WO2014036844A1 - 一种偏振无关的可调谐法布里-珀罗滤波器 - Google Patents

一种偏振无关的可调谐法布里-珀罗滤波器 Download PDF

Info

Publication number
WO2014036844A1
WO2014036844A1 PCT/CN2013/076169 CN2013076169W WO2014036844A1 WO 2014036844 A1 WO2014036844 A1 WO 2014036844A1 CN 2013076169 W CN2013076169 W CN 2013076169W WO 2014036844 A1 WO2014036844 A1 WO 2014036844A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optically transparent
transparent material
piece
film
Prior art date
Application number
PCT/CN2013/076169
Other languages
English (en)
French (fr)
Inventor
高培良
Original Assignee
天津奇谱光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津奇谱光电技术有限公司 filed Critical 天津奇谱光电技术有限公司
Publication of WO2014036844A1 publication Critical patent/WO2014036844A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/216Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference using liquid crystals, e.g. liquid crystal Fabry-Perot filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/06Polarisation independent

Definitions

  • the invention belongs to the field of optoelectronics, in particular to a polarization-independent tunable Fabry-Perot filter.
  • the traditional optical Fabry-Perot etalon is a filter element fabricated using the principle of multi-beam interference. There are two main types: one is air-spaced and the other is optical glass-spaced.
  • the optical Fabry-Perot etalon achieves multi-wavelength narrowband in a wide spectral range by the multi-beam interference effect of the Fabry-Perot cavity formed by the high reflectivity of the multilayer dielectric film on the two clear surfaces.
  • the filter output has the characteristics of stable performance, large aperture, high optical power destruction threshold, simple structure and low cost. Therefore, it is widely used in various types of lasers, optical measuring instruments and optical fiber communication devices.
  • the tuning function of the transmitted optical frequency can be achieved using a conventional optical Fabry-Perot etalon.
  • tuning can be done by changing the angle of incidence of the light, but the tuning range of this method is small; it is also possible to change the Fabry by mechanical means (such as stepper motors).
  • the cavity length of the Perot etalon is tuned. This method can achieve a large tuning range, but the tuning accuracy is low, and the precision of the mechanical components is high and the stability is not good.
  • the PZT piezoelectric ceramic (lead zirconate titanate) technology can improve the tuning accuracy and speed by changing the cavity length of the Fabry-Perot etalon, but it is not easy to miniaturize and the drive circuit is complicated. . Changing the temperature of the etalon can also achieve a wider range of tuning, but the disadvantage of this method is that it is slow.
  • An object of the present invention is to overcome the deficiencies of the prior art and to provide a tunable Fabry-Perot filter with high stability, high tuning accuracy, fast speed and small volume.
  • a polarization-independent tunable Fabry-Perot filter comprising: two liquid crystal cells and a driving circuit, the two liquid crystal cells each comprising a first optically transparent material, a liquid crystal material and a first Two pieces of optically transparent material, the second piece of optically transparent material of the first liquid crystal cell is mounted together with the first piece of optically transparent material of the second liquid crystal cell, and high reflectivity is set on the first piece of optically transparent material of the first liquid crystal cell
  • the multilayer dielectric film constitutes a first mirror, and a high-reflectivity multilayer dielectric film is disposed on the second optically transparent material of the second liquid crystal cell to form a second mirror, and optical axes of the liquid crystal materials in the two liquid crystal cells are perpendicular to each other
  • the driving circuit is connected to the two liquid crystal cells and realizes the tuning function of the filter by controlling the effective refractive index of the liquid crystal material.
  • the high-reflectivity multilayer dielectric film on the first optically transparent material of the first liquid crystal cell is disposed on the first film
  • An outer side of the optically transparent material, an inner side of the first optically transparent material is provided with an optical antireflection film and a transparent electrode from the inside to the outside
  • an outer side of the second optically transparent material of the first liquid crystal cell is an optically polished surface
  • a second The inner side of the optically transparent material is provided with an optical antireflection film, a transparent electrode and a film of a non-conductive material in order from the inside to the outside.
  • the non-conductive material film covers a portion other than the clear aperture and a width of about 1 mm is connected to the second piece of optics.
  • the high-reflectivity multilayer dielectric film on the first optically transparent material of the first liquid crystal cell is disposed inside the first optically transparent material
  • the transparent electrode is disposed inside the high-reflectivity multilayer dielectric film.
  • An optical antireflection film is disposed on an outer side of the first optically transparent material, wherein an outer side of the second optically transparent material of the first liquid crystal cell is an optically polished surface, and an inner side of the second optically transparent material is optically enhanced from the inside to the outside.
  • a film, a transparent electrode, and a film of a non-conductive material covering a portion other than the clear aperture and a channel approximately 1 mm wide connected to the edge of the second sheet of optically transparent material for providing excess liquid crystal material
  • An outlet and a cavity is formed on the inner side of the first piece of optically transparent material for providing a liquid crystal material, and the transparent electrode is connected to the driving circuit.
  • the high-reflectivity multilayer dielectric film on the second optically transparent material of the second liquid crystal cell is disposed outside the second optically transparent material, and the inner side of the second optically transparent material is sequentially disposed from the inside to the outside.
