plasma discharge is maintained after the plasma discharge is generated in the plasma generator. Value or power setting value).
  • the switching from the ignition set voltage to the set value set in the steady operation mode is performed based on the occurrence of plasma discharge in the plasma generator. Whether or not plasma discharge has occurred in the plasma generator can be determined by monitoring the output voltage and output current.
  • the output current supplied from the DC power supply to the plasma generator is switched from the ignition current to the steady operation current at the time of switching from the ignition mode to the steady operation mode.
  • the ignition current becomes the largest ignition current at the final stage of switching from the ignition mode to the steady operation mode.
  • the ignition current when the ignition mode is switched to the steady operation mode is obtained in advance and set as the ignition setting current. Further, when plasma discharge occurs, the output voltage becomes lower than the ignition set voltage, so a low voltage when plasma discharge occurs is determined as the plasma generation voltage.
  • the output current is compared with the ignition set current, the output voltage is compared with the plasma generation voltage, and when the output current reaches the ignition set current and the output voltage drops to the plasma generation voltage, the plasma discharge Judgment is made when this occurs.
  • the control set value is selected from the ignition set voltage of the constant voltage control in the ignition mode, and from the constant voltage control, constant current control, and constant power control in the steady operation mode. Switch to the control setting value and perform the selected control.
  • a constant voltage, a constant current, or a constant power is applied to the plasma generator by constant voltage control, constant current control, or constant power control, and a stable plasma discharge is maintained.
  • the apparatus configuration for forming a high voltage that generates plasma discharge can be simplified and miniaturized.
  • the voltage application time required for generating plasma discharge can be shortened without using a large-scale and complicated DC power supply device.
  • FIGS. 2 is a diagram for explaining the overall configuration of the DC power supply device of the present invention
  • FIG. 3 is a diagram for explaining a configuration example of a chopper control unit provided in the DC power supply device of the present invention.
  • the DC power supply device 1 of the present invention shown in FIG. 2 is input from the rectifying unit 10 that rectifies the AC power of the AC power source 2, the snubber unit 20 that forms a protection circuit that suppresses transiently high voltage, and the rectifying unit 10.
  • a current source step-down chopper unit 30 that converts a DC power voltage into a predetermined voltage and outputs a DC current
  • a multi-phase inverter unit 40 that converts a DC output of the current source step-down chopper unit 30 into a multi-phase AC output
  • a multi-phase inverter A multiphase transformer 50 that converts the AC output of the unit 40 into a predetermined voltage
  • a multiphase rectifier 60 that converts the AC of the multiphase transformer 50 into DC.
  • the switching element Q 1 is, steps down by chopper controlling the DC voltage rectified by the rectifier unit 10. Voltage control by the current-step-down chopper unit 30 is performed by controlling the ON duty ratio is the ratio of the on-off switching element Q 1.
  • the direct current reactor L F1 smoothes the current of the chopper controlled direct current.
  • the DC power supply device of the present invention causes a short-circuit current to flow through the current source step-down chopper unit 30 by a short-circuit operation, and temporarily stores this short-circuit current in the DC reactor L F1 .
  • the stored energy of DC reactor L F1 boosts the output voltage until the next short-circuit operation.
  • the multi-phase inverter unit 40 receives the direct current smoothed by the current source step-down chopper unit 30 and performs orthogonal transformation by controlling the switching elements of the bridge circuit included in the multi-phase inverter unit 40.
  • the multi-phase inverter unit 40 includes a multi-phase inverter circuit configured by bridge-connecting switching elements corresponding to the number of phases.
  • the three-phase inverter circuit includes a bridge circuit composed of six switching elements.
  • the switching element for example, a semiconductor switching element such as an IGBT or a MOSFET can be used.
  • Each switching element of the multiphase inverter circuit performs a switching operation based on the control signal of the inverter control unit 80, converts DC power into AC power, and outputs the AC power.
  • the AC output of the multi-phase inverter unit 40 can obtain a high frequency output by increasing the switching frequency of the switching element.
  • the current source inverter device supplies a high frequency output of 200 kHz, for example, to the load unit.
  • the multiphase inverter circuit performs switching operation of the switching element at a high frequency. As described above, when the switching element is switched at a high frequency, the AC output includes a high frequency ripple component.
  • the multiphase rectification unit 60 rectifies the AC output of the multiphase inverter unit 40 and supplies the DC output to the load.
  • a conventionally known multiphase rectification unit may be configured to include a DC filter circuit in the output unit. This DC filter circuit removes the high-frequency ripple component contained in the AC output of the multiphase inverter unit.
  • DC filter circuit can be configured by the output capacitor C FO connected in series with the output reactor L FO in parallel connected to the output terminal (not shown).
  • the DC output of the multiphase rectification unit 60 is output via the wiring inductance L 0 provided in the wiring 90, and is supplied to the plasma generator 4 by the output cable 3 connecting the DC power supply device 1 and the plasma generator 4. .
  • the DC power supply device 1 of the present invention can use parasitic impedance instead of the DC filter circuit in the multiphase rectifier 60 as a configuration for removing the high-frequency ripple component.
  • the inductance L 0 of the wiring 90 between the polyphase rectifier 60 and the output terminal is used as the inductance
  • the capacity of the output cable 3 connected between the DC power supply device 1 and the load is used as the capacity, or
  • the output capacity Co of the plasma generator 4 can be used.
  • the above-described parasitic impedance of the multiphase inverter section and the capacity of the output cable and electrode capacitance substantially constitute a DC filter circuit, and reduce high frequency ripple components included in the AC output of the multiphase inverter section.
  • the configuration using the parasitic impedance of the electrode capacitance of the wiring impedance and output cables and a plasma generating apparatus is large enough to supply the capacitive component is arc energy P c corresponding to the output capacitor C FO ,
  • the high-frequency ripple component can be removed and the arc energy Pc can be supplied.
  • the high frequency ripple component has a characteristic that increases when the driving frequency of the multiphase inverter circuit is lowered. Therefore, by increasing the driving frequency of the polyphase inverter circuit, the need for output capacitors C FO and output reactor (inductance) L FO can be reduced. Moreover, the energy which DC power supply device 1 holds inside can be suppressed by raising the drive frequency of a multiphase inverter circuit.
  • the DC power supply device 1 of the present invention includes a chopper control unit 70 that controls the current source step-down chopper unit 30 and an inverter control unit 80 that controls the multiphase inverter unit 40.
  • Chopper control unit 70 is a circuit for chopper control of the switching element to Q 1 current-step-down chopper 30, the chopper current is an output current of the switching element Q 1, and detects an output voltage of the DC power supply device 1, the Based on the detected value of the chopper current and the output voltage, control is performed so that the output of the current source step-down chopper unit 30 becomes a predetermined current value and a predetermined voltage value set in advance.
  • the inverter control unit 80 controls the switching operation of the switching element connected to each arm constituting the bridge circuit of the multiphase inverter unit 40.
  • the multiphase inverter unit 40 orthogonally converts the input direct current into alternating current by controlling the switching element.
  • the multiphase inverter unit 40 is configured by a bridge circuit having six arms as shown in FIG. Each arm is provided with six switching elements Q R , Q S , Q T , Q X , Q Y , and Q Z.
  • a switching element Q R and the switching element Q x connected in series, a switching element Q S and the switching element Q Y are connected in series, connected in series and a switching element Q T and the switching element Q z.
  • connection point R between the switching element Q R and the switching element Q x is connected as the R phase of the three-phase transformer 51
  • the connection point S between the switching element Q S and the switching element Q Y is the S phase of the three-phase transformer 51
  • connection point T between the switching element Q T and the switching element Q Z is connected as the T phase of the three-phase transformer 51.
  • PWM PWM control that changes the magnitude of output current under constant input current is known as control of the multiphase inverter.
  • PWM control a pulse control signal is formed for each phase by comparing a carrier wave and a modulated wave.
  • the pulse control signal of each phase has a conduction period of 120 °, and the ON / OFF of the switching element of each arm of the inverter is controlled by this pulse control signal.
  • R-phase, S-phase, and T-phase currents having a phase difference are formed.
  • a feedback signal is fed back to the chopper control unit 70 and the inverter control unit 80 from the output end of the DC power supply device 1 or the load side.
  • the feedback signal can be, for example, the voltage or current at the output end of the DC power supply device 1.
  • the chopper controller 70 performs pulse voltage control on the switching element of the current source step-down chopper 30, performs constant voltage control in the ignition mode, and selects one of constant voltage control, constant current control, or constant power control in the steady operation mode. Control. Control is performed by switching to different set values in the ignition mode and the steady operation mode. In the ignition mode, the ignition set voltage V IGR is set. In the steady operation mode, the constant voltage control is set to the steady operation set voltage V R , the constant current control is set to the steady operation set current I R , and the constant power control is set to the steady state. set the operating set power P R.
  • Setting values in each control the steady operation mode from the ignition setting voltage V IGR constant voltage control of the steady-state operation setting voltage V R, the constant steady operation of the current control set current I R, the steady operation set power P R of the constant power control
  • the switching can be performed by detecting that the output voltage and the output current have reached predetermined values. For example, when the set value is switched by detecting the output voltage and output current, the output current increases in the ignition mode, reaches the ignition set current set corresponding to the start of plasma discharge, and the output voltage is plasma. The time point when the voltage drops to the generated voltage is detected, and the set value is switched at this time point.
  • FIG 3 shows the control set values (the steady operation set voltage V R , the steady operation set current I R , the steady operation set power P, and the ignition set voltage V IGR selected based on the detection of the output voltage V o and the output current I o. R ).
  • the chopper control unit 70 compares the output current I o and the ignition set current I IGR as a configuration for switching the set value based on the comparison between the output current and output voltage and each set value, and generates the output voltage V o and plasma generation. compares the set voltage V PLR, the output current I o is the ignition setting current I IGR above, and a comparison circuit 70e for outputting a switching signal when the output voltage V o is equal to or less than the plasma generating set voltage V PLR Prepare.
  • the ignition set current I IGR can be stored in the memory means 70f, and the plasma generation set voltage V PLR can be stored in the memory means 70g.
  • the ignition setting voltage V IGR and a constant k may be stored, and the plasma generation setting voltage V PLR may be set by multiplying the ignition setting voltage V IGR by the constant k.
  • the constant k can be arbitrarily set in the range of 0.2 to 0.9, for example.
  • Chopper control unit 70 in the pulse width control of the switching element Q 1, the set value of the control, the ignition setting voltage V IGR performing constant voltage control in the ignition mode, the set value of the control selected in the steady operation mode (constant voltage).
  • a switching circuit 70b for switching to a steady operation set voltage V R for control, a steady operation set current I R for constant current control, and a steady operation set power P R for constant power control.
  • Switching circuit 70b outputs an ignition setting voltage V IGR, steady operation setting voltage V R, the steady operation set current I R, one of steady operation set power P R based on the switching signal outputted from the comparison circuit 70e.
  • Ignition set voltage V IGR it can be stored in the memory means 70c
  • steady operation setting voltage V R the steady operation set current I R
  • steady operation setting values such as steady operation set power P R is stored in the memory unit 70d Can do.
  • Each of the memories 70c to 70g is not limited to the configuration provided in the chopper control unit 70.
  • the memories 70c to 70g may be provided in an arbitrary component such as a control unit that controls the entire DC power supply device, or may be input from outside the DC power supply device It is good.
  • the chopper control unit 70 includes a switching element control signal generation circuit 70a, and performs switching control of constant voltage control, constant current control, or constant power control by pulse width control so that the output becomes a set value. Is generated.
  • Switching element control signal generator circuit 70a includes a switching ignition set voltage V IGR sent from the switching circuit 70b, the steady operation setting voltage V R, the steady operation set current I R, one of steady operation set power P R as a set value generates a device control signal to the chopper controls the switching element to Q 1 current-step-down chopper unit 30.
  • the inverter control unit 80 controls the on / off operation of the switching element of the multiphase inverter unit 40, and performs the orthogonal conversion from DC to AC and generates a short-circuit current in the current source step-down chopper unit.
  • the gate pulse signal G is generated in any of the ignition mode and the steady operation mode.
  • the generation of the short-circuit pulse signal P i is started at the rising edge of the ignition signal IG, and the generation is stopped by the switching signal that is the output of the comparison circuit 70e of the chopper control unit 70.
  • the inverter control unit 80 adds the gate pulse signal generation circuit 80c that generates the gate pulse signal G, the short circuit pulse signal generation circuit 80d that generates the short circuit pulse signal P i , and the gate pulse signal G and the short circuit pulse signal P i.
  • the multi-phase inverter unit 40 performs orthogonal transformation by the gate pulse signal G in the control signal, and short-circuits the positive voltage side and the negative voltage side by the short-circuit pulse signal P i in the control signal. Apply short circuit current.
  • FIG. 5 illustrates an example in which the positive voltage side and the negative voltage side of the multiphase inverter unit are short-circuited by inverter control, and a short-circuit current is caused to flow through the current source step-down chopper unit by this short-circuit operation.
  • the chopper controller controls the IG voltage rise interval (S1a to S1c) that boosts the output voltage to the ignition set voltage, and the IG voltage constant voltage interval control (S1d to S1f) that maintains the boosted output voltage at the ignition set voltage
  • the ignition mode is controlled by these two sections.
  • the inverter control unit performs inverter control by the gate pulse signal G and intermittent short-circuit control by the short-circuit pulse signal P i during the ignition mode S1.
  • IG voltage rise section Control of IG voltage rise section
  • control is performed to boost the output voltage to the ignition set voltage.
  • a gate pulse signal G for driving and controlling the switching elements of each phase of the bridge circuit included in the multi-phase inverter unit is generated (S1A), and an ignition (IG) generation signal that determines an ignition mode section is started (S1B). ).
  • a short-circuit pulse signal P i is generated in accordance with the rise of the ignition (IG) generation signal (S1C).
  • FIG. 6 (a) shows an ignition (IG) generating signals
  • FIG. 6 (b) shows a gate pulse signal G
  • FIG. 6 (c) shows a short circuit pulse signal P i.
  • FIG. 6B shows a state in which the short-circuit pulse signal P i is superimposed on the gate pulse signal G.
  • the multi-phase inverter unit is controlled by the gate pulse signal G generated by S1A (S1D), and the ignition (IG) generation signal generated by S1C is used between the positive voltage side and the negative voltage side of the multi-phase inverter unit (bridge circuit Short the upper and lower ends (S1E).
  • the short-circuit pulse signal P i is generated for a minute time width T ion, and together with the gate pulse signal G, the switching elements constituting the bridge circuit of the inverter unit are turned on to short-circuit the positive voltage side and the negative voltage side.
  • the short pulse signal P i superimposed on the gate pulse signal G R and the gate pulse signal G X, an ON state and the switching element Q R and the switching element Q X of the bridge circuit, to short-circuit the upper and lower ends of the bridge circuit .
  • the chopper controller sets the ignition set voltage V IGR as a voltage set value for constant voltage control of the output voltage V o with the rise of the ignition (IG) generation signal (S1a).
  • FIG. 6D shows the output voltage V o and the output current I o .
  • the output voltage V o shows an ignition setting voltage V IGR as the voltage setting value of the constant voltage control of the ignition mode the output voltage V o, as the voltage set value of the constant voltage control during the steady operation of the output voltage V o It shows a steady operation setting voltage V R.
  • an ignition set current IIGR is shown as a current set value in the ignition mode of the output current Io .
  • the short circuit current ⁇ i flows through the current source step-down chopper by the S1E short circuit operation process.
  • This short-circuit current ⁇ i is accumulated in an inductor provided in the current source step-down chopper (S1b).
  • Short pulse signals P i stops short operation by the fall of the output voltage V o by the energy stored in the inductor is boosted (S1F).
  • the output voltage V o is compared with the ignition set voltage V IGR, and if the output voltage V o has not reached the ignition set voltage V IGR , the next short-circuit pulse signal P i causes the negative voltage on the positive side of the multiphase inverter section to be negative to short-circuit between the (upper and lower ends of the bridge circuit) between the voltage side, it performs processing for boosting the output voltage V o by the short circuit current ⁇ i a (S1E ⁇ S1F). Until the output voltage V o reaches the ignition set voltage V IGR , the step-up process by the short-circuit operation of S1E to S1F is repeated.
  • the output voltage V o is stepped up stepwise by an intermittent short circuit operation by repeating S1E to S1F.
  • a portion indicated by a symbol A indicates a step-up state in which the voltage goes toward the ignition set voltage V IGR .
  • FIG. 7 shows a short circuit state at the time of ignition.
  • the switching element Q R and the switching element Q X are simultaneously turned on to short-circuit between the positive voltage side and the negative voltage side (upper and lower ends of the bridge circuit). Is shown.
  • the switching element Q R When the switching element Q R is in the on state by the gate pulse signal G R , the switching element Q X is turned on by the short circuit pulse signal P i at any time in the on state. As a result, the positive voltage side and the negative voltage side PN (upper and lower ends of the bridge circuit) are short-circuited via the switching element Q R and the switching element Q X.
  • a short circuit current ⁇ i flows through the current source step-down chopper as shown in FIG.
  • the short-circuit current ⁇ i flows for a minute time width T ion (n) that is the signal width of the short-circuit pulse signal P i .
  • the short circuit current ⁇ i is reset every short circuit operation.
  • T ion (n) n-th short operation of T ion (n) is completed, until the short circuit operation of the next (n + 1) th T ion (n + 1) is started, the direct current by a short operation of the T ion (n) reactor L
  • the energy J i (n) stored in F1 is supplied to the load through the inverter unit, the transformer, and the rectifier.
  • the output side capacitance C OT can be the output capacitance C FO and the electrode capacitance C o of the plasma generator as a load.
  • V o (n) ⁇ (L F1 / C OT ) ⁇ ⁇ i 1 2 + V o (n ⁇ 1) 2 ⁇ 1/2 (4) Equation (4) represents the output voltage V o (n) when the short-circuit operation is repeated n times.
  • V o (1) ⁇ (L F1 / C OT ) ⁇ ⁇ i 1 2 ⁇ 1/2 (5)
  • V o (2) ⁇ (L F1 / C OT ) ⁇ ⁇ i 1 2 + V o (1) 2 ⁇ 1/2 (6)
  • V o (3) ⁇ (L F1 / C OT ) ⁇ ⁇ i 1 2 + V o (2) 2 ⁇ 1/2 (7)
  • Equation (4) shows that the output voltage V o (n) at the time of ignition can be selected by the number n of short-circuit operations.
  • short-circuit current .DELTA.i 1 is proportional to the input voltage V in as shown in equation (1).
  • Input voltage V in is the output voltage of the current-step-down chopper unit, the output voltage is determined by the on-duty ratio of the switching element to Q 1 current-step-down chopper unit.
  • the step-up ratio of the output voltage V o (n) can be determined by the on-duty ratio of the switching element to Q 1 number n, and the current-step-down chopper of the short-circuit operation.
  • the number n of the short-circuit operation is performed in the ignition mode, when the short-circuit pulse signal is output in synchronization with the gate pulse signal, the time until the ignition mode is started and released and the gate pulse signal The number of times is automatically determined according to the time width.
  • control is performed to maintain the boosted output voltage at the ignition set voltage.
  • constant voltage control is performed with the ignition set voltage in chopper control (S1d).
  • the output current Io rises in the IG voltage rising section and the IG voltage constant voltage section.
  • a portion indicated by a symbol D indicates a current rising state in the IG voltage rising section and the IG voltage constant voltage section.
  • ignition set current I IGR flows an output current I o of the steady operation by moving to a steady operating state.
  • the portion indicated by the symbol E indicates the state of transition to the output current I o in the steady operation where the output current I o exceeding the ignition set current I IGR flows, and the portion indicated by the symbol F It shows the output current I o of the steady-state operation.
  • the occurrence of plasma discharge can be determined by the fact that the output voltage V o has reached the steady operation set voltage V R and that the ignition set current I IGR flows in the output current I o .
  • the output current that flows when the plasma discharge occurs is determined as the ignition set current I.
  • the output voltage is predetermined as the ignition set voltage V IGR
  • the output current I o is compared with the set ignition set current I IGR
  • the output voltage V o is set as a constant to the set ignition set voltage V IGR
  • the constant k is set to, for example, 0.2 to 0.9 (S1e, S1f).
  • the constant voltage control set voltage is switched from the ignition set voltage V IGR to the steady operation set voltage V R , and in the inverter controller, the IG generation signal is stopped and the generation of the short-circuit pulse signal P i is stopped. As a result, the ignition mode is terminated and the operation mode is switched to the steady operation mode.
  • the output voltage V o shown in FIG. 6 a portion indicated by a symbol C indicates a constant voltage state maintained at the steady operation set voltage V R.
  • End of IG-voltage constant voltage section is performed by stopping the short pulse signal P i.
  • control of the off-state, when the boosted output voltage reaches the ignition set voltage can be performed by constant voltage control to the ignition setting voltage switching element Q 1 by a pulse width control .
  • the chopper control unit performs the constant voltage control in the steady operation setting voltage V R, the inverter control unit performs a normal pulse width control.
  • FIG. 8 shows operating states of chopper control and inverter control in the ignition mode and the steady operation mode.
  • the chopper control controls the current source step-down chopper so that the output voltage V o can be controlled to the ignition set voltage by pulse width control, and the inverter control performs orthogonal transform control by pulse width control.
  • intermittent short-circuit control is performed in the IG voltage rising section in the ignition mode, and the ignition voltage is boosted toward the ignition set voltage V IGR .
  • This step-up control can be performed not only by intermittent short-circuit control by inverter control but also by controlling a short-circuit switching element provided on the current source step-down chopper unit side.
  • the output voltage is boosted towards the ignition setting voltage V IGR in IG voltage rising period, after reaching the ignition set voltage V IGR is maintained in IG voltage constant voltage section to the ignition setting voltage V IGR.
  • the output current rises toward the ignition setting current I IGR .
  • FIG. 9 is a timing chart for explaining another configuration example 1 of the DC power supply device.
  • the short-circuit pulse signal P i in the configuration example 1 simultaneously turns on all the switching elements of the bridge circuit.
  • FIG. 9 The timing chart shown in FIG. 9 is the same as the timing chart shown in FIG. 6 except for the short-circuit pulse signal.
  • FIG. 9B shows the short-circuit pulse signal P i and the gate pulse signal G superimposed on each other, and the short-circuit pulse signal P i is shown by a black background pattern.
  • the short-circuit pulse signal P i simultaneously turns on and off each switching element Q R , Q S , Q T , Q X , Q y , Q z of the bridge circuit. Even when the short-circuit pulse signal Pi and the gate pulse signal G overlap, the switching element is turned on, so that the short-circuit state can be achieved regardless of the state of the gate pulse signal G.
  • FIG. 10 is a timing chart for explaining another configuration example 2 of the DC power supply device.
  • the short-circuit pulse signal P i of the configuration example 2 is at least among switching element pairs that form a pair by connecting the positive voltage side and negative voltage side terminals of the bridge circuit in series among the switching elements included in the bridge circuit. One pair of switching elements is simultaneously turned on.
  • Short circuit operation can be performed.
  • FIG. 10 The timing chart shown in FIG. 10 is the same as the timing chart shown in FIG. 6 except for the short-circuit pulse signal.
  • FIG. 10B shows the short circuit pulse signal P i and the gate pulse signal G in an overlapping manner, and the short circuit pulse signal P i is shown by a black background pattern.
  • the short-circuit pulse signal P i simultaneously turns on and off the switching elements Q R and Q X of the bridge circuit. Even when the short-circuit pulse signal Pi and the gate pulse signal G overlap, the switching element is turned on, so that the short-circuit state can be achieved regardless of the state of the gate pulse signal G.
  • the pair of the positive voltage side and the negative voltage side of the bridge circuit is connected in series at any time point within the time width of the gate pulse signal that turns on each switching element.
  • a pulse signal that turns on a switching element that is paired with a switching element that is turned on by a gate pulse signal is generated as a short-circuit pulse signal, and the paired switching elements are simultaneously turned on, Cause a short-circuit operation.
  • the short-circuit operation is performed by simultaneously turning on the switching elements at the upper and lower ends of the multiphase inverter section.
  • the switching element Q 2 is connected between the positive voltage side and the negative voltage side of the output terminal of the current source step-down chopper section or the input terminal of the multiphase inverter section, and this switching element Q 2. To cause a short circuit.
  • FIG. 11 is a configuration diagram for explaining another configuration example 4 of the DC power supply device.
  • Configuration Example 4 the DC power supply apparatus shown in FIG. 1, to connect the switching element Q 2 between the positive voltage side and a negative voltage side output terminal of the current-step-down chopper unit 30, the switching element Q 2
  • the switching control unit 91 controls the on / off operation.
  • the selection from constant voltage control, constant current control, and constant power control can be made as required. For example, it is selected in advance and set in the switching circuit of the chopper controller. It can be set from outside the DC power supply. Moreover, it is good also as a structure which changes selection.
  • the current source inverter device of the present invention can be applied as a power source for supplying power to a plasma generator and performing film formation or etching.

