WO2014036843A1 - 一种光学频谱分析设备 - Google Patents

一种光学频谱分析设备 Download PDF

Info

Publication number
WO2014036843A1
WO2014036843A1 PCT/CN2013/076168 CN2013076168W WO2014036843A1 WO 2014036843 A1 WO2014036843 A1 WO 2014036843A1 CN 2013076168 W CN2013076168 W CN 2013076168W WO 2014036843 A1 WO2014036843 A1 WO 2014036843A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optically transparent
transparent material
tunable
filter
Prior art date
Application number
PCT/CN2013/076168
Other languages
English (en)
French (fr)
Inventor
高培良
Original Assignee
天津奇谱光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津奇谱光电技术有限公司 filed Critical 天津奇谱光电技术有限公司
Publication of WO2014036843A1 publication Critical patent/WO2014036843A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/1256Generating the spectrum; Monochromators using acousto-optic tunable filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/32Investigating bands of a spectrum in sequence by a single detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02195Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
    • G02B6/022Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using mechanical stress, e.g. tuning by compression or elongation, special geometrical shapes such as "dog-bone" or taper
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector

Definitions

  • the invention belongs to the field of optoelectronic technology, in particular to an optical spectrum analysis device.
  • conventional optical spectrum measuring and analysis equipment typically employs reflective or transmissive gratings.
  • it is generally necessary to use a precision stepping motor to drive the grating for scanning. Therefore, conventional grating spectroscopic analysis equipment is relatively large in size, is susceptible to mechanical shock, and is expensive.
  • the traditional optical Fabry-Perot etalon is a filter element fabricated using the principle of multi-beam interference.
  • the multi-wavelength interference effect of the Fabry-Perot cavity formed by the high reflectivity of the multilayer dielectric film on the two light-passing surfaces enables multi-wavelength narrow-band filtering output over a wide spectral range, and has stable performance. It has wide optical aperture, high optical power destruction threshold, simple structure and low cost. Therefore, it is widely used in various types of lasers, optical measuring instruments and optical fiber communication devices.
  • the tuning function of the transmitted optical frequency can be achieved using a conventional optical Fabry-Perot etalon.
  • tuning can be done by changing the angle of incidence of the light, but the tuning range of this method is small; it is also possible to change the Fabry by mechanical means (such as stepper motors).
  • the cavity length of the Perot etalon is tuned. This method can achieve a large tuning range, but the tuning accuracy is low, and the precision of the mechanical components is high and the stability is not good.
  • the PZT piezoelectric ceramic (lead zirconate titanate) technology can improve the tuning accuracy and speed by changing the cavity length of the Fabry-Perot etalon, but it is not easy to miniaturize and the drive circuit is complicated. Changing the temperature of the etalon can also achieve a wider range of tuning, but the disadvantage of this method is that it is slow.
  • the filter output characteristic of a single Fabry-Perot etalon is a multimode output with an optical frequency interval of free spectral range. .
  • the Acousto-Optical Tunable Filter is a solid-state, electronically tunable bandpass spectral filter that uses anisotropic acousto-optic interactions.
  • the advancement of crystal growth technology and high-frequency piezoelectric transducer technology has greatly improved the acousto-optic originals, making the AOTF technology mature and entering the industrial application from the laboratory.
  • AOTF implementations typically employ anisotropic birefringent acousto-optic (AO) media with high-speed tuning capabilities, proven long-term stability, and low cost.
  • acousto-optic filters collinear and non-collinear, where non-collinear non-paraxial filters with high RF frequencies can achieve narrowband optical frequency tuning, but it is almost impossible to do It has the same narrowband filtering function as the Fabry-Perot etalon. Therefore, it is difficult to achieve narrowband output with a tunable laser using only an acousto-optic filter.
  • An object of the present invention is to overcome the deficiencies of the prior art and to provide an optical spectrum analysis apparatus which is stable, high in precision, fast in speed, and wide in spectral response range.
  • An optical spectrum analysis device comprising a tunable Fabry-Perot filter, a tunable acousto-optic filter, a first photodetector, a second photodetector, and a system control and data analysis system; Filtered by a tunable Fabry-Perot filter, the output beam is filtered by a tunable acousto-optic filter, and the two polarization states of the output are perpendicular to each other and have a separated angle.
  • the system control and data analysis system is respectively associated with a tunable Fabry-Perot filter, a tunable acousto-optic filter, a first photodetector, and a second photodetector Connected to enable the optical spectrum analysis device to detect the power and spectrum of incident light.
  • the tunable Fabry-Perot filter includes a first liquid crystal cell, a second liquid crystal cell, and a tunable Fabry-Perot filter driving circuit, which are sequentially mounted in front and rear, and two liquid crystal cells are The first optically transparent material, the liquid crystal material and the second optically transparent material are sequentially mounted together, and the second optically transparent material of the first liquid crystal cell is mounted together with the first optically transparent material of the second liquid crystal cell.
  • the first optically transparent material of the first liquid crystal cell is provided with a high-reflectivity multilayer dielectric film to form a first mirror
  • the second optically transparent material of the second liquid crystal cell is provided with a high-reflectivity multilayer dielectric film to form a second a mirror
  • the optical axes of the liquid crystal materials in the two liquid crystal cells are perpendicular to each other and disposed in a Fabry-Perot cavity composed of the first mirror and the second mirror
  • the tunable Fabry-Perot The driving circuit of the filter is connected with two liquid crystal cells and realizes the tuning function of the filter by controlling the effective refractive index of the liquid crystal material.
  • the driving circuit and system control of the tunable Fabry-Perot filter The system is connected to the data analysis system.
  • the high-reflectivity multilayer dielectric film on the first optically transparent material of the first liquid crystal cell is disposed outside the first optically transparent material, and the inner side of the first optically transparent material is sequentially disposed from the inside to the outside.
  • a film of a conductive material covering a portion other than the clear aperture and a channel approximately 1 mm wide connected to the edge of the second sheet of optically transparent material for providing an exit for the excess liquid crystal material, and
  • the inside of a piece of optically transparent material forms a cavity for providing a liquid crystal material, and the transparent electrode is connected to a drive circuit of a tunable Fabry-Perot filter.
  • the high-reflectivity multilayer dielectric film on the first optically transparent material of the first liquid crystal cell is disposed inside the first optically transparent material
  • the transparent electrode is disposed inside the high-reflectivity multilayer dielectric film.
  • An optical antireflection film is disposed on an outer side of the material; an outer side of the second optically transparent material of the first liquid crystal cell is an optically polished surface, and an inner side of the second optically transparent material is provided with an optical antireflection film, a transparent electrode, and a film of non-conductive material covering a portion other than the clear aperture and a channel approximately 1 mm wide connected to the edge of the second sheet of optically transparent material for providing an exit for the excess liquid crystal material, and
  • the inside of the first piece of optically transparent material forms a cavity for the liquid crystal material, and the transparent electrode is connected to the drive circuit of the tunable Fabry-Perot filter.
  • the high-reflectivity multilayer dielectric film on the second optically transparent material of the second liquid crystal cell is disposed outside the second optically transparent material, and the inner side of the second optically transparent material is sequentially disposed from the inside to the outside.
  • An optical antireflection film and a transparent electrode wherein an outer side of the first optically transparent material of the second liquid crystal cell is an optically polished surface, and an inner side of the first optically transparent material is provided with an optical antireflection film and a transparent electrode from the inside to the outside.
  • a film of a non-conductive material covering a portion other than the clear aperture and a channel connected to the edge of the sheet of optically transparent material about 1 mm wide for providing an outlet for the excess liquid crystal material, and
  • the inside of the second optically transparent material of the two liquid crystal cells constitutes a cavity for providing a liquid crystal material, and the transparent electrode is connected to a driving circuit of the tunable Fabry-Perot filter.
