TW201031276A - Resonant inverter and plasma driving system icluding the same - Google Patents

Resonant inverter and plasma driving system icluding the same Download PDF

Info

Publication number
TW201031276A
TW201031276A TW98103921A TW98103921A TW201031276A TW 201031276 A TW201031276 A TW 201031276A TW 98103921 A TW98103921 A TW 98103921A TW 98103921 A TW98103921 A TW 98103921A TW 201031276 A TW201031276 A TW 201031276A
Authority
TW
Taiwan
Prior art keywords
switch
capacitor
electrically connected
voltage
resonant
Prior art date
Application number
TW98103921A
Other languages
Chinese (zh)
Inventor
Ji-Yung Lee
Sheng-Fang Pai
Chia-Ming Chang
Hung-Chan Chiang
Fu-Sheng Pai
Shyh-Jier Huang
Original Assignee
Creating Nano Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creating Nano Technologies Inc filed Critical Creating Nano Technologies Inc
Priority to TW98103921A priority Critical patent/TW201031276A/en
Publication of TW201031276A publication Critical patent/TW201031276A/en

Links

Landscapes

  • Inverter Devices (AREA)
  • Plasma Technology (AREA)

Abstract

Disclosed are a resonant inverter and a plasma driving system including the same. The resonant inverter includes a switch group, and a resonant circuit, wherein the switch group is configured to output a square wave voltage, and the resonant circuit is configured to output a sine wave voltage and a sine wave current in accordance with the square wave voltage. The switch group includes an upper arm switch, a lower arm switch, a first diode, a second diode, a first capacitor and a second capacitor. The lower arm switch is electrically connected to the upper arm switch. The first diode and the first capacitor are respectively and electrically connected to the upper arm switch in parallel. The second diode and the second capacitor are respectively and electrically connected to the lower arm switch in parallel. In addition, there is a phase difference between the sine wave voltage and the sine wave current. The plasma driving system includes a DC power supply, the resonant inverter, and a plasma load.

Description

201031276 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種諧振換流器與包含此諧振換流器 之電漿驅動器系統,特別是有關於一種可於常溫下驅動電 漿之諧振換流器與電漿驅動器系統。 【先前技術】201031276 VI. Description of the Invention: [Technical Field] The present invention relates to a resonant converter and a plasma driver system including the same, and more particularly to a resonance capable of driving plasma at a normal temperature Inverter and plasma drive system. [Prior Art]

隨著科技的快連發展,非熱電漿(Nonthermal Plasma) 之相關技術已廣泛地運用在各項產業中,包括日常生活之 曰光燈、空氣清净機和電漿電視均為其相關產品。在工業 上之應用,較常見者有、表面改質、電漿蝕刻、臭氧或紫 外線產生等。 目前習知的非熱電漿技術係操作於低壓下,其電源種 類均以射頻或微波放電為主,然而低壓操作需要真空幫浦 ,維持低壓環境,其設置與操作成本較高,而且真空設備 合易跫強酸、強驗、微粒和水氣所影響而故障,操作過程 :產生的反應產物亦可能導致真空設備受損,使得真空幫 2護不易。再者,由於低壓m统氣體流量低,不 ,合應用於大範圍處理,而微波或射頻放電須考量負載之 =題’方能提升$統效能。在微波或射頻放電技術中, 波能田f阻抗匹配問題’會導致反射波的出現,使得電磁 i…法完=傳送到負載上,而降低能量傳輸的效率。 關的2會熱電漿技術中,當開關開啟時,開 會由零準:提U壓準位降至零準位’而開關的電流則 °某一電流準位,由於電壓變化曲線和電 4 201031276 流變化曲線會互相交疊,因此產生了切換損(switching loss) 而切換損的值即為交疊部份的面積。類似地,當開關關閉 時,開關的電壓會由零準位提高到某一電壓準位降,而開 關的電流則會由某一電流準位降低至零準位。因此開關關 閉時也會產生切換損。 因此,如何於常壓下,實現一組低切換損高效能的電 漿電源供應器,已成為目前電漿科技發展之重要議題。 . 【發明内容】 因此,本發明之一方面係在提供一種諳振換流器與包 含此諧振換流器之電漿驅動器系統,以於常壓下驅動電漿 負載。 根據本發明之一實施例,此諧振換流器包含開關组和 諧振電路,其中開關组係用以因應直流電源來輸出方波電 壓,而諧振電路係電性連接至開關組,以因應方波電壓來 輸出弦波電壓和弦波電流至電漿負載。此開關組包含上臂 ❿ 開關、下臂開關、第一二極體、第二二極體、第一電容和 第二電容。下臂開關係電性連接至上臂開關,第一二極體 係電性並聯至上臂開關,第二二極體係電性並聯至下臂開 關,第一電容係電性並聯至上臂開關,第二電容係電性並 聯至下臂開關。其中上臂開關和下臂開關係相互切換來輸 出方波電壓,弦波電壓與弦波電流分別具有電壓波形和電 流波形,此電壓波形與電流波形之間具有相位差。 根據本發明之一實施例,此電漿驅動器系統包含直流 ' 電源、諧振換流器和電漿負載。直流電源係用以提供直流 5 201031276 電壓至諧振換流器’而諧振換流器係接收此直流電壓來提 '供弦波電壓和電流至電漿負載,以使電漿負載產生電漿。 【實施方式】 請參照第1圖’其係繪示根據本發明一實施例之諧振 換流器100的電路結構示意圖,其中諧振換流器100係用 以接收直流電源200所提供之電能來驅動電漿負載300。 諧振換流器100包含開關组110和諧振電路120。開關组 φ 110係用以因應直流電源200來輸出方波電壓,而諧振電 路120係電性連接於開關组H〇和電漿負載3〇〇之間,以 因應開關组110所提供之方波電壓來輸出弦波電壓和弦波 電流至電漿負載300,其中諧振電路120包含有電感和電 容,以儲存或釋放開關组110提供的電能。開關組110包 含上臂開關S1、下臂開關S2、第一二極體D1、第二二極 體D2、第一電容C1和第二電容C2,其中上臂開關S1和 下臂開關S2為功率電晶體(power transistor),例如:金屬 φ 氧化半導體(Metal Oxide Silicon,MOS)開關或絕緣閘雙極 電晶體(Insulated Gate Bipolar Transistor,IGBT)。下臂開關 S2係電性連接至上臂開關si,而方波電壓係從其連接節點 A輸出。第一二極體D1和第一電容C1係電性並聯至上臂 開關S1,而第二二極體D2和第二電容C2係電性並聯至下 臂開關S2。在本實施例中,會有另外的控制電路(未緣示於 圖式中)控制著上臂開關S1和下臂開關S2的切換。 ' 在本實施例中,上臂開關S1、第一二極體D1和第一 - 電容C1可利用金屬氧化半導體(Metal Oxide Silicon, M0S) 201031276 開關來製成,其中第一二極體D1為M0S開關的本體二極 體,而電容C1為寄生電容。類似地,下臂開關S2、第一 二極體D2和第二電容C2亦可利用金屬氧^半導體(Me: Oxide Silicon,MOS)開關來製成,其中第二二極體為 MOS開關的本體二極體,而電容C2為寄生電容。 … ❹ 請參照第2至6圖’第2圖係繪示譜振電路12〇之電 流和電壓波形示意圖,帛3至6圖係繪示諧振電路12〇之 電流Ir的電流流向示意圖,其中Vgsl係代表上臂開1 的控制電壓,Vgs2係代表下臂開關S2的控制電壓,* 表諧振電路12G的輸人電壓’ 代表輪人電壓&之 成分’ Ir代表流過職電路12G之電流。 ς 施例之諧振換流器100於各時間區段的動作。 =區段1(t0〜tl):此時開關S1和S2為截止狀態。在 H ’由於諧振電路120之等效阻抗為電感性,因此 如第圖所不’電流Ir係從諸振電路120流出,經過二極 體D1、直流電源200 ’再流回諧振電路12〇。另外,電流 Ir亦對電容C2充f,使電容〇2之電壓直流電源之電 壓相同,並使開關S1達到零電壓切換。 時,區段2(tl〜tl’):此時開關S1為導通狀態,%為 截止狀態。在此時段中’由於諳振電路12〇之電感的續流 作用’如第3圖所示’電流Ir仍從譜振電路120流出,經 過二極體D卜直流電源扇,再流回諧振電路12〇。 時間區段3(tl’〜t2):此時開關S1為導通狀態,開關 S2為截止狀態。在此時段中,如第4圖所示,諧振電路12〇 之電感的續流作用已結束,因此電流Ir從直流電源2〇〇流 出’經過開關si、諧振電路12〇,再流回直流電源2〇〇。 7 201031276 時間區段4(t2〜t3):此時開關S1和S2為截止狀態。在 此時段中,由於譜·振電路120之電感的續流作用,如第5 圖所示,電流Ir從諧振電路120流出,經過二極體D2,再 流回諧振電路120。另外,電流Ir亦對電容C1充電,且流 過二極體D2,,如此可使開關S2上的電壓降至零來達到 零電壓切換,並降低開關切換時的功率損失(switching loss) 〇 時間區段5(t3〜t3’):此時開關S1為截止狀態,開關 S2為開啟狀態。在此時段中,由於諧振電路120之電感的 ® 續流作用,如第5圖所示,電流Ir仍從譜振電路120流出, 經過二極體D2,再流回諧振電路120。 時間區段6(t3’〜t4):此時開關S1為截止狀態,開關 S2為導通狀態。在此時段中,諧振電路120之電感的續流 作用已結束,而諧振電路120之電容開始釋放電能,因此 如第6圖所示,電流Ir由諧振電路120流出,經過開關S2, 再流回諧振電路120。 由上述說明可知,諧振電路120係於一個工作週期(時 ® 間點t0〜t4)中,反覆導通和截止開關S1和S2,並利用諧振 電路120具有電感性的特性,來提供具有相位差0之弦波 電流和弦波電壓至電漿負載。由於弦波電壓具有平滑的波 形,因此弦波電壓可提供電漿負載為平均的電磁場。 請同時參照第7圖和第8圖,第7圖係繪示根據本發 明一實施例之弦波電壓和弦波電流的波形示意圖,第8圖 - 係繪示根據本發明一實施例之上臂開關S1之電壓和電流 的波形示意圖。在第7圖中,曲線VI係代表弦波電壓之 電壓波形,曲線II係代表弦波電壓之電流波形。在第8圖 8 201031276 中’曲線V2係代表上臂開關S1之電壓波形,曲線12係代 表下臂開關S2之電流波形。由第7圖和第8圖所繪示之波 形圖可知:由於弦波電壓波形(曲線Vl)與弦波電流波形(曲 線II)之間具有相位差,因此當上臂開關S1動作時(導通或 截止)’電流曲線和電壓曲線重疊的面積大為減少’開關損 的值可大為降低。 類似地’由於下臂開關S2之動作與上臂開關S1相似,With the rapid development of technology, non-thermal plasma related technologies have been widely used in various industries, including daily life, xenon lamps, air cleaners and plasma TVs. In industrial applications, it is more common, surface modification, plasma etching, ozone or ultraviolet light generation. At present, the conventional non-thermal plasma technology is operated under low voltage, and the power supply types are mainly RF or microwave discharge. However, the low pressure operation requires a vacuum pump to maintain a low pressure environment, and the installation and operation cost are high, and the vacuum equipment is combined. It is easy to be affected by acid, strong test, particulate and moisture, and the process of operation: the reaction product produced may also cause damage to the vacuum equipment, making vacuum protection difficult. Furthermore, due to the low flow rate of the low-pressure m-system gas, it is not suitable for a wide range of treatments, and the microwave or radio-frequency discharge must take into account the load of the problem. In microwave or RF discharge technology, the wave energy field 'impedance matching problem' causes the appearance of reflected waves, so that the electromagnetic i... method is transmitted to the load, and the efficiency of energy transmission is reduced. In the 2 hot plasma technology, when the switch is turned on, the meeting is made up of zero: the U pressure level is reduced to zero level 'the current of the switch is a certain current level, due to the voltage change curve and electricity 4 201031276 The flow curves will overlap each other, thus creating a switching loss and the value of the switching loss is the area of the overlap. Similarly, when the switch is turned off, the voltage of the switch will increase from zero to a certain voltage level, and the current of the switch will be reduced from a certain current level to zero. Therefore, switching loss occurs when the switch is turned off. Therefore, how to realize a set of low-switching high-performance plasma power supply under normal pressure has become an important issue in the development of plasma technology. SUMMARY OF THE INVENTION Accordingly, one aspect of the present invention provides a resonant converter and a plasma driver system including the resonant converter for driving a plasma load at atmospheric pressure. According to an embodiment of the invention, the resonant converter comprises a switch group and a resonant circuit, wherein the switch group is configured to output a square wave voltage according to a DC power source, and the resonant circuit is electrically connected to the switch group to respond to the square wave The voltage is used to output the sinusoidal voltage and the sinusoidal current to the plasma load. The switch group includes an upper arm ❿ switch, a lower arm switch, a first diode, a second diode, a first capacitor, and a second capacitor. The lower arm opening relationship is electrically connected to the upper arm switch, the first two-pole system is electrically connected in parallel to the upper arm switch, the second two-pole system is electrically connected in parallel to the lower arm switch, and the first capacitor is electrically connected in parallel to the upper arm switch, and the second capacitor is electrically connected in parallel to the upper arm switch Electrically connected in parallel to the lower arm switch. The upper arm switch and the lower arm open relationship are mutually switched to output a square wave voltage, and the sinusoidal voltage and the sinusoidal current respectively have a voltage waveform and a current waveform, and the voltage waveform has a phase difference with the current waveform. According to one embodiment of the invention, the plasma driver system includes a DC 'power supply, a resonant converter, and a plasma load. The DC power supply is used to provide a DC 5 201031276 voltage to the resonant converter ' and the resonant converter receives this DC voltage to provide 'sinus voltage and current to the plasma load to generate plasma for the plasma load. [Embodiment] Please refer to FIG. 1 , which is a schematic diagram showing the circuit structure of a resonant converter 100 according to an embodiment of the present invention. The resonant converter 100 is configured to receive the power provided by the DC power source 200 to drive Plasma load 300. The resonant converter 100 includes a switch block 110 and a resonant circuit 120. The switch group φ 110 is used to output a square wave voltage in response to the DC power source 200, and the resonant circuit 120 is electrically connected between the switch group H〇 and the plasma load 3〇〇 to respond to the square wave provided by the switch group 110. The voltage is used to output a sinusoidal voltage and a sinusoidal current to the plasma load 300, wherein the resonant circuit 120 includes an inductor and a capacitor to store or release the electrical energy provided by the switch bank 110. The switch group 110 includes an upper arm switch S1, a lower arm switch S2, a first diode D1, a second diode D2, a first capacitor C1 and a second capacitor C2, wherein the upper arm switch S1 and the lower arm switch S2 are power transistors (power transistor), for example: metal φ Oxide Semiconductor (MOS) switch or Insulated Gate Bipolar Transistor (IGBT). The lower arm switch S2 is electrically connected to the upper arm switch si, and the square wave voltage is output from its connection node A. The first diode D1 and the first capacitor C1 are electrically connected in parallel to the upper arm switch S1, and the second diode D2 and the second capacitor C2 are electrically connected in parallel to the lower arm switch S2. In the present embodiment, there is an additional control circuit (not shown) that controls the switching of the upper arm switch S1 and the lower arm switch S2. In the present embodiment, the upper arm switch S1, the first diode D1, and the first-capacitor C1 can be fabricated by using a metal oxide semiconductor (M0S) 201031276 switch, wherein the first diode D1 is M0S. The body of the switch is diode, and the capacitor C1 is a parasitic capacitor. Similarly, the lower arm switch S2, the first diode D2, and the second capacitor C2 can also be fabricated by using a Me: Oxide Silicon (MOS) switch, wherein the second diode is the body of the MOS switch. Dipole, and capacitor C2 is a parasitic capacitor. ... ❹ Please refer to Figures 2 to 6'. Figure 2 is a schematic diagram showing the current and voltage waveforms of the spectral circuit 12〇. Figures 3 to 6 show the current flow of the current Ir of the resonant circuit 12〇, where Vgsl It represents the control voltage of the upper arm open 1, Vgs2 represents the control voltage of the lower arm switch S2, and the input voltage of the table resonance circuit 12G represents the current of the wheel voltage & ' Ir represents the current flowing through the circuit 12G. The action of the resonant converter 100 of the embodiment in each time zone. = Section 1 (t0 to t1): At this time, the switches S1 and S2 are in an off state. Since the equivalent impedance of the resonant circuit 120 is inductive at H ', the current Ir flows out of the vibrating circuit 120 as shown in the figure, and flows back to the resonant circuit 12 through the diode D1 and the DC power supply 200'. In addition, the current Ir also charges the capacitor C2, so that the voltage of the voltage DC power of the capacitor 〇2 is the same, and the switch S1 is switched to zero voltage. In the case of the segment 2 (tl~tl'): at this time, the switch S1 is in an on state and the % is in an off state. During this period, 'the freewheeling action of the inductance of the oscillating circuit 12' is as shown in Fig. 3'. The current Ir still flows out from the spectral circuit 120, passes through the diode D, and then flows back to the resonant circuit. 12〇. Time zone 3 (tl'~t2): At this time, the switch S1 is in an on state, and the switch S2 is in an off state. During this period, as shown in FIG. 4, the freewheeling action of the inductance of the resonant circuit 12〇 has ended, so the current Ir flows from the DC power supply 2〇〇 through the switch si, the resonant circuit 12〇, and then back to the DC power supply. 2〇〇. 7 201031276 Time zone 4 (t2~t3): At this time, switches S1 and S2 are in an off state. In this stage, due to the freewheeling action of the inductance of the spectrum/oscillation circuit 120, as shown in Fig. 5, the current Ir flows from the resonance circuit 120, passes through the diode D2, and flows back to the resonance circuit 120. In addition, the current Ir also charges the capacitor C1 and flows through the diode D2, so that the voltage on the switch S2 can be reduced to zero to achieve zero voltage switching, and the switching loss when switching is reduced. Section 5 (t3 to t3'): At this time, the switch S1 is in an off state, and the switch S2 is in an on state. During this period, due to the freewheeling action of the inductance of the resonant circuit 120, as shown in Fig. 5, the current Ir still flows out of the spectral circuit 120, passes through the diode D2, and flows back to the resonant circuit 120. Time section 6 (t3' to t4): At this time, the switch S1 is in an off state, and the switch S2 is in an on state. During this period, the freewheeling action of the inductance of the resonant circuit 120 has ended, and the capacitance of the resonant circuit 120 begins to discharge electrical energy, so as shown in Fig. 6, the current Ir flows out of the resonant circuit 120, passes through the switch S2, and flows back. Resonant circuit 120. As can be seen from the above description, the resonant circuit 120 is in one duty cycle (times t0 to t4), turns on and off the switches S1 and S2 repeatedly, and utilizes the inductive characteristic of the resonant circuit 120 to provide a phase difference of 0. The sinusoidal current and the sinusoidal voltage to the plasma load. Since the sinusoidal voltage has a smooth waveform, the sinusoidal voltage provides an electromagnetic field with an average plasma load. Please refer to FIG. 7 and FIG. 8 simultaneously. FIG. 7 is a schematic diagram showing waveforms of sine wave voltage and sine wave current according to an embodiment of the present invention, and FIG. 8 is a diagram showing a top arm switch according to an embodiment of the present invention. Schematic diagram of the waveform of voltage and current of S1. In Fig. 7, the curve VI represents the voltage waveform of the sine wave voltage, and the curve II represents the current waveform of the sine wave voltage. In Fig. 8 Fig. 8 201031276, the curve V2 represents the voltage waveform of the upper arm switch S1, and the curve 12 represents the current waveform of the lower arm switch S2. It can be seen from the waveform diagrams shown in FIG. 7 and FIG. 8 that since the sine wave voltage waveform (curve V1) and the sine wave current waveform (curve II) have a phase difference, when the upper arm switch S1 is actuated (conducting or Cutoff] 'The area where the current curve and the voltage curve overlap is greatly reduced. The value of the switching loss can be greatly reduced. Similarly, since the action of the lower arm switch S2 is similar to that of the upper arm switch S1,

,此虽下臂開關S2動作時(開啟或關其開關損也可因 相位差而降低。 "月參照第9圖’其係繪示根據本發明一實施例之諧振 換飢器400的電路結構示意圖。諧振換流器娜係類似於 諧振換流器100’值不同之處在於諧振換流器權之諧振 420 #使用串並聯型諸振電路。諸振電路42〇包含有 第一諸振電感422、第-諧振電容424、第二諧振電感426 和第一諧振電容428。第一諧振電感422具有第一電感端 點422a和第二電感端點42沘,而第一電感端點422&係電 性連接至節點A。第〜諧振電容424具有第一電容端點424a 和第二電容端點424b,第一電容端點424a係電性連接至 第二電感端點422b。第二諧振電感426具有第三電感端點 426a和第四電感端點426b,第三電感端點係電性連接至第 一電容端點424b °第二諧振電容428係電性並聯至第二諧 振電感426。 在本實施例中’電感422和電容424係組成串聯諧振 槽’而電感426和電容428係組成並聯諧振槽。串聯諧振 槽之諸振頻率為開關組的操作,因此串聯諧振槽可等效視 為短路’同時整體諧振電路之輸入阻抗將受並聯諧振槽的 201031276 影響而成電感性’使得上臂開關S1和下臂開關S2切換時, •其電流流過二極體D1和D2,如此可達到零電壓切換之效 果。 ❹When the lower arm switch S2 is actuated (the switching loss is turned on or off, the switching loss may be lowered due to the phase difference. "Month. FIG. 9 is a circuit showing the resonant hunger 400 according to an embodiment of the present invention. Schematic diagram of the structure. The resonant converter is similar to the resonant converter 100' in that the resonance of the resonant converter is 420. The series-parallel type vibration circuit is used. The vibration circuit 42 includes the first vibration. The inductor 422, the first-resonant capacitor 424, the second resonant inductor 426, and the first resonant capacitor 428. The first resonant inductor 422 has a first inductor terminal 422a and a second inductor terminal 42沘, and the first inductor terminal 422& The first resonant capacitor terminal 424a is electrically connected to the second inductor terminal 422b. The second resonant inductor 424a is electrically connected to the second inductor terminal 422b. The second resonant inductor is electrically connected to the second capacitor terminal 424b. 426 has a third inductor terminal 426a and a fourth inductor terminal 426b. The third inductor terminal is electrically connected to the first capacitor terminal 424b. The second resonant capacitor 428 is electrically coupled in parallel to the second resonant inductor 426. In this embodiment, the inductor 422 and the capacitor 424 are combined. The series resonant tank' and the inductor 426 and the capacitor 428 form a parallel resonant tank. The vibration frequencies of the series resonant tank are the operation of the switch group, so the series resonant tank can be regarded as a short circuit equivalently while the input impedance of the overall resonant circuit will be paralleled. The 201031276 of the resonant tank affects the inductance. When the upper arm switch S1 and the lower arm switch S2 are switched, the current flows through the diodes D1 and D2, so that the effect of zero voltage switching can be achieved.

請參照第10圖’其係續·示根據本發明一實施例之電漿 驅動器系統600之功能方塊圖。電漿驅動器系統600包含 直流電源610、諧振換流器1 〇〇、高壓變壓器620、控制與 保護電路630和電漿負載300。在本實施例中,直流電源 610係用以提供直流電壓至諧振換流器1〇〇,而諧振換流器 1〇〇則因應此直流電壓來輸出弦波電壓和電流至高壓變壓 器620。高壓變壓器62〇係用以提高弦波電壓之電壓值並 將其輸出至電漿負載3GG。控制與保護電路㈣係電性連 接至諧振換流器100 ’用以控制譜振換流器議之開關, 並瓜測弦波電壓和紘波電流之值,以提供諸振換流器 :外’若諧振換流器100所輸出之電壓值已可 符。電漿負載之要求變職620則可以省略。 本發實施例揭露如上,然其並非用以限定 圍内,當可潤本發明之精神和範 當視後附之申請專利範®所界.定者^本發明之保護範圍 【圖式簡單說明】 為讓本發明之上述和其 顯易懂,上文特舉一較佳眘$目的、特徵、和優點能更明 細說明如下: 貧施例,並配合所附圖式,作詳 第1圖係繪示根據本發明 一實施例之諧振換流器的電 201031276 路結構示意圖。 第2圖係繪示諳振電路之電流和電壓波形示意圖。 第3至6圖係繪示諧振電路之電流流向示意圖 第7圖係繪示根據本發明一實施例之弦波電壓和弦波 電流的波形不意圖。 第8圖係繪示根據本發明一實施例之上臂開關之電壓 和電流的波形不意圖。 第9圖係繪示根據本發明一實施例之諧振換流器的電 φ 路結構示意圖。 第10圖係繪示根據本發明一實施例之電漿驅動器系 統之功能方塊圖。 【主要元件符號說明】 100 :諧振換流器 200 :直流電源 300 :電漿負載 110 :開關组 120 :諳振電路 400 :諧振換流器 420 :諧振電路 422 :諧振電感 424 :諧振電容 426 :諧振電感 428 :諳振電容 600 :電漿驅動器系統 610 .直流電源 620 :高壓變壓器 630 :保護電路 S1 :上臂開關 S2 :下臂開關 D1 :二極體 D2 :二極體 C1 :電容 C2 :電容 11 201031276 A :節點 Vgsl :控制電壓 Vgs2 :控制電壓 Vr :輸入電壓 Vrl :基頻成分 Ir :電流 to :時間點 tl :時間點 tl’ :時間點 t2 ··時間點 t3 :時間點 t3’ :時間點 t4 :時間點 0 :相位差 11 :曲線 VI :曲線 12 :曲線 V2 ··曲線 12Referring to Figure 10, there is shown a functional block diagram of a plasma driver system 600 in accordance with an embodiment of the present invention. The plasma driver system 600 includes a DC power source 610, a resonant converter 1 〇〇, a high voltage transformer 620, a control and protection circuit 630, and a plasma load 300. In the present embodiment, the DC power source 610 is used to supply a DC voltage to the resonant converter 1〇〇, and the resonant converter 1〇〇 outputs the sinusoidal voltage and current to the high voltage transformer 620 in response to the DC voltage. The high voltage transformer 62 is used to increase the voltage value of the sinusoidal voltage and output it to the plasma load 3GG. The control and protection circuit (4) is electrically connected to the resonant converter 100' to control the switching of the spectral converter, and to measure the value of the sinusoidal voltage and the chopping current to provide the vibration converter: external ' If the voltage value output by the resonant converter 100 is already acceptable. The requirement for the plasma load change 620 can be omitted. The present invention is disclosed above, but it is not intended to be limited to the scope of the invention, and the scope of the invention is defined by the spirit of the invention and the scope of the invention. In order to make the above description of the present invention easier to understand, the above detailed description of the present invention can be more clearly described as follows: a poor example, and with reference to the drawings, A schematic diagram of the electrical structure of the resonant inverter of the 201031276 circuit according to an embodiment of the invention is shown. Figure 2 is a schematic diagram showing the current and voltage waveforms of the resonant circuit. 3 to 6 are diagrams showing the current flow direction of the resonant circuit. Fig. 7 is a view showing the waveforms of the sine wave voltage and the sine wave current according to an embodiment of the present invention. Figure 8 is a diagram showing waveforms of voltages and currents of the upper arm switch according to an embodiment of the present invention. Figure 9 is a block diagram showing the structure of an electric φ circuit of a resonant converter according to an embodiment of the present invention. Figure 10 is a functional block diagram of a plasma driver system in accordance with an embodiment of the present invention. [Main component symbol description] 100: Resonant inverter 200: DC power supply 300: Plasma load 110: Switch group 120: Vibration circuit 400: Resonant inverter 420: Resonance circuit 422: Resonance inductor 424: Resonance capacitor 426: Resonant Inductor 428: Capacitor Capacitor 600: Plasma Driver System 610. DC Power Supply 620: High Voltage Transformer 630: Protection Circuit S1: Upper Arm Switch S2: Lower Arm Switch D1: Diode D2: Diode C1: Capacitor C2: Capacitor 11 201031276 A : Node Vgsl : Control voltage Vgs2 : Control voltage Vr : Input voltage Vrl : Fundamental frequency component Ir : Current to : Time point tl : Time point tl ' : Time point t2 ·· Time point t3 : Time point t3' : Time point t4: time point 0: phase difference 11: curve VI: curve 12: curve V2 · curve 12

Claims (1)

201031276 七、申請專利範圍·· 1. 一種諧振換流器,用以驅動一電漿負載,其中該諧 振換流器包含: 一開關组,用以因應一直流電源來輸出一方波電 壓,其中該開關組包含: 一上臂開關; 一下臂開關,電性連接至該上臂開關; 一第一二極體,電性並聯至該上臂開關; ® 一第二二極體,電性並聯至該下臂開關; 一第一電容,電性並聯至該上臂開關;以及 一第二電容,電性並聯至該下臂開關; 其中,該上臂開關和該下臂開關係相互切換 來輸出該方波電壓;以及 一諧振電路,電性連接至該開關组,以因應該方 波電壓來輸出一弦波電壓和一弦波電流至該電漿負 載; ® 其中,該弦波電壓與該弦波電流分別具有一電壓 波形和一電流波形,該電壓波形與該電流波形之間具 有相位差。 2.如申請專利範圍第1項所述之諧振換流器,其中該 諳振電路包含: 一第一諧振電感,具有一第一電感端點和一第二電 感端點,其中該第一電感端點係電性連接至該上臂開關 13 201031276 和該下臂開關; •一第一諧振電容,具有一第一電容端點和一第二電 容端點,其中該第一電容端點係電性連接至該第二電感 端點; 一第二諧振電感,具有一第三電感端點和一第四電 感端點,其中該第三電感端點係電性連接至該第二電容 端點;以及 一第二諳振電容,電性並聯至該第二諧振電感。 ® 3.如申請專利範圍第1項所述之諧振換流器,其中 該上臂開關為一金屬氧化半導體(Metal Oxide Silicon, M0S)開關,該第一二極體為該金屬氧化半導體開關之本 體二極體,該第一電容為該金屬氧化半導體開關之寄生 電容。 4. 如申請專利範圍第1項所述之諧振換流器,其中 該下臂開關為一金屬氧化半導體(Metal Oxide Silicon, ® MOS)開關,該第二二極體為該金屬氧化半導體開關之本 體二極體,該第二電容為該金屬氧化半導體開關之寄生 電容。 5. 如申請專利範圍第1項所述之諧振換流器,其中 該上臂開關和該下臂開關為絕緣閘雙極電晶體 (Insulated Gate Bipolar Transistor,IGBT)。 6. —種電漿驅動器系統,包含: 201031276 用以提供一直流電壓; ,電性連接至該直流電壓源,其中該 一開關组,用以因應 電壓,其中該開關組包含 一上臂開關;201031276 VII. Patent Application Range·· 1. A resonant converter for driving a plasma load, wherein the resonant converter comprises: a switch group for outputting a square wave voltage in response to a DC power source, wherein The switch group includes: an upper arm switch; a lower arm switch electrically connected to the upper arm switch; a first diode connected electrically to the upper arm switch; a second diode connected electrically to the lower arm a first capacitor electrically connected in parallel to the upper arm switch; and a second capacitor electrically connected in parallel to the lower arm switch; wherein the upper arm switch and the lower arm open relationship are mutually switched to output the square wave voltage; And a resonant circuit electrically connected to the switch group to output a sine wave voltage and a sine wave current to the plasma load according to the square wave voltage; wherein the sine wave voltage and the sine wave current respectively have A voltage waveform and a current waveform having a phase difference from the current waveform. 2. The resonant converter of claim 1, wherein the resonant circuit comprises: a first resonant inductor having a first inductor end and a second inductor end, wherein the first inductor The end point is electrically connected to the upper arm switch 13 201031276 and the lower arm switch; • a first resonant capacitor having a first capacitor end point and a second capacitor end point, wherein the first capacitor end point is electrically Connected to the second inductor end point; a second resonant inductor having a third inductor end point and a fourth inductor end point, wherein the third inductor end point is electrically connected to the second capacitor end point; A second oscillating capacitor is electrically connected in parallel to the second resonant inductor. 3. The resonant converter of claim 1, wherein the upper arm switch is a Metal Oxide Silicon (MOS) switch, and the first diode is a body of the metal oxide semiconductor switch. The diode, the first capacitor is a parasitic capacitance of the metal oxide semiconductor switch. 4. The resonant converter of claim 1, wherein the lower arm switch is a Metal Oxide Silicon (MOS) switch, and the second diode is the metal oxide semiconductor switch. The body diode is a parasitic capacitance of the metal oxide semiconductor switch. 5. The resonant converter of claim 1, wherein the upper arm switch and the lower arm switch are Insulated Gate Bipolar Transistors (IGBTs). 6. A plasma drive system comprising: 201031276 for providing a DC voltage; electrically connected to the DC voltage source, wherein the switch group is adapted to a voltage, wherein the switch group includes an upper arm switch; 一直流電源, 一諳振換流器 諧振換流器包含: 來輸出一方波 一下臂開關’電性連接至該上臂開關; 一第一二極體,電性並聯至該上臂開關; 第—一極體,電性並聯至該下臂開關; 一第一電容,電性並聯至該上臂開關;以 一第二電容,電性並聯至該下臂開關; 其中,該上臂開關和該下臂開關係相互切換 來輪出該方波電壓;以及 一譜振電路,電性連接至該開關组,以因應該 方波電壓來輸出一弦波電壓和一弦波電流至該電漿 負載; 其中’該弦波電壓與該弦波電流分別具有一電 壓波形和一電流波形,該電壓波形與該電流波形之 間具有相位差;以及 一電漿負載,電性連接至該諧振換流器,以因應該 弦波電壓和該弦波電流來產生電漿。 7.如申請專利範圍第6項所述之電漿驅動器系統, 其中該諧振電路包含: 一第一諧振電感’具有一第一電感端點和一第二電感端 15 201031276 關和該 第二電 二電感 點,其中该弟一電感端點係電性連接至該上臂開 下臂開關; ^ 一第一諧振電容,具有一第一電容端點和一 容端點,其中該第一電容端點係電性連接至該第 端點; 一第二諧振電感,具有一第三電感端點和一第四電 感端點,其中該第三電感端點係電性連接至該第二電容 端點;以及 一第一 §皆振電容’電性並聯至該第二諧振電感。 8.如申請專利範圍第6項所述之電漿驅動器系統, 其中該上臂開關為一金屬氧化半導體(Metal 〇xide Silicon,MOS)開關,該第一二極體為該金屬氧化半導體 開關之本體二極體,該第一電容為該金屬氧化半導體開 關之寄生電容。 9.如申請專利範圍第6項所述之電漿驅動器系統, 其中該下臂開關為一金屬氧化半導體(Metal 〇xide Silicon,M0S)開關,該第二二極體為該金屬氧化半導體 開關之本體二極體’該第二電容為該金屬氧化半導體開 關之寄生電容。 10·如申請專利範圍第6項所述之電漿驅動器系 統’其中該下臂開關為一金屬氧化半導體(Metal Oxide SiliCon,M0S)開關,該第二二極體為該金屬氧化半導體 開關之本體二極體’該第二電容為該金屬氧化半導體開 201031276 關之寄生電容。 11.如申請專利範圍第6項所述之電漿驅動器系 統,更包含一高壓變壓器,電性連接於該諧振換流器和 該電漿負載之間,用以提高該直流電壓之電壓值。a DC power supply, a resonant converter resonant converter includes: an output side wave lower arm switch 'electrically connected to the upper arm switch; a first diode, electrically connected in parallel to the upper arm switch; a first body, electrically connected in parallel to the upper arm switch; a second capacitor electrically connected in parallel to the lower arm switch; wherein the upper arm switch and the lower arm are open The relationship switches to rotate the square wave voltage; and a spectral circuit is electrically connected to the switch group to output a sinusoidal voltage and a sinusoidal current to the plasma load in response to the square wave voltage; The sine wave voltage and the sine wave current respectively have a voltage waveform and a current waveform, and the voltage waveform has a phase difference with the current waveform; and a plasma load is electrically connected to the resonant converter. The sinusoidal voltage and the sinusoidal current should be used to generate the plasma. 7. The plasma driver system of claim 6, wherein the resonant circuit comprises: a first resonant inductor 'having a first inductor end point and a second inductor end 15 201031276 and the second a second inductance point, wherein the first inductor terminal is electrically connected to the upper arm open lower arm switch; ^ a first resonant capacitor having a first capacitance end point and a capacitance end point, wherein the first capacitance end point Electrically connected to the first terminal; a second resonant inductor having a third inductor end and a fourth inductor end, wherein the third inductor end is electrically connected to the second capacitor end; And a first § oscillatory capacitor is electrically connected in parallel to the second resonant inductor. 8. The plasma driver system of claim 6, wherein the upper arm switch is a metal oxide semiconductor (MOS) switch, and the first diode is a body of the metal oxide semiconductor switch. The diode, the first capacitor is a parasitic capacitance of the metal oxide semiconductor switch. 9. The plasma driver system of claim 6, wherein the lower arm switch is a metal oxide semiconductor (M0S) switch, and the second diode is the metal oxide semiconductor switch. The second capacitor of the body diode is the parasitic capacitance of the metal oxide semiconductor switch. 10. The plasma driver system of claim 6, wherein the lower arm switch is a Metal Oxide SiliCon (M0S) switch, and the second diode is a body of the metal oxide semiconductor switch. The second capacitor 'the second capacitor is the parasitic capacitance of the metal oxide semiconductor opening 201031276. 11. The plasma driver system of claim 6, further comprising a high voltage transformer electrically coupled between the resonant converter and the plasma load for increasing the voltage value of the DC voltage. 1717
TW98103921A 2009-02-06 2009-02-06 Resonant inverter and plasma driving system icluding the same TW201031276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98103921A TW201031276A (en) 2009-02-06 2009-02-06 Resonant inverter and plasma driving system icluding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98103921A TW201031276A (en) 2009-02-06 2009-02-06 Resonant inverter and plasma driving system icluding the same