Abstract

In ignition mode, intermittent short circuit control is implemented such that a short circuit current flows into a current-source-type step-down chopper. Short-circuit current energy primarily accumulates in an inductor provided in the current-source-type step-down chopper. The accumulated energy boosts the output voltage of a DC power supply device by way of the flow of current during the time period until the next short circuit, a multiphase inverter, and a rectifier. The accumulation of current energy due to short circuiting, and boosting operations in which the output voltage is repeatedly boosted due to conduction are used to implement control in which the output voltage applied to a plasma generation device is increased.

Description

直流電源装置、直流電源装置の制御方法DC power supply and control method of DC power supply
 本発明は、直流電源装置に関し、例えば、プラズマ発生装置等の負荷に用いられる直流電源装置、直流電源装置の制御方法に関する。 The present invention relates to a DC power supply device, for example, a DC power supply device used for a load such as a plasma generator, and a control method for the DC power supply device.
 半導体デバイス、液晶パネル、ディスク等の製造や、スパッタリング処理等において、基板等の処理対象物にプラズマを用いたプラズマ処理工程が知られている。このプラズマ処理工程は、直流電源装置からプラズマ発生装置に直流電力を供給し、プラズマ発生装置内の空間において処理ガスをプラズマ化するなどによってプラズマを発生させ、発生したプラズマによって基板の表面に成膜処理やエッチング処理を行う。 In the manufacture of semiconductor devices, liquid crystal panels, disks, etc., sputtering processing, etc., a plasma processing process using plasma as a processing target such as a substrate is known. In this plasma processing step, DC power is supplied from the DC power supply device to the plasma generator, plasma is generated by, for example, converting the processing gas into plasma in the space inside the plasma generator, and the generated plasma forms a film on the surface of the substrate. Processing and etching are performed.
 通常、プラズマ発生装置は直流電源装置にとって電気的な負荷に相当し、プラズマ放電が発生するまでのプラズマ放電開始時の負荷と、プラズマ放電が安定して発生している通常運転時の負荷とは異なる。そのため、通常、直流電源装置は、プラズマ放電開始時において、通常運転時の電圧よりも大きなイグニッション電圧を電極に一定期間印加し、その後、通常運転時の低電圧の放電電圧を印加する(特許文献1)。また、プラズマ放電の開始を突入電流によって検出することが知られている(特許文献2,3)。 Normally, a plasma generator corresponds to an electrical load for a DC power supply device. The load at the start of plasma discharge until plasma discharge occurs and the load during normal operation in which plasma discharge is stably generated Different. Therefore, the DC power supply device normally applies an ignition voltage larger than the voltage during normal operation to the electrode for a certain period at the start of plasma discharge, and then applies a low discharge voltage during normal operation (Patent Document). 1). It is also known that the start of plasma discharge is detected by an inrush current (Patent Documents 2 and 3).
 また、プラズマ放電発生のためのイグニッション電圧を発生する回路として共振コンバータを用いるものやチョッパ制御を用いるものが知られている。 Further, a circuit using a resonance converter or a circuit using chopper control is known as a circuit for generating an ignition voltage for generating plasma discharge.
 図12(a),(b)は共振コンバータを用いたイグニッション電圧発生回路であり、図12(a)は直列共振コンバータの回路例を示し、図12(b)は並列共振コンバータ回路例を示している。図12(a)に示す回路例では、インバータ回路とダイオード整流回路で構成されるコンバータとの間にLCの直列共振回路を接続し、図12(b)に示す回路例では、インバータ回路とダイオード整流回路で構成されるコンバータとの間にLCの並列共振回路を接続している。共振コンバータを用いたイグニッション電圧発生回路は、共振によってイグニッション電圧を上昇させている。 12A and 12B show an ignition voltage generation circuit using a resonant converter, FIG. 12A shows a circuit example of a series resonant converter, and FIG. 12B shows a parallel resonant converter circuit example. ing. In the circuit example shown in FIG. 12A, an LC series resonance circuit is connected between an inverter circuit and a converter composed of a diode rectifier circuit. In the circuit example shown in FIG. An LC parallel resonant circuit is connected to a converter composed of a rectifier circuit. An ignition voltage generating circuit using a resonant converter raises the ignition voltage by resonance.
 図12(c)はチョッパ制御の回路例であり、直流源(Ein)とインバータ回路との間にチョッパ回路を設ける。チョッパ制御の回路では、チョッパ回路が備えるスイッチング素子のオンデューティー比によってイグニッション電圧を制御する。 FIG. 12C shows a circuit example of chopper control, in which a chopper circuit is provided between the DC source (Ein) and the inverter circuit. In the chopper control circuit, the ignition voltage is controlled by the on-duty ratio of the switching element provided in the chopper circuit.
特開2010-255061(段落[0006])JP2010-250661 (paragraph [0006]) 特開平11-229138号公報(段落[0009])JP-A-11-229138 (paragraph [0009]) 特開2002-173772号公報(段落[0032])JP 2002-173772 A (paragraph [0032])
 特許文献2に記載される装置では、設定した放電電圧よりも大きな電圧を一定期間印加することによってプラズマを発生させ、また、特許文献3に記載される装置では、瞬間的に定格以上の電圧を印加することによってプラズマ放電の着火を行っている。 In the device described in Patent Document 2, plasma is generated by applying a voltage larger than a set discharge voltage for a certain period, and in the device described in Patent Document 3, a voltage exceeding the rated value is instantaneously applied. The plasma discharge is ignited by application.
 上記したように、プラズマを着火させるために印加する電圧は、放電電圧あるいは定格電圧よりも大きな電圧を一定期間あるいは瞬間的に印加している。プラズマ放電の発生にはばらつきがあり、印加電圧が低い場合には印加時間を長く設定する必要がある。 As described above, the voltage applied to ignite the plasma is a voltage greater than the discharge voltage or the rated voltage applied for a certain period or momentarily. The occurrence of plasma discharge varies, and when the applied voltage is low, it is necessary to set the application time longer.
 短い印加時間で確実にプラズマ放電を発生させるには、放電電圧や定格電圧よりも大きな電圧を発生させる必要がある。 In order to reliably generate plasma discharge in a short application time, it is necessary to generate a voltage higher than the discharge voltage or rated voltage.
 そのため、プラズマ発生装置に直流電力を供給する直流電源装置は、プラズマ放電の発生に用いる電圧を高めるために直流電源装置が複雑化し大型化するという問題がある。 Therefore, the DC power supply device that supplies DC power to the plasma generator has a problem that the DC power supply device becomes complicated and large in order to increase the voltage used to generate plasma discharge.
 また、低い印加電圧でプラズマ放電を発生させる場合には印加時間が長くなるため、プラズマ発生装置での処理時間が長時間化するという問題がある。 In addition, when plasma discharge is generated at a low applied voltage, the application time becomes long, so that there is a problem that the processing time in the plasma generator becomes long.
 また、イグニッション電圧発生回路において、直列共振コンバータおよび並列共振コンバータを用いる場合には、共振動作によって電圧を上昇させているため、イグニッション電圧の最大値は入力直流電圧Edcの2倍までしか昇圧することができないという問題がある。イグニッション電圧を高めるには入力直流電圧Edcを高める必要があり、高電圧の直流源を用意する必要がある。 In addition, when a series resonant converter and a parallel resonant converter are used in the ignition voltage generation circuit, the voltage is raised by the resonance operation, so that the maximum value of the ignition voltage is boosted only up to twice the input DC voltage Edc. There is a problem that can not be. In order to increase the ignition voltage, it is necessary to increase the input DC voltage Edc, and it is necessary to prepare a high-voltage DC source.
 イグニッション電圧発生回路において、チョッパ制御による場合には、インバータ回路に共振回路を備えていないため、降圧チョッパ回路ではイグニッション電圧の最大値は入力直流電圧Einまでしか得られないという問題がある。 In the ignition voltage generation circuit, when the chopper control is used, the inverter circuit is not provided with a resonance circuit, so that there is a problem that the maximum value of the ignition voltage can be obtained only up to the input DC voltage Ein in the step-down chopper circuit.
 したがって、共振回路あるいはチョッパ回路によるイグニッション電圧発生回路においても、プラズマ放電の発生に用いる電圧を高めるために直流電源装置が複雑化し大型化するという問題がある。 Therefore, even in an ignition voltage generation circuit using a resonance circuit or a chopper circuit, there is a problem that the DC power supply device becomes complicated and large in order to increase the voltage used for generating plasma discharge.
 本発明は前記した従来の問題点を解決し、プラズマ発生装置に直流電力を供給する直流電源装置において、プラズマ放電を発生させる高圧電圧を形成する装置構成を簡易で小型化することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described conventional problems, and to simplify and miniaturize a device configuration for forming a high voltage for generating plasma discharge in a DC power supply device that supplies DC power to a plasma generator. .
 また、大型で複雑な構成の直流電源装置を用いることなく、プラズマ放電の発生に要する電圧印加時間を短縮することを目的とする。 It is another object of the present invention to shorten the voltage application time required for generating plasma discharge without using a large-sized and complicated DC power supply.
 プラズマ発生装置等の負荷に対して直流電力を供給してプラズマ処理を行う際に、電源投入時や再起動時においてプラズマ発生装置にプラズマ放電を発生させる工程を行う。このとき、プラズマ発生装置に対して直流電源装置からイグニッション電圧と呼ばれる通常運転の際に印加する電圧より高い電圧を印加し、プラズマ放電を発生させる。 When performing DC processing by supplying DC power to a load such as a plasma generator, a step of generating a plasma discharge in the plasma generator when the power is turned on or restarted is performed. At this time, a voltage higher than the voltage applied during normal operation, called an ignition voltage, is applied from the DC power supply device to the plasma generator to generate plasma discharge.
 本願発明は、プラズマ放電を発生させるために、プラズマ発生装置に印加する電圧を生成する直流電源装置、および直流電源装置の制御方法に係るものである。 The present invention relates to a DC power supply that generates a voltage to be applied to a plasma generator in order to generate a plasma discharge, and a control method for the DC power supply.
 プラズマ発生装置に印加する電圧を、プラズマ放電を発生させるに要するイグニッション設定電圧まで昇圧する必要がある。本願発明の直流電源装置は、直流電源装置が備える電流形降圧チョッパ部に微小時間だけ電流を流す工程を複数回繰り返して行い、各電流のエネルギーを用いて出力電圧を逐次上昇させ、イグニッション設定電圧まで昇圧させる。 It is necessary to boost the voltage applied to the plasma generator to the ignition set voltage required to generate plasma discharge. The direct current power supply device of the present invention repeats the process of passing a current through the current source step-down chopper unit included in the direct current power supply device a plurality of times, and sequentially increases the output voltage using the energy of each current to set the ignition set voltage. Boost to.
 本願発明の直流電源装置は、電流形降圧チョッパ部において微小時間だけ電流を流すために、電流形降圧チョッパ部から直流電源装置の出力端への電流路を微小時間だけ遮断して、電流形降圧チョッパ部に短絡電流を流す。直流電源装置の出力端への電流路が遮断されているため、電流形降圧チョッパ部の電流は電流形降圧チョッパ部が備えるインダクタに一次的に蓄積される。 The direct current power supply device of the present invention cuts off the current path from the current source step-down chopper section to the output terminal of the direct current power supply device for a short time in order to allow a current to flow in the current source step-down chopper section for a short time. A short circuit current is passed through the chopper. Since the current path to the output terminal of the DC power supply device is interrupted, the current of the current source step-down chopper unit is temporarily accumulated in the inductor included in the current source step-down chopper unit.
 その後、直流電源装置の出力端への電流路の遮断が解かれて、電流形降圧チョッパ部から直流電源装置の出力端への電流路が形成されると、インダクタに蓄積されたエネルギーによって直流電源装置の出力端の電圧を昇圧する。電流の蓄積と解放とによる出力端の昇圧を繰り返すことによって、直流電源装置の出力端の電圧をイグニッション設定電圧まで昇圧する。 After that, when the interruption of the current path to the output terminal of the DC power supply device is released and a current path from the current source step-down chopper unit to the output terminal of the DC power supply device is formed, the DC power supply is generated by the energy accumulated in the inductor. Boost the voltage at the output of the device. The voltage at the output terminal of the DC power supply device is boosted to the ignition set voltage by repeating boosting of the output terminal by accumulating and releasing current.
 図1は、本願発明の、短絡電流の発生動作および短絡電流による出力電圧の昇圧動作を説明するための図である。 FIG. 1 is a diagram for explaining an operation for generating a short-circuit current and a step-up operation for an output voltage due to the short-circuit current according to the present invention.
 図1(a)は短絡電流の発生動作を説明するための図である。電流形降圧チョッパ部あるいは多相インバータ部において、正電圧側と負電圧側とを短絡することによって電流形降圧チョッパ部に短絡電流Δiを流す。短絡電流ΔiのエネルギーはインダクタンスLに蓄積される。 FIG. 1A is a diagram for explaining an operation of generating a short-circuit current. In the current source step-down chopper unit or the multiphase inverter unit, a short circuit current Δi is caused to flow through the current source step-down chopper unit by short-circuiting the positive voltage side and the negative voltage side. The energy of the short circuit current Δi is stored in the inductance L.
 図1(b)は出力電圧の昇圧動作を説明するための図である。短絡動作を停止して、電流形降圧チョッパ部と多相インバータ部とを接続状態に切り換えると、インダクタンスLに蓄積されていたエネルギーは電圧に変換され、出力電圧を昇圧する。図1(b)では、出力容量Coの電圧を昇圧する。なお、負荷側が容量を備える場合には、出力電圧は出力容量Coと負荷側に容量との並列回路によって昇圧する。 FIG. 1B is a diagram for explaining the output voltage boosting operation. When the short-circuit operation is stopped and the current source step-down chopper unit and the multiphase inverter unit are switched to the connected state, the energy stored in the inductance L is converted into a voltage, and the output voltage is boosted. In FIG. 1B, the voltage of the output capacitor Co is boosted. When the load side has a capacitor, the output voltage is boosted by a parallel circuit of the output capacitor Co and the load side capacitor.
 本願発明の直流電源装置は、電流形降圧チョッパ部に接続される多相インバータ部のブリッジ回路のスイッチング素子を制御して正電圧側と負電圧側とを短絡する他、電流形降圧チョッパ部の出力端の正電圧側と負電圧側との間にスイッチング素子を接続し、このスイッチング素子を制御して正電圧側と負電圧側とを短絡することができる。 The DC power supply device of the present invention controls the switching element of the bridge circuit of the multiphase inverter connected to the current source step-down chopper unit to short-circuit the positive voltage side and the negative voltage side. A switching element is connected between the positive voltage side and the negative voltage side of the output terminal, and this switching element can be controlled to short-circuit the positive voltage side and the negative voltage side.
 本願の直流電源装置は、各短絡によって電流形降圧チョッパ部に流れる電流をインダクタンスLに蓄積し、その蓄積電流をエネルギー変換して出力電圧を昇圧する。一回の短絡による昇圧は小さいため、短絡による昇圧工程を複数回繰り返すことによって出力電圧を段階的に上昇させ、イグニッション設定電圧まで昇圧させる。また、一回の短絡による昇圧量は、正電圧側と負電圧側を短絡する短絡時間を延長させることで大きくさせることが可能であるが、一回の昇圧量が小さい程、出力電圧を昇圧する際の昇圧幅を細かく調整することができ、昇圧の分解能を高めることができ、出力電圧の制御に優位である。 The direct current power supply device of the present application accumulates the current flowing in the current source step-down chopper by the short circuit in the inductance L, and converts the accumulated current into energy to boost the output voltage. Since the step-up due to a single short circuit is small, the output voltage is increased stepwise by repeating the step-up process due to the short circuit a plurality of times, and is increased to the ignition set voltage. In addition, the amount of boost due to a single short-circuit can be increased by extending the short-circuit time for short-circuiting the positive voltage side and the negative voltage side. However, the smaller the boost amount, the higher the output voltage. In this case, the boosting width can be finely adjusted, the boosting resolution can be increased, and this is advantageous in controlling the output voltage.
 電流形降圧チョッパ部に形成する微小時間の電流路は、電流形降圧チョッパ部の回路あるいはこの回路と接続する多相インバータ部の回路において、正電圧側と負電圧側とを単に短絡することによって形成することができるため、直流電源装置を簡易で小型な構成とすることができる。 The short time current path formed in the current source step-down chopper section is obtained by simply short-circuiting the positive voltage side and the negative voltage side in the circuit of the current source step-down chopper section or the circuit of the multiphase inverter section connected to this circuit. Since it can be formed, the DC power supply device can be made simple and compact.
 [直流電源装置]
 本発明のプラズマ発生装置に直流電力を供給する直流電源装置は、直流源を構成する電流形降圧チョッパ部と、電流形降圧チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、多相インバータ部の出力を交直変換し、得られた直流を負荷に供給する整流部と、電流形降圧チョッパ部を制御するチョッパ制御部、および多相インバータ部を制御するインバータ制御部を有する制御部を備える。
[DC power supply]
A DC power supply apparatus for supplying DC power to a plasma generator according to the present invention includes a current source step-down chopper unit constituting a DC source, and the DC output of the current source step-down chopper unit by using a plurality of switching elements to operate multi-phase AC power. A multi-phase inverter unit that converts the output of the multi-phase inverter unit into an AC / DC converter, a rectifier unit that supplies the obtained direct current to a load, a chopper control unit that controls the current source step-down chopper unit, and a multi-phase inverter unit The control part which has an inverter control part which controls is provided.
 制御部は、動作モードを切り換える切換制御と、電流形降圧チョッパ部の回路に微小時間だけ電流路を形成する間欠短絡制御の二つの制御を備える。 The control unit has two controls: switching control for switching the operation mode and intermittent short-circuit control for forming a current path in the circuit of the current source step-down chopper unit for a very short time.
 切換制御は、プラズマ発生装置においてプラズマ放電を発生させるイグニッション電圧を供給するイグニッションモードと、プラズマ発生装置のプラズマ放電を継続させる定常運転電流を供給する定常運転モードとを切り換える。 The switching control switches between an ignition mode for supplying an ignition voltage for generating a plasma discharge in the plasma generator and a steady operation mode for supplying a steady operation current for continuing the plasma discharge of the plasma generator.
 間欠短絡制御は、電流形降圧チョッパ部および/または多相インバータ部の正電圧側と負電圧側とを間欠的に短絡し、この短絡によって電流形降圧チョッパ回路に微小時間だけ電流路を形成して短絡電流を流す。 In intermittent short-circuit control, the positive and negative voltage sides of the current source step-down chopper and / or multiphase inverter are intermittently shorted, and this short circuit forms a current path in the current source step-down chopper circuit for a very short time. To pass a short-circuit current.
 制御部は、イグニッションモードにおいて、間欠短絡制御を行うことによって電流形降圧チョッパ部に短絡電流を流す。この短絡電流のエネルギーは、電流形降圧チョッパ部が備えるインダクタに一次的に蓄積される。蓄積されたエネルギーは、次の短絡までの期間において、多相インバータ部および整流部を介して直流電源装置の出力電圧を昇圧する。この短絡による電流エネルギーの蓄積と、導通による出力電圧の昇圧を繰り返す昇圧動作によってプラズマ発生装置に印加する出力電圧を高める制御を行う。 The control unit causes a short-circuit current to flow through the current source step-down chopper unit by performing intermittent short-circuit control in the ignition mode. The energy of this short-circuit current is temporarily stored in the inductor provided in the current source step-down chopper unit. The accumulated energy boosts the output voltage of the DC power supply device via the multiphase inverter unit and the rectifier unit during the period until the next short circuit. Control is performed to increase the output voltage applied to the plasma generation device by repeating the boosting operation of accumulating current energy due to this short circuit and boosting the output voltage due to conduction.
 このイグニッションモードにおいて、チョッパ制御部はパルス幅制御を行い、電流形降圧チョッパ部の入力電圧を所定電圧に制御する。 In this ignition mode, the chopper control unit performs pulse width control and controls the input voltage of the current source step-down chopper unit to a predetermined voltage.
 イグニッションモードにおいて、直流電源装置の出力電圧は、複数回の短絡動作による昇圧と、チョッパ制御により定まる電流形降圧チョッパ部の入力電圧とによって定まる。また、イグニッション設定電圧まで昇圧するに要する短絡動作の回数は、電流形降圧チョッパ部の入力電圧、イグニッションモードの時間幅、一回の短絡動作で昇圧する電圧幅等と関連性を有しているため、直流電源装置の構成や使用条件に基づいて定めることができる。 In the ignition mode, the output voltage of the DC power supply device is determined by the step-up by a plurality of short-circuit operations and the input voltage of the current source step-down chopper unit determined by chopper control. The number of short-circuit operations required to boost the voltage to the ignition set voltage is related to the input voltage of the current source step-down chopper section, the time width of the ignition mode, the voltage width boosted by one short-circuit operation, and the like. Therefore, it can be determined based on the configuration and use conditions of the DC power supply device.
 本発明の制御部は、例えば、チョッパ制御部のチョッパ制御のオンデューティー比と、間欠短絡制御の回数とをパラメータとし、オンデューティー比によって電流形降圧チョッパ部の入力電圧を制御し、間欠短絡制御の回数によって昇圧比を制御し、電流形降圧チョッパ部の入力電圧と昇圧比によって出力電圧の電圧上昇を制御することができる。 The control unit of the present invention uses, for example, the on-duty ratio of the chopper control of the chopper control unit and the number of intermittent short-circuit controls as parameters, and controls the input voltage of the current source step-down chopper unit according to the on-duty ratio, and the intermittent short-circuit control The step-up ratio can be controlled by the number of times, and the voltage rise of the output voltage can be controlled by the input voltage of the current source step-down chopper unit and the step-up ratio.
 本発明の間欠短絡制御はインバータ制御部あるいはチョッパ制御部によって行うことができる。インバータ制御部による間欠短絡制御は複数の形態で行うことができる。 The intermittent short-circuit control of the present invention can be performed by an inverter control unit or a chopper control unit. The intermittent short-circuit control by the inverter control unit can be performed in a plurality of forms.
 (インバータ制御部による間欠短絡制御の第1の形態)
 本発明のインバータ制御部による間欠短絡制御の第1の形態は、多相インバータを構成するブリッジ回路のスイッチング素子をパルス幅制御するゲートパルス信号を生成すると共に、ブリッジ回路の正電圧側と負電圧側とを間欠的に短絡する短絡パルス信号とを生成し、生成したゲートパルス信号と短絡パルス信号とを重畳して制御信号を生成し、この制御信号によって多相インバータ部を制御する。
(First form of intermittent short-circuit control by inverter control unit)
The first form of intermittent short-circuit control by the inverter control unit of the present invention generates a gate pulse signal that controls the pulse width of the switching element of the bridge circuit that constitutes the multiphase inverter, and at the same time, the positive voltage side and the negative voltage of the bridge circuit A short circuit pulse signal that intermittently shorts the side is generated, a control signal is generated by superimposing the generated gate pulse signal and the short circuit pulse signal, and the multiphase inverter unit is controlled by this control signal.