  • a high-reflectivity multilayer dielectric film on the second optically transparent material of the second liquid crystal cell is disposed inside the second optically transparent material, and a transparent electrode is disposed on the inner side of the high-reflectivity multilayer dielectric film.
  • An optical antireflection film is disposed on an outer side of the second optically transparent material, wherein an outer side of the first optically transparent material of the second liquid crystal cell is an optically polished surface, and an inner side of the first optically transparent material is optically disposed from the inside to the outside.
  • the second optically transparent material of the first liquid crystal cell and the first optically transparent material of the second liquid crystal cell are mounted by: bonding together using an optically transparent index matching glue, and making the first reflection The mirror and the second mirror remain parallel to form a Fabry-Perot cavity.
  • liquid crystal material is a nematic liquid crystal having a thickness of several micrometers to ten micrometers.
  • the drive circuit of the tunable Fabry-Perot filter is a square wave pulse circuit having a frequency from one kilohertz to several kilohertz, and the pulse voltage amplitude is adjustable from 0 volts to 5 volts.
  • the free spectral range of the tunable Fabry-Perot filter is greater than the half width of the filter bandwidth of the tunable acousto-optic filter.
  • the tunable acousto-optic filter is a narrowband, non-coaxial birefringence type acousto-optic filter, and its first-order diffraction
  • the incident light is divided into two linearly polarized lights whose polarization states are perpendicular to each other and form a certain angle.
  • the tunable acousto-optic filter is driven by a driving circuit of a tunable acousto-optic filter, the driving circuit of the tunable acousto-optic filter is connected to a system control and data analysis system; the tunable acousto-optic filter
  • the drive circuit is a frequency and power adjustable RF signal generator with a frequency from a few megahertz to several hundred megahertz.
  • first photodetector and the second photodetector are respectively driven by a driving circuit of the first photodetector and a driving circuit of the second photodetector, a driving circuit of the first photodetector and a second photodetector
  • the drive circuits are connected to the system control and data analysis systems, respectively.
  • the invention places two nematic liquid crystal materials whose optical axes are perpendicular to each other in the cavity of the Fabry-Perot etalon and utilizes the electronically controlled birefringence effect of the liquid crystal and the optical phase modulation of the incident light.
  • the frequency of light transmitted through the Fabry-Perot filter is continuously, quickly and precisely tuned over a wide spectral range and independent of the polarization of the incident light. Since the thickness of the liquid crystal material is very thin, a wideband tunable Fabry-Perot filter having a small size and a large free spectral range can be fabricated.
  • the multimode optical wave output by the tunable Fabry-Perot filter is filtered by a tunable acousto-optic filter to achieve high-precision, fast, and stable spectral analysis over a large spectral range.
  • the invention has the advantages of reasonable design, non-mechanical moving parts, stable and reliable performance, small size, easy installation and production, and can meet the requirements of small size and extreme working environment, and can be widely used in lasers, optical tests, and optical fibers. In the fields of communications, biology, medical devices and fiber optic sensor networks.
  • Figure 1 is a schematic view of a conventional Fabry-Perot etalon
  • FIG. 2 is a schematic structural view of a first liquid crystal cell
  • FIG. 3 is a schematic structural view of a second liquid crystal cell
  • FIG. 4 is a schematic structural view of a tunable Brie-Perot filter
  • Figure 5 is a graph showing the phase of light transmitted through the liquid crystal material as a function of an applied electric field
  • Figure 6 is a schematic diagram of the transmission spectrum of a conventional Fabry-Perot etalon
  • FIG. 7 is a schematic diagram of a transmission spectrum of a tunable Brill-Perot filter
  • Figure 8 is a schematic diagram of a tunable acousto-optic filter
  • Figure 9 is a schematic structural view of the present invention.
  • Figure 10 is a schematic diagram of the output spectrum of the tunable acousto-optic filter
  • Figure 11 is a schematic diagram of the synthesized output spectrum of a tunable Fabry-Perot filter and a tunable acousto-optic filter;
  • Figure 12 is a schematic diagram of the output spectrum of the present invention.
  • FIG. 1 A schematic of a conventional Fabry-Perot light etalon 100 is shown in FIG.
  • the material of the Fabry-Perot etalon 100 is generally optical glass such as fused silica or BK7 in the near-infrared and visible-light bands, assuming that the material has a refractive index n and both light-passing surfaces 2 and 4 are plated high.
  • the Fabry-Perot optical etalon's transmission spectrum is characterized by a very narrow bandwidth for each transmission spectrum, a uniform frequency spacing of the transmission spectrum and a very wide optical frequency response bandwidth, typically covering more than
  • the optical spectrum band of 100 nm, the output light spectrum of the optical etalon 100 is shown in Fig. 6.
  • a liquid crystal material generally used as a photovoltaic device has a high electrical resistivity, it can be considered as an ideal dielectric material.
  • the liquid crystal has anisotropic dielectric properties and uniaxial symmetry due to the ordered orientation of the molecules and the stretched morphology. Like a uniaxial crystal, the direction of the optical axis coincides with the alignment of the molecules.
  • an electric dipole is formed. Under the action of the moment formed by the electric dipole, the orientation of the liquid crystal molecules is turned to the direction of the electric field, and the direction of the optical axis of the liquid crystal can be changed by changing the strength of the electric field.
  • an optical phase modulator, a tunable filter or other optoelectronic devices such as an optical switch and a light intensity modulator can be fabricated using this characteristic of the liquid crystal.
  • the thickness of the liquid crystal film layer generally used as a photovoltaic device is from several micrometers to ten micrometers.
  • the present invention is designed by utilizing the fact that liquid crystals change the refractive index of linearly polarized light under the action of an electric field.
  • the optical spectrum analysis apparatus involved in the present invention includes two liquid crystal cells whose optical axis directions are perpendicular to each other.
  • the first liquid crystal cell 200 includes two structures.
  • the first structure includes a first piece of optically transparent material
  • the liquid crystal material 14 and the second optically transparent material 22, the high-reflectivity multilayer dielectric film 6 is disposed on the outer surface of the first optically transparent material 8, and the optical anti-reflection film 10 and the transparent electrode film are disposed on the inner side from the inside to the outside.
  • the outer surface 24 of the second optically transparent material 22 is an optically polished surface, and the optical antireflection film 20, the transparent electrode film layer 18 and the non-conductive material film 16, and the thickness of the non-conductive material film 16 are respectively disposed from the inside to the outside.
  • the liquid crystal material 14 is a nematic liquid crystal having a thickness of about several micrometers and a few micrometers.
  • the second structure of the liquid crystal cell 200 is different from the first structure in that an optical anti-reflection film 6 is disposed on the outer surface of the first optically transparent material 8, and a high-reflectivity multilayer dielectric is disposed on the inner side from the inside to the outside.
  • the film 10 and the transparent electrode film layer 12 are otherwise disposed in the same manner as the first structure of the liquid crystal cell 200, and the purpose thereof is to change the thickness of the Fabry-Perot cavity.
  • the second liquid crystal cell 300 includes two structures.
  • the first structure comprises a first sheet of optically transparent material 28, a liquid crystal material 36, and a second sheet of optically transparent material 42, the outer surface 26 of the second sheet of optically transparent material 42 being provided with a high reflectivity multilayer dielectric film 44, the inside from the inside out
  • the optical anti-reflection film 40 and the transparent electrode film layer 32 are respectively disposed.
  • the outer surface 26 of the first optically transparent material 28 is an optically polished surface, and the optical antireflection film 30, the transparent electrode film layer 32 and the non-conductive layer are respectively disposed from the inside to the outside.
  • the material film 34, the non-conductive material film 34 has a thickness of several micrometers to ten micrometers, covers other portions except the light-passing aperture, and a channel having a width of about 1 mm to the edge of the optically transparent material 28 for eliminating excess
  • the liquid crystal material, the non-conductive material film 34 and the second sheet of optically transparent material 42 form a cavity for providing the liquid crystal material 36.
  • the portions other than the liquid crystal chambers of the two materials constituting the liquid crystal chamber are bonded together by an epoxy resin or an ultraviolet gel, and the liquid crystal material 36 is a nematic liquid crystal having a thickness of about several micrometers.
