WO2014036839A1 - 通信方法与装置 - Google Patents

通信方法与装置 Download PDF

Info

Publication number
WO2014036839A1
WO2014036839A1 PCT/CN2013/074938 CN2013074938W WO2014036839A1 WO 2014036839 A1 WO2014036839 A1 WO 2014036839A1 CN 2013074938 W CN2013074938 W CN 2013074938W WO 2014036839 A1 WO2014036839 A1 WO 2014036839A1
Authority
WO
WIPO (PCT)
Prior art keywords
data frame
indication information
group number
data
station
Prior art date
Application number
PCT/CN2013/074938
Other languages
English (en)
French (fr)
Inventor
陈小锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014036839A1 publication Critical patent/WO2014036839A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method and apparatus. Background technique
  • a basic service set consists of multiple stations (Stations, STAs).
  • the terminal having a certain management function in the basic service set is called an Access Point (AP).
  • AP Access Point
  • Long Term Evolution Long Term Evolution
  • Orthogonal Frequency Division Multiplexing (OFDM) is used to modulate and transmit data.
  • the OFDM method is specifically: dividing the bandwidth of the entire communication system into multiple subcarriers, and using the duration of one OFDM symbol in the time domain as a basic unit. Generally, the duration of the OFDM symbol is inversely related to the interval between two adjacent subcarriers, so Overall, the communication system is divided into a plurality of OFDM symbols in the time domain, and is also divided into a plurality of subcarriers in the frequency domain.
  • the transmitting end acquires the right to use the channel by means of competition.
  • the transmitting end sends a data packet to the target station, where the data packet can be composed of multiple OFDM symbols in the time domain, and the data packet to the target station in the frequency domain will be distributed throughout the wireless system.
  • the quality of the channel environment experienced by each subcarrier is different, some channels have good quality, some channels have poor quality, and a good quality channel can use high-order modulation and coding. Therefore, more data can be transmitted in a unit time, and a poor quality channel is reversed.
  • the poor quality channel determines the modulation and coding mode used when the sender transmits the amount of data, which in turn leads to a decrease in the efficiency of data transmission.
  • the object of the present invention is to solve the problem that the channel resources of the communication system in the prior art are not well utilized and the data transmission efficiency is low, and a communication method and apparatus are provided.
  • an embodiment of the present invention provides a communication method, where the method includes: generating a data frame, the data frame multiplexes data of at least two sites, and the sites have the same group number, where , the group number of the site is allocated by the network side
  • an embodiment of the present invention provides a communication method, where the method includes: receiving a data frame, the data frame multiplexes data of at least two sites, and the sites have the same group number, where The group number of the site is allocated by the network side;
  • the data frame is parsed, and data required by itself is obtained from the data frame.
  • an embodiment of the present invention provides a communication apparatus, where the apparatus includes: a generating unit, configured to generate a data frame, where the data frame multiplexes data of at least two sites, and the stations have the same Group number, wherein the group number of the site is allocated by the network side;
  • a sending unit configured to send the data frame generated by the generating unit to the station.
  • an embodiment of the present invention provides a communication apparatus, where the apparatus includes: a receiving unit, configured to receive a data frame, where the data frame multiplexes data of at least two sites, and the stations have the same Group number, wherein the group number of the site is allocated by the network side;
  • an embodiment of the present invention provides a communication system, where the system includes: a network side and a site;
  • the network side allocates a group number to the site
  • the station receives the assigned group number and receives the data frame generated by the network side to generate the transmission.
  • the network side allocates a group number to one or more sites, and generates a data frame carrying the indication information by itself, and sends the data frame to one or more sites, and one Or the plurality of stations obtain the allocated group number and the data frame, and use the indication information in the data frame to demodulate the data required by the corresponding position from the subcarrier, thereby avoiding the channel with poor quality compared with the prior art.
  • the modulation coding method used when the sender transmits the amount of data is determined, which in turn leads to a problem of reduced efficiency of data transmission, so that the channel resources of the communication system are well utilized.
  • FIG. 1 is a flowchart of a communication method according to Embodiment 1 of the present invention.
  • FIG. 2 is a data diagram of a data frame carrying multiple sites according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a data frame according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a data location of a plurality of terminal bearers carried by a subcarrier according to an embodiment of the present invention
  • FIG. 5 is a multiplexed station data of a 802. l la/b/g/n/ac protocol according to an embodiment of the present invention.
  • Schematic diagram FIG. 6 is a flowchart of a communication method according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart of a communication method according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic diagram of a communication apparatus for implementing the communication methods of Embodiment 1 and Embodiment 2 according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a communication apparatus for implementing a communication method of Embodiment 3 and Embodiment 4 according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a physical communication apparatus for implementing the communication methods of Embodiment 1 and Embodiment 2 according to an embodiment of the present invention
  • FIG. 12 is a diagram of a physical communication apparatus for implementing the third embodiment and the fourth embodiment communication method according to an embodiment of the present invention.
  • FIG. 1 is a diagram of a communication system provided by an embodiment of the present invention. detailed description
  • FIG. 1 is a flowchart of a communication method according to Embodiment 1 of the present invention.
  • the network side allocates a group number to the station, and sends the assigned group number to the station, so that the station clears its own group number, and the network side uses orthogonal frequency division.
  • Multiple access Or Thogona l Frequency D iv is ion Mu ltip le Acces s , 0FDMA ) mode multiplexing generates data frames, the data frame includes data of a plurality of sites belonging to the same group number; and the network side station transmits the generated data Data Frame.
  • the implementation of the communication method requires the following steps.
  • the implementation entity is the network side. As shown in FIG. 1, the method includes the following steps:
  • the network side refers to a node or network element that has certain control and/or management functions for a wireless local area network.
  • the network side can establish multiple different types of groups, and establish multiple groups in different types of groups.
  • the network side may be an access point AP of the wireless local area network; the station may be User terminal.
  • Step 1 1 0 Generate a data frame, where the data frame multiplexes data of at least two sites, and the sites have the same group number, where the group number of the site is allocated by the network side;
  • the network side allocates a group number to a site that exists around the network.
  • the first type of group number is assigned to the site as an example, and after the network side allocates the first type of group number to the site, The assigned first type of group number is sent to the site, making the site clear its own group number.
  • the network side allocates the first type of group number to the site in the process of the site accessing the network, and after the site accesses the network, the network side may also reassign the group number to the site, which is redistributed in the embodiment of the present invention.
  • the group number refers to the reassignment of each team number under the first group number. If the group number is reassigned to the site, the site update group number is notified. For example, the group number originally assigned by the site is the first group, the first group, the network. The side can reassign the group number of the site to the first group of group 0.
  • the network side also assigns the intra-group index number in the group to which the group is located, and sends the index number in the group to the site.
  • the group number and the intra-group index number are used by the site to find itself from the indication information of the data frame. The location in the subcarriers that the data is required to carry.
  • the network side assigns a first type of group number to the 8 sites, wherein the first group number of the sites 1, 2, 3, and 4 is the first group of the first group, and the site 5
  • the first group number of 6, 6, and 8 is the first group and the second group, and the first group and the second group are the group numbers in the first group number, and the stations 1, 1, 3, and 4
  • the first group group number is the same, the first group group numbers of the stations 5, 6, 7, and 8 are the same, and the intra-group index numbers are assigned to the stations in each group, that is, the first group in the first group 4 sites are sorted, for example, the intra-group index number assigned to site 1 is the first site; the intra-group index number assigned to site 2 is the second site; and the intra-group index number assigned to site 3 is the third site;
  • the intra-group index number assigned to site 4 is the fourth site; for the same reason, the four sites in the first group and the second group are sorted.
  • the data frame is generated, and the number is generated.
  • the data of at least two sites is multiplexed according to the frame, and the sites have the same group number, wherein the group number of the site is allocated by the network side.
  • data is transmitted to the station using a certain subcarrier or using the entire channel.
  • the data of the plurality of stations is multiplexed in the data frame by using 0FDMA, and the first group group numbers of the plurality of stations are the same.
  • the 0FDMA mode multiplexing is a special frequency division multiplexing. That is, one OFDM symbol includes multiple subcarriers, and multiple subcarriers are divided, and each part includes multiple subcarriers, and each part carries data of one station. For example, a part of subcarriers carries data of station 1, and another part of subcarriers carries. Site 2 data. In this way, when the data frame is multiplexed by the 0FDMA method, the data of multiple sites can be multiplexed in one data frame at the same time, thereby better utilizing the channel resources and saving bandwidth.
  • the site that uses the 0FDMA method to multiplex data in one data frame belongs to the same group (that is, belongs to the first group group number), and it should be noted that the data frames are required to be multiplexed together.
  • the data belongs to the same group, and does not restrict the data of all the stations belonging to the same group.
  • the data frame is multiplexed as shown in FIG. 2.
  • FIG. 2 is a data diagram of a data frame carrying multiple sites according to an embodiment of the present invention, according to step 110. For example, in the subcarrier shown in FIG. 1, data of three stations in the same group is carried, and each part of the subcarrier carries data required by the station, and the same group is carried in the subcarrier. The data of the three sites in the data, the data belonging to the site 4 in the same group is not carried in the subcarrier.
  • FIG. 3 is a schematic diagram of a data frame according to an embodiment of the present invention.
  • the data frame includes a control part and a service data part, and sometimes the control part is also referred to as a preamble part.
  • X-STF eg, L-STF, HT-STF
  • X-LTF eg, L-LTF, HT-LTF
  • XS IG for example, LS IG, HT-S IG
  • the transmission processing method wherein the transmission processing method used includes information such as the number of spatial data streams used in transmission, and X in X-STF and XS IG is a wildcard, that is, X may be L or HT.
  • the first indication information is carried in the data frame control part, where the first indication information is used to indicate the first type of group number of one or more sites; optionally, the data frame The control part further carries second indication information, where the second indication information is used to indicate a subcarrier position where data of a plurality of stations belonging to the first type group number is located; for example, XS IG information that can be in the data frame control part
  • the first indication information and the second indication information are carried, and the carrying indication information is not limited to the XS IG information.
  • the group number of the one or more sites belonging to the same group number is carried in the first indication information.
  • the maximum supportable group of 64 groups is used as an example, for example, the group number of the site. Expressed by 6 bits, "000000" represents the first group in the group 1 group number, and "1 11111" represents the 64th group in the group 1 group number.
  • FIG. 4 is a schematic diagram of a subcarrier carrying multiple terminal data locations according to an embodiment of the present invention.
  • the first group group of the first group group there are four sites in the first group group as an example.
  • the carrier is divided into five parts, and the second indication information uses 15 bits to indicate that the station data is carried in a specific location of the subcarrier, and the representation method of the second indication information is not limited thereto.
  • the sub-carrier resource indication position occupied by the station data is represented by T.
  • multiple subcarriers are divided into five parts.
  • 50 subcarriers are divided into five parts, and each part includes 10 subcarriers, and each part carries the first 3 in the same group.
  • Data of the stations, the first part and the third part of the subcarriers carry data of the first station in the same group, and the second part of the subcarriers carries data of the second station in the same group, the first part of the subcarriers
  • the fourth part and the fifth part carry the data of the third station in the same group, and the fourth station in the same group judges whether the sub-carriers also carry their own data according to the position indication of the sub-carrier resource occupied by the first three stations, if the former If the three stations occupy all the subcarrier resource indication locations, the data of the fourth station in the same group is not carried in the subcarriers.
  • FIG. 5 is a schematic diagram of site data multiplexed in a subcarrier supported by an 802. l la/b/g/n/ac protocol according to an embodiment of the present invention; l The site of the la/b/g/n/ac protocol is multiplexed with the data belonging to the first class group site.
  • Step 120 Send the data frame to the station.
  • step 110 after generating the data frame, the network side sends the data frame to the station, and the data frame is subsequently processed by the station.
  • the station may also send a separate data frame, that is, a data frame carrying the third indication information.
  • the third indication information is used to indicate the first type of group number of one or more stations in the data frame.
  • the control part in the generated data frame may not carry the first indication information and the second indication information. All or part of it.
  • a time interval T1 is preset, after the network side sends the data frame carrying the third indication information, and/or the data frame carrying the fourth indication information, and then waits for an interval T1, and the network side sends and generates.
  • the data frame that is, the network side sends the data frame carrying the third indication information, and / differs by a fixed time interval T1.
  • the network side allocates a group number to one or more stations, and uses the orthogonal frequency division multiple access (OFDM) mode to generate a data frame, and sends the data frame to multiple sites.
  • OFDM orthogonal frequency division multiple access
  • the subsequent processing of the data frame by multiple stations avoids the modulation coding method used for determining the amount of data transmitted by the transmitting end by using a poor quality channel, thereby reducing the efficiency of data transmission.
  • the problem is that the channel resources of the communication system are well utilized.
  • FIG. 6 is a flowchart of a communication method according to Embodiment 2 of the present invention.
  • the network side first assigns a group number to the site, and sends the assigned group number to the site, so that the site clears its own group number, and then the network side generates a data frame, where the data frame includes one of the same group number or Data from multiple sites, the Internet side uses Orthogonal Frequency Division Multiple Access (OFDMA) or Space Division Multiple Access (Space Divi s ion Mul ti ple Acces s , SDMA ) mode multiplexing generates data frames; finally the network side sends a generated data frame to the station.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SDMA Space Division Multiple Access
  • the implementation of the communication method requires the following steps.
  • the implementation entity is the network side, as shown in FIG. 6, specifically including the following steps:
  • Step 610 Generate a data frame, where the data frame multiplexes data of at least two sites, and the sites have the same group number, where the group number of the site is allocated by the network side;
  • the network side allocates the group number to the site.
  • the network side allocates the group number to the site.
  • the network side allocates the group number to the site.
  • two types of group numbers are assigned to the site.
  • the first type of group number and the second type of group number are taken as an example.
  • the network side assigns the first type of group number to the station, the first type of group number is sent to the station; the network side can also assign the second type to the station.
  • the class number, and the second group number is sent to the site.
  • the network side allocates a group number to the site in the process of the site accessing the network, and after the site accesses the network, the network side may also reassign the group number to the site.
  • the group number is reassigned. Refers to the reassignment of each team number under the first group number/second group number. If the group number is reassigned to the site, the site update group number is notified.
  • the group number originally assigned by the site is the first class first.
  • the network side can reassign the group number of the site to the first group of the 10th group.
  • the group number originally assigned by the site is the first group of the second category.
  • the network side can reassign the group number of the site to the second category. group.
  • the network side also assigns the intra-group index number in the group to which the group is located, and sends the index number in the group to the site.
  • the group number and the intra-group index number are used by the site to search from the indication information of the data frame.
  • the network side assigns the first class group number to the 8 sites according to the first allocation manner, wherein the first class group number of the sites 1, 2, 3, and 4 is the first class. 1 group, site
  • the first group number of 5, 6, 7, and 8 is the second group of the first category. At this time, the first group and the second group are the group numbers in the first group group number, and the stations 1 and 2 are The first group number of 3, 4 is the same, the site 5,
  • the first group number of the seventh group is the same; the network side assigns the second group number to the eight stations according to the second distribution mode, and the second group number of the stations 1, 3, 5, 7 is the second In the first group of the first group, the second group of the second group is the second group. In this case, the first group and the second group are the group numbers in the second group number.
  • the second type of group numbers of the stations 1, 3, 5, and 7 are the same, and the second type of group numbers of the stations 1, 4, 6, and 8 are the same; meanwhile, the network side allocates an intra-group index for the stations in each group.
  • the intra-group index number assigned to the site 1 is the first site;
  • the intra-group index number assigned to the site 2 is the second site;
  • the assigned intra-group index number is the third site;
  • the intra-group index number assigned to station 4 is the fourth site; for the same reason, the 4 sites in the first category 2 group are sorted; Sort 4 sites in the group to sort 4 sites in Group 2 of the second category;
  • the network When the network transmits data to only one station, it uses a certain subcarrier or uses the entire channel to transmit data to the station.
  • the data of the multiple sites is multiplexed in the data frame by using 0FDMA, and the first group group numbers of the multiple sites are the same; or the multiple sites
  • the data is multiplexed in the data frame by SDMA, and the second group number of the plurality of stations is the same.
  • the 0FDMA mode multiplexing is a special frequency division multiplexing. That is, one OFDM symbol includes multiple subcarriers, and multiple subcarriers are divided into multiple parts, each part includes multiple subcarriers, and each part carries data of one station, for example, a part of subcarriers carries data of station 1, part of The subcarrier carries the data of Site 2.
  • the data frame is multiplexed by the OF A method, the data of multiple sites can be multiplexed in one data frame at the same time, thereby better utilizing the channel resources and saving bandwidth.
  • the sites that are required to be multiplexed together by the 0FDMA method must belong to the same group (that is, belong to the first group group number or belong to the second group group number), and it should be noted that The sites multiplexed together in the data frame belong to the same group, and the data belonging to all sites in the same group are not necessarily multiplexed in the data frame.
  • FIG. 2 is a data diagram of a data frame carrying multiple sites according to an embodiment of the present invention. According to the example of the first group of the first group in step 610, the same carrier is carried in the subcarrier shown in FIG.
  • the data of the three stations in the group carries the data required by the station in each part of the subcarrier, and the data of the three stations in the first group of the first group are carried in the subcarrier, the first type
  • the data of station 4 in group 1 is not carried in the subcarrier;
  • SDMA space division multiplexing
  • the network side determines the number of spatial data streams that can be transmitted according to the channel condition.
  • the number of spatial data streams is the number of data streams that can be simultaneously transmitted in parallel.
  • the number of spatial data streams corresponds to the site data—for example, there are T transmit chains on the network side. If the number of spatial data streams determined is k, and k data is sent through T transmit chains, k first needs to be sent. The number is converted into T numbers, and then the T numbers obtained after the transformation are respectively set on the T transmission chains, and the process of changing the k numbers into T numbers is called a precoding process.
  • the precoding process of changing k numbers to T numbers is as follows.
  • K trans ⁇ [x (0) , x (1) , ⁇ , x (k-1) ] ⁇ ;
  • trans ⁇ represents the transpose of a matrix or vector
  • the number of k is changed to T numbers.
  • the matrix W is called a precoding matrix.
  • the first column w(0) corresponding to the precoding matrix W is referred to as a first spatial data stream, corresponding to the second column w(l). Called the second spatial data stream, and so on.
  • Data x (0) is referred to as mapping to the first spatial data stream
  • data x (l) is referred to as mapping to the second spatial data stream, and so on.
  • the data mapped to the first spatial data stream can be to Site 1, the data mapped to the second spatial data stream can be to Site 2, and so on.
  • the data frame is multiplexed by the space division multiplexing multiple access method, it is similar to the 0FDMA multiplexing mode, and will not be repeated here.
  • FIG. 3 is a schematic diagram of a data frame according to an embodiment of the present invention.
  • the data frame includes a control part and a service data part, and sometimes the control part is also referred to as a preamble part.
  • X-STF eg, L-STF, HT-STF
  • X-LTF eg, L-LTF, HT-LTF
  • XS IG is mainly used to indicate the amount of data in the service data part, modulation and coding mode, and the transmission processing used.
  • the first indication information is carried in the data frame control part, where the first indication information is used to indicate the first type group number and/or the second type group number of one or more stations;
  • the data frame control part further carries second indication information, where the second indication information is used to indicate data bearers of multiple sites belonging to the first class group number and/or the second class group number. a location in the subcarrier or a location in the spatial data stream; optionally, the data frame control part further carries a fifth indication information, where the fifth indication information is used to indicate the one or more sites
  • the group number category for example, the X-SIG information in the data frame control section carries the first indication information, the second indication information, and the fifth indication information.