 制御信号中のゲートパルス信号は、多相インバータのブリッジ回路の各スイッチング素子をパルス幅制御して直流電流を交流電流に変換する。 The gate pulse signal in the control signal converts the direct current into alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter.
 一方、制御信号中の短絡パルス信号は、ブリッジ回路の正電圧側と負電圧側との端子間を直列接続して対を成すペアのスイッチング素子を同時にオン状態とし、ブリッジ回路の正電圧側と電圧側の端子間を短絡する。 On the other hand, the short-circuit pulse signal in the control signal is connected to the positive voltage side of the bridge circuit by simultaneously turning on the pair of switching elements that are connected in series between the positive voltage side and the negative voltage side of the bridge circuit. Short-circuit between the terminals on the voltage side.
 (インバータ制御部による間欠短絡制御の第2の形態)
 本発明のインバータ制御部による間欠短絡制御の第2の形態は、多相インバータを構成するブリッジ回路のスイッチング素子をパルス幅制御するゲートパルス信号を生成すると共に、各スイッチング素子をオン状態とするゲートパルス信号の時間幅内の何れかの時点において、ブリッジ回路の正電圧側と負電圧側との端子間を直列接続して対を成すペアのスイッチング素子の内、ゲートパルス信号でオン動作するスイッチング素子と対の関係にあるスイッチング素子をオン動作させるパルス信号を短絡パルス信号として生成し、生成したゲートパルス信号と短絡パルス信号とを重畳して制御信号を生成し、この制御信号によって多相インバータ部を制御する。
(Second form of intermittent short-circuit control by inverter control unit)
The second form of intermittent short-circuit control by the inverter control unit of the present invention is a gate that generates a gate pulse signal that controls the pulse width of the switching elements of the bridge circuit that constitutes the multiphase inverter, and that turns on each switching element. Switching that is turned on by a gate pulse signal among a pair of switching elements that are connected in series between the positive voltage side and negative voltage side terminals of the bridge circuit at any point within the time width of the pulse signal A pulse signal that turns on the switching element that is paired with the element is generated as a short-circuit pulse signal, and a control signal is generated by superimposing the generated gate pulse signal and the short-circuit pulse signal. Control part.
 制御信号中のゲートパルス信号は、多相インバータのブリッジ回路の各スイッチング素子をパルス幅制御して直流電流を交流電流に変換する。一方、制御信号中の短絡パルス信号は、ゲートパルス信号によりオン状態となるスイッチング素子と、短絡パルス信号によりオン状態となるスイッチング素子とによってブリッジ回路の正電圧側と負電圧側とを短絡する。 The gate pulse signal in the control signal converts the direct current into alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter. On the other hand, the short-circuit pulse signal in the control signal short-circuits the positive voltage side and the negative voltage side of the bridge circuit by the switching element that is turned on by the gate pulse signal and the switching element that is turned on by the short-circuit pulse signal.
 (インバータ制御部による間欠短絡制御の第3の形態)
 本発明のインバータ制御部による間欠短絡制御の第3の形態は、多相インバータを構成するブリッジ回路のスイッチング素子をパルス幅制御するゲートパルス信号と、ブリッジ回路の全てのスイッチング素子を同時にオン動作させるパルス信号を短絡パルス信号として生成し、生成したゲートパルス信号と短絡パルス信号とを重畳して制御信号を生成し、この制御信号によって多相インバータ部を制御する。
(Third form of intermittent short-circuit control by the inverter controller)
The third form of intermittent short-circuit control by the inverter control unit of the present invention is to simultaneously turn on all the switching elements of the bridge circuit and the gate pulse signal for controlling the pulse width of the switching elements of the bridge circuit constituting the multiphase inverter. A pulse signal is generated as a short circuit pulse signal, a control signal is generated by superimposing the generated gate pulse signal and the short circuit pulse signal, and the multiphase inverter unit is controlled by this control signal.
 制御信号中のゲートパルス信号は、多相インバータのブリッジ回路の各スイッチング素子をパルス幅制御して直流電流を交流電流に変換する。一方、制御信号中の短絡パルス信号はブリッジ回路の全てのスイッチング素子をオン状態とし、ブリッジ回路の正電圧側と負電圧側とを短絡する。 The gate pulse signal in the control signal converts the direct current into alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter. On the other hand, the short-circuit pulse signal in the control signal turns on all the switching elements of the bridge circuit and short-circuits the positive voltage side and the negative voltage side of the bridge circuit.
 (インバータ制御部による間欠短絡制御の第4の形態)
 本発明のインバータ制御部による間欠短絡制御の第4の形態は、多相インバータを構成するブリッジ回路のスイッチング素子をパルス幅制御するゲートパルス信号を生成すると共に、ブリッジ回路が備えるスイッチング素子の内で、ブリッジ回路の正電圧側と負電圧側の端子間を直列接続して対を成すスイッチング素子のペアの内で少なくとも一つのペアのスイッチング素子を同時にオン動作させるパルス信号を短絡パルス信号として生成し、生成したゲートパルス信号と短絡パルス信号とを重畳して制御信号を生成し、この制御信号によって多相インバータ部を制御する。
(Fourth form of intermittent short-circuit control by the inverter controller)
The fourth form of intermittent short-circuit control by the inverter control unit of the present invention generates a gate pulse signal for controlling the pulse width of the switching element of the bridge circuit constituting the multiphase inverter, and includes the switching element included in the bridge circuit. A pulse signal is generated as a short-circuit pulse signal that simultaneously turns on at least one pair of switching elements among a pair of switching elements that form a pair by connecting the positive voltage side and negative voltage side terminals of the bridge circuit in series. The generated gate pulse signal and the short-circuit pulse signal are superimposed to generate a control signal, and the multiphase inverter unit is controlled by this control signal.
 制御信号中のゲートパルス信号は、多相インバータのブリッジ回路の各スイッチング素子をパルス幅制御して直流電流を交流電流に変換する。一方、制御信号中の短絡パルス信号はブリッジ回路の正電圧側と負電圧側の端子間を直列接続して対を成すスイッチング素子のペアの少なくとも一つのペアのスイッチング素子をオン状態とし、ブリッジ回路の正電圧側と負電圧側とを短絡する。 The gate pulse signal in the control signal converts the direct current into alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter. On the other hand, the short-circuit pulse signal in the control signal turns on at least one switching element of the pair of switching elements that form a pair by connecting the positive voltage side and negative voltage side terminals of the bridge circuit in series. The positive voltage side and the negative voltage side are short-circuited.
 上記した間欠短絡制御の第1の形態~第4の形態において、短絡パルス信号によるブリッジ回路の正電圧側と負電圧側の端子間の短絡動作時には、電流形降圧チョッパ部から多相インバータ部への電流の流れは停止する。そのため、電流形降圧チョッパ部における短絡電流は、多相インバータ部による直交変換動作の影響を受けることなく行われる。 In the first to fourth forms of the intermittent short-circuit control described above, from the current source step-down chopper unit to the multi-phase inverter unit during the short-circuit operation between the positive voltage side and negative voltage side terminals of the bridge circuit by the short circuit pulse signal Current flow stops. Therefore, the short circuit current in the current source step-down chopper unit is performed without being affected by the orthogonal transformation operation by the multiphase inverter unit.
 短絡動作によって、電流形降圧チョッパ部には短絡パルス信号の時間幅の微小時間だけ短絡電流路が形成され、短絡電流が流れる。短絡電流のエネルギーは電流形降圧チョッパ回路内のインダクタに蓄積される。短絡動作は、微小時間の短絡パルス信号毎に行われ、複数の短絡パルス信号を間欠的に入力することによって複数回の短絡動作を行う。 短 絡 By short-circuit operation, a short-circuit current path is formed in the current source step-down chopper unit for a very short time width of the short-circuit pulse signal, and short-circuit current flows. The energy of the short circuit current is stored in the inductor in the current source step-down chopper circuit. The short-circuit operation is performed for each short time short-circuit pulse signal, and a plurality of short-circuit operations are performed by intermittently inputting a plurality of short-circuit pulse signals.
 間欠短絡動作において、一短絡動作が終了して次の短絡動作までの間は、電流形降圧チョッパ部は直流電源装置の出力端と導通状態となる。これにより、インダクタの蓄積されたエネルギーは直流電源装置の出力端に送られて、出力電圧を昇圧する。電流から電圧へのエネルギー変換は、直流電源装置の出力端側の出力コンデンサやプラズマ発生装置の電極容量の容量によって行うことができる。 In the intermittent short-circuit operation, the current source step-down chopper unit is in conduction with the output terminal of the DC power supply until one short-circuit operation ends and the next short-circuit operation. Thereby, the energy stored in the inductor is sent to the output terminal of the DC power supply device to boost the output voltage. The energy conversion from current to voltage can be performed by the output capacitor on the output end side of the DC power supply device or the capacitance of the electrode capacity of the plasma generator.
 電流形降圧チョッパ部から出力端側への電流の流れを、直流電源装置を構成する多相インバータ部、変圧器、および整流器の各部を通る電流路によって行う他、電流形降圧チョッパ部と出力端側とを直接接続する電流路を設け、この電流路を用いて行うことができる。この直接接続する電流路を用いて電流を出力端側へ流す構成では、イグニッションモードに導通させ、通常運転モードでは非導通状態とする切換手段を設ける。 The current flow from the current source step-down chopper unit to the output end side is performed by the current path that passes through each part of the multiphase inverter unit, transformer, and rectifier constituting the DC power supply device. It is possible to provide a current path that directly connects the two sides and use this current path. In the configuration in which the current is made to flow to the output end side using the directly connected current path, switching means for conducting in the ignition mode and in the non-conducting state in the normal operation mode is provided.
 短絡動作は各短絡パルス信号に基づいて行われ、短絡電流は短絡動作ごとにリセットされる。出力電圧は前回の短絡動作で昇圧した電圧に加算されて順に昇圧される。 短 絡 Short-circuit operation is performed based on each short-circuit pulse signal, and the short-circuit current is reset for each short-circuit operation. The output voltage is added to the voltage boosted in the previous short-circuit operation and boosted sequentially.
 (電流形降圧チョッパ制御部による間欠短絡制御)
 本発明の間欠短絡制御は、上記したようにインバータ制御部が行う態様の他に、電流形降圧チョッパ制御部が行う態様とすることができる。
(Intermittent short circuit control by current source step-down chopper controller)
The intermittent short-circuit control of the present invention can be performed by the current source step-down chopper control unit in addition to the mode performed by the inverter control unit as described above.
 チョッパ制御部による間欠短絡制御の態様では、電流形降圧チョッパ部と多相インバータ部との接続点間に、正電圧側と負電圧側と間を短絡する短絡用スイッチング素子を備える。 In the mode of intermittent short-circuit control by the chopper control unit, a short-circuit switching element for short-circuiting between the positive voltage side and the negative voltage side is provided between the connection points of the current source step-down chopper unit and the multiphase inverter unit.
 本発明の電流形降圧チョッパ制御部による間欠短絡制御は、短絡用スイッチング素子を間欠的に短絡する短絡パルス信号を生成する。短絡パルス信号は、短絡用スイッチング素子をオン状態とすることによって電流形降圧チョッパ部の出力端の正電圧側と負電圧側とを短絡する。 The intermittent short-circuit control by the current source step-down chopper controller of the present invention generates a short-circuit pulse signal that intermittently shorts the short-circuit switching element. The short-circuit pulse signal short-circuits the positive voltage side and the negative voltage side of the output terminal of the current source step-down chopper by turning on the short-circuit switching element.
 一方、インバータ制御部は、多相インバータを構成するブリッジ回路のスイッチング素子をパルス幅制御するゲートパルス信号を生成する。ゲートパルス信号は、多相インバータのブリッジ回路の各スイッチング素子をパルス幅制御して直流電流を交流電流に変換する。 On the other hand, the inverter control unit generates a gate pulse signal that controls the pulse width of the switching elements of the bridge circuit constituting the multiphase inverter. The gate pulse signal converts the direct current into an alternating current by controlling the pulse width of each switching element of the bridge circuit of the multiphase inverter.
 電流形降圧チョッパ部と多相インバータ部との間で行う間欠短絡の制御において、正電圧側と負電圧側と間の短絡動作時には、電流形降圧チョッパ部側で短絡するため、電流形降圧チョッパ部から多相インバータ部への電流の流れは破断される。そのため、電流形降圧チョッパ部の短絡電流の形成は、多相インバータ部の直交変換動作の影響を受けることなく行われる。 In the control of intermittent short circuit between the current source step-down chopper unit and the multi-phase inverter unit, the current source step-down chopper unit is short-circuited at the current source step-down chopper unit side during short circuit operation between the positive voltage side and the negative voltage side. The current flow from the section to the multiphase inverter section is broken. Therefore, the formation of the short-circuit current of the current source step-down chopper unit is performed without being affected by the orthogonal transformation operation of the multiphase inverter unit.
 短絡動作によって、電流形降圧チョッパ部には短絡パルス信号の時間幅の微小時間だけ電流路が形成され短絡電流が流れる。短絡電流のエネルギーは電流形降圧チョッパ部内のインダクタに蓄積される。蓄積された短絡電流のエネルギーは、次の短絡動作までの間に直流電源装置の出力電圧を昇圧する。 By short-circuit operation, a current path is formed in the current source step-down chopper unit for a very short time width of the short-circuit pulse signal, and a short-circuit current flows. The energy of the short-circuit current is stored in the inductor in the current source step-down chopper. The stored short-circuit current energy boosts the output voltage of the DC power supply until the next short-circuit operation.
 電流形降圧チョッパ制御部による間欠短絡制御の場合においても、電流形降圧チョッパ部から出力端側への電流の流れを、直流電源装置を構成する多相インバータ部、変圧器、および整流器の各部を通る電流路によって行う他、電流形降圧チョッパ部と出力端側とを直接接続する電流路によって行うことができる。 Even in the case of intermittent short-circuit control by the current source step-down chopper control unit, the current flow from the current source step-down chopper unit to the output end side is changed to each part of the multiphase inverter unit, transformer, and rectifier constituting the DC power supply device. In addition to the current path, the current source step-down chopper unit and the output end side can be directly connected.
 短絡動作ごとに短絡電流はリセットされ、出力電圧は前回の短絡動作で昇圧した電圧に加算されて順に昇圧される。 The short-circuit current is reset for each short-circuit operation, and the output voltage is added to the voltage boosted in the previous short-circuit operation and boosted sequentially.
 本発明の制御部は、イグニッションモードにおいて、短絡電流による昇圧を複数回繰り返して出力電圧をイグニッション設定電圧まで電圧上昇させる昇圧制御と、チョッパ制御部によって前記出力電圧をイグニッション設定電圧に維持する定電圧制御とを切り換えて行う。この昇圧制御から定電圧制御への切り換えは、出力電圧がイグニッション設定電圧に到達した時点で行う。 The control unit of the present invention includes a boost control for increasing the output voltage to the ignition set voltage by repeating boosting by a short circuit current a plurality of times in the ignition mode, and a constant voltage for maintaining the output voltage at the ignition set voltage by the chopper control unit. Switch between control and control. The switching from the boost control to the constant voltage control is performed when the output voltage reaches the ignition set voltage.
 出力電圧は、昇圧制御によって所定のイグニッション設定電圧まで上昇し、イグニッション設定電圧に達した後は定電圧制御で維持する。これによって、プラズマ発生装置には、イグニッションモードの段階で徐々に昇圧される電圧が印加され、イグニッション設定電圧に達した後は、イグニッション設定電圧をイグニッションモードが終了するまで印加する。 The output voltage rises to a predetermined ignition set voltage by boost control, and is maintained by constant voltage control after reaching the ignition set voltage. As a result, a voltage that is gradually increased in the ignition mode is applied to the plasma generator, and after reaching the ignition set voltage, the ignition set voltage is applied until the ignition mode ends.
 イグニッションモードは、プラズマ発生装置においてプラズマ放電が発生したことに基づいて定常運転モードに切り換えることができる。定常運転モードでは、定電圧制御、定電流制御、定電力制御の何れかの制御を選択可能である。 The ignition mode can be switched to the steady operation mode based on the occurrence of plasma discharge in the plasma generator. In the steady operation mode, any one of constant voltage control, constant current control, and constant power control can be selected.
 定電圧制御は、定常運転の設定値をイグニッションモードで設定されるイグニッション設定電圧から定常運転設定電圧に切り換えて、出力電圧を定常運転設定電圧に維持する制御態様である。定電流制御は、定常運転の設定値をイグニッションモードで設定されるイグニッション設定電圧から定常運転設定電流に切り換えて、出力電流を定常運転設定電流に維持する制御態様である。また、定電力制御は、定常運転の設定値をイグニッションモードで設定されるイグニッション設定電圧から定常運転設定電力に切り換えて、出力電力を定常運転設定電力に維持する制御態様である。 The constant voltage control is a control mode in which the set value of the steady operation is switched from the ignition set voltage set in the ignition mode to the steady operation set voltage, and the output voltage is maintained at the steady operation set voltage. The constant current control is a control mode in which the set value for steady operation is switched from the ignition set voltage set in the ignition mode to the steady operation set current, and the output current is maintained at the steady operation set current. The constant power control is a control mode in which the set value for the steady operation is switched from the ignition set voltage set in the ignition mode to the steady operation set power, and the output power is maintained at the steady operation set power.
 イグニッションモードの定電圧制御において、出力電流がイグニッション設定電流に到達し、かつ、出力電圧がプラズマ発生電圧に下降したとき、イグニションモードから定常運転モードに切り換え、定常運転モードにおいて、定電圧制御、定電流制御、定電力制御から選択した何れかの制御を行う。 In constant voltage control in the ignition mode, when the output current reaches the ignition set current and the output voltage drops to the plasma generation voltage, the ignition mode is switched to the steady operation mode. Any control selected from current control and constant power control is performed.
 イグニッションモードから定常運転モードへの切り換えは、出力電流および出力電圧に基づいて行う。通常、プラズマ放電が発生することによって、出力電流が増加すると共に、出力電圧はイグニション時の電圧から降下する。直流電源装置からプラズマ発生装置において、この出力電圧のレベルと出力電流のレベルを検出することによって、プラズマ放電の発生を検出し、イグニッションモードから定常運転モードへの切り換えを行うことができる。 切 り 換 え Switching from the ignition mode to the steady operation mode is based on the output current and output voltage. Normally, the occurrence of plasma discharge increases the output current, and the output voltage drops from the voltage at the time of ignition. By detecting the output voltage level and the output current level in the plasma generator from the DC power supply device, it is possible to detect the occurrence of plasma discharge and switch from the ignition mode to the steady operation mode.
 [直流電源装置の制御方法]
 直流電源装置は、直流源を構成する電流形降圧チョッパ部と、電流形降圧チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、多相インバータ部の出力を交直変換し、得られた直流を負荷に供給する整流部と、電流形降圧チョッパ部を制御するチョッパ制御部、および多相インバータ部を制御するインバータ制御部とを有する制御部を備え、直流電力をプラズマ発生装置に供給する。
[DC power supply control method]
The DC power supply device includes a current source step-down chopper unit that constitutes a DC source, a multi-phase inverter unit that converts the DC output of the current source step-down chopper unit into multi-phase AC power by operation of a plurality of switching elements, and a multi-phase inverter. A control unit having a rectifying unit that converts the output of the unit into an AC / DC converter and supplies the obtained direct current to the load, a chopper control unit that controls the current source step-down chopper unit, and an inverter control unit that controls the multiphase inverter unit And supply DC power to the plasma generator.
 本発明の直流電源装置の制御方法は、間欠短絡制御および切換制御の制御態様を含む。切換制御は、プラズマ発生装置においてプラズマ放電を発生させるイグニッション電圧を供給するイグニッションモードと、前記プラズマ発生装置のプラズマ放電を継続させる定常運転電流を供給する定常運転モードとを切り換える制御である。 The control method of the DC power supply device of the present invention includes control modes of intermittent short-circuit control and switching control. The switching control is a control for switching between an ignition mode for supplying an ignition voltage for generating a plasma discharge in the plasma generator and a steady operation mode for supplying a steady operation current for continuing the plasma discharge of the plasma generator.
 間欠短絡制御は、イグニッションモードにおける制御であり、電流形降圧チョッパ部または多相インバータ部の正電圧側と負電圧側とを間欠的に短絡し、電流形降圧チョッパ部に流れる短絡電流を発生させる。イグニッションモードでは、発生した短絡電流を用いて直流電源装置の出力電圧を昇圧制御してイグニッション電圧を発生させる。このイグニッション電圧をプラズマ発生装置に印加することによってプラズマ放電を発生させる。 Intermittent short-circuit control is control in the ignition mode, and intermittently shorts the positive voltage side and negative voltage side of the current source step-down chopper unit or multiphase inverter unit to generate a short-circuit current flowing in the current source step-down chopper unit. . In the ignition mode, the output voltage of the DC power supply device is boosted using the generated short-circuit current to generate an ignition voltage. A plasma discharge is generated by applying this ignition voltage to the plasma generator.
 間欠短絡制御は、インバータ制御部において多相インバータ部を構成するブリッジ回路のスイッチング素子を制御することによってブリッジ回路の正電圧側と負電圧側とを短絡し、この短絡によって多相インバータ部と接続している電流形降圧チョッパ部に短絡電流を流す。 Intermittent short-circuit control is achieved by short-circuiting the positive voltage side and negative voltage side of the bridge circuit by controlling the switching elements of the bridge circuit constituting the multi-phase inverter unit in the inverter control unit, and connecting to the multi-phase inverter unit by this short circuit. A short-circuit current is passed through the current-type step-down chopper.
 インバータ制御部は、間欠短絡制御において、多相インバータを構成するブリッジ回路のスイッチング素子をパルス幅制御するゲートパルス信号と、ブリッジ回路の正電圧側と負電圧側とを間欠的に短絡する短絡パルス信号とを生成し、ゲートパルス信号と短絡パルス信号とを重畳して制御信号を生成する。制御信号により多相インバータ部を制御し、短絡パルス信号によってブリッジ回路の正電圧側と負電圧側との端子間を直列接続して対を成すペアのスイッチング素子を同時にオン状態とし、ブリッジ回路の正電圧側と負電圧側の端子間を短絡する。 The inverter control unit is configured to intermittently short-circuit the gate pulse signal for controlling the pulse width of the switching element of the bridge circuit constituting the multiphase inverter and the short-circuit pulse for intermittently short-circuiting the positive voltage side and the negative voltage side of the bridge circuit in the intermittent short-circuit control. The control signal is generated by superimposing the gate pulse signal and the short-circuit pulse signal. The control circuit controls the multi-phase inverter, and the short-circuit pulse signal connects the positive voltage side and negative voltage side terminals of the bridge circuit in series to simultaneously turn on the pair of switching elements, and the bridge circuit Short-circuit between the positive voltage side and negative voltage side terminals.