  • the road is a dozen microns.
  • the second structure of the liquid crystal cell 300 is different from the first structure in that an optical anti-reflection film 44 is disposed on the outer surface of the second optically transparent material 42, and a high-reflectivity multilayer dielectric film 40 is disposed on the inner side from the inside to the outside.
  • the transparent electrode film layer 38, the other arrangement is the same as the first structure of the liquid crystal cell 300, the purpose of which is to change the thickness of the Fabry-Perot cavity.
  • FIG. 4 shows a schematic diagram of a polarization-independent tunable Brie-Perot filter.
  • the tunable Fabry-Perot filter 400 includes a first liquid crystal cell 200, a second liquid crystal cell 300, and a tunable Fabry-Perot filtered drive circuit 52.
  • the outer side of the second piece of optically transparent material of the liquid crystal cell 200 and the outer side of the first piece of optically transparent material of the liquid crystal cell 300 are bonded together by the optically transparent index matching glue 50 and the first optically transparent material and liquid crystal of the liquid crystal cell 200 are made.
  • the faces of the second optically transparent material of the cartridge 300 provided with the high reflectivity dielectric film remain parallel to form a harmonic Fabry-Perot cavity.
  • the driving circuit 52 is connected to the transparent electrodes of the liquid crystal cell 200 and the liquid crystal cell 300, and the driving signal generated by the driving circuit 52 forms a driving electric field between the two transparent electrode film layers; the Fabry-Perot is changed by the electric field.
  • the effective refractive index n of the liquid crystal in the cavity adjusts the optical frequency V and the free spectral range (FSR) of the transmitted light of the Fabry-Perot filter.
  • a typical driving electric field is a square wave signal having a voltage of several volts and a frequency of 1 kHz to several kilohertz.
  • tunable Fabry-Perot can be made in the intrinsic free spectral range (ie, the free spectral range of the tunable filter without an applied electric field) filter. Since the optical axes of the liquid crystals in the first liquid crystal cell 200 and the second liquid crystal cell 300 are perpendicular to each other, the polarization of the filter 400 and the incident light State has nothing to do.
  • the light beam 48 incident on the filter 400 is a collimated beam, assuming that the refractive index of the optically transparent material is n, on the first optically transparent material of the first liquid crystal cell 200 and on the second liquid crystal cell 300.
  • the optical path produced by the incident light is changed by the refraction under the action of an applied electric field.
  • the combination of two different structures of the first liquid crystal cell 200 and the second liquid crystal cell 300 can increase or decrease the length D of the Fabry-Perot cavity, thereby adjusting the filter 400 free spectral range FSR2.
  • Figure 5 is a graph showing the relationship between the phase change of a 1525 nm light wave with a wavelength of about 10 ⁇ m nematic liquid crystal driven by a 2 kHz square wave voltage. A maximum optical phase delay of about 2 ⁇ can be achieved.
  • the tunable Fabry-Perot filter 400 can obtain a tuning range of about 1.5 times the transmitted optical frequency of FSR2 for collimated light near zero incidence, and a band of free spectral range ⁇ and transmitted light. The change in broadband is much smaller.
  • a schematic diagram of the spectrum of the transmitted light 54 of the tunable Fabry-Perot filter is shown in FIG.
  • the tunable Fabry-Perot filter 400 can achieve a large range of transmission light peak frequency tuning under the action of an applied electric field without substantially changing the bandwidth and free spectral range of the transmitted light. This feature is important for many applications in tunable Fabry-Perot filter 400, such as lasers and spectrum instruments.
  • Figure 8 shows a schematic of a tunable acousto-optic filter.
  • the medium used in the acousto-optic filter 500 is anisotropic and birefringent.
  • One of the materials cerium oxide (Te02), is widely used in such applications due to its high optical uniformity, low light absorption and high optical power capability in shear mode.
  • Other substances such as lithium niobate (LiNb03), gallium phosphide (GaP) and lead molybdate (PbMo04) are also frequently used in various acousto-optic devices. There are many factors that influence the selection of specific substances.
  • the tunable acousto-optic filter 500 is a non-collinear and non-paraxial acousto-optic filter having birefringence characteristics.
  • An acousto-optic crystal 57 and a transducer 58 employing cerium oxide are directly driven by a drive circuit 60 of the tunable acousto-optic filter to generate an acoustic wave field 59 in the crystal 57 to form a diffraction grating.
  • a collimated beam 56 enters the crystal 57 and forms a Bragg angle with the acoustic field 59.
  • the first-order diffracted light After being diffracted by the tunable acousto-optic filter, the first-order diffracted light is split into two linearly polarized lights, S-light 62 and neon 64, and zero. Order diffracted beam 66. The angle between the two linearly polarized lights 62 and 64 and the zero-order diffracted beam, etc. At the corner of Prague.
  • the cutting of the acousto-optic crystal 57 causes the incident surface 55 and the exit surface 61 to be perpendicular or nearly perpendicular to the incident light. In order to reduce the loss of light, both the incident surface 55 and the exit surface 61 are plated with an optical antireflection film.
  • the filtered spectrum of the tunable acousto-optic filter 500 is characterized by continuous tunability of the optical frequency over a wide frequency range, as shown in FIG.
  • the bandwidth of the filtered spectrum, ⁇ ⁇ , half width (FWHM) ⁇ ⁇ 1/2 , resolution and diffraction efficiency depends on the size of the acousto-optic crystal, the structure of the transducer, and the RF drive power. To achieve narrowband filtering spectra and high diffraction filtering efficiency, it is necessary to increase the size of the transducer and acousto-optic crystal.
  • FIG. 9 is a schematic view showing the structure of the present invention, and the technical solution of the present invention will be described below with reference to Fig. 9.
  • An optical spectrum analysis apparatus includes a tunable Fabry-Perot filter 400, a tunable acousto-optic filter 500, a first photodetector 84, a second photodetector 86, and a drive control and data analysis system
  • the system includes a drive circuit 52 of the tunable Fabry-Perot filter 400, a drive circuit 60 of the tunable acousto-optic filter 500, a drive circuit 90 of the first photodetector 84, and a second photodetector 86.
  • a broadband collimated beam 76 is incident into the tunable Fabry-Perot filter 400.
  • the spectrum of the transmitted light 78 is shown in Figure 7.
  • the tunable range of the peak frequency of the transmitted light is about 1.5 times the FSR2.
  • the free spectral range of the tunable Fabry-Perot filter 400 remains substantially constant over the range of tuning and in the spectral range of approximately 100 nanometers.
  • the intrinsic free spectral range FSR2 of the tuned Fabry-Perot filter 400, the transmitted light 80 and 82 are a single mode beam, the spectral characteristics of which are shown in Figure 12 and the tunable Fabry-Perot filter.
  • the spectral characteristics of a transmission mode of 400 are the same. If the spectral degree ⁇ ⁇ of the transmitted light of the tunable Fabry-Perot filter 400 is considered (refer to FIG. 11 ), the single mode output or the high transmitted light side touch suppression ratio is to be realized, and the acousto-optic filter 500 is tuned.
  • the transmission bandwidth ⁇ V also needs to be narrower.
  • Transmitted light 80 and 82 are received by photodetectors 84 and 86, respectively, and fed back to system control and data analysis system and data subsystem 92 by drive circuits 90 and 88, respectively, to obtain spectral information of incident light 76.
  • the present invention utilizes the filtering function of the tunable Fabry-Perot filter 400 and the diffraction filtering function of the tunable acousto-optic filter 500, different response characteristics are obtained for beams of different optical frequencies, and therefore, accurate To detect the spectral data of the light, the system needs to be calibrated.
  • the system control and data analysis system and data analysis system 92 includes a control circuit and data analysis software centered on the digital signal processor and embedded software for controlling the tunable Fabry-Perot filter drive circuit 52, a driving circuit 60 for tuning the acousto-optic filter, a driving circuit 90 for driving the first photodetector and receiving an optical power signal of the first photodetector, driving the second photodetector, and receiving an optical power signal of the second photodetector Driving circuit 88 and receiving an external control signal and an output signal to implement the optical spectrum analysis device pair The power of the incident light and the detection function of the spectrum.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光学频谱分析设备,包括一个可调谐法布里-珀罗滤波器(400)、一个可调谐声光滤波器(500)、第一光电探测器(84)、第二光电探测器(86)以及系统控制和数据分析系统(92);入射光(76)首先通过可调谐法布里-珀罗滤波器(400)滤波,其输出光束(78)通过可调谐声光滤波器(500)滤波,其输出的两束偏振态相互垂直并具有一定分离夹角的线偏振光束(80,82)分别由第一光电探测器(84)和第二光电探测器(86)接收;系统控制和数据分析系统(92)用于实现光学频谱分析设备对入射光(76)的功率和光谱的检测功能。光学频谱分析设备具有无机械移动部件、性能稳定可靠、尺寸小、易于安装及生产等特点,满足了小尺寸和极端环境下的需求,可广泛用于激光器、光学测试、光纤通讯、生物、医疗器械和光纤传感器网络等领域中。

Description

一种光学频谱分析设备 技术领域
本发明属于光电技术领域, 尤其是一种光学频谱分析设备。
背景技术
由于传统的光栅能够在大的光谱范围内具有很高光谱分辨率, 因此, 传统的光学频谱 测量和分析设备一般采用反射型或透射型光栅。 其缺点的, 一般需要用精密步进马达带动 光栅进行扫描。 因此, 常用的光栅光谱分析设备尺寸比较大, 容易受机械震动的影响, 且 价格昂贵。
传统的光学法布里-珀罗标准具是一种利用多光束干涉原理制作的滤波器件,主要有两 种类型: 一种是空气间隔的, 一种是光学玻璃间隔的。 通过两个通光面上多层介质膜的高 反射率所形成法布里-珀罗腔的多光束干涉效应,可以实现在宽频谱范围内的多波长窄带滤 波输出, 而且具有性能稳定、通光孔径大、光功率破坏阈值高、 结构简单和成本低等特性, 因此, 被广泛应用于各类激光器、 光学测量仪器和光纤通讯器件中。
利用传统的光学法布里-珀罗标准具可以实现透射光频率的调谐功能。对于空气间隔的 法布里-珀罗标准具, 可通过改变光的入射角度进行调谐, 但是这种方法的调谐范围很小; 也可以采用用机械方法(如步进马达)改变法布里-珀罗标准具的腔长进行调谐, 这种方法 可以实现大的调谐范围, 但调谐精度低, 而且对机械部件的精度要求高, 稳定性不好。 另 夕卜, 采用 PZT压电陶瓷 (锆钛酸铅) 技术通过改变法布里-珀罗标准具的腔长, 可以提高 调谐精度和速度, 但是不易做到小型化, 且驱动电路也较复杂; 改变标准具的温度也可以 实现较大范围的调谐, 但是, 该方法的缺点是速度慢。 同时, 单一法布里-珀罗标准具的滤 波输出特性是一个光频率间隔为自由光谱范围的多模输出。。
声光可调谐滤波器 (AOTF) 是一种固态的、 可电子调谐的带通光谱滤波器, 这类滤 波器大多数使用各向异性的声光互作用。 晶体生长技术与高频压电式换能器技术的进步大 大的改进了声光原件, 使得 AOTF技术上已成熟, 从实验室走进了工业的应用。 AOTF的 实施通常采用各向异性的双折射声光(AO)介质, 并有高速调谐能力、得到证明的长期稳 定性以及低成本等优点。
声光滤波器的运行原理基于一种叫做布拉格衍射的现象, 即衍射光的方向取决于声波 的波长。 与传统的技术相比, AOTF提供了连续、 快速的调节能力, 但要实现窄的滤波光 谱带宽, 一般要求声光晶体的尺寸比较大。 声光滤波器有两种类型: 共线型与非共线型, 其中具有高射频频率的非共线型非近轴滤波器可以达到窄带光频率调谐, 但几乎不可能做 到象法布里-珀罗标准具一样的窄带滤波功能。 因此, 仅仅采用声光滤波器的可调谐激光器 很难实现窄带输出。
发明内容
本发明的目的在于克服现有技术的不足, 提供一种稳定性强、 精度高、 速度快以及频 谱响应范围宽的光学频谱分析设备。
本发明解决现有的技术问题是采取以下技术方案实现的:
一种光学频谱分析设备,包括一个可调谐法布里-珀罗滤波器、一个可调谐声光滤波器、 第一光电探测器、 第二光电探测器以及系统控制和数据分析系统; 入射光首先通过可调谐 法布里 -珀罗滤波器滤波, 其输出光束通过可调谐声光滤波器滤波, 其输出的两束偏振态相 互垂直并具有一定分离夹角的线偏振光束分别由第一光电探测器和第二光电探测器接收; 所述的系统控制和数据分析系统分别与可调谐法布里-珀罗滤波器、可调谐声光滤波器、第 一光电探测器和第二光电探测器相连接以实现光学频谱分析设备对入射光的功率和光谱 的检测功能。
而且, 所述的可调谐法布里-珀罗滤波器包括前后依次安装起来的第一液晶盒、第二液 晶盒和可调谐法布里 -珀罗滤波器的驱动电路,两个液晶盒均包括依次安装一起的第一片光 学透明材料、 液晶材料和第二片光学透明材料, 第一液晶盒的第二片光学透明材料与第二 液晶盒的第一片光学透明材料安装在一起, 在第一液晶盒的第一片光学透明材料上设置高 反射率多层介质膜构成第一反射镜, 在第二液晶盒的第二片光学透明材料上设置高反射率 多层介质膜构成第二反射镜, 两个液晶盒内的液晶材料的光轴相互垂直并设置在由第一反 射镜和第二反射镜构成的法布里 -珀罗腔内, 所述可调谐法布里 -珀罗滤波器的驱动电路与 两个液晶盒相连接并通过控制液晶材料的有效折射率实现滤波器的调谐功能, 该可调谐法 布里 -珀罗滤波器的驱动电路与系统控制和数据分析系统相连接。
而且, 所述第一液晶盒的第一片光学透明材料上的高反射率多层介质膜设置在第一片 光学透明材料的外侧, 该第一光学透明材料的内侧从内到外依次设有光学增透膜和透明电 极; 所述第一液晶盒的第二光学透明材料的外侧为光学抛光面, 第二光学透明材料的内侧 从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通 光孔径以外的部分以及一个约 1毫米宽连接到第二片光学透明材料薄片边缘的通道, 用于 为多余的液晶材料提供一个出口, 并与第一片光学透明材料的内侧构成一个空腔用于设置 液晶材料, 该透明电极与可调谐法布里 -珀罗滤波器的驱动电路相连接。
而且, 所述第一液晶盒的第一片光学透明材料上的高反射率多层介质膜设置在第一片 光学透明材料的内侧, 在高反射率多层介质膜的内侧设置有透明电极, 在第一光学透明材 料的外侧设置光学增透膜; 所述第一液晶盒的第二光学透明材料的外侧为光学抛光面, 第 二光学透明材料的内侧从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非 导电材料薄膜覆盖除通光孔径以外的部分以及一个约 1毫米宽连接到第二片光学透明材料 薄片边缘的通道, 用于为多余的液晶材料提供一个出口, 并与第一片光学透明材料的内侧 构成一个空腔用于设置液晶材料,该透明电极与可调谐法布里-珀罗滤波器的驱动电路相连 接。
而且, 所述第二液晶盒的第二片光学透明材料上的高反射率多层介质膜设置在第二片 光学透明材料的外侧, 该第二光学透明材料的内侧从内到外依次设有光学增透膜和透明电 极, 所述第二液晶盒的第一片光学透明材料的外侧为光学抛光面, 第一片光学透明材料的 内侧从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖 除通光孔径以外的部分以及一个约 1毫米宽连接到该光学透明材料薄片边缘的通道, 用于 为多余的液晶材料提供一个出口, 并与第二液晶盒的第二片光学透明材料的内侧构成一个 空腔用于设置液晶材料, 该透明电极与可调谐法布里 -珀罗滤波器的驱动电路相连接。
而且, 所述第二液晶盒的第二片光学透明材料上的高反射率多层介质膜设置在第二片 光学透明材料的内侧, 在高反射率多层介质膜的内侧设置有透明电极, 在第二光学透明材 料的外侧设置光学增透膜, 所述第二液晶盒的第一片光学透明材料的外侧为光学抛光面, 第一片光学透明材料的内侧从内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通光孔径以外的部分以及一个约 1毫米宽连接到该光学透明材料 薄片边缘的通道, 用于为多余的液晶材料提供一个出口, 并与第二液晶盒的第二片光学透 明材料的内侧构成一个空腔用于设置液晶材料,该透明电极与可调谐法布里-珀罗滤波器的 驱动电路相连接。
而且, 所述的第一液晶盒的第二片光学透明材料与第二液晶盒的第一片光学透明材料 的安装方式为: 使用光学透明折射率匹配胶粘接在一起, 并使得第一反射镜和第二反射镜 保持平行以形成法布里-珀罗腔。
而且, 所述的液晶材料采用的是向列相型液晶, 该液晶材料的厚度为几微米至十几微 米。
而且,所述的可调谐法布里-珀罗滤波器的驱动电路是一种频率为从一千赫兹到几千赫 兹的方波脉冲电路, 脉冲电压幅度从 0伏到 5伏可调。
而且,所述可调谐法布里-珀罗滤波器的自由光谱范围大于所述可调谐声光滤波器的滤 波带宽的半宽度。
而且, 所述可调谐声光滤波器是一种窄带、 非同轴双折射型声光滤波器, 其一级衍射 将入射光分为两个偏振态相互垂直并形成一定的夹角的线偏振光。
而且, 所述可调谐声光滤波器由可调谐声光滤波器的驱动电路驱动, 该可调谐声光滤 波器的驱动电路与系统控制和数据分析系统相连接; 所述可调谐声光滤波器的驱动电路是 一种频率从几兆赫兹到几百兆赫兹的频率和功率可调射频信号发生器。
而且, 所述第一光电探测器、 第二光电探测器分别由第一光电探测器的驱动电路和第 二光电探测器的驱动电路驱动, 第一光电探测器的驱动电路和第二光电探测器的驱动电路 分别与系统控制和数据分析系统相连接。
发明的优点和积极效果是:
本发明将两个光轴相互垂直的向列相型液晶材料放置在法布里-珀罗标准具的腔内并 利用液晶的电控双折射效应和对入射光产生的光学相位调制, 实现在宽频谱范围内对透过 法布里-珀罗滤波器的光的频率进行连续、快速和精密调谐且与入射光的偏振态无关。 由于 液晶材料的厚度非常薄, 因此可以制作尺寸小、 自由光谱范围大的宽带可调谐法布里 -珀罗 滤波器。 由可调谐法布里-珀罗滤波器输出的多模光波再通过可调谐声光滤波器的滤波, 实 现在大的光谱范围内的高精度、 快速和稳定性好的频谱分析等特点。
本发明设计合理, 具有无机械移动部件、 性能稳定可靠、 尺寸小、 易于安装及生产等 特点, 可满足对于要求尺寸小和极端工作环境下的可靠运行, 可广泛用在激光器、 光学测 试、 光纤通讯、 生物、 医疗器械和光纤传感器网络等领域中。
附图说明
图 1是一个普通法布里-珀罗标准具的示意图;
图 2是第一液晶盒的结构示意图;
图 3是第二液晶盒的结构示意图;
图 4是一种可调谐布里-珀罗滤波器的结构示意图;
图 5是光透过液晶材料的相位随外加电场的变化曲线;
图 6是普通法布里 -珀罗标准具的透射光谱示意图;
图 7是可调谐布里 -珀罗滤波器的透射光谱示意图;
图 8是一种可调谐声光滤波器的示意图;
图 9是本发明的结构示意图;
图 10是可调谐声光滤波器的输出光谱示意图;
图 11是可调谐法布里-珀罗滤波器和可调谐声光滤波器的合成输出光谱示意图; 图 12是本发明的输出光谱示意图。
具体实 式 以下结合附图对本发明实施例做进一步详述。
图 1给出了一种普通的法布里 -珀罗 ( Fabry-Perot) 光标准具 100的示意图。 该法布 里-珀罗光标准具 100的材料一般在近红外和可见光波段采用象融石英或 BK7这样的光学 玻璃, 假设材料的折射率为 n, 两个通光面 2和 4都镀高反射膜, 其反射率为 R, 厚度为 h, 光以接近零度的入射角入射, 则只有满足 2nh=mA , 才能透过标准具, 其中 m是透射 光的级次。光标准具 100的自由光谱范围 FSR1可以表示为: Δλ =λ 2/(2nh),或用频率表示: △v=c/(2nh),其中 c 是光速。透射光的峰值频率可以表示为: v=mc/(2nh),其中 m是干涉级次, 透射光的频率宽带可以表示为: Δν (FWHM) =c(l-R)/(2nhRl/2), 其中 c是光速。
从上述两个公式可以看出, 光标准具 100的自由光谱范围 FSR1与厚度为 h成反比。 假设材料的折射率为 n=1.5, 要实现 FSRl=100GHz, 厚度 h-1毫米。 自由光谱范围 FSR1 越大, 其厚度就越小。 在标准具的材料和厚度确定后, 透射光的频带宽度主要和反射率 R 有关, 反射率越高, 频带宽度或锐度 (finesse)越小。 法布里 -珀罗 ( Fabry-Perot)光标准 具的透射光谱的特点是每个透射谱的带宽可以做到非常窄, 透射光谱的频率间隔相等并且 光频率响应带宽非常宽, 一般可覆盖大于 100纳米的光频谱带, 光标准具 100的输出光频 谱如图 6所示。
由于一般用作光电器件的液晶材料具有高的电阻率, 因此, 可以被认为是理想的电介 质材料。 由于构成分子的有序取向和拉伸延长的形态, 液晶具有各向异性的电介质特性和 单轴对称性, 就象一个单轴晶体一样, 其光轴的方向与分子的排列取向一致。 当液晶分子 在外界电场的作用下, 会形成电偶极子。 在电偶极子所形成的力矩作用下, 使得液晶分子 的取向转向电场的方向, 可以通过改变电场的强弱, 改变液晶的光轴的方向。 因此, 可以 利用液晶的这一特性制作光相位调制器, 可调谐滤波器或其他光电器件, 如光开关和光强 调制器等。 一般用作光电器件的液晶膜层的厚度为几微米到十几微米。 本发明正是利用液 晶在电场作用下对线偏振光的折射率产生改变这一特性设计而成。
本发明中所涉及的光学频谱分析设备包括两个光轴方向相互垂直的液晶盒。
如图 2所示, 第一个液晶盒 200包括两种结构。第一种结构包括第一片光学透明材料
8、液晶材料 14和第二片光学透明材料 22, 第一片光学透明材料 8外侧表面上设置高反射 率多层介质膜 6, 内侧从内到外分别设置光学增透膜 10和透明电极膜层 12, 第二片光学 透明材料 22外侧表面 24是光学抛光面, 内侧从内到外分别设置光学增透膜 20, 透明电极 膜层 18和非导电材料薄膜 16, 非导电材料薄膜 16的厚度为几微米到十几微米, 覆盖除通 光孔径外的其他部分和一个宽度约为 1毫米的通到光学透明材料 22边缘的通道, 用于排 除多余的液晶材料, 该非导电材料薄膜 16与第一片光学透明材料 8构成一个空腔用于设 置液晶材料 14, 液晶材料 14采用的是向列相型液晶, 该液晶材料的厚度约为几微米道十 几微米。液晶盒 200的第二种结构与第一种结构的不同之处在于所述第一片光学透明材料 8外侧表面上设置光学增透膜 6, 内侧从内到外分别设置高反射率多层介质膜 10和透明电 极膜层 12, 其他设置与液晶盒 200的第一种结构相同, 其目的是改变法布里 -珀罗腔的厚 度。
如图 3所示, 第二个液晶盒 300包括两种结构。第一种结构包括第一片光学透明材料 28、 液晶材料 36、 第二片光学透明材料 42, 第二片光学透明材料 42外侧表面 26设置高 反射率多层介质膜 44, 内侧从内到外分别设置光学增透膜 40, 透明电极膜层 32, 第一片 光学透明材料 28外侧表面 26是光学抛光面, 内侧从内到外分别设置光学增透膜 30, 透明 电极膜层 32和非导电材料薄膜 34, 非导电材料薄膜 34的厚度为几微米到十几微米, 覆盖 除通光孔径外的其他部分和一个宽度约为 1毫米的通到光学透明材料 28边缘的通道, 用 于排除多余的液晶材料, 非导电材料薄膜 34与第二片光学透明材料 42构成一个空腔用于 设置液晶材料 36。一般可用环氧树脂或紫外光胶等把上述构成液晶腔的两片材料的液晶腔 以外的部分粘接起来, 液晶材料 36 采用的是向列相型液晶, 该液晶材料的厚度约为几微 米道十几微米。液晶盒 300的第二种结构与第一种结构的不同之处在于第二片光学透明材 料 42外侧表面上设置光学增透膜 44, 内侧从内到外分别设置高反射率多层介质膜 40和透 明电极膜层 38, 其他设置与液晶盒 300的第一种结构相同, 其目的是改变法布里-珀罗腔 的厚度。
图 4给出了一种与偏振无关的可调谐布里-珀罗滤波器的结构示意图。该可调谐法布里 -珀罗滤波 400, 包括第一个液晶盒 200、 第二个液晶盒 300和可调谐法布里 -珀罗滤波的 驱动电路 52。 液晶盒 200的第二片光学透明材料的外侧和液晶盒 300的第一片光学透明 材料的外侧用光学透明折射率匹配胶 50粘合在一起并使得液晶盒 200的第一光学透明材 料和液晶盒 300 的第二光学透明材料上设有高反射率介质膜的面保持并行而形成谐法布 里-珀罗腔。 驱动电路 52与液晶盒 200和液晶盒 300的透明电极连接, 由驱动电路 52产 生的驱动信号在两透明电极膜层之间形成驱动电场; 利用电场改变法布里 -珀罗 (Fabry-Perot) 腔内液晶的有效折射率 n, 来调节法布里-珀罗滤波器的透射光的光频率 V 和自由光谱范围 (FSR)。 通常的驱动电场是电压为几伏, 频率为 1千赫兹到几千赫兹的方 波信号。
由于液晶的厚度很小 (几微米到十几微米), 因此, 可以制作本征自由光谱范围 (即 在无外加电场时的可调谐滤波器的自由光谱范围)的可调谐法布里-珀罗滤波器。 由于第一 液晶盒 200和第二液晶盒 300中液晶的光轴相互垂直, 因此, 滤波器 400与入射光的偏振 态无关。
在图 4中, 入射到滤波器 400的光束 48是一束准直光束, 假设光透明材料的折射率 为 n, 第一液晶盒 200的第一片光学透明材料上和第二液晶盒 300的第二片光学透明材料 上镀高反射介质膜的反射率为 R, 法布里-珀罗腔的长度为 D, 则只有满足 2nD+r=mA 的 光才能透过标准具, 其中 m是透射光的级次。 滤波器 400的自由光谱范围 FSR2和透射光 频率分别为: Δλ =λ 2/(2nD+r),或用频率表示: Av=c/(2nD+r),其中 c 是光速, Γ代表由液 晶在外加电场作用下由折射改变对入射光所产生的光程。 透射光的峰值频率可以表示为: v=mc/(2nD+「 ),其中 m 是干涉级次, 透射光的频率宽带可以表示为: Δν ( FWHM ) =c(l-R)/((2nD+DRl/2), 其中 c 是光速。利用第一个液晶盒 200和第二个液晶盒 300的两 种不同的结构的组合可以增大或减少法布里-珀罗腔的长度 D,从而调节滤波器 400的自由 光谱范围 FSR2。
图 5给出了一个厚度约为 10微米的向列相型液晶在 2KHz方波电压的驱动下,对光波 长为 1550纳米光波相位变化的关系示意图。 最大可实现约 2π的光相位延迟。 通过实验和 分析,可调谐法布里 -珀罗滤波器 400对于接近零度入射的准直光可以得到约 1.5倍的 FSR2 的透射光频率的调谐范围, 而对自由光谱范围 Δν和透射光的频带宽带的改变要小的多。 可调谐法布里-珀罗滤波器的透射光 54的光谱示意图如图 7所示。
由此可见, 可调谐法布里 -珀罗滤波器 400 在外加电场的作用下, 可以实现较大范围 的透射光峰值频率的调谐而基本不改变透射光的频带宽度和自由光谱范围。 这个特性对于 将可调谐法布里 -珀罗滤波器 400许多应用中, 如激光器和频谱仪器等具有重要意义。
图 8给出了一种可调谐声光滤波器的示意图。 该声光滤波器 500—般采用的介质是各 向异性并有双折射特性。 其中一种物质二氧化碲 (Te02), 由于其运行在剪切模式时具有 高光学均匀性、 低光吸收度和耐高光功率能力等特点, 广泛使用于这类应用中。 其他物质 例如铌酸锂(LiNb03)、磷化镓(GaP)和钼酸铅(PbMo04)也经常用于各种声光器件中。 影响选择特定物质的因素有很多, 下面仅列出几种, 如: 声光器件的类型、 高质量晶体是 否容易获得以及应用的类型和需求, 例如衍射效率功率损耗、 入射光与衍射光的分散度和 整体器件的大小等。
可调谐声光滤波器 500是一种具有双折射特性, 非共线和非近轴型声光滤波器。 包括 采用二氧化碲的声光晶体 57和换能器 58, 由可调谐声光滤波器的驱动电路 60直接驱动换 能器 58在晶体 57中产生声波场 59而形成衍射光栅。 一束准直光束 56进入晶体 57并与 声波场 59成布拉格角 ΘΒ, 被衍射可调谐声光滤波器后, 一级衍射光分成两束线偏振光, S 光 62和 Ρ光 64,和零级衍射光束 66.两束线偏振光 62和 64与零级衍射光束形成的夹角等 于布拉格角 ΘΒ。 声光晶体 57的切割使得入射面 55和出射面 61与入射光成垂直或接近垂 直的角度。 为了减少光的损耗, 入射面 55和出射面 61都镀光学增透膜。 可调谐声光滤波 器 500 的滤波光谱的特点是可在一个宽频带的范围内实现光频率的连续可调谐, 如图 10 所示。 滤波光谱的带宽 Δ ν 、 半宽度(FWHM) Δ ν 1/2、 分辨率和衍射效率等频谱取决于 声光晶体的尺寸、 换能器的结构和射频驱动功率等因素的影响。 如要实现窄带滤波光谱和 高的衍射滤波效率, 需要加大换能器和声光晶体的尺寸。
图 9给出了本发明的结构示意图, 下面结合图 9对本发明的技术方案进行说明。 一种光学频谱分析设备包括一个可调谐法布里 -珀罗滤波器 400、 一个可调谐声光滤波 器 500、 第一光电探测器 84、 第二光电探测器 86 以及一个驱动控制和数据分析系统, 该 系统包括可调谐法布里 -珀罗滤波器 400的驱动电路 52、 可调谐声光滤波器 500的驱动电 路 60、 第一光电探测器 84的驱动电路 90、 第二光电探测器 86的驱动电路 88和系统控制 和数据分析系统和数据分析系统 92。 一束宽带准直光束 76入射进入可调谐法布里-珀罗滤 波器 400, 透射光 78的光谱如图 7所示, 透射光的峰值频率的可调谐范围约为 1.5倍的 FSR2 , 在可调谐的范围内和约 100纳米的光谱范围内, 可调谐法布里 -珀罗滤波器 400的 自由光谱范围基本保持不变。 透射光 78透过可调谐声光滤波器 500后, 一级衍射光分离 成两束偏振态相互垂直的光束 80和 82, 当可调谐声光滤波器 500的透射带宽 Δ V 小于 2 倍的可调谐法布里 -珀罗滤波器 400的本征自由光谱范围 FSR2, 透射光 80和 82均是一束 单模光束, 其光谱特性如图 12所示与可调谐法布里 -珀罗滤波器 400的一个透射模的光谱 特性相同。 如果考虑可调谐法布里 -珀罗滤波器 400 的透射光的频谱度 Δ ν 的时 (参考图 11 ),要实现单模输出或高的透射光边摸抑制比,调谐声光滤波器 500的透射带宽 Δ V还需 要更窄。需要提出的是, 可调谐法布里 -珀罗滤波器 400和可调谐声光滤波器 500的透射光 的频谱宽度 Δ ν 的定义是根据实际应用中对光谱的噪声或边摸抑制比的需要确定的。 透 射光 80和 82分别被光电探测器 84和 86接收并分别通过驱动电路 90和 88反馈到系统控 制和数据分析系统和数据分系统 92, 可以获得入射光 76的光谱信息。 由于本发明是利用 可调谐法布里 -珀罗滤波器 400的滤波功能以及可调谐声光滤波器 500的衍射滤波功能,对 不同光频率的光束有不同的响应特性, 因此, 要获得精确的所要检测光的光谱数据, 需要 对系统进行校准。 系统控制和数据分析系统和数据分析系统 92包括一个以数字信号处理 器以及嵌入式软件为核心的控制电路和数据分析软件用于控制可调谐法布里 -珀罗滤波器 的驱动电路 52、 可调谐声光滤波器的驱动电路 60、 驱动第一光电探测器和接收第一光电 探测器的光功率信号的驱动电路 90、驱动第二光电探测器和接收第二光电探测器的光功率 信号的驱动电路 88 以及接收外界控制信号和输出信号, 以实现所述光学频谱分析设备对 入射光的功率和光谱的检测功能。
需要强调的是, 上述说明仅起演示和描述的作用, 并不是一个详细无遗漏的说明, 也 没有意图将本发明限制在所描述的具体形式上。 经过上面的描述, 对本发明的许多改动和 变化都可能出现。 所选择的具体实施仅仅是为了更好的解释本发明的原理和实际中的应 用。 这个说明能够使熟悉此领域的人可以更好的利用本发明, 根据实际需要设计不同的具 体实施和进行相应的改动。

Claims

权利要求书
1、 一种光学频谱分析设备, 其特征在于: 包括一个可调谐法布里-珀罗滤波器、 一个 可调谐声光滤波器、 第一光电探测器、 第二光电探测器以及系统控制和数据分析系统; 入 射光首先通过可调谐法布里 -珀罗滤波器滤波, 其输出光束通过可调谐声光滤波器滤波, 其 输出的两束偏振态相互垂直并具有一定分离夹角的线偏振光束分别由第一光电探测器和 第二光电探测器接收; 所述的系统控制和数据分析系统分别与可调谐法布里-珀罗滤波器、 可调谐声光滤波器、 第一光电探测器和第二光电探测器相连接以实现光学频谱分析设备对 入射光的功率和光谱的检测功能。
2、 根据权利要求 1 所述的一种光学频谱分析设备, 其特征在于: 所述的可调谐法布 里-珀罗滤波器包括前后依次安装起来的第一液晶盒、 第二液晶盒和可调谐法布里-珀罗滤 波器的驱动电路, 两个液晶盒均包括依次安装一起的第一片光学透明材料、 液晶材料和第 二片光学透明材料, 第一液晶盒的第二片光学透明材料与第二液晶盒的第一片光学透明材 料安装在一起, 在第一液晶盒的第一片光学透明材料上设置高反射率多层介质膜构成第一 反射镜, 在第二液晶盒的第二片光学透明材料上设置高反射率多层介质膜构成第二反射 镜, 两个液晶盒内的液晶材料的光轴相互垂直并设置在由第一反射镜和第二反射镜构成的 法布里 -珀罗腔内, 所述可调谐法布里-珀罗滤波器的驱动电路与两个液晶盒相连接并通过 控制液晶材料的有效折射率实现滤波器的调谐功能,该可调谐法布里-珀罗滤波器的驱动电 路与系统控制和数据分析系统相连接。
3、 根据权利要求 2所述的一种光学频谱分析设备, 其特征在于: 所述第一液晶盒的 第一片光学透明材料上的高反射率多层介质膜设置在第一片光学透明材料的外侧, 该第一 光学透明材料的内侧从内到外依次设有光学增透膜和透明电极; 所述第一液晶盒的第二光 学透明材料的外侧为光学抛光面, 第二光学透明材料的内侧从内到外依次设有光学增透 膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通光孔径以外的部分以及一个 约 1毫米宽连接到第二片光学透明材料薄片边缘的通道, 用于为多余的液晶材料提供一个 出口, 并与第一片光学透明材料的内侧构成一个空腔用于设置液晶材料, 该透明电极与可 调谐法布里 -珀罗滤波器的驱动电路相连接。
4、 根据权利要求 2所述的一种光学频谱分析设备, 其特征在于: 所述第一液晶盒的 第一片光学透明材料上的高反射率多层介质膜设置在第一片光学透明材料的内侧, 在高反 射率多层介质膜的内侧设置有透明电极, 在第一光学透明材料的外侧设置光学增透膜; 所 述第一液晶盒的第二光学透明材料的外侧为光学抛光面, 第二光学透明材料的内侧从内到 外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通光孔径 以外的部分以及一个约 1毫米宽连接到第二片光学透明材料薄片边缘的通道, 用于为多余 的液晶材料提供一个出口, 并与第一片光学透明材料的内侧构成一个空腔用于设置液晶材 料, 该透明电极与可调谐法布里 -珀罗滤波器的驱动电路相连接。
5、 根据权利要求 2所述的一种光学频谱分析设备, 其特征在于: 所述第二液晶盒的 第二片光学透明材料上的高反射率多层介质膜设置在第二片光学透明材料的外侧, 该第二 光学透明材料的内侧从内到外依次设有光学增透膜和透明电极, 所述第二液晶盒的第一片 光学透明材料的外侧为光学抛光面, 第一片光学透明材料的内侧从内到外依次设有光学增 透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通光孔径以外的部分以及一 个约 1毫米宽连接到该光学透明材料薄片边缘的通道, 用于为多余的液晶材料提供一个出 口, 并与第二液晶盒的第二片光学透明材料的内侧构成一个空腔用于设置液晶材料, 该透 明电极与可调谐法布里 -珀罗滤波器的驱动电路相连接。
6、 根据权利要求 2所述的一种光学频谱分析设备, 其特征在于: 所述第二液晶盒的 第二片光学透明材料上的高反射率多层介质膜设置在第二片光学透明材料的内侧, 在高反 射率多层介质膜的内侧设置有透明电极, 在第二光学透明材料的外侧设置光学增透膜, 所 述第二液晶盒的第一片光学透明材料的外侧为光学抛光面, 第一片光学透明材料的内侧从 内到外依次设有光学增透膜、 透明电极和非导电材料薄膜, 该非导电材料薄膜覆盖除通光 孔径以外的部分以及一个约 1毫米宽连接到该光学透明材料薄片边缘的通道, 用于为多余 的液晶材料提供一个出口, 并与第二液晶盒的第二片光学透明材料的内侧构成一个空腔用 于设置液晶材料, 该透明电极与可调谐法布里 -珀罗滤波器的驱动电路相连接。
7、 根据权利要求 2所述的一种光学频谱分析设备, 其特征在于: 所述的第一液晶盒 的第二片光学透明材料与第二液晶盒的第一片光学透明材料的安装方式为: 使用光学透明 折射率匹配胶粘接在一起, 并使得第一反射镜和第二反射镜保持平行以形成法布里 -珀罗 腔。
8、 根据权利要求 2所述的一种光学频谱分析设备, 其特征在于: 所述的液晶材料采 用的是向列相型液晶, 该液晶材料的厚度为几微米至十几微米。
9、 根据权利要求 2所述的一种光学频谱分析设备, 其特征在于: 所述的可调谐法布 里-珀罗滤波器的驱动电路是一种频率为从一千赫兹到几千赫兹的方波脉冲电路,脉冲电压 幅度从 0伏到 5伏可调。
10、 根据权利要求 1所述的一种光学频谱分析设备, 其特征在于: 所述可调谐法布里
-珀罗滤波器的自由光谱范围大于所述可调谐声光滤波器的滤波带宽的半宽度。
11、 根据权利要求 1所述的一种光学频谱分析设备, 其特征在于: 所述可调谐声光滤 波器是一种窄带、 非同轴双折射型声光滤波器, 其一级衍射将入射光分为两个偏振态相互 垂直并形成一定的夹角的线偏振光。
12、根据权利要求 1或 11所述的一种光学频谱分析设备, 其特征在于: 所述可调谐声 光滤波器由可调谐声光滤波器的驱动电路驱动, 该可调谐声光滤波器的驱动电路与系统控 制和数据分析系统相连接; 所述可调谐声光滤波器的驱动电路是一种频率从几兆赫兹到几 百兆赫兹的频率和功率可调射频信号发生器。
13、 根据权利要求 1所述的一种光学频谱分析设备, 其特征在于: 所述第一光电探测 器、 第二光电探测器分别由第一光电探测器的驱动电路和第二光电探测器的驱动电路驱 动, 第一光电探测器的驱动电路和第二光电探测器的驱动电路分别与系统控制和数据分析 系统相连接。
PCT/CN2013/076168 2012-09-05 2013-05-23 一种光学频谱分析设备 WO2014036843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210326081.5 2012-09-05
CN201210326081.5A CN102829870B (zh) 2012-09-05 2012-09-05 一种光学频谱分析设备

Publications (1)

Publication Number Publication Date
WO2014036843A1 true WO2014036843A1 (zh) 2014-03-13

Family

ID=47333084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076168 WO2014036843A1 (zh) 2012-09-05 2013-05-23 一种光学频谱分析设备

Country Status (2)

Country Link
CN (1) CN102829870B (zh)
WO (1) WO2014036843A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102798991B (zh) * 2012-09-05 2015-01-21 天津奇谱光电技术有限公司 一种与入射光的偏振态无关的可调谐光滤波器
CN102829870B (zh) * 2012-09-05 2014-07-16 天津奇谱光电技术有限公司 一种光学频谱分析设备
CN102799013A (zh) * 2012-09-05 2012-11-28 天津奇谱光电技术有限公司 一种偏振无关的可调谐法布里-珀罗滤波器
CN103913230A (zh) * 2014-04-18 2014-07-09 福建师范大学 一种单滤波器实现二次声光滤波的高光谱分辨率成像装置
CN105072440B (zh) * 2015-08-27 2017-04-12 中国电子科技集团公司第二十六研究所 声光频谱分析仪对瞬变信号参数的提取方法
CN109029729B (zh) * 2018-09-28 2023-12-01 福建师范大学 一种单射频源驱动的双声光滤波组件二次声光滤波装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624889B1 (en) * 2002-04-29 2003-09-23 Oplink Communications, Inc. Cascaded filter employing an AOTF and narrowband birefringent filters
JP2004045225A (ja) * 2002-07-11 2004-02-12 National Aerospace Laboratory Of Japan 音響光学フィルタを用いた分光偏光計測装置
WO2005036241A1 (ja) * 2003-10-10 2005-04-21 Shoei Kataoka 波長可変フィルタ及びその製造方法
CN201497575U (zh) * 2009-07-20 2010-06-02 中国科学院西安光学精密机械研究所 一种可编程偏振超光谱成像仪
CN102829870A (zh) * 2012-09-05 2012-12-19 天津奇谱光电技术有限公司 一种光学频谱分析设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689708B1 (fr) * 1992-04-02 1994-05-13 France Telecom Photorecepteur pour signaux optiques modules en frequence.
CA2471583A1 (en) * 2002-01-04 2003-07-10 Cme Telemetrix Inc. Sample identification, chemical composition analysis and testing of physical state of the sample using spectra obtained at different sample temperatures
JP4411412B2 (ja) * 2005-08-24 2010-02-10 独立行政法人産業技術総合研究所 ファブリ・ペロー干渉計を用いた屈折率測定装置
CN102230889A (zh) * 2011-06-22 2011-11-02 天津大学 基于超连续谱光源的气体浓度测量系统及测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624889B1 (en) * 2002-04-29 2003-09-23 Oplink Communications, Inc. Cascaded filter employing an AOTF and narrowband birefringent filters
JP2004045225A (ja) * 2002-07-11 2004-02-12 National Aerospace Laboratory Of Japan 音響光学フィルタを用いた分光偏光計測装置
WO2005036241A1 (ja) * 2003-10-10 2005-04-21 Shoei Kataoka 波長可変フィルタ及びその製造方法
CN201497575U (zh) * 2009-07-20 2010-06-02 中国科学院西安光学精密机械研究所 一种可编程偏振超光谱成像仪
CN102829870A (zh) * 2012-09-05 2012-12-19 天津奇谱光电技术有限公司 一种光学频谱分析设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BALDWIN, D.P. ET AL.: "High-Resolution Spectroscopy Using an Acousto-Optic Tunable Filter and a Fiber-Optic Fabry-Perot Interferometer", APPLIED SPECTROSCOPY, vol. 50, no. 4, 1996, pages 498 - 503 *
CHANG, I.C. ET AL.: "Acousto-optic tunable filters for high resolution spectral analysis", PROCEEDINGS OF THE SPIE, IMAGING SPECTROSCOPY I, vol. 0268, 21 July 1981 (1981-07-21), pages 167 - 170 *

Also Published As

Publication number Publication date
CN102829870B (zh) 2014-07-16
CN102829870A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
US10418775B2 (en) External cavity tunable laser with dual beam outputs
WO2014036842A1 (zh) 一种非偏振光输出的可调谐激光器
CN102709799B (zh) 一种宽带连续可调谐激光器
WO2014036843A1 (zh) 一种光学频谱分析设备
US8369367B1 (en) Tunable laser system
US8831050B2 (en) Tunable laser
US8670469B2 (en) Tunable laser
WO2014036844A1 (zh) 一种偏振无关的可调谐法布里-珀罗滤波器
WO2015101049A1 (zh) 一种可调谐激光器系统
CN102306900B (zh) 偏振耦合的双增益介质的外腔式宽带可调谐激光器
WO2013007027A1 (zh) 光频率精密可调谐激光器
WO2014036845A1 (zh) 一种与入射光的偏振态无关的可调谐光滤波器
US8948221B2 (en) External cavity wideband tunable laser with dual laser gain media coupled by a thin film filter including
WO2012167447A1 (zh) 光频率间隔为25GHz的外腔式可调谐激光器
US20120268709A1 (en) Tunable optical filters with liquid crystal resonators
CN102798987B (zh) 一种固定频率间隔和单模输出的可调谐光学滤波器
WO2014019398A1 (zh) 一种单模连续可调谐光学滤波器
WO2013189108A1 (zh) 一种可调谐法布里-珀罗滤波器
CN103777381A (zh) 一种使用液晶相位调制器的可调谐窄带光学滤波设备
JP2006019514A (ja) 波長可変ミラーおよび波長可変レーザ
Kaplan et al. A simple theory of the acousto-optic programmable dispersive filter used for femtosecond laser pulse shaping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835678

Country of ref document: EP

Kind code of ref document: A1