  • An optical antireflection film and a transparent electrode wherein an outer side of the first optically transparent material of the second liquid crystal cell is an optically polished surface, and an inner side of the first optically transparent material is provided with an optical antireflection film and a transparent electrode from the inside to the outside.
  • a film of a non-conductive material covering a portion other than the clear aperture and a channel connected to the edge of the sheet of optically transparent material about 1 mm wide for providing an outlet for the excess liquid crystal material, and
  • the inside of the second optically transparent material of the two liquid crystal cells constitutes a cavity for providing a liquid crystal material, and the transparent electrode is connected to the driving circuit.
  • a high-reflectivity multilayer dielectric film on the second optically transparent material of the second liquid crystal cell is disposed inside the second optically transparent material, and a transparent electrode is disposed on the inner side of the high-reflectivity multilayer dielectric film.
  • An optical antireflection film is disposed on an outer side of the second optically transparent material, wherein an outer side of the first optically transparent material of the second liquid crystal cell is an optically polished surface, and an inner side of the first optically transparent material is optically disposed from the inside to the outside.
  • the second optically transparent material of the first liquid crystal cell and the first optically transparent material of the second liquid crystal cell are mounted by: bonding together using an optically transparent index matching glue, and making the first reflection The mirror and the second mirror remain parallel to form a Fabry-Perot cavity.
  • the liquid crystal material is a nematic liquid crystal having a thickness of several micrometers to ten micrometers. Meter.
  • the filter drive circuit is a square wave pulse circuit having a frequency from one kilohertz to several kilohertz, and the pulse voltage amplitude is adjustable from 0 volts to 5 volts.
  • the filter places two nematic liquid crystal materials whose optical axes are perpendicular to each other in the cavity of the Fabry-Perot etalon and utilizes the electronically controlled birefringence effect of the liquid crystal and the optical phase modulation of the incident light. Achieve continuous, fast and precise tuning of the frequency of light transmitted through the Fabry-Perot filter over a wide spectral range.
  • the liquid crystal material used in this filter has a very thin thickness, so that a wideband tunable Fabry-Perot filter with a small size and a large free spectral range can be fabricated.
  • the invention has reasonable design, the tuning characteristics are independent of the polarization state of the incident light, and has the characteristics of no mechanical moving parts, stable and reliable performance, low cost, small size, easy installation and production, etc., which can meet the requirements for small size and extremes. Reliable operation in the workplace, widely used in lasers, optical testing, fiber optic communications, biological, medical devices and fiber optic sensor networks.
  • Figure 1 is a schematic view of a conventional Fabry-Perot etalon
  • FIG. 2 is a schematic structural view of a first liquid crystal cell
  • FIG. 3 is a schematic structural view of a second liquid crystal cell
  • Figure 4 is a schematic view of the structure of the present invention.
  • Figure 5 is a graph showing the phase of light transmitted through the liquid crystal material as a function of an applied electric field
  • Figure 6 is a schematic diagram of the transmission spectrum of a conventional Fabry-Perot etalon
  • Figure 7 is a schematic diagram of the transmission spectrum of the present invention.
  • FIG. 1 A schematic of a conventional Fabry-Perot light etalon 100 is shown in FIG.
  • the material of the Fabry-Perot etalon 100 is generally optical glass such as fused silica or BK7 in the near-infrared and visible-light bands, assuming that the material has a refractive index n and both light-passing surfaces 2 and 4 are plated high.
  • the Fabry-Perot optical etalon's transmission spectrum is characterized by a very narrow bandwidth for each transmission spectrum, a uniform frequency spacing of the transmission spectrum and a very wide optical frequency response bandwidth, typically covering more than
  • the optical spectrum band of 100 nm, the output light spectrum of the optical etalon 100 is shown in Fig. 6.
  • a liquid crystal material generally used as a photovoltaic device has a high electrical resistivity, it can be considered as an ideal dielectric material.
  • the liquid crystal has anisotropic dielectric properties and uniaxial symmetry due to the ordered orientation of the molecules and the stretched morphology. Like a uniaxial crystal, the direction of the optical axis coincides with the alignment of the molecules.
  • an electric dipole is formed. Under the action of the moment formed by the electric dipole, the orientation of the liquid crystal molecules is turned to the direction of the electric field, and the direction of the optical axis of the liquid crystal can be changed by changing the strength of the electric field.
  • an optical phase modulator, a tunable filter or other optoelectronic devices such as an optical switch and a light intensity modulator can be fabricated using this characteristic of the liquid crystal.
  • the thickness of the liquid crystal film layer generally used as a photovoltaic device is from several micrometers to ten micrometers.
  • the present invention is designed by utilizing the fact that liquid crystals change the refractive index of linearly polarized light under the action of an electric field.
  • the present invention includes two liquid crystal cells whose optical axis directions are perpendicular to each other.
  • the first liquid crystal cell 200 includes two structures.
  • the first structure comprises a first optically transparent material 8, a liquid crystal material 14 and a second optically transparent material 22.
  • the outer surface of the first optically transparent material 8 is provided with a high-reflectivity multilayer dielectric film 6, the inner side from the inside to the outside.