 制御部は、イグニッションモードにおいて、短絡電流による昇圧を複数回繰り返して出力電圧をイグニッション設定電圧まで電圧上昇させる昇圧制御と、チョッパ制御部によって前記出力電圧をイグニッション設定電圧に維持する定電圧制御とを切り換えて行う。昇圧制御から定電圧制御への切り換えは、昇圧制御によって出力電圧を上昇させて出力電圧がイグニッション設定電圧に到達した後に行う。 In the ignition mode, the control unit performs boost control for increasing the output voltage to the ignition set voltage by repeating boosting by a short circuit current a plurality of times, and constant voltage control for maintaining the output voltage at the ignition set voltage by the chopper control unit. Change over. Switching from the boost control to the constant voltage control is performed after the output voltage is increased by the boost control and the output voltage reaches the ignition set voltage.
 出力電圧Voは、電流形降圧チョッパ部における入力電圧と、昇圧制御による昇圧比とによって制御することができる。電流形降圧チョッパ部における入力電圧は、チョッパ制御部のチョッパ制御のオンデューティー比をパラメータとして制御し、昇圧比は、間欠短絡制御の回数をパラメータとして制御することができる。 The output voltage V o can be controlled by the input voltage in the current source step-down chopper unit and the step-up ratio by step-up control. The input voltage in the current source step-down chopper unit can be controlled using the on-duty ratio of the chopper control of the chopper control unit as a parameter, and the step-up ratio can be controlled using the number of intermittent short-circuit controls as a parameter.
 チョッパ制御部は、チョッパ制御において、オンデューティー比によって電流形降圧チョッパ部の入力電圧を制御し、間欠短絡制御の回数によって昇圧比を制御し、これら入力電圧と昇圧比によって出力電圧の電圧上昇を制御する。 In the chopper control, the chopper controller controls the input voltage of the current source step-down chopper by the on-duty ratio, controls the boost ratio by the number of intermittent short-circuit controls, and increases the output voltage by these input voltage and boost ratio. Control.
 チョッパ制御部は、イグニッションモードにおいて定電圧制御を行い、定常運転モードでは、定電圧制御、定電流制御、および定電力制御から選択した何れかの制御を行う。定電圧制御、定電流制御、および定電力制御から選択された制御において、各制御で設定された設定値である電圧設定値、電流設定値、あるいは電力設定値に維持する制御を行う。 The chopper controller performs constant voltage control in the ignition mode, and performs any control selected from constant voltage control, constant current control, and constant power control in the steady operation mode. In control selected from constant voltage control, constant current control, and constant power control, control is performed to maintain the voltage set value, current set value, or power set value, which are set values set in each control.
 イグニッションモードで行う定電圧制御は、出力電圧Voがイグニッション設定電圧となるように制御を行うものであり、電流形降圧チョッパ部の入力電圧が所定電圧となるようにチョッパ制御を行う。また、定常運転モードで行う制御は、プラズマ発生装置においてプラズマ放電が発生した後、このプラズマ放電を維持するように、出力が定常運転モードで選択された制御の設定値(電圧設定値、電流設定値、あるいは電力設定値)となるように制御を行う。 Constant voltage control performed by the ignition mode, the output voltage V o is performs control so that the ignition set voltage, the input voltage of the current type step-down chopper unit performs a chopper control so that a predetermined voltage. In addition, the control performed in the steady operation mode is a control set value (voltage set value, current setting) in which the output is selected in the steady operation mode so that the plasma discharge is maintained after the plasma discharge is generated in the plasma generator. Value or power setting value).
 イグニッション設定電圧から定常運転モードで設定される設定値への切り換えは、プラズマ発生装置においてプラズマ放電の発生に基づいて行う。プラズマ発生装置においてプラズマ放電が発生したか否かは、出力電圧および出力電流を監視することで行うことができる。 The switching from the ignition set voltage to the set value set in the steady operation mode is performed based on the occurrence of plasma discharge in the plasma generator. Whether or not plasma discharge has occurred in the plasma generator can be determined by monitoring the output voltage and output current.
 プラズマ発生装置においてプラズマ放電が発生すると、直流電源装置からプラズマ発生装置に供給される出力電流は、イグニッションモードから定常運転モードに切り替わる時点で、イグニッション電流から定常運転電流に切り替わる。 When plasma discharge occurs in the plasma generator, the output current supplied from the DC power supply to the plasma generator is switched from the ignition current to the steady operation current at the time of switching from the ignition mode to the steady operation mode.
 イグニッション電流は、間欠短絡動作を行うごとに段階的に増加するため、イグニッションモードから定常運転モードに切り替わる最後の段階ではイグニッション電流は最も大きなイグニッション電流となる。ここで、このイグニッションモードから定常運転モードに切り替わるときのイグニッション電流を予め求めてイグニッション設定電流として定めておく。また、プラズマ放電が発生すると出力電圧はイグニッション設定電圧より低い値となるため、プラズマ放電発生時の低い電圧をプラズマ発生電圧として定めておく。 Since the ignition current increases step by step every time an intermittent short circuit operation is performed, the ignition current becomes the largest ignition current at the final stage of switching from the ignition mode to the steady operation mode. Here, the ignition current when the ignition mode is switched to the steady operation mode is obtained in advance and set as the ignition setting current. Further, when plasma discharge occurs, the output voltage becomes lower than the ignition set voltage, so a low voltage when plasma discharge occurs is determined as the plasma generation voltage.
 プラズマ放電の発生検出において、出力電流をイグニッション設定電流と比較し出力電圧をプラズマ発生電圧と比較し、出力電流がイグニッション設定電流に達し、かつ、出力電圧がプラズマ発生電圧に降下した時点をプラズマ放電が発生した時点として判断する。 When detecting the occurrence of plasma discharge, the output current is compared with the ignition set current, the output voltage is compared with the plasma generation voltage, and when the output current reaches the ignition set current and the output voltage drops to the plasma generation voltage, the plasma discharge Judgment is made when this occurs.
 プラズマ放電の発生を検出した場合には、制御の設定値を、イグニッションモードにおける定電圧制御のイグニッション設定電圧から、定常運転モードにおいて定電圧制御、定電流制御、定電力制御から選択した何れかの制御の設定値に切り換え、選択した制御を行う。 When the occurrence of plasma discharge is detected, the control set value is selected from the ignition set voltage of the constant voltage control in the ignition mode, and from the constant voltage control, constant current control, and constant power control in the steady operation mode. Switch to the control setting value and perform the selected control.
 定常運転モードにおいて定電圧制御、定電流制御、定電力制御の何れかの制御によって、プラズマ発生装置には一定電圧、一定電流、あるいは一定電力が印加され、安定したプラズマ放電が維持される。 In the steady operation mode, a constant voltage, a constant current, or a constant power is applied to the plasma generator by constant voltage control, constant current control, or constant power control, and a stable plasma discharge is maintained.
 以上説明したように、本発明によれば、プラズマ発生装置に直流電力を供給する直流電源装置において、プラズマ放電を発生させる高圧電圧を形成する装置構成を簡易で小型化することができる。 As described above, according to the present invention, in the DC power supply apparatus that supplies DC power to the plasma generator, the apparatus configuration for forming a high voltage that generates plasma discharge can be simplified and miniaturized.
 また、大型で複雑な構成の直流電源装置を用いることなく、プラズマ放電の発生に要する電圧印加時間を短縮することができる。 Also, the voltage application time required for generating plasma discharge can be shortened without using a large-scale and complicated DC power supply device.
本願発明の、短絡電流の発生動作および短絡電流による出力電圧の昇圧動作を説明するための図である。It is a figure for demonstrating the generation | occurrence | production operation | movement of a short circuit current, and the step-up operation of the output voltage by a short circuit current of this invention. 本発明の直流電源装置の全体の構成を説明するための図である。It is a figure for demonstrating the whole structure of the DC power supply device of this invention. 本発明の直流電源装置が備えるチョッパ制御部の構成例を説明するための図である。It is a figure for demonstrating the structural example of the chopper control part with which the DC power supply device of this invention is provided. 本発明の直流電源装置が備えるインバータ制御部の構成例を説明するための図である。It is a figure for demonstrating the structural example of the inverter control part with which the DC power supply device of this invention is provided. 本願発明の直流電源装置のイグニッションモードおよび定常運転モードの動作例を説明するためのフローチャートである。It is a flowchart for demonstrating the operation example of the ignition mode and steady operation mode of the direct-current power supply device of this invention. 本願発明の直流電源装置のイグニッションモードおよび定常運転モードの動作例を説明するためのタイミングチャートである。It is a timing chart for demonstrating the operation example of the ignition mode and steady operation mode of the direct-current power supply device of this invention. 本願発明の直流電源装置のイグニッション時の回路状態を説明するための図である。It is a figure for demonstrating the circuit state at the time of the ignition of the direct-current power supply device of this invention. 本願発明の直流電源装置のイグニッションモード,定常運転モードの動作状態図である。It is an operation state diagram of the ignition mode and the steady operation mode of the DC power supply device of the present invention. 直流電源装置の他の構成例1を説明するためのタイミングチャートである。It is a timing chart for demonstrating the other structural example 1 of a DC power supply device. 直流電源装置の他の構成例2を説明するためのタイミングチャートである。It is a timing chart for demonstrating the other structural example 2 of a DC power supply device. 直流電源装置の他の構成例3を説明するための構成図である。It is a block diagram for demonstrating the other structural example 3 of a DC power supply device. プラズマ放電発生のためのイグニッション電圧を発生する従来の回路例を説明するための図である。It is a figure for demonstrating the example of the conventional circuit which generates the ignition voltage for plasma discharge generation | occurrence | production.
 以下、本発明の実施の形態について、図を参照しながら詳細に説明する。以下では、本発明の直流電源装置および制御方法について、図2~図4を用いて直流電源装置の構成例を説明し、図5~図8を用いて直流電源装置の制御例について説明する。また、図9~図11を用いて本願発明の直流電源装置の他の構成例について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, with respect to the DC power supply device and control method of the present invention, a configuration example of the DC power supply device will be described with reference to FIGS. 2 to 4, and a control example of the DC power supply device will be described with reference to FIGS. Further, another configuration example of the DC power supply device of the present invention will be described with reference to FIGS.
 [直流電源装置の構成例]
 はじめに、本発明の直流電源装置の構成例について図2~図4を用いて説明する。図2は本発明の直流電源装置の全体の構成を説明するための図であり、図3は本発明の直流電源装置が備えるチョッパ制御部の構成例を説明するための図であり、図4は本発明の直流電源装置が備えるインバータ制御部の構成例を説明するための図である。
[Configuration example of DC power supply]
First, a configuration example of the DC power supply device of the present invention will be described with reference to FIGS. 2 is a diagram for explaining the overall configuration of the DC power supply device of the present invention, and FIG. 3 is a diagram for explaining a configuration example of a chopper control unit provided in the DC power supply device of the present invention. These are the figures for demonstrating the structural example of the inverter control part with which the DC power supply device of this invention is provided.
 図2に示す本発明の直流電源装置1は、交流電源2の交流電力を整流する整流部10、過渡的に生じる高電圧を抑制する保護回路を構成するスナバー部20、整流部10から入力した直流電力の電圧を所定電圧に変換して直流電流を出力する電流形降圧チョッパ部30、電流形降圧チョッパ部30の直流出力を多相の交流出力に変換する多相インバータ部40、多相インバータ部40の交流出力を所定電圧に変換する多相変圧部50、多相変圧部50の交流を直流に変換する多相整流部60を備える。 The DC power supply device 1 of the present invention shown in FIG. 2 is input from the rectifying unit 10 that rectifies the AC power of the AC power source 2, the snubber unit 20 that forms a protection circuit that suppresses transiently high voltage, and the rectifying unit 10. A current source step-down chopper unit 30 that converts a DC power voltage into a predetermined voltage and outputs a DC current, a multi-phase inverter unit 40 that converts a DC output of the current source step-down chopper unit 30 into a multi-phase AC output, and a multi-phase inverter A multiphase transformer 50 that converts the AC output of the unit 40 into a predetermined voltage, and a multiphase rectifier 60 that converts the AC of the multiphase transformer 50 into DC.
 電流形降圧チョッパ部30は、スイッチング素子QとダイオードDと直流リアクトルLF1とを備える。スイッチング素子Qは、整流部10で整流した直流電圧をチョッパ制御することによって降圧する。電流形降圧チョッパ部30による電圧制御は、スイッチング素子Qのオン・オフの比率であるオンデューティー比を制御することによって行う。 Current-step-down chopper 30, and a DC reactor L F1 and switching element Q 1, a diode D 1. The switching element Q 1 is, steps down by chopper controlling the DC voltage rectified by the rectifier unit 10. Voltage control by the current-step-down chopper unit 30 is performed by controlling the ON duty ratio is the ratio of the on-off switching element Q 1.
 直流リアクトルLF1は、チョッパ制御した直流を電流平滑する。本発明の直流電源装置は、短絡動作によって電流形降圧チョッパ部30に短絡電流を流し、この短絡電流を直流リアクトルLF1に一時的に蓄積する。直流リアクトルLF1の蓄積エネルギーは、次の短絡動作までの間に出力電圧を昇圧する。 The direct current reactor L F1 smoothes the current of the chopper controlled direct current. The DC power supply device of the present invention causes a short-circuit current to flow through the current source step-down chopper unit 30 by a short-circuit operation, and temporarily stores this short-circuit current in the DC reactor L F1 . The stored energy of DC reactor L F1 boosts the output voltage until the next short-circuit operation.
 多相インバータ部40は、電流形降圧チョッパ部30で電流平滑された直流を入力し、多相インバータ部40が備えるブリッジ回路のスイッチング素子を制御することによって直交変換する。 The multi-phase inverter unit 40 receives the direct current smoothed by the current source step-down chopper unit 30 and performs orthogonal transformation by controlling the switching elements of the bridge circuit included in the multi-phase inverter unit 40.
 多相インバータ部40は、相数に応じたスイッチング素子をブリッジ接続して構成される多相インバータ回路を備える。例えば3相の場合には、3相インバータ回路は6個のスイッチング素子によって構成されるブリッジ回路を備える。スイッチング素子は、例えば、IGBTやMOSFET等の半導体スイッチング素子を用いることができる。多相インバータ回路の各スイッチング素子は、インバータ制御部80の制御信号に基づいてスイッチング動作を行い、直流電力を交流電力に変換して出力する。 The multi-phase inverter unit 40 includes a multi-phase inverter circuit configured by bridge-connecting switching elements corresponding to the number of phases. For example, in the case of three phases, the three-phase inverter circuit includes a bridge circuit composed of six switching elements. As the switching element, for example, a semiconductor switching element such as an IGBT or a MOSFET can be used. Each switching element of the multiphase inverter circuit performs a switching operation based on the control signal of the inverter control unit 80, converts DC power into AC power, and outputs the AC power.
 多相インバータ部40の交流出力は、スイッチング素子の切り換え周波数を高めることで高周波出力を得ることができる。プラズマ発生装置を負荷部とする場合には、電流形インバータ装置は、例えば200kHzの高周波出力を負荷部に供給する。高周波を出力するために、多相インバータ回路はスイッチング素子を高周波で切り換え動作を行う。このように、高周波の駆動周波数でスイッチング素子を切り換えると、交流出力には高周波リップル成分が含まれる。 The AC output of the multi-phase inverter unit 40 can obtain a high frequency output by increasing the switching frequency of the switching element. When the plasma generator is used as a load unit, the current source inverter device supplies a high frequency output of 200 kHz, for example, to the load unit. In order to output a high frequency, the multiphase inverter circuit performs switching operation of the switching element at a high frequency. As described above, when the switching element is switched at a high frequency, the AC output includes a high frequency ripple component.
 多相整流部60は、多相インバータ部40の交流出力を整流し、直流出力を負荷に供給する。従来知られる多相整流部は出力部に直流フィルタ回路を備える構成とすることができる。この直流フィルタ回路によって、多相インバータ部の交流出力に含まれる高周波リップル成分を除去している。直流フィルタ回路は、出力端に並列接続する出力コンデンサCFOと直列接続した出力リアクトルLFO(図示していない)によって構成することができる。 The multiphase rectification unit 60 rectifies the AC output of the multiphase inverter unit 40 and supplies the DC output to the load. A conventionally known multiphase rectification unit may be configured to include a DC filter circuit in the output unit. This DC filter circuit removes the high-frequency ripple component contained in the AC output of the multiphase inverter unit. DC filter circuit can be configured by the output capacitor C FO connected in series with the output reactor L FO in parallel connected to the output terminal (not shown).
 多相整流部60の直流出力は配線90が備える配線インダクタンスLを介して出力され、直流電源装置1とプラズマ発生装置4との間を接続した出力ケーブル3によってプラズマ発生装置4に供給される。 The DC output of the multiphase rectification unit 60 is output via the wiring inductance L 0 provided in the wiring 90, and is supplied to the plasma generator 4 by the output cable 3 connecting the DC power supply device 1 and the plasma generator 4. .
 本発明の直流電源装置1は、高周波リップル成分を除去する構成として、多相整流部60において、直流フィルタ回路に代えて寄生インピーダンスを利用することができる。例えば、インダクタンス分として多相整流部60と出力端子との間の配線90のインダクタンスLを用い、容量分として直流電源装置1と負荷との間に接続される出力ケーブル3の容量分、あるいは、プラズマ負荷の場合にはプラズマ発生装置4の出力容量Coを用いることができる。上記した多相インバータ部の寄生インピーダンス、および出力ケーブルや電極容量の容量分は実質的に直流フィルタ回路を構成し、多相インバータ部の交流出力に含まれる高周波リップル成分を低減する。 The DC power supply device 1 of the present invention can use parasitic impedance instead of the DC filter circuit in the multiphase rectifier 60 as a configuration for removing the high-frequency ripple component. For example, the inductance L 0 of the wiring 90 between the polyphase rectifier 60 and the output terminal is used as the inductance, and the capacity of the output cable 3 connected between the DC power supply device 1 and the load is used as the capacity, or In the case of a plasma load, the output capacity Co of the plasma generator 4 can be used. The above-described parasitic impedance of the multiphase inverter section and the capacity of the output cable and electrode capacitance substantially constitute a DC filter circuit, and reduce high frequency ripple components included in the AC output of the multiphase inverter section.
 直列フィルタ回路に代えて、配線インピーダンスや出力ケーブルやプラズマ発生装置の電極容量の寄生インピーダンスを利用する構成では、出力コンデンサCFOに相当する容量分がアークエネルギーPを供給するに十分な大きさを有していれば、高周波リップル成分を除去するとともに、アークエネルギーPを供給することができる。 Instead of the series filter circuits, the configuration using the parasitic impedance of the electrode capacitance of the wiring impedance and output cables and a plasma generating apparatus, is large enough to supply the capacitive component is arc energy P c corresponding to the output capacitor C FO , The high-frequency ripple component can be removed and the arc energy Pc can be supplied.
 また、高周波リップル成分は、多相インバータ回路の駆動周波数を下げると増加する特性がある。そのため、多相インバータ回路の駆動周波数を高めることによって、出力コンデンサCFOおよび出力リアクトル(インダクタンス)LFOの必要性を低下させることができる。また、多相インバータ回路の駆動周波数を高めることによって、直流電源装置1が内部に保有するエネルギーを抑制することができる。 Moreover, the high frequency ripple component has a characteristic that increases when the driving frequency of the multiphase inverter circuit is lowered. Therefore, by increasing the driving frequency of the polyphase inverter circuit, the need for output capacitors C FO and output reactor (inductance) L FO can be reduced. Moreover, the energy which DC power supply device 1 holds inside can be suppressed by raising the drive frequency of a multiphase inverter circuit.
 さらに、本発明の直流電源装置1は、電流形降圧チョッパ部30を制御するチョッパ制御部70、および多相インバータ部40を制御するインバータ制御部80を備える。 Furthermore, the DC power supply device 1 of the present invention includes a chopper control unit 70 that controls the current source step-down chopper unit 30 and an inverter control unit 80 that controls the multiphase inverter unit 40.
 チョッパ制御部70は、電流形降圧チョッパ部30のスイッチング素子Qをチョッパ制御する回路であり、スイッチング素子Qの出力電流であるチョッパ電流、および直流電源装置1の出力電圧を検出し、このチョッパ電流および出力電圧の検出値に基づいて、電流形降圧チョッパ部30の出力が予め設定した所定の電流値および所定の電圧値となるように制御する。 Chopper control unit 70 is a circuit for chopper control of the switching element to Q 1 current-step-down chopper 30, the chopper current is an output current of the switching element Q 1, and detects an output voltage of the DC power supply device 1, the Based on the detected value of the chopper current and the output voltage, control is performed so that the output of the current source step-down chopper unit 30 becomes a predetermined current value and a predetermined voltage value set in advance.
 インバータ制御部80は、多相インバータ部40のブリッジ回路を構成する各アームに接続されたスイッチング素子のスイッチング動作を制御する。多相インバータ部40はスイッチング素子の制御によって、入力した直流を交流に直交変換する。 The inverter control unit 80 controls the switching operation of the switching element connected to each arm constituting the bridge circuit of the multiphase inverter unit 40. The multiphase inverter unit 40 orthogonally converts the input direct current into alternating current by controlling the switching element.
 多相インバータ部40は、例えば3相インバータの場合には、例えば、図7に示すように6本のアームを有するブリッジ回路によって構成される。各アームにはそれぞれスイッチング素子Q、Q、Q、Q、Q、Qの6個のスイッチング素子が設けられる。スイッチング素子Qとスイッチング素子Qとを直列接続し、スイッチング素子Qとスイッチング素子Qとを直列接続し、スイッチング素子Qとスイッチング素子Qとを直列接続する。 In the case of a three-phase inverter, for example, the multiphase inverter unit 40 is configured by a bridge circuit having six arms as shown in FIG. Each arm is provided with six switching elements Q R , Q S , Q T , Q X , Q Y , and Q Z. A switching element Q R and the switching element Q x connected in series, a switching element Q S and the switching element Q Y are connected in series, connected in series and a switching element Q T and the switching element Q z.
 スイッチング素子Qとスイッチング素子Qの接続点Rは3相変圧器51のR相分として接続され、スイッチング素子Qとスイッチング素子Qの接続点Sは3相変圧器51のS相分として接続され、スイッチング素子Qとスイッチング素子Qの接続点Tは3相変圧器51のT相分として接続される。 The connection point R between the switching element Q R and the switching element Q x is connected as the R phase of the three-phase transformer 51, and the connection point S between the switching element Q S and the switching element Q Y is the S phase of the three-phase transformer 51. The connection point T between the switching element Q T and the switching element Q Z is connected as the T phase of the three-phase transformer 51.