Publications (1)

Publication Number Publication Date
TW201031276A true TW201031276A (en) 2010-08-16

Family

ID=44854443

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98103921A TW201031276A (en) 2009-02-06 2009-02-06 Resonant inverter and plasma driving system icluding the same

Country Status (1)

Country Link
TW (1) TW201031276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491317B (en) * 2012-09-07 2015-07-01 Kyosan Electric Mfg Direct current power supply device, and method for controlling direct current power supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491317B (en) * 2012-09-07 2015-07-01 Kyosan Electric Mfg Direct current power supply device, and method for controlling direct current power supply device
US9137885B2 (en) 2012-09-07 2015-09-15 Kyosan Electric Mfg Co., Ltd. DC power supply device, and control method for DC power supply device

Similar Documents

Publication Publication Date Title
CN110168893B (en) Double-transformer three-phase DC-DC resonant converter
CN102804570B (en) 3-stage pulse width modulation inverter with discharge network
US10715050B2 (en) Four-switch three phase DC-DC resonant converter
US9344004B2 (en) Power conversion system
WO2017080143A1 (en) Bidirectional resonant conversion circuit and converter
KR20130043612A (en) Dc-dc converter circuit for high input-to-output voltage conversion
TWI384743B (en) Multi-phase switching power converting circuit
CN110999075A (en) High gain resonant amplifier for resistive output impedance
US20060023474A1 (en) Push-pull switching power converter
US20190013741A1 (en) Resonant dc-dc converter
TWI280536B (en) Controller and driver architecture for double-ended circuitry for powering cold cathode fluorescent lamps
WO2006018912A1 (en) Zero voltage switching high-frequency inverter
WO2018129975A1 (en) Grid-connection inverter and inverter system
CN107800316A (en) Inverter and photovoltaic apparatus
JP2006353049A (en) Power supply and electrodeless discharge lamp apparatus
CN102237815A (en) High-efficiency and reliable direct-current to alternating-current conversion circuit
WO2015063919A1 (en) Resonant high-frequency power supply device and switching circuit for resonant high-frequency power supply device
Trung et al. Design 13.56 MHz 10 kW resonant inverter using GaN HEMT for wireless power transfer systems
Greco et al. A 100-mW fully integrated DC-DC converter with double galvanic isolation
TW201031276A (en) Resonant inverter and plasma driving system icluding the same
US10432110B2 (en) Power converter having resonant frequencies around two and four times the switching frequency
TWI264173B (en) A/D converter with adjustable internal connection and operation method thereof
KR101704189B1 (en) Ozone Generation Power Supply
Xia et al. GaN‐based split phase transformer‐less PV inverter with auxiliary ZVT circuit
CN102664538A (en) High-power-factor dielectric barrier discharge power supply circuit