  • the optical antireflection film 10 and the transparent electrode film layer 12 are respectively disposed.
  • the outer surface 24 of the second optically transparent material 22 is an optically polished surface, and the optical antireflection film 20, the transparent electrode film layer 18 and the non-conductive layer are disposed on the inner side from the inside to the outside.
  • the material film 16, the non-conductive material film 16 has a thickness of several micrometers to ten micrometers, covers other portions except the light-passing aperture, and a channel having a width of about 1 mm to the edge of the optically transparent material 22 for removing excess
  • the liquid crystal material, the non-conductive material film 16 and the first piece of optically transparent material 8 form a cavity for arranging the liquid crystal material 14.
  • the liquid crystal material 14 is a nematic liquid crystal having a thickness of about several micrometers. The road is a dozen microns.
  • the second structure of the liquid crystal cell 200 is different from the first structure in that an optical anti-reflection film 6 is disposed on the outer surface of the first optically transparent material 8, and a high-reflectivity multilayer dielectric is disposed on the inner side from the inside to the outside.
  • the film 10 and the transparent electrode film layer 12 are otherwise disposed in the same manner as the first structure of the liquid crystal cell 200, and the purpose thereof is to change the thickness of the Fabry-Perot cavity.
  • the second liquid crystal cell 300 includes two structures.
  • the first liquid crystal cell 300 structure comprises a first optically transparent material 28, a liquid crystal material 36, and a second optically transparent material 42, and the outer surface 26 of the second optically transparent material 42 is provided with a high-reflectivity multilayer dielectric film 44, and the inner side is
  • the optical anti-reflection film 40 and the transparent electrode film layer 32 are respectively disposed from the inside to the outside, and the outer surface 26 of the first optically transparent material 28 is an optically polished surface, and the inner side is optically enhanced from the inside to the outside.
  • the film 30, the transparent electrode film layer 32 and the non-conductive material film 34 have a thickness of several micrometers to ten micrometers, covering other portions except the light-passing aperture and a pass-to-optical having a width of about 1 mm.
  • a channel at the edge of the transparent material 28 for removing excess liquid crystal material, the non-conductive material film 34 and the second sheet of optically transparent material 42 forming a cavity for arranging the liquid crystal material 36, and the liquid crystal material 36 is a nematic liquid crystal.
  • the thickness of the liquid crystal material is about several micrometers and a few micrometers.
  • the structure of the second liquid crystal cell 300 is different from that of the first structure in that an optical anti-reflection film 44 is disposed on the outer surface of the second optically transparent material 42, and a high-reflectivity multilayer dielectric film 40 is disposed on the inner side from the inside to the outside.
  • the transparent electrode film layer 38 has the same configuration as the first structure of the liquid crystal cell 300, and its purpose is to change the thickness of the Fabry-Perot cavity.
  • a polarization-independent tunable Fabry-Perot filter 400 comprising a first liquid crystal cell 200, a second liquid crystal cell
  • the driving circuit 52 is connected to the transparent electrodes of the liquid crystal cell 200 and the liquid crystal cell 300, and the driving signal generated by the driving circuit 52 forms a driving electric field between the two transparent electrode film layers; the Fabry-Perot is changed by the electric field.
  • the effective refractive index n of the liquid crystal in the cavity adjusts the optical frequency V and the free spectral range (FSR) of the transmitted light of the Fabry-Perot filter.
  • a typical driving electric field is a square wave signal having a voltage of several volts and a frequency of 1 kHz to several kilohertz.
  • the filter 400 of the present invention is independent of the polarization state of the incident light.
  • the light beam 48 incident on the filter 400 is a collimated beam, assuming that the refractive index of the optically transparent material is n, on the first optically transparent material of the first liquid crystal cell 200 and on the second liquid crystal cell 300.
  • the optical path produced by the incident light is changed by the refraction under the action of an applied electric field.
  • the combination of two different structures of the first liquid crystal cell 200 and the second liquid crystal cell 300 can increase or decrease the length D of the Fabry-Perot cavity, thereby adjusting the filter 400 freedom Spectral range FSR2.
  • Figure 5 is a graph showing the relationship between the phase change of a 1525 nm light wave with a wavelength of about 10 ⁇ m nematic liquid crystal driven by a 2 kHz square wave voltage. A maximum optical phase delay of about 2 ⁇ can be achieved.
  • the tunable Fabry-Perot filter 400 can obtain a tuning range of about 1.5 times the transmitted optical frequency of FSR2 for collimated light near zero incidence, and a band of free spectral range ⁇ and transmitted light. The change in broadband is much smaller.
  • a schematic diagram of the spectrum of the transmitted light 54 of the tunable Fabry-Perot filter is shown in FIG.
  • the tunable Fabry-Perot filter 400 can achieve a large range of transmission light peak frequency tuning under the action of an applied electric field without substantially changing the bandwidth and free spectral range of the transmitted light. This feature is important for many applications in tunable Fabry-Perot filter 400, such as lasers and spectrum instruments.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种偏振无关的可调谐法布里-珀罗滤波器,包括两个液晶盒(200,300)和驱动电路(52),两个液晶盒(200,300)均包括依次安装在一起的第一片光学透明材料(8,28)、液晶材料(14,36)和第二片光学透明材料(22,42),第一液晶盒(200)的第二片光学透明材料(22)与第二液晶盒(300)的第一片光学透明材料(28)安装在一起,两个液晶盒(200,300)内的液晶材料(14,36)的光轴相互垂直并设置在法布里-珀罗腔内,驱动电路(52)与两个液晶盒(200,300)相连接并通过控制液晶材料(14,36)的有效折射率实现滤波器的调谐功能。可调谐法布里-珀罗滤波器设计合理,其调谐特性与入射光的偏振态无关,并且具有无机械移动部件、性能稳定可靠、成本低、尺寸小、易于安装及生产的特点,可用于激光器、光学测试、光纤通讯、生物、医疗器械和光纤传感器网络领域中。

Description

一种偏振无关的可调谐法布里 -珀罗滤波器 技术领域
本发明属于光电领域, 尤其是一种偏振无关的可调谐法布里-珀罗滤波器。
背景技术
传统的光学法布里-珀罗标准具是一种利用多光束干涉原理制作的滤波器件,主要有两 种类型: 一种是空气间隔的, 一种是光学玻璃间隔的。光学法布里-珀罗标准具通过两个通 光面上多层介质膜的高反射率所形成法布里-珀罗腔的多光束干涉效应,可以实现在宽频谱 范围内的多波长窄带滤波输出, 而且具有性能稳定、 通光孔径大、 光功率破坏阈值高、 结 构简单和成本低等特性, 因此, 被广泛应用于各类激光器、 光学测量仪器和光纤通讯器件 中。
利用传统的光学法布里-珀罗标准具可以实现透射光频率的调谐功能。对于空气间隔的 法布里-珀罗标准具, 可通过改变光的入射角度进行调谐, 但是这种方法的调谐范围很小; 也可以采用用机械方法(如步进马达)改变法布里-珀罗标准具的腔长进行调谐, 这种方法 可以实现大的调谐范围, 但调谐精度低, 而且对机械部件的精度要求高, 稳定性不好。 另 夕卜, 采用 PZT压电陶瓷 (锆钛酸铅) 技术通过改变法布里-珀罗标准具的腔长, 可以提高 调谐精度和速度, 但是不易做到小型化, 且驱动电路也较复杂。 改变标准具的温度也可以 实现较大范围的调谐, 但是, 该方法的缺点是速度慢。
发明内容
本发明的目的在于克服现有技术的不足, 提供一种稳定性强、 调谐精度高、 速度快且 体积小的可调谐法布里-珀罗滤波器。
本发明解决现有的技术问题是采取以下技术方案实现的:
一种偏振无关的可调谐法布里-珀罗滤波器,其特征在于:包括两个液晶盒和驱动电路, 两个液晶盒均包括依次安装一起的第一片光学透明材料、 液晶材料和第二片光学透明材 料, 第一液晶盒的第二片光学透明材料与第二液晶盒的第一片光学透明材料安装在一起, 在第一液晶盒的第一片光学透明材料上设置高反射率多层介质膜构成第一反射镜, 在第二 液晶盒的第二片光学透明材料上设置高反射率多层介质膜构成第二反射镜, 两个液晶盒内 的液晶材料的光轴相互垂直并设置在由第一反射镜和第二反射镜构成的法布里 -珀罗腔内, 所述驱动电路与两个液晶盒相连接并通过控制液晶材料的有效折射率实现滤波器的调谐 功能。
而且, 所述第一液晶盒的第一片光学透明材料上的高反射率多层介质膜设置在第一片 光学透明材料的外侧, 该第一光学透明材料的内侧从内到外依次设有光学增透膜和透明电 极, 所述第一液晶盒的第二光学透明材料的外侧为光学抛光面, 第二光学透明材料的内侧 从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通 光孔径以外的部分以及一个约 1毫米宽连接到第二片光学透明材料薄片边缘的通道, 用于 为多余的液晶材料提供一个出口, 并与第一片光学透明材料的内侧构成一个空腔用于设置 液晶材料, 该透明电极与驱动电路相连接。
而且, 所述第一液晶盒的第一片光学透明材料上的高反射率多层介质膜设置在第一片 光学透明材料的内侧, 在高反射率多层介质膜的内侧设置有透明电极, 在第一光学透明材 料的外侧设置光学增透膜, 所述第一液晶盒的第二光学透明材料的外侧为光学抛光面, 第 二光学透明材料的内侧从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非 导电材料薄膜覆盖除通光孔径以外的部分以及一个约 1毫米宽连接到第二片光学透明材料 薄片边缘的通道, 用于为多余的液晶材料提供一个出口, 并与第一片光学透明材料的内侧 构成一个空腔用于设置液晶材料, 该透明电极与驱动电路相连接。
而且, 所述第二液晶盒的第二片光学透明材料上的高反射率多层介质膜设置在第二片 光学透明材料的外侧, 该第二光学透明材料的内侧从内到外依次设有光学增透膜和透明电 极, 所述第二液晶盒的第一片光学透明材料的外侧为光学抛光面, 第一片光学透明材料的 内侧从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖 除通光孔径以外的部分以及一个约 1毫米宽连接到该光学透明材料薄片边缘的通道, 用于 为多余的液晶材料提供一个出口, 并与第二液晶盒的第二片光学透明材料的内侧构成一个 空腔用于设置液晶材料, 该透明电极与驱动电路相连接。
而且, 所述第二液晶盒的第二片光学透明材料上的高反射率多层介质膜设置在第二片 光学透明材料的内侧, 在高反射率多层介质膜的内侧设置有透明电极, 在第二光学透明材 料的外侧设置光学增透膜, 所述第二液晶盒的第一片光学透明材料的外侧为光学抛光面, 第一片光学透明材料的内侧从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通光孔径以外的部分以及一个约 1毫米宽连接到该光学透明材料 薄片边缘的通道, 用于为多余的液晶材料提供一个出口, 并与第二液晶盒的第二片光学透 明材料的内侧构成一个空腔用于设置液晶材料, 该透明电极与驱动电路相连接。
而且, 所述的第一液晶盒的第二片光学透明材料与第二液晶盒的第一片光学透明材料 的安装方式为: 使用光学透明折射率匹配胶粘接在一起, 并使得第一反射镜和第二反射镜 保持平行以形成法布里-珀罗腔。
而且, 所述的液晶材料采用的是向列相型液晶, 该液晶材料的厚度为几微米至十几微 米。
而且, 所述的滤波器驱动电路是一种频率为从一千赫兹到几千赫兹的方波脉冲电路, 脉冲电压幅度从 0伏到 5伏可调。
发明的优点和积极效果是:
1、 本滤波器将两个光轴相互垂直的向列相型液晶材料放置在法布里-珀罗标准具的腔 内并利用液晶的电控双折射效应和对入射光产生的光学相位调制, 实现在宽频谱范围内对 透过法布里-珀罗滤波器的光的频率进行连续、 快速和精密调谐。
2、 本滤波器使用的液晶材料的具有厚度非常薄的特点, 因此可以制作尺寸小、 自由 光谱范围大的宽带可调谐法布里-珀罗滤波器。
3、 本发明设计合理, 其调谐特性与入射光的偏振态无关, 并且具有无机械移动部件、 性能稳定可靠、 成本低、 尺寸小、 易于安装及生产等特点, 可满足对于要求尺寸小和极端 工作环境下的可靠运行, 可广泛用于在激光器、 光学测试、 光纤通讯、 生物、 医疗器械和 光纤传感器网络等领域中。
附图说明
图 1是一个普通法布里-珀罗标准具的示意图;
图 2是第一液晶盒的结构示意图;
图 3是第二液晶盒的结构示意图;
图 4是本发明的结构示意图;
图 5是光透过液晶材料的相位随外加电场的变化曲线;
图 6是普通法布里 -珀罗标准具的透射光谱示意图;
图 7是本发明的透射光谱示意图。
具体实》式
以下结合附图对本发明实施例做进一步详述。
图 1给出了一种普通的法布里 -珀罗 ( Fabry-Perot) 光标准具 100的示意图。 该法布 里-珀罗光标准具 100的材料一般在近红外和可见光波段采用象融石英或 BK7这样的光学 玻璃, 假设材料的折射率为 n, 两个通光面 2和 4都镀高反射膜, 其反射率为 R, 厚度为 h, 光以接近零度的入射角入射, 则只有满足 2nh=mA , 才能透过标准具, 其中 m是透射 光的级次。光标准具 100的自由光谱范围 FSR1可以表示为: Δλ =λ 2/(2nh),或用频率表示: △v=c/(2nh),其中 c 是光速。透射光的峰值频率可以表示为: v=mc/(2nh),其中 m是干涉级次, 透射光的频率宽带可以表示为: Δν (FWHM) =c(l-R)/(2nhRl/2), 其中 c是光速。
从上述两个公式可以看出, 光标准具 100的自由光谱范围 FSR1与厚度为 h成反比。 假设材料的折射率为 n=1.5, 要实现 FSRl=100GHz, 厚度 h-1毫米。 自由光谱范围 FSR1 越大, 其厚度就越小。 在标准具的材料和厚度确定后, 透射光的频带宽度主要和反射率 R 有关, 反射率越高, 频带宽度或锐度 (finesse)越小。 法布里 -珀罗 ( Fabry-Perot)光标准 具的透射光谱的特点是每个透射谱的带宽可以做到非常窄, 透射光谱的频率间隔相等并且 光频率响应带宽非常宽, 一般可覆盖大于 100纳米的光频谱带,, 光标准具 100的输出光 频谱如图 6所示。
由于一般用作光电器件的液晶材料具有高的电阻率, 因此, 可以被认为是理想的电介 质材料。 由于构成分子的有序取向和拉伸延长的形态, 液晶具有各向异性的电介质特性和 单轴对称性, 就象一个单轴晶体一样, 其光轴的方向与分子的排列取向一致。 当液晶分子 在外界电场的作用下, 会形成电偶极子。 在电偶极子所形成的力矩作用下, 使得液晶分子 的取向转向电场的方向, 可以通过改变电场的强弱, 改变液晶的光轴的方向。 因此, 可以 利用液晶的这一特性制作光相位调制器, 可调谐滤波器或其他光电器件, 如光开关和光强 调制器等。 一般用作光电器件的液晶膜层的厚度为几微米到十几微米。 本发明正是利用液 晶在电场作用下对线偏振光的折射率产生改变这一特性设计而成。
本发明包括两个光轴方向相互垂直的液晶盒。
如图 2所示, 第一个液晶盒 200包括两种结构。第一种结构包括第一片光学透明材料 8、液晶材料 14和第二片光学透明材料 22, 第一片光学透明材料 8外侧表面上设置高反射 率多层介质膜 6, 内侧从内到外分别设置光学增透膜 10和透明电极膜层 12, 第二片光学 透明材料 22外侧表面 24是光学抛光面, 内侧从内到外分别设置光学增透膜 20, 透明电极 膜层 18和非导电材料薄膜 16, 非导电材料薄膜 16的厚度为几微米到十几微米, 覆盖除通 光孔径外的其他部分和一个宽度约为 1毫米的通到光学透明材料 22边缘的通道, 用于排 除多余的液晶材料, 该非导电材料薄膜 16与第一片光学透明材料 8构成一个空腔用于设 置液晶材料 14, 液晶材料 14采用的是向列相型液晶, 该液晶材料的厚度约为几微米道十 几微米。液晶盒 200的第二种结构与第一种结构的不同之处在于所述第一片光学透明材料 8外侧表面上设置光学增透膜 6, 内侧从内到外分别设置高反射率多层介质膜 10和透明电 极膜层 12, 其他设置与液晶盒 200的第一种结构相同, 其目的是改变法布里 -珀罗腔的厚 度。
如图 3所示, 第二个液晶盒 300包括两种结构。 第一种液晶盒 300结构包括第一片 光学透明材料 28、 液晶材料 36、 第二片光学透明材料 42, 第二片光学透明材料 42外侧表 面 26设置高反射率多层介质膜 44, 内侧从内到外分别设置光学增透膜 40, 透明电极膜层 32, 第一片光学透明材料 28外侧表面 26是光学抛光面, 内侧从内到外分别设置光学增透 膜 30, 透明电极膜层 32和非导电材料薄膜 34, 非导电材料薄膜 34的厚度为几微米到十 几微米, 覆盖除通光孔径外的其他部分和一个宽度约为 1毫米的通到光学透明材料 28边 缘的通道, 用于排除多余的液晶材料, 非导电材料薄膜 34与第二片光学透明材料 42构成 一个空腔用于设置液晶材料 36, 液晶材料 36采用的是向列相型液晶, 该液晶材料的厚度 约为几微米道十几微米。第二种液晶盒 300结构与第一种结构的不同之处在于第二片光学 透明材料 42外侧表面上设置光学增透膜 44, 内侧从内到外分别设置高反射率多层介质膜 40和透明电极膜层 38, 其他设置与液晶盒 300的第一种结构相同, 其目的是改变法布里- 珀罗腔的厚度。
下面结合图 4对本发明进行说明。
一种偏振无关的可调谐法布里-珀罗滤波 400, 包括第一个液晶盒 200、 第二个液晶盒
300和驱动电路 52。 液晶盒 200的第二片光学透明材料的外侧和液晶盒 300的第一片光 学透明材料的外侧用光学透明折射率匹配胶 50粘合在一起并使得液晶盒 200的第一光学 透明材料和液晶盒 300 的第二光学透明材料上设有高反射率介质膜的面保持并行而形成 谐法布里-珀罗腔。驱动电路 52与液晶盒 200和液晶盒 300的透明电极连接, 由驱动电路 52 产生的驱动信号在两透明电极膜层之间形成驱动电场; 利用电场改变法布里 -珀罗 (Fabry-Perot) 腔内液晶的有效折射率 n, 来调节法布里-珀罗滤波器的透射光的光频率 V 和自由光谱范围 (FSR)。 通常的驱动电场是电压为几伏, 频率为 1千赫兹到几千赫兹的方 波信号。
由于液晶的厚度很小 (几微米到十几微米), 因此, 可以制作本征自由光谱范围 (即 在无外加电场时的可调谐滤波器的自由光谱范围)的可调谐法布里-珀罗滤波器。 由于第一 液晶盒 200和第二液晶盒 300中液晶的光轴相互垂直, 因此, 本发明的滤波器 400与入射 光的偏振态无关。
在图 4中, 入射到滤波器 400的光束 48是一束准直光束, 假设光透明材料的折射率 为 n, 第一液晶盒 200的第一片光学透明材料上和第二液晶盒 300的第二片光学透明材料 上镀高反射介质膜的反射率为 R, 法布里-珀罗腔的长度为 D, 则只有满足 2nD+r=mA 的 光才能透过标准具, 其中 m是透射光的级次。 滤波器 400的自由光谱范围 FSR2和透射光 频率分别为: Δλ =λ 2/(2nD+r),或用频率表示: Av=c/(2nD+r),其中 c 是光速, Γ代表由液 晶在外加电场作用下由折射改变对入射光所产生的光程。 透射光的峰值频率可以表示为: v=mc/(2nD+「 ),其中 m 是干涉级次, 透射光的频率宽带可以表示为: Δν ( FWHM ) =c(l-R)/((2nD+DRl/2), 其中 c 是光速。利用第一个液晶盒 200和第二个液晶盒 300的两 种不同的结构的组合可以增大或减少法布里-珀罗腔的长度 D,从而调节滤波器 400的自由 光谱范围 FSR2。
图 5给出了一个厚度约为 10微米的向列相型液晶在 2KHz方波电压的驱动下,对光波 长为 1550纳米光波相位变化的关系示意图。 最大可实现约 2π的光相位延迟。 通过实验和 分析,可调谐法布里 -珀罗滤波器 400对于接近零度入射的准直光可以得到约 1.5倍的 FSR2 的透射光频率的调谐范围, 而对自由光谱范围 Δν和透射光的频带宽带的改变要小的多。 可调谐法布里-珀罗滤波器的透射光 54的光谱示意图如图 7所示。
由此可见, 可调谐法布里 -珀罗滤波器 400 在外加电场的作用下, 可以实现较大范围 的透射光峰值频率的调谐而基本不改变透射光的频带宽度和自由光谱范围。 这个特性对于 将可调谐法布里 -珀罗滤波器 400许多应用中, 如激光器和频谱仪器等具有重要意义。
需要强调的是, 上述说明仅起演示和描述的作用, 并不是一个详细无遗漏的说明, 也 没有意图将本发明限制在所描述的具体形式上。 经过上面的描述, 对本发明的许多改动和 变化都可能出现。 所选择的具体实施仅仅是为了更好的解释本发明的原理和实际中的应 用。 这个说明能够使熟悉此领域的人可以更好的利用本发明, 根据实际需要设计不同的具 体实施和进行相应的改动。

Claims

权利要求书
1、 一种偏振无关的可调谐法布里-珀罗滤波器, 其特征在于: 包括两个液晶盒和驱动 电路, 两个液晶盒均包括依次安装一起的第一片光学透明材料、 液晶材料和第二片光学透 明材料, 第一液晶盒的第二片光学透明材料与第二液晶盒的第一片光学透明材料安装在一 起, 在第一液晶盒的第一片光学透明材料上设置高反射率多层介质膜构成第一反射镜, 在 第二液晶盒的第二片光学透明材料上设置高反射率多层介质膜构成第二反射镜, 两个液晶 盒内的液晶材料的光轴相互垂直并设置在由第一反射镜和第二反射镜构成的法布里 -珀罗 腔内, 所述驱动电路与两个液晶盒相连接并通过控制液晶材料的有效折射率实现滤波器的 调谐功能。
2、 根据权利要求 1所述的一种偏振无关的可调谐法布里-珀罗滤波器, 其特征在于: 所述第一液晶盒的第一片光学透明材料上的高反射率多层介质膜设置在第一片光学透明 材料的外侧, 该第一光学透明材料的内侧从内到外依次设有光学增透膜和透明电极, 所述 第一液晶盒的第二光学透明材料的外侧为光学抛光面, 第二光学透明材料的内侧从内到外 依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通光孔径以 外的部分以及一个约 1毫米宽连接到第二片光学透明材料薄片边缘的通道, 用于为多余的 液晶材料提供一个出口, 并与第一片光学透明材料的内侧构成一个空腔用于设置液晶材 料, 该透明电极与驱动电路相连接。
3、 根据权利要求 1所述的一种偏振无关的可调谐法布里-珀罗滤波器, 其特征在于: 所述第一液晶盒的第一片光学透明材料上的高反射率多层介质膜设置在第一片光学透明 材料的内侧, 在高反射率多层介质膜的内侧设置有透明电极, 在第一光学透明材料的外侧 设置光学增透膜, 所述第一液晶盒的第二光学透明材料的外侧为光学抛光面, 第二光学透 明材料的内侧从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料 薄膜覆盖除通光孔径以外的部分以及一个约 1毫米宽连接到第二片光学透明材料薄片边缘 的通道, 用于为多余的液晶材料提供一个出口, 并与第一片光学透明材料的内侧构成一个 空腔用于设置液晶材料, 该透明电极与驱动电路相连接。
4、 根据权利要求 1所述的一种偏振无关的可调谐法布里-珀罗滤波器, 其特征在于: 所述第二液晶盒的第二片光学透明材料上的高反射率多层介质膜设置在第二片光学透明 材料的外侧, 该第二光学透明材料的内侧从内到外依次设有光学增透膜和透明电极, 所述 第二液晶盒的第一片光学透明材料的外侧为光学抛光面, 第一片光学透明材料的内侧从内 到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通光孔 径以外的部分以及一个约 1毫米宽连接到该光学透明材料薄片边缘的通道, 用于为多余的 液晶材料提供一个出口, 并与第二液晶盒的笛二片光学透明材料的内侧构成一个空腔用于 设置液晶材料, 该透明电极与驱动电路相连接。
5、 根据权利要求 1所述的一种偏振无关的可调谐法布里-珀罗滤波器, 其特征在于: 所述第二液晶盒的第二片光学透明材料上的高反射率多层介质膜设置在第二片光学透明 材料的内侧, 在高反射率多层介质膜的内侧设置有透明电极, 在第二光学透明材料的外侧 设置光学增透膜, 所述第二液晶盒的第一片光学透明材料的外侧为光学抛光面, 第一片光 学透明材料的内侧从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电 材料薄膜覆盖除通光孔径以外的部分以及一个约 1毫米宽连接到该光学透明材料薄片边缘 的通道, 用于为多余的液晶材料提供一个出口, 并与第二液晶盒的第二片光学透明材料的 内侧构成一个空腔用于设置液晶材料, 该透明电极与驱动电路相连接。
6、 根据权利要求 1所述的一种偏振无关的可调谐法布里-珀罗滤波器, 其特征在于: 所述的第一液晶盒的第二片光学透明材料与第二液晶盒的第一片光学透明材料的安装方 式为: 使用光学透明折射率匹配胶粘接在一起, 并使得第一反射镜和第二反射镜保持平行 以形成法布里-珀罗腔。
7、根据权利要求 1所述的一种偏振无关的可调谐法布里-珀罗滤波器,其特征在于: 所述的液晶材料采用的是向列相型液晶, 该液晶材料的厚度为几微米至十几微米。
8、 根据权利要求 1所述的一种偏振无关的可调谐法布里-珀罗滤波器, 其特征在于: 所述的滤波器驱动电路是一种频率为从一千赫兹到几千赫兹的方波脉冲电路, 脉冲电压幅 度从 0伏到 5伏可调。
PCT/CN2013/076169 2012-09-05 2013-05-23 一种偏振无关的可调谐法布里-珀罗滤波器 WO2014036844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210325416.1 2012-09-05
CN2012103254161A CN102799013A (zh) 2012-09-05 2012-09-05 一种偏振无关的可调谐法布里-珀罗滤波器

Publications (1)

Publication Number Publication Date
WO2014036844A1 true WO2014036844A1 (zh) 2014-03-13

Family

ID=47198157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076169 WO2014036844A1 (zh) 2012-09-05 2013-05-23 一种偏振无关的可调谐法布里-珀罗滤波器

Country Status (2)

Country Link
CN (1) CN102799013A (zh)
WO (1) WO2014036844A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200488A1 (de) * 2015-01-14 2016-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrisch steuerbarer Interferenzfarbfilter und dessen Verwendung

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799013A (zh) * 2012-09-05 2012-11-28 天津奇谱光电技术有限公司 一种偏振无关的可调谐法布里-珀罗滤波器
CN103293760B (zh) * 2013-07-02 2015-06-03 深圳市华星光电技术有限公司 基于双层液晶法布里珀罗滤波器模组的显示装置
US9291867B2 (en) * 2013-07-02 2016-03-22 Shenzhen China Star Optoelectronics Technology Co., Ltd Double layer liquid crystal (LC) fabry-perot (FP) filter display device
JP6636323B2 (ja) * 2015-12-28 2020-01-29 株式会社日立エルジーデータストレージ 調光器及びこれを用いた映像表示装置
CN211698504U (zh) * 2020-02-10 2020-10-16 浙江大学 一种对入射光偏振态不敏感的电可调滤光器
CN111675817B (zh) * 2020-06-24 2022-09-20 南方科技大学 液晶弹性体薄膜的制备方法、可调谐滤波器及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068749A (en) * 1990-08-31 1991-11-26 Bell Communications Research, Inc. Electronically tunable polarization-independent liquid crystal optical filter
EP0498375A1 (en) * 1991-02-04 1992-08-12 Nippon Telegraph And Telephone Corporation Electrically tunable wavelength-selective filter
EP0903615A2 (en) * 1997-09-19 1999-03-24 Nippon Telegraph and Telephone Corporation Tunable wavelength-selective filter and its manufacturing method
CN1325502A (zh) * 1998-11-02 2001-12-05 斯马特显示器株式会社 非偏振敏感型向列液晶法布里-珀罗波长调谐滤波器
WO2005036241A1 (ja) * 2003-10-10 2005-04-21 Shoei Kataoka 波長可変フィルタ及びその製造方法
CN101799596A (zh) * 2010-03-12 2010-08-11 无锡市奥达光电子有限责任公司 一种液晶可调谐滤波器及其构型方法
CN102799013A (zh) * 2012-09-05 2012-11-28 天津奇谱光电技术有限公司 一种偏振无关的可调谐法布里-珀罗滤波器
CN102798991A (zh) * 2012-09-05 2012-11-28 天津奇谱光电技术有限公司 一种与入射光的偏振态无关的可调谐光滤波器
CN102820611A (zh) * 2012-09-05 2012-12-12 天津奇谱光电技术有限公司 一种非偏振光输出的可调谐激光器
CN102829870A (zh) * 2012-09-05 2012-12-19 天津奇谱光电技术有限公司 一种光学频谱分析设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794958B (zh) * 2010-04-01 2012-01-25 天津奇谱光电技术有限公司 可调谐激光器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068749A (en) * 1990-08-31 1991-11-26 Bell Communications Research, Inc. Electronically tunable polarization-independent liquid crystal optical filter
EP0498375A1 (en) * 1991-02-04 1992-08-12 Nippon Telegraph And Telephone Corporation Electrically tunable wavelength-selective filter
EP0903615A2 (en) * 1997-09-19 1999-03-24 Nippon Telegraph and Telephone Corporation Tunable wavelength-selective filter and its manufacturing method
CN1325502A (zh) * 1998-11-02 2001-12-05 斯马特显示器株式会社 非偏振敏感型向列液晶法布里-珀罗波长调谐滤波器
WO2005036241A1 (ja) * 2003-10-10 2005-04-21 Shoei Kataoka 波長可変フィルタ及びその製造方法
CN101799596A (zh) * 2010-03-12 2010-08-11 无锡市奥达光电子有限责任公司 一种液晶可调谐滤波器及其构型方法
CN102799013A (zh) * 2012-09-05 2012-11-28 天津奇谱光电技术有限公司 一种偏振无关的可调谐法布里-珀罗滤波器
CN102798991A (zh) * 2012-09-05 2012-11-28 天津奇谱光电技术有限公司 一种与入射光的偏振态无关的可调谐光滤波器
CN102820611A (zh) * 2012-09-05 2012-12-12 天津奇谱光电技术有限公司 一种非偏振光输出的可调谐激光器
CN102829870A (zh) * 2012-09-05 2012-12-19 天津奇谱光电技术有限公司 一种光学频谱分析设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015200488A1 (de) * 2015-01-14 2016-07-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrisch steuerbarer Interferenzfarbfilter und dessen Verwendung

Also Published As

Publication number Publication date
CN102799013A (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
US10418775B2 (en) External cavity tunable laser with dual beam outputs
WO2014036844A1 (zh) 一种偏振无关的可调谐法布里-珀罗滤波器
CN102709799B (zh) 一种宽带连续可调谐激光器
WO2014036842A1 (zh) 一种非偏振光输出的可调谐激光器
US6205159B1 (en) Discrete wavelength liquid crystal tuned external cavity diode laser
US6535321B2 (en) Thin film ferroelectric light modulators
US8369367B1 (en) Tunable laser system
WO2015101049A1 (zh) 一种可调谐激光器系统
WO2011120246A1 (zh) 可调谐激光器
WO2011134177A1 (zh) 可调谐激光器
WO2014036843A1 (zh) 一种光学频谱分析设备
CN201984180U (zh) 光纤法布里-珀罗可调滤波器
JPWO2004111717A1 (ja) 波長可変光フィルタ
US8559090B2 (en) Tunable optical filter and method of manufacture thereof
WO2014036845A1 (zh) 一种与入射光的偏振态无关的可调谐光滤波器
WO2014019399A1 (zh) 一种固定频率间隔和单模输出的可调谐光学滤波器
WO2014019398A1 (zh) 一种单模连续可调谐光学滤波器
WO2013189108A1 (zh) 一种可调谐法布里-珀罗滤波器
US20120268709A1 (en) Tunable optical filters with liquid crystal resonators
WO2013016886A1 (zh) 滤波器耦合双激光增益介质的外腔式宽带可调谐激光器
CN103777381A (zh) 一种使用液晶相位调制器的可调谐窄带光学滤波设备
JP2010175785A (ja) 波長可変フィルタ
JP4639663B2 (ja) 波長可変ミラーおよび波長可変レーザ
Ciosek Fabry-Perot interferometer with broadband selective fiber and liquid crystal filter for wavelength division multiplexing systems
EA016161B1 (ru) Управляемый жидкокристаллический фильтр

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834496

Country of ref document: EP

Kind code of ref document: A1