 多相インバータ部の制御として、一定入力電流の下で出力電流の大きさを変えるPWM制御が知られている。PWM制御では、搬送波と変調波とを比較することによって各相についてパルス制御信号を形成する。3相インバータの場合には、各相のパルス制御信号はそれぞれ120°の導通期間を有し、このパルス制御信号によってインバータの各アームのスイッチング素子のオン・オフを制御して、それぞれ120°の位相差を有したR相、S相、およびT相の電流を形成する。 PWM PWM control that changes the magnitude of output current under constant input current is known as control of the multiphase inverter. In PWM control, a pulse control signal is formed for each phase by comparing a carrier wave and a modulated wave. In the case of a three-phase inverter, the pulse control signal of each phase has a conduction period of 120 °, and the ON / OFF of the switching element of each arm of the inverter is controlled by this pulse control signal. R-phase, S-phase, and T-phase currents having a phase difference are formed.
 チョッパ制御部70およびインバータ制御部80には、直流電源装置1の出力端あるいは負荷側からフィードバック信号が帰還される。フィードバック信号は、例えば、直流電源装置1の出力端の電圧、電流とすることができる。 A feedback signal is fed back to the chopper control unit 70 and the inverter control unit 80 from the output end of the DC power supply device 1 or the load side. The feedback signal can be, for example, the voltage or current at the output end of the DC power supply device 1.
 次に、図3を用いてチョッパ制御部70の一構成例を説明する。
 チョッパ制御部70は電流形降圧チョッパ部30のスイッチング素子をパルス幅制御によって、イグニッションモードでは定電圧制御を行い、定常運転モードでは定電圧制御、定電流制御、あるいは定電力制御から選択した何れかの制御を行う。イグニッションモードと定常運転モードにおいてそれぞれ異なる設定値に切り換えて制御を行う。イグニッションモードではイグニッション設定電圧VIGRに設定し、定常運転モードにおいて、定電圧制御では定常運転設定電圧VRに設定し、定電流制御では定常運転設定電流IRに設定し、定電力制御では定常運転設定電力PRに設定する。
Next, a configuration example of the chopper controller 70 will be described with reference to FIG.
The chopper controller 70 performs pulse voltage control on the switching element of the current source step-down chopper 30, performs constant voltage control in the ignition mode, and selects one of constant voltage control, constant current control, or constant power control in the steady operation mode. Control. Control is performed by switching to different set values in the ignition mode and the steady operation mode. In the ignition mode, the ignition set voltage V IGR is set. In the steady operation mode, the constant voltage control is set to the steady operation set voltage V R , the constant current control is set to the steady operation set current I R , and the constant power control is set to the steady state. set the operating set power P R.
 イグニッション設定電圧VIGRから定常運転モードの各制御における設定値(定電圧制御の定常運転設定電圧VR、定電流制御の定常運転設定電流IR、定電力制御の定常運転設定電力PR)への切り換えは、出力電圧と出力電流が所定値に達したことを検出することで行うことができる。例えば、出力電圧と出力電流の検出によって設定値の切り換えを行う際、イグニッションモードにおいて出力電流が増加し、プラズマ放電開始に対応して設定されたイグニッション設定電流に到達し、かつ、出力電圧がプラズマ発生電圧に降下した時点を検出し、この検出時点で設定値の切り換えを行う。図3は出力電圧Voと出力電流Ioの検出に基づいて、イグニッション設定電圧VIGRを選択した制御の設定値(定常運転設定電圧VR、定常運転設定電流IR、定常運転設定電力PR)に切り換える構成を示している。 Setting values in each control the steady operation mode from the ignition setting voltage V IGR (constant voltage control of the steady-state operation setting voltage V R, the constant steady operation of the current control set current I R, the steady operation set power P R of the constant power control) to The switching can be performed by detecting that the output voltage and the output current have reached predetermined values. For example, when the set value is switched by detecting the output voltage and output current, the output current increases in the ignition mode, reaches the ignition set current set corresponding to the start of plasma discharge, and the output voltage is plasma. The time point when the voltage drops to the generated voltage is detected, and the set value is switched at this time point. FIG. 3 shows the control set values (the steady operation set voltage V R , the steady operation set current I R , the steady operation set power P, and the ignition set voltage V IGR selected based on the detection of the output voltage V o and the output current I o. R ).
 チョッパ制御部70は、出力電流および出力電圧と各設定値との比較に基づいて設定値を切り換える構成として、出力電流Ioとイグニッション設定電流IIGRとを比較し、出力電圧Voとプラズマ発生設定電圧VPLRとを比較し、出力電流Ioがイグニッション設定電流IIGR以上で、かつ、出力電圧Voがプラズマ発生設定電圧VPLR以下となったときに切り換え信号を出力する比較回路70eを備える。イグニッション設定電流IIGRはメモリ手段70fに格納することができ、プラズマ発生設定電圧VPLRはメモリ手段70gに格納することができる。 The chopper control unit 70 compares the output current I o and the ignition set current I IGR as a configuration for switching the set value based on the comparison between the output current and output voltage and each set value, and generates the output voltage V o and plasma generation. compares the set voltage V PLR, the output current I o is the ignition setting current I IGR above, and a comparison circuit 70e for outputting a switching signal when the output voltage V o is equal to or less than the plasma generating set voltage V PLR Prepare. The ignition set current I IGR can be stored in the memory means 70f, and the plasma generation set voltage V PLR can be stored in the memory means 70g.
 プラズマ発生設定電圧VPLRに代えて、イグニッション設定電圧VIGRと定数kとを格納しておき、イグニッション設定電圧VIGRに定数kを乗ずることによってプラズマ発生設定電圧VPLRを設定してもよい。また、定数kは、例えば、0.2~0.9の範囲で任意に設定することができる。 Instead of the plasma generation setting voltage V PLR , the ignition setting voltage V IGR and a constant k may be stored, and the plasma generation setting voltage V PLR may be set by multiplying the ignition setting voltage V IGR by the constant k. The constant k can be arbitrarily set in the range of 0.2 to 0.9, for example.
 チョッパ制御部70は、スイッチング素子Qのパルス幅制御において、制御の設定値を、イグニッションモードで定電圧制御を行うイグニッション設定電圧VIGRから、定常運転モードで選択した制御の設定値(定電圧制御の定常運転設定電圧VR、定電流制御の定常運転設定電流IR、定電力制御の定常運転設定電力PR)に切り換える切り換え回路70bを備える。 Chopper control unit 70, in the pulse width control of the switching element Q 1, the set value of the control, the ignition setting voltage V IGR performing constant voltage control in the ignition mode, the set value of the control selected in the steady operation mode (constant voltage There is provided a switching circuit 70b for switching to a steady operation set voltage V R for control, a steady operation set current I R for constant current control, and a steady operation set power P R for constant power control.
 切り換え回路70bは、比較回路70eから出力された切り換え信号に基づいてイグニッション設定電圧VIGR、定常運転設定電圧VR、定常運転設定電流IR、定常運転設定電力PRの何れかを出力する。イグニッション設定電圧VIGRはメモリ手段70cに格納することができ、定常運転設定電圧VR、定常運転設定電流IR、定常運転設定電力PR等の定常運転設定値はメモリ手段70dに格納することができる。なお、各メモリ70c~70gはチョッパ制御部70内に設ける構成に限らず、例えば、直流電源装置全体を制御する制御部等の任意の構成要素に設ける他、直流電源装置の外部から入力する構成としてもよい。 Switching circuit 70b outputs an ignition setting voltage V IGR, steady operation setting voltage V R, the steady operation set current I R, one of steady operation set power P R based on the switching signal outputted from the comparison circuit 70e. Ignition set voltage V IGR it can be stored in the memory means 70c, steady operation setting voltage V R, the steady operation set current I R, steady operation setting values such as steady operation set power P R is stored in the memory unit 70d Can do. Each of the memories 70c to 70g is not limited to the configuration provided in the chopper control unit 70. For example, the memories 70c to 70g may be provided in an arbitrary component such as a control unit that controls the entire DC power supply device, or may be input from outside the DC power supply device It is good.
 チョッパ制御部70はスイッチング素子制御信号生成回路70aを備え、出力が設定値となるようにパルス幅制御によって、定電圧制御、定電流制御、定電力制御の何れかの制御を行うスイッチング素子制御信号を生成する。スイッチング素子制御信号生成回路70aは、切り換え回路70bから送られたイグニッション設定電圧VIGR、定常運転設定電圧VR、定常運転設定電流IR、定常運転設定電力PRの何れかを設定値としてスイッチング素子制御信号を生成し、電流形降圧チョッパ部30のスイッチング素子Qをチョッパ制御する。 The chopper control unit 70 includes a switching element control signal generation circuit 70a, and performs switching control of constant voltage control, constant current control, or constant power control by pulse width control so that the output becomes a set value. Is generated. Switching element control signal generator circuit 70a includes a switching ignition set voltage V IGR sent from the switching circuit 70b, the steady operation setting voltage V R, the steady operation set current I R, one of steady operation set power P R as a set value generates a device control signal to the chopper controls the switching element to Q 1 current-step-down chopper unit 30.
 次に、図4を用いてインバータ制御部80の一構成例を説明する。
 インバータ制御部80は多相インバータ部40のスイッチング素子のオン・オフ動作を制御し、直流から交流への直交変換、および、電流形降圧チョッパ部に短絡電流に生成を行う。
Next, a configuration example of the inverter control unit 80 will be described with reference to FIG.
The inverter control unit 80 controls the on / off operation of the switching element of the multiphase inverter unit 40, and performs the orthogonal conversion from DC to AC and generates a short-circuit current in the current source step-down chopper unit.
 直流から交流への直交変換の制御はゲートパルス信号Gによって行い、間欠短絡制御は短絡パルス信号Piによって行う。ゲートパルス信号Gは、イグニッションモードおよび定常運転モードの何れのモードにおいても生成される。一方、短絡パルス信号Piは、イグニッション信号IGの立ち上がりで生成を開始し、チョッパ制御部70の比較回路70eの出力である切り換え信号によって生成を停止する。 Control of orthogonal transformation from direct current to alternating current is performed by the gate pulse signal G, and intermittent short circuit control is performed by the short circuit pulse signal Pi. The gate pulse signal G is generated in any of the ignition mode and the steady operation mode. On the other hand, the generation of the short-circuit pulse signal P i is started at the rising edge of the ignition signal IG, and the generation is stopped by the switching signal that is the output of the comparison circuit 70e of the chopper control unit 70.
 インバータ制御部80はゲートパルス信号Gを生成するゲートパルス信号生成回路80cと、短絡パルス信号Piを生成する短絡パルス信号生成回路80dと、ゲートパルス信号Gと短絡パルス信号Piとを加算して制御信号を生成する加算回路80bと、制御信号を多相インバータ部40に出力する制御信号出力部80aを備える。 The inverter control unit 80 adds the gate pulse signal generation circuit 80c that generates the gate pulse signal G, the short circuit pulse signal generation circuit 80d that generates the short circuit pulse signal P i , and the gate pulse signal G and the short circuit pulse signal P i. An adder circuit 80b for generating a control signal and a control signal output unit 80a for outputting the control signal to the multiphase inverter unit 40.
 多相インバータ部40は、制御信号中のゲートパルス信号Gによって直交変換を行い、制御信号中の短絡パルス信号Piによって正電圧側と負電圧側を短絡して、電流形降圧チョッパ部30に短絡電流を流す。 The multi-phase inverter unit 40 performs orthogonal transformation by the gate pulse signal G in the control signal, and short-circuits the positive voltage side and the negative voltage side by the short-circuit pulse signal P i in the control signal. Apply short circuit current.
 [直流電源装置の動作例]
 次に、本願発明の直流電源装置のイグニッションモードおよび定常運転モードの動作例について、図5のフローチャート、図6のタイミングチャート、図7のイグニッション時の回路状態、および図8のイグニッションモード,定常運転モードの動作状態図を用いて説明する。なお、以下では、定常運転モードとして定電圧制御を選択し、定常運転設定電圧VRを設定値とする場合について説明する。
[Operation example of DC power supply]
Next, regarding the operation example of the ignition mode and steady operation mode of the DC power supply device of the present invention, the flowchart of FIG. 5, the timing chart of FIG. 6, the circuit state at the time of ignition of FIG. 7, and the ignition mode and steady operation of FIG. The operation will be described with reference to a mode operation state diagram. In the following, select the constant voltage control as the normal operation mode, the case where the set value of the steady operation setting voltage V R.
 直流電源装置からプラズマ発生装置に直流電力を供給し、プラズマ発生装置においてプラズマ処理を行う場合、電源投入時あるいは再起動時にイグニッションモードS1によってプラズマ放電を発生させ、プラズマ放電が発生した後、定常運転モードS2によってプラズマ放電を維持する。 When DC power is supplied from the DC power supply device to the plasma generator and plasma processing is performed in the plasma generator, plasma discharge is generated by the ignition mode S1 when the power is turned on or restarted, and after the plasma discharge occurs, steady operation Plasma discharge is maintained by mode S2.
 図5では、インバータ制御によって多相インバータ部の正電圧側と負電圧側との間を短絡し、この短絡動作によって電流形降圧チョッパ部に短絡電流を流す例について説明する。 FIG. 5 illustrates an example in which the positive voltage side and the negative voltage side of the multiphase inverter unit are short-circuited by inverter control, and a short-circuit current is caused to flow through the current source step-down chopper unit by this short-circuit operation.
 はじめに、イグニッションモードS1について説明する。
 チョッパ制御部は、出力電圧をイグニッション設定電圧まで昇圧させるIG電圧上昇区間の制御(S1a~S1c)と、昇圧した出力電圧をイグニッション設定電圧に維持するIG電圧定電圧区間の制御(S1d~S1f)の2つの区間によってイグニッションモードの制御を行う。一方、インバータ制御部は、イグニッションモードS1中において、ゲートパルス信号Gによるインバータ制御と短絡パルス信号Piによる間欠短絡制御を行う。
First, the ignition mode S1 will be described.
The chopper controller controls the IG voltage rise interval (S1a to S1c) that boosts the output voltage to the ignition set voltage, and the IG voltage constant voltage interval control (S1d to S1f) that maintains the boosted output voltage at the ignition set voltage The ignition mode is controlled by these two sections. On the other hand, the inverter control unit performs inverter control by the gate pulse signal G and intermittent short-circuit control by the short-circuit pulse signal P i during the ignition mode S1.
 (IG電圧上昇区間の制御)
 IG電圧上昇区間において、出力電圧をイグニッション設定電圧まで昇圧させる制御を行う。インバータ制御では、多相インバータ部が備えるブリッジ回路の各相のスイッチング素子を駆動制御するゲートパルス信号Gを生成し(S1A)、イグニッションモードの区間を定めるイグニッション(IG)発生信号を立ち上げる(S1B)。イグニッション(IG)発生信号の立ち上げに伴って短絡パルス信号Piを生成する(S1C)。
(Control of IG voltage rise section)
In the IG voltage rising section, control is performed to boost the output voltage to the ignition set voltage. In the inverter control, a gate pulse signal G for driving and controlling the switching elements of each phase of the bridge circuit included in the multi-phase inverter unit is generated (S1A), and an ignition (IG) generation signal that determines an ignition mode section is started (S1B). ). A short-circuit pulse signal P i is generated in accordance with the rise of the ignition (IG) generation signal (S1C).
 図6(a)はイグニッション(IG)発生信号を示し、図6(b)はゲートパルス信号Gを示し、図6(c)は短絡パルス信号Piを示している。なお、図6(b)には、ゲートパルス信号Gに短絡パルス信号Piを重ねた状態を示している。 6 (a) shows an ignition (IG) generating signals, and FIG. 6 (b) shows a gate pulse signal G, FIG. 6 (c) shows a short circuit pulse signal P i. FIG. 6B shows a state in which the short-circuit pulse signal P i is superimposed on the gate pulse signal G.
 S1Aで生成したゲートパルス信号Gによって多相インバータ部を制御し(S1D)、S1Cで生成したイグニッション(IG)発生信号によって多相インバータ部の正電圧側と負電圧側との間(ブリッジ回路の上下端)を短絡する(S1E)。 The multi-phase inverter unit is controlled by the gate pulse signal G generated by S1A (S1D), and the ignition (IG) generation signal generated by S1C is used between the positive voltage side and the negative voltage side of the multi-phase inverter unit (bridge circuit Short the upper and lower ends (S1E).
 短絡パルス信号Piは微小時間幅Tionだけ生成され、ゲートパルス信号Gと共に、インバータ部のブリッジ回路を構成するスイッチング素子をオン状態として、正電圧側と負電圧側とを短絡する。例えば、ゲートパルス信号GRとゲートパルス信号GXに重畳した短絡パルス信号Piとによって、ブリッジ回路のスイッチング素子QRとスイッチング素子QXとをオン状態として、ブリッジ回路の上下端を短絡する。 The short-circuit pulse signal P i is generated for a minute time width T ion, and together with the gate pulse signal G, the switching elements constituting the bridge circuit of the inverter unit are turned on to short-circuit the positive voltage side and the negative voltage side. For example, by the short pulse signal P i superimposed on the gate pulse signal G R and the gate pulse signal G X, an ON state and the switching element Q R and the switching element Q X of the bridge circuit, to short-circuit the upper and lower ends of the bridge circuit .
 一方、チョッパ制御部は、イグニッション(IG)発生信号の立ち上げに伴って、出力電圧Voを定電圧制御する電圧設定値としてイグニッション設定電圧VIGRを設定する(S1a)。 On the other hand, the chopper controller sets the ignition set voltage V IGR as a voltage set value for constant voltage control of the output voltage V o with the rise of the ignition (IG) generation signal (S1a).
 図6(d)は出力電圧Voおよび出力電流Ioを示している。出力電圧Voに対して、出力電圧Voのイグニッションモード時の定電圧制御の電圧設定値としてイグニッション設定電圧VIGRを示し、出力電圧Voの定常運転時の定電圧制御の電圧設定値として定常運転設定電圧VRを示している。また、出力電流Ioに対して、出力電流Ioのイグニッションモード時の電流設定値としてイグニッション設定電流IIGRを示している。 FIG. 6D shows the output voltage V o and the output current I o . The output voltage V o, shows an ignition setting voltage V IGR as the voltage setting value of the constant voltage control of the ignition mode the output voltage V o, as the voltage set value of the constant voltage control during the steady operation of the output voltage V o It shows a steady operation setting voltage V R. Further, for the output current Io , an ignition set current IIGR is shown as a current set value in the ignition mode of the output current Io .
 S1Eの短絡動作の工程によって、電流形降圧チョッパ部に短絡電流Δiが流れる。この短絡電流Δiは電流形降圧チョッパ部が備えるインダクタに蓄積される(S1b)。 The short circuit current Δi flows through the current source step-down chopper by the S1E short circuit operation process. This short-circuit current Δi is accumulated in an inductor provided in the current source step-down chopper (S1b).
 短絡パルス信号Piの立ち下がりによって短絡動作が停止し、インダクタに蓄積されたエネルギーによって出力電圧Voが昇圧する(S1F)。 Short pulse signals P i stops short operation by the fall of the output voltage V o by the energy stored in the inductor is boosted (S1F).
 出力電圧Voをイグニッション設定電圧VIGRと比較し、出力電圧Voがイグニッション設定電圧VIGRに達していない場合には、次の短絡パルス信号Piによって多相インバータ部の正電圧側と負電圧側との間(ブリッジ回路の上下端)を短絡させ、短絡電流Δiによって出力電圧Voを昇圧させる処理(S1E~S1F)を行う。出力電圧Voがイグニッション設定電圧VIGRに達するまでS1E~S1Fの短絡動作による昇圧工程を繰り返す。 The output voltage V o is compared with the ignition set voltage V IGR, and if the output voltage V o has not reached the ignition set voltage V IGR , the next short-circuit pulse signal P i causes the negative voltage on the positive side of the multiphase inverter section to be negative to short-circuit between the (upper and lower ends of the bridge circuit) between the voltage side, it performs processing for boosting the output voltage V o by the short circuit current Δi a (S1E ~ S1F). Until the output voltage V o reaches the ignition set voltage V IGR , the step-up process by the short-circuit operation of S1E to S1F is repeated.
 出力電圧VoはS1E~S1Fの繰り返しによる間欠短絡動作によって段階的に昇圧する。図6に示す出力電圧Voにおいて、符号Aで示す部分はイグニッション設定電圧VIGRに向かう段階的な昇圧状態を示している。 The output voltage V o is stepped up stepwise by an intermittent short circuit operation by repeating S1E to S1F. In the output voltage V o shown in FIG. 6, a portion indicated by a symbol A indicates a step-up state in which the voltage goes toward the ignition set voltage V IGR .
 以下に、短絡電流による昇圧動作について説明する。
 図7はイグニッション時の短絡状態を示している。図7では、3相インバータのブリッジ回路において、スイッチング素子QRとスイッチング素子QXとを同時にオン状態とすることによって正電圧側と負電圧側の間(ブリッジ回路の上下端)を短絡する例を示している。
Hereinafter, the boosting operation by the short circuit current will be described.
FIG. 7 shows a short circuit state at the time of ignition. In FIG. 7, in the bridge circuit of the three-phase inverter, the switching element Q R and the switching element Q X are simultaneously turned on to short-circuit between the positive voltage side and the negative voltage side (upper and lower ends of the bridge circuit). Is shown.
 ゲートパルス信号GRによってスイッチング素子QRがオン状態にあるとき、このオン状態の何れかの時点において短絡パルス信号Piによってスイッチング素子QXをオン状態とする。これによって、スイッチング素子QRとスイッチング素子QXを介して正電圧側と負電圧側のPN間(ブリッジ回路の上下端)が短絡する。 When the switching element Q R is in the on state by the gate pulse signal G R , the switching element Q X is turned on by the short circuit pulse signal P i at any time in the on state. As a result, the positive voltage side and the negative voltage side PN (upper and lower ends of the bridge circuit) are short-circuited via the switching element Q R and the switching element Q X.
 短絡によって電流形降圧チョッパ部には、図7に示す様に短絡電流Δiが流れる。短絡電流Δiは、短絡パルス信号Piの信号幅の微小時間幅Tion(n)だけ流れる。短絡電流Δiは、短絡動作毎にリセットされる。 Due to the short circuit, a short circuit current Δi flows through the current source step-down chopper as shown in FIG. The short-circuit current Δi flows for a minute time width T ion (n) that is the signal width of the short-circuit pulse signal P i . The short circuit current Δi is reset every short circuit operation.
 電流形降圧チョッパ部の直流リアクトルLF1には、短絡電流ΔiによるエネルギーJi(n)が蓄積される。直流リアクトルLF1に対する入力電圧をVinとするとき、微小時間幅Tion(n)の1回分の短絡電流Δiおよび短絡電流ΔiによるエネルギーJi(n)は以下の式(1)、(2)で表される。
 Δi=(Vin/LF1)×Tion(n)   …(1)
 Ji(n)=(1/2)×LF1×Δi 2     …(2)
Energy J i (n) due to the short-circuit current Δi is accumulated in the DC reactor L F1 of the current source step-down chopper unit. When the input voltage to the DC reactor L F1 is V in , the short-circuit current Δi 1 and the energy J i (n) for one short time width T ion (n) and the short-circuit current Δi 1 are expressed by the following equation (1), It is represented by (2).
Δi 1 = (V in / L F1 ) × T ion (n) (1)
J i (n) = (1/2) × L F1 × Δi 1 2 (2)
 n回目のTion(n)の短絡動作が終了し、次の(n+1)回目のTion(n+1)の短絡動作が開始するまでの間に、Tion(n)の短絡動作によって直流リアクトルLF1に蓄積されたエネルギーJi(n)はインバータ部、変圧器、整流器を通して負荷に供給される。 n-th short operation of T ion (n) is completed, until the short circuit operation of the next (n + 1) th T ion (n + 1) is started, the direct current by a short operation of the T ion (n) reactor L The energy J i (n) stored in F1 is supplied to the load through the inverter unit, the transformer, and the rectifier.
 ここで、直流電源装置の出力側の容量分をCOTとし、イグニッション時の出力電圧をVo(n)としたとき、短絡動作によって出力側容量分COTに送られるエネルギーJi(n)は以下の式(3)で表される。なお、出力側容量分COTは、出力容量CFOと負荷であるプラズマ発生装置の電極容量Coとすることができる。
 Ji(n)=(1/2)×LF1×Δi 2     
     =(1/2)×COT×(Vo(n) -Vo(n-1) )    …(3)
 ただし、最初の短絡動作を行う前の出力電圧はVo(0)=0としている。
Here, the energy J i (n) sent to the output-side capacitance C OT by the short-circuit operation when the output-side capacitance of the DC power supply device is C OT and the output voltage at the time of ignition is V o (n). Is represented by the following formula (3). Note that the output side capacitance C OT can be the output capacitance C FO and the electrode capacitance C o of the plasma generator as a load.