  • the first indication information is used to indicate the first type group number or the second type group number of one or more stations.
  • the first type group number is used.
  • the second group number includes 32 group numbers as an example.
  • the common 6 bits are used to indicate the first group number and/or the second group number, if the station receives
  • the group number is "000000" Indicates that the site is the first group in the first group number; if the group number received by the site is "111111", the site is the 32nd group in the second group number.
  • the third indication information is hidden. It is included in the first indication information.
  • the group number of the first group group and the second group group are included as an example.
  • a common 6-bit number is used to indicate the group number in each group number.
  • the fifth indication information is used to indicate whether the group number represented by the current 6-bit is the first type group number or the second type group number, and the fifth indication information is 1 bit.
  • the fifth indication information takes a value of "1", the a group number; when the value is "0", it indicates the second group number; or vice versa; for example, when the first indication information is "000000" and the fifth indication information is "1", it indicates the first category.
  • FIG. 4 is a schematic diagram of a subcarrier carrying a plurality of terminal data locations according to an embodiment of the present invention.
  • the first group has four sites as an example, and the subcarrier is divided into five parts.
  • the indication information in the X-SIG information indicates that the station data is carried in a specific location of the subcarrier by 15 bits, and the indication method of the indication information is not limited thereto.
  • T is used to identify the subcarrier location occupied by the station.
  • multiple subcarriers are divided into five parts. For example, if 50 subcarriers are divided into five parts, each part includes 10 subcarriers, and each part carries the first 3 in the same group.
  • Data of the stations, the first part and the third part of the subcarriers carry data of the first station in the same group, and the second part of the subcarriers carries data of the second station in the same group, the first part of the subcarriers
  • the fourth part and the fifth part carry the data of the third station in the same group, and the fourth station in the same group judges whether the sub-carriers also carry their own data according to the position indication of the sub-carrier resource occupied by the first three stations, if the former If the three stations occupy all the subcarrier resource indication locations, the data of the fourth station in the same group is not carried in the subcarriers.
  • At least one site belonging to the same group in the data frame may be associated with an 802.
  • the la/b/g/n/ac sites are multiplexed together by 0FDMA, as shown in Figure 5.
  • 5 is a schematic diagram of site data multiplexed in a subcarrier supported by the 802. l la/b/g/n/ac protocol provided by the embodiment of the present invention; in FIG. 5, 802. l la/b/g/n is supported.
  • the site of the /ac protocol is multiplexed with data belonging to the first class group site.
  • a station belonging to the first type group number is specified, and a data frame is generated by using the multiplexing mode of the 0FDMA, and the station belonging to the second group group number is generated by using the SDMA multiplexing method.
  • the data frame may also specify a station belonging to the first type of group number, and use the SDMA multiplexing method to generate a data frame, the station belonging to the second type group number, and generate a data frame by using the 0FDMA multiplexing mode.
  • Step 620 Send the data frame to the station.
  • step 610 after generating the data frame, the network side sends the data frame to the station, and the data frame is subsequently processed by the station.
  • the station may also send a separate data frame, that is, a data frame carrying the sixth indication information.
  • the sixth indication information is used to indicate the first group number or the second group number of one or more stations in the data frame;
  • the control part in the generated data frame may not carry the first indication information and the second indication information. All or part of it.
  • a time interval T1 is preset, after the network side sends the data frame carrying the sixth indication information, and/or the data frame carrying the seventh indication information, and then waits for an interval T1, and the network side starts to send.
  • the generated data frame that is, the network side sends the data frame carrying the sixth indication information, and the phase difference is different from the fixed time interval T1.
  • the network side allocates a group number to one or more stations, and uses the orthogonal frequency division multiple access (OFDM) mode or the spatial division multiplexing multiple access (SDMA) method to generate data.
  • OFDM orthogonal frequency division multiple access
  • SDMA spatial division multiplexing multiple access
  • a frame is sent to a plurality of stations, and the plurality of stations perform subsequent processing on the data frame.
  • the amount of data sent by the transmitting end is determined to be determined by a poor quality channel.
  • the modulation coding method used at the time which in turn leads to a problem of reduced efficiency of data transmission, so that the channel resources of the communication system are well utilized.
  • FIG. 7 is a flowchart of a communication method according to Embodiment 3 of the present invention.
  • the station first receives the group number assigned by the network side, stores the allocated group number locally, and clarifies its own group number; then the station receives the data frame sent by the network side, and parses the data frame. Demodulating the data that is required by the corresponding location of the sub-carrier according to the indication information in the data frame.
  • the implementation of the communication method requires the following steps.
  • the implementation object is a site, as shown in FIG. Includes the following steps:
  • the network side refers to a node or network element that has certain control and/or management functions for a wireless local area network, and the network side can establish multiple different types of groups, and establish multiple groups in different types of groups, for each
  • the network side may be an access point AP of the wireless local area network; the station may be a user terminal.
  • Step 710 Receive a data frame, where the data frame multiplexes data of at least two sites, and the sites have the same group number, where the group number of the site is allocated by the network side;
  • the site acquires the group number assigned to itself by the network side, and stores the assigned group number locally, and the site clarifies its own group number.
  • the site obtains the first group number assigned by the network side to the network, and after the site accesses the network, the network side may also reassign the group number to the site, and the site obtains the group number reassigned by the network side, and is implemented in the present invention.
  • the reassignment of the group number refers to the reassignment of the group numbers under the first group number. If the group number is reassigned to the site, the network side will then reassign the group number to the site, for example, the site is initially assigned. The group number is the first group of the first group.
  • the network side can reassign the group number of the site to the first group of the 10th group, and the reassigned group number of the first group of the 10th group is delivered to the site.
  • the site also obtains the intra-group index number in the group in which the network side is assigned to itself.
  • the group number and the intra-group index number are used by the station to find the location in the sub-carrier carried by the data required by the data from the indication information of the data frame. .
  • the network side assigns a first type of group number to the 8 sites, wherein the first group number of the sites 1, 2, 3, and 4 is the first group of the first group, and the site 5
  • the first group number of 6, 6, and 8 is the first group and the second group, and the first group and the second group are the group numbers in the first group number, and the stations 1, 1, 3, and 4
  • the group numbers of the first type are the same, the first group numbers of the stations 5, 6, 7, and 8 are the same, and the intra-group index numbers are assigned to the stations in each group, that is, the first group is in the first group.
  • the 4 sites are sorted, for example, the intra-group index number assigned to site 1 is the first site; the intra-group index number assigned to site 2 is the second site; and the intra-group index number assigned to site 3 is the third site ; The intra-group index number assigned to Site 4 is the fourth site; for the same reason, the four sites in the first-class Group 2 are sorted.
  • the station After obtaining the group number assigned by the network side for the network, the station receives the data frame generated by the network side, receives the data frame, and the data frame multiplexes data of at least two sites, and the site has the same group number, where The group number of the site is allocated by the network side.
  • the network side uses a certain subcarrier or uses the entire channel to transmit data to the station, and the station acquires data required by itself from a certain subcarrier or the entire channel.
  • the network multiplexes the data of the multiple sites by using Orthogonal Frequency Division Multiple Access (OFDMA) in the manner of Orthogonal Frequency Division Multiple Access (OFDMA).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the first group group numbers of the multiple sites are the same.
  • the 0FDMA mode multiplexing is a special frequency division multiplexing. That is, one OFDM symbol includes multiple subcarriers, and multiple subcarriers are divided into multiple parts, each part includes multiple subcarriers, and each part carries data of one station, for example, a part of subcarriers carries data of station 1, and part of the subcarriers
  • the carrier carries the data of Site 2. In this way, when the data frame is multiplexed by the OF A method, the data of multiple sites can be multiplexed in one data frame at the same time, thereby making the channel resource better. Use, save bandwidth.
  • the site that uses the 0FDMA method to multiplex data in one data frame belongs to the same group (that is, belongs to the first group group number), and it should be noted that the data frames are required to be multiplexed together. Sites belong to the same group, and data that belongs to all sites in the same group is not restricted. Data frames must be multiplexed.
  • FIG. 2 is a data diagram of a data frame carrying multiple sites according to an embodiment of the present invention. According to an example in step 710, three sites in the same group are carried in the subcarriers shown in FIG. The data carried in each part of the subcarrier is the data required by the station, in which the data of the three stations in the same group are carried, and the data belonging to the station 4 in the same group is in the subcarrier. There is no bearer in it.
  • FIG. 3 is a schematic diagram of a data frame according to an embodiment of the present invention.
  • the data frame includes a control part and a service data part, and sometimes the control part is also referred to as a preamble part.
  • X-STF eg, L-STF, HT-STF
  • X-LTF eg, L-LTF, HT-LTF
  • XS IG for example, LS IG, HT-S IG
  • X in the X-STF and the XS IG is a wildcard, that is, X may be L or HT.
  • the first indication information is carried in the data frame control part, where the first indication information is used to indicate the first type of group number of one or more sites; optionally, the data frame
  • the control part further carries second indication information, where the second indication information is used to indicate a location in a subcarrier of a data bearer of a plurality of stations belonging to the first type group number; for example, an XS in the data frame control part
  • the IG information carries the first indication information and the second indication information.
  • the group number of the one or more sites belonging to the same group number is carried in the first indication information.
  • the maximum supportable group of 64 groups is used as an example, for example, the group number of the site. Expressed by 6 bits, "000000" represents the first group in the group 1 group number, and "111 111" represents the 64th group in the group 1 group number.
  • FIG. 4 is a schematic diagram of a subcarrier carrying multiple terminal data locations according to an embodiment of the present invention.
  • a group has four sites as an example, and the subcarriers are divided into five parts.
  • the second indication information in the XS IG information indicates that the station data is carried in a specific location of the subcarrier by 15 bits, and the representation method of the second indication information is not limited thereto.
  • the sub-carrier resource indication position occupied by the station data is represented by T.
  • multiple subcarriers are divided into five parts.
  • 50 subcarriers are divided into five parts, and each part includes 10 subcarriers, and each part carries the first 3 in the same group.
  • Data of the stations, the first part and the third part of the subcarriers carry data of the first station in the same group, and the second part of the subcarriers carries data of the second station in the same group, the first part of the subcarriers
  • the fourth part and the fifth part carry the data of the third station in the same group, and the fourth station in the same group judges whether the sub-carriers also carry their own data according to the position indication of the sub-carrier resource occupied by the first three stations, if the former If the three stations occupy all the subcarrier resource indication locations, the data of the fourth station in the same group is not carried in the subcarriers.
  • Step 720 Parse the data frame, and obtain data required by itself from the data frame.
  • the station compares the first type group number stored in the local with the first type group number carried in the first indication information in the data frame, and if yes, according to the second indication information, from the corresponding position in the subcarrier. Demodulate the data that it needs; if it is inconsistent, it means that the corresponding location in the subcarrier does not carry the data it needs, and waits for the data frame sent by the network side next time.
  • the station demodulates the data it needs from the subcarriers according to the indication information in the data frame, and the demodulation is a prior art, and is not repeated here.
  • FIG. 5 is a site data supporting the 802. l la/b/g/n/ac protocol according to an embodiment of the present invention. Schematic diagram of multiplexing in subcarriers; In Figure 5, sites supporting the 802. l la/b/g/n/ac protocol are multiplexed with data belonging to the first class group site.
  • the station before receiving the data frame, may also receive an independent data frame sent by the network side, that is, a data frame carrying the third indication information.
  • the third indication information is used to indicate the first type of group number of one or more stations in the data frame.
  • the fourth indication information is used to indicate data of the one or more sites that belong to the first type of group number in the data frame.
  • a time interval T1 is preset, and the station receives the data frame carrying the third indication information, and/or the data frame carrying the fourth indication information, and then waits for an interval T1 to receive the data frame generated by the network side. That is, the station receives the data frame carrying the third indication information, and/or the completion time of the data frame carrying the fourth indication information and the start time of the data frame generated by the receiving network side are different by a fixed time interval T1.
  • the station obtains the group number assigned by the network side, and the station receives the data frame generated by the network side, and compares the allocated group number with the group number carried in the indication information in the data frame. If the data is consistent, the corresponding data is demodulated. If the data is inconsistent, the data is not demodulated.
  • the modulation coding method used for determining the amount of data transmitted by the transmitting end by using the channel with poor quality is avoided, thereby causing The problem of reduced efficiency of data volume transmission makes the channel resources of the communication system utilized.
  • FIG. 8 is a flowchart of the communication method provided by Embodiment 4 of the present invention.
  • the station first receives the group number assigned by the network side, stores the allocated group number locally, and clarifies its own group number; then the station receives the data frame sent by the network side, and parses the data frame. Demodulating from the corresponding position of the subcarrier according to the indication information in the data frame
  • the implementation of the main body is a site, as shown in FIG. 8 , which specifically includes the following steps:
  • Step 810 Receive a data frame, where the data frame multiplexes data of at least two sites, and the sites have the same group number, where the group number of the site is allocated by the network side.
  • the site acquires the group number assigned to itself by the network side, and stores the assigned group number locally, and the site clarifies its own group number.
  • the site obtains two types of group numbers assigned by the network side, that is, the first group group number and the second group group number are taken as an example, and the site obtains the network side to allocate the first one for itself. After the class group number, the site also obtains the second group number assigned to itself by the network side.
  • the site obtains the first type of group number and/or the second type of group number assigned by the network side, and after the station accesses the network, the network side may also reassign the group number to the station, and the station obtains the group number reassigned by the network side.
  • the reassignment of the group number refers to reassigning the group numbers under the first type group number/the second type group number. If the group number is reassigned to the station, the network side will reassign the group number. Then, it is sent to the site.
  • the group number originally assigned by the site is the first group of the first group.
  • the network side can reassign the group number of the site to the first group of the 10th group.
  • the group number originally assigned by the site is the second category.
  • the network side can reassign the group number of the site to the 15th group of the second category, and the reassigned group number of the first category 10 group or the second category 15 group is delivered to the site.
  • the site also obtains the intra-group index number in the group in which the network side is assigned to itself.
  • the group number and the intra-group index number are used by the station to find the location in the sub-carrier carried by the data required by the data from the indication information of the data frame. .
  • the network side assigns the first class group number to the 8 sites according to the first allocation manner, wherein the first class group number of the sites 1, 2, 3, and 4 is the first class.
  • the first group group and the second group group are the group number in the first group group number
  • the first group group and the second group group are the group number in the first group group number.
  • the first group group numbers of the stations 1, 2, 3, and 4 are the same
  • the first group group numbers of the stations 5, 6, 7, and 8 are the same; the network side allocates the second group to the 8 stations according to the second distribution mode.
  • the second group number of stations 1, 3, 5, 7 is the second group, group 1, site 2, 4, 6, 8
  • the second type of group number is the second group of the second group.
  • the first group and the second group are the group numbers in the second group number, and the second of the stations 1, 3, 5, and 7.
  • the group group numbers are the same, and the second group group numbers of the stations 1, 4, 6, and 8 are the same; meanwhile, the network side assigns the group index numbers to the stations in each group, that is, 4 in the first group of the first group.
  • the sites are sorted, for example, the intra-group index number assigned to site 1 is the first site; the intra-group index number assigned to site 2 is the second site; and the intra-group index number assigned to site 3 is the third site;
  • the intra-group index number assigned by site 4 is the fourth site; for the same reason, the four sites in the first group of the second group are sorted; the four sites in the second group of the first group are sorted, which is the second The four sites in the second group of classes are sorted.
  • the data frame multiplexes data of at least two sites, and the site has the same group number, wherein the site The group number is assigned by the network side.
  • the network side uses a certain subcarrier or uses the entire channel to transmit data to the station, and the station acquires data required by itself from a certain subcarrier or the entire channel.
  • the network When there are multiple sites that need to transmit data on the network side, the network multiplexes the data of the multiple sites by using Orthogonal Frequency Division Multiple Access (OFDMA).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the first group group numbers of the multiple sites are the same; and/or the data of the multiple sites is complexed by space division multiplexing (SDMA) Used in a data frame, and the second group number of the plurality of sites is the same.
  • SDMA space division multiplexing
  • the 0FDMA mode multiplexing is a special frequency division multiplexing. That is, one OFDM symbol includes multiple subcarriers, and multiple subcarriers are divided, and each part includes multiple subcarriers, and each part carries data of one station. For example, a part of subcarriers carries data of station 1, and a part of subcarriers carries station 2 The data. In this way, when the data frame is multiplexed by the 0FDMA method, the data of multiple sites can be multiplexed into one data frame at the same time, thereby better utilizing the channel resources and saving the bandwidth.
  • FIG. 1 is a data diagram of a data frame carrying multiple sites according to an embodiment of the present invention. According to the example of the first group of the first group in step 810, the same carrier is carried in the subcarrier shown in FIG. 2 .
  • SDMA space division multiplexing
  • the network side determines the number of spatial data streams that can be transmitted according to the channel condition.
  • the number of spatial data streams is the number of data streams that can be simultaneously transmitted in parallel.
  • the number of spatial data streams corresponds to the site data—for example, there are T transmit chains on the network side. If the number of spatial data streams determined is k, and k data is sent through T transmit chains, k first needs to be sent. The number is converted into T numbers, and then the T numbers obtained after the transformation are respectively set on the T transmission chains, and the process of changing the k numbers into T numbers is called a precoding process.
  • the precoding process of changing k numbers to T numbers is as follows.
  • K trans ⁇ [x (0) , x (1) , ⁇ , x (k-1) ] ⁇ ;
  • trans ⁇ represents the transpose of a matrix or vector
  • the number of k is changed to T numbers.
  • the matrix W is called a precoding matrix.
  • the first column w(0) corresponding to the precoding matrix W is referred to as a first spatial data stream, corresponding to the second column w(l). Called the second spatial data stream, and so on.
  • Data x (0) is referred to as mapping to the first spatial data stream
  • data x (l) is referred to as mapping to the second spatial data stream, and so on.
  • the data mapped to the first spatial data stream can be to Site 1, the data mapped to the second spatial data stream can be to Site 2, and so on.
  • the data frame is multiplexed by the space division multiplexing multiple access method, it is similar to the 0FDMA multiplexing mode, and will not be repeated here.
  • FIG. 3 is a schematic diagram of a data frame according to an embodiment of the present invention.
  • the data frame includes a control part and a service data part, and sometimes the control part is also referred to as a preamble part.
  • X-STF eg, L-STF, HT-STF
  • X-LTF eg, L-LTF, HT-LTF
  • XS IG is mainly used to indicate the amount of data in the service data part, modulation and coding mode, and the transmission processing used.
  • the first indication information is carried in the data frame control part, where the first indication information is used to indicate the first type group number and/or the second type group number of one or more stations;
  • the data frame control part further carries second indication information, where the second indication information is used to indicate data bearers of multiple sites belonging to the first class group number and/or the second class group number. a location in the subcarrier or a location in the spatial data stream; optionally, the data frame control part further carries a fifth indication information, where the fifth indication information is used to indicate the one or more sites
  • the group number category for example, the X-SIG information in the data frame control section carries the first indication information, the second indication information, and the fifth indication information.
  • the first indication information is used to indicate the first type of group number and/or the second type of group number of one or more sites.
  • the first type of group is used.
  • the number includes 32 group numbers
  • the second group number includes 32 group numbers as an example.
  • the common 6 bits are used to indicate the first group number and/or the second group number, if the site The received group number is "000000". Indicates that the site is the first group in the first group number; if the site number received by the site is "11 1111", the site is the 32th group in the second group number.
  • the group number of the first group group and the second group group are included as an example.
  • a common 6-bit number is used to indicate the group number in each group number.
  • the fifth indication information is used to indicate whether the group number represented by the current 6-bit is the first type group number or the second type group number, and the fifth indication information is 1 bit.
  • the fifth indication information takes a value of "1”, the a group number; when the value is “0”, it indicates the second group number; or vice versa; for example, when the first indication information is “000000” and the fifth indication information is “1”, it indicates the first category.
  • FIG. 4 is a schematic diagram of a subcarrier carrying a plurality of terminal data locations according to an embodiment of the present invention.
  • the first group has four sites as an example, and the subcarrier is divided into five parts.
  • the indication information in the XS IG information indicates that the station data is carried in a specific location of the subcarrier by 15 bits, and the indication method of the indication information is not limited thereto.
  • T is used to identify the subcarrier location occupied by the station.
  • multiple subcarriers are divided into five parts. For example, if 50 subcarriers are divided into five parts, each part includes 10 subcarriers, and each part carries the first 3 in the same group.
  • Data of the stations, the first part and the third part of the subcarriers carry data of the first station in the same group, and the second part of the subcarriers carries data of the second station in the same group, the first part of the subcarriers
  • the fourth part and the fifth part carry the data of the third station in the same group, and the fourth station in the same group judges whether the sub-carriers also carry their own data according to the position indication of the sub-carrier resource occupied by the first three stations, if the former If the three stations occupy all the subcarrier resource indication locations, the data of the fourth station in the same group is not carried in the subcarriers.
  • a station belonging to the first type group number is specified, and a data frame is generated by using the multiplexing mode of the 0FDMA, and the station belonging to the second group group number is generated by using the SDMA multiplexing method.
  • the data frame may also specify a station belonging to the first type of group number, and use the SDMA multiplexing method to generate a data frame, the station belonging to the second type group number, and generate a data frame by using the 0FDMA multiplexing mode.
  • Step 820 Parse the data frame, and obtain data required by itself from the data frame.
  • the station compares the first type group number and/or the second type group number stored in the local with the first type group number and/or the second type group number carried in the first indication information in the data frame, if Consistently, according to the second indication information, the data required by the user is demodulated from the corresponding position in the subcarrier; if not, it indicates that the corresponding location in the subcarrier does not carry the data required by itself, and waits for the next transmission by the network side. Data Frame.
  • the station demodulates the data it needs from the subcarriers according to the indication information in the data frame, and the demodulation is a prior art, and is not repeated here.
  • FIG. 5 is a site data supporting the 802. l la/b/g/n/ac protocol according to an embodiment of the present invention. Schematic diagram of multiplexing in subcarriers; In Figure 5, sites supporting the 802. l la/b/g/n/ac protocol are multiplexed with data belonging to the first class group site.
  • the station before receiving the data frame, may also receive an independent data frame sent by the network side, that is, a data frame carrying the sixth indication information.
  • the sixth indication information is used to indicate the first type group number or the second type group number of one or more stations in the data frame; and/or receive data that carries the seventh indication information sent by the network side.
  • a frame the seventh indication information is used to indicate a group number category of the one or more sites. Therefore, if the station receives the data message frame carrying the sixth indication information and/or the seventh indication information before receiving the data frame generated by the network side, the control part in the received data frame may not carry the first indication information and All or part of the second indication information.
  • a time interval T1 is preset, and the station receives the data frame carrying the sixth indication information, and/or the data frame carrying the seventh indication information, and then waits for an interval T1 to receive the data frame generated by the network side. That is, the station receives the data frame carrying the sixth indication information, and/or the completion time of the data frame carrying the seventh indication information and the start time of the data frame generated by the receiving network side, The difference is a fixed time interval Tl.
  • the station receives the group number assigned by the network side, and the station also receives the data frame generated by the network side, and compares the allocated group number with the group number carried in the indication information in the data frame. If they are consistent, the corresponding data is demodulated. If they are inconsistent, the data is not demodulated.
  • the modulation coding method used for determining the amount of data transmitted by the transmitting end by using the channel with poor quality is avoided. The problem of reducing the efficiency of data volume transmission makes the channel resources of the communication system well utilized.
  • FIG. 9 is a diagram of a communication device according to an embodiment of the present invention, and the description of the first embodiment and the second embodiment is implemented by using the communication device.
  • the communication method, the unit in the device exists in the network side, and the device includes: a generating unit 910 and a sending unit 920.
  • the generating unit 910 is configured to generate a data frame, where the data frame multiplexes data of at least two sites, and the sites have the same group number, where the group number of the site is allocated by the network side
  • the group number of the station in the data frame generated by the generating unit 910 belongs to the first group group number.
  • the generating unit 910 is specifically configured to: multiplex data of at least two sites by using orthogonal frequency division multiple access (OFDM) in the data frame.
  • OFDM orthogonal frequency division multiple access
  • the data frame generated by the generating unit 910 includes a control part, where the control part carries the first indication information, where the first indication information is used to indicate the first type of group number of the station.
  • the data frame generated by the generating unit 910 includes a control part, where the control part carries the second indication information, where the second indication information is used to indicate that the data belonging to the station belonging to the first type group number is carried in the sub- The location in the carrier.
  • the sending unit 920 is further configured to: send, to the station, a data frame that carries the third indication information, where The third indication information is used to indicate the first type of group number of the station corresponding to the data in the data frame; and/or send a data frame carrying the fourth indication information to the station, where the fourth The indication information is used to indicate that the data of the station belonging to the first type group number in the data frame is carried in a position in a subcarrier.
  • the sending unit 920 is specifically configured to: after sending the data frame carrying the third indication information to the station, and/or carrying the data frame of the fourth indication information, sending the station to the station at a fixed time interval The data frame.
  • the device further includes: an allocating unit 930, configured to allocate, by the network side, a first group number and a second group number to the same station;
  • the generating unit 91 0 is specifically configured to: the data of the station is multiplexed by 0FDMA, and the first group group number of the station is the same; or the data of the station is used by space division multiplexing multiple access SDMA The way is reused, and the second type of group number of the site is the same.
  • the data frame generated by the generating unit 91 0 includes a control part, where the control part carries first indication information, where the first indication information is used to indicate the first group number or the second of the station Class group number.
  • the data frame generated by the generating unit 910 includes a control part, and the control part carries a fifth indication information, where the fifth indication information is used to indicate a group number category of the station.
  • the sending unit 920 is further configured to: send, to the station, a data frame that carries the sixth indication information, where the sixth indication information is used to indicate the first group of the site corresponding to the data in the data frame. And a second type of group number; and/or transmitting a data frame carrying the seventh indication information to the station, where the seventh indication information is used to indicate a group number category of the station.
  • the sending unit 920 is specifically configured to: after sending the data frame carrying the sixth indication information to the station, and/or carrying the data frame of the seventh indication information, sending the station to the station at a fixed time interval The data frame.
  • the allocating unit allocates a group number to one or more stations, and the generating unit uses the orthogonal frequency division multiple access (OFDM) mode to generate a data frame, and the sending unit The data frame is sent to a plurality of stations, and the plurality of stations perform subsequent processing on the data frame.
  • OFDM orthogonal frequency division multiple access
  • FIG. 10 is a diagram of a communication device according to an embodiment of the present invention, and the third embodiment and the fourth embodiment are described by using the communication device.
  • the communication method each unit in the device exists in a station, and the device includes: a receiving unit 1010 and a parsing unit 1020.
  • the receiving unit 101 0 is configured to receive a data frame, where the data frame multiplexes data of at least two sites, and the site has the same group number, where the group number of the site is determined by the network side. Assignment
  • the parsing unit 1 020 is configured to parse the data frame, and obtain data required by itself from the data frame.
  • the group number of the station in the data frame received by the receiving unit 101 0 belongs to the first type group number.
  • the data frame received by the receiving unit 1 010 multiplexes data of at least two stations by orthogonal frequency division multiple access (OF).
  • the data frame received by the receiving unit 1010 includes a control part, where the control part carries first indication information, where the first indication information is used to indicate a first type of group number of the station.
  • the data frame received by the receiving unit 1010 includes a control part, where the control part carries the second indication information, where the second indication information is used to indicate that the data belonging to the station belonging to the first type group number is carried in the sub- ⁇ in carrier.
  • the receiving unit 1010 is further configured to: receive a data frame that carries the third indication information, where the third indication information is used to indicate the first group group number of the site corresponding to the data in the data frame; and Or receiving a data frame carrying the fourth indication information, where the fourth indication information is used to indicate that the data of the station belonging to the first type group number in the data frame is carried in a position in the subcarrier.
  • the receiving unit 1010 is further configured to: receive the data frame carrying the third indication information, And/or after receiving the data frame of the fourth indication information, the data frame is received at a fixed time interval.
  • the receiving unit 1010 is further configured to receive, by the network side, a first type group number and a second type group number allocated to the same station;
  • the data frame received by the receiving unit is specifically: the data of the station is multiplexed by 0FDMA, and the first group number of the station is the same; or the data of the station is used by space division multiplexing multiple access
  • the SDMA mode is multiplexed, and the second type of group number of the site is the same.
  • the data frame received by the receiving unit 1010 includes a control part, where the control part carries the first indication information, where the first indication information is used to indicate the first type group number or the second type group number of the station.
  • the data frame received by the receiving unit 1010 includes a control part, where the control part carries a fifth indication information, where the fifth indication information is used to indicate a group number category of the station.
  • the receiving unit 1010 is further configured to: receive a data frame carrying the sixth indication information, where the sixth indication information is used to indicate the first group number or the second of the station corresponding to the data in the data frame. And a data frame carrying the seventh indication information, where the seventh indication information is used to indicate a group number category of the station.
  • the receiving unit 1010 is further configured to: after receiving the data frame carrying the sixth indication information, and/or the data frame carrying the seventh indication information, receiving the data frame at a fixed time interval.
  • the acquiring unit acquires the group number allocated by the network side for itself, and the receiving unit receives the data frame generated by the network side, and compares the allocated group number with the group number carried in the indication information in the data frame. If the data is consistent, the corresponding data is demodulated. If the data is inconsistent, the data is not demodulated.
  • the modulation coding mode used for determining the amount of data transmitted by the transmitting end by using the channel with poor quality is avoided. Further, the problem of reduced efficiency of data volume transmission makes the channel resources of the communication system well utilized.
  • FIG. 11 is a diagram of a physical communication device according to an embodiment of the present invention, by using the physical communication device.
  • the communication method described in the first embodiment and the second embodiment is implemented.
  • Each device in the device exists in the network side, and the device includes: a processor 11 10 and a transmitter 1 120.
  • the processor 1110 is configured to generate a data frame, where the data frame multiplexes data of at least two sites, and the sites have the same group number, where the group number of the site is allocated by the network side. ;
  • the transmitter 1120 is configured to send the data frame generated by the processor to the site.
  • the group number of the station in the data frame generated by the processor 1 110 belongs to the first group number.
  • the processor 1110 is specifically configured to: multiplex data of at least two sites by using orthogonal frequency division multiple access (OFDM) in the data frame.
  • OFDM orthogonal frequency division multiple access
  • the data frame generated by the processor 1 110 includes a control part, where the control part carries the first indication information, and the first indication information is used to indicate the first type of group number of the station.
  • the data frame generated by the processor 1 110 includes a control part, where the control part carries the second indication information, where the second indication information is used to indicate that the data bearer of the station belonging to the first type of group number is The location in the subcarrier.
  • the transmitter 1120 is further configured to: send, to the station, a data frame that carries the third indication information, where the third indication information is used to indicate the first class of the site corresponding to the data in the data frame. And a data frame carrying the fourth indication information, where the fourth indication information is used to indicate that the data bearer of the station belonging to the first type group number in the data frame is The location in the subcarrier.
  • the transmitter 1120 is specifically configured to: after sending the data frame carrying the third indication information to the station, and/or carrying the data frame of the fourth indication information, send the data frame to the station at a fixed time interval.
  • the data frame is specifically configured to: after sending the data frame carrying the third indication information to the station, and/or carrying the data frame of the fourth indication information, send the data frame to the station at a fixed time interval. The data frame.
  • the processor 1110 is further configured to allocate, by the network side, a first class group number and a second class group number to the same site; the data of the site is multiplexed by using 0FDMA, and the first class of the site is The group numbers are the same; or the data of the station is multiplexed by means of space division multiplexing multiple access SDMA, and the second group number of the station is the same.
  • the data frame generated by the processor 1 110 includes a control part, where the control part carries first indication information, where the first indication information is used to indicate the first group number or the second of the station. Class group number.
  • the data frame generated by the processor 1 110 includes a control part, and the control part carries a fifth indication information, where the fifth indication information is used to indicate a group number category of the station.
  • the transmitter 1120 is further configured to send, to the station, a data frame that carries the sixth indication information, where the sixth indication information is used to indicate the first class of the site corresponding to the data in the data frame. a group number or a second type of group number; and/or transmitting a data frame carrying the seventh indication information to the station, the seventh indication information being used to indicate a group number category of the station.
  • the transmitter 1120 is specifically configured to: send the data frame carrying the sixth indication information to the station, and/or send the data frame carrying the seventh indication information, and send the data frame to the station at a fixed time interval.
  • the data frame By applying the entity communication device provided by the embodiment of the present invention, the processor allocates a group number to one or more stations, and the processor uses the orthogonal frequency division multiple access (OFDM) mode to generate a data frame, and the transmitter sends the data frame at most. In the stations, multiple stations perform subsequent processing on the data frames, which avoids the modulation coding method used for determining the amount of data transmitted by the transmitting end by using a poor quality channel, thereby causing data transmission. The problem of reduced efficiency makes the channel resources of the communication system utilized.
  • OFDM orthogonal frequency division multiple access
  • FIG. 12 is a diagram of a communication device according to an embodiment of the present invention.
  • each unit in the device exists in a station, and the device includes: a receiver 1210 and a processor 1220.
  • the receiver 1210 in the station is configured to receive a data frame, where the data frame multiplexes data of at least two sites, and the sites have the same group number, where the group number of the site is determined by the network. Side allocation
  • the processor 1220 is configured to parse the data frame, and obtain data required by itself from the data frame.
  • the group number of the station in the data frame received by the receiver 1210 belongs to the first type group number.
  • the data frame received by the receiver multiplexes data of at least two stations by orthogonal frequency division multiple access (OFDM).
  • OFDM orthogonal frequency division multiple access
  • the data frame received by the receiver 1210 includes a control part, where the control part carries the first indication information, where the first indication information is used to indicate the first type of group number of the station.
  • the data frame received by the receiver 1210 includes a control part, where the control part carries the second indication information, where the second indication information is used to indicate that the data belonging to the station belonging to the first type group number is carried in the sub- The location in the carrier.
  • the receiver 1210 is further configured to: receive a data frame that carries the third indication information, where the third indication information is used to indicate the first group group number of the site corresponding to the data in the data frame; and Or receiving a data frame carrying the fourth indication information, where the fourth indication information is used to indicate that the data of the station belonging to the first type group number in the data frame is carried in a position in the subcarrier.
  • the receiver 1210 is further configured to: after receiving the data frame carrying the third indication information, and/or the data frame carrying the fourth indication information, receiving the data frame at a fixed time interval.
  • the receiver 1210 is specifically configured to receive a first type group number and a second type group number allocated by the network side to the same station;
  • the data frame received by the receiver 1210 is specifically: the data of the station is multiplexed by 0FDMA, and the first group group number of the station is the same; or the data of the station is used for space division multiplexing.
  • the SDMA mode is multiplexed, and the second group number of the site is the same.
  • the data frame received by the receiver 1210 includes a control part, where the control part carries the first indication information, where the first indication information is used to indicate the first type group number or the second type group number of the station.
  • the data frame received by the receiver 1210 includes a control part, and the control part carries a fifth indication information, where the fifth indication information is used to indicate a group number category of the station.
  • the receiver 1210 is further configured to: receive a data frame carrying the sixth indication information, where the sixth indication information is used to indicate the first group number or the second of the station corresponding to the data in the data frame. And a data frame carrying the seventh indication information, where the seventh indication information is used to indicate a group number category of the station.
  • the receiver 1210 is further configured to: after receiving the data frame carrying the sixth indication information, and/or the data frame carrying the seventh indication information, receiving the data frame at a fixed time interval by applying the present invention
  • the receiver network side allocates a group number for itself, and the receiver further receives the data frame generated by the network side, and the processor compares the allocated group number with the group number carried in the indication information in the data frame. If they are consistent, the corresponding data is demodulated. If they are inconsistent, the data is not demodulated.
  • the modulation coding method used for determining the amount of data transmitted by the transmitting end by using the channel with poor quality is avoided. The problem of reducing the efficiency of data volume transmission makes the channel resources of the communication system well utilized.
  • FIG. 13 is a diagram of a communication system according to an embodiment of the present invention, where the communication system is used to implement the foregoing multiple methods and apparatus embodiments.
  • the communication system includes: a network side and a station;
  • the network side allocates a group number to the station; the network side generates a data frame, the data frame multiplexes data of at least two sites, and the data of the site is multiplexed in the data by using 0FDMA
  • the station has the same group number; the network side sends the data frame to the station; the station receives the allocated group number, and receives the data frame sent by the network side.
  • the station compares the assigned group number with the group number carried in the indication information in the data frame, and if they are consistent, demodulates the data required by the corresponding position from the subcarrier according to the indication information; if not, it indicates The corresponding location in the subcarrier does not carry the data that it needs, and waits for the data frame sent by the network side next time.
  • the network side allocates a group number to one or more stations, and uses the orthogonal frequency division multiple access (OFDM) mode to generate a data frame, and sends the data frame to multiple sites.
  • OFDM orthogonal frequency division multiple access
  • the subsequent processing of the data frame by multiple stations avoids the modulation coding method used for determining the amount of data transmitted by the transmitting end by using a poor quality channel, thereby reducing the efficiency of data transmission.
  • the problem is that the channel resources of the communication system are well utilized.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及一种通信方法与装置。所述方法包括:生成数据帧,所述数据帧复用了至少两个站点的数据,且所述站点具有相同的组号,其中,所述站点的组号由网络侧分配;向所述站点发送所述数据帧。根据本发明实施例公开的通信方法与装置,避免了为了以质量差的信道来决定发送端发送数据量时采用的调制编码方式,进而导致数据量传输的效率降低的问题,使得通信系统的信道资源被很好地利用。

Description

通信方法与装置
本申请要求于 2012年 9月 10日提交中国专利局、 申请号为
201210332104.3, 发明名称为 "通信方法与装置" 的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通讯技术领域, 尤其涉及一种通信方法与装置。 背景技术
在 IEEE 802. lla/b/g/n/ac 协议中, 一个基本服务集由多个终端 (Station, STA)组成。 可选地, 在基本服务集中具有一定的管理功能的终 端, 称为接入点 ( Access Point, AP ) 。
目前, 在多个常用的通信系统, 例如, 长期演进(Long Term Evolution,
LTE) , 美国电气和电子工程师协会 IEEE 802.11η, IEEE 802. llac等, 在发 送数据时, 均釆用正交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM) 方式将数据调制后发送。 OFDM方式具体为: 将整个通 信系统的带宽划分成多个子载波, 在时域中以一个 0FDM符号的时长作为基本 单元, 一般 0FDM符号的时长与相邻两个子载波间隔成倒数关系, 所以, 从通 信系统的整体来看, 时域上被分成了多个 0FDM符号, 在频域上也被分成了多 个子载波。
现有无线保真 (Wireless Fidelity, Wi-Fi )通信系统中, 多个终端通 过竟争的方式来获取信道的使用权。 发射端获得信道的使用权后, 发射端向 目标站点发送数据包, 该数据包中在时域上可以由多个 0FDM符号组成, 在频 域上给目标站点的数据包将分布在整个无线系统带宽中的所有子载波上; 但是, 在通信系统带宽较大时, 多数情况下, 各个子载波经历的信道环 境质量是有差别的, 有些信道质量好, 有些信道质量差, 质量好的信道可以 釆用高阶的调制编码方式, 从而在单位时间内能传输更多的数据量, 而质量 差的信道则相反, 因此, 现有通信系统中, 为了保证站点在接收数据量时的 整体接收性能, 釆用的做法为: 以质量差的信道来决定发送端发送数据量时 釆用的调制编码方式, 进而导致数据量传输的效率降低。 发明内容
本发明的目的是为了解决现有技术中通信系统的信道资源不能很好地被 利用, 数据量传输效率低的问题, 提供了一种通信方法与装置。
在第一方面, 本发明实施例提供了一种通信方法, 所述方法包括: 生成数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点具有 相同的组号, 其中, 所述站点的组号由网络侧分配
向所述站点发送所述数据帧。
在第二方面, 本发明实施例提供了一种通信方法, 所述方法包括: 接收数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点具有 相同的组号, 其中, 所述站点的组号由网络侧分配;
解析所述数据帧, 从所述数据帧中获取自身所需的数据。
在第三方面, 本发明实施例提供了一种通信装置, 所述装置包括: 生成单元, 用于生成数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点具有相同的组号, 其中, 所述站点的组号由网络侧分配;
发送单元, 用于将所述生成单元生成的数据帧, 发送给所述站点。
在第四方面, 本发明实施例提供了一种通信装置, 所述装置包括: 接收单元, 用于接收数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点具有相同的组号, 其中, 所述站点的组号由网络侧分配;
解析单元, 用于解析所述数据帧, 从所述数据帧中获取自身所需的数据。 在第五方面, 本发明实施例提供了一种通信系统, 所述系统包括: 网络 侧和站点;
所述网络侧为所述站点分配组号;
所述网络侧生成数据帧, 所述数据帧复用了至少两个站点的数据, 所述 站点的数据釆用 0FDMA 的方式复用在所述数据帧中, 且所述站点具有相同的 组号;
所述网络侧向所述站点发送所述数据帧;
所述站点接收分配的组号, 并接收所述网络侧生成发送的数据帧。
通过应用本发明实施例提供的通信方法与装置, 网络侧为 1个或多个站 点分配组号, 并自行生成携带指示信息的数据帧, 将数据帧发送至 1 个或多 个站点, 1个或多个站点获取分配的组号和数据帧, 利用数据帧中的指示信息 从子载波相应的位置中解调出自身需要的数据, 与现有技术相比, 避免了为 了以质量差的信道来决定发送端发送数据量时釆用的调制编码方式, 进而导 致数据量传输的效率降低的问题, 使得通信系统的信道资源被很好地利用。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描 述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一提供的通信方法流程图;
图 2为本发明实施例提供的数据帧承载多个站点的数据图;
图 3为本发明实施例提供的数据帧示意图;
图 4为本发明实施例提供的子载波承载多个终端数据位置示意图; 图 5为本发明实施例提供的支持 802. l la/b/g/n/ac协议的站点数据复用 在子载波中的示意图; 图 6为本发明实施例二提供的通信方法流程图;
图 7为本发明实施例三提供的通信方法流程图;
图 8为本发明实施例四提供的通信方法流程图;
图 9为本发明实施例提供的用于实现实施例一和实施例二通信方法的通 信装置图;
图 10为本发明实施例提供的用于实现实施例三与实施例四通信方法的通 信装置图;
图 11为本发明实施例提供的用于实现实施例一和实施例二通信方法的实 体通信装置图;
图 12为本发明实施例提供的用于实现实施例三和实施例四通信方法的实 体通信装置图;
图 1 3本发明实施例提供的通信系统图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图对本发明 具体实施例作进一步的详细描述。
下面以图 1为例详细说明本发明实施例提供的通信方法, 图 1为本发明 实施例一提供的通信方法流程图。
如图 1所示, 本发明实施例公开的通信方法中, 首先网络侧为站点分配 组号, 将分配的组号发送至站点, 使得站点明确自身的组号, 网络侧釆用正 交频分多址 ( Or thogona l Frequency D iv i s ion Mu l t i p le Acces s , 0FDMA ) 方式复用生成数据帧, 该数据帧包括属于相同所述组号的多个站点的数据; 网络侧向站点发送生成的数据帧。 实现通信方法需要以下步骤, 在本发明实 施例中实施主体为网络侧, 如图 1所示, 具体包括以下步骤:
所述网络侧是指对一个无线局域网有一定控制和 /或管理功能的节点或 网元, 该网络侧可以建立多个不同类型的组, 且在不同类型的组内建立多个 小组, 为每个小组中的站点分配组内索引号, 并针对不同类型的组生成不同 形式的数据帧, 在本发明实施例中, 网络侧可以是无线局域网的接入点 AP; 站点可以是用户终端。
步骤 1 1 0、 生成数据帧, 所述数据帧复用了至少两个站点的数据, 且所述 站点具有相同的组号,其中, 所述站点的组号由网络侧分配;
具体地, 首先, 网络侧为其周围存在的站点分配组号, 在本发明实施例 中, 为站点分配第一类组号为例进行说明, 网络侧为站点分配第一类组号后, 将分配的第一类组号发送至站点, 使得站点明确自身的组号。
进一步地, 网络侧在站点接入网络的过程中, 为站点分配第一类组号, 而且在站点接入网络后, 网络侧也可以为站点重新分配组号, 在本发明实施 例中重新分配组号是指重新分配在第一类组号下的各小组号, 如果为站点重 新分配组号, 则通知站点更新组号, 例如, 站点最初分配的组号为第一类第 1 组, 网络侧可将站点的组号重新分配为第一类第 1 0组。
网络侧还会为站点分配其所在组中的组内索引号, 将所述组内索引号也 发送至站点, 所述组号和组内索引号用于站点从数据帧的指示信息中查找自 身需要的数据承载的子载波中的位置。
例如, 网络中存在 8个站点, 网络侧为所述 8个站点分配第一类组号, 其中, 站点 1、 2、 3、 4的第一类组号为第一类第 1组, 站点 5、 6、 7、 8的 第一类组号为第一类第 2组, 所述第 1组、 第 2组为第一类组号中的组编号, 所述站点 1、 1、 3、 4的第一类组号相同, 所述站点 5、 6、 7、 8的第一类组 号相同, 同时, 为各组中的站点分配组内索引号, 即为第一类第 1 组中的 4 个站点进行排序, 如, 为站点 1分配的组内索引号为第一站点; 为站点 2分 配的组内索引号为第二站点; 为站点 3 分配的组内索引号为第三站点; 为站 点 4分配的组内索引号为第四站点; 同理, 为第一类第 2组中的 4个站点进 行排序。
网络侧在为站点分配第一类组号及组内索引号后, 生成数据帧, 所述数 据帧复用了至少两个站点的数据, 且所述站点具有相同的组号,其中, 所述站 点的组号由网络侧分配。
进一步地, 当网络则只给 1 个站点传输数据时, 则使用某一子载波或者 使用整个信道向站点传输数据。
当网络侧需向多个站点传输数据时, 将多个站点的数据釆用 0FDMA 的方 式复用在所述数据帧中, 所述多个站点的第一类组号相同。
所述 0FDMA方式复用, 是一种特殊的频分复用。 即一个 OFDM符号包含多 个子载波, 将多个子载波划分, 每一部分中包括了多个子载波, , 且每一部 分承载一个站点的数据, 例如, 一部分子载波承载站点 1 的数据, 另一部分 子载波承载站点 2的数据。 如此, 在釆用 0FDMA方式复用生成数据帧时, 可 以同时将多个站点的数据复用在一个数据帧中, 以此将信道资源更好的利用, 节约带宽。
在本发明实施例中, 要求釆用 0FDMA方式将数据复用在一个数据帧的站 点属于同一个组(即同属于第一类组号) , 需要注意的是, 要求数据帧复用 在一起的站点属于同一组, 并不限制属于同一组所有站点的数据都一定复用 数据帧如图 2所示, 图 2为本发明实施例提供的数据帧承载多个站点的数据 图, 根据步骤 110中的例子, 在图 1所示的子载波中承载同一个组中的 3个 站点的数据, 在子载波的每一部分中承载的是该站点需要的数据, 在该子载 波中承载了同一个组中的 3个站点的数据, 属于同一组中的站点 4的数据在 该子载波中没有承载。
进一步具体地, 如图 3所示, 图 3为本发明实施例提供的数据帧示意图, 所述数据帧包括控制部分和业务数据部分, 有时控制部分也称为前导部分。
在控制部分里, X-STF (例如, L-STF , HT-STF )主要用于支持时间和频 率同步, 以及自动增益控制 AGC 的调整; X-LTF (例如, L-LTF , HT-LTF ) 主 要用于支持信道估计, 当然也可以再进一步支持同步; X-S IG (例如, L-S IG , HT-S IG )主要用于指示业务数据部分的数据量大小, 调制编码方式, 所釆用 的发送处理方法, 其中, 所釆用的发送处理方法包括发送时釆用的空间数据 流个数等信息, X-STF和 X-S IG中的 X为通配符, 即 X可以是 L或者 HT。
对于本发明实施例来说, 在数据帧控制部分中携带第一指示信息, 所述 第一指示信息用于指示 1 个或多个站点的第一类组号; 可选地, 所述数据帧 控制部分中还携带第二指示信息, 所述第二指示信息用于指示属于第一类组 号的多个站点的数据所在的子载波位置; 例如, 可以在数据帧控制部分中的 X-S IG信息携带第一指示信息、第二指示信息,携带指示信息并不限制于 X-S IG 信息。
其中, 在所述第一指示信息中携带属于相同组号的 1 个或多个站点的组 号, 在本发明实施例中, 以最大可支持 64个组为例说明, 例如, 站点的组号 用 6个比特来表示, "000000" 表示第 1类组号中的第 1组, "1 11111 " 表 示第 1类组号中的第 64组。
例如, 如图 4所示, 图 4为本发明实施例提供的子载波承载多个终端数 据位置示意图, 以步骤 110中第一类组号中的第 1组有 4个站点为例, 将子 载波分为 5部分, 则第二指示信息用 15比特来指示站点数据承载在子载波的 具体位置, 第二指示信息的表示方法不限制于此。
更进一步具体地, 用 T 来表示所述站点数据占用的子载波资源指示位 置。 如图 5所示, 将多个子载波划分为 5个部分, 例如, 将 50个子载波划分 为 5个部分, 则每一部分中包括了 10个子载波, 每一部分分别承载了在同一 组中的前 3 个站点的数据, 子载波的第一部分和第三部分承载的是同一组中 的第一站点的数据, 子载波的第二部分承载的是同一组中的第二站点的数据 , 子载波的第四部分和第五部分承载的是同一组中的第三站点的数据, 同一组 中第 4站点根据前 3个站点数据占用子载波资源指示位置判断子载波中是否 还承载自身的数据, 如果前 3 个站点将子载波资源指示位置全部占用, 则在 子载波中没有承载同一组中第 4站点的数据。
需要说明的是, 为了兼容已经存在的协议分支的站点, 比如支持 802. l la/b/g/n/ac协议的站点, 数据帧里属于同一个组的至少一个站点可以 和一个 802. l la/b/g/n/ac站点通过 0FDMA方式复用在一起, 如图 5所示, 图 5为本发明实施例提供的支持 802. l la/b/g/n/ac协议的站点数据复用在子载 波中的示意图; 在图 5中, 支持 802. l la/b/g/n/ac协议的站点与属于第一类 组号站点的数据复用在一起。
步骤 120、 向所述站点发送所述数据帧。
具体地, 根据步骤 110 的描述, 网络侧在生成数据帧后, 将数据帧发送 至站点, 由站点对数据帧进行后续的处理。
可选地, 在一个实施例中, 在发送数据帧之前, 还可以向站点发送一个 独立的数据帧, 即携带第三指示信息的数据帧。 所述第三指示信息用于指示 所述数据帧里 1个或多个站点的所述第一类组号。
和 /或向站点发送携带第四指示信息的数据帧, 所述第四指示信息用于指 示所述数据帧中属于所述第一类组号的所述 1 个或多个站点的数据所在的子 载波位置。 因此, 如果在发送数据帧之前发送携带第三指示信息, 和 /或携带 第四指示信息的数据帧, 则生成的数据帧里的控制部分里可以不携带第一指 示信息和第二指示信息当中的全部或部分。
进一步可选地, 预先设定一个时间间隔 T1 , 在网络侧发送完携带第三指 示信息的数据帧, 和 /或携带第四指示信息的数据帧后之后, 等一个间隔 T1 , 网络侧发送生成的数据帧; 即, 网络侧发送携带第三指示信息的数据帧, 和 / 相差固定时间间隔 Tl。
通过应用本发明实施例提供的通信方法, 网络侧为 1 个或多个站点分配 组号, 并釆用正交频分多址 0FDMA方式复用生成数据帧, 将数据帧发送至多 个站点中, 多个站点对数据帧进行后续的处理, 与现有技术相比, 避免了为 了以质量差的信道来决定发送端发送数据量时釆用的调制编码方式, 进而导 致数据量传输的效率降低的问题, 使得通信系统的信道资源被很好地利用。 为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图对本发明 具体实施例作进一步的详细描述。
下面以图 6为例详细说明本发明实施例提供的通信方法, 图 6为本发明 实施例二提供的通信方法流程图。
如图 6 所示, 首先网络侧为站点分配组号, 将分配的组号发送至站点, 使得站点明确自身的组号, 然后网络侧生成数据帧, 该数据帧包括相同组号 的 1个或多个站点的数据, 网络侧釆用正交频分多址( Or thogona l Frequency Divi s ion Mul t iple Acces s , OFDMA ) 方式或者釆用空分复用多址 ( Space Divi s ion Mul t i ple Acces s , SDMA ) 方式复用生成数据帧; 最后网络侧向站 点发送生成数据帧。 实现通信方法需要以下步骤, 在本发明实施例中实施主 体为网络侧, 如图 6所示, 具体包括以下步骤:
步骤 610、 生成数据帧, 所述数据帧复用了至少两个站点的数据, 且所述 站点具有相同的组号,其中, 所述站点的组号由网络侧分配;
具体地, 首先网络侧为站点分配组号, 在实际应用中, 在网络侧周围存 在多个站点, 因此, 网络侧给站点分配组号, 在本发明实施例中, 为站点分 配两类组号, 即第一类组号和第二类组号为例进行说明, 网络侧为站点分配 第一类组号后, 将第一类组号发送至站点中; 网络侧还可为站点分配第二类 组号, 并将第二类组号发送至站点中。 进一步地, 网络侧在站点接入网络的 过程中, 为站点分配组号, 而且在站点接入网络后, 网络侧也可以为站点重 新分配组号, 在本发明实施例中重新分配组号是指重新分配在第一类组号 /第 二类组号下的各小组号, 如果为站点重新分配组号, 则通知站点更新组号, 例如, 站点最初分配的组号为第一类第 1 组, 网络侧可将站点的组号重新分 配为第一类第 10组, 站点最初分配的组号为第二类第 1组, 网络侧可将站点 的组号重新分配为第二类第 15组。
网络侧还会为站点分配其所在组中的组内索引号, 将所述组内索引号也 发送至站点, 所述组号和组内索引号用于站点从数据帧的指示信息中查找自 身需要的数据所承载的子载波中的位置;
例如, 网络中存在 8个站点, 网络侧按第一分配方式为所述 8个站点分 配第一类组号, 其中, 站点 1、 2、 3、 4的第一类组号为第一类第 1组, 站点
5、 6、 7、 8的第一类组号为第一类第 2组, 此时, 所述第 1组、 第 2组为第 —类组号中的组编号, 所述站点 1、 2、 3、 4的第一类组号相同, 所述站点 5、
6、 7、 8的第一类组号相同; 网络侧按第二分配方式为所述 8个站点分配第二 类组号, 站点 1、 3、 5、 7的第二类组号为第二类第 1组, 站点 2、 4、 6、 8 的第二类组号为第二类第 2组, 此时, 所述第 1组、 第 2组为第二类组号中 的组编号, 所述站点 1、 3、 5、 7 的第二类组号相同, 所述站点 1、 4、 6、 8 的第二类组号相同; 同时, 网络侧为各组中的站点分配组内索引号, 即为第 一类第 1组中的 4个站点进行排序, 如, 为站点 1分配的组内索引号为第一 站点; 为站点 2分配的组内索引号为第二站点; 为站点 3分配的组内索引号 为第三站点; 为站点 4 分配的组内索引号为第四站点; 同理, 为第一类第 2 组中的 4个站点进行排序; 为第二类第 1组中的 4个站点进行排序, 为为第 二类第 2组中的 4个站点进行排序;
当网络则只给 1 个站点传输数据时, 则使用某一子载波或者使用整个信 道向站点传输数据。
当网络侧需向多个站点传输数据时, 将多个站点的数据釆用 0FDMA 的方 式复用在数据帧中, 且所述多个站点的第一类组号相同; 或所述多个站点的 数据釆用 SDMA的方式复用在数据帧中, 且所述多个站点的第二类组号相同。
所述 0FDMA方式复用, 是一种特殊的频分复用。 即一个 OFDM符号包含了 多个子载波, 将多个子载波划分为多个部分, 每一部分中包括了多个子载波, 且每一部分承载一个站点的数据, 例如, 一部分子载波承载站点 1 的数据, 一部分子载波承载站点 2的数据。 如此, 在釆用 OF丽 A方式复用生成数据帧 时, 可以同时将多个站点的数据复用在一个数据帧中, 以此将信道资源更好 的利用, 节约带宽。 在本发明实施例中, 要求釆用 0FDMA方式复用在一起的站点必须属于同 一个组(即同属于第一类组号, 或者同属于第二类组号) , 需要注意的是, 要求在数据帧里复用在一起的站点属于同一组, 并不限制属于同一组所有站 点的数据都一定复用在数据帧。 如图 2所示, 图 2为本发明实施例提供的数 据帧承载多个站点的数据图, 根据步骤 610中第一类第 1组的例子, 在图 1 所示的子载波中承载同一个组中的 3 个站点的数据, 在子载波的每一部分中 承载的是该站点需要的数据, 在该子载波中承载了第一类第 1组中的 3个站 点的数据, 第一类第 1组中的站点 4的数据在该子载波中没有承载;
下面简单说明空分复用 (SDMA)方式, 假设网络侧存在 T个发射链, 每 个发射链至少对应一根发射天线, 则网络侧至少有 T根天线(一个发射链可 以有多根发射天线) 。
首先, 网络侧根据信道情况确定能够传输的空间数据流个数, 在本发明 实施例中, 空间数据流个数, 为同时能并行传输的数据流个数。 空间数据流 个数与站点数据——对应, 例如, 网络侧存在 T个发射链, 假设确定的空间 数据流个数为 k, 将 k个数据通过 T个发射链发送, 则需要先将 k个数变换成 T个数, 然后在将变换后得到的 T个数分别设置在 T个发射链上发送出去, 其 中, 将 k个数变成 T个数的过程称为预编码处理过程。 通常, 将 k个数变成 T 个数的预编码处理过程如下描述,
将 k个数写成向量形式: K=trans { [x (0) , x (1) , ···, x (k-1) ] };
其中, trans {}表示矩阵或向量的转置;
使用 T行 k列的矩阵 W乘以 K得到一个包含 T个数的向量:
Y=trans { [y (0) , y (1) , ···, y (T-l) ] } =WK;
从而, 将 k个数变成了 T个数。 通常矩阵 W被称为预编码矩阵。
设矩阵 W=[w(0),w(2), -,w(k-l)] , 其中 w ( i )为维数或长度是 T的列 向量。 或者, 分解写成, Y=x(0)w(0)+x(l)w(l)+〜+x(k_l)w(k_l)。 通常, 将 对应预编码矩阵 W的第一列 w(0)的称为第一个空间数据流, 对应第二列 w(l) 的称为第二个空间数据流, 依次类推。 数据 x (0)被称为映射到第一个空间数 据流上, 数据 x (l)被称为映射到第二个空间数据流上, 依次类推。 映射到第 一个空间数据流的数据可以是给站点 1 的, 映射到第二个空间数据流的数据 可以是给站点 2的, 等等。
对于釆用空分复用多址方式复用数据帧时, 与 0FDMA 复用方式类似, 在 此, 不再复述。
进一步具体地, 如图 3所示, 图 3为本发明实施例提供的数据帧示意图, 所述数据帧包括控制部分和业务数据部分, 有时控制部分也称为前导部分。
在控制部分里, X-STF (例如, L-STF , HT-STF )主要用于支持时间和频 率同步, 以及自动增益控制 AGC 的调整; X-LTF (例如, L-LTF , HT-LTF )主 要用于支持信道估计, 当然也可以再进一步支持同步; X-S IG (例如, L-SIG, HT-SIG )主要用于指示业务数据部分的数据量大小, 调制编码方式, 所釆用 的发送处理方法, 其中, 所釆用的发送处理方法包括发送时釆用的空间数据 流个数等信息, X-STF和 X-SIG中的 X为通配符, 即 X可以是 L或者 HT。
对于本发明实施例来说, 在数据帧控制部分中携带第一指示信息, 所述 第一指示信息用于指示 1个或多个站点的第一类组号和 /或第二类组号; 可选 地, 在所述数据帧控制部分中还携带第二指示信息, 所述第二指示信息用于 指示属于第一类组号和 /或第二类组号的多个站点的数据承载的子载波中的 位置或者空间数据流中的的位置; 可选地, 在所述数据帧控制部分中还携带 第五指示信息, 所述第五指示信息用于指示所述 1个或多个站点的组号类别; 例如, 可以在数据帧控制部分中的 X-SIG信息携带第一指示信息、 第二指示 信息、 第五指示信息。
其中, 所述第一指示信息用于指示 1 个或多个站点的第一类组号或第二 类组号, 在本发明实施例中, 一种实现情况下, 以第一类组号中包括 32个组 编号, 第二类组号中包括 32个组编号为例说明, 此时, 则使用公共的 6比特 来表示第一类组号和 /或第二类组号, 如果站点接收到的组号是 "000000" , 说明该站点是第一类组号中的第 1组; 如果站点接收到的组号是 " 111111 " , 说明该站点是第二类组号中的第 32组, 此时, 第三指示信息隐含在第一指示 信息中。
在另一种实现情况下, 以第一类组号和第二类组号中均包括 50个组编号 为例说明, 此时, 用公共的 6 比特来表示每类组号中的组编号, 用第五指示 信息来指示当前 6 比特表示的组号是第一类组号还是第二类组号, 第五指示 信息为 1比特, 当第五指示信息取值为 "1 "时,表示第一类组号; 取值为 "0" 时, 表示第二类组号; 或反之; 例如, 当第一指示信息为 "000000" , 第五 指示信息为 " 1 " 时, 则表示第一类组号中的第 1 组; 当第一指示信息为 "000000" , 第五指示信息为 "0" 时, 则表示第二类组号中的第 1组。
例如, 如图 4所示, 图 4为本发明实施例提供的子载波承载多个终端数 据位置示意图, 以步骤 610中第一类组有 4个站点为例, 将子载波分为 5部 分, 则将 X-SIG信息中的指示信息用 15比特来指示站点数据承载在子载波的 具体位置, 指示信息的表示方法不限制于此。
更进一步具体地, 用 T 来标识所述站点占用的子载波位置。 如图 4所 示, 将多个子载波划分为 5个部分, 例如, 将 50个子载波划分为 5个部分, 则每一部分中包括了 10个子载波, 每一部分分别承载了在同一组中的前 3个 站点的数据, 子载波的第一部分和第三部分承载的是同一组中的第一站点的 数据, 子载波的第二部分承载的是同一组中的第二站点的数据, 子载波的第 四部分和第五部分承载的是同一组中的第三站点的数据, 同一组中第 4 站点 根据前 3 个站点数据占用子载波资源指示位置判断子载波中是否还承载自身 的数据, 如果前 3 个站点将子载波资源指示位置全部占用, 则在子载波中没 有承载同一组中第 4站点的数据。
需要说明的是, 为了兼容已经存在的协议分支的站点, 比如支持 802. l la/b/g/n/ac协议的站点, 数据帧里属于同一个组的至少一个站点可以 和一个 802. l la/b/g/n/ac站点通过 0FDMA方式复用在一起, 如图 5所示, 图 5为本发明实施例提供的支持 802. l la/b/g/n/ac协议的站点数据复用在子载 波中的示意图; 在图 5中, 支持 802. l la/b/g/n/ac协议的站点与属于第一类 组号站点的数据复用在一起。
需要说明的是, 在本发明实施例中, 规定属于第一类组号的站点, 釆用 0FDMA的复用方式生成数据帧, 属于第二类组号的站点, 釆用 SDMA的复用方 式生成数据帧, 也可规定属于第一类组号的站点, 釆用 SDMA的复用方式生成 数据帧, 属于第二类组号的站点, 釆用 0FDMA的复用方式生成数据帧。
步骤 620、 向所述站点发送所述数据帧。
具体地, 根据步骤 610的描述, 网络侧在生成数据帧后, 将数据帧发送 至站点, 由站点对数据帧进行后续的处理。
可选地, 在一个实施例中, 在发送数据帧之前, 还可以向站点发送一个 独立的数据帧, 即携带第六指示信息的数据帧。 所述第六指示信息用于指示 所述数据帧里 1个或多个站点的所述第一类组号或第二类组号;
和 /或向站点发送携带第七指示信息的数据帧, 所述第七指示信息用于指 示所述 1 个或多个站点的组号类别。 因此, 如果在发送数据帧之前发送携带 第六指示信息, 和 /或携带第七指示信息的数据帧, 则生成的数据帧里的控制 部分里可以不携带第一指示信息和第二指示信息当中的全部或部分。
进一步可选地, 预先设定一个时间间隔 T1 , 在网络侧发送完携带第六指 示信息的数据帧, 和 /或携带第七指示信息的数据帧后之后, 等一个间隔 T1 , 网络侧开始发送生成的数据帧; 即, 网络侧发送携带第六指示信息的数据帧, 刻, 相差固定时间间隔 Tl。
通过应用本发明实施例提供的通信方法, 网络侧为 1 个或多个站点分配 组号, 并釆用正交频分多址 0FDMA方式或者釆用空分复用多址 SDMA方式复用 生成数据帧, 将数据帧发送至多个站点中, 多个站点对数据帧进行后续的处 理, 与现有技术相比, 避免了为了以质量差的信道来决定发送端发送数据量 时釆用的调制编码方式, 进而导致数据量传输的效率降低的问题, 使得通信 系统的信道资源被很好地利用。
为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图对本发明 具体实施例作进一步的详细描述。
下面以图 7为例详细说明本发明实施例提供的通信方法, 图 7为本发明 实施例三提供的通信方法流程图。
如图 7 所示, 首先站点接收网络侧分配的组号, 将分配的所述组号存储 在本地, 明确自身的组号; 然后站点接收所述网络侧发送的数据帧, 对数据 帧进行解析, 根据所述数据帧中的指示信息从子载波相应的位置中解调出自 身需要的数据; 实现通信方法需要以下步骤, 在本发明实施例中实施主体为 站点, 如图 7所示, 具体包括以下步骤:
所述网络侧是指对一个无线局域网有一定控制和 /或管理功能的节点或 网元, 该网络侧可以建立多个不同类型的组, 且在不同类型的组内建立多个 小组, 为每个小组中的站点分配组内索引号, 并针对不同类型的组生成不同 形式的数据帧, 在本发明实施例中, 网络侧可以是无线局域网的接入点 AP; 站点可以是用户终端。
步骤 710、 接收数据帧, 所述数据帧复用了至少两个站点的数据, 且所述 站点具有相同的组号,其中, 所述站点的组号由网络侧分配;
具体地, 站点获取网络侧为自身分配的组号, 并将分配的组号存储在本 地, 站点明确自身的组号。
进一步地, 站点获取网络侧为自身分配的第一类组号, 而且在站点接入 网络后, 网络侧也可以为站点重新分配组号, 站点获取网络侧重新分配的组 号, 在本发明实施例中重新分配组号是指重新分配在第一类组号下的各小组 号, 如果为站点重新分配组号, 则网络侧将重新分配的组号再下发至站点, 例如, 站点最初分配的组号为第一类第 1 组, 网络侧可将站点的组号重新分 配为第一类第 10组, 并将重新分配的组号第一类第 10组下发站点。 站点还获取网络侧为自身分配其所在组中的组内索引号, 所述组号和组 内索引号用于站点从数据帧的指示信息中查找自身需要的数据所承载的子载 波中的位置。
例如, 网络中存在 8个站点, 网络侧为所述 8个站点分配第一类组号, 其中, 站点 1、 2、 3、 4的第一类组号为第一类第 1组, 站点 5、 6、 7、 8的 第一类组号为第一类第 2组, 所述第 1组、 第 2组为第一类组号中的组编号, 所述站点 1、 1、 3、 4的第一类的组号相同, 所述站点 5、 6、 7、 8的第一类 组号相同, 同时, 为各组中的站点分配组内索引号, 即为第一类第 1组中的 4 个站点进行排序, 如, 为站点 1分配的组内索引号为第一站点; 为站点 2分 配的组内索引号为第二站点; 为站点 3 分配的组内索引号为第三站点; 为站 点 4分配的组内索引号为第四站点; 同理, 为第一类第 2组中的 4个站点进 行排序。
站点在获取网络侧为自身分配的组号后, 接收网络侧生成的数据帧, 接 收数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点具有相同的 组号,其中, 所述站点的组号由网络侧分配。
进一步地, 当只存在 1 个站点需要网络侧传输数据时, 则网络侧使用某 一子载波或者使用整个信道向站点传输数据, 站点从某一子载波或者整个信 道中获取自身需要的数据。
当存在多个站点需要网络侧传输数据时, 网络则将所述多个站点的数据 采用正交频分多址 ( Or thogona l Frequency D i v i s i on Mu l t i p l e Acce s s , OFDMA ) 的方式复用在所述数据帧中, 所述多个站点的第一类组号相同。
所述 0FDMA方式复用, 是一种特殊的频分复用。 即一个 OFDM符号包含多 个子载波, 将多个子载波划分为多个部分, 每一部分中包括了多个子载波, 且每一部分承载一个站点的数据, 例如, 一部分子载波承载站点 1 的数据, 一部分子载波承载站点 2的数据。 如此, 在釆用 OF丽 A方式复用生成数据帧 时, 可以同时将多个站点的数据复用在一个数据帧中, 以此将信道资源更好 的利用, 节约带宽。
在本发明实施例中, 要求釆用 0FDMA方式将数据复用在一个数据帧的站 点属于同一个组(即同属于第一类组号) , 需要注意的是, 要求数据帧复用 在一起的站点属于同一组, 并不限制属于同一组所有站点的数据都一定复用 数据帧。 如图 2所示, 图 2为本发明实施例提供的数据帧承载多个站点的数 据图, 根据步骤 710 中的例子, 在图 2所示的子载波中承载同一个组中的 3 个站点的数据, 在子载波的每一部分中承载的是该站点需要的数据, 在该子 载波中承载了同一个组中的 3个站点的数据, 属于同一组中的站点 4的数据 在该子载波中没有承载。
进一步具体地, 如图 3所示, 图 3为本发明实施例提供的数据帧示意图, 所述数据帧包括控制部分和业务数据部分, 有时控制部分也称为前导部分。
在控制部分里, X-STF (例如, L-STF , HT-STF )主要用于支持时间和频 率同步, 以及自动增益控制 AGC 的调整; X-LTF (例如, L-LTF , HT-LTF )主 要用于支持信道估计, 当然也可以再进一步支持同步; X-S IG (例如, L-S IG , HT-S IG )主要用于指示业务数据部分的数据量大小, 调制编码方式, 所釆用 的发送处理方法, 其中, 所釆用的发送处理方法包括发送时釆用的空间数据 流个数等信息, X-STF和 X-S IG中的 X为通配符, 即 X可以是 L或者 HT。
对于本发明实施例来说, 在数据帧控制部分中携带第一指示信息, 所述 第一指示信息用于指示 1 个或多个站点的第一类组号; 可选地, 所述数据帧 控制部分中还携带第二指示信息, 所述第二指示信息用于指示属于第一类组 号的多个站点的数据承载的子载波中的位置; 例如, 可以在数据帧控制部分 中的 X-S IG信息携带第一指示信息、 第二指示信息。
其中, 在所述第一指示信息中携带属于相同组号的 1 个或多个站点的组 号, 在本发明实施例中, 以最大可支持 64个组为例说明, 例如, 站点的组号 用 6个比特来表示, "000000" 表示第 1类组号中的第 1组, "111 111 " 表 示第 1类组号中的第 64组。 例如, 如图 4所示, 图 4为本发明实施例提供的子载波承载多个终端数 据位置示意图, 以步骤 110中一个组有 4个站点为例, 将子载波分为 5部分, 则将 X-S IG信息中的第二指示信息用 15比特来指示站点数据承载在子载波的 具体位置, 第二指示信息的表示方法不限制于此。
更进一步具体地, 用 T 来表示所述站点数据占用的子载波资源指示位 置。 如图 5所示, 将多个子载波划分为 5个部分, 例如, 将 50个子载波划分 为 5个部分, 则每一部分中包括了 10个子载波, 每一部分分别承载了在同一 组中的前 3 个站点的数据, 子载波的第一部分和第三部分承载的是同一组中 的第一站点的数据, 子载波的第二部分承载的是同一组中的第二站点的数据 , 子载波的第四部分和第五部分承载的是同一组中的第三站点的数据, 同一组 中第 4站点根据前 3个站点数据占用子载波资源指示位置判断子载波中是否 还承载自身的数据, 如果前 3 个站点将子载波资源指示位置全部占用, 则在 子载波中没有承载同一组中第 4站点的数据。
步骤 720、 解析所述数据帧, 从所述数据帧中获取自身所需的数据。
具体地, 站点将存储在本地的第一类组号与数据帧中的第一指示信息携 带的第一类组号进行对比, 如果一致, 再根据第二指示信息从子载波中相应 的位置中解调出自身需要的数据; 如果不一致, 则说明子载波中相应的位置 中没有承载自身需要的数据, 等待网络侧下一次发送的数据帧。
站点根据数据帧中的指示信息从子载波中解调出自身需要的数据, 所述 解调为现有技术, 在此不再复述。
需要说明的是, 为了兼容已经存在的协议分支的站点, 比如支持 802. l la/b/g/n/ac协议的站点, 数据帧里属于同一个组的至少一个站点可以 和一个 802. l la/b/g/n/ac站点通过 0FDMA方式复用在一起, 如图 5所示, 图 5为本发明实施例提供的支持 802. l la/b/g/n/ac协议的站点数据复用在子载 波中的示意图; 在图 5中, 支持 802. l la/b/g/n/ac协议的站点与属于第一类 组号站点的数据复用在一起。 可选地, 在一个实施例中, 站点在接收数据帧之前, 还可以接收网络侧 发送的一个独立的数据帧, 即携带第三指示信息的数据帧。 所述第三指示信 息用于指示所述数据帧里 1个或多个站点的所述第一类组号。
和 /或接收网络侧发送的携带第四指示信息的数据帧, 所述第四指示信息 用于指示所述数据帧中属于所述第一类组号的所述 1 个或多个站点的数据所 在的子载波位置。 因此, 如果站点在接收网络侧生成的数据帧之前接收携带 第三指示信息, 和 /或携带第四指示信息的数据帧, 则接收的数据帧里的控制 部分里可以不携带第一指示信息和第二指示信息当中的全部或部分。
进一步可选地, 预先设定一个时间间隔 T1 , 站点接收携带第三指示信息 的数据帧, 和 /或携带第四指示信息的数据帧后之后, 等一个间隔 T1 , 接收网 络侧生成的数据帧; 即, 站点接收携带第三指示信息的数据帧, 和 /或携带第 四指示信息的数据帧的完成时刻与接收网络侧生成的数据帧的起始时刻, 相 差固定时间间隔 Tl。
通过应用本发明实施例提供的通信方法, 站点获取网络侧为自身分配的 组号, 站点接收网络侧生成的数据帧, 将分配的组号与数据帧中指示信息携 带的组号进行对比, 如果一致, 则解调相应的数据, 如果不一致, 则不解调 数据, 与现有技术相比, 避免了为了以质量差的信道来决定发送端发送数据 量时釆用的调制编码方式, 进而导致数据量传输的效率降低的问题, 使得通 信系统的信道资源被艮好地利用。
为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图对本发明 具体实施例作进一步的详细描述。
下面以图 8为例详细说明本发明实施例提供的通信方法, 图 8为本发明 实施例四提供的通信方法流程图。
如图 8 所示, 首先站点接收网络侧分配的组号, 将分配的所述组号存储 在本地, 明确自身的组号; 然后站点接收所述网络侧发送的数据帧, 对数据 帧进行解析, 根据所述数据帧中的指示信息从子载波相应的位置中解调出自 身需要的数据; 实现通信方法需要以下步骤, 在本发明实施例中实施主体为 站点, 如图 8所示, 具体包括以下步骤:
步骤 810、 接收数据帧, 所述数据帧复用了至少两个站点的数据, 且所述 站点具有相同的组号,其中, 所述站点的组号由网络侧分配。
具体地, 站点获取网络侧为自身分配的组号, 并将分配的组号存储在本 地, 站点明确自身的组号。
进一步地, 在本发明实施例中, 站点获取网络侧为自身分配的两类组号, 即第一类组号和第二类组号为例进行说明, 站点获取网络侧为自身分配的第 一类组号后, 站点还获取网络侧为自身分配的第二类组号。
站点获取网络侧为自身分配的第一类组号和 /或第二类组号, 而且在站点 接入网络后, 网络侧也可以为站点重新分配组号, 站点获取网络侧重新分配 的组号; 在本发明实施例中重新分配组号是指重新分配在第一类组号 /第二类 组号下的各小组号, 如果为站点重新分配组号, 则网络侧将重新分配的组号 再下发至站点, 例如, 站点最初分配的组号为第一类第 1 组, 网络侧可将站 点的组号重新分配为第一类第 10组, 站点最初分配的组号为第二类第 1组, 网络侧可将站点的组号重新分配为第二类第 15组, 并将重新分配的组号第一 类第 10组或者第二类第 15组下发站点。
站点还获取网络侧为自身分配其所在组中的组内索引号, 所述组号和组 内索引号用于站点从数据帧的指示信息中查找自身需要的数据所承载的子载 波中的位置。
例如, 网络中存在 8个站点, 网络侧按第一分配方式为所述 8个站点分 配第一类组号, 其中, 站点 1、 2、 3、 4的第一类组号为第一类第 1组, 站点 5、 6、 7、 8的第一类组号为第一类第 2组, 此时, 所述第 1组、 第 2组为第 一类组号中的组编号, 所述站点 1、 2、 3、 4的第一类组号相同, 所述站点 5、 6、 7、 8的第一类组号相同; 网络侧按第二分配方式为所述 8个站点分配第二 类组号, 站点 1、 3、 5、 7的第二类组号为第二类第 1组, 站点 2、 4、 6、 8 的第二类组号为第二类第 2组, 此时, 所述第 1组、 第 2组为第二类组号中 的组编号, 所述站点 1、 3、 5、 7 的第二类组号相同, 所述站点 1、 4、 6、 8 的第二类组号相同; 同时, 网络侧为各组中的站点分配组内索引号, 即为第 一类第 1组中的 4个站点进行排序, 如, 为站点 1分配的组内索引号为第一 站点; 为站点 2分配的组内索引号为第二站点; 为站点 3分配的组内索引号 为第三站点; 为站点 4 分配的组内索引号为第四站点; 同理, 为第一类第 2 组中的 4个站点进行排序; 为第二类第 1组中的 4个站点进行排序, 为为第 二类第 2组中的 4个站点进行排序。
站点在获取网络侧为自身分配的组号后, 接收网络侧生成的数据帧, 所 述数据帧复用了至少两个站点的数据, 且所述站点具有相同的组号,其中, 所 述站点的组号由网络侧分配。
进一步地, 当只存在 1 个站点需要网络侧传输数据时, 则网络侧使用某 一子载波或者使用整个信道向站点传输数据, 站点从某一子载波或者整个信 道中获取自身需要的数据。
当存在多个站点需要网络侧传输数据时, 网络则将所述多个站点的数据 采用正交频分多址 ( Or thogona l Frequency Divi s ion Mul t iple Acces s , OFDMA ) 的方式复用在数据帧中, 且所述多个站点的第一类组号相同; 和 /或 所述多个站点的数据釆用空分复用( Space Div i s ion Mul t iple Acces s , SDMA ) 的方式复用在数据帧中, 且所述多个站点的第二类组号相同。
所述 0FDMA方式复用, 是一种特殊的频分复用。 即一个 OFDM符号包含多 个子载波, 将多个子载波划分, 每一部分中包括了多个子载波, 且每一部分 承载一个站点的数据, 例如, 一部分子载波承载站点 1 的数据, 一部分子载 波承载站点 2的数据。 如此, 在釆用 0FDMA方式复用生成数据帧时, 可以同 时将多个站点的数据复用在一个数据帧中, 以此将信道资源更好的利用, 节 约带宽。
在本发明实施例中, 要求釆用 0FDMA方式将数据复用在一个数据帧的站 点必须属于同一个组(即同属于第一类组号, 或者同属于第二类组号) , 需 要注意的是, 要求在数据帧里复用在一起的站点属于同一组, 并不限制属于 同一组所有站点的数据都一定复用数据帧。 如图 1所示, 图 1为本发明实施 例提供的数据帧承载多个站点的数据图, 根据步骤 810中第一类第 1组的例 子, 在图 2所示的子载波中承载同一个组中的 3个站点的数据, 并利用组内 索引对这 3 个站点进行排序, 即第一站点、 第二站点、 第三站点, 在子载波 的每一部分中承载的是该站点需要的数据, 在该子载波中仅承载了第一类组 中的 3个站点的数据, 第一类组中的站点 4的数据在该子载波中没有承载。
下面简单说明空分复用 (SDMA)方式, 假设网络侧存在 T个发射链, 每 个发射链至少对应一根发射天线, 则网络侧至少有 T根天线(一个发射链可 以有多根发射天线) 。
首先, 网络侧根据信道情况确定能够传输的空间数据流个数, 在本发明 实施例中, 空间数据流个数, 为同时能并行传输的数据流个数。 空间数据流 个数与站点数据——对应, 例如, 网络侧存在 T个发射链, 假设确定的空间 数据流个数为 k, 将 k个数据通过 T个发射链发送, 则需要先将 k个数变换成 T个数, 然后在将变换后得到的 T个数分别设置在 T个发射链上发送出去, 其 中, 将 k个数变成 T个数的过程称为预编码处理过程。 通常, 将 k个数变成 T 个数的预编码处理过程如下描述,
将 k个数写成向量形式: K=trans { [x (0) , x (1) , ···, x (k-1) ] };
其中, trans {}表示矩阵或向量的转置;
使用 T行 k列的矩阵 W乘以 K得到一个包含 T个数的向量:
Y=trans { [y (0) , y (1) , ···, y (T-l) ] } =WK;
从而, 将 k个数变成了 T个数。 通常矩阵 W被称为预编码矩阵。
设矩阵 W=[w(0),w(2), -,w(k-l)] , 其中 w ( i )为维数或长度是 T的列 向量。 或者, 分解写成, Y=x(0)w(0)+x(l)w(l)+〜+x(k_l)w(k_l)。 通常, 将 对应预编码矩阵 W的第一列 w(0)的称为第一个空间数据流, 对应第二列 w(l) 的称为第二个空间数据流, 依次类推。 数据 x (0)被称为映射到第一个空间数 据流上, 数据 x (l)被称为映射到第二个空间数据流上, 依次类推。 映射到第 一个空间数据流的数据可以是给站点 1 的, 映射到第二个空间数据流的数据 可以是给站点 2的, 等等。
对于釆用空分复用多址方式复用数据帧时, 与 0FDMA 复用方式类似, 在 此, 不再复述。
进一步具体地, 如图 3所示, 图 3为本发明实施例提供的数据帧示意图, 所述数据帧包括控制部分和业务数据部分, 有时控制部分也称为前导部分。
在控制部分里, X-STF (例如, L-STF , HT-STF )主要用于支持时间和频 率同步, 以及自动增益控制 AGC 的调整; X-LTF (例如, L-LTF , HT-LTF )主 要用于支持信道估计, 当然也可以再进一步支持同步; X-S IG (例如, L-SIG, HT-SIG )主要用于指示业务数据部分的数据量大小, 调制编码方式, 所釆用 的发送处理方法, 其中, 所釆用的发送处理方法包括发送时釆用的空间数据 流个数等信息, X-STF和 X-SIG中的 X为通配符, 即 X可以是 L或者 HT。
对于本发明实施例来说, 在数据帧控制部分中携带第一指示信息, 所述 第一指示信息用于指示 1个或多个站点的第一类组号和 /或第二类组号; 可选 地, 在所述数据帧控制部分中还携带第二指示信息, 所述第二指示信息用于 指示属于第一类组号和 /或第二类组号的多个站点的数据承载的子载波中的 位置或者空间数据流中的的位置; 可选地, 在所述数据帧控制部分中还携带 第五指示信息, 所述第五指示信息用于指示所述 1个或多个站点的组号类别; 例如, 可以在数据帧控制部分中的 X-SIG信息携带第一指示信息、 第二指示 信息、 第五指示信息。
其中, 所述第一指示信息用于指示 1个或多个站点的第一类组号和 /或第 二类组号, 在本发明实施例中, 一种实现情况下, 以第一类组号中包括 32个 组编号, 第二类组号中包括 32个组编号为例说明, 此时, 则使用公共的 6比 特来表示第一类组号和 /或第二类组号, 如果站点接收到的组号是 "000000" , 说明该站点是第一类组号中的第 1组; 如果站点接收到的组号是 " 11 1111 " , 说明该站点是第二类组号中的第 32组。
在另一种实现情况下, 以第一类组号和第二类组号中均包括 50个组编号 为例说明, 此时, 用公共的 6 比特来表示每类组号中的组编号, 用第五指示 信息来指示当前 6 比特表示的组号是第一类组号还是第二类组号, 第五指示 信息为 1比特, 当第五指示信息取值为 "1 "时,表示第一类组号; 取值为 " 0" 时, 表示第二类组号; 或反之; 例如, 当第一指示信息为 "000000" , 第五 指示信息为 " 1 " 时, 则表示第一类组号中的第 1 组; 当第一指示信息为 "000000" , 第五指示信息为 "0" 时, 则表示第二类组号中的第 1组。
例如, 如图 4所示, 图 4为本发明实施例提供的子载波承载多个终端数 据位置示意图, 以步骤 610中第一类组有 4个站点为例, 将子载波分为 5部 分, 则将 X-S IG信息中的指示信息用 15比特来指示站点数据承载在子载波的 具体位置, 指示信息的表示方法不限制于此。
更进一步具体地, 用 T 来标识所述站点占用的子载波位置。 如图 4所 示, 将多个子载波划分为 5个部分, 例如, 将 50个子载波划分为 5个部分, 则每一部分中包括了 10个子载波, 每一部分分别承载了在同一组中的前 3个 站点的数据, 子载波的第一部分和第三部分承载的是同一组中的第一站点的 数据, 子载波的第二部分承载的是同一组中的第二站点的数据, 子载波的第 四部分和第五部分承载的是同一组中的第三站点的数据, 同一组中第 4 站点 根据前 3 个站点数据占用子载波资源指示位置判断子载波中是否还承载自身 的数据, 如果前 3 个站点将子载波资源指示位置全部占用, 则在子载波中没 有承载同一组中第 4站点的数据。
需要说明的是, 在本发明实施例中, 规定属于第一类组号的站点, 釆用 0FDMA的复用方式生成数据帧, 属于第二类组号的站点, 釆用 SDMA的复用方 式生成数据帧, 也可规定属于第一类组号的站点, 釆用 SDMA的复用方式生成 数据帧, 属于第二类组号的站点, 釆用 0FDMA的复用方式生成数据帧。 步骤 820、 解析所述数据帧, 从所述数据帧中获取自身所需的数据。 具体地, 站点将存储在本地的第一类组号和 /或第二类组号与数据帧中的 第一指示信息携带的第一类组号和 /或第二类组号进行对比, 如果一致, 再根 据第二指示信息从子载波中相应的位置中解调出自身需要的数据; 如果不一 致, 则说明子载波中相应的位置中没有承载自身需要的数据, 等待网络侧下 一次发送的数据帧。
站点根据数据帧中的指示信息从子载波中解调出自身需要的数据, 所述 解调为现有技术, 在此不再复述。
需要说明的是, 为了兼容已经存在的协议分支的站点, 比如支持 802. l la/b/g/n/ac协议的站点, 数据帧里属于同一个组的至少一个站点可以 和一个 802. l la/b/g/n/ac站点通过 0FDMA方式复用在一起, 如图 5所示, 图 5为本发明实施例提供的支持 802. l la/b/g/n/ac协议的站点数据复用在子载 波中的示意图; 在图 5中, 支持 802. l la/b/g/n/ac协议的站点与属于第一类 组号站点的数据复用在一起。
可选地, 在一个实施例中, 站点在接收数据帧之前, 还可以接收网络侧 发送的一个独立的数据帧, 即携带第六指示信息的数据帧。 所述第六指示信 息用于指示所述数据帧里 1个或多个站点的所述第一类组号或第二类组号; 和 /或接收网络侧发送的携带第七指示信息的数据帧, 所述第七指示信息 用于指示所述 1 个或多个站点的组号类别。 因此, 如果站点在接收网络侧生 成的数据帧之前接收携带第六指示信息, 和 /或携带第七指示信息的数据帧, 则接收的数据帧里的控制部分里可以不携带第一指示信息和第二指示信息当 中的全部或部分。
进一步可选地, 预先设定一个时间间隔 T1 , 站点接收携带第六指示信息 的数据帧, 和 /或携带第七指示信息的数据帧后之后, 等一个间隔 T1 , 接收网 络侧生成的数据帧; 即, 站点接收携带第六指示信息的数据帧, 和 /或携带第 七指示信息的数据帧的完成时刻与接收网络侧生成的数据帧的起始时刻, 相 差固定时间间隔 Tl。
通过应用本发明实施例提供的通信方法, 站点接收网络侧为自身分配的 组号, 站点还接收网络侧生成的数据帧, 将分配的组号与数据帧中指示信息 携带的组号进行对比, 如果一致, 则解调相应的数据, 如果不一致, 则不解 调数据, 与现有技术相比, 避免了为了以质量差的信道来决定发送端发送数 据量时釆用的调制编码方式, 进而导致数据量传输的效率降低的问题, 使得 通信系统的信道资源被很好地利用。
为使本发明的目的、 技术方案和优点更加清楚, 下面结合附图对本发明 具体实施例作进一步的详细描述。
相应地, 本发明实施例还提供了一种通信装置, 如图 9所示, 图 9为本 发明实施例提供的通信装置图, 利用所述通信装置实现上述实施例一和实施 例二所描述的通信方法, 所述装置中的各单元存在于网络侧中, 所述装置包 括: 生成单元 910和发送单元 920。
所述装置中生成单元 910 , 用于生成数据帧, 所述数据帧复用了至少两个 站点的数据, 且所述站点具有相同的组号, 其中, 所述站点的组号由网络侧 分配; 所述生成单元 910生成的数据帧中的所述站点的组号属于第一类组号。 所述生成单元 910具体用于, 所述数据帧釆用正交频分多址 0FDMA的方 式复用至少两个站点的数据。
所述生成单元 910生成的数据帧包括控制部分, 所述控制部分中携带第 一指示信息, 所述第一指示信息用于指示所述站点的所述第一类组号。
所述生成单元 910生成的数据帧包括控制部分, 所述控制部分中携带第 二指示信息, 所述第二指示信息用于指示属于所述第一类组号的所述站点的 数据承载在子载波中的位置。
所述发送单元 920还用于: 向所述站点发送携带第三指示信息的数据帧, 所述第三指示信息用于指示所述数据帧中数据对应的所述站点的所述第一类 组号; 和 /或向所述站点发送携带第四指示信息的数据帧, 所述第四指示信息 用于指示所述数据帧中属于所述第一类组号的所述站点的数据承载在子载波 中的位置。
所述发送单元 920具体用于, 向所述站点发送所述携带第三指示信息的 数据帧, 和 /或携带第四指示信息的数据帧后, 在固定的时间间隔, 向所述站 点发送所述数据帧。
所述装置还包括: 分配单元 930 , 用于所述网络侧为同一站点分配第一类 组号和第二类组号;
所述生成单元 91 0具体用于, 所述站点的数据釆用 0FDMA的方式复用, 且所述站点的第一类组号相同; 或所述站点的数据釆用空分复用多址 SDMA的 方式复用, 且所述站点的第二类组号相同。
所述生成单元 91 0生成的所述数据帧包括控制部分, 所述控制部分中携 带第一指示信息, 所述第一指示信息用于指示所述站点的所述第一类组号或 第二类组号。
所述生成单元 91 0生成的所述数据帧包括控制部分, 所述控制部分中携 带第五指示信息, 所述第五指示信息用于指示所述站点的组号类别。
所述发送单元 920还用于: 向所述站点发送携带第六指示信息的数据帧, 所述第六指示信息用于指示所述数据帧中数据对应的所述站点的所述第一类 组号或第二类组号; 和 /或向所述站点发送携带第七指示信息的数据帧, 所述 第七指示信息用于指示所述站点的组号类别。
所述发送单元 920具体用于, 向所述站点发送所述携带第六指示信息的 数据帧, 和 /或携带第七指示信息的数据帧后, 在固定的时间间隔, 向所述站 点发送所述数据帧。
通过应用本发明实施例提供的通信装置, 分配单元为 1 个或多个站点分 配组号, 生成单元釆用正交频分多址 0FDMA方式复用生成数据帧, 发送单元 将数据帧发送至多个站点中, 多个站点对数据帧进行后续的处理, 与现有技 术相比, 避免了为了以质量差的信道来决定发送端发送数据量时釆用的调制 编码方式, 进而导致数据量传输的效率降低的问题, 使得通信系统的信道资 源被很好地利用。
相应地, 本发明实施例还提供了一种通信装置, 如图 10所示, 图 10为 本发明实施例提供的通信装置图, 利用所述通信装置实现上述实施例三和实 施例四所描述的通信方法, 所述装置中的各单元存在于站点中, 所述装置包 括: 接收单元 1010和解析单元 1020。
所述装置中接收单元 101 0 , 用于接收数据帧, 所述数据帧复用了至少两 个站点的数据, 且所述站点具有相同的组号, 其中, 所述站点的组号由网络 侧分配;
解析单元 1 020 , 用于解析所述数据帧, 从所述数据帧中获取自身所需的 数据。
所述接收单元 101 0接收的数据帧中的所述站点的组号属于第一类组号。。 所述接收单元 1 010接收的数据帧釆用正交频分多址 OF丽 A的方式复用至 少两个站点的数据。
所述接收单元 1010接收的数据帧包括控制部分, 所述控制部分中携带第 一指示信息, 所述第一指示信息用于指示所述站点的第一类组号。
所述接收单元 1010接收的数据帧包括控制部分, 所述控制部分中携带第 二指示信息, 所述第二指示信息用于指示属于所述第一类组号的所述站点的 数据承载在子载波中的位置。
所述接收单元 1010还用于, 接收携带第三指示信息的数据帧, 所述第三 指示信息用于指示所述数据帧中数据对应的所述站点的所述第一类组号; 和 / 或接收携带第四指示信息的数据帧, 所述第四指示信息用于指示所述数据帧 中属于所述第一类组号的所述站点的数据承载在子载波中的位置。
所述接收单元 1010还具体用于, 接收所述携带第三指示信息的数据帧, 和 /或携带第四指示信息的数据帧后, 在固定的时间间隔, 接收所述数据帧。 所述接收单元 1010还用于, 接收所述网络侧为同一站点分配的第一类组 号和第二类组号;
所述接收单元接收的数据帧具体为: 所述站点的数据釆用 0FDMA 的方式 复用, 且所述站点的第一类组号相同; 或所述站点的数据釆用空分复用多址 SDMA的方式复用, 且所述站点的第二类组号相同。
所述接收单元 1010接收的数据帧包括控制部分, 所述控制部分中携带第 一指示信息, 所述第一指示信息用于指示所述站点的第一类组号或第二类组 号。
所述接收单元 1010接收的数据帧包括控制部分, 所述控制部分中携带第 五指示信息, 所述第五指示信息用于指示所述站点的组号类别。
所述接收单元 1010还用于, 接收携带第六指示信息的数据帧, 所述第六 指示信息用于指示所述数据帧中数据对应的所述站点的所述第一类组号或第 二类组号; 和 /或接收携带第七指示信息的数据帧, 所述第七指示信息用于指 示所述站点的组号类别。
所述接收单元 1010接收还具体用于, 接收所述携带第六指示信息的数据 帧, 和 /或携带第七指示信息的数据帧后, 在固定的时间间隔, 接收所述数据 帧。
通过应用本发明实施例提供的通信装置, 获取单元获取网络侧为自身分 配的组号, 接收单元接收网络侧生成的数据帧, 将分配的组号与数据帧中指 示信息携带的组号进行对比, 如果一致, 则解调相应的数据, 如果不一致, 则不解调数据, 与现有技术相比, 避免了为了以质量差的信道来决定发送端 发送数据量时釆用的调制编码方式, 进而导致数据量传输的效率降低的问题, 使得通信系统的信道资源被很好地利用。
另外, 本发明实施例提供的通信装置还可用另外一种方式实现, 如图 11 所示, 图 11为本发明实施例提供的实体通信装置图, 利用所述实体通信装置 实现上述实施例一和实施例二所描述的通信方法, 所述装置中的各器件存在 于网络侧中, 所述装置包括: 处理器 11 10、 发送器 1 120。
所述装置中处理器 1110 , 用于生成数据帧, 所述数据帧复用了至少两个 站点的数据, 且所述站点具有相同的组号, 其中, 所述站点的组号由网络侧 分配;
发送器 1120 , 用于将所述处理器生成的数据帧发送给所述站点。
所述处理器 1 110生成的数据帧中的所述站点的组号属于第一类组号。 所述处理器 1 110具体用于, 所述数据帧釆用正交频分多址 0FDMA的方式 复用至少两个站点的数据。
所述处理器 1 110生成的数据帧包括控制部分, 所述控制部分中携带第一 指示信息, 所述第一指示信息用于指示所述站点的所述第一类组号。
所述处理器 1 110生成的数据帧包括控制部分, 所述控制部分中携带第二 指示信息, 所述第二指示信息用于指示属于所述第一类组号的所述站点的数 据承载在子载波中的位置。
所述发送器 1 120还用于: 向所述站点发送携带第三指示信息的数据帧, 所述第三指示信息用于指示所述数据帧中数据对应的所述站点的所述第一类 组号; 和 /或向所述站点发送携带第四指示信息的数据帧, 所述第四指示信息 用于指示所述数据帧中属于所述第一类组号的所述站点的数据承载在子载波 中的位置。
所述发送器 1 120具体用于, 向所述站点发送所述携带第三指示信息的数 据帧, 和 /或携带第四指示信息的数据帧后, 在固定的时间间隔, 向所述站点 发送所述数据帧。
所述处理器 1110 , 还用于所述网络侧为同一站点分配第一类组号和第二 类组号; 所述站点的数据釆用 0FDMA 的方式复用, 且所述站点的第一类组号 相同; 或所述站点的数据釆用空分复用多址 SDMA的方式复用, 且所述站点的 第二类组号相同。 所述处理器 1 110生成的所述数据帧包括控制部分, 所述控制部分中携带 第一指示信息, 所述第一指示信息用于指示所述站点的所述第一类组号或第 二类组号。
所述处理器 1 110生成的所述数据帧包括控制部分, 所述控制部分中携带 第五指示信息, 所述第五指示信息用于指示所述站点的组号类别。
所述发送器 1 120还用于, 向所述站点发送携带第六指示信息的数据帧, 所述第六指示信息用于指示所述数据帧中数据对应的所述站点的所述第一类 组号或第二类组号; 和 /或向所述站点发送携带第七指示信息的数据帧, 所述 第七指示信息用于指示所述站点的组号类别。
所述发送器 1 120具体用于, 向所述站点发送所述携带第六指示信息的数 据帧, 和 /或携带第七指示信息的数据帧后, 在固定的时间间隔, 向所述站点 发送所述数据帧。 通过应用本发明实施例提供的实体通信装置, 处理器为 1 个或多个站点分配组号, 处理器釆用正交频分多址 0FDMA方式复用生成数据 帧, 发送器将数据帧发送至多个站点中, 多个站点对数据帧进行后续的处理, 与现有技术相比, 避免了为了以质量差的信道来决定发送端发送数据量时釆 用的调制编码方式, 进而导致数据量传输的效率降低的问题, 使得通信系统 的信道资源被艮好地利用。
相应地, 本发明实施例提供的通信装置还可用另外一种方式实现, 如图 12所示, 图 12为本发明实施例提供的通信装置图, 利用所述通信装置实现上 述实施例三和实施例四所描述的通信方法, 所述装置中的各单元存在于站点 中, 所述装置包括: 接收器 1210和处理器 1220。
所述站点中所述接收器 1210 , 用于接收数据帧, 所述数据帧复用了至少 两个站点的数据, 且所述站点具有相同的组号, 其中, 所述站点的组号由网 络侧分配;
处理器 1220 , 用于解析所述数据帧, 从所述数据帧中获取自身所需的数 据。 所述接收器 1210接收的数据帧中的所述站点的组号属于第一类组号。 所述接收器接收的数据帧釆用正交频分多址 0FDMA的方式复用至少两个 站点的数据。
所述接收器 1210接收的数据帧包括控制部分, 所述控制部分中携带第一 指示信息, 所述第一指示信息用于指示所述站点的第一类组号。
所述接收器 1210接收的数据帧包括控制部分, 所述控制部分中携带第二 指示信息, 所述第二指示信息用于指示属于所述第一类组号的所述站点的数 据承载在子载波中的位置。
所述接收器 1210还用于, 接收携带第三指示信息的数据帧, 所述第三指 示信息用于指示所述数据帧中数据对应的所述站点的所述第一类组号; 和 /或 接收携带第四指示信息的数据帧, 所述第四指示信息用于指示所述数据帧中 属于所述第一类组号的所述站点的数据承载在子载波中的位置。
所述接收器 1210还具体用于, 接收所述携带第三指示信息的数据帧, 和 /或携带第四指示信息的数据帧后, 在固定的时间间隔, 接收所述数据帧。
所述接收器 1210具体用于, 接收所述网络侧为同一站点分配的第一类组 号和第二类组号;
所述接收器 1210接收的数据帧具体为: 所述站点的数据釆用 0FDMA的方 式复用, 且所述站点的第一类组号相同; 或所述站点的数据釆用空分复用多 址 SDMA的方式复用, 且所述站点的第二类组号相同。
所述接收器 1210接收的数据帧包括控制部分, 所述控制部分中携带第一 指示信息, 所述第一指示信息用于指示所述站点的第一类组号或第二类组号。
所述接收器 1210接收的数据帧包括控制部分, 所述控制部分中携带第五 指示信息, 所述第五指示信息用于指示所述站点的组号类别。
所述接收器 1210还用于, 接收携带第六指示信息的数据帧, 所述第六指 示信息用于指示所述数据帧中数据对应的所述站点的所述第一类组号或第二 类组号; 和 /或接收携带第七指示信息的数据帧, 所述第七指示信息用于指示 所述站点的组号类别。
所述接收器 1210还具体用于, 接收所述携带第六指示信息的数据帧, 和 /或携带第七指示信息的数据帧后, 在固定的时间间隔, 接收所述数据帧 通过应用本发明实施例提供的实体通信装置, 接收器网络侧为自身分配 的组号, 接收器还接收网络侧生成的数据帧, 处理器将分配的组号与数据帧 中指示信息携带的组号进行对比, 如果一致, 则解调相应的数据, 如果不一 致, 则不解调数据, 与现有技术相比, 避免了为了以质量差的信道来决定发 送端发送数据量时釆用的调制编码方式, 进而导致数据量传输的效率降低的 问题, 使得通信系统的信道资源被很好地利用。
相应地, 本发明实施例提供了一种通信系统, 如图 1 3所示, 图 1 3为本 发明实施例提供的通信系统图, 所述通信系统用于实现前述多个方法和装置 实施例, 所述通信系统包括: 网络侧和站点;
所述网络侧为所述站点分配组号; 所述网络侧生成数据帧, 所述数据帧 复用了至少两个站点的数据, 所述站点的数据釆用 0FDMA 的方式复用在所述 数据帧中, 且所述站点具有相同的组号; 所述网络侧向所述站点发送所述数 据帧; 所述站点接收分配的组号, 并接收所述网络侧发送的数据帧。
所述站点将分配的组号与数据帧中的指示信息携带的组号进行对比, 如 果一致, 再根据指示信息从子载波中相应的位置中解调出自身需要的数据; 如果不一致, 则说明子载波中相应的位置中没有承载自身需要的数据, 等待 网络侧下一次发送的数据帧。
通过应用本发明实施例提供的通信系统, 网络侧为 1 个或多个站点分配 组号, 并釆用正交频分多址 0FDMA方式复用生成数据帧, 将数据帧发送至多 个站点中, 多个站点对数据帧进行后续的处理, 与现有技术相比, 避免了为 了以质量差的信道来决定发送端发送数据量时釆用的调制编码方式, 进而导 致数据量传输的效率降低的问题, 使得通信系统的信道资源被很好地利用。 专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器 ( RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 R0M、 电可擦除可编程 R0M、 寄存器、 硬盘、 可移动磁盘、 CD-R0M、 或技术领域内所公知的任意其它形式 的存储介质中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种通信方法, 其特征在于, 所述方法包括:
生成数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点具有 相同的组号,其中, 所述站点的组号由网络侧分配;
向所述站点发送所述数据帧。
1、 根据权利要求 1所述的通信方法, 其特征在于, 所述组号属于第一类 组号。
3、 根据权利要求 2所述的通信方法, 其特征在于, 所述数据帧釆用正交 频分多址 OF丽 A的方式复用至少两个站点的数据。
4、 根据权利要求 2至 3任一项所述的通信方法, 其特征在于, 所述数据 帧包括控制部分, 所述控制部分中携带第一指示信息, 所述第一指示信息用 于指示所述站点的所述第一类组号。
5、 根据权利要求 2至 3任一项所述的通信方法, 其特征在于, 所述数据 帧包括控制部分, 所述控制部分中携带第二指示信息, 所述第二指示信息用 于指示属于所述第一类组号的所述站点的数据承载在子载波中的位置。
6、 根据权利要求 1所述的通信方法, 其特征在于, 所述向所述站点发送 所述数据帧之前还包括:
向所述站点发送携带第三指示信息的数据帧, 所述第三指示信息用于指 示所述数据帧中数据对应的所述站点的所述第一类组号;
和 /或向所述站点发送携带第四指示信息的数据帧, 所述第四指示信息用 于指示所述数据帧中属于所述第一类组号的所述站点的数据承载在子载波中 的位置。
7、 根据权利要求 6所述的通信方法, 其特征在于, 所述向所述站点发送 所述数据帧具体为:
发送所述携带第三指示信息的数据帧, 和 /或携带第四指示信息的数据帧 后, 在固定的时间间隔, 向所述站点发送所述数据帧。 8、 根据权利要求 1所述的通信方法, 其特征在于, 在生成数据帧之前还 包括: 所述网络侧为同一站点分配第一类组号和第二类组号;
所述生成数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点 具有相同的组号具体为:
所述站点的数据釆用 0FDMA的方式复用, 且所述站点的第一类组号相同; 或所述站点的数据釆用空分复用多址 SDMA的方式复用, 且所述站点的第 二类组号相同。
9、 根据权利要求 8所述的通信方法, 其特征在于, 所述数据帧包括控制 部分, 所述控制部分中携带第一指示信息, 所述第一指示信息用于指示所述 站点的所述第一类组号或第二类组号。
10、 根据权利要求 8 所述的通信方法, 其特征在于, 所述数据帧包括控 制部分, 所述控制部分中携带第五指示信息, 所述第五指示信息用于指示所 述站点的组号类别。
11、 根据权利要求 8 所述的通信方法, 其特征在于, 所述向所述站点发 送所述数据帧之前还包括:
向所述站点发送携带第六指示信息的数据帧, 所述第六指示信息用于指 示所述数据帧中数据对应的所述站点的所述第一类组号或第二类组号;
和 /或向所述站点发送携带第七指示信息的数据帧, 所述第七指示信息用 于指示所述站点的组号类别。
12、 根据权利要求 11所述的通信方法, 其特征在于, 所述向所述站点发 送所述数据帧具体为:
当所述发送所述携带第六指示信息的数据帧, 和 /或携带第七指示信息的 数据帧后, 在固定的时间间隔, 向所述站点发送所述数据帧。
1 3、 一种通信方法, 其特征在于, 所述方法包括:
接收数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点具有 相同的组号,其中, 所述站点的组号由网络侧分配; 解析所述数据帧, 从所述数据帧中获取自身所需的数据。
14、 根据权利要求 1 3所述的通信方法, 其特征在于, 所述组号属于第一 类组号。
15、 根据权利要求 14所述的通信方法, 其特征在于, 所述数据帧釆用正 交频分多址 0FDMA的方式复用至少两个站点的数据。
16、 根据权利要求 14至 15任一项所述的通信方法, 其特征在于, 所述 数据帧包括控制部分, 所述控制部分中携带第一指示信息, 所述第一指示信 息用于指示所述站点的所述第一类组号。
17、 根据权利要求 14至 15任一项所述的通信方法, 其特征在于, 所述 数据帧具包括控制部分, 所述控制部分中携带第二指示信息, 所述第二指示 信息用于指示属于所述第一类组号的所述站点的数据承载在子载波中的位 置。
18、 根据权利要求 1 3所述的通信方法, 其特征在于, 所述接收数据帧之 前还包括:
接收携带第三指示信息的数据帧, 所述第三指示信息用于指示所述数据 帧中数据对应的所述站点的所述第一类组号;
和 /或接收携带第四指示信息的数据帧, 所述第四指示信息用于指示所述 数据帧中属于所述第一类组号的所述站点的数据承载在子载波中的位置。
19、 根据权利要求 18所述的通信方法, 其特征在于, 所述接收数据帧具 体为:
接收所述携带第三指示信息的数据帧, 和 /或携带第四指示信息的数据帧 后, 在固定的时间间隔, 接收所述数据帧。
20、 根据权利要求 1 3所述的通信方法, 其特征在于, 在接收数据帧之前 还包括: 接收所述网络侧为同一站点分配的第一类组号和第二类组号; 所述接收数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点 具有相同的组号具体为:
所述站点的数据釆用 0FDMA的方式复用, 且所述站点的第一类组号相同; 或所述站点的数据釆用空分复用多址 SDMA的方式复用, 且所述站点的第 二类组号相同。
21、 根据权利要求 20所述的通信方法, 其特征在于, 所述数据帧包括控 制部分, 所述控制部分中携带第一指示信息, 所述第一指示信息用于指示所 述站点的第一类组号或第二类组号。
22、 根据权利要求 20所述的通信方法, 其特征在于, 所述数据帧包括控 制部分, 所述控制部分中携带第五指示信息, 所述第五指示信息用于指示所 述站点的组号类别。
23、 根据权利要求 20所述的通信方法, 其特征在于, 所述接收数据帧之 前还包括:
接收携带第六指示信息的数据帧, 所述第六指示信息用于指示所述数据 帧中数据对应的所述站点的所述第一类组号或第二类组号;
和 /或接收携带第七指示信息的数据帧, 所述第七指示信息用于指示所述 站点的组号类别。
24、根据权利要求 23所述的通信方法, 其特征在于, 所述接收数据帧为: 接收所述携带第六指示信息的数据帧, 和 /或携带第七指示信息的数据帧后, 在固定的时间间隔, 接收数据帧。
25、 一种通信装置, 其特征在于, 所述装置包括:
生成单元, 用于生成数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点具有相同的组号, 其中, 所述站点的组号由网络侧分配;
26、 根据权利要求 25所述的通信装置, 其特征在于, 生成单元生成的数 据帧中的所述站点的组号属于第一类组号。
27、 根据权利要求 26所述的通信装置, 其特征在于, 所述生成单元具体 用于, 所述数据帧釆用正交频分多址 0FDMA的方式复用至少两个站点的数据。
28、 根据权利要求 26至 27任一项所述的通信装置, 其特征在于, 所述 生成单元生成的数据帧包括控制部分, 所述控制部分中携带第一指示信息, 所述第一指示信息用于指示所述站点的所述第一类组号。
29、 根据权利要求 26至 27任一项所述的通信装置, 其特征在于, 所述 生成单元生成的数据帧包括控制部分, 所述控制部分中携带第二指示信息, 所述第二指示信息用于指示属于所述第一类组号的所述站点的数据承载在子 载波中的位置。
30、 根据权利要求 25所述的通信装置, 其特征在于, 所述发送单元还用 于:
向所述站点发送携带第三指示信息的数据帧, 所述第三指示信息用于指 示所述数据帧中数据对应的所述站点的所述第一类组号;
和 /或向所述站点发送携带第四指示信息的数据帧, 所述第四指示信息用 于指示所述数据帧中属于所述第一类组号的所述站点的数据承载在子载波中 的位置。
31、 根据权利要求 30所述的通信装置, 其特征在于, 所述发送单元具体 用于, 向所述站点发送所述携带第三指示信息的数据帧, 和 /或携带第四指示 信息的数据帧后, 在固定的时间间隔, 向所述站点发送所述数据帧。
32、 根据权利要求 25所述的通信装置, 其特征在于, 所述装置还包括: 分配单元, 用于所述网络侧为同一站点分配第一类组号和第二类组号;
所述生成单元具体用于, 所述站点的数据釆用 0FDMA 的方式复用, 且所 述站点的第一类组号相同;
或所述站点的数据釆用空分复用多址 SDMA的方式复用, 且所述站点的第 二类组号相同。 33、 根据权利要求 32任一项所述的通信装置, 其特征在于, 所述生成单 元生成的所述数据帧包括控制部分, 所述控制部分中携带第一指示信息, 所 述第一指示信息用于指示所述站点的所述第一类组号或第二类组号。
34、 根据权利要求 32任一项所述的通信装置, 其特征在于, 所述生成单 元, 生成的所述数据帧包括控制部分, 所述控制部分中携带第五指示信息, 所述第五指示信息用于指示所述站点的组号类别。
35、 根据权利要求 32所述的通信装置, 其特征在于, 所述发送单元还用 于:
向所述站点发送携带第六指示信息的数据帧, 所述第六指示信息用于指 示所述数据帧中数据对应的所述站点的所述第一类组号或第二类组号;
和 /或向所述站点发送携带第七指示信息的数据帧, 所述第七指示信息用 于指示所述站点的组号类别。
36、 根据权利要求 35所述的通信装置, 其特征在于, 所述发送单元具体 用于, 向所述站点发送所述携带第六指示信息的数据帧, 和 /或携带第七指示 信息的数据帧后, 在固定的时间间隔, 向所述站点发送所述数据帧。
37、 一种通信装置, 其特征在于, 所述装置包括:
接收单元, 用于接收数据帧, 所述数据帧复用了至少两个站点的数据, 且所述站点具有相同的组号, 其中, 所述站点的组号由网络侧分配;
解析单元, 用于解析所述数据帧, 从所述数据帧中获取自身所需的数据。 38、 根据权利要求 37所述的通信装置, 其特征在于, 所述接收单元接收 的数据帧中的所述站点的组号属于第一类组号。
39、 根据权利要求 38所述的通信装置, 其特征在于, 所述接收单元接收 的数据帧釆用正交频分多址 0FDMA的方式复用至少两个站点的数据。
40、 根据权利要求 38至 39任一项所述的通信装置, 其特征在于, 所述 接收单元接收的数据帧包括控制部分, 所述控制部分中携带第一指示信息, 所述第一指示信息用于指示所述站点的第一类组号。 41、 根据权利要求 38至 39任一项所述的通信装置, 其特征在于, 所述 接收单元接收的数据帧包括控制部分, 所述控制部分中携带第二指示信息, 所述第二指示信息用于指示属于所述第一类组号的所述站点的数据承载在子 载波中的位置。
42、 根据权利要求 37所述的通信装置, 其特征在于, 所述接收单元还用 于,
接收携带第三指示信息的数据帧, 所述第三指示信息用于指示所述数据 帧中数据对应的所述站点的所述第一类组号;
和 /或接收携带第四指示信息的数据帧, 所述第四指示信息用于指示所述 数据帧中属于所述第一类组号的所述站点的数据承载在子载波中的位置。
43、 根据权利要求 42所述的通信装置, 其特征在于, 所述接收单元还具 体用于, 接收所述携带第三指示信息的数据帧, 和 /或携带第四指示信息的数 据帧后, 在固定的时间间隔, 接收所述数据帧。
44、 根据权利要求 37所述的通信方法, 其特征在于, 所述接收单元还用 于,
接收所述网络侧为同一站点分配的第一类组号和第二类组号;
所述接收单元接收的数据帧具体为: 所述站点的数据釆用 0FDMA 的方式 复用, 且所述站点的第一类组号相同;
或所述站点的数据釆用空分复用多址 SDMA的方式复用, 且所述站点的第 二类组号相同。
45、 根据权利要求 44所述的通信装置, 其特征在于, 所述接收单元接收 的数据帧包括控制部分, 所述控制部分中携带第一指示信息, 所述第一指示 信息用于指示所述站点的第一类组号或第二类组号。
46、 根据权利要求 44所述的通信装置, 其特征在于, 所述接收单元接收 的数据帧包括控制部分, 所述控制部分中携带第五指示信息, 所述第五指示 信息用于指示所述站点的组号类别。 47、 根据权利要求 44所述的通信装置, 其特征在于, 所述接收单元还用 于,
接收携带第六指示信息的数据帧, 所述第六指示信息用于指示所述数据 帧中数据对应的所述站点的所述第一类组号或第二类组号;
和 /或接收携带第七指示信息的数据帧, 所述第七指示信息用于指示所述 站点的组号类别。
48、 根据权利要求 44所述的通信装置, 其特征在于, 所述接收单元还具 体用于, 接收所述携带第六指示信息的数据帧, 和 /或携带第七指示信息的数 据帧后, 在固定的时间间隔, 接收所述数据帧。
49、 一种通信系统, 其特征在于, 所述通信系统包括: 如权利要求 1 至
12任一项所述的网络侧和如权利要求 1 3至 24任一项所述的站点;
所述网络侧为所述站点分配组号;
所述网络侧生成数据帧, 所述数据帧复用了至少两个站点的数据, 所述 站点的数据釆用正交频分多址 0FDMA 的方式复用在所述数据帧中, 且所述站 点具有相同的组号;
所述网络侧向所述站点发送所述数据帧;
所述站点接收分配的组号, 并接收所述网络侧发送的数据帧。
PCT/CN2013/074938 2012-09-10 2013-04-28 通信方法与装置 WO2014036839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210332104.3 2012-09-10
CN201210332104.3A CN103684662A (zh) 2012-09-10 2012-09-10 通信方法与装置

Publications (1)

Publication Number Publication Date
WO2014036839A1 true WO2014036839A1 (zh) 2014-03-13

Family

ID=50236505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074938 WO2014036839A1 (zh) 2012-09-10 2013-04-28 通信方法与装置

Country Status (2)

Country Link
CN (1) CN103684662A (zh)
WO (1) WO2014036839A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162906A (zh) * 2015-03-31 2016-11-23 中兴通讯股份有限公司 调度信息发送、接收方法及装置
CN106160965A (zh) * 2015-03-25 2016-11-23 联想(北京)有限公司 信息处理方法、电子设备及终端

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105828449A (zh) * 2016-04-13 2016-08-03 珠海市魅族科技有限公司 无线局域网的通信方法及通信装置、接入点和站点
CN114362911B (zh) * 2016-07-08 2024-05-10 索尼半导体解决方案公司 发送装置、接收装置以及数据处理方法
CN110505677B (zh) * 2018-05-18 2023-07-07 华为技术有限公司 基于多站点协作的数据传输方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011146415A1 (en) * 2010-05-16 2011-11-24 Qualcomm Incorporated Efficient group id management for wireless local area networks (wlans)
US20110299468A1 (en) * 2010-06-02 2011-12-08 Qualcomm Incorporated Format of vht-sig-b and service fields in ieee 802.11ac
CN102387008A (zh) * 2010-09-01 2012-03-21 中兴通讯股份有限公司 多用户反馈确认消息的方法及反馈确认消息的站点

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263489A (ja) * 2009-05-08 2010-11-18 Sony Corp 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
KR20110027533A (ko) * 2009-09-09 2011-03-16 엘지전자 주식회사 다중 안테나 시스템에서 제어정보 전송 방법 및 장치
WO2011056790A1 (en) * 2009-11-03 2011-05-12 Marvell World Trade Ltd. Power saving in a communication device
RU2504080C2 (ru) * 2009-12-10 2014-01-10 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и устройство передачи обучающего сигнала в системе беспроводной локальной вычислительной сети

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011146415A1 (en) * 2010-05-16 2011-11-24 Qualcomm Incorporated Efficient group id management for wireless local area networks (wlans)
US20110299468A1 (en) * 2010-06-02 2011-12-08 Qualcomm Incorporated Format of vht-sig-b and service fields in ieee 802.11ac
CN102387008A (zh) * 2010-09-01 2012-03-21 中兴通讯股份有限公司 多用户反馈确认消息的方法及反馈确认消息的站点

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160965A (zh) * 2015-03-25 2016-11-23 联想(北京)有限公司 信息处理方法、电子设备及终端
CN106160965B (zh) * 2015-03-25 2019-09-24 联想(北京)有限公司 信息处理方法、电子设备及终端
CN106162906A (zh) * 2015-03-31 2016-11-23 中兴通讯股份有限公司 调度信息发送、接收方法及装置
CN106162906B (zh) * 2015-03-31 2019-01-15 中兴通讯股份有限公司 调度信息发送、接收方法及装置
US10631310B2 (en) 2015-03-31 2020-04-21 Xi'an Zhongxing New Software Co., Ltd Method and device for transmitting or receiving scheduling information
US11206676B2 (en) 2015-03-31 2021-12-21 Xi'an Zhongxing New Software Co., Ltd. Method and device for transmitting or receiving scheduling information

Also Published As

Publication number Publication date
CN103684662A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
US11082181B2 (en) System and method for orthogonal frequency division multiple access communications
CN111277532B (zh) 用于子载波组和帧格式的wlan ofdma设计的装置和方法
JP6956356B2 (ja) 受信装置、受信方法および集積回路
US10548156B2 (en) Resource indication processing method and processing apparatus, access point, and station
US8249607B2 (en) Scheduling in wireless communication systems
EP2384041B1 (en) System information transmission method
US10764100B2 (en) Method and device for configuring signal field in wireless LAN system
CN107113829B (zh) 在wlan中根据资源分配设置来分配无线资源的方法和设备
KR20110033902A (ko) 무선 자원의 서브 채널화와 자원 맵핑 방법
CN107736065A (zh) 一种资源分配信息指示方法、基站及用户设备
WO2014036839A1 (zh) 通信方法与装置
CN107534957A (zh) Wlan系统的资源指示方法及装置
WO2016201627A1 (zh) 资源分配的方法、发送端设备和接收端设备
AU2015395033B2 (en) Data transmission method and apparatus
JP6695435B2 (ja) 無線ローカルエリアネットワークにおいてチャネルを示すための方法および装置
WO2016206484A1 (zh) 一种资源调度的指示方法及装置
KR20120039847A (ko) 통신 시스템에서 동적으로 자원을 할당하기 위한 장치 및 방법
KR101495289B1 (ko) 광대역 무선통신 시스템에서 주파수 오버레이 방식을 위한자원 할당 장치 및 방법
CN107615852A (zh) 资源调度的方法、装置和设备
WO2016107315A1 (zh) 调度指示信息的发送、接收方法及装置
JP6382134B2 (ja) 基地局装置、端末装置、通信システムおよび通信方法
CN107534955B (zh) 资源指示的处理方法、处理装置、接入点和站点
KR20230122046A (ko) 무선 근거리 통신망에서 업링크 전송을 트리거링하기위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835712

Country of ref document: EP

Kind code of ref document: A1