J i (n) = (1/2) × L F1 × Δi 1 2
  = (1/2) × C OT × (V o (n) 2 −V o (n−1) 2 ) (3)
However, the output voltage before the first short-circuit operation is set to V 0 (0) = 0.
 式(3)から、イグニッション時の出力電圧Vo(n)は以下の式(4)で表される。
 Vo(n)={(LF1/COT)×Δi +Vo(n-1) 1/2  …(4)
 式(4)は、短絡動作をn回繰り返したときの出力電圧Vo(n)を表している。
From the expression (3), the output voltage V o (n) at the time of ignition is expressed by the following expression (4).
V o (n) = {(L F1 / C OT ) × Δi 1 2 + V o (n−1) 2 } 1/2 (4)
Equation (4) represents the output voltage V o (n) when the short-circuit operation is repeated n times.
 短絡動作が3回である場合には(n=3)、各短絡動作時による出力電圧は以下の式で表される。
 Vo(1)={(LF1/COT)×Δi 1/2        …(5)
 Vo(2)={(LF1/COT)×Δi +Vo(1) 1/2   …(6)
 Vo(3)={(LF1/COT)×Δi +Vo(2) 1/2   …(7)
When the short-circuit operation is performed three times (n = 3), the output voltage at each short-circuit operation is expressed by the following equation.
V o (1) = {(L F1 / C OT ) × Δi 1 2 } 1/2 (5)
V o (2) = {(L F1 / C OT ) × Δi 1 2 + V o (1) 2 } 1/2 (6)
V o (3) = {(L F1 / C OT ) × Δi 1 2 + V o (2) 2 } 1/2 (7)
 式(4)は、短絡動作の回数nによってイグニッション時の出力電圧Vo(n)を選定することができることを示している。 Equation (4) shows that the output voltage V o (n) at the time of ignition can be selected by the number n of short-circuit operations.
 また、短絡電流Δiは、式(1)で示されるように入力電圧Vinに比例する。入力電圧Vinは、電流形降圧チョッパ部の出力電圧であり、その出力電圧は電流形降圧チョッパ部のスイッチング素子Qのオンデューティー比で定まる。 Moreover, short-circuit current .DELTA.i 1 is proportional to the input voltage V in as shown in equation (1). Input voltage V in is the output voltage of the current-step-down chopper unit, the output voltage is determined by the on-duty ratio of the switching element to Q 1 current-step-down chopper unit.
 したがって、出力電圧Vo(n)の昇圧比は、短絡動作の回数n、および電流形降圧チョッパ部のスイッチング素子Qのオンデューティー比で定めることができる。 Accordingly, the step-up ratio of the output voltage V o (n) can be determined by the on-duty ratio of the switching element to Q 1 number n, and the current-step-down chopper of the short-circuit operation.
 なお、短絡動作の回数nは、イグニッションモード内で行われるため、短絡パルス信号をゲートパルス信号と同期して出力する場合には、イグニッションモードが開始して解除されるまでの時間とゲートパルス信号の時間幅によって自動的に定まる回数となる。 Since the number n of the short-circuit operation is performed in the ignition mode, when the short-circuit pulse signal is output in synchronization with the gate pulse signal, the time until the ignition mode is started and released and the gate pulse signal The number of times is automatically determined according to the time width.
 (IG電圧定電圧区間の制御)
 IG電圧定電圧区間において、昇圧した出力電圧をイグニッション設定電圧に維持する制御を行う。
(Control of IG voltage constant voltage section)
In the IG voltage constant voltage section, control is performed to maintain the boosted output voltage at the ignition set voltage.
 出力電圧Voがイグニッション設定電圧VIGRに達した場合には(S1c)、チョッパ制御のイグニッションモードにおいて、IG電圧上昇区間の制御(S1a~S1c)からIG電圧定電圧区間の制御(S1d~S1f)に切り換え、昇圧した出力電圧をイグニッション設定電圧に維持する。図6に示す出力電圧Voにおいて、符号Bで示す部分はイグニッション設定電圧VIGRに維持された定電圧状態を示している。 When the output voltage V o reaches the ignition set voltage V IGR (S1c), in the ignition mode of chopper control, the control from the IG voltage rising section (S1a to S1c) to the control from the IG voltage constant voltage section (S1d to S1f) ) To maintain the boosted output voltage at the ignition set voltage. In the output voltage V o shown in FIG. 6, a portion indicated by a symbol B indicates a constant voltage state maintained at the ignition set voltage V IGR .
 IG電圧定電圧区間の制御では、チョッパ制御においてイグニッション設定電圧で定電圧制御する(S1d)。出力電流Ioは、IG電圧上昇区間およびIG電圧定電圧区間において上昇する。図6に示す出力電流Ioにおいて、符号Dで示す部分はIG電圧上昇区間およびIG電圧定電圧区間における電流上昇状態を示している。 In the control of the IG voltage constant voltage section, constant voltage control is performed with the ignition set voltage in chopper control (S1d). The output current Io rises in the IG voltage rising section and the IG voltage constant voltage section. In the output current I o shown in FIG. 6, a portion indicated by a symbol D indicates a current rising state in the IG voltage rising section and the IG voltage constant voltage section.
 プラズマ発生装置においてプラズマ放電が発生すると出力電流Ioにはイグニッション設定電流IIGRが流れ、定常運転状態に移行することによって定常運転の出力電流Ioが流れる。図6に示す出力電流Ioにおいて、符号Eで示す部分はイグニッション設定電流IIGRを越える出力電流Ioが流れ、定常運転の出力電流Ioへの移行状態を示し、符号Fで示す部分は定常運転の出力電流Ioを示している。 In the plasma generating apparatus and plasma discharge is generated in the output current I o flows ignition set current I IGR, flows an output current I o of the steady operation by moving to a steady operating state. In the output current I o shown in FIG. 6, the portion indicated by the symbol E indicates the state of transition to the output current I o in the steady operation where the output current I o exceeding the ignition set current I IGR flows, and the portion indicated by the symbol F It shows the output current I o of the steady-state operation.
 したがって、出力電圧Voが定常運転設定電圧VRに達したこと、およびこの出力電流Ioにイグニッション設定電流IIGRが流れることでプラズマ放電の発生を判定することができる。 Therefore, the occurrence of plasma discharge can be determined by the fact that the output voltage V o has reached the steady operation set voltage V R and that the ignition set current I IGR flows in the output current I o .
 プラズマ発生装置におけるプラズマ放電の発生を出力電圧Voと出力電流Ioが所定電圧および所定電流に達したか否かで判定する場合には、プラズマ放電の発生時に流れる出力電流をイグニッション設定電流IIGRとして予め定め、出力電圧をイグニッション設定電圧VIGRとして予め定めておき、出力電流Ioと設定したイグニッション設定電流IIGRとを比較し、出力電圧Voと設定したイグニッション設定電圧VIGRに定数kを乗じて得られるプラズマ発生設定電圧VPLRとを比較する。定数kは例えば0.2~0.9に設定する(S1e、S1f)。 When the generation of plasma discharge in the plasma generator is determined by whether or not the output voltage V o and the output current I o have reached a predetermined voltage and a predetermined current, the output current that flows when the plasma discharge occurs is determined as the ignition set current I. Predetermined as IGR , the output voltage is predetermined as the ignition set voltage V IGR , the output current I o is compared with the set ignition set current I IGR, and the output voltage V o is set as a constant to the set ignition set voltage V IGR A plasma generation set voltage V PLR obtained by multiplying k is compared. The constant k is set to, for example, 0.2 to 0.9 (S1e, S1f).
 出力電流Ioがイグニッション設定電流IIGRに達し(S1e)、かつ、出力電圧Voがイグニッション設定電圧VIGRに定数kを乗じて得られるプラズマ発生設定電圧VPLRよりも降下した(S1f)場合には、チョッパ制御部では、定電圧制御の出力電圧Voの設定値をイグニッション設定電圧VIGRから定常運転設定電圧VRに変更し(S1g)、インバータ制御部では、イグニッション(IG)発生信号を立ち下げ(S1G)、短絡パルス信号Piの生成を停止する(S1H)。 When the output current I o reaches the ignition set current I IGR (S1e) and the output voltage V o falls below the plasma generation set voltage V PLR obtained by multiplying the ignition set voltage V IGR by a constant k (S1f) In the chopper control unit, the set value of the output voltage V o of constant voltage control is changed from the ignition set voltage V IGR to the steady operation set voltage V R (S1g), and in the inverter control unit, the ignition (IG) generation signal the deactivation (S1G), to stop the generation of the short pulse signals P i (S1H).
 チョッパ制御部において、定電圧制御の設定電圧をイグニッション設定電圧VIGRから定常運転設定電圧VRに切り換えると共に、インバータ制御部において、IG発生信号を停止して短絡パルス信号Piの生成を停止することによって、イグニッションモードを終了し、定常運転モードに切り換える。図6に示す出力電圧Voにおいて、符号Cで示す部分は定常運転設定電圧VRに維持された定電圧状態を示している。 In the chopper controller, the constant voltage control set voltage is switched from the ignition set voltage V IGR to the steady operation set voltage V R , and in the inverter controller, the IG generation signal is stopped and the generation of the short-circuit pulse signal P i is stopped. As a result, the ignition mode is terminated and the operation mode is switched to the steady operation mode. In the output voltage V o shown in FIG. 6, a portion indicated by a symbol C indicates a constant voltage state maintained at the steady operation set voltage V R.
 IG電圧定電圧区間の終了は、短絡パルス信号Piを停止させることで行う。 End of IG-voltage constant voltage section is performed by stopping the short pulse signal P i.
 上記した例では、前記オフ状態の制御は、昇圧された出力電圧がイグニッション設定電圧に達したときに、スイッチング素子Qをパルス幅制御によってイグニッション設定電圧に定電圧制御することで行うことができる。 In the above example, the control of the off-state, when the boosted output voltage reaches the ignition set voltage can be performed by constant voltage control to the ignition setting voltage switching element Q 1 by a pulse width control .
 次に、定常運転モードS2では、イグニッションモードで発生したプラズマ放電を維持する。プラズマ放電を維持するために、チョッパ制御部は定常運転設定電圧VRで定電圧制御を行い、インバータ制御部は通常のパルス幅制御を行う。 Next, in the steady operation mode S2, the plasma discharge generated in the ignition mode is maintained. To maintain the plasma discharge, the chopper control unit performs the constant voltage control in the steady operation setting voltage V R, the inverter control unit performs a normal pulse width control.
 図8は、イグニッションモードおよび定常運転モードにおけるチョッパ制御およびインバータ制御の動作状態を示している。 FIG. 8 shows operating states of chopper control and inverter control in the ignition mode and the steady operation mode.
 イグニッションモードにおいて、チョッパ制御はパルス幅制御によって出力電圧Voをイグニッション設定電圧に定電圧制御できるように電流形降圧チョッパ部を制御し、インバータ制御はパルス幅制御による直交変換制御を行う。 In the ignition mode, the chopper control controls the current source step-down chopper so that the output voltage V o can be controlled to the ignition set voltage by pulse width control, and the inverter control performs orthogonal transform control by pulse width control.
 インバータ制御は、イグニッションモード中のIG電圧上昇区間において間欠短絡制御を行って、イグニッション電圧をイグニッション設定電圧VIGRに向かって昇圧制御する。なお、この昇圧制御は、インバータ制御による間欠短絡制御で行う他、電流形降圧チョッパ部側に設けた短絡用のスイッチング素子を制御することによって行うことができる。 In the inverter control, intermittent short-circuit control is performed in the IG voltage rising section in the ignition mode, and the ignition voltage is boosted toward the ignition set voltage V IGR . This step-up control can be performed not only by intermittent short-circuit control by inverter control but also by controlling a short-circuit switching element provided on the current source step-down chopper unit side.
 イグニッションモードにおいて、出力電圧はIG電圧上昇区間ではイグニッション設定電圧VIGRに向かって昇圧し、イグニッション設定電圧VIGRに達した後は、IG電圧定電圧区間においてイグニッション設定電圧VIGRに維持される。 In the ignition mode, the output voltage is boosted towards the ignition setting voltage V IGR in IG voltage rising period, after reaching the ignition set voltage V IGR is maintained in IG voltage constant voltage section to the ignition setting voltage V IGR.
 また、イグニッションモードにおいて、出力電流はイグニッション設定電流IIGRに向かって上昇する。 In the ignition mode, the output current rises toward the ignition setting current I IGR .
 出力電流がイグニッション設定電流IIGRに達し、かつ、出力電圧がイグニッション設定電圧VIGRに定数k(k=0.2~0.9)を乗じた値(k・VIGR)より降下した時点をプラズマ放電の発生(プラズマ着火)状態と判定して、イグニッションモードから定常運転モードに切り換える。イグニッションモードから定常運転モードの切り換えは、チョッパ制御における定電圧制御の設定電圧をイグニッション設定電圧VIGRから定常運転設定電圧VRに切り換える。 When the output current reaches the ignition set current I IGR and the output voltage drops below the value (k · V IGR ) that is obtained by multiplying the ignition set voltage V IGR by a constant k (k = 0.2 to 0.9) It is determined that a plasma discharge is generated (plasma ignition), and the ignition mode is switched to the steady operation mode. The switching from the ignition mode to the steady operation mode switches the constant voltage control set voltage in the chopper control from the ignition set voltage V IGR to the steady operation set voltage V R.
 定常運転モードにおいて、定電圧制御、定電流制御、定電力制御の何れかの制御に選択された場合、プラズマ放電の発生を判定した後は、選択された制御による定常運転に切り換える。このとき、出力電流はイグニッション設定電流IIGRに達した後、定常運転時の出力電流Ioとなる。 In the steady operation mode, when one of constant voltage control, constant current control, and constant power control is selected, after determining the occurrence of plasma discharge, the operation is switched to the steady operation by the selected control. At this time, the output current reaches the ignition set current I IGR and then becomes the output current I o during steady operation.
[直流電源装置の他の構成例]
 次に、直流電源装置の他の構成例について説明する。
[Other configuration examples of DC power supply]
Next, another configuration example of the DC power supply device will be described.
 (直流電源装置の他の構成例1)
 図9は直流電源装置の他の構成例1を説明するためのタイミングチャートである。構成例1の短絡パルス信号Pは、ブリッジ回路の全てのスイッチング素子を同時にオン動作させるものである。この短絡パルス信号Pを用いてブリッジ回路の全てのスイッチング素子を同時にオン状態とすることによって、ブリッジ回路のスイッチング素子のオン状態やオフ状態に係わらず、短絡動作を行わせることができる。
(Other configuration example 1 of a DC power supply device)
FIG. 9 is a timing chart for explaining another configuration example 1 of the DC power supply device. The short-circuit pulse signal P i in the configuration example 1 simultaneously turns on all the switching elements of the bridge circuit. By the simultaneous ON state all the switching elements of the bridge circuit by using the short pulse signal P i, regardless of the ON state and OFF state of the switching elements of the bridge circuit, it is possible to perform the short-circuit operation.
 図9に示すタイミングチャートは、短絡パルス信号の他は図6に示したタイミングチャートと同様である。図9(b)は、短絡パルス信号Pとゲートパルス信号Gとを重ねて示し、短絡パルス信号Pは黒の地模様で示している。短絡パルス信号Pは、ブリッジ回路の各スイッチング素子QR,QS,QT,QX,Qy,Qzを同時にオン状態およびオフ状態とする。短絡パルス信号Pとゲートパルス信号Gとが重なる場合であっても、スイッチング素子はオン状態となるため、ゲートパルス信号Gの状態に係わらず短絡状態とすることができる。 The timing chart shown in FIG. 9 is the same as the timing chart shown in FIG. 6 except for the short-circuit pulse signal. FIG. 9B shows the short-circuit pulse signal P i and the gate pulse signal G superimposed on each other, and the short-circuit pulse signal P i is shown by a black background pattern. The short-circuit pulse signal P i simultaneously turns on and off each switching element Q R , Q S , Q T , Q X , Q y , Q z of the bridge circuit. Even when the short-circuit pulse signal Pi and the gate pulse signal G overlap, the switching element is turned on, so that the short-circuit state can be achieved regardless of the state of the gate pulse signal G.
 (直流電源装置の他の構成例2)
 図10は直流電源装置の他の構成例2を説明するためのタイミングチャートである。構成例2の短絡パルス信号Pは、ブリッジ回路が備えるスイッチング素子の内で、ブリッジ回路の正電圧側と負電圧側の端子間を直列接続して対を成すスイッチング素子のペアの内で少なくとも一つのペアのスイッチング素子を同時にオン動作させるものである。
(Other configuration example 2 of the DC power supply device)
FIG. 10 is a timing chart for explaining another configuration example 2 of the DC power supply device. The short-circuit pulse signal P i of the configuration example 2 is at least among switching element pairs that form a pair by connecting the positive voltage side and negative voltage side terminals of the bridge circuit in series among the switching elements included in the bridge circuit. One pair of switching elements is simultaneously turned on.
 この短絡パルス信号Pを用いてブリッジ回路の上下端のスイッチング素子のペアの少なくとも一つのペアについてスイッチング素子を同時にオン動作させることによって、ブリッジ回路のスイッチング素子のオン状態やオフ状態に係わらず、短絡動作を行わせることができる。 By simultaneously turned on the switching element for at least one pair of the pair of switching elements of the upper and lower ends of the bridge circuit by using the short pulse signal P i, regardless of the ON state and OFF state of the switching elements of the bridge circuit, Short circuit operation can be performed.
 図10に示すタイミングチャートは、短絡パルス信号の他は図6に示したタイミングチャートと同様である。図10(b)は、短絡パルス信号Pとゲートパルス信号Gとを重ねて示し、短絡パルス信号Pは黒の地模様で示している。短絡パルス信号Pは、ブリッジ回路のスイッチング素子QRおよびQXを同時にオン状態およびオフ状態とする。短絡パルス信号Pとゲートパルス信号Gとが重なる場合であっても、スイッチング素子はオン状態となるため、ゲートパルス信号Gの状態に係わらず短絡状態とすることができる。 The timing chart shown in FIG. 10 is the same as the timing chart shown in FIG. 6 except for the short-circuit pulse signal. FIG. 10B shows the short circuit pulse signal P i and the gate pulse signal G in an overlapping manner, and the short circuit pulse signal P i is shown by a black background pattern. The short-circuit pulse signal P i simultaneously turns on and off the switching elements Q R and Q X of the bridge circuit. Even when the short-circuit pulse signal Pi and the gate pulse signal G overlap, the switching element is turned on, so that the short-circuit state can be achieved regardless of the state of the gate pulse signal G.
 (直流電源装置の他の構成例3)
 構成例3は、各スイッチング素子をオン状態とするゲートパルス信号の時間幅内の何れかの時点において、ブリッジ回路の正電圧側と負電圧側との端子間を直列接続して対を成すペアのスイッチング素子の内、ゲートパルス信号でオン動作するスイッチング素子と対の関係にあるスイッチング素子をオン動作させるパルス信号を短絡パルス信号として生成し、対と成るペアのスイッチング素子を同時にオン動作させ、短絡動作を行わせる。
(Other configuration example 3 of the DC power supply device)
In the configuration example 3, the pair of the positive voltage side and the negative voltage side of the bridge circuit is connected in series at any time point within the time width of the gate pulse signal that turns on each switching element. Among the switching elements, a pulse signal that turns on a switching element that is paired with a switching element that is turned on by a gate pulse signal is generated as a short-circuit pulse signal, and the paired switching elements are simultaneously turned on, Cause a short-circuit operation.
 前記した短絡動作の形態は、多相インバータ部の上下端のスイッチング素子を同時にオン状態とすることによって短絡動作を行わせるものである。これに対して、構成例4は電流形降圧チョッパ部の出力端あるいは多相インバータ部の入力端の正電圧側と負電圧側との間にスイッチング素子Qを接続し、このスイッチング素子Qによって短絡を行わせるものである。 In the form of the short-circuit operation described above, the short-circuit operation is performed by simultaneously turning on the switching elements at the upper and lower ends of the multiphase inverter section. On the other hand, in the configuration example 4, the switching element Q 2 is connected between the positive voltage side and the negative voltage side of the output terminal of the current source step-down chopper section or the input terminal of the multiphase inverter section, and this switching element Q 2. To cause a short circuit.
 (直流電源装置の他の構成例4)
 図11は直流電源装置の他の構成例4を説明するための構成図である。構成例4は、図1に示した直流電源装置において、電流形降圧チョッパ部30の出力端の正電圧側と負電圧側との間にスイッチング素子Qを接続し、このスイッチング素子Qをスイッチング制御部91でオン・オフ動作を制御する。
(Other configuration example 4 of the DC power supply device)
FIG. 11 is a configuration diagram for explaining another configuration example 4 of the DC power supply device. Configuration Example 4, the DC power supply apparatus shown in FIG. 1, to connect the switching element Q 2 between the positive voltage side and a negative voltage side output terminal of the current-step-down chopper unit 30, the switching element Q 2 The switching control unit 91 controls the on / off operation.
 この構成例4によれば、多相インバータ部のブリッジ回路が備える複数のスイッチング素子を制御することなく、一つのスイッチング素子Qを制御することによって短絡動作を行うことができる。 According to this configuration example 4, without controlling the plurality of switching elements included in the bridge circuit of the multiphase inverter, by controlling the one switching element Q 2 can perform short-circuit operation.
 定常運転モードにおいて、定電圧制御、定電流制御、定電力制御の何れから選択は必要に応じて任意とすることができ、例えば、予め選択してチョッパ制御部の切換回路に設定しておく他、直流電源装置の外部から設定することができる。また、選択を変更する構成としても良い。 In the steady operation mode, the selection from constant voltage control, constant current control, and constant power control can be made as required. For example, it is selected in advance and set in the switching circuit of the chopper controller. It can be set from outside the DC power supply. Moreover, it is good also as a structure which changes selection.
 なお、上記実施の形態及び変形例における記述は、本発明に係る直流電源装置および直流電源装置の制御方法の一例であり、本発明は各実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。 Note that the descriptions in the above embodiments and modifications are examples of the DC power supply device and the control method of the DC power supply device according to the present invention, and the present invention is not limited to each embodiment, and Various modifications can be made based on the gist, and these are not excluded from the scope of the present invention.
 本発明の電流形インバータ装置は、プラズマ発生装置に電力を供給し、成膜処理やエッチング処理を行う電力源として適用することができる。 The current source inverter device of the present invention can be applied as a power source for supplying power to a plasma generator and performing film formation or etching.
 1  直流電源装置
 2  交流電源
 3  出力ケーブル
 4  プラズマ発生装置
 10  整流部
 20  スナバー部
 30  電流形降圧チョッパ部
 40  多相インバータ部
 50  多相変圧部
 51  相変圧器
 60  多相整流部
 70  チョッパ制御部
 70a  スイッチング素子制御信号生成回路
 70b  切り換え回路
 70c  メモリ手段(イグニッション設定値)
 70d  メモリ手段(定常運転設定電圧)
 70e  比較回路
 70f  メモリ手段(イグニッション設定電流)
 70g  メモリ手段(プラズマ発生設定電圧)
 80  インバータ制御部
 80a  制御信号出力部
 80b  加算回路
 80c  ゲートパルス信号生成回路
 80d  短絡パルス信号生成回路
 90  配線
 91  スイッチング制御部
 92  スイッチング制御部
 IIGR  イグニッション設定電流
 Io  出力電流
 IR  定常運転設定電流
 PR  定常運転設定電力
 VIGR  イグニッション設定電圧
 Vin  入力電圧
 Vo  出力電圧
 VPLR  プラズマ発生設定電圧
 VR  定常運転設定電圧
 Δi  短絡電流
DESCRIPTION OF SYMBOLS 1 DC power supply device 2 AC power supply 3 Output cable 4 Plasma generator 10 Rectification part 20 Snubber part 30 Current type step-down chopper part 40 Multiphase inverter part 50 Multiphase transformation part 51 Phase transformer 60 Multiphase rectification part 70 Chopper control part 70a Switching element control signal generation circuit 70b Switching circuit 70c Memory means (ignition setting value)
70d Memory means (set voltage for steady operation)
70e comparison circuit 70f memory means (ignition setting current)
70g Memory means (Plasma generation set voltage)
80 Inverter control unit 80a Control signal output unit 80b Adder circuit 80c Gate pulse signal generation circuit 80d Short-circuit pulse signal generation circuit 90 Wiring 91 Switching control unit 92 Switching control unit I IGR ignition setting current Io Output current I R Steady state operation setting current P R Normal operation setting power V IGR Ignition setting voltage V in Input voltage V o Output voltage V PLR Plasma generation setting voltage V R Normal operation setting voltage Δi Short circuit current

Claims (14)

  1.  プラズマ発生装置に直流電力を供給する直流電源装置において、
     直流源を構成する電流形降圧チョッパ部と、
     前記電流形降圧チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、
     前記多相インバータ部の出力を交直変換し、得られた直流を負荷に供給する整流部と、前記電流形降圧チョッパ部を制御するチョッパ制御部、および前記多相インバータ部を制御するインバータ制御部とを有する制御部を備え、
     前記制御部は、前記チョッパ制御部が制御する、前記プラズマ発生装置にプラズマ放電を発生させるイグニッション電圧を供給するイグニッションモードと、前記プラズマ発生装置のプラズマ放電を継続させる定常運転モードとを切り換える切換制御、および、
     前記電流形降圧チョッパ部の正電圧側と負電圧側との間、または前記多相インバータ部の正電圧側と負電圧側との間を間欠的に短絡する間欠短絡制御を行い、
     前記制御部は、前記イグニッションモードにおいて、前記間欠短絡制御によって前記電流形降圧チョッパ部に流れる短絡電流による昇圧動作を制御し、プラズマ発生装置に印加する出力電圧を制御することを特徴とする、直流電源装置。
    In a DC power supply that supplies DC power to a plasma generator,
    A current source step-down chopper that constitutes a DC source;
    A multi-phase inverter unit that converts the DC output of the current source step-down chopper unit into multi-phase AC power by operation of a plurality of switching elements;
    A rectification unit that converts the output of the multiphase inverter unit into AC / DC and supplies the obtained direct current to a load, a chopper control unit that controls the current source step-down chopper unit, and an inverter control unit that controls the multiphase inverter unit And a control unit having
    The control unit controls switching between an ignition mode for supplying an ignition voltage for generating plasma discharge to the plasma generator and a steady operation mode for continuing plasma discharge of the plasma generator controlled by the chopper controller. ,and,
    Performing intermittent short-circuit control for intermittently short-circuiting between the positive voltage side and negative voltage side of the current source step-down chopper unit or between the positive voltage side and negative voltage side of the multiphase inverter unit,
    In the ignition mode, the control unit controls a boost operation by a short-circuit current flowing in the current source step-down chopper unit by the intermittent short-circuit control, and controls an output voltage applied to the plasma generator. Power supply.
  2.  前記制御部は、前記インバータ制御部により前記間欠短絡制御を行い、
     前記インバータ制御部は、前記間欠短絡制御において、
     多相インバータを構成するブリッジ回路のスイッチング素子をパルス幅制御するゲートパルス信号と、前記ブリッジ回路の正電圧側と負電圧側とを間欠的に短絡する短絡パルス信号とを生成し、
     前記ゲートパルス信号と短絡パルス信号とを重畳した制御信号により前記多相インバータ部を制御し、
     前記短絡パルス信号によって前記ブリッジ回路の正電圧側と負電圧側との端子間を直列接続して対を成すペアのスイッチング素子を同時にオン状態とし、ブリッジ回路の正電圧側と負電圧側の端子間を短絡することを特徴とする、請求項1に記載の直流電源装置。
    The control unit performs the intermittent short circuit control by the inverter control unit,
    In the intermittent short circuit control, the inverter control unit,
    A gate pulse signal for controlling the pulse width of the switching element of the bridge circuit constituting the multiphase inverter, and a short-circuit pulse signal for intermittently short-circuiting the positive voltage side and the negative voltage side of the bridge circuit,
    Control the multi-phase inverter unit by a control signal in which the gate pulse signal and the short-circuit pulse signal are superimposed,
    A pair of switching elements that are connected in series between the positive voltage side and the negative voltage side of the bridge circuit by the short-circuit pulse signal are simultaneously turned on, and the positive voltage side and negative voltage side terminals of the bridge circuit The DC power supply device according to claim 1, wherein a short circuit is provided between them.
  3.  前記インバータ制御部は、
     前記各スイッチング素子をオン状態とするゲートパルス信号の時間幅内の何れかの時点において、前記ブリッジ回路の正電圧側と負電圧側との端子間を直列接続して対を成すペアのスイッチング素子の内、ゲートパルス信号でオン動作するスイッチング素子と対の関係にあるスイッチング素子をオン動作させるパルス信号を前記短絡パルス信号として生成し、
     前記ゲートパルス信号によりオン状態となるスイッチング素子と、前記短絡パルス信号によりオン状態となるスイッチング素子とによってブリッジ回路の正電圧側と負電圧側とを短絡することを特徴とする、請求項2に記載の直流電源装置。
    The inverter control unit
    A pair of switching elements that form a pair by connecting the terminals of the positive voltage side and the negative voltage side of the bridge circuit in series at any point within the time width of the gate pulse signal that turns on each of the switching elements. Among them, a pulse signal for turning on a switching element that is paired with a switching element that is turned on by a gate pulse signal is generated as the short circuit pulse signal,
    3. The positive voltage side and the negative voltage side of the bridge circuit are short-circuited by a switching element that is turned on by the gate pulse signal and a switching element that is turned on by the short-circuit pulse signal. The direct current power supply device described.
  4.  前記インバータ制御部は、前記ブリッジ回路の全てのスイッチング素子を同時にオン動作させるパルス信号を前記短絡パルス信号として生成し、
     前記短絡パルス信号によりブリッジ回路の全てのスイッチング素子をオン状態とし、ブリッジ回路の正電圧側と負電圧側とを短絡することを特徴とする、請求項2に記載の直流電源装置。
    The inverter control unit generates a pulse signal that simultaneously turns on all the switching elements of the bridge circuit as the short-circuit pulse signal,
    The DC power supply device according to claim 2, wherein all the switching elements of the bridge circuit are turned on by the short-circuit pulse signal, and the positive voltage side and the negative voltage side of the bridge circuit are short-circuited.
  5.  前記インバータ制御部は、前記ブリッジ回路が備えるスイッチング素子の内で、ブリッジ回路の正電圧側と負電圧側の端子間を直列接続して対を成すスイッチング素子のペアの内で少なくとも一つのペアのスイッチング素子を同時にオン動作させるパルス信号を前記短絡パルス信号として生成し、
     前記短絡パルス信号によりブリッジ回路の正電圧側と負電圧側の端子間を直列接続して対を成すペアのスイッチング素子の少なくとも一つのペアのスイッチング素子をオン状態とし、ブリッジ回路の正電圧側と負電圧側とを短絡することを特徴とする、請求項2に記載の直流電源装置。
    The inverter control unit includes at least one of a pair of switching elements that form a pair by connecting the terminals on the positive voltage side and the negative voltage side of the bridge circuit in series among the switching elements included in the bridge circuit. A pulse signal for simultaneously turning on the switching elements is generated as the short-circuit pulse signal,
    The short-circuit pulse signal turns on at least one pair of switching elements of the pair of switching elements connected in series between the positive voltage side and negative voltage side terminals of the bridge circuit, and the positive voltage side of the bridge circuit The DC power supply device according to claim 2, wherein the negative voltage side is short-circuited.
  6.  前記電流形降圧チョッパ部と前記多相インバータ部との間において、正電圧側と負電圧側と間に短絡用スイッチング素子を備え、
     前記制御部は、前記チョッパ制御部により前記間欠短絡制御を行い、
     前記チョッパ制御部は、前記短絡用スイッチング素子を間欠的に短絡する短絡パルス信号を生成し、
     前記短絡パルス信号によって前記短絡用スイッチング素子をオン状態とすることによって電流形降圧チョッパ部の出力端の正電圧側と負電圧側とを短絡することを特徴とする、請求項1に記載の直流電源装置。
    Between the current source step-down chopper part and the multiphase inverter part, a short-circuit switching element is provided between the positive voltage side and the negative voltage side,
    The control unit performs the intermittent short circuit control by the chopper control unit,
    The chopper control unit generates a short-circuit pulse signal that intermittently short-circuits the short-circuit switching element,
    2. The direct current according to claim 1, wherein the positive voltage side and the negative voltage side of the output terminal of the current source step-down chopper unit are short-circuited by turning on the short-circuit switching element by the short-circuit pulse signal. Power supply.
  7.  前記イグニッションモードにおいて、前記制御部は、短絡電流による昇圧を複数回繰り返して出力電圧をイグニッション設定電圧まで電圧上昇させる昇圧制御と、前記チョッパ制御部によって前記出力電圧をイグニッション設定電圧に維持する定電圧制御とを切り換えて行い、
     前記出力電圧がイグニッション設定電圧に到達した後、昇圧制御から定電圧制御に切り換えることを特徴とする、請求項1から6の何れかに記載の直流電源装置。
    In the ignition mode, the control unit repeats boosting by a short circuit current a plurality of times to increase the output voltage to the ignition set voltage, and the constant voltage that maintains the output voltage at the ignition set voltage by the chopper control unit. Switch between control and
    7. The DC power supply device according to claim 1, wherein after the output voltage reaches an ignition set voltage, switching from step-up control to constant voltage control is performed.
  8.  前記制御部は、チョッパ制御部のチョッパ制御のオンデューティー比と、間欠短絡制御の回数とをパラメータとし、
     前記オンデューティー比によって前記電流形降圧チョッパ部の入力電圧を制御し、
     前記間欠短絡制御の回数によって昇圧比を制御し、
     前記入力電圧と昇圧比によって出力電圧の電圧上昇を制御することを特徴とする、請求項7に記載の直流電源装置。
    The control unit uses the chopper control on-duty ratio of the chopper control unit and the number of intermittent short-circuit controls as parameters,
    Control the input voltage of the current source step-down chopper by the on-duty ratio,
    Control the boost ratio by the number of intermittent short-circuit control,
    8. The DC power supply device according to claim 7, wherein a voltage increase of the output voltage is controlled by the input voltage and the boost ratio.
  9.  前記定常運転モードは、
     定常運転の設定値をイグニッションモードで設定されるイグニッション設定電圧から定常運転設定電圧に切り換えて、出力電圧を定常運転設定電圧に維持する定電圧制御、
     定常運転の設定値をイグニッションモードで設定されるイグニッション設定電圧から定常運転設定電流に切り換えて、出力電流を定常運転設定電流に維持する定電流制御、
     定常運転の設定値をイグニッションモードで設定されるイグニッション設定電圧から定常運転設定電力に切り換えて、出力電力を定常運転設定電力に維持する定電力制御
     の何れかの制御を選択可能であり、
     前記制御部の切換制御は、出力電流がイグニッション設定電流に到達し、かつ、出力電圧がプラズマ発生電圧に下降したとき前記イグニションモードから前記定常運転モードに切り換え、前記定電圧制御、前記定電流制御、前記定電力制御から選択した制御を行うことを特徴とする、請求項1に記載の直流電源装置。
    The steady operation mode is:
    Constant voltage control that maintains the output voltage at the steady operation set voltage by switching the set value for steady operation from the ignition set voltage set in the ignition mode to the steady operation set voltage,
    Constant current control that switches the set value for steady operation from the ignition set voltage set in the ignition mode to the steady operation set current and maintains the output current at the steady operation set current,
    Either the constant power control that maintains the output power at the steady operation set power by switching the set value of the steady operation from the ignition set voltage set in the ignition mode to the steady operation set power can be selected.
    The switching control of the control unit switches from the ignition mode to the steady operation mode when the output current reaches the ignition set current and the output voltage falls to the plasma generation voltage, the constant voltage control, the constant current control 2. The DC power supply device according to claim 1, wherein control selected from the constant power control is performed.
  10.  直流源を構成する電流形降圧チョッパ部と、
     前記電流形降圧チョッパ部の直流出力を複数のスイッチング素子の動作により多相の交流電力に変換する多相インバータ部と、
     前記多相インバータ部の出力を交直変換し、得られた直流を負荷に供給する整流部と、前記電流形降圧チョッパ部を制御するチョッパ制御部、および前記多相インバータ部を制御するインバータ制御部とを有する制御部を備え、プラズマ発生装置に直流電力を供給する直流電源装置の制御方法において、
     前記制御部は、前記チョッパ制御部が制御する、前記プラズマ発生装置にプラズマ放電を発生させるイグニッション電圧を供給するイグニッションモードと、前記プラズマ発生装置のプラズマ放電を継続させる定常運転モードとを切り換える切換制御、および、
     前記電流形降圧チョッパ部または前記多相インバータ部の正電圧側と負電圧側とを間欠的に短絡する間欠短絡制御を行い、
     前記制御部は、前記イグニッションモードにおいて、前記間欠短絡制御によって前記電流形降圧チョッパ部に流れる短絡電流による昇圧動作を制御し、プラズマ発生装置に印加する出力電圧を制御することを特徴とする、直流電源装置の制御方法。
    A current source step-down chopper that constitutes a DC source;
    A multi-phase inverter unit that converts the DC output of the current source step-down chopper unit into multi-phase AC power by operation of a plurality of switching elements;
    A rectification unit that converts the output of the multiphase inverter unit into AC / DC and supplies the obtained direct current to a load, a chopper control unit that controls the current source step-down chopper unit, and an inverter control unit that controls the multiphase inverter unit In a control method of a DC power supply device that includes a controller having
    The control unit controls switching between an ignition mode for supplying an ignition voltage for generating plasma discharge to the plasma generator and a steady operation mode for continuing plasma discharge of the plasma generator controlled by the chopper controller. ,and,
    Performing intermittent short-circuit control to intermittently short-circuit the positive voltage side and negative voltage side of the current source step-down chopper unit or the multiphase inverter unit,
    In the ignition mode, the control unit controls a boost operation by a short-circuit current flowing in the current source step-down chopper unit by the intermittent short-circuit control, and controls an output voltage applied to the plasma generator. Control method of power supply.
  11.  前記制御部は、前記インバータ制御部により前記間欠短絡制御を行い、
     前記インバータ制御部は、前記間欠短絡制御において、
     多相インバータを構成するブリッジ回路のスイッチング素子をパルス幅制御するゲートパルス信号と、前記ブリッジ回路の正電圧側と負電圧側とを間欠的に短絡する短絡パルス信号とを生成し、
     前記ゲートパルス信号と短絡パルス信号とを重畳して制御信号を生成し、
     前記制御信号により前記多相インバータ部を制御し、前記短絡パルス信号によって前記ブリッジ回路の正電圧側と負電圧側との端子間を直列接続して対を成すペアのスイッチング素子を同時にオン状態とし、ブリッジ回路の正電圧側と負電圧側の端子間を短絡することを特徴とする、請求項10に記載の直流電源装置の制御方法。
    The control unit performs the intermittent short circuit control by the inverter control unit,
    In the intermittent short circuit control, the inverter control unit,
    A gate pulse signal for controlling the pulse width of the switching element of the bridge circuit constituting the multiphase inverter, and a short-circuit pulse signal for intermittently short-circuiting the positive voltage side and the negative voltage side of the bridge circuit,
    A control signal is generated by superimposing the gate pulse signal and the short-circuit pulse signal,
    The multi-phase inverter unit is controlled by the control signal, and the pair of switching elements forming a pair by connecting the positive voltage side and the negative voltage side of the bridge circuit in series by the short circuit pulse signal are simultaneously turned on. 11. The method for controlling a DC power supply device according to claim 10, wherein the positive voltage side and negative voltage side terminals of the bridge circuit are short-circuited.
  12.  前記イグニッションモードにおいて、前記制御部は、短絡電流による昇圧を複数回繰り返して出力電圧をイグニッション設定電圧まで電圧上昇させる昇圧制御と、前記チョッパ制御部によって前記出力電圧をイグニッション設定電圧に維持する定電圧制御とを切り換えて行い、
     前記出力電圧がイグニッション設定電圧に到達した後、昇圧制御から定電圧制御に切り換えることを特徴とする、請求項10または11に記載の直流電源装置の制御方法。
    In the ignition mode, the control unit repeats boosting by a short circuit current a plurality of times to increase the output voltage to the ignition set voltage, and the constant voltage that maintains the output voltage at the ignition set voltage by the chopper control unit. Switch between control and
    12. The method of controlling a DC power supply device according to claim 10, wherein after the output voltage reaches an ignition set voltage, switching from step-up control to constant voltage control is performed.
  13.  前記制御部は、チョッパ制御部のチョッパ制御のオンデューティー比と、間欠短絡制御の回数とをパラメータとし、
     前記オンデューティー比によって前記電流形降圧チョッパ部の入力電圧を制御し、
     前記間欠短絡制御の回数によって昇圧比を制御し、
     前記入力電圧と昇圧比によって出力電圧の電圧上昇を制御することを特徴とする、請求項12に記載の直流電源装置の制御方法。
    The control unit uses the chopper control on-duty ratio of the chopper control unit and the number of intermittent short-circuit controls as parameters,
    Control the input voltage of the current source step-down chopper by the on-duty ratio,
    Control the boost ratio by the number of intermittent short-circuit control,
    13. The method of controlling a DC power supply device according to claim 12, wherein a voltage increase of the output voltage is controlled by the input voltage and the boost ratio.
  14.  前記定常運転モードは、
     定常運転の設定値をイグニッションモードで設定されるイグニッション設定電圧から定常運転設定電圧に切り換えて、出力電圧を定常運転設定電圧に維持する定電圧制御、
     定常運転の設定値をイグニッションモードで設定されるイグニッション設定電圧から定常運転設定電流に切り換えて、出力電流を定常運転設定電流に維持する定電流制御、
     定常運転の設定値をイグニッションモードで設定されるイグニッション設定電圧から定常運転設定電力に切り換えて、出力電力を定常運転設定電力に維持する定電力制御
     の何れかの制御を選択可能であり、
     前記制御部の切換制御は、出力電流がイグニッション設定電流に到達し、かつ、出力電圧がプラズマ発生電圧に下降したとき前記イグニションモードから前記定常運転モードに切り換え、前記定電圧制御、前記定電流制御、前記定電力制御から選択した制御を行うことを特徴とする、請求項10に記載の直流電源装置の制御方法。
    The steady operation mode is:
    Constant voltage control that maintains the output voltage at the steady operation set voltage by switching the set value for steady operation from the ignition set voltage set in the ignition mode to the steady operation set voltage,
    Constant current control that switches the set value for steady operation from the ignition set voltage set in the ignition mode to the steady operation set current and maintains the output current at the steady operation set current,
    Either the constant power control that maintains the output power at the steady operation set power by switching the set value of the steady operation from the ignition set voltage set in the ignition mode to the steady operation set power can be selected.
    The switching control of the control unit switches from the ignition mode to the steady operation mode when the output current reaches the ignition set current and the output voltage falls to the plasma generation voltage, the constant voltage control, the constant current control The method according to claim 10, wherein control selected from the constant power control is performed.
PCT/JP2012/072854 2012-09-07 2012-09-07 Dc power supply device, and control method for dc power supply device WO2014038060A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201280075694.4A CN104604337B (en) 2012-09-07 2012-09-07 The control method of continuous-current plant and continuous-current plant
PL12884110T PL2879471T3 (en) 2012-09-07 2012-09-07 Dc power supply device, and control method for dc power supply device
JP2013555675A JP5634626B2 (en) 2012-09-07 2012-09-07 DC power supply and control method of DC power supply
EP12884110.3A EP2879471B1 (en) 2012-09-07 2012-09-07 Dc power supply device, and control method for dc power supply device
US14/414,816 US9137885B2 (en) 2012-09-07 2012-09-07 DC power supply device, and control method for DC power supply device
IN3106KON2014 IN2014KN03106A (en) 2012-09-07 2012-09-07
PCT/JP2012/072854 WO2014038060A1 (en) 2012-09-07 2012-09-07 Dc power supply device, and control method for dc power supply device
KR1020157006021A KR101579416B1 (en) 2012-09-07 2012-09-07 Dc power supply device, and control method for dc power supply device
DE12884110.3T DE12884110T1 (en) 2012-09-07 2012-09-07 DC POWER SUPPLY AND CONTROL PROCEDURE FOR THE DC POWER SUPPLY
TW102116690A TWI491317B (en) 2012-09-07 2013-05-10 Direct current power supply device, and method for controlling direct current power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072854 WO2014038060A1 (en) 2012-09-07 2012-09-07 Dc power supply device, and control method for dc power supply device

Publications (1)

Publication Number Publication Date
WO2014038060A1 true WO2014038060A1 (en) 2014-03-13

Family

ID=50236709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072854 WO2014038060A1 (en) 2012-09-07 2012-09-07 Dc power supply device, and control method for dc power supply device

Country Status (10)

Country Link
US (1) US9137885B2 (en)
EP (1) EP2879471B1 (en)
JP (1) JP5634626B2 (en)
KR (1) KR101579416B1 (en)
CN (1) CN104604337B (en)
DE (1) DE12884110T1 (en)
IN (1) IN2014KN03106A (en)
PL (1) PL2879471T3 (en)
TW (1) TWI491317B (en)
WO (1) WO2014038060A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450519B2 (en) 2013-09-27 2016-09-20 Kyosan Electric Mfg. Co., Ltd. DC power source, and DC power source control method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519319B1 (en) * 2012-09-05 2015-05-11 가부시끼가이샤교산세이사꾸쇼 Dc power supply device, and control method for dc power supply device
DE102015117892A1 (en) * 2015-10-21 2017-04-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for charging or discharging a vehicle battery
GB2548209B (en) * 2016-03-07 2018-03-21 Intelligent Growth Solutions Ltd Controllable power and lighting system
EP3813099B1 (en) 2016-06-15 2022-08-03 Watlow Electric Manufacturing Company Power converter for a thermal system
WO2018034014A1 (en) * 2016-08-17 2018-02-22 三菱電機株式会社 Barrier discharge ignition apparatus
JP6606038B2 (en) * 2016-09-06 2019-11-13 株式会社東芝 Output voltage control circuit
US10608570B2 (en) * 2017-10-18 2020-03-31 Hitachi-Johnson Controls Air Conditioning, Inc. Power converter and refrigeration air conditioner
PL233868B1 (en) * 2017-12-29 2019-12-31 Politechnika Lubelska System and method for powering a plasma reactor with gliding discharge
KR102242234B1 (en) * 2019-05-08 2021-04-20 주식회사 뉴파워 프라즈마 Rf generator and its operating method
CN111865111B (en) * 2020-07-22 2024-02-20 新风光电子科技股份有限公司 High-power AC/DC conversion plasma igniter driving circuit and method
WO2023155969A1 (en) * 2022-02-15 2023-08-24 Universität Stuttgart Circuit arrangement for a plasma source for generating plasma at atmospheric pressure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229138A (en) 1998-02-09 1999-08-24 Murata Mfg Co Ltd Sputtering device
JP2002173772A (en) 2000-12-05 2002-06-21 Ricoh Co Ltd Sputtering apparatus
JP2005094827A (en) * 2003-09-12 2005-04-07 Shunsuke Hosokawa High voltage pulse power supply
WO2010098779A1 (en) * 2009-02-27 2010-09-02 Mks Instruments, Inc. Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator
JP2010225308A (en) * 2009-03-19 2010-10-07 Kanazawa Univ Method and device for generation of induction heat plasma
JP2010255061A (en) 2009-04-27 2010-11-11 Canon Anelva Corp Sputtering apparatus and sputtering treatment method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268470A (en) * 1987-04-27 1988-11-07 Mitsubishi Electric Corp Power convertor
US5418707A (en) * 1992-04-13 1995-05-23 The United States Of America As Represented By The United States Department Of Energy High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs
KR100488448B1 (en) * 2001-11-29 2005-05-11 엘지전자 주식회사 Generator for sustain pulse of plasma display panel
JP4406754B2 (en) * 2003-07-30 2010-02-03 株式会社アイ・ライティング・システム Discharge lamp lighting device
JP4526879B2 (en) * 2004-06-18 2010-08-18 四変テック株式会社 DC power supply
WO2006099759A2 (en) * 2005-03-24 2006-09-28 Oerlikon Trading Ag, Trübbach Vacuum plasma generator
JP5086043B2 (en) * 2007-11-30 2012-11-28 日立アプライアンス株式会社 Power converter and control method of power converter
JP5429771B2 (en) * 2008-05-26 2014-02-26 株式会社アルバック Sputtering method
TW201031276A (en) 2009-02-06 2010-08-16 Creating Nano Technologies Inc Resonant inverter and plasma driving system icluding the same
JP5153003B2 (en) * 2009-08-19 2013-02-27 ウシオ電機株式会社 High pressure discharge lamp lighting device and projector
JP5399563B2 (en) 2010-08-18 2014-01-29 株式会社アルバック DC power supply
US9379643B2 (en) * 2010-12-23 2016-06-28 The Regents Of The University Of Colorado, A Body Corporate Electrosurgical generator controller for regulation of electrosurgical generator output power
US20130038216A1 (en) * 2012-01-19 2013-02-14 Alvin Hao Remote controlled electronic ballast with digital display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229138A (en) 1998-02-09 1999-08-24 Murata Mfg Co Ltd Sputtering device
JP2002173772A (en) 2000-12-05 2002-06-21 Ricoh Co Ltd Sputtering apparatus
JP2005094827A (en) * 2003-09-12 2005-04-07 Shunsuke Hosokawa High voltage pulse power supply
WO2010098779A1 (en) * 2009-02-27 2010-09-02 Mks Instruments, Inc. Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator
JP2010225308A (en) * 2009-03-19 2010-10-07 Kanazawa Univ Method and device for generation of induction heat plasma
JP2010255061A (en) 2009-04-27 2010-11-11 Canon Anelva Corp Sputtering apparatus and sputtering treatment method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2879471A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450519B2 (en) 2013-09-27 2016-09-20 Kyosan Electric Mfg. Co., Ltd. DC power source, and DC power source control method

Also Published As

Publication number Publication date
EP2879471A4 (en) 2016-07-06
TW201412199A (en) 2014-03-16
PL2879471T3 (en) 2017-09-29
KR101579416B1 (en) 2015-12-21
EP2879471B1 (en) 2017-05-10
JP5634626B2 (en) 2014-12-03
CN104604337A (en) 2015-05-06
JPWO2014038060A1 (en) 2016-08-08
KR20150038625A (en) 2015-04-08
IN2014KN03106A (en) 2015-05-08
US20150195896A1 (en) 2015-07-09
DE12884110T1 (en) 2015-09-24
CN104604337B (en) 2016-05-18
EP2879471A1 (en) 2015-06-03
TWI491317B (en) 2015-07-01
US9137885B2 (en) 2015-09-15

Similar Documents

Publication Publication Date Title
JP5634626B2 (en) DC power supply and control method of DC power supply
JP5729732B2 (en) DC power supply and control method of DC power supply
JP5207568B1 (en) Current source inverter device and control method of current source inverter device
KR101519319B1 (en) Dc power supply device, and control method for dc power supply device
JP5679241B1 (en) Voltage source DC power supply and control method for voltage source DC power supply
JP5679239B1 (en) Single phase inverter
JP6142926B2 (en) Power converter
KR101300273B1 (en) Apparatus for controlling operation of air conditioner
WO2015072009A1 (en) Bidirectional converter
US11799373B2 (en) DC pulse power supply device
US11764666B2 (en) DC pulse power supply device and frequency control method for DC pulse power supply device
EP3916993A1 (en) Dc pulsed power supply device
JP5170095B2 (en) High pressure discharge lamp lighting device
JP2013106393A (en) Instantaneous voltage drop compensation device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013555675

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884110

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414816

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012884110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012884110

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157006021

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE