WO2014034846A1 - Laminate, polarizer, liquid crystal panel, touch panel sensor, touch panel device, and image display device - Google Patents

Laminate, polarizer, liquid crystal panel, touch panel sensor, touch panel device, and image display device Download PDF

Info

Publication number
WO2014034846A1
WO2014034846A1 PCT/JP2013/073319 JP2013073319W WO2014034846A1 WO 2014034846 A1 WO2014034846 A1 WO 2014034846A1 JP 2013073319 W JP2013073319 W JP 2013073319W WO 2014034846 A1 WO2014034846 A1 WO 2014034846A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
intermediate layer
light
condition
plane
Prior art date
Application number
PCT/JP2013/073319
Other languages
French (fr)
Japanese (ja)
Inventor
玄 古井
本田 誠
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012192323A external-priority patent/JP6048009B2/en
Priority claimed from JP2012192371A external-priority patent/JP6048010B2/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020157002244A priority Critical patent/KR101982377B1/en
Publication of WO2014034846A1 publication Critical patent/WO2014034846A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a laminate, a polarizing plate, a liquid crystal panel, a touch panel sensor, a touch panel device, and an image display device.
  • the image display surface of an image display device such as a liquid crystal display (LCD), a cathode ray tube display (CRT), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED) is usually directly or other
  • the laminated body which has the functional layer expected to exhibit a desired function is provided through the member (for example, touch panel sensor).
  • a typical functional layer a hard coat layer intended to improve scratch resistance is exemplified.
  • the laminate usually has a light transmissive substrate that supports the functional layer.
  • a light transmissive substrate that supports the functional layer.
  • light reflected from the surface of the functional layer and the interface between the functional layer and the light transmissive substrate are reflected due to the difference in refractive index between the light transmissive substrate and the functional layer.
  • an interference fringe occurs due to interference with light.
  • the components of the composition for the functional layer are infiltrated into the upper portion of the light-transmitting substrate, and the vicinity of the interface with the functional layer in the light-transmitting substrate
  • a mixed region in which the components of the light-transmitting substrate and the components of the functional layer are mixed is formed (see, for example, JP2003-131007A).
  • the mixed region the refractive index interface between the light transmissive substrate and the functional layer can be blurred. For this reason, by providing the mixed region, it is possible to reduce the reflectance at the interface between the light-transmitting substrate and the functional layer, and to prevent the occurrence of interference fringes.
  • the mixed region has a sufficient thickness.
  • the mixed area is relatively soft. Accordingly, when a mixed region having a sufficient thickness is formed, the functional layer on the mixed region must be thickened in order to give the laminate a desired hardness. For this reason, in the countermeasure using a mixed area
  • the light-transmitting substrate that can form the mixed region has high moisture permeability, as represented by the triacetylcellulose substrate. And the base material with high moisture permeability which can form a mixing area
  • an antiglare film since unevenness is formed on the outermost surface (for example, see JP2011-81118A), external light can be diffused. For this reason, in the laminated body called an anti-glare film, interference fringes can be made invisible by diffusion with unevenness on the outermost surface, and there is no need to provide a mixed region.
  • the present invention has been made in consideration of the above points, and an object thereof is to suppress the generation of interference fringes on a laminate by a method different from the conventional one.
  • the first laminate according to the present invention comprises: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 ⁇ n 2 ⁇ n 3 Condition (a) n 1 > n 2 > n 3 ...
  • Condition (b) Either one of the following conditions (a) or (b)
  • the thickness t of the intermediate layer, the wavelength ⁇ ave intermediate between the shortest wavelength ⁇ min of visible light and the longest wavelength ⁇ max of visible light, and the in-plane average refractive index n 2 are ⁇ ave / (6 ⁇ n 2 ) ⁇ t ⁇ ave / (3 ⁇ n 2 ) ...
  • Condition (c1) A laminate that satisfies the following condition (c1).
  • the second laminate according to the present invention comprises: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 ⁇ n 2 ⁇ n 3 Condition (a) n 1 > n 2 > n 3 ...
  • Condition (b) Either one of the following conditions (a) or (b) The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are 110 / n 2 ⁇ t ⁇ 170 / n 2 ...
  • Condition (c2) The following condition (c2) is satisfied.
  • the third laminate according to the present invention is: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 ⁇ n 2 ⁇ n 3 Condition (a) n 1 > n 2 > n 3 ...
  • Condition (b) Either one of the following conditions (a) or (b) The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are 555 / (6 ⁇ n 2 ) ⁇ t ⁇ 555 / (3 ⁇ n 2 ) ... Condition (c3) The following condition (c3) is satisfied.
  • the fourth laminate according to the present invention is: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 ⁇ n 2 ⁇ n 3 Condition (a) n 1 > n 2 > n 3 ...
  • Condition (b) Either one of the following conditions (a) or (b) The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are 507 / (6 ⁇ n 2 ) ⁇ t ⁇ 507 / (3 ⁇ n 2 ) ... Condition (c4) The following condition (c4) is satisfied.
  • the fifth laminate according to the present invention is: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 ⁇ n 2 ⁇ n 3 Condition (a) n 1 > n 2 > n 3 ...
  • Condition (b) Either one of the following conditions (a) or (b) The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are 555 / (6 ⁇ n 2 ) ⁇ t ⁇ 507 / (3 ⁇ n 2 ) ... Condition (c5) The following condition (c5) is satisfied.
  • the light-transmitting substrate has in-plane birefringence, Refractive index n 1x in the slow axis direction that is the direction with the highest refractive index in the plane of the light transmissive substrate, and refractive index in the fast axis direction perpendicular to the slow axis direction of the light transmissive substrate.
  • n 1y the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer, n 1x ⁇ n 2 ⁇ n 3 ... condition (d) n 1y > n 2 > n 3 ... condition (e) Any one of the following conditions (d) and (e) may be satisfied.
  • the light-transmitting substrate has in-plane birefringence, Refractive index n 1x in the slow axis direction that is the direction with the highest refractive index in the plane of the light transmissive substrate, and refraction of the intermediate layer in a direction parallel to the slow axis direction of the light transmissive substrate.
  • condition (f) n 1x > n 2x > n 3x
  • condition (g) Satisfy one of the following conditions (f) and (g): Refractive index n 1y in the fast axis direction orthogonal to the slow axis direction of the light transmissive substrate, and refractive index n 2y of the intermediate layer in a direction parallel to the fast axis direction of the light transmissive substrate.
  • the refractive index n 3y of the functional layer in the direction parallel to the fast axis direction of the light transmissive substrate is n 1y ⁇ n 2y ⁇ n 3y ...
  • condition (h) n 1y > n 2y > n 3y ... condition (i) Any one of the following conditions (h) and (i) may be satisfied.
  • the intermediate layer has in-plane birefringence,
  • the rate n 2y is n 2x > n 2y You may make it satisfy
  • refractive index n 1x in the slow axis direction of the light transmissive substrate in the slow axis direction of the light transmissive substrate, the refractive index n 1y in the fast axis direction of the light transmissive substrate, and parallel to the slow axis direction of the light transmissive substrate.
  • refractive index n 2x of the intermediate layer in a direction, and a refractive index n 2y of the intermediate layer in the fast axis direction parallel to the direction of the light transmitting substrate (N 1x -n 1y )> (n 2x -n 2y ) You may make it satisfy
  • the intermediate layer has in-plane birefringence, When the laminate is observed from the normal direction, the slow axis direction of the light-transmitting substrate and the slow axis direction of the intermediate layer that is the direction in which the refractive index is greatest in the plane of the intermediate layer
  • the magnitude of the angle formed by may be less than 30 °.
  • the intermediate layer has in-plane birefringence
  • the slow axis direction of the light-transmitting substrate may be parallel to the slow axis direction of the intermediate layer, which is the direction having the highest refractive index in the plane of the intermediate layer.
  • the intermediate layer has in-plane birefringence,
  • the sixth laminate according to the present invention is: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 > n 2 and n 2 ⁇ n 3 ... condition (o) n 1 ⁇ n 2 and n 2 > n 3 ...
  • condition (p) Either one of the following conditions (o) or (p) is satisfied,
  • the thickness t of the intermediate layer, the longest wavelength ⁇ max of visible light, and the average refractive index n 2 in the plane of the intermediate layer are 0 ⁇ t ⁇ max / (12 ⁇ n 2 )
  • Condition (q1) The following condition (q1) is satisfied.
  • the seventh laminate comprises: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 > n 2 and n 2 ⁇ n 3 ... condition (o) n 1 ⁇ n 2 and n 2 > n 3 ...
  • condition (p) Either one of the following conditions (o) or (p) is satisfied,
  • the thickness t of the intermediate layer, the shortest wavelength ⁇ min of visible light, the longest wavelength ⁇ max of visible light, and the in-plane average refractive index n 2 are 0 ⁇ t ⁇ (( ⁇ min + ⁇ max ) / 2) / (12 ⁇ n 2 ) ...
  • Condition (q2) The following condition (q2) is satisfied.
  • the eighth laminate according to the present invention is: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 > n 2 and n 2 ⁇ n 3 ... condition (o) n 1 ⁇ n 2 and n 2 > n 3 ...
  • condition (p) Either one of the following conditions (o) or (p) is satisfied,
  • the thickness t of the intermediate layer, the shortest wavelength ⁇ min of visible light, and the in-plane average refractive index n 2 are 0 ⁇ t ⁇ min / (12 ⁇ n 2 )
  • Condition (q3) The following condition (q3) is satisfied.
  • the ninth laminate according to the present invention comprises: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 > n 2 and n 2 ⁇ n 3 ... condition (o) n 1 ⁇ n 2 and n 2 > n 3 ...
  • condition (p) Either one of the following conditions (o) or (p) is satisfied,
  • the thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are 0 ⁇ t ⁇ 555 / (12 ⁇ n 2 )
  • Condition (q4) The following condition (q4) is satisfied.
  • the tenth laminate according to the present invention is: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 > n 2 and n 2 ⁇ n 3 ... condition (o) n 1 ⁇ n 2 and n 2 > n 3 ...
  • condition (p) Either one of the following conditions (o) or (p) is satisfied,
  • the thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are 0 ⁇ t ⁇ 507 / (12 ⁇ n 2 )
  • Condition (q5) The following condition (q5) is satisfied.
  • the eleventh laminate according to the present invention is: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
  • the average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are: n 1 > n 2 and n 2 ⁇ n 3 ... condition (o) n 1 ⁇ n 2 and n 2 > n 3 ... condition (p) Either one of the following conditions (o) or (p) is satisfied,
  • the intermediate layer has a thickness of 3 nm to 30 nm.
  • the light-transmitting substrate has in-plane birefringence, Refractive index n 1x in the slow axis direction that is the direction with the highest refractive index in the plane of the light transmissive substrate, and refractive index in the fast axis direction perpendicular to the slow axis direction of the light transmissive substrate.
  • n 1y the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer, n 1y > n 2 and n 2 ⁇ n 3 ... condition (r) n 1x ⁇ n 2 and n 2 > n 3 ... condition (e) Any one of the following conditions (r) and (s) may be satisfied.
  • the light-transmitting substrate has in-plane birefringence,
  • the retardation of the light transmissive substrate may be 3000 nm or more.
  • the light transmissive base material may be a polyester base material.
  • the functional layer may be a hard coat layer.
  • Any one of the first to eleventh laminates according to the present invention may further include a second functional layer provided on the side of the functional layer opposite to the intermediate layer side.
  • the second functional layer may be a low refractive index layer having a lower refractive index than the functional layer.
  • the polarizing plate according to the present invention is A polarizing element; 1 to 11 according to the present invention.
  • the liquid crystal display panel according to the present invention comprises: A liquid crystal display panel comprising any one of the first to eleventh laminates according to the present invention or the polarizing plate according to the present invention.
  • the image display device is an image display device comprising any one of the first to eleventh laminates according to the present invention, the polarizing plate according to the present invention, or the liquid crystal display panel according to the present invention.
  • the touch panel sensor according to the present invention includes: Any one of the first to eleventh laminates according to the present invention; A sensor electrode joined to the laminate.
  • the touch panel device according to the present invention includes the touch panel sensor according to the present invention.
  • the manufacturing method of the 1st laminated body by this invention is the following.
  • ⁇ ave is an intermediate wavelength between the shortest wavelength ⁇ min of visible light and the longest wavelength ⁇ max of visible light.
  • n 1 ⁇ n 2 ⁇ n 3 Condition (a) n 1 > n 2 > n 3 ...
  • Condition (c1) 110 / n 2 ⁇ t ⁇ 170 / n 2 ...
  • Condition (c2) 555 / (6 ⁇ n 2 ) ⁇ t ⁇ 555 / (3 ⁇ n 2 ) ...
  • Condition (c3) 507 / (6 ⁇ n 2 ) ⁇ t ⁇ 507 / (3 ⁇ n 2 ) ...
  • Condition (c4) 555 / (6 ⁇ n 2 ) ⁇ t ⁇ 507 / (3 ⁇ n 2 ) ...
  • Condition (c5)
  • the design method of the first laminate according to the present invention includes: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A method of designing a laminate including a functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate; The surface of the light-transmitting substrate so that any one of the following conditions (a) and (b) is satisfied and at least one of the following conditions (c1) to (c5) is satisfied: A step of setting an average refractive index n 1 in the surface, an average refractive index n 2 in the surface of the intermediate layer, an average refractive index n 3 in the surface of the functional layer, and a thickness t [nm] of the intermediate layer. Prepare.
  • n 1 ⁇ n 2 ⁇ n 3 Condition (a) n 1 > n 2 > n 3 ... Condition (b) ⁇ ave / (6 ⁇ n 2 ) ⁇ t ⁇ ave / (3 ⁇ n 2 ) ... Condition (c1) 110 / n 2 ⁇ t ⁇ 170 / n 2 ... Condition (c2) 555 / (6 ⁇ n 2 ) ⁇ t ⁇ 555 / (3 ⁇ n 2 ) ... Condition (c3) 507 / (6 ⁇ n 2 ) ⁇ t ⁇ 507 / (3 ⁇ n 2 ) ... Condition (c4) 555 / (6 ⁇ n 2 ) ⁇ t ⁇ 507 / (3 ⁇ n 2 ) ... Condition (c5)
  • the method for producing the second laminate according to the present invention comprises: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A method of manufacturing a laminate including a functional layer laminated on the intermediate layer from a side opposite to the light-transmitting substrate, adjacent to the intermediate layer, The surface of the light transmissive substrate so that any one of the following conditions (o) and (p) is satisfied and at least one of the following conditions (q1) to (q6) is satisfied: A step of setting an average refractive index n 1 in the surface, an average refractive index n 2 in the surface of the intermediate layer, an average refractive index n 3 in the surface of the functional layer, and a thickness t [nm] of the intermediate layer. Prepare.
  • ⁇ min is the shortest wavelength of visible light
  • ⁇ max is the longest wavelength of visible light.
  • n 1 > n 2 and n 2 ⁇ n 3 ...
  • Condition (q1) 0 ⁇ t ⁇ (( ⁇ min + ⁇ max ) / 2) / (12 ⁇ n 2 ) ...
  • Condition (q2) 0 ⁇ t ⁇ min / (12 ⁇ n 2 ) Condition (q3) 0 ⁇ t ⁇ 555 / (12 ⁇ n 2 ) Condition (q4) 0 ⁇ t ⁇ 507 / (12 ⁇ n 2 ) Condition (q5) 3 ⁇ t ⁇ 30 Condition (q6)
  • the design method of the second laminate according to the present invention is as follows: A light transmissive substrate; An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate; A method of designing a laminate including a functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate; The surface of the light transmissive substrate so that any one of the following conditions (o) and (p) is satisfied and at least one of the following conditions (q1) to (q6) is satisfied: A step of setting an average refractive index n 1 in the surface, an average refractive index n 2 in the surface of the intermediate layer, an average refractive index n 3 in the surface of the functional layer, and a thickness t [nm] of the intermediate layer. Prepare.
  • ⁇ min is the shortest wavelength of visible light
  • ⁇ max is the longest wavelength of visible light.
  • n 1 > n 2 and n 2 ⁇ n 3 ...
  • Condition (q1) 0 ⁇ t ⁇ (( ⁇ min + ⁇ max ) / 2) / (12 ⁇ n 2 ) ...
  • Condition (q2) 0 ⁇ t ⁇ min / (12 ⁇ n 2 ) Condition (q3) 0 ⁇ t ⁇ 555 / (12 ⁇ n 2 ) Condition (q4) 0 ⁇ t ⁇ 507 / (12 ⁇ n 2 ) Condition (q5) 3 ⁇ t ⁇ 30 Condition (q6)
  • FIG. 1 is a diagram for explaining an embodiment of the present invention and is a diagram showing a layer structure of a laminate.
  • FIG. 2 is a diagram corresponding to FIG. 1 and showing a layer configuration of another example of the laminated body.
  • FIG. 3 is a diagram for explaining a waveform of light reflected in the laminated body.
  • FIG. 4 is a perspective view schematically illustrating the laminate, for illustrating the refractive index distribution in the laminate shown in FIG. 1.
  • FIG. 5 is a diagram for explaining in-plane birefringence in the laminate shown in FIG. 1, and is a plan view schematically showing a light-transmitting substrate and an intermediate layer of the laminate.
  • FIG. 6 is a view showing a schematic configuration of a polarizing plate including the laminate shown in FIG. FIG.
  • FIG. 7 is a diagram showing a schematic configuration of a liquid crystal display panel including the laminate shown in FIG.
  • FIG. 8 is a diagram showing a schematic configuration of a display device including the laminate shown in FIG.
  • FIG. 9 is a diagram showing a schematic configuration of the touch panel sensor and the touch panel including the laminate shown in FIG.
  • FIG. 10 is a diagram corresponding to FIG. 3 and is a diagram for explaining a waveform of light reflected in the laminated body according to the second embodiment.
  • FIG. 1 to 9 are diagrams for explaining a first embodiment of the present invention.
  • FIG. 1 and FIG. 2 are views for explaining a laminated body.
  • FIG. 3 is a diagram for explaining a waveform of light reflected in the laminated body.
  • 4 and 5 are diagrams for explaining the refractive index distribution of the laminate.
  • 6 to 9 are schematic views showing configurations of a polarizing plate, a liquid crystal display panel, a touch panel sensor, a touch panel, and a laminate to which the laminate of FIG. 1 is applied.
  • the laminated body 10 includes a laminated base material 11 and a functional layer 15 formed on one surface of the laminated base material 11.
  • the laminated substrate 11 includes a light transmissive substrate 12 and an intermediate layer 13 laminated with the light transmissive substrate 12.
  • the intermediate layer 13 is located between the light transmissive substrate 12 and the functional layer 15. That is, the functional layer 15 is laminated on the laminated base material 11 from the intermediate layer 13 side.
  • the intermediate layer 13 is formed on one surface of the light transmissive substrate 12 in the laminated substrate 11.
  • the laminate 10 is configured to include three layers of the light transmissive substrate 12, the intermediate layer 13, and the functional layer 15 in this order.
  • the intermediate layer 13 includes the light transmissive substrate 12 and the function. It arrange
  • FIG. 2 shows a laminate as a modification of the laminate shown in FIG.
  • the laminated body 10 shown in FIG. 2 is different from the laminated body of FIG. 1 in that the second functional layer 17 is formed on the surface of the functional layer 15 that does not face the laminated base material 11.
  • the functional layer 15 may be composed of a hard coat layer formed on one surface of the laminated base material 11.
  • the functional layer 15 is composed of a hard coat layer formed on one surface of the laminated substrate 11, and the second functional layer 17 is a hard coat layer. You may make it comprise from the low-refractive-index layer formed on the surface on the opposite side to the laminated base material 11 of.
  • the laminate 10 according to the first embodiment preferably satisfies at least the following condition (c1) together with one of the following condition (a) and condition (b).
  • condition (c1) n 1 ⁇ n 2 ⁇ n 3
  • Condition (a) n 1 > n 2 > n 3
  • Condition (b) ⁇ ave / (6 ⁇ n 2 ) ⁇ t ⁇ ave / (3 ⁇ n 2 ) ...
  • n 1 is the average refractive index in the plane of the light-transmitting substrate 12, and “n 2 ” is intermediate The in-plane average refractive index of the layer 13, and “n 3 ” is the in-plane average refractive index of the functional layer 15.
  • the in-plane average refractive index is an average value of refractive indexes in two directions perpendicular to each other extending along the sheet surface of the sheet-like layer as a target. If the target layer is optically isotropic, the refractive index in each direction along the sheet surface of the layer is the same. On the other hand, if the target layer is optically anisotropic, the refractive index in each direction along the sheet surface of the layer is different.
  • the “sheet surface (film surface, plate surface)” is a sheet-like layer that is a target when the target sheet-like (film-like, plate-like) layer or member is viewed as a whole and globally. Or the surface which corresponds with the planar direction of a member is pointed out.
  • the sheet surface of the light transmissive substrate 12, the sheet surface of the intermediate layer 13, the sheet surface of the functional layer 15, the sheet surface of the second functional layer 17, and the laminated substrate The sheet surface 11 and the sheet surface of the laminate 10 are parallel to each other.
  • the refractive index in each direction within the plane of each layer is an Abbe refractometer (NAR-4T manufactured by Atago Co., Ltd.), “Ellipsometer M150” manufactured by JASCO Corporation, “KOBRA-WR” manufactured by Oji Scientific Instruments, etc. Can be measured.
  • the refractive index in each direction within the plane of each layer was obtained by measuring the average reflectance (R) at a wavelength of 380 to 780 nm using a spectrophotometer (UV-3100PC manufactured by Shimadzu Corporation). From the average reflectance (R), it can be specified using the following equation:
  • the average reflectance (R) of the intermediate layer 13 and the functional layer 15 is such that the raw material composition is applied on 50 ⁇ m thick PET without easy adhesion treatment to form a cured film having a thickness of 1 to 3 ⁇ m, and the PET raw material composition Apply a black vinyl tape (for example, Yamato vinyl tape NO200-38-21 38mm width) larger than the measurement spot area to prevent backside reflection on the surface (back side) on which no object was applied.
  • the average reflectance of the film can be measured.
  • the refractive index of the light-transmitting substrate 12 can be measured after a black vinyl tape is similarly applied to the surface opposite to the measurement surface.
  • R (%) (1-n) 2 / (1 +
  • the in-plane average refractive indexes n 1 , n 2 , n 3 can be measured as follows. . First, the cured film of each layer is scraped off with a cutter or the like to produce a powder sample.
  • the Becke method according to JISK7142 (2008) B method (for powder or granular transparent material) (using a Cargill reagent having a known refractive index, placing the powdered sample on a slide glass or the like, A reagent is dropped into the sample, and the sample is immersed in the reagent.Observation is observed with a microscope, and the bright line generated in the sample outline due to the difference in the refractive index between the sample and the reagent; Can be used as the refractive index of the sample.
  • the thickness (at the time of hardening) t of the intermediate layer 13 is, for example, an average value of measured values at arbitrary 10 points obtained by observing the cross section of the intermediate layer 13 with an electron microscope (SEM, TEM, STEM). It can be specified as [nm].
  • SEM, TEM, STEM electron microscope
  • the thickness of the intermediate layer 13 is very thin, it can be measured by recording what was observed at a high magnification as a photograph and further enlarging it.
  • a layer interface line that is very thin enough to be clearly recognized as a boundary line becomes a thick line. In that case, what is necessary is just to measure as a boundary line the center part which divided the thick line width into 2 equal to the width direction.
  • interference fringes are generated in the laminate 10 as described below. It can be effectively suppressed.
  • the interference fringes to be invisible are reflected light on the surface of the functional layer 15 and reflected light from the laminated base material 11 (from the functional layer 15 side toward the laminated body 10 in FIG. It is an interference fringe which arises by interference with the light Lr ) of FIG.
  • the reflected light on the surface of the second functional layer 17 or the interface between the second functional layer 17 and the functional layer 15.
  • Interference fringes generated by interference between the reflected light and the reflected light from the laminated base material 11 are also interference fringes to be invisible.
  • the reflected light from the laminated substrate 11 is reflected light (light L r1 in FIG. 3) at the interface between the functional layer 15 and the intermediate layer 13, and the intermediate layer 13 and light. This is reflected light (light L r2 in FIG. 3) at the interface with the transmissive substrate 12.
  • a function of suppressing this, and in other words, a function of making the interference fringe inconspicuous will be described.
  • the intermediate layer 13 is provided between the light transmissive substrate 12 and the functional layer 15 and one of the conditions (a) and (b) is satisfied, the light transmissive substrate 12 and the functional layer are satisfied.
  • the refractive index gradually changes between 15 and 15. That is, the intermediate layer 13 is disposed between the light transmissive substrate 12 and the functional layer 15, and the in-plane average refractive index is divided into two stages between the light transmissive substrate 12 and the functional layer 15. I try to change it.
  • the light incident on the laminated body 10 from the functional layer 15 side (light L i in FIG. 3) is turned back by the reflection while traveling toward the light transmissive substrate 12. Can be prevented. Accordingly, interference fringes that can be generated by light reflected on the surface of the laminated body 10 on the functional layer 15 side and reflected light from the laminated base material 11 among light incident on the laminated body 10 from the functional layer 15 side. Can be effectively inconspicuous.
  • the inside of the laminate 10 functions as described in detail below.
  • the intensity of the light (light L r in FIG. 3) reflected from the layered substrate 11 toward the layered substrate 11 and returning to the functional layer 15 side from the layer 15 side can be effectively reduced. That is, by reducing the intensity of light that causes interference fringes, the interference fringes can be made significantly inconspicuous.
  • Examples of a method of making the interference fringes generated in the laminate invisible include a method of blurring an interface in the laminate by providing a mixed region and a method of forming irregularities on the surface of the laminate.
  • a method of blurring an interface in the laminate by providing a mixed region it is necessary to increase the thickness of the functional layer in order to ensure the strength of the stacked body 10. For this reason, when this method is adopted, the material cost increases and the manufacturing cost of the laminate 10 increases.
  • the method of forming irregularities on the surface of the laminate 10 is adopted, the image quality of an image observed through the laminate 10 is deteriorated. Specifically, a cloudiness is generated on the screen, the contrast is lowered, and the image is not ashamed or bright.
  • the intermediate layer 13 is made of, for example, a primer layer such as an easy-adhesion layer, there is no need to provide an additional layer on the laminate 10 only for the purpose of preventing interference fringes, resulting in cost disadvantages. do not do.
  • a polyester base material for which it is difficult to provide the mixed region as the light transmissive base material 12.
  • the light transmissive substrate 12 made of a polyester substrate is very excellent in terms of cost and stability.
  • the interference fringes can be made invisible without adversely affecting the image quality of the image observed through the laminate 10. That is, in the laminated body 10 that satisfies the condition (c1) together with one of the conditions (a) and (b), it is possible to prevent the occurrence of white turbidity and interference fringes while imparting terry shine to the display image. It becomes possible.
  • the light intensity of the reflected light from the laminated base material 11 expressed by the laminated body 10 that satisfies the condition (c1) together with one of the conditions (a) and (b) is reduced.
  • the function will be described.
  • the light incident on the laminate 10 from the functional layer 15 side is the interface between the functional layer 15 and the intermediate layer 13 and the intermediate layer 13 and the light transmitting group.
  • the phase is shifted by ⁇ [rad] at both ends of the interface with the material 12 and the phase is shifted, or the phase is maintained at both ends by reflection at the free end.
  • the condition (b) out of the conditions (a) and (b) is satisfied, and light incident on the laminate 10 from the functional layer 15 side
  • the phase is shifted by ⁇ [rad] due to reflection at the fixed end.
  • FIG. 3 a cross section along the normal direction nd of the stacked body 10 is illustrated.
  • incident light L i incident on the laminate 10 from the functional layer 15 side incident light L i incident on the laminate 10 from the functional layer 15 side, reflected light L r1 reflected at the interface between the functional layer 15 and the intermediate layer 13, the intermediate layer 13, and the light-transmitting base material 12
  • the vibration state at a certain moment is shown with respect to the reflected light L r2 reflected at the interface and the combined reflected light L r which is a combination of the reflected light L r1 and the reflected L r2 .
  • FIG. 3 incident light L i incident on the laminate 10 from the functional layer 15 side, reflected light L r1 reflected at the interface between the functional layer 15 and the intermediate layer 13, the intermediate layer 13, and the light-transmitting base material 12
  • the vibration state at a certain moment is shown with respect to the reflected light L r2 reflected at the interface and the combined reflected light L r which is a combination
  • each light L i , L r1. , L r2 and L r are represented by the following equations (1) to (4), respectively.
  • “ ⁇ ” is the wavelength of light [nm].
  • Y i sin ((x ⁇ n 3 / ⁇ ) ⁇ 2 ⁇ ) (1)
  • Y r1 sin ((x ⁇ n 3 / ⁇ ) ⁇ 2 ⁇ ) (2)
  • Y r2 sin (((x ⁇ n 3 / ⁇ ) + (2t ⁇ n 2 / ⁇ )) ⁇ 2 ⁇ ) Equation (3)
  • Y r 2 ⁇ cos (2t ⁇ n 2 ⁇ ⁇ / ⁇ ) ⁇ sin (((x ⁇ n 3 / ⁇ ) + (t ⁇ n 2 / ⁇ )) ⁇ 2 ⁇ ) ...
  • the intensity of the synthesized reflected light L r from the laminated substrate 11 which will cause the interference fringes is represented by indicating the amplitude of the light wave "2 ⁇ cos (2t ⁇ n 2 ⁇ ⁇ / ⁇ ) "
  • the interference fringes become less noticeable as the intensity of the combined reflected light L r is weaker. Therefore, when the following equation (5) in which the amplitude of the combined reflected light L r is less than half of the maximum value (“2”) (less than “1”) is satisfied, It is an inferior situation from the viewpoint of making the interference fringes caused by the light of wavelength ⁇ inconspicuous when the following equation (6) in which the amplitude exceeds half of the maximum value is satisfied. It becomes.
  • interference fringes are effectively disabled for light in at least a part of the visible light wavelength region including the visible light center wavelength ⁇ ave. Can be visualized.
  • the condition (a) is satisfied, the light incident on the laminate 10 from the functional layer 15 side is the interface between the intermediate layer 13 and the light transmissive substrate 12 and the interface between the functional layer 15 and the intermediate layer 13. In both cases, the phase is maintained by reflecting the free end. Therefore, when light whose phase is delayed by ⁇ [rad] with respect to the incident light Li in FIG.
  • the intermediate layer 13 is interposed between the light-transmitting substrate 12 and the functional layer 15 as in the case where the condition (b) is satisfied.
  • the in-plane average refractive index is changed in two steps between the light-transmitting substrate 12 and the functional layer 15. Therefore, by effectively reducing the reflectance, the light incident on the laminated body 10 from the functional layer 15 side is turned toward the light-transmitting substrate 12, and the traveling direction is turned back by reflection. It can be effectively prevented. Also by this, interference that may occur due to light reflected on the surface of the laminated body 10 on the functional layer 15 side and reflected light from the laminated base material 11 among the light incident on the laminated body 10 from the functional layer 15 side. Stripes can be effectively inconspicuous.
  • the interference fringe invisible function is provided for light in the visible light wavelength region including light having the visible light center wavelength ⁇ ave. Therefore, the interference fringes can be made inconspicuous very effectively.
  • the longest wavelength ⁇ max in the visible light wavelength region can be 830 nm, and the shortest wavelength ⁇ min in the visible light wavelength region can be 360 nm.
  • condition (c3) or condition (c4) and further condition (c5) are satisfied together with one of the above-described conditions (a) and (b). It is also effective to do.
  • n 1 ⁇ n 2 ⁇ n 3 Condition (a) n 1 > n 2 > n 3 ...
  • Condition (c4) 555 / (6 ⁇ n 2 ) ⁇ t ⁇ 507 / (3 ⁇ n 2 ) ...
  • the International Commission on Illumination (CIE) reports that human sensitivity to light in each wavelength range within the visible light range is different.
  • the wavelength of light that is most easily felt by humans when adapting to a bright place is 555 nm
  • the wavelength of light that is most easily felt by humans when adapting to a dark place is 507 nm. It is.
  • the interference fringe invisible function is effectively enabled for light in a wavelength range that is most easily sensed by humans in a bright place. It can be demonstrated.
  • the interference fringe invisible function is effective for light in a wavelength range that is most easily sensed by humans in a dark place. It can be demonstrated. That is, when the condition (c4) is satisfied together with one of the conditions (a) and (b), it is possible to effectively prevent the interference fringes from being visually recognized in a dark place.
  • the condition (c5) when the condition (c5) is satisfied together with one of the condition (a) and the condition (b), not only the light in the wavelength range that is most easily sensed by humans in the bright place but also the human being in the dark place.
  • the interference fringe invisible function can be effectively exhibited even for light in the wavelength range that is most easily sensed. That is, when the condition (c5) is satisfied together with one of the conditions (a) and (b), it is possible to effectively prevent the interference fringes from being visually recognized in both a bright place and a dark place.
  • satisfying the conditions (c1 ′) to (c5 ′) instead of the conditions (c1) to (c5) means that the thickness t of the intermediate layer 13 is increased. Therefore, from the viewpoint of material cost, it is preferable that the conditions (c1) to (c5) are satisfied rather than the conditions (c1 ′) to (c5 ′).
  • the light-transmitting substrate 12 may have in-plane birefringence recently.
  • the refractive index in each direction in the plane along the sheet surface of the light transmissive substrate 12 changes.
  • the above expression by the mean refractive index n 1 in the plane of the light-transmitting substrate 12 (a) and 12 It is preferable that not only one of (b) is satisfied but also one of the following conditions (d) and (e) is satisfied. n 1x ⁇ n 2 ⁇ n 3 ...
  • condition (d) n 1y > n 2 > n 3 ... condition (e)
  • n 1x in the condition (e) is a value of the refractive index in the slow axis direction, which is the direction in which the refractive index is the largest in the plane of the light transmissive substrate 12.
  • n 1y in condition (d) is the value of the refractive index in the fast axis direction, which is the direction in which the refractive index is the smallest in the plane of the light transmissive substrate 12.
  • condition (e ′) When one of the condition (d ′) and the condition (e ′) is satisfied, the light of the polarization component that vibrates in the slow axis direction in the plane of the light transmissive substrate 12 and the surface of the light transmissive substrate 12 Both of the polarized light components oscillating in the fast axis direction are reflected at the interface between the functional layer 15 and the intermediate layer 13 under the same conditions with respect to the phase shift, and the same with respect to the phase shift. Reflected at the interface between the intermediate layer 13 and the light-transmitting substrate 12 under conditions.
  • the light traveling in the laminated body 10 from the functional layer 15 side to the laminated base material 11 side is the polarization state of the light. Regardless of the relationship, free-end reflection is performed at both the interface between the functional layer 15 and the intermediate layer 13 and the interface between the intermediate layer 13 and the light-transmitting substrate 12, or fixed-end reflection is performed at both interfaces. . For this reason, when one of the condition (d ′) and the condition (e ′) is satisfied, the amount of reflected light from the laminated base material 11 described above (depending on the laminated base material 11) is not dependent on the polarization state. Both the function of reducing the (reflectance) and the function of reducing the intensity of the combined interference light L r are exhibited extremely effectively.
  • the laminated base material is started from the functional layer 15 side.
  • a part of the light traveling in the laminated body 10 toward the 11 side is the interface between the functional layer 15 and the intermediate layer 13 and between the intermediate layer 13 and the light transmissive substrate 12. Free end reflection is performed at one of the interfaces, and fixed end reflection is performed at the other interface.
  • the function of reducing the intensity of the synthetic interference light L r described above and the function of reducing the amount of reflected light from the laminated base material 11 (reflectance at the laminated base material 11) are also effective.
  • the refractive index at d y n 1x, n 2x, n 3x , n 1y , n 2y , and n 3y are preferably set as follows.
  • the direction having the largest refractive index in the plane of the light transmissive base material 12 refractive index n 1x in the slow axis direction d x is the refractive index of the intermediate layer in the slow axis direction d x parallel to the direction of the light transmitting substrate 12 n 2x, and the light-transmitting substrate 12 slow
  • the refractive index n 3x of the functional layer 15 in the direction parallel to the phase axis direction d x is n 1x ⁇ n 2x ⁇ n 3x ...
  • condition (f) n 1x > n 2x > n 3x
  • condition (g) The condition either satisfies one of (f) and (g), the refractive index n 1y in fast axis direction d y perpendicular to the slow axis direction d x in the plane of the light transmitting substrate 12, light transmitting refractive index n 2y of fast axis d y and the intermediate layer 13 in the parallel direction of the base 11, and, refraction fast axis d y and functional layer 15 in the direction parallel to light-transmitting substrate 12
  • the rate n 3y is n 1y ⁇ n 2y ⁇ n 3y ... condition (h) n 1y > n 2y > n 3y ... condition (i) It is preferable to satisfy any one of the following conditions (h) and (i).
  • the intermediate layer 13 has birefringence with the functional layer 15.
  • is disposed between the light-transmitting substrate 12 is varied divided refractive index in two stages in both the slow axis direction d x and fast axis direction d y of the light transmitting substrate 12.
  • the refractive index n 2y of the layer 13 is n 2x > n 2y ... condition (j) It is preferable to satisfy the following condition (j). In this case, the intermediate layer 13 also has in-plane birefringence. When the condition (j) is satisfied, the refractive index in the slow axis direction d x of the light transmissive substrate 12 between the functional layer 15 and the light transmissive substrate 12 having birefringence.
  • the divided in two times can be changed little by little, and can be changed little by little fast axis refractive index in the direction d y of the light transmitting substrate 12 be divided into two times. Thereby, it can prevent more effectively that the light which injected into the laminated body 10 from the side of the functional layer 15 turns advancing direction by reflection, while advancing to the light transmissive base material 12.
  • FIG. As a result, interference fringes can be made inconspicuous more effectively.
  • condition (j) the refractive index in the slow axis direction d x of the light transmitting substrate 12 n 1x, the refractive index in the fast axis direction d y of the light transmitting substrate 12 n 1y, refractive index n 2x of the intermediate layer 13 in the slow axis direction d x parallel to the direction of the light transmitting substrate 12, and the intermediate layer in the fast axis direction d y parallel to the direction of the light transmitting substrate 12 13
  • the refractive index n 3y of the layer 15 is not significantly different, typically, when the functional layer 15 is optically isotropic and does not have birefringence, the condition (j) and the condition (k) by is satisfied, without intermediate layer 13 exhibits a strong birefringence than necessary, in both the slow axis direction d x and fast axis direction d y of the light transmitting substrate 12, a refractive index slightly It can be changed in two steps. Thereby, it is possible to more effectively prevent the light incident on the laminated body 10 from the functional layer 15 side from turning back in the traveling direction due to reflection while traveling to the light transmissive substrate 12. As a result, the interference fringes can be made more inconspicuous.
  • the slow axis direction d x of the light transmissive base material 12 when the laminated base material 11 is observed from the normal direction (normal direction to the sheet surface of the laminated base material 11), the slow axis direction d x of the light transmissive base material 12.
  • the ⁇ is less than 45 ° (condition (la)) It is preferable that the angle is less than 30 ° (condition (lb)).
  • condition (la) the size of the angle made with the slow axis direction d a of the intermediate layer 13 is a direction most refractive index is larger in the plane of the intermediate layer 13
  • the ⁇ is less than 45 ° (condition (la)) It is preferable that the angle is less than 30 ° (condition (lb)).
  • condition (la) condition (condition (la)
  • condition (lb) As the angle ⁇ is smaller, the distribution of the refractive index in the plane of the intermediate layer 13 shows the same tendency as the distribution of the refractive index in the plane of the light transmissive substrate 12.
  • the angle ⁇ the condition (la) is satisfied is less than 45 °, not only the two directions along the slow axis d x and fast axis direction d y of the light transmissive substrate 12 which has been described above, The refractive index in various directions along the sheet surface of the light transmissive substrate 12 is gradually changed in two steps without largely changing between the functional layer 15 and the light transmissive substrate 12. On top of that, the situation will be superior.
  • condition (lb) is met when the angle ⁇ is less than 30 ° is only two directions along the slow axis d x and fast axis direction d y of the light transmissive substrate 12 which has been described above
  • the refractive index in almost all directions along the sheet surface of the light transmissive substrate 12 does not change greatly between the functional layer 15 and the light transmissive substrate 12, and can be divided into two steps. Will change.
  • the angle ⁇ is 0 °, that is, when the slow axis direction d a of the slow axis direction d x and the intermediate layer 13 of the light transmitting substrate 12 are parallel (condition (m)) is
  • condition (m) is
  • the refractive index in each direction gradually changes twice between the functional layer 15 and the light-transmitting substrate 12 while exhibiting the same tendency as the change in the refractive index in different directions.
  • the ellipse drawn on the light transmissive substrate 12 in FIG. 5 is a cross-section on the light transmissive substrate 12 for an example of a refractive index ellipsoid showing the refractive index distribution of the light transmissive substrate 12. Is shown.
  • an ellipse drawn on the intermediate layer 13 in FIG. 5 shows a cross section on the intermediate layer 13 for an example of a refractive index ellipsoid showing the refractive index distribution of the intermediate layer 13.
  • the refractive index in the slow axis direction d x of the light transmitting substrate 12 n 1x, the refractive index in the fast axis direction d y of the light transmitting substrate 13 n 1y, slow axis direction d a of the intermediate layer 13 refractive index n 2a in, and the refractive index n 2b in the fast axis direction d b of the intermediate layer (N 1x ⁇ n 1y )> (n 2a ⁇ n 2b )...
  • Condition (n) It is preferable to satisfy the following condition (n). When the condition (n) is satisfied, as in the case where the condition (k) is satisfied, the intermediate layer 13 can be prevented from having an unnecessarily strong birefringence. It can be effectively inconspicuous.
  • the light-transmitting substrate 12 is not particularly limited as long as it has light-transmitting properties.
  • a cellulose acylate substrate, a cycloolefin polymer substrate, a polycarbonate substrate, an acrylate polymer substrate, a polyester substrate, or A glass substrate is mentioned.
  • the cellulose acylate substrate examples include a cellulose triacetate substrate and a cellulose diacetate substrate.
  • a cycloolefin polymer base material the base material which consists of polymers, such as a norbornene-type monomer and a monocyclic cycloolefin monomer, is mentioned, for example.
  • cycloolefin polymer substrate examples include a substrate made of a polymer such as a norbornene monomer and a monocyclic cycloolefin monomer.
  • polycarbonate substrate examples include aromatic polycarbonate substrates based on bisphenols (bisphenol A and the like), aliphatic polycarbonate substrates such as diethylene glycol bisallyl carbonate, and the like.
  • the acrylate polymer substrate examples include a poly (meth) methyl acrylate substrate, a poly (meth) ethyl acrylate substrate, a (meth) methyl acrylate- (meth) butyl acrylate copolymer substrate, and the like. Can be mentioned.
  • polyester substrate examples include at least one of polyethylene terephthalate, polypropylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene naphthalate, and polyethylene-2,6-naphthalate.
  • the base material etc. which are made into a structural component are mentioned.
  • glass substrate examples include glass substrates such as soda lime silica glass, borosilicate glass, and alkali-free glass.
  • the in-plane average refractive index n 1 of the light transmissive substrate 12 can be 1.40 or more and 1.80 or less.
  • the light-transmitting substrate 12 preferably has a transmittance in the visible light region of 80% or more, more preferably 84% or more.
  • the transmittance can be measured by JISK7361-1 (Plastic—Testing method of total light transmittance of transparent material).
  • the light transmissive substrate 12 may be subjected to surface treatment such as saponification treatment, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, and flame treatment without departing from the spirit of the present invention.
  • the light transmissive substrate 12 may have an in-plane birefringence.
  • the light-transmitting substrate 12 having an in-plane birefringence is generally excellent in terms of mechanical properties, transparency, stability to heat, and the like, and is extremely advantageous in terms of cost.
  • the light transmissive substrate 12 having in-plane birefringence will be described.
  • the optically anisotropic light-transmitting substrate 12 is advantageous in terms of physical properties and cost.
  • such an optically anisotropic light-transmitting substrate 12 is converted into light by one linearly polarized light component.
  • a display device such as a liquid crystal display panel that forms an image
  • a non-uniform pattern that is observed as a color pattern called “nizimura” may occur.
  • the light transmissive substrate 12 has a retardation of 3000 nm or more.
  • the optically anisotropic light-transmitting substrate 12 when using the optically anisotropic light-transmitting substrate 12, in particular, the light-transmitting substrate 12 having a high retardation of 3000 nm or more, compared with the case of using an optically isotropic substrate, polarized light The image could be observed brighter regardless of the direction of the absorption axis of the glasses. In such a phenomenon, the polarization state of the image light projected from the display device is disturbed by the optically anisotropic light-transmitting substrate 12, particularly, the light-transmitting substrate 12 having a high retardation of 3000 nm or more. It is estimated that In recent years, the usage environment of display devices has rapidly diversified, and is widely applied to, for example, portable devices and devices used outdoors.
  • retardation is an index representing the degree of in-plane birefringence. From the viewpoint of preventing azimuth and thinning, it is more preferably 6000 nm or more and 25000 nm or less, and further preferably 8000 nm or more and 20000 nm or less.
  • Retardation Re (unit: nm) is the refractive index (n 1x ) in the direction with the highest refractive index (slow axis direction) in the plane of the light transmissive substrate, and the direction (fast phase) perpendicular to the slow axis direction.
  • the retardation can be set to a measured value using a KOBRA-WR manufactured by Oji Scientific Instruments with a measurement angle of 0 ° and a measurement wavelength of 548.2 nm.
  • the retardation can also be obtained by the following method. First, using two polarizing plates, the orientation axis direction of the light-transmitting substrate is obtained, and the refractive indexes (n 1x , n 1y ) of two axes perpendicular to the orientation axis direction are obtained as Abbe refractometers. (NAR-4T manufactured by Atago Co., Ltd.) Here, an axis showing a larger refractive index is defined as a slow axis.
  • the thickness of the light-transmitting substrate is measured using, for example, an electric micrometer (manufactured by Anritsu). Then, using the obtained refractive index, a refractive index difference (n 1x ⁇ n 1y ) (hereinafter, n 1x ⁇ n 1y is referred to as ⁇ n) is calculated, and this refractive index difference ⁇ n and the light-transmitting substrate The retardation can be obtained by the product of the thickness d (nm).
  • the refractive index difference ⁇ n is preferably 0.05 to 0.20.
  • the refractive index difference ⁇ n is less than 0.05, the film thickness necessary for obtaining the retardation value described above increases.
  • the refractive index difference ⁇ n exceeds 0.20, the light transmissive substrate 12 is easily torn and torn, and the practicality as an industrial material is significantly reduced.
  • the lower limit of the refractive index difference ⁇ n is 0.07
  • the upper limit of the refractive index difference ⁇ n is 0.15.
  • the said refractive index difference (DELTA) n exceeds 0.15, depending on the kind of the light transmissive base material 12, durability of the light transmissive base material 12 in a heat-and-moisture resistance test may be inferior. From the viewpoint of securing excellent durability in the heat and humidity resistance test, a more preferable upper limit of the refractive index difference ⁇ n is 0.12.
  • the refractive index n 1x in the slow axis direction d x of the light transmissive substrate 12 is preferably 1.60 to 1.80, more preferably 1.65, and more preferably 1. 75.
  • As the refractive index n 1y in the fast axis direction d y of the light transmitting substrate 12 is preferably 1.50 to 1.70 and more preferable lower limit is 1.55, more preferred upper limit 1. 65.
  • Refractive index n 1y in the refractive index n 1x and fast axis direction d y in the slow axis direction d x of the light transmitting substrate 12 is in the above range and be satisfied relationship refractive index difference ⁇ n described above Thus, it is possible to obtain a more preferable effect of suppressing azimuth.
  • the thickness of the light-transmitting substrate 12 having in-plane birefringence is not particularly limited, but can usually be 5 ⁇ m or more and 1000 ⁇ m or less, and the lower limit of the thickness of the light-transmitting substrate 12 is handling. From the viewpoint of properties and the like, 15 ⁇ m or more is preferable, and 25 ⁇ m or more is more preferable.
  • the upper limit of the thickness of the light transmissive substrate 12 is preferably 80 ⁇ m or less from the viewpoint of thinning.
  • the thickness of the polyester substrate is preferably 15 ⁇ m or more and 500 ⁇ m or less.
  • the thickness is less than 15 ⁇ m, the retardation of the polyester base material cannot be increased to 3000 nm or more, the anisotropy of mechanical properties becomes remarkable, and tearing, tearing, etc. are likely to occur, and the practicality as an industrial material is significantly reduced. There is.
  • it exceeds 500 ⁇ m the flexibility specific to the polymer film is lowered, and the practicality as an industrial material may be lowered.
  • the minimum with more preferable thickness of the said polyester base material is 50 micrometers, a more preferable upper limit is 400 micrometers, and a still more preferable upper limit is 300 micrometers.
  • the light-transmitting substrate 12 having in-plane birefringence is not particularly limited as long as it has a retardation of 3000 nm or more, and is an acrylic substrate, a polyester substrate, a polycarbonate substrate, a cycloolefin polymer group. Materials and the like. Among these, a polyester base material is preferable from the viewpoint of cost and mechanical strength.
  • the polyester used for the polyester substrate may be a copolymer of the above-mentioned polyester, and the polyester is the main component (for example, a component of 80 mol% or more), and a small proportion (for example, 20 mol% or less) It may be blended with a kind of resin.
  • Polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferred as the polyester because of its good balance between mechanical properties and optical properties.
  • polyethylene terephthalate is preferable because it is highly versatile and easily available.
  • an optical film capable of producing a liquid crystal display device with high display quality can be obtained even if the film is extremely versatile, such as polyethylene terephthalate.
  • polyethylene terephthalate is excellent in transparency, heat or mechanical properties, can be controlled by stretching, has a large intrinsic birefringence, and can obtain a large retardation relatively easily even when the film thickness is small.
  • a polyester such as polyethylene terephthalate is melted, and the unstretched polyester extruded and formed into a sheet shape is transversal using a tenter or the like at a temperature equal to or higher than the glass transition temperature.
  • a method of performing a heat treatment after stretching is mentioned.
  • the transverse stretching temperature is preferably 80 to 130 ° C, more preferably 90 to 120 ° C.
  • the transverse draw ratio is preferably 2.5 to 6.0 times, more preferably 3.0 to 5.5 times.
  • the longitudinal stretching preferably has a stretching ratio of 2 times or less.
  • longitudinal stretching may be performed after lateral stretching of the unstretched polyester is performed under the above conditions.
  • the treatment temperature during the heat treatment is preferably 100 to 250 ° C., more preferably 180 to 245 ° C.
  • Examples of a method for controlling the retardation of the polyester substrate produced by the above-described method to 3000 nm or more include a method of appropriately setting the draw ratio, the drawing temperature, and the film thickness of the produced polyester substrate. Specifically, for example, the higher the stretching ratio, the lower the stretching temperature, and the thicker the film, the easier it is to obtain high retardation. The lower the stretching ratio, the higher the stretching temperature, and the film thickness. The thinner, the easier it is to obtain low retardation.
  • the intermediate layer 13 satisfies the above-described conditions regarding the thickness t [nm] and the in-plane average refractive index n 2 , thereby reflecting the reflected light L r1 and the intermediate layer at the interface between the functional layer 15 and the intermediate layer 13. 13 reduces the light intensity (amplitude) of the combined reflected light L r formed by superimposing the reflected light L r2 at the interface between the light transmitting base 12 and the interference fringes caused by the combined reflected light L r. It suppresses that.
  • the intermediate layer 13 is not particularly limited as long as the above-described conditions regarding the thickness t [nm] and the in-plane average refractive index n 2 are satisfied.
  • the intermediate layer 13 may have a function other than suppressing the occurrence of interference fringe by reducing the light intensity of the synthesized reflected light L r (amplitude).
  • the primer layer may form the intermediate layer 13 by adjusting the thickness and the in-plane average refractive index of the primer layer functioning as an easy adhesion layer as a more specific example. . According to such an example, it is possible to eliminate the necessity of providing a new intermediate layer 13 in the stacked body 10 from the viewpoint of preventing the occurrence of interference fringes. In other words, the layer provided for ensuring easy adhesion and the like can be used for invisible interference fringes, which is very preferable from the viewpoint of the material cost of the laminate 10.
  • the intermediate layer 13 can be made of the same material as the known primer layer.
  • the resin contained in the intermediate layer 13 is, for example, polyurethane resin, polyester resin, polyvinyl chloride resin, polyvinyl acetate resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, polyvinyl alcohol resin.
  • the photopolymerizable compound has at least one photopolymerizable functional group.
  • the “photopolymerizable functional group” is a functional group capable of undergoing a polymerization reaction by light irradiation.
  • the photopolymerizable functional group include ethylenic double bonds such as a (meth) acryloyl group, a vinyl group, and an allyl group.
  • the “(meth) acryloyl group” means to include both “acryloyl group” and “methacryloyl group”.
  • the light irradiated when polymerizing the photopolymerizable compound includes visible light and ionizing radiation such as ultraviolet rays, X-rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the photopolymerizable compound examples include a photopolymerizable monomer, a photopolymerizable oligomer, and a photopolymerizable polymer, which can be appropriately adjusted and used.
  • a photopolymerizable compound a combination of a photopolymerizable monomer and a photopolymerizable oligomer or photopolymerizable polymer is preferable.
  • a polymerization initiator capable of initiating polymerization of the photopolymerizable compound may be added to the intermediate layer 13 in advance. preferable. Thereby, when hardening the functional layer 15, the intermediate
  • a fine particle size for example, a particle of 100 nm or less may be contained in the resin.
  • low refractive index particles such as silica and magnesium fluoride may be contained in the intermediate layer in order to reduce the refractive index of the intermediate layer 13, and titanium oxide in order to increase the refractive index of the intermediate layer 13.
  • metal oxide particles such as zirconium oxide may be contained in the intermediate layer.
  • the thickness of the intermediate layer 13 can be set so as to satisfy any of the conditions (c1) to (c5) described above from the viewpoint of making the interference fringes invisible.
  • the in-plane average refractive index n 2 of the intermediate layer 13 may be set so as to satisfy any one of the conditions (c1) to (c5) along with one of the conditions (a) and (b) described above. For example, it can be 1.40 or more and 1.80 or less.
  • the intermediate layer 13 may have an in-plane birefringence.
  • the light transmissive substrate 12 having in-plane birefringence will be described.
  • the intermediate layer 13 having in-plane birefringence can be formed by a layer formed by aligning molecules (for example, liquid crystal molecules) or compounds having refractive index anisotropy.
  • Such an intermediate layer 13 is obtained by applying a composition containing a refractive index anisotropic molecule or a refractive index anisotropic compound on the light-transmitting substrate 12 and curing the composition.
  • the liquid crystal molecules applied on the light-transmitting substrate 12 are Due to the nature, the light transmissive substrate 12 can be oriented with regularity corresponding to the molecular orientation.
  • the obtained intermediate layer 13 has in-plane birefringence corresponding to the birefringence of the light-transmitting substrate 12, and the conditions (f) to (n) described above are determined by the intermediate layer 13. Can be satisfied.
  • the rubbing orientation is not dependent on the orientation of the light-transmitting substrate 12 alone.
  • the refractive index anisotropic molecule or refractive index anisotropic compound contained in the intermediate layer 13 may be positively aligned by photo-orientation.
  • the intermediate layer 13 having in-plane birefringence can be obtained by stretching the resin layer.
  • the layer made of the resin exhibits in-plane birefringence. Therefore, the intermediate layer 13 is produced on the light-transmitting substrate 12 before stretching, and the light-transmitting substrate 12 and the intermediate layer 13 are simultaneously stretched to impart birefringence to the light-transmitting substrate 12.
  • the birefringence corresponding to the birefringence of the light transmissive substrate 12 can also be imparted to the intermediate layer 13.
  • the composition that forms the intermediate layer 13 is applied onto the light-transmitting substrate 12 before stretching, and the composition is cured on the light-transmitting substrate 12.
  • the intermediate layer 13 is obtained.
  • a resin material exhibiting birefringence by stretching can be widely used, and it is preferable that the affinity for the light-transmitting substrate 12 is high.
  • the resin material forming the intermediate layer 13 include thermoplastic or thermosetting polyester resins, urethane resins, acrylic resins, and modified products thereof.
  • the light-transmitting substrate 12 to which the composition that forms the intermediate layer 13 is applied can use the various resin films described above, but the resin stretched at a low magnification in the machine direction during extrusion molding. A film is preferred. Since the flatness of the light transmissive substrate 12 is ensured by stretching in the machine direction (extrusion direction at the time of extrusion molding of the light transmissive substrate 12), the intermediate layer formed on the light transmissive substrate 12 13 can be made uniform.
  • the laminated substrate 11 including the light transmissive substrate 12 and the intermediate layer 13 formed on the light transmissive substrate 12 is heated in the horizontal direction perpendicular to the machine direction in a state of being heated to the glass transition temperature or higher.
  • Stretch As described above, when the stretching ratio in the transverse direction is very large compared to the stretching ratio in the longitudinal direction, the stretching axis of the light-transmitting substrate 12 is generally oriented in the lateral direction.
  • the slow axis of the light-transmitting substrate 12 made of a polyester terephthalate film extends substantially in the lateral direction.
  • the intermediate layer 13 is stretched only in the lateral direction.
  • the intermediate layer 13 is formed of a resin material that is less likely to be birefringent than the light-transmitting substrate 12, the anisotropy corresponding to the birefringence of the light-transmitting substrate 12 A certain degree of birefringence is imparted.
  • birefringence can be imparted not only to the light transmissive substrate 12 but also to the intermediate layer 13 by the stretching process for imparting birefringence to the light transmissive substrate 12. .
  • the light-transmitting substrate 12 and the intermediate layer 13 are stretched in a heated state, the advantage that the adhesiveness between the light-transmitting substrate 12 and the intermediate layer 13 is improved can be enjoyed. .
  • each refractive index n 2 of the intermediate layer 13, n 2x, n 2y, n 2a, the n 2b (see FIGS. 4 and 5), as already described, the refractive index n 1 of the light-transmitting substrate 12 , N 1x , n 1y and the refractive indexes n 3 , n 3x , n 3y of the functional layer 15 can be set as appropriate.
  • the refractive index n 2 of the intermediate layer 13 is set to 1.50 to 1.70.
  • the refractive index n 2x of the intermediate layer 13 can be 1.55 to 1.75
  • the refractive index n 2y of the intermediate layer 13 can be 1.45 to 1.65
  • the refractive index n 2a of the intermediate layer 13 can be 1.55 to 1.75
  • the refractive index n 2b of the intermediate layer 13 can be 1.45 to 1.65.
  • the functional layer 15 and the second functional layer 17 are layers that are intended to exhibit some function in the laminate 10, and specifically include, for example, hard coat properties, antireflection properties, antistatic properties, or Examples include layers that exhibit functions such as antifouling properties.
  • the number of functional layers included in the stacked body 10 can be any number of one or more depending on the use of the stacked body.
  • the functional layer 15 is composed of a hard coat layer formed on one surface of the intermediate layer 13 of the laminated base material 11.
  • the 2nd functional layer 17 is a hard-coat layer.
  • the intermediate layer 13 is composed of a low refractive index layer formed on a surface opposite to the intermediate layer 13.
  • the hard coat layer as the functional layer 15 and the low refractive index layer as the second functional layer 17 will be described.
  • the hard coat layer is a layer for improving the scratch resistance of the optical film. Specifically, it is determined by a pencil hardness test (4.9 N load) defined in JIS K5600-5-4 (1999). A layer having a hardness equal to or higher than “H” is preferable.
  • the hard coat layer is obtained by applying a composition for a hard coat layer containing a photopolymerizable compound onto the intermediate layer 13 and drying it, and then applying light such as ultraviolet rays to the coating-like composition for a hard coat layer. To polymerize (crosslink) the photopolymerizable compound.
  • the photopolymerizable compound has at least one photopolymerizable functional group.
  • photopolymerizable functional group is the same as described in the column of the intermediate layer 13.
  • the hard coat layer obtained by this method is optically isotropic and does not have in-plane birefringence.
  • the in-plane average refractive index n 3 of the obtained hard coat layer can be 1.45 to 1.65.
  • the thickness of the hard coat layer (when cured) is in the range of 0.1 to 100 ⁇ m, preferably 0.5 to 20 ⁇ m.
  • the film thickness of the hard coat layer is a value measured by observing the cross section with an electron microscope (SEM, TEM, STEM).
  • the photopolymerizable compound examples include a photopolymerizable monomer, a photopolymerizable oligomer, and a photopolymerizable polymer, which can be appropriately adjusted and used.
  • a photopolymerizable compound a combination of a photopolymerizable monomer and a photopolymerizable oligomer or photopolymerizable polymer is preferable.
  • the photopolymerizable monomer has a weight average molecular weight of less than 1000.
  • the photopolymerizable monomer is preferably a polyfunctional monomer having two or more photopolymerizable functional groups (that is, bifunctional).
  • the “weight average molecular weight” is a value obtained by dissolving in a solvent such as THF and converting to polystyrene by a conventionally known gel permeation chromatography (GPC) method.
  • bifunctional or higher monomer examples include trimethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and pentaerythritol tri (meth).
  • Pentaerythritol triacrylate PETA
  • dipentaerythritol hexaacrylate DPHA
  • pentaerythritol tetraacrylate PETTA
  • di-functional monomers having three or more functionalities.
  • Pentaerythritol pentaacrylate (DPPA) and the like are preferable.
  • the photopolymerizable oligomer has a weight average molecular weight of 1,000 or more and less than 10,000.
  • the photopolymerizable oligomer is preferably a bifunctional or higher polyfunctional oligomer.
  • Polyfunctional oligomers include polyester (meth) acrylate, urethane (meth) acrylate, polyester-urethane (meth) acrylate, polyether (meth) acrylate, polyol (meth) acrylate, melamine (meth) acrylate, isocyanurate (meth) Examples include acrylate and epoxy (meth) acrylate.
  • the photopolymerizable polymer has a weight average molecular weight of 10,000 or more, and the weight average molecular weight is preferably 10,000 or more and 80,000 or less, and more preferably 10,000 or more and 40,000 or less. When the weight average molecular weight exceeds 80,000, the viscosity is high, so that the coating suitability is lowered, and the appearance of the obtained optical laminate may be deteriorated.
  • the polyfunctional polymer include urethane (meth) acrylate, isocyanurate (meth) acrylate, polyester-urethane (meth) acrylate, and epoxy (meth) acrylate.
  • a thermoplastic resin, a thermosetting resin, a solvent, and a polymerization initiator may be added to the hard coat layer composition.
  • the hard coat layer composition includes a conventionally known dispersant, surfactant, antistatic agent depending on the purpose such as increasing the hardness of the hard coat layer, suppressing curing shrinkage, or controlling the refractive index.
  • Agent, silane coupling agent, thickener, anti-coloring agent, coloring agent (pigment, dye), antifoaming agent, leveling agent, flame retardant, UV absorber, adhesion-imparting agent, polymerization inhibitor, antioxidant, surface A modifier, a lubricant, etc. may be added.
  • particles having a fine particle size for example, 100 nm or less are functional layer-forming compositions ( It is effective to contain it in the composition for forming a hard coat layer.
  • low refractive index particles such as silica and magnesium fluoride may be contained in the functional layer in order to reduce the refractive index of the functional ability 15, and in order to increase the refractive index of the functional layer 15, titanium oxide.
  • metal oxide particles such as zirconium oxide may be contained in the functional layer.
  • the thermoplastic resin added to the hard coat layer composition is preferably non-crystalline and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds).
  • an organic solvent particularly a common solvent capable of dissolving a plurality of polymers and curable compounds.
  • styrene resins from the viewpoint of transparency and weather resistance, styrene resins, (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives (cellulose esters, etc.) and the like are preferable.
  • thermosetting resin added to the hard coat layer composition is not particularly limited.
  • phenol resin urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin.
  • the low refractive index layer is a layer that plays a role of reducing the reflectance when external light (for example, a fluorescent lamp, natural light, etc.) is reflected on the surface of the laminate 10.
  • the low refractive index layer has a refractive index smaller than that of the hard coat layer and larger than that of air.
  • the refractive index of the low refractive index layer is preferably in the range of 1.1 to 2.0, more preferably in the range of 1.2 to 1.8, and 1.3 More preferably, it is within the range of -1.6.
  • the refractive index of the low refractive index layer is such that the refractive index is gradually directed toward the refractive index of air from the inner side of the laminated body 10 toward the surface side of the laminated body 10 in the low refractive index layer. May have changed.
  • the material used for the low refractive index layer is not particularly limited as long as the low refractive index layer having the above-described refractive index can be formed.
  • the resin material described in the hard coat layer composition described above is used. It is preferable to contain.
  • the low refractive index layer can adjust the refractive index by containing a silicone-containing copolymer, a fluorine-containing copolymer, and fine particles.
  • the silicone-containing copolymer include a silicone-containing vinylidene copolymer.
  • Specific examples of the fluorine-containing copolymer include a copolymer obtained by copolymerizing a monomer composition containing vinylidene fluoride and hexafluoropropylene.
  • fine particles examples include silica fine particles, acrylic fine particles, styrene fine particles, acrylic styrene copolymer fine particles, and fine particles having voids.
  • fine particles having voids refers to a structure in which fine particles are filled with gas and / or a porous structure containing gas, and the occupancy ratio of the gas in the fine particles compared to the original refractive index of the fine particles. Means a fine particle whose refractive index decreases in inverse proportion to
  • the functional layer 15 is configured as a hard coat layer and the second functional layer 17 is configured as a low refractive index layer.
  • the present invention is not limited to these examples.
  • a layer having other functions such as an antistatic layer, an antiglare layer, and an antifouling layer is included. You may make it.
  • the antistatic layer can be formed, for example, by adding an antistatic agent to the hard coat layer composition.
  • an antistatic agent conventionally known ones can be used.
  • a cationic antistatic agent such as a quaternary ammonium salt, fine particles such as tin-doped indium oxide (ITO), a conductive polymer, or the like can be used.
  • ITO tin-doped indium oxide
  • a conductive polymer or the like can be used.
  • the content thereof is preferably 1 to 30% by mass with respect to the total mass of the total solid content.
  • the antiglare layer can be formed, for example, by adding an antiglare agent to the hard coat layer composition.
  • the antiglare agent is not particularly limited, and various known inorganic or organic fine particles can be used.
  • the average particle size of the fine particles is not particularly limited, but generally may be about 0.01 to 20 ⁇ m.
  • the shape of the fine particles may be any of a spherical shape, an elliptical shape, etc., and preferably a spherical shape.
  • the fine particles exhibit anti-glare properties, and are preferably transparent fine particles.
  • specific examples of such fine particles include silica beads if they are inorganic, and plastic beads if they are organic.
  • plastic beads include, for example, styrene beads (refractive index 1.60), melamine beads (refractive index 1.57), acrylic beads (refractive index 1.49), acrylic-styrene beads (refractive index 1. 54), polycarbonate beads, polyethylene beads and the like.
  • the antifouling layer is a layer that plays a role of preventing dirt (fingerprints, water-based or oily inks, pencils, etc.) from adhering to the outermost surface of the liquid crystal display device or being able to wipe off easily even if adhering. is there. Further, by forming the antifouling layer, it is possible to improve the antifouling property and scratch resistance of the liquid crystal display device.
  • the antifouling layer can be formed of a composition containing an antifouling agent and a resin, for example.
  • the above-mentioned antifouling agent is mainly intended to prevent contamination of the outermost surface of the liquid crystal display device, and can also impart scratch resistance to the liquid crystal display device.
  • the antifouling agent include fluorine compounds, silicon compounds, and mixed compounds thereof. More specific examples include silane coupling agents having a fluoroalkyl group such as 2-perfluorooctylethyltriaminosilane, and those having an amino group can be preferably used. It does not specifically limit as said resin, The resin material illustrated with the above-mentioned composition for hard-coat layers is mentioned.
  • the antifouling layer can be formed on the hard coat layer, for example. In particular, it is preferable to form the antifouling layer so as to be the outermost surface.
  • the antifouling layer can be replaced by imparting antifouling performance to the hard coat layer itself, for example.
  • the intermediate layer 13 is provided between the functional layer 15 and the light transmissive substrate 12. Then, the average refractive index n 1 in the plane of the light transmissive substrate 12, the average refractive index n 2 in the plane of the intermediate layer 13, the average refractive index n 3 in the plane of the functional layer 15, and the intermediate layer 13
  • the thickness t [nm] is adjusted so as to satisfy one of the conditions (a) and (b) described above and at least one of the conditions (c1) to (c5).
  • the light L r1 incident on the laminate 10 from the functional layer 15 side and reflected at the interface between the functional layer 15 and the intermediate layer 13 and the reflection at the interface between the intermediate layer 13 and the light transmissive substrate 12 are reflected.
  • the light intensity of the composed by superimposing light L r2 synthesized reflected light L r (amplitude) can be reduced effectively. Therefore, the interference fringes that can be visually recognized due to the interference between the light reflected on the surface of the laminate 10 and the light reflected inside the laminate 10 can be effectively made inconspicuous.
  • the average refractive index n 1 in the plane of the light transmissive substrate 12, the average refractive index n 2 in the plane of the intermediate layer 13, and the average refractive index n 3 in the plane of the functional layer 15 are the above-described conditions (a ) And the condition (b), and there is no optical interface between which the refractive index changes greatly between the light-transmitting substrate 12 and the functional layer 15. That is, there is no interface between the light-transmitting substrate 12 and the functional layer 15 that causes a high reflectivity due to a large difference in refractive index. Therefore, although it entered into the laminated body 10 from the functional layer 15 side, light can be effectively prevented from being reflected before reaching the light-transmitting substrate 12. Thereby, the interference fringes that can be visually recognized due to the interference between the light reflected on the surface of the laminated body 10 and the light reflected on the inside of the laminated body 10 can be effectively made inconspicuous.
  • Nizimura can be made inconspicuous. Therefore, according to the laminated body 10 demonstrated here, both a nizimura and an interference fringe can be made effectively inconspicuous. Furthermore, it will be suitable for viewing through sunglasses.
  • the intermediate layer 13 is realized by the primer layer, the above-described useful effects can be ensured without causing a substantial increase in material costs, an increase in manufacturing steps, and the like.
  • FIG. 7 is a schematic configuration diagram of a polarizing plate 20 incorporating the laminate 10 shown in FIG.
  • the polarizing plate 20 includes a laminate 10, a polarizing element 21, and a protective film 22.
  • the polarizing element 21 is formed on the surface of the laminated substrate 11 opposite to the surface on which the functional layer 15 is formed.
  • the protective film 22 is provided on the surface opposite to the surface on which the laminated body 10 of the polarizing elements 21 is provided.
  • the protective film 22 may be a retardation film.
  • Examples of the polarizing element 21 include a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film dyed and stretched with iodine or the like.
  • FIG. 7 is a schematic configuration diagram of the liquid crystal display panel 30 in which the laminate 10 shown in FIG. 1 and the polarizing plate 20 shown in FIG. 6 are incorporated.
  • the liquid crystal display panel shown in FIG. 7 has a protective film 31, such as a triacetyl cellulose film (TAC film), a polarizing element 32, a retardation film 33, an adhesive, from the light source side (backlight unit side) to the viewer side.
  • TAC film triacetyl cellulose film
  • the agent layer 34, the liquid crystal cell 35, the adhesive layer 36, the retardation film 37, the polarizing element 21, and the laminate 10 are sequentially laminated.
  • a liquid crystal layer, an alignment film, an electrode layer, a color filter, and the like are disposed between two glass substrates.
  • Examples of the retardation films 33 and 37 include a triacetyl cellulose film and a cycloolefin polymer film.
  • the retardation film 37 may be the same as the protective film 22.
  • Examples of the adhesive constituting the adhesive layers 34 and 36 include a pressure sensitive adhesive (PSA).
  • PSA pressure sensitive adhesive
  • the laminate 10, the polarizing plate 20, and the liquid crystal display panel 30 can be used by being incorporated in an image display device.
  • the image display device include a liquid crystal display (LCD), a cathode ray tube display device (CRT), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), a touch panel, a tablet PC, and electronic paper.
  • LCD liquid crystal display
  • CTR cathode ray tube display device
  • PDP plasma display
  • ELD electroluminescence display
  • FED field emission display
  • touch panel a tablet PC
  • FIG. 8 shows a liquid crystal display as an example of an image display device 40 incorporating the laminate 10 shown in FIG. 1, the polarizing plate 20 shown in FIG. 6, and the liquid crystal display panel 30 shown in FIG. It is a schematic block diagram.
  • the image display device 40 shown in FIG. 8 is a liquid crystal display.
  • the image display device 30 includes a backlight unit 41 and a liquid crystal display panel 30 including the laminate 10 that is disposed closer to the viewer than the backlight unit 41.
  • a known backlight unit can be used as the backlight unit 41.
  • FIG. 9 is a schematic configuration diagram of the touch panel sensor 50 and the touch panel device 55 in which the laminate 10 illustrated in FIG. 1 is incorporated.
  • the touch panel sensor 50 includes the laminate 10 and the sensor electrode 51.
  • the sensor electrode 51 is formed on the surface opposite to the surface on which the functional layer 15 of the laminated base material 11 is formed.
  • the touch panel device 55 includes a touch panel sensor 50 and a control device 53 that is electrically connected to the sensor electrode 51 of the touch panel sensor 50.
  • the control device 53 is configured to detect the contact position based on a current value that changes in accordance with the contact position on the functional layer 15.
  • the touch panel device 55 shown in FIG. 9 constitutes a surface-type capacitive touch panel as an example. Therefore, the sensor electrode 51 is formed in a planar shape, and the four corners of the sensor electrode 51 are electrically connected to the control device 53.
  • the touch panel device 55 and the touch panel sensor 50 are not limited to the example illustrated in FIG. 9, and may be configured as a projection-type capacitance method or a resistance film method.
  • the laminate 10 described above can be used in various applications where the generation of interference fringes should be avoided.
  • the laminate 10 can be used as a window material for a display unit of a device such as a watch or a meter.
  • FIG. 10 is a diagram for explaining a second embodiment of the present invention.
  • FIG. 10 is a diagram according to the second embodiment corresponding to FIG. 3, and is a diagram for explaining a waveform of light reflected in the laminated body according to the second embodiment.
  • the second embodiment differs from the first embodiment described above in terms of the refractive index relationship of each layer of the laminate and the thickness of the intermediate layer, and otherwise the first embodiment described above. Can be configured identically.
  • FIG. 1, FIG. 2, and FIG. 6 to FIG. 9 relating to the layer structure are also common to the second embodiment.
  • the same reference numerals as those used for the corresponding configuration of the first embodiment are used, and the description is duplicated with the first embodiment. Is omitted.
  • the laminated body 10 which concerns on 2nd Embodiment is the function formed on the one side of the laminated base material 11 and the laminated base material 11 similarly to 1st Embodiment.
  • the laminated substrate 11 includes a light transmissive substrate 12 and an intermediate layer 13 laminated with the light transmissive substrate 12.
  • the intermediate layer 13 is located between the light transmissive substrate 12 and the functional layer 15. That is, the functional layer 15 is laminated on the laminated base material 11 from the intermediate layer 13 side.
  • the intermediate layer 13 is formed on one surface of the light transmissive substrate 12 in the laminated substrate 11. That is, the laminate 10 is configured to include three layers of the light transmissive substrate 12, the intermediate layer 13, and the functional layer 15 in this order.
  • the intermediate layer 13 includes the light transmissive substrate 12 and the function. It arrange
  • FIG. 2 shows a laminate as a modification of the laminate shown in FIG.
  • the laminated body 10 shown in FIG. 2 is different from the laminated body of FIG. 1 in that the second functional layer 17 is formed on the surface of the functional layer 15 that does not face the laminated base material 11.
  • the functional layer 15 may be composed of a hard coat layer formed on one surface of the laminated base material 11.
  • the functional layer 15 is composed of a hard coat layer formed on one surface of the laminated substrate 11, and the second functional layer 17 is a hard coat layer. You may make it comprise from the low-refractive-index layer formed on the surface on the opposite side to the laminated base material 11 of.
  • the laminated body 10 demonstrated here satisfy
  • condition (q1)
  • n 1 is the average refractive index in the plane of the light-transmitting substrate 12, and “n 2 ” is intermediate The in-plane average refractive index of the layer 13, and “n 3 ” is the in-plane average refractive index of the functional layer 15.
  • ⁇ max is the longest wavelength [nm] of visible light
  • ⁇ min is the shortest wavelength [nm] of visible light
  • T is the thickness [nm] of the intermediate layer 13.
  • the in-plane average refractive index is an average value of refractive indexes in two directions perpendicular to each other extending along the sheet surface of the sheet-like layer as a target. If the target layer is optically isotropic, the refractive index in each direction along the sheet surface of the layer is the same. On the other hand, if the target layer is optically anisotropic, the refractive index in each direction along the sheet surface of the layer is different.
  • the “sheet surface (film surface, plate surface)” is a sheet-like layer that is a target when the target sheet-like (film-like, plate-like) layer or member is viewed as a whole and globally. Or the surface which corresponds with the planar direction of a member is pointed out.
  • the sheet surface and the sheet surface of the laminate 10 are parallel to each other.
  • the refractive index in each direction in the plane of each layer is: It can be measured by the method described in the first embodiment.
  • the occurrence of interference fringes in the laminate 10 can be effectively suppressed.
  • the invisible object interference pattern of the light traveling from the side of the functional layer 15 to the laminate 10 of FIG. 1 (light L i in FIG. 10), and the reflected light on the surface of the functional layer 15, stacked It is an interference fringe produced by interference with the reflected light from the base material 11 (light L r in FIG. 10).
  • Interference fringes generated by interference between the reflected light and the reflected light from the laminated base material 11 are also interference fringes to be invisible.
  • the reflected light from the laminated substrate 11 refers to the reflected light at the interface between the functional layer 15 and the intermediate layer 13 (light L r1 in FIG. 10) and the interface between the intermediate layer 13 and the light transmissive substrate 12. Is reflected light (light L r2 in FIG. 10).
  • the light of the laminated body 10 is related to light in at least a part of the wavelength region included in the visible light region. It is possible to effectively reduce the intensity of light which is reflected from the laminated base material 11 toward the laminated base material 11 side from the functional layer 15 side and returns to the functional layer 15 side. That is, by reducing the intensity of light that causes interference fringes, interference fringes resulting from light in at least a part of the wavelength region included in the visible light region can be made significantly inconspicuous.
  • Examples of a method of making the interference fringes generated in the laminate invisible include a method of blurring an interface in the laminate by providing a mixed region and a method of forming irregularities on the surface of the laminate.
  • a method of providing the mixed region it is necessary to increase the thickness of the functional layer in order to ensure the strength of the stacked body 10. For this reason, when this method is adopted, the material cost increases and the manufacturing cost of the laminate 10 increases.
  • a method of forming irregularities on the surface of the laminate 10 is adopted, the image quality of an image observed through the laminate 10 is deteriorated. Specifically, a cloudiness is generated on the screen, the contrast is lowered, and the image is not ashamed or bright.
  • the laminated body 10 that satisfies the condition (q1) together with one of the condition (o) and the condition (p) does not need to be provided with a mixed region and further need not increase the thickness of the functional layer.
  • the intermediate layer 13 is made of, for example, a primer layer such as an easy-adhesion layer, there is no need to provide an additional layer on the laminate 10 only for the purpose of preventing interference fringes, resulting in cost disadvantages. do not do.
  • the light transmissive substrate 12 made of a polyester substrate is very excellent in terms of cost and stability.
  • the interference fringes can be made invisible without adversely affecting the image quality of the image observed through the laminate 10. That is, in the laminate 10 that satisfies the condition (q1) together with either the condition (o) or the condition (p), it is possible to prevent the occurrence of cloudiness and interference fringes while imparting a terry shine to the image.
  • the interference fringe invisible function expressed by the laminate 10 that satisfies the condition (q1) together with one of the condition (o) and the condition (p), in other words, generation of interference fringes, A function of suppressing the interference fringes from being visually confirmed, and in other words, a function of making the interference fringes inconspicuous will be described.
  • the light incident on the stacked body 10 from the functional layer 15 side is the interface between the functional layer 15 and the intermediate layer 13 and the intermediate layer 13 and the light transmitting group.
  • the free end reflection occurs at one of the interfaces with the material 12, and the fixed end reflection occurs at the other interface.
  • the condition (p) out of the conditions (o) and (p) is satisfied, and the light incident on the laminated body 10 from the functional layer 15 side
  • the phase is shifted by ⁇ [rad] at the fixed end reflection at the interface with the intermediate layer 13, and the phase is maintained at the free end reflection at the interface between the intermediate layer 13 and the light-transmitting substrate 12.
  • FIG. 10 a cross section along the normal direction nd of the stacked body 10 is illustrated.
  • incident light L i incident on the laminate 10 from the functional layer 15 side reflected light L r1 reflected at the interface between the functional layer 15 and the intermediate layer 13, the intermediate layer 13, and the light transmissive substrate 12
  • the vibration state at a certain moment is shown with respect to the reflected light L r2 reflected at the interface and the combined reflected light L r which is a combination of the reflected light L r1 and the reflected L r2 .
  • FIG. 10 incident light L i incident on the laminate 10 from the functional layer 15 side, reflected light L r1 reflected at the interface between the functional layer 15 and the intermediate layer 13, the intermediate layer 13, and the light transmissive substrate 12
  • the vibration state at a certain moment is shown with respect to the reflected light L r2 reflected at the interface and the combined reflected light L r which is a combination of the reflected light L r1 and the reflected L r2 .
  • each light L i , L r1. , L r2 and L r are respectively represented by the following equations (8) to (11).
  • is the wavelength of light [nm].
  • Y i sin ((x ⁇ n 3 / ⁇ ) ⁇ 2 ⁇ ) (8)
  • Y r1 sin ((x ⁇ n 3 / ⁇ ) ⁇ 2 ⁇ ) (9)
  • Y r2 ⁇ sin (((x ⁇ n 3 / ⁇ ) + (2t ⁇ n 2 / ⁇ )) ⁇ 2 ⁇ ) (10)
  • Y r -2 ⁇ sin (2t ⁇ n 2 ⁇ ⁇ / ⁇ ) cos (((x ⁇ n 3 / ⁇ ) + (t ⁇ n 2 / ⁇ )) ⁇ 2 ⁇ ) ...
  • the intensity of the synthetic reflected light L r from the laminated base material 11 that causes interference fringes is expressed by “2 ⁇ sin (2t ⁇ n 2 ⁇ ⁇ / ⁇ )” indicating the amplitude of the waveform of the light.
  • the interference fringes become less noticeable as the intensity of the combined reflected light L r is weaker.
  • the interference fringes can be effectively invisible with respect to at least a part of the light in the visible light wavelength region.
  • the condition (o) is satisfied, the light incident on the stacked body 10 from the functional layer 15 side is reflected at the fixed end at the interface between the intermediate layer 13 and the light transmissive substrate 12 and has a phase of ⁇ [rad The phase is maintained by reflecting off the free end at the interface between the functional layer 15 and the intermediate layer 13. Therefore, when light whose phase is delayed by ⁇ [rad] with respect to the incident light Li in FIG.
  • the reflected light from the material 11 has the same waveform as the reflected light L r1 , L r2 , L r shown in FIG. From this point, it is understood that even when the condition (q1) is satisfied together with the condition (o) instead of the condition (p), the interference fringes can be effectively invisible with respect to at least a part of visible light.
  • condition (q2) is satisfied together with one of the condition (o) and the condition (p) described above.
  • the interference fringe invisible function is effectively exhibited for light in a wavelength region that occupies half or more of the visible light region. Can do.
  • interference fringes caused by light in a wavelength region of more than half of the visible light region can be effectively invisible. .
  • condition (q3) is satisfied together with one of the above-described condition (o) and condition (p).
  • condition (o) n 1 ⁇ n 2 and n 2 > n 3 ... condition (p) 0 ⁇ t ⁇ ( ⁇ min / 2) / (12 ⁇ n 2 ) ... condition (q3)
  • the interference fringe invisible function can be effectively exhibited with respect to light in the entire visible light range. That is, when the condition (q3) is satisfied together with one of the conditions (o) and (p), it is possible to effectively prevent the interference fringes of all colors from being visually recognized.
  • the longest wavelength ⁇ max in the visible light wavelength region can be 830 nm, and the shortest wavelength ⁇ min in the visible light wavelength region can be 360 nm.
  • condition (q4) or condition (q5) together with one of the condition (o) and the condition (p) described above.
  • n 1 > n 2 and n 2 ⁇ n 3 ...
  • condition (p) 0 ⁇ t [nm] ⁇ 555 / (12 ⁇ n 2 )
  • Condition (q4) 0 ⁇ t [nm] ⁇ 507 / (12 ⁇ n 2 )
  • condition (q5) 0 ⁇ t [nm] ⁇ 507 / (12 ⁇ n 2 )
  • the International Commission on Illumination (CIE) reports that human sensitivity to light in each wavelength range within the visible light range is different.
  • the wavelength of light that is most easily felt by humans when adapting to a bright place is 555 nm
  • the wavelength of light that is most easily felt by humans when adapting to a dark place is 507 nm. It is. Therefore, when the condition (q4) is satisfied together with one of the condition (o) and the condition (p), the interference fringe invisible function is effectively enabled for light in a wavelength range that is most easily detected by humans in a bright place. It can be demonstrated.
  • satisfying the condition (q1 ′) to the condition (q5 ′) instead of the condition (q1) to the condition (q5) means that the thickness t of the intermediate layer 13 is increased. Therefore, from the viewpoint of material cost, it is preferable that the conditions (q1) to (q5) are satisfied rather than the conditions (q1 ') to (q5').
  • the light-transmitting substrate 12 may have in-plane birefringence recently.
  • the refractive index in each direction in the plane along the sheet surface of the light transmissive substrate 12 changes.
  • one of the above-described conditions (o) and (p) is determined by the average refractive index n 1 in the plane of the light transmissive substrate 12.
  • condition (r) n 1x ⁇ n 2 and n 2 > n 3 ... condition (s)
  • “n 1x ” in the condition (s) is the value of the refractive index in the slow axis direction, which is the direction in which the refractive index is the largest in the plane of the light transmissive substrate 12.
  • “n 1y ” in the condition (r) is a value of the refractive index in the fast axis direction, which is the direction in which the refractive index is the smallest in the plane of the light transmissive substrate 12.
  • condition (r) and the condition (s) When one of the condition (r) and the condition (s) is satisfied, not only the average refractive index n 1 in the plane of the light transmissive substrate 12 but also all directions in the plane of the light transmissive substrate 12
  • One of the following conditions (t) and (u) is satisfied by the refractive index n arb at . n arb > n 2 and n 2 ⁇ n 3 ... condition (t) n arb ⁇ n 2 and n 2 > n 3 ...
  • the light traveling through the laminated body 10 from the functional layer 15 side to the laminated base material 11 side depends on the polarization state of the light.
  • free end reflection is performed at one of the interface between the functional layer 15 and the intermediate layer 13 and the interface between the intermediate layer 13 and the light-transmitting substrate 12, and fixed end reflection is performed at the other interface.
  • the above-described interference fringe invisible function is exhibited extremely effectively without depending on the polarization state.
  • the above-described interference fringe invisible function is effectively exerted on more light that travels through the laminate 10 toward the 11 side. That is, when any one of the above conditions (q1) to (q6) is satisfied together with one of the conditions (o) and (p), the light incident on the stacked body 10 from the functional layer 15 side Therefore, the interference fringe invisible function described above is mainly exerted, and the interference fringes can be effectively made inconspicuous.
  • the average refractive index n 3 in the plane of the functional layer 15 and the average refractive index n 1 in the plane of the light transmissive substrate 12 are close to each other.
  • the average refractive index n 3 in the plane of the functional layer 15 and the average refractive index n 1 in the plane of the light transmissive substrate 12 are most preferably equal.
  • the interference fringe invisible function was more effectively exhibited when the following condition (v) was satisfied.
  • the light transmissive substrate 12 is not particularly limited as long as it has light transmissive properties, and is configured to satisfy the above-described conditions regarding the refractive index.
  • the light transmissive substrate 12 can be the same as the light transmissive substrate described in the first embodiment.
  • the intermediate layer 13 satisfies the above-described conditions regarding the thickness t [nm] and the in-plane average refractive index n 2 , thereby reflecting the reflected light L r1 and the intermediate layer at the interface between the functional layer 15 and the intermediate layer 13. 13 reduces the light intensity (amplitude) of the combined reflected light L r formed by superimposing the reflected light L r2 at the interface between the light transmitting base 12 and the interference fringes caused by the combined reflected light L r. It suppresses that.
  • the intermediate layer 13 is not particularly limited as long as the above-described conditions regarding the thickness t [nm] and the in-plane average refractive index n 2 are satisfied.
  • the thickness of the intermediate layer 13 can be set so as to satisfy any of the above-described conditions (q1) to (q6) from the viewpoint of making the interference fringes invisible.
  • the thickness of the intermediate layer 13 is preferably 3 nm or more from the viewpoint of making the film thickness uniform.
  • the in-plane average refractive index n 2 of the intermediate layer 13 is set so as to satisfy any one of the conditions (q1) to (q6) together with one of the conditions (o) and (p) described above. For example, it can be 1.40 or more and 1.80 or less.
  • the functional layer 15 and the second functional layer 17 are layers that are intended to exhibit some function in the stacked body 10 and are configured to satisfy the above-described conditions regarding the refractive index.
  • Specific examples of the functional layer 15 and the second functional layer 17 include layers that exhibit functions such as hard coat properties, antireflection properties, antistatic properties, and antifouling properties.
  • the number of functional layers included in the stacked body 10 can be any number of one or more depending on the use of the stacked body.
  • the functional layer 15 is composed of a hard coat layer formed on one surface of the intermediate layer 13 of the laminated base material 11.
  • the 2nd functional layer 17 is a hard-coat layer.
  • the intermediate layer 13 is composed of a low refractive index layer formed on a surface opposite to the intermediate layer 13.
  • the hard coat layer as the functional layer 15 and the low refractive index layer as the second functional layer 17 can be the same as the hard coat layer and the low refractive index layer described in the first embodiment, respectively. .
  • the in-plane average refractive index n 3 and the light-transmitting base material 12 in-plane average refractive index n 1 are adjusted so as to take close values, become equal, or satisfy the condition (v).
  • fine particles having a particle diameter of, for example, 100 nm or less may be contained in the functional layer forming composition (hard coat layer forming composition).
  • low refractive index particles such as silica and magnesium fluoride may be contained in the functional layer in order to reduce the refractive index of the functional ability 15, and in order to increase the refractive index of the functional layer 15, titanium oxide.
  • metal oxide particles such as zirconium oxide may be contained in the functional layer.
  • the intermediate layer 13 is provided between the functional layer 15 and the light transmissive substrate 12. Then, the average refractive index n 1 in the plane of the light transmissive substrate 12, the average refractive index n 2 in the plane of the intermediate layer 13, the average refractive index n 3 in the plane of the functional layer 15, and the intermediate layer 13
  • the thickness t [nm] is adjusted so as to satisfy one of the above conditions (o) and (p) and at least one of the conditions (q1) to (q6).
  • the light L r1 incident on the laminate 10 from the functional layer 15 side and reflected at the interface between the functional layer 15 and the intermediate layer 13 and the reflection at the interface between the intermediate layer 13 and the light transmissive substrate 12 are reflected.
  • the light intensity of the composed by superimposing light L r2 synthesized reflected light L r (amplitude) can be reduced effectively. Therefore, the interference fringes that can be visually recognized due to the interference between the light reflected on the surface of the laminate 10 and the light reflected inside the laminate 10 can be effectively made inconspicuous.
  • both a nizimura and an interference fringe can be made effectively inconspicuous. Furthermore, it will be suitable for viewing through sunglasses.
  • the intermediate layer 13 is realized by the primer layer, the above-described useful effects can be ensured without causing a substantial increase in material costs, an increase in manufacturing steps, and the like.
  • the laminated body 10 of 2nd Embodiment is the same as the laminated body of 1st Embodiment, for example, the polarizing plate 20 (refer FIG. 6), the liquid crystal display panel 30 (refer FIG. 7), and the image display apparatus 40.
  • FIG. See FIG. 8
  • the touch panel sensor 50 see FIG. 9
  • the touch panel device 55 see FIG. 9
  • the laminate 10 can be used in various applications where the generation of interference fringes should be avoided.
  • the laminate 10 can be used as a window material for a display unit of a device such as a watch or a meter.
  • composition 1 for functional layer -Dipentaerythritol hexaacrylate (DPHA) (manufactured by Nippon Kayaku Co., Ltd.): 100 parts by mass-Polymerization initiator (product name "Irgacure 184", manufactured by BASF Japan): 5 parts by mass-Polyether-modified silicone (product name " TSF4460 ", manufactured by Momentive Performance Materials): 0.025 parts by mass-Toluene: 120 parts by mass-Methyl isobutyl ketone (MIBK): 60 parts by mass A cured coating film formed from the functional layer composition 1 having the above composition. The single refractive index of was measured and found to be 1.52.
  • composition 1 for intermediate layer Aqueous dispersion of polyester resin (solid content 60%): 28.0 parts by mass-Water: 72.0 parts by mass
  • refractive index of a cured coating film formed from the intermediate layer composition having the above composition was measured. 1.57.
  • composition 2 for intermediate layer -Aqueous dispersion of polyester resin (solid content 60%): 20 parts by mass-Aqueous dispersion of titanium oxide fine particles (solid content 20%): 10 parts by mass-Water: 70 parts by mass
  • Example 1 Molten polyethylene terephthalate was melted at 290 ° C., extruded through a film-forming die, into a sheet form, closely contacted on a water-cooled cooled quenching drum, and cooled to produce an unstretched film. This unstretched film was preheated at 120 ° C. for 1 minute using a biaxial stretching test apparatus (manufactured by Toyo Seiki Co., Ltd.), then stretched at 120 ° C. at a stretch ratio of 3.5 times, and then an intermediate layer on both surfaces. The composition 1 was applied uniformly with a roll coater.
  • the film thickness of the intermediate layer was 90 nm.
  • the functional layer composition 1 was applied onto the formed intermediate layer with a bar coater, dried at 70 ° C. for 1 minute, and the solvent was removed to form a coating film.
  • the coating film was irradiated with ultraviolet rays at an irradiation amount of 150 mJ / cm 2 using an ultraviolet irradiation device [manufactured by Fusion UV System Japan Co., Ltd .: H bulb (trade name)], and the film thickness after drying and curing was 6.0 ⁇ m.
  • a functional layer was formed to produce a laminate.
  • Example 2 A laminate of Example 2 was manufactured in the same manner as Example 1 except that the film thickness of the intermediate layer was 67 nm.
  • Example 3 A laminate of Example 3 was manufactured in the same manner as Example 1 except that the film thickness of the intermediate layer was 115 nm.
  • Example 4 is the same as Example 1 except that the composition 2 for the intermediate layer is used instead of the composition 1 for the intermediate layer and the composition 2 for the functional layer is used instead of the composition 1 for the functional layer.
  • a laminate was produced.
  • the film thickness of the intermediate layer was 80 nm.
  • Example 5 A laminate of Example 5 was manufactured in the same manner as Example 4 except that the thickness of the intermediate layer was 62 nm.
  • Example 6 A laminate of Example 6 was manufactured in the same manner as Example 4 except that the thickness of the intermediate layer was 105 nm.
  • Comparative Example 1 A laminate of Comparative Example 1 was manufactured in the same manner as Example 1 except that the film thickness of the intermediate layer was 30 nm.
  • Comparative Example 2 A laminate of Comparative Example 2 was manufactured in the same manner as Example 1 except that the film thickness of the intermediate layer was 140 nm.
  • Comparative Example 3 A laminate of Comparative Example 3 was manufactured in the same manner as Example 4 except that the thickness of the intermediate layer was 30 nm.
  • Comparative Example 4 A laminate of Comparative Example 4 was manufactured in the same manner as Example 4 except that the thickness of the intermediate layer was 140 nm.
  • the presence or absence of interference fringes was evaluated according to the following criteria.
  • the sample was evaluated by reflection observation by painting the opposite side of the coated surface with black ink and applying a three-wavelength fluorescent lamp to the coated surface.
  • Table 1 shows the evaluation results in which the evaluation criteria are set as follows. A: Although carefully observed, the occurrence of interference fringes could not be visually confirmed. B: When observed carefully, very thin interference fringes that do not cause a problem in actual use were observed. C: Interference fringes are clearly observed.
  • Polymerization initiator Name “Irgacure 184” (manufactured by BASF Japan): 5 parts by mass / polyether-modified silicone (product name “TSF4460”, manufactured by Momentive Performance Materials): 0.025 parts by mass / toluene: 100 parts by mass / methyl Isobutyl ketone (MIBK): 40 parts by mass
  • TSF4460 polyether-modified silicone
  • MIBK methyl Isobutyl ketone
  • composition for intermediate layer Each component was mix
  • Composition 3 for intermediate layer -Aqueous dispersion of polyester resin (solid content 60%): 28.0 parts by mass-Water: 72.0 parts by mass
  • composition 4 for intermediate layer -Aqueous dispersion of polyester resin (solid content 60%): 20 parts by mass-Aqueous dispersion of titanium oxide fine particles (solid content 20%): 10 parts by mass-Water: 70 parts by mass It was 1.70 when the single refractive index of the cured coating film formed by this was measured.
  • Example 7 Molten polyethylene terephthalate was melted at 290 ° C., extruded through a film-forming die, into a sheet form, closely contacted on a water-cooled cooled quenching drum, and cooled to produce an unstretched film. This unstretched film was preheated at 120 ° C. for 1 minute using a biaxial stretching test apparatus (manufactured by Toyo Seiki Co., Ltd.), then stretched at 120 ° C. at a stretch ratio of 3.5 times, and then an intermediate layer on both surfaces. The composition 3 was applied uniformly with a roll coater.
  • the film thickness of the intermediate layer was 20 nm.
  • the functional layer composition 3 was applied onto the formed intermediate layer with a bar coater, dried at 70 ° C. for 1 minute, and the solvent was removed to form a coating film.
  • the coating film was irradiated with ultraviolet rays at an irradiation amount of 150 mJ / cm 2 using an ultraviolet irradiation device [manufactured by Fusion UV System Japan Co., Ltd .: H bulb (trade name)], and the film thickness after drying and curing was 6.0 ⁇ m.
  • a functional layer was formed to produce a laminate.
  • Example 8 A laminate of Example 8 was manufactured in the same manner as Example 7 except that the film thickness of the intermediate layer was 30 nm.
  • Example 9 A laminate of Example 9 was manufactured in the same manner as Example 7 except that the thickness of the intermediate layer was 40 nm.
  • Example 10 A laminate of Example 10 was manufactured in the same manner as Example 7 except that the intermediate layer composition 4 was used instead of the intermediate layer composition 3.
  • the film thickness of the intermediate layer was 18 nm.
  • Example 11 A laminate of Example 11 was manufactured in the same manner as Example 10 except that the thickness of the intermediate layer was 30 nm.
  • Example 12 A laminate of Example 12 was manufactured in the same manner as Example 10 except that the thickness of the intermediate layer was 35 nm.
  • Comparative Example 5 A laminate of Comparative Example 5 was manufactured in the same manner as Example 7 except that the thickness of the intermediate layer was set to 70 nm.
  • Comparative Example 6 A laminate of Comparative Example 6 was manufactured in the same manner as Example 10 except that the thickness of the intermediate layer was set to 70 nm.
  • the presence or absence of interference fringes was evaluated according to the following criteria.
  • the sample was evaluated by reflection observation by painting the opposite side of the coated surface with black ink and applying a three-wavelength fluorescent lamp to the coated surface.
  • Table 2 shows the evaluation results in which the evaluation criteria are set as follows. A: Although carefully observed, the occurrence of interference fringes could not be visually confirmed. B: When observed carefully, very thin interference fringes that do not cause a problem in actual use were observed. C: Interference fringes are clearly observed.

Abstract

A laminate (10) contains a light-transmissive base material (12), a middle layer (13) laminated on the light-transmissive base material adjacent to the light-transmissive base material, and a functional layer (15) which is adjacent to the middle layer and is laminated on the side of the middle layer that is opposite to the light-transmissive base material. The average in-plane refractive index (n1) of the light-transmissive base material, the average in-plane refractive index (n2) of the middle layer, and the average in-plane refractive index (n3) of the functional layer satisfy the relationship n1<n2<n3 or n1>n2>n3. The thickness (t) of the middle layer, the wavelength (λave) in the middle of the shortest wavelength (λmin) of visible light and the longest wavelength (λmax) of visible light, and the average in-plane refractive index (n2) of the middle layer satisfy the relationship λave/(6×n2)<t<λave/(3×n2).

Description

積層体、偏光板、液晶パネル、タッチパネルセンサ、タッチパネル装置および画像表示装置Laminated body, polarizing plate, liquid crystal panel, touch panel sensor, touch panel device and image display device
 本発明は、積層体、偏光板、液晶パネル、タッチパネルセンサ、タッチパネル装置および画像表示装置に関する。 The present invention relates to a laminate, a polarizing plate, a liquid crystal panel, a touch panel sensor, a touch panel device, and an image display device.
 液晶ディスプレイ(LCD)、陰極線管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)等の画像表示装置における画像表示面には、通常、直接または他の部材(例えばタッチパネルセンサ)を介して、所望の機能を発揮することを期待された機能層を有する積層体が設けられている。典型的な機能層として、耐擦傷性の向上を目的としたハードコート層が例示される。 The image display surface of an image display device such as a liquid crystal display (LCD), a cathode ray tube display (CRT), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED) is usually directly or other The laminated body which has the functional layer expected to exhibit a desired function is provided through the member (for example, touch panel sensor). As a typical functional layer, a hard coat layer intended to improve scratch resistance is exemplified.
 積層体は、通常、機能層を支持する光透過性基材を有している。このような積層体においては、光透過性基材と機能層との屈折率差に起因して、機能層の表面で反射する光と、機能層と光透過性基材との界面で反射する光とが干渉して、干渉縞と呼ばれる虹色状のムラ模様が発生してしまうという問題がある。 The laminate usually has a light transmissive substrate that supports the functional layer. In such a laminate, light reflected from the surface of the functional layer and the interface between the functional layer and the light transmissive substrate are reflected due to the difference in refractive index between the light transmissive substrate and the functional layer. There is a problem that a rainbow-colored uneven pattern called an interference fringe occurs due to interference with light.
 干渉縞対策として、機能層を光透過性基材上に形成する際に光透過性基材の上部に機能層用組成物の成分を浸透させ、光透過性基材における機能層との界面付近に、光透過性基材の成分と機能層の成分が混在した混在領域を形成することが行われている(例えば、JP2003-131007A参照)。混在領域によれば、光透過性基材と機能層との屈折率界面をぼやかすことができる。このため、混在領域を設けることにより、光透過性基材と機能層との間の界面での反射率を低下させ、干渉縞の発生を防止することができる。 As a countermeasure against interference fringes, when the functional layer is formed on the light-transmitting substrate, the components of the composition for the functional layer are infiltrated into the upper portion of the light-transmitting substrate, and the vicinity of the interface with the functional layer in the light-transmitting substrate In addition, a mixed region in which the components of the light-transmitting substrate and the components of the functional layer are mixed is formed (see, for example, JP2003-131007A). According to the mixed region, the refractive index interface between the light transmissive substrate and the functional layer can be blurred. For this reason, by providing the mixed region, it is possible to reduce the reflectance at the interface between the light-transmitting substrate and the functional layer, and to prevent the occurrence of interference fringes.
 しかしながら、干渉縞の発生を防止するためには充分な厚さの混在領域を形成する必要がある。また、混在領域は比較的柔らかい。したがって、充分な厚さの混在領域を形成した場合、積層体に所望の硬度を付与するために混在領域上の機能層を厚くしなければならない。このため、混在領域を用いた対策では、光透過性基材上に機能層用組成物を厚く塗布する必要があり、製造コストが高くなるという別の問題が生じてしまう。また、混在領域を形成し得る光透過性基材は、トリアセチルセルロース基材に代表されるように、高い透湿性を有する。そして、混在領域を形成し得る透湿性の高い基材は、環境の湿度変化に応じて、機能低下を来す変形を生じる。 However, in order to prevent the occurrence of interference fringes, it is necessary to form a mixed region having a sufficient thickness. Also, the mixed area is relatively soft. Accordingly, when a mixed region having a sufficient thickness is formed, the functional layer on the mixed region must be thickened in order to give the laminate a desired hardness. For this reason, in the countermeasure using a mixed area | region, it is necessary to apply | coat the composition for functional layers thickly on a transparent base material, and another problem that a manufacturing cost will raise will arise. Moreover, the light-transmitting substrate that can form the mixed region has high moisture permeability, as represented by the triacetylcellulose substrate. And the base material with high moisture permeability which can form a mixing area | region produces the deformation | transformation which brings about a function fall according to the humidity change of an environment.
 さらに、昨今の傾向として、例えばJP2011-107198Aに開示されているようにリタデーションの調整によってニジムラの不具合を解消できることから、防眩フィルムの光透過性基材として、光学等方性基材だけでなく、光学異方性基材も用いられるようになってきた。ただし、典型的な光学異方性基材である延伸ポリエステル基材には、混在領域を形成することは困難である。すなわち、混在領域を用いた干渉縞対策を、積層体に組み込まれ得るすべての透過性基材に対して適用することはできなくなっている。 Further, as a recent trend, for example, as disclosed in JP2011-107198A, it is possible to eliminate the problem of nitrite by adjusting the retardation, so that not only the optically isotropic substrate but also the optically isotropic substrate can be used as an optically isotropic substrate. Anisotropic substrates have also been used. However, it is difficult to form a mixed region in a stretched polyester base material that is a typical optically anisotropic base material. In other words, the countermeasure against interference fringes using the mixed region cannot be applied to all the transmissive substrates that can be incorporated into the laminate.
 また、防眩フィルムと呼ばれる積層体では、最表面に凹凸が形成されていることから(例えば、JP2011-81118A参照)、外光を拡散させることができる。このため、防眩フィルムと呼ばれる積層体では、最表面の凹凸での拡散により干渉縞を不可視化することができ、混在領域を設ける必要がなかった。しかしながら昨今では、防眩フィルムを介して観察される画像に輝きを付与することが要望されるようになってきた。このような傾向の中、防眩フィルムの最表面に形成される凹凸がなだらかとなり、防眩フィルムにおいても干渉縞が視認されるといった不具合が生じている。 In addition, in a laminate called an antiglare film, since unevenness is formed on the outermost surface (for example, see JP2011-81118A), external light can be diffused. For this reason, in the laminated body called an anti-glare film, interference fringes can be made invisible by diffusion with unevenness on the outermost surface, and there is no need to provide a mixed region. However, in recent years, it has been demanded to impart brightness to an image observed through an antiglare film. In such a tendency, the unevenness formed on the outermost surface of the antiglare film becomes gentle, and there is a problem that interference fringes are visually recognized even in the antiglare film.
 本発明は以上の点を考慮してなされたものであり、従来とは異なる方法によって積層体への干渉縞の発生を抑制することを目的とする。 The present invention has been made in consideration of the above points, and an object thereof is to suppress the generation of interference fringes on a laminate by a method different from the conventional one.
 本発明による第1の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n<n<n  ・・・条件(a)
  n>n>n  ・・・条件(b)
なる条件(a)および条件(b)のいずれか一方を満たし、
 前記中間層の厚みt、可視光の最短波長λminと可視光の最長波長λmaxとの中間の波長λave、および、前記中間層の面内の平均屈折率nが、
  λave/(6×n)<t<λave/(3×n)  
                      ・・・条件(c1)
なる条件(c1)を満たす、積層体。
The first laminate according to the present invention comprises:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 <n 2 <n 3 Condition (a)
n 1 > n 2 > n 3 ... Condition (b)
Either one of the following conditions (a) or (b)
The thickness t of the intermediate layer, the wavelength λ ave intermediate between the shortest wavelength λ min of visible light and the longest wavelength λ max of visible light, and the in-plane average refractive index n 2 are
λ ave / (6 × n 2 ) <t <λ ave / (3 × n 2 )
... Condition (c1)
A laminate that satisfies the following condition (c1).
 本発明による第2の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n<n<n   ・・・条件(a)
  n>n>n   ・・・条件(b)
なる条件(a)および条件(b)のいずれか一方を満たし、
 前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
  110/n≦t≦170/n  ・・・条件(c2)
なる条件(c2)を満たす。
The second laminate according to the present invention comprises:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 <n 2 <n 3 Condition (a)
n 1 > n 2 > n 3 ... Condition (b)
Either one of the following conditions (a) or (b)
The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
110 / n 2 ≦ t ≦ 170 / n 2 ... Condition (c2)
The following condition (c2) is satisfied.
 本発明による第3の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n<n<n   ・・・条件(a)
  n>n>n   ・・・条件(b)
なる条件(a)および条件(b)のいずれか一方を満たし、
 前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
  555/(6×n)<t<555/(3×n
                      ・・・条件(c3)
なる条件(c3)を満たす。
The third laminate according to the present invention is:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 <n 2 <n 3 Condition (a)
n 1 > n 2 > n 3 ... Condition (b)
Either one of the following conditions (a) or (b)
The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
555 / (6 × n 2 ) <t <555 / (3 × n 2 )
... Condition (c3)
The following condition (c3) is satisfied.
 本発明による第4の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n<n<n   ・・・条件(a)
  n>n>n   ・・・条件(b)
なる条件(a)および条件(b)のいずれか一方を満たし、
 前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
  507/(6×n)<t<507/(3×n)  
                      ・・・条件(c4)
なる条件(c4)を満たす。
The fourth laminate according to the present invention is:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 <n 2 <n 3 Condition (a)
n 1 > n 2 > n 3 ... Condition (b)
Either one of the following conditions (a) or (b)
The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
507 / (6 × n 2 ) <t <507 / (3 × n 2 )
... Condition (c4)
The following condition (c4) is satisfied.
 本発明による第5の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n<n<n   ・・・条件(a)
  n>n>n   ・・・条件(b)
なる条件(a)および条件(b)のいずれか一方を満たし、
 前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
  555/(6×n)<t<507/(3×n)  
                      ・・・条件(c5)
なる条件(c5)を満たす。
The fifth laminate according to the present invention is:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 <n 2 <n 3 Condition (a)
n 1 > n 2 > n 3 ... Condition (b)
Either one of the following conditions (a) or (b)
The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
555 / (6 × n 2 ) <t <507 / (3 × n 2 )
... Condition (c5)
The following condition (c5) is satisfied.
 本発明による第1~5の積層体のいずれかにおいて、
 前記光透過性基材は、面内の複屈折性を有し、
 前記光透過性基材の面内における最も屈折率が大きい方向である遅相軸方向における屈折率n1x、前記光透過性基材の前記遅相軸方向に直交する進相軸方向における屈折率n1y、記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n1x<n<n   ・・・条件(d)
  n1y>n>n   ・・・条件(e)
なる条件(d)および(e)のいずれか一方を満たすようにしてもよい。
In any one of the first to fifth laminates according to the present invention,
The light-transmitting substrate has in-plane birefringence,
Refractive index n 1x in the slow axis direction that is the direction with the highest refractive index in the plane of the light transmissive substrate, and refractive index in the fast axis direction perpendicular to the slow axis direction of the light transmissive substrate. n 1y , the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer,
n 1x <n 2 <n 3 ... condition (d)
n 1y > n 2 > n 3 ... condition (e)
Any one of the following conditions (d) and (e) may be satisfied.
 本発明による第1~5の積層体のいずれかにおいて、
 前記光透過性基材は、面内の複屈折性を有し、
 前記光透過性基材の面内における最も屈折率が大きい方向である遅相軸方向における屈折率n1x、前記光透過性基材の前記遅相軸方向と平行な方向における前記中間層の屈折率n2x、および、前記光透過性基材の前記遅相軸方向と平行な方向における前記機能層の屈折率n3xが、
  n1x<n2x<n3x   ・・・条件(f)
  n1x>n2x>n3x   ・・・条件(g)
なる条件(f)および(g)のいずれか一方を満たし、
 前記光透過性基材の前記遅相軸方向に直交する進相軸方向における屈折率n1y、前記光透過性基材の前記進相軸方向と平行な方向における前記中間層の屈折率n2y、および、前記光透過性基材の前記進相軸方向と平行な方向における前記機能層の屈折率n3yが、
  n1y<n2y<n3y   ・・・条件(h)
  n1y>n2y>n3y   ・・・条件(i)
なる条件(h)および(i)のいずれか一方を満たすようにしてもよい。
In any one of the first to fifth laminates according to the present invention,
The light-transmitting substrate has in-plane birefringence,
Refractive index n 1x in the slow axis direction that is the direction with the highest refractive index in the plane of the light transmissive substrate, and refraction of the intermediate layer in a direction parallel to the slow axis direction of the light transmissive substrate. The refractive index n 3x of the functional layer in the direction parallel to the slow axis direction of the refractive index n 2x and the light transmissive substrate,
n 1x <n 2x <n 3x ... condition (f)
n 1x > n 2x > n 3x Condition (g)
Satisfy one of the following conditions (f) and (g):
Refractive index n 1y in the fast axis direction orthogonal to the slow axis direction of the light transmissive substrate, and refractive index n 2y of the intermediate layer in a direction parallel to the fast axis direction of the light transmissive substrate. And the refractive index n 3y of the functional layer in the direction parallel to the fast axis direction of the light transmissive substrate is
n 1y <n 2y <n 3y ... condition (h)
n 1y > n 2y > n 3y ... condition (i)
Any one of the following conditions (h) and (i) may be satisfied.
 本発明による第1~5の積層体のいずれかにおいて、
 前記中間層は、面内の複屈折性を有し、
 前記光透過性基材の前記遅相軸方向と平行な方向における前記中間層の屈折率n2x、および、前記光透過性基材の前記進相軸方向と平行な方向における前記中間層の屈折率n2yが、
  n2x>n2y
なる関係を満たすようにしてもよい。
In any one of the first to fifth laminates according to the present invention,
The intermediate layer has in-plane birefringence,
The refractive index n 2x of the intermediate layer in a direction parallel to the slow axis direction of the light transmissive substrate, and the refraction of the intermediate layer in a direction parallel to the fast axis direction of the light transmissive substrate. The rate n 2y is
n 2x > n 2y
You may make it satisfy | fill the relationship which becomes.
 本発明による第1~5の積層体のいずれかにおいて、
 前記光透過性基材の前記遅相軸方向における屈折率n1x、前記光透過性基材の前記進相軸方向における屈折率n1y、前記光透過性基材の前記遅相軸方向と平行な方向における前記中間層の屈折率n2x、および、前記光透過性基材の前記進相軸方向と平行な方向における前記中間層の屈折率n2yが、
  (n1x-n1y)>(n2x-n2y
なる関係を満たすようにしてもよい。
In any one of the first to fifth laminates according to the present invention,
The refractive index n 1x in the slow axis direction of the light transmissive substrate, the refractive index n 1y in the fast axis direction of the light transmissive substrate, and parallel to the slow axis direction of the light transmissive substrate. refractive index n 2x of the intermediate layer in a direction, and a refractive index n 2y of the intermediate layer in the fast axis direction parallel to the direction of the light transmitting substrate,
(N 1x -n 1y )> (n 2x -n 2y )
You may make it satisfy | fill the relationship which becomes.
 本発明による第1~5の積層体のいずれかにおいて、
 前記中間層は、面内の複屈折性を有し、
 前記積層体を法線方向から観察した場合に、前記光透過性基材の前記遅相軸方向と、前記中間層の面内における最も屈折率が大きい方向である前記中間層の遅相軸方向と、によってなされる角度の大きさが、30°未満であるようにしてもよい。
In any one of the first to fifth laminates according to the present invention,
The intermediate layer has in-plane birefringence,
When the laminate is observed from the normal direction, the slow axis direction of the light-transmitting substrate and the slow axis direction of the intermediate layer that is the direction in which the refractive index is greatest in the plane of the intermediate layer The magnitude of the angle formed by may be less than 30 °.
 本発明による第1~5の積層体のいずれかにおいて、
 前記中間層は、面内の複屈折性を有し、
 前記光透過性基材の前記遅相軸方向が、前記中間層の面内における最も屈折率が大きい方向である前記中間層の遅相軸方向と平行となっていてもよい。
In any one of the first to fifth laminates according to the present invention,
The intermediate layer has in-plane birefringence,
The slow axis direction of the light-transmitting substrate may be parallel to the slow axis direction of the intermediate layer, which is the direction having the highest refractive index in the plane of the intermediate layer.
 本発明による第1~5の積層体のいずれかにおいて、
 前記中間層は、面内の複屈折性を有し、
 前記光透過性基材の前記遅相軸方向における屈折率n1x、前記光透過性基材の前記進相軸方向における屈折率n1y、前記中間層の面内における最も屈折率が大きい方向である前記中間層の遅相軸方向における屈折率n2a、および、前記中間層の前記遅相軸方向に直交する前記中間層の進相軸方向における屈折率n2bが、
  (n1x-n1y)>(n2a-n2b
なる関係を満たすようにしてもよい。
In any one of the first to fifth laminates according to the present invention,
The intermediate layer has in-plane birefringence,
The refractive index n 1x in the slow axis direction of the light transmissive substrate, the refractive index n 1y in the fast axis direction of the light transmissive substrate, and the direction in which the refractive index is greatest in the plane of the intermediate layer A refractive index n 2a in the slow axis direction of the intermediate layer, and a refractive index n 2b in the fast axis direction of the intermediate layer orthogonal to the slow axis direction of the intermediate layer,
(N 1x -n 1y )> (n 2a -n 2b )
You may make it satisfy | fill the relationship which becomes.
 本発明による第6の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
なる条件(o)および条件(p)のいずれか一方を満たし、
 前記中間層の厚みt、可視光の最長波長λmax、および、前記中間層の面内の平均屈折率nが、
  0<t<λmax/(12×n)  ・・・条件(q1)
なる条件(q1)を満たす。
The sixth laminate according to the present invention is:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
Either one of the following conditions (o) or (p) is satisfied,
The thickness t of the intermediate layer, the longest wavelength λ max of visible light, and the average refractive index n 2 in the plane of the intermediate layer are
0 <t <λ max / (12 × n 2 ) Condition (q1)
The following condition (q1) is satisfied.
 本発明による第7の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
なる条件(o)および条件(p)のいずれか一方を満たし、
 前記中間層の厚みt、可視光の最短波長λmin、可視光の最長波長λmax、および、前記中間層の面内の平均屈折率nが、
  0<t<((λmin+λmax)/2)/(12×n
                      ・・・条件(q2)
なる条件(q2)を満たす。
The seventh laminate according to the present invention comprises:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
Either one of the following conditions (o) or (p) is satisfied,
The thickness t of the intermediate layer, the shortest wavelength λ min of visible light, the longest wavelength λ max of visible light, and the in-plane average refractive index n 2 are
0 <t <((λ min + λ max ) / 2) / (12 × n 2 )
... Condition (q2)
The following condition (q2) is satisfied.
 本発明による第8の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
なる条件(o)および条件(p)のいずれか一方を満たし、
 前記中間層の厚みt、可視光の最短波長λmin、および、前記中間層の面内の平均屈折率nが、
  0<t<λmin/(12×n)  ・・・条件(q3)
なる条件(q3)を満たす。
The eighth laminate according to the present invention is:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
Either one of the following conditions (o) or (p) is satisfied,
The thickness t of the intermediate layer, the shortest wavelength λ min of visible light, and the in-plane average refractive index n 2 are
0 <t <λ min / (12 × n 2 ) Condition (q3)
The following condition (q3) is satisfied.
 本発明による第9の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
なる条件(o)および条件(p)のいずれか一方を満たし、
 前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
  0<t<555/(12×n)   ・・・条件(q4)
なる条件(q4)を満たす。
The ninth laminate according to the present invention comprises:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
Either one of the following conditions (o) or (p) is satisfied,
The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
0 <t <555 / (12 × n 2 ) Condition (q4)
The following condition (q4) is satisfied.
 本発明による第10の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
なる条件(o)および条件(p)のいずれか一方を満たし、
 前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
  0<t<507/(12×n)   ・・・条件(q5)
なる条件(q5)を満たす。
The tenth laminate according to the present invention is:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
Either one of the following conditions (o) or (p) is satisfied,
The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
0 <t <507 / (12 × n 2 ) Condition (q5)
The following condition (q5) is satisfied.
 本発明による第11の積層体は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
 前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
なる条件(o)および条件(p)のいずれか一方を満たし、
 前記中間層の厚みが、3nm以上30nm以下である。
The eleventh laminate according to the present invention is:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
Either one of the following conditions (o) or (p) is satisfied,
The intermediate layer has a thickness of 3 nm to 30 nm.
 本発明による第6~11の積層体のいずれかにおいて、
 前記光透過性基材は、面内の複屈折性を有し、
 前記光透過性基材の面内における最も屈折率が大きい方向である遅相軸方向における屈折率n1x、前記光透過性基材の前記遅相軸方向に直交する進相軸方向における屈折率n1y、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
  n1y>n、且つ、n<n  ・・・条件(r)
  n1x<n、且つ、n>n  ・・・条件(e)
なる条件(r)および(s)のいずれか一方を満たすようにしてもよい。
In any of the sixth to eleventh laminates according to the present invention,
The light-transmitting substrate has in-plane birefringence,
Refractive index n 1x in the slow axis direction that is the direction with the highest refractive index in the plane of the light transmissive substrate, and refractive index in the fast axis direction perpendicular to the slow axis direction of the light transmissive substrate. n 1y , the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer,
n 1y > n 2 and n 2 <n 3 ... condition (r)
n 1x <n 2 and n 2 > n 3 ... condition (e)
Any one of the following conditions (r) and (s) may be satisfied.
 本発明による第1~11の積層体のいずれかにおいて、
 前記光透過性基材が、面内の複屈折性を有し、
 前記光透過性基材のリタデーションが3000nm以上であってもよい。
In any one of the first to eleventh laminates according to the present invention,
The light-transmitting substrate has in-plane birefringence,
The retardation of the light transmissive substrate may be 3000 nm or more.
 本発明による第1~11の積層体のいずれかにおいて、前記光透過性基材がポリエステル基材であってもよい。 In any one of the first to eleventh laminates according to the present invention, the light transmissive base material may be a polyester base material.
 本発明による第1~11の積層体のいずれかにおいて、前記機能層はハードコート層であってもよい。 In any one of the first to eleventh laminates according to the present invention, the functional layer may be a hard coat layer.
 本発明による第1~11の積層体のいずれかが、前記機能層の前記中間層側とは反対側に設けられた第2機能層を、さらに備えるようにしてもよい。 Any one of the first to eleventh laminates according to the present invention may further include a second functional layer provided on the side of the functional layer opposite to the intermediate layer side.
 本発明による第1~11の積層体のいずれかにおいて、前記第2機能層が、前記機能層よりも低い屈折率を有する低屈折率層であってもよい。 In any one of the first to eleventh laminates according to the present invention, the second functional layer may be a low refractive index layer having a lower refractive index than the functional layer.
 本発明による偏光板は、
 偏光素子と、
 本発明による第1~11のいずれかの積層体と、を備える。
The polarizing plate according to the present invention is
A polarizing element;
1 to 11 according to the present invention.
 本発明による液晶表示パネルは、
 本発明による第1~11のいずれかの積層体、または、本発明による偏光板を備える、液晶表示パネル。
The liquid crystal display panel according to the present invention comprises:
A liquid crystal display panel comprising any one of the first to eleventh laminates according to the present invention or the polarizing plate according to the present invention.
 本発明による画像表示装置は、本発明による第1~11のいずれかの積層体、本発明による偏光板、または、本発明による液晶表示パネルを備える、画像表示装置。 The image display device according to the present invention is an image display device comprising any one of the first to eleventh laminates according to the present invention, the polarizing plate according to the present invention, or the liquid crystal display panel according to the present invention.
 本発明によるタッチパネルセンサは、
 本発明による第1~11のいずれかの積層体と、
 前記積層体と接合されたセンサ電極と、を備える。
The touch panel sensor according to the present invention includes:
Any one of the first to eleventh laminates according to the present invention;
A sensor electrode joined to the laminate.
 本発明によるタッチパネル装置は、本発明によるタッチパネルセンサを備える。 The touch panel device according to the present invention includes the touch panel sensor according to the present invention.
 本発明による第1の積層体の製造方法は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を含む積層体を製造する方法であって、
 次の条件(a)および条件(b)のいずれか一方が満たされ、且つ、次の条件(c1)~(c5)のいずれか一以上が満たされるように、前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、前記機能層の面内の平均屈折率n、および、前記中間層の厚みt〔nm〕を設定する工程を備える。なお、λaveは、可視光の最短波長λminと可視光の最長波長λmaxとの中間の波長である。
  n<n<n ・・・条件(a)
  n>n>n ・・・条件(b)
  λave/(6×n)<t<λave/(3×n)  
                      ・・・条件(c1)
  110/n≦t≦170/n  ・・・条件(c2)
  555/(6×n)<t<555/(3×n
                      ・・・条件(c3)
  507/(6×n)<t<507/(3×n)  
                      ・・・条件(c4)
  555/(6×n)<t<507/(3×n)  
                      ・・・条件(c5)
The manufacturing method of the 1st laminated body by this invention is the following.
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A method of manufacturing a laminate including a functional layer laminated on the intermediate layer from a side opposite to the light-transmitting substrate, adjacent to the intermediate layer,
The surface of the light-transmitting substrate so that any one of the following conditions (a) and (b) is satisfied and at least one of the following conditions (c1) to (c5) is satisfied: A step of setting an average refractive index n 1 in the surface, an average refractive index n 2 in the surface of the intermediate layer, an average refractive index n 3 in the surface of the functional layer, and a thickness t [nm] of the intermediate layer. Prepare. Note that λ ave is an intermediate wavelength between the shortest wavelength λ min of visible light and the longest wavelength λ max of visible light.
n 1 <n 2 <n 3 Condition (a)
n 1 > n 2 > n 3 ... Condition (b)
λ ave / (6 × n 2 ) <t <λ ave / (3 × n 2 )
... Condition (c1)
110 / n 2 ≦ t ≦ 170 / n 2 ... Condition (c2)
555 / (6 × n 2 ) <t <555 / (3 × n 2 )
... Condition (c3)
507 / (6 × n 2 ) <t <507 / (3 × n 2 )
... Condition (c4)
555 / (6 × n 2 ) <t <507 / (3 × n 2 )
... Condition (c5)
 本発明による第1の積層体の設計方法は、
 光透過性基材と、
前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を含む積層体を設計する方法であって、
 次の条件(a)および条件(b)のいずれか一方が満たされ、且つ、次の条件(c1)~(c5)のいずれか一以上が満たされるように、前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、前記機能層の面内の平均屈折率n、および、前記中間層の厚みt〔nm〕を設定する工程を備える。
  n<n<n ・・・条件(a)
  n>n>n ・・・条件(b)
  λave/(6×n)<t<λave/(3×n)  
                      ・・・条件(c1)
  110/n≦t≦170/n  ・・・条件(c2)
  555/(6×n)<t<555/(3×n
                      ・・・条件(c3)
  507/(6×n)<t<507/(3×n)  
                      ・・・条件(c4)
  555/(6×n)<t<507/(3×n)  
                      ・・・条件(c5)
The design method of the first laminate according to the present invention includes:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A method of designing a laminate including a functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The surface of the light-transmitting substrate so that any one of the following conditions (a) and (b) is satisfied and at least one of the following conditions (c1) to (c5) is satisfied: A step of setting an average refractive index n 1 in the surface, an average refractive index n 2 in the surface of the intermediate layer, an average refractive index n 3 in the surface of the functional layer, and a thickness t [nm] of the intermediate layer. Prepare.
n 1 <n 2 <n 3 Condition (a)
n 1 > n 2 > n 3 ... Condition (b)
λ ave / (6 × n 2 ) <t <λ ave / (3 × n 2 )
... Condition (c1)
110 / n 2 ≦ t ≦ 170 / n 2 ... Condition (c2)
555 / (6 × n 2 ) <t <555 / (3 × n 2 )
... Condition (c3)
507 / (6 × n 2 ) <t <507 / (3 × n 2 )
... Condition (c4)
555 / (6 × n 2 ) <t <507 / (3 × n 2 )
... Condition (c5)
 本発明による第2の積層体の製造方法は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を含む積層体を製造する方法であって、
 次の条件(o)および条件(p)のいずれか一方が満たされ、且つ、次の条件(q1)~(q6)のいずれか一以上が満たされるように、前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、前記機能層の面内の平均屈折率n、および、前記中間層の厚みt〔nm〕を設定する工程を備える。なお、λminは可視光の最短波長であり、λmaxは可視光の最長波長である。
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
  0<t<λmax/(12×n)  ・・・条件(q1)
  0<t<((λmin+λmax)/2)/(12×n
                      ・・・条件(q2)
  0<t<λmin/(12×n)  ・・・条件(q3)
  0<t<555/(12×n)  ・・・条件(q4)
  0<t<507/(12×n)  ・・・条件(q5)
  3≦t≦30 ・・・条件(q6)
The method for producing the second laminate according to the present invention comprises:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A method of manufacturing a laminate including a functional layer laminated on the intermediate layer from a side opposite to the light-transmitting substrate, adjacent to the intermediate layer,
The surface of the light transmissive substrate so that any one of the following conditions (o) and (p) is satisfied and at least one of the following conditions (q1) to (q6) is satisfied: A step of setting an average refractive index n 1 in the surface, an average refractive index n 2 in the surface of the intermediate layer, an average refractive index n 3 in the surface of the functional layer, and a thickness t [nm] of the intermediate layer. Prepare. Note that λ min is the shortest wavelength of visible light, and λ max is the longest wavelength of visible light.
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
0 <t <λ max / (12 × n 2 ) Condition (q1)
0 <t <((λ min + λ max ) / 2) / (12 × n 2 )
... Condition (q2)
0 <t <λ min / (12 × n 2 ) Condition (q3)
0 <t <555 / (12 × n 2 ) Condition (q4)
0 <t <507 / (12 × n 2 ) Condition (q5)
3 ≦ t ≦ 30 Condition (q6)
 本発明による第2の積層体の設計方法は、
 光透過性基材と、
 前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
 前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を含む積層体を設計する方法であって、
 次の条件(o)および条件(p)のいずれか一方が満たされ、且つ、次の条件(q1)~(q6)のいずれか一以上が満たされるように、前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、前記機能層の面内の平均屈折率n、および、前記中間層の厚みt〔nm〕を設定する工程を備える。なお、λminは可視光の最短波長であり、λmaxは可視光の最長波長である。
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
  0<t<λmax/(12×n)  ・・・条件(q1)
  0<t<((λmin+λmax)/2)/(12×n
                      ・・・条件(q2)
  0<t<λmin/(12×n)  ・・・条件(q3)
  0<t<555/(12×n)  ・・・条件(q4)
  0<t<507/(12×n)  ・・・条件(q5)
  3≦t≦30 ・・・条件(q6)
The design method of the second laminate according to the present invention is as follows:
A light transmissive substrate;
An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
A method of designing a laminate including a functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
The surface of the light transmissive substrate so that any one of the following conditions (o) and (p) is satisfied and at least one of the following conditions (q1) to (q6) is satisfied: A step of setting an average refractive index n 1 in the surface, an average refractive index n 2 in the surface of the intermediate layer, an average refractive index n 3 in the surface of the functional layer, and a thickness t [nm] of the intermediate layer. Prepare. Note that λ min is the shortest wavelength of visible light, and λ max is the longest wavelength of visible light.
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
0 <t <λ max / (12 × n 2 ) Condition (q1)
0 <t <((λ min + λ max ) / 2) / (12 × n 2 )
... Condition (q2)
0 <t <λ min / (12 × n 2 ) Condition (q3)
0 <t <555 / (12 × n 2 ) Condition (q4)
0 <t <507 / (12 × n 2 ) Condition (q5)
3 ≦ t ≦ 30 Condition (q6)
 本発明によれば、干渉縞の発生を効果的に抑制することができる。 According to the present invention, generation of interference fringes can be effectively suppressed.
図1は、本発明の実施の形態を説明するための図であって、積層体の層構成を示す図である。FIG. 1 is a diagram for explaining an embodiment of the present invention and is a diagram showing a layer structure of a laminate. 図2は、図1に対応する図であって、積層体の他の例の層構成を示す図である。FIG. 2 is a diagram corresponding to FIG. 1 and showing a layer configuration of another example of the laminated body. 図3は、積層体内で反射した光の波形を説明するための図である。FIG. 3 is a diagram for explaining a waveform of light reflected in the laminated body. 図4は、図1に示された積層体における屈折率の分布を説明するための図であって、積層体を模式的に示す斜視図である。FIG. 4 is a perspective view schematically illustrating the laminate, for illustrating the refractive index distribution in the laminate shown in FIG. 1. 図5は、図1に示された積層体における面内の複屈折性を説明するための図であって、積層体の光透過性基材および中間層を模式的に示す平面図である。FIG. 5 is a diagram for explaining in-plane birefringence in the laminate shown in FIG. 1, and is a plan view schematically showing a light-transmitting substrate and an intermediate layer of the laminate. 図6は、図1に示された積層体を含む偏光板の概略構成を示す図である。FIG. 6 is a view showing a schematic configuration of a polarizing plate including the laminate shown in FIG. 図7は、図1に示された積層体を含む液晶表示パネルの概略構成を示す図である。FIG. 7 is a diagram showing a schematic configuration of a liquid crystal display panel including the laminate shown in FIG. 図8は、図1に示された積層体を含む表示装置の概略構成を示す図である。FIG. 8 is a diagram showing a schematic configuration of a display device including the laminate shown in FIG. 図9は、図1に示された積層体を含むタッチパネルセンサおよびタッチパネルの概略構成を示す図である。FIG. 9 is a diagram showing a schematic configuration of the touch panel sensor and the touch panel including the laminate shown in FIG. 図10は、図3に対応する図であって、第2の実施の形態に係る積層体内で反射した光の波形を説明するための図である。FIG. 10 is a diagram corresponding to FIG. 3 and is a diagram for explaining a waveform of light reflected in the laminated body according to the second embodiment.
「第1の実施の形態」
 以下、図面を参照して本発明の第1の実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。図1~図9は本発明の第1の実施の形態を説明するための図である。このうち、図1および図2は、積層体を説明するための図である。図3は、積層体内で反射した光の波形を説明するための図である。図4および図5は、積層体の屈折率の分布を説明するための図である。図6~図9は、図1の積層体を適用された偏光板、液晶表示パネル、タッチパネルセンサ、タッチパネルおよび積層体の構成を示す模式図である。
“First Embodiment”
The first embodiment of the present invention will be described below with reference to the drawings. In the drawings attached to the present specification, for the sake of illustration and ease of understanding, the scale, the vertical / horizontal dimension ratio, and the like are appropriately changed and exaggerated from those of the actual product. 1 to 9 are diagrams for explaining a first embodiment of the present invention. Among these, FIG. 1 and FIG. 2 are views for explaining a laminated body. FIG. 3 is a diagram for explaining a waveform of light reflected in the laminated body. 4 and 5 are diagrams for explaining the refractive index distribution of the laminate. 6 to 9 are schematic views showing configurations of a polarizing plate, a liquid crystal display panel, a touch panel sensor, a touch panel, and a laminate to which the laminate of FIG. 1 is applied.
≪積層体≫
<積層体の全体構成>
 まず、積層体10の全体構成について説明する。図1に示すように、積層体10は、積層基材11と、積層基材11の一方の面上に形成された機能層15と、を有している。積層基材11は、光透過性基材12と、光透過性基材12と積層された中間層13と、を有している。積層体10内において、中間層13は、光透過性基材12と機能層15との間に位置する。すなわち、機能層15は、中間層13の側から積層基材11に積層されている。図示された例において、積層基材11内において、中間層13は、光透過性基材12の一方の面上に形成されている。すなわち、積層体10は、光透過性基材12、中間層13、機能層15の三つの層をこの順番で含むように構成されており、中間層13は、光透過性基材12および機能層15に隣接して配置され、光透過性基材12および機能層15との間で、それぞれ、界面を形成している。
≪Laminated body≫
<Overall structure of laminate>
First, the whole structure of the laminated body 10 is demonstrated. As shown in FIG. 1, the laminated body 10 includes a laminated base material 11 and a functional layer 15 formed on one surface of the laminated base material 11. The laminated substrate 11 includes a light transmissive substrate 12 and an intermediate layer 13 laminated with the light transmissive substrate 12. In the laminate 10, the intermediate layer 13 is located between the light transmissive substrate 12 and the functional layer 15. That is, the functional layer 15 is laminated on the laminated base material 11 from the intermediate layer 13 side. In the illustrated example, the intermediate layer 13 is formed on one surface of the light transmissive substrate 12 in the laminated substrate 11. That is, the laminate 10 is configured to include three layers of the light transmissive substrate 12, the intermediate layer 13, and the functional layer 15 in this order. The intermediate layer 13 includes the light transmissive substrate 12 and the function. It arrange | positions adjacent to the layer 15 and forms the interface between the transparent base material 12 and the functional layer 15, respectively.
 なお、図2には、図1に示された積層体の一変形例としての積層体が示されている。図2に示された積層体10では、機能層15の積層基材11に対面しない側の面上に第2機能層17が形成されている点において、図1の積層体と異なっている。図1に示された積層体10では、機能層15が、積層基材11の一方の面上に形成されたハードコート層から構成されるようにしてもよい。一方、図2に示された積層体10では、機能層15が、積層基材11の一方の面上に形成されたハードコート層から構成されるとともに、第2機能層17が、ハードコート層の積層基材11とは逆側の面上に形成された低屈折率層から構成されるようにしてもよい。 Note that FIG. 2 shows a laminate as a modification of the laminate shown in FIG. The laminated body 10 shown in FIG. 2 is different from the laminated body of FIG. 1 in that the second functional layer 17 is formed on the surface of the functional layer 15 that does not face the laminated base material 11. In the laminated body 10 shown in FIG. 1, the functional layer 15 may be composed of a hard coat layer formed on one surface of the laminated base material 11. On the other hand, in the laminate 10 shown in FIG. 2, the functional layer 15 is composed of a hard coat layer formed on one surface of the laminated substrate 11, and the second functional layer 17 is a hard coat layer. You may make it comprise from the low-refractive-index layer formed on the surface on the opposite side to the laminated base material 11 of.
 第1の実施の形態に係る積層体10は、次の条件(a)および条件(b)の一方とともに、少なくとも次の条件(c1)を満たすことが好ましい。
  n<n<n ・・・条件(a)
  n>n>n ・・・条件(b)
  λave/(6×n)<t<λave/(3×n
                    ・・・条件(c1)
The laminate 10 according to the first embodiment preferably satisfies at least the following condition (c1) together with one of the following condition (a) and condition (b).
n 1 <n 2 <n 3 Condition (a)
n 1 > n 2 > n 3 ... Condition (b)
λ ave / (6 × n 2 ) <t <λ ave / (3 × n 2 )
... Condition (c1)
 ここで条件(a)~(c1)並びに後述する条件(c2)~(c5)において、「n」は光透過性基材12の面内の平均屈折率であり、「n」は中間層13の面内の平均屈折率であり、「n」は機能層15の面内の平均屈折率である。面内の平均屈折率とは、対象となるシート状の層のそのシート面に沿って延びる互いに直交する二つの方向での屈折率の平均値である。対象となる層が光学等方性であれば、当該層のシート面に沿った各方向における屈折率は同一となる。一方、対象となる層が光学異方性であれば、当該層のシート面に沿った各方向における屈折率は相違する。 Here, in the conditions (a) to (c1) and the conditions (c2) to (c5) described later, “n 1 ” is the average refractive index in the plane of the light-transmitting substrate 12, and “n 2 ” is intermediate The in-plane average refractive index of the layer 13, and “n 3 ” is the in-plane average refractive index of the functional layer 15. The in-plane average refractive index is an average value of refractive indexes in two directions perpendicular to each other extending along the sheet surface of the sheet-like layer as a target. If the target layer is optically isotropic, the refractive index in each direction along the sheet surface of the layer is the same. On the other hand, if the target layer is optically anisotropic, the refractive index in each direction along the sheet surface of the layer is different.
 なお、「シート面(フィルム面、板面)」とは、対象となるシート状(フィルム状、板状)の層または部材を全体的かつ大局的に見た場合において対象となるシート状の層または部材の平面方向と一致する面のことを指す。第1の実施の形態として説明する積層体10において、光透過性基材12のシート面、中間層13のシート面、機能層15のシート面、第2機能層17のシート面、積層基材11のシート面、および、積層体10のシート面は、互いに平行となっている。 The “sheet surface (film surface, plate surface)” is a sheet-like layer that is a target when the target sheet-like (film-like, plate-like) layer or member is viewed as a whole and globally. Or the surface which corresponds with the planar direction of a member is pointed out. In the laminate 10 described as the first embodiment, the sheet surface of the light transmissive substrate 12, the sheet surface of the intermediate layer 13, the sheet surface of the functional layer 15, the sheet surface of the second functional layer 17, and the laminated substrate The sheet surface 11 and the sheet surface of the laminate 10 are parallel to each other.
 また、条件(c1)において、「λave」は、可視光の最短波長λminと可視光の最長波長λmaxとの中間の波長〔nm〕であり、次の式により表される。
  λave=(λmin+λmax)/2
さらに、条件(c1)並びに後述する条件(c2)~(c5)において、「t」は中間層13の厚み〔nm〕である。
In the condition (c1), “λ ave ” is an intermediate wavelength [nm] between the shortest wavelength λ min of visible light and the longest wavelength λ max of visible light, and is represented by the following expression.
λ ave = (λ min + λ max ) / 2
Furthermore, in the condition (c1) and the conditions (c2) to (c5) described later, “t” is the thickness [nm] of the intermediate layer 13.
 各層の面内における各方向での屈折率は、アッベ屈折率計(アタゴ社製 NAR-4T)、日本分光(株)製の「エリプソメーター M150」、王子計測機器製の「KOBRA-WR」等を用いて測定することができる。 The refractive index in each direction within the plane of each layer is an Abbe refractometer (NAR-4T manufactured by Atago Co., Ltd.), “Ellipsometer M150” manufactured by JASCO Corporation, “KOBRA-WR” manufactured by Oji Scientific Instruments, etc. Can be measured.
 また、各層の面内における各方向での屈折率は、分光光度計(島津製作所社製のUV-3100PC)を用いて、波長380~780nmの平均反射率(R)を測定し、得られた平均反射率(R)から、以下の式を用いて特定され得る。中間層13および機能層15の平均反射率(R)は、易接着処理のない厚さ50μmのPET上に原料組成物を塗布し、1~3μmの厚さの硬化膜にし、PETの原料組成物を塗布しなかった面(裏面)に、裏面反射を防止するために測定スポット面積よりも大きな幅の黒ビニールテープ(例えば、ヤマトビニールテープNO200-38-21 38mm幅)を貼ってから各塗膜の平均反射率を測定することができる。光透過性基材12の屈折率は、測定面とは反対面に同様に黒ビニールテープを貼ってから測定することができる。
  R(%)=(1-n)/(1+n)
The refractive index in each direction within the plane of each layer was obtained by measuring the average reflectance (R) at a wavelength of 380 to 780 nm using a spectrophotometer (UV-3100PC manufactured by Shimadzu Corporation). From the average reflectance (R), it can be specified using the following equation: The average reflectance (R) of the intermediate layer 13 and the functional layer 15 is such that the raw material composition is applied on 50 μm thick PET without easy adhesion treatment to form a cured film having a thickness of 1 to 3 μm, and the PET raw material composition Apply a black vinyl tape (for example, Yamato vinyl tape NO200-38-21 38mm width) larger than the measurement spot area to prevent backside reflection on the surface (back side) on which no object was applied. The average reflectance of the film can be measured. The refractive index of the light-transmitting substrate 12 can be measured after a black vinyl tape is similarly applied to the surface opposite to the measurement surface.
R (%) = (1-n) 2 / (1 + n) 2
 また、対象となる層12,13,15が光学等方性であれば、当該層の面内の平均屈折率n,n,nを次のようにして測定することも可能である。まず、各層の硬化膜をカッターなどで削り取り、粉状態のサンプルを作製する。次に、JISK7142(2008)B法(粉体または粒状の透明材料用)に従ったベッケ法(屈折率が既知のカーギル試薬を用い、前記粉状態のサンプルをスライドガラスなどに置き、そのサンプル上に試薬を滴下し、試薬でサンプルを浸漬する。その様子を顕微鏡観察によって観察し、サンプルと試薬の屈折率が異なることによってサンプル輪郭に生じる輝線;ベッケ線が目視で観察できなくなる試薬の屈折率を、サンプルの屈折率とする方法)を用いることができる。 If the target layers 12, 13, 15 are optically isotropic, the in-plane average refractive indexes n 1 , n 2 , n 3 can be measured as follows. . First, the cured film of each layer is scraped off with a cutter or the like to produce a powder sample. Next, the Becke method according to JISK7142 (2008) B method (for powder or granular transparent material) (using a Cargill reagent having a known refractive index, placing the powdered sample on a slide glass or the like, A reagent is dropped into the sample, and the sample is immersed in the reagent.Observation is observed with a microscope, and the bright line generated in the sample outline due to the difference in the refractive index between the sample and the reagent; Can be used as the refractive index of the sample.
 また、中間層13の厚み(硬化時)tは、例えば、中間層13の断面を、電子顕微鏡(SEM、TEM、STEM)で観察することにより得られた任意の10点の測定値の平均値〔nm〕として、特定され得る。中間層13の厚みが非常に薄い場合は、高倍率観察したものを写真として記録し、更に拡大することで測定することができる。拡大した場合、層界面ラインが、境界線として明確に分かる程度に非常に細い線であったものが、太い線になる。その場合は、太い線幅を幅方向に2等分した中心部分を境界線として測定すればよい。 Moreover, the thickness (at the time of hardening) t of the intermediate layer 13 is, for example, an average value of measured values at arbitrary 10 points obtained by observing the cross section of the intermediate layer 13 with an electron microscope (SEM, TEM, STEM). It can be specified as [nm]. When the thickness of the intermediate layer 13 is very thin, it can be measured by recording what was observed at a high magnification as a photograph and further enlarging it. When enlarged, a layer interface line that is very thin enough to be clearly recognized as a boundary line becomes a thick line. In that case, what is necessary is just to measure as a boundary line the center part which divided the thick line width into 2 equal to the width direction.
 積層体10によって、上述した条件(a)および条件(b)の一方とともに、少なくとも条件(c1)を満たされる場合、以下に説明するように、積層体10に干渉縞が発生してしまうことを有効に抑制することができる。ここで不可視化対象となる干渉縞は、機能層15の側から図1の積層体10へ向かう光のうちの、機能層15の表面での反射光と、積層基材11からの反射光(図3の光L)と、の干渉により生じる干渉縞である。同様に、第2機能層17の側から図2の積層体10へ向かう光のうちの、第2機能層17の表面での反射光または第2機能層17と機能層15との界面での反射光と、積層基材11からの反射光(図3の光L)と、の干渉により生じる干渉縞も、不可視化対象となる干渉縞となる。ここで、積層基材11からの反射光(図3の光L)とは、機能層15と中間層13との界面での反射光(図3の光Lr1)および中間層13と光透過性基材12との界面での反射光(図3の光Lr2)のことである。 When the laminate 10 satisfies at least the condition (c1) together with one of the above-described conditions (a) and (b), interference fringes are generated in the laminate 10 as described below. It can be effectively suppressed. Here, the interference fringes to be invisible are reflected light on the surface of the functional layer 15 and reflected light from the laminated base material 11 (from the functional layer 15 side toward the laminated body 10 in FIG. It is an interference fringe which arises by interference with the light Lr ) of FIG. Similarly, of the light traveling from the second functional layer 17 side to the stacked body 10 in FIG. 2, the reflected light on the surface of the second functional layer 17 or the interface between the second functional layer 17 and the functional layer 15. Interference fringes generated by interference between the reflected light and the reflected light from the laminated base material 11 (light L r in FIG. 3) are also interference fringes to be invisible. Here, the reflected light from the laminated substrate 11 (light L r in FIG. 3) is reflected light (light L r1 in FIG. 3) at the interface between the functional layer 15 and the intermediate layer 13, and the intermediate layer 13 and light. This is reflected light (light L r2 in FIG. 3) at the interface with the transmissive substrate 12.
 以下、条件(a)および条件(b)の一方とともに条件(c1)を満たす積層体10によって発現される干渉縞不可視化機能、言い換えると、干渉縞の発生、すなわち干渉縞が目視で確認されることを抑制する機能、さらに言い換えると干渉縞を目立たなくさせる機能について説明する。 Hereinafter, the interference fringe invisible function expressed by the laminate 10 satisfying the condition (c1) together with one of the conditions (a) and (b), in other words, the occurrence of interference fringes, that is, the interference fringes are visually confirmed. A function of suppressing this, and in other words, a function of making the interference fringe inconspicuous will be described.
 まず、光透過性基材12と機能層15との間に中間層13が設けられ、且つ、条件(a)および(b)の一方が満たされることにより、光透過性基材12と機能層15との間で屈折率がしだいに変化していくようになる。すなわち、中間層13は、光透過性基材12と機能層15との間に配置され、光透過性基材12と機能層15との間で面内の平均屈折率を二段階に分けて変化させるようにしている。これにより、機能層15と光透過性基材12との間には、面内の平均屈折率が大きく変化する界面が存在しないようになる。すなわち、機能層15と光透過性基材12との間には、面内の平均屈折率の差が小さく、このために反射率が低くなる界面しか、存在しないことになる。 First, when the intermediate layer 13 is provided between the light transmissive substrate 12 and the functional layer 15 and one of the conditions (a) and (b) is satisfied, the light transmissive substrate 12 and the functional layer are satisfied. The refractive index gradually changes between 15 and 15. That is, the intermediate layer 13 is disposed between the light transmissive substrate 12 and the functional layer 15, and the in-plane average refractive index is divided into two stages between the light transmissive substrate 12 and the functional layer 15. I try to change it. As a result, there is no interface between the functional layer 15 and the light transmissive substrate 12 where the in-plane average refractive index changes greatly. That is, between the functional layer 15 and the light transmissive substrate 12, there is only an interface where the difference in in-plane average refractive index is small and thus the reflectance is low.
 したがって、機能層15の側から積層体10に入射した光(図3の光L)が、光透過性基材12に向けて進む間に、反射により進行方向を折り返すことを、効果的に防止することができる。これにより、機能層15の側から積層体10に入射する光のうち、積層体10の機能層15側の表面で反射する光と、積層基材11からの反射光と、によって生じ得る干渉縞を効果的に目立たなくさせることができる。 Therefore, it is effective that the light incident on the laminated body 10 from the functional layer 15 side (light L i in FIG. 3) is turned back by the reflection while traveling toward the light transmissive substrate 12. Can be prevented. Accordingly, interference fringes that can be generated by light reflected on the surface of the laminated body 10 on the functional layer 15 side and reflected light from the laminated base material 11 among light incident on the laminated body 10 from the functional layer 15 side. Can be effectively inconspicuous.
 また、条件(a)および条件(b)の一方とともに条件(c1)が満たされる場合には、反射率を低下させることに加えて、以下に詳述するように、積層体10の内部を機能層15の側から積層基材11側へ向かい積層基材11で反射されて機能層15の側へ戻る光(図3の光L)の強度を効果的に低下させることができる。すなわち、干渉縞を引き起こす原因となる光の強度を低下させることにより、干渉縞を有意に目立たなくさせることができる。 Further, when the condition (c1) is satisfied together with one of the condition (a) and the condition (b), in addition to lowering the reflectance, the inside of the laminate 10 functions as described in detail below. The intensity of the light (light L r in FIG. 3) reflected from the layered substrate 11 toward the layered substrate 11 and returning to the functional layer 15 side from the layer 15 side can be effectively reduced. That is, by reducing the intensity of light that causes interference fringes, the interference fringes can be made significantly inconspicuous.
 積層体に生じる干渉縞を不可視化する方法としては、混在領域を設けることによって積層体内の界面をぼやかす方法および積層体の表面に凹凸を形成する方法も挙げられる。しかしながら、上述したように、混在領域を設ける方法では、積層体10の強度を確保するため、機能層の厚みを厚くする必要が生じる。このため、この手法を採用した場合には、材料費が嵩んで積層体10の製造コストが上昇してしまうといった不具合が生じる。また、積層体10の表面に凹凸を形成する方法を採用すると、積層体10を介して観察される画像の画質が劣化してしまう。具体的には、画面に白濁感が生じてコントラストが低下し、画像のテリや輝きが無くなってしまう。 Examples of a method of making the interference fringes generated in the laminate invisible include a method of blurring an interface in the laminate by providing a mixed region and a method of forming irregularities on the surface of the laminate. However, as described above, in the method of providing the mixed region, it is necessary to increase the thickness of the functional layer in order to ensure the strength of the stacked body 10. For this reason, when this method is adopted, the material cost increases and the manufacturing cost of the laminate 10 increases. Moreover, when the method of forming irregularities on the surface of the laminate 10 is adopted, the image quality of an image observed through the laminate 10 is deteriorated. Specifically, a cloudiness is generated on the screen, the contrast is lowered, and the image is not terrified or bright.
 これに対して、条件(a)および条件(b)の一方とともに条件(c1)を満たす積層体10には、混在領域を設ける必要、さらには機能層の厚みを増大する必要が生じない。また、中間層13が一例として、たとえば易接着層等のプライマー層からなる場合には、干渉縞対策のみを目的として追加の層を積層体10に設ける必要もなく、コスト面でのデメリットが発生しない。また、混在領域を設けること自体が困難であるポリエステル基材を、光透過性基材12として用いることが可能となる。ポリエステル基材からなる光透過性基材12は、コスト面や安定性等において非常に優れる。 On the other hand, it is not necessary to provide a mixed region in the laminate 10 that satisfies the condition (c1) together with one of the conditions (a) and (b), and further, it is not necessary to increase the thickness of the functional layer. Further, when the intermediate layer 13 is made of, for example, a primer layer such as an easy-adhesion layer, there is no need to provide an additional layer on the laminate 10 only for the purpose of preventing interference fringes, resulting in cost disadvantages. do not do. In addition, it is possible to use a polyester base material for which it is difficult to provide the mixed region as the light transmissive base material 12. The light transmissive substrate 12 made of a polyester substrate is very excellent in terms of cost and stability.
 加えて、条件(a)および条件(b)の一方とともに条件(c1)を満たす積層体10では、拡散を引き起こす必要がないことから表面を平滑に保ちながら、干渉縞の発生を効果的に防止することができる。したがって、積層体10を介して観察される画像の画質に悪影響を及ぼすことなく干渉縞を不可視化することができる。すなわち、条件(a)および条件(b)の一方とともに条件(c1)を満たす積層体10では、テリ輝きを表示画像に付与しながら、併せて、白濁感及び干渉縞の発生を防止することが可能となる。 In addition, in the laminate 10 that satisfies the condition (c1) together with one of the condition (a) and the condition (b), it is not necessary to cause diffusion, so that the generation of interference fringes is effectively prevented while keeping the surface smooth. can do. Therefore, the interference fringes can be made invisible without adversely affecting the image quality of the image observed through the laminate 10. That is, in the laminated body 10 that satisfies the condition (c1) together with one of the conditions (a) and (b), it is possible to prevent the occurrence of white turbidity and interference fringes while imparting terry shine to the display image. It becomes possible.
 ここで、図3を参照して、条件(a)および条件(b)の一方とともに条件(c1)を満たす積層体10によって発現される、積層基材11からの反射光の光強度を低下させる機能について説明する。 Here, with reference to FIG. 3, the light intensity of the reflected light from the laminated base material 11 expressed by the laminated body 10 that satisfies the condition (c1) together with one of the conditions (a) and (b) is reduced. The function will be described.
 条件(a)および条件(b)の一方が満たされる場合、機能層15の側から積層体10へ入射した光は、機能層15と中間層13との界面および中間層13と光透過性基材12との界面の両方にて、固定端反射して位相をπ〔rad〕ずらす、或いは、界面の両方にて自由端反射して位相を維持する。図3に示された積層体10では、条件(a)および条件(b)のうちの条件(b)が満たされ、機能層15の側から積層体10へ入射した光は、機能層15と中間層13との界面並びに中間層13と光透過性基材12との界面の両方において、固定端反射して位相をπ〔rad〕ずらす。 When one of the conditions (a) and (b) is satisfied, the light incident on the laminate 10 from the functional layer 15 side is the interface between the functional layer 15 and the intermediate layer 13 and the intermediate layer 13 and the light transmitting group. The phase is shifted by π [rad] at both ends of the interface with the material 12 and the phase is shifted, or the phase is maintained at both ends by reflection at the free end. In the laminate 10 shown in FIG. 3, the condition (b) out of the conditions (a) and (b) is satisfied, and light incident on the laminate 10 from the functional layer 15 side At both the interface with the intermediate layer 13 and the interface between the intermediate layer 13 and the light-transmitting base material 12, the phase is shifted by π [rad] due to reflection at the fixed end.
 図3に示された例では、積層体10の法線方向ndに沿った断面が示されている。そして図3では、機能層15の側から積層体10へ入射した入射光L、機能層15と中間層13と界面で反射した反射光Lr1、中間層13と光透過性基材12との界面で反射した反射光Lr2、および、反射光Lr1および反射Lr2の合成である合成反射光Lについて、或る瞬間での振動状態が示されている。図3に示すように、x軸が積層体10の法線方向に延び、y軸が機能層15と中間層13との界面を延びるようにxy座標を設定すると、各光L,Lr1,Lr2,Lの波形は、それぞれ、次の式(1)~(4)にて表される。なお、以下の式(1)~(4)において「λ」は光の波長〔nm〕である。
 Yi=sin((x×n3/λ)×2π)  ・・・式(1)
 Yr1=sin((x×n3/λ)×2π)    ・・・式(2)
 Yr2=sin(((x×n3/λ)+(2t×n2/λ))×2π) ・・・式(3)
 Yr=2・cos(2t×n2×π/λ)・sin(((x×n3/λ)+(t×n2/λ))×2π)
                          ・・・式(4)
In the example illustrated in FIG. 3, a cross section along the normal direction nd of the stacked body 10 is illustrated. In FIG. 3, incident light L i incident on the laminate 10 from the functional layer 15 side, reflected light L r1 reflected at the interface between the functional layer 15 and the intermediate layer 13, the intermediate layer 13, and the light-transmitting base material 12 The vibration state at a certain moment is shown with respect to the reflected light L r2 reflected at the interface and the combined reflected light L r which is a combination of the reflected light L r1 and the reflected L r2 . As shown in FIG. 3, when the xy coordinates are set so that the x-axis extends in the normal direction of the stacked body 10 and the y-axis extends the interface between the functional layer 15 and the intermediate layer 13, each light L i , L r1. , L r2 and L r are represented by the following equations (1) to (4), respectively. In the following formulas (1) to (4), “λ” is the wavelength of light [nm].
Y i = sin ((x × n 3 / λ) × 2π) (1)
Y r1 = sin ((x × n 3 / λ) × 2π) (2)
Y r2 = sin (((x × n 3 / λ) + (2t × n 2 / λ)) × 2π) Equation (3)
Y r = 2 · cos (2t × n 2 × π / λ) · sin (((x × n 3 / λ) + (t × n 2 / λ)) × 2π)
... Formula (4)
 すなわち、干渉縞を引き起こすことになる積層基材11からの合成反射光Lの強度は、当該光の波形の振幅を示す「2・cos(2t・n2・π/λ)」によって表される。干渉縞は、合成反射光Lの強度が弱い程、目立たなくなる。したがって、合成反射光Lの振幅が最大値(「2」)の半分未満(「1」未満)となる次の式(5)が満たされる場合に、波長λの光に起因した干渉縞を目立たなくさせる観点から優位な状況となり、振幅が最大値の半分を超えてしまう次の式(6)が満たされる場合に、波長λの光に起因した干渉縞を目立たなくさせる観点から劣位な状況となる。
  λ/(6×n)<t<λ/(3×n
                  ・・・式(5)
  t<λ/(6×n)またはλ/(3×n)<t
                      ・・・式(6)
以上のことから、条件(b)とともに条件(c1)が満たされる場合には、可視光の中心波長である波長λaveを含む波長域の光が、干渉縞として視認されることを防止する上で有効となる。言い換えると、少なくとも可視光中心波長λaveを含む波長域の光に関し、干渉縞を有効に不可視化することができる。
That is, the intensity of the synthesized reflected light L r from the laminated substrate 11 which will cause the interference fringes is represented by indicating the amplitude of the light wave "2 · cos (2t · n 2 · π / λ) " The The interference fringes become less noticeable as the intensity of the combined reflected light L r is weaker. Therefore, when the following equation (5) in which the amplitude of the combined reflected light L r is less than half of the maximum value (“2”) (less than “1”) is satisfied, It is an inferior situation from the viewpoint of making the interference fringes caused by the light of wavelength λ inconspicuous when the following equation (6) in which the amplitude exceeds half of the maximum value is satisfied. It becomes.
λ / (6 × n 2 ) <t <λ / (3 × n 2 )
... Formula (5)
t <λ / (6 × n 2 ) or λ / (3 × n 2 ) <t
... Formula (6)
From the above, when the condition (c1) is satisfied together with the condition (b), it is possible to prevent light in a wavelength region including the wavelength λ ave that is the center wavelength of visible light from being visually recognized as interference fringes. It becomes effective in. In other words, interference fringes can be effectively invisible with respect to light in a wavelength region including at least the visible light center wavelength λ ave .
 また、条件(b)に換えて条件(a)とともに条件(c1)が満たされる場合についても、可視光中心波長λaveを含む少なくとも一部分の可視光波長域の光に関し、干渉縞を有効に不可視化することができる。条件(a)が満たされる場合には、機能層15の側から積層体10へ入射した光は、中間層13と光透過性基材12との界面並びに機能層15と中間層13との界面の両方にて、自由端反射して位相を維持する。したがって、図3の入射光Liに対してπ〔rad〕だけ位相が遅れた光が、条件(a)および条件(c1)を満たす積層体10に機能層15の側から入射した場合、積層基材11での反射光が図3に示された反射光Lr1,Lr2,Lと同様の波形を呈するようになる。この点から、条件(b)に換えて条件(a)とともに条件(c1)が満たされる場合についても、少なくとも一部分の可視光に関し干渉縞を有効に不可視化し得ることが、理解される。 In addition, in the case where the condition (c1) is satisfied together with the condition (a) instead of the condition (b), interference fringes are effectively disabled for light in at least a part of the visible light wavelength region including the visible light center wavelength λ ave. Can be visualized. When the condition (a) is satisfied, the light incident on the laminate 10 from the functional layer 15 side is the interface between the intermediate layer 13 and the light transmissive substrate 12 and the interface between the functional layer 15 and the intermediate layer 13. In both cases, the phase is maintained by reflecting the free end. Therefore, when light whose phase is delayed by π [rad] with respect to the incident light Li in FIG. 3 is incident on the stacked body 10 satisfying the conditions (a) and (c1) from the functional layer 15 side, The reflected light from the material 11 has the same waveform as the reflected light L r1 , L r2 , L r shown in FIG. From this point, it is understood that interference fringes can be effectively invisible for at least a part of visible light even when the condition (c1) is satisfied together with the condition (a) instead of the condition (b).
 加えて、条件(b)に換えて条件(a)が満たされる場合、条件(b)が満たされる場合と同様に、中間層13は、光透過性基材12と機能層15との間に配置され、光透過性基材12と機能層15との間で面内の平均屈折率を二段階に分けて変化させる。したがって、反射率を効果的に低下させることによって、機能層15の側から積層体10に入射した光が、光透過性基材12に向けて進む間に、反射により進行方向を折り返すことを、効果的に防止することができる。これによっても、機能層15の側から積層体10に入射する光のうち、積層体10の機能層15側の表面で反射する光と、積層基材11からの反射光と、によって生じ得る干渉縞を効果的に目立たなくさせることができる。 In addition, when the condition (a) is satisfied instead of the condition (b), the intermediate layer 13 is interposed between the light-transmitting substrate 12 and the functional layer 15 as in the case where the condition (b) is satisfied. The in-plane average refractive index is changed in two steps between the light-transmitting substrate 12 and the functional layer 15. Therefore, by effectively reducing the reflectance, the light incident on the laminated body 10 from the functional layer 15 side is turned toward the light-transmitting substrate 12, and the traveling direction is turned back by reflection. It can be effectively prevented. Also by this, interference that may occur due to light reflected on the surface of the laminated body 10 on the functional layer 15 side and reflected light from the laminated base material 11 among the light incident on the laminated body 10 from the functional layer 15 side. Stripes can be effectively inconspicuous.
 以上のことから、上述した条件(a)および(b)の一方とともに条件(c1)が満たされる場合、可視光中心波長λaveを含む少なくとも一部分の可視光波長域の光が、干渉縞として視認されることを効果的に防止することができる。言い換えると、上述した条件(a)および(b)の一方とともに条件(c1)が満たされる場合、可視光中心波長λaveを含む波長域の光に対して、干渉縞不可視化機能(干渉縞を目立たなくさせる機能)が発揮される。さらに言い換えると、上述した条件(a)および(b)の一方とともに条件(c1)が満たされると、可視光中心波長λaveの光を含む可視光波長域の光に対して干渉縞不可視化機能が及ぼされるので、極めて効果的に干渉縞を目立たなくさせることができる。 From the above, when the condition (c1) is satisfied together with one of the above-described conditions (a) and (b), at least a part of light in the visible light wavelength region including the visible light center wavelength λ ave is visually recognized as interference fringes. Can be effectively prevented. In other words, when the condition (c1) is satisfied together with one of the above-described conditions (a) and (b), the interference fringe invisible function (interference fringe is reduced) with respect to light in the wavelength region including the visible light center wavelength λ ave. Function to make it inconspicuous). Furthermore, in other words, when the condition (c1) is satisfied together with one of the above-described conditions (a) and (b), the interference fringe invisible function is provided for light in the visible light wavelength region including light having the visible light center wavelength λ ave. Therefore, the interference fringes can be made inconspicuous very effectively.
 なお、JISZ8120の定義によれば、可視光波長域の最長波長λmaxは、830nmとなり、可視光波長域の最短波長λminは、360nmとすることができる。 According to the definition of JISZ8120, the longest wavelength λ max in the visible light wavelength region can be 830 nm, and the shortest wavelength λ min in the visible light wavelength region can be 360 nm.
 また、本件発明者らが鋭意実験を行ったところ、上述した条件(a)および条件(b)の一方とともに、次の条件(c2)が満たされる場合、注意深く観察したとしても干渉縞が視認されてしまうことを極めて効果的に抑制することができた。
  n>n>n  ・・・条件(a)
  n<n<n  ・・・条件(b)
  110/n≦t≦170/n    ・・・条件(c2)
Moreover, when the present inventors conducted an earnest experiment, when one of the above-described conditions (a) and (b) and the following condition (c2) are satisfied, interference fringes are visually recognized even when carefully observed. It was possible to effectively suppress this.
n 1 > n 2 > n 3 ... Condition (a)
n 1 <n 2 <n 3 Condition (b)
110 / n 2 ≦ t ≦ 170 / n 2 ... Condition (c2)
 また、干渉縞を不可視化する観点からは、上述した条件(a)および条件(b)の一方とともに、次の条件(c3)または条件(c4)、さらには条件(c5)が満たされるようにすることも有効である。
  n<n<n ・・・条件(a)
  n>n>n ・・・条件(b)
  555/(6×n)<t<555/(3×n
                      ・・・条件(c3)
  507/(6×n)<t<507/(3×n
                      ・・・条件(c4)
  555/(6×n)<t<507/(3×n
                      ・・・条件(c5)
Further, from the viewpoint of making the interference fringes invisible, the following condition (c3) or condition (c4) and further condition (c5) are satisfied together with one of the above-described conditions (a) and (b). It is also effective to do.
n 1 <n 2 <n 3 Condition (a)
n 1 > n 2 > n 3 ... Condition (b)
555 / (6 × n 2 ) <t <555 / (3 × n 2 )
... Condition (c3)
507 / (6 × n 2 ) <t <507 / (3 × n 2 )
... Condition (c4)
555 / (6 × n 2 ) <t <507 / (3 × n 2 )
... Condition (c5)
 国際照明委員会(CIE)は、可視光域内の各波長域の光に対する人間の感度は異なっていることを報告している。国際照明委員会(CIE)によれば、明るい場所に順応したときに人間が最も感じやすい光の波長は、555nmであり、暗い場所に順応したときに人間が最も感じやすい光の波長は、507nmである。したがって、条件(a)および条件(b)の一方とともに条件(c3)が満たされる場合には、明所において最も人間に感知されやすい波長域の光に対して、干渉縞不可視化機能を有効に発揮することができる。すなわち、条件(a)および(b)の一方とともに条件(c3)が満たされると、明るい場所にて干渉縞が視認されることを有効に防止することができる。一方、条件(a)および条件(b)の一方とともに条件(c4)が満たされる場合には、暗所において最も人間に感知されやすい波長域の光に対して、干渉縞不可視化機能を有効に発揮することができる。すなわち、条件(a)および(b)の一方とともに条件(c4)が満たされると、暗い場所にて干渉縞が視認されることを有効に防止することができる。さらに、条件(a)および条件(b)の一方とともに条件(c5)が満たされる場合には、明所において最も人間に感知されやすい波長域の光に対してだけでなく、暗所において人間に最も感知されやすい波長域の光に対しても、干渉縞不可視化機能を有効に発揮することができる。すなわち、条件(a)および(b)の一方とともに条件(c5)が満たされると、明るい場所および暗い場所の両方において干渉縞が視認されることを有効に防止することができる。 The International Commission on Illumination (CIE) reports that human sensitivity to light in each wavelength range within the visible light range is different. According to the International Commission on Illumination (CIE), the wavelength of light that is most easily felt by humans when adapting to a bright place is 555 nm, and the wavelength of light that is most easily felt by humans when adapting to a dark place is 507 nm. It is. Accordingly, when the condition (c3) is satisfied together with one of the condition (a) and the condition (b), the interference fringe invisible function is effectively enabled for light in a wavelength range that is most easily sensed by humans in a bright place. It can be demonstrated. That is, when the condition (c3) is satisfied together with one of the conditions (a) and (b), it is possible to effectively prevent the interference fringes from being visually recognized in a bright place. On the other hand, when the condition (c4) is satisfied together with one of the condition (a) and the condition (b), the interference fringe invisible function is effective for light in a wavelength range that is most easily sensed by humans in a dark place. It can be demonstrated. That is, when the condition (c4) is satisfied together with one of the conditions (a) and (b), it is possible to effectively prevent the interference fringes from being visually recognized in a dark place. Further, when the condition (c5) is satisfied together with one of the condition (a) and the condition (b), not only the light in the wavelength range that is most easily sensed by humans in the bright place but also the human being in the dark place. The interference fringe invisible function can be effectively exhibited even for light in the wavelength range that is most easily sensed. That is, when the condition (c5) is satisfied together with one of the conditions (a) and (b), it is possible to effectively prevent the interference fringes from being visually recognized in both a bright place and a dark place.
 なお、上述した式(5)だけでなく、自然数kを用いた次の式(5’)が満たされる場合にも、波長λの光に起因した干渉縞を目立たなくさせる観点において優位な状況となる。式(5’)が満たされる場合、式(5)が満たされる場合と比較して、反射光Lr2の光路が(λ×k)/(2×n)〔nm〕長くなるだけで、合成反射光Lの波形に変化は生じない。このため、式(5’)が満たされる場合、式(5)が満たされる場合と同様の作用効果を期待することができる。
  λ/(6×n2)<t-(k×λ)/(2×n2)<λ/(3×n2)  ・・・式(5’)
したがって、条件(a)および条件(b)のうちの一方とともに次の条件(c1’)が満たされる場合、条件(a)および条件(b)のうちの一方とともに条件(c1)が満たされる場合と同様の作用効果を期待することができる。
  λave/(6×n2)<t-(k×λave)/(2×n2)<λave/(3×n2)
                      ・・・式(c1’)
In addition, not only the above-described equation (5) but also the following equation (5 ′) using the natural number k is satisfied, the situation is advantageous in terms of making the interference fringes caused by the light of wavelength λ inconspicuous. Become. When Expression (5 ′) is satisfied, the optical path of the reflected light L r2 is only (λ × k) / (2 × n 2 ) [nm] longer than that when Expression (5) is satisfied. change in the waveform of the synthesized reflected light L r does not occur. For this reason, when Formula (5 ') is satisfy | filled, the effect similar to the case where Formula (5) is satisfy | filled can be anticipated.
λ / (6 × n 2 ) <t− (k × λ) / (2 × n 2 ) <λ / (3 × n 2 ) Equation (5 ′)
Therefore, when the next condition (c1 ′) is satisfied together with one of the conditions (a) and (b), the condition (c1) is satisfied together with one of the conditions (a) and (b). The same effect can be expected.
λ ave / (6 × n 2 ) <t− (k × λ ave ) / (2 × n 2 ) <λ ave / (3 × n 2 )
... Formula (c1 ')
 また、条件(c2)~条件(c4)についても、同様の理由から、これら条件(c2)~条件(c5)に代えて次の条件(c2’)~条件(c5’)が満たされる場合にも、条件(c2)~条件(c5)が満たされる場合と同様の作用効果を期待することができる。
  110/n2≦t-(k×λave)/(2×n2)≦170/n2 ・・・条件(c2’)
  555/(6×n2)<t-(k×555)/(2×n2)<555/(3×n2) 
                      ・・・条件(c3’)
  507/(6×n2)<t-(k×507)/(2×n2)<507/(3×n2)
                      ・・・条件(c4’)
  507/(6×n2)<t-(k×((507+555)/2))/(2×n2)<507/(3×n2)
                      ・・・条件(c5’)
For the same reason, the conditions (c2) to (c4) are satisfied when the following conditions (c2 ′) to (c5 ′) are satisfied instead of these conditions (c2) to (c5). Also, it is possible to expect the same effect as when the conditions (c2) to (c5) are satisfied.
110 / n 2 ≦ t− (k × λ ave ) / (2 × n 2 ) ≦ 170 / n 2 ... Condition (c2 ′)
555 / (6 × n 2 ) <t- (k × 555) / (2 × n 2 ) <555 / (3 × n 2 )
... Condition (c3 ')
507 / (6 × n 2 ) <t- (k × 507) / (2 × n 2 ) <507 / (3 × n 2 )
... Condition (c4 ')
507 / (6 × n 2 ) <t- (k × ((507 + 555) / 2)) / (2 × n 2 ) <507 / (3 × n 2 )
... Condition (c5 ')
 ただし、条件(c1)~条件(c5)に代えて条件(c1’)~条件(c5’)が満たされることは、中間層13の厚みtが増加することを意味している。したがって、材料費の観点から、条件(c1’)~条件(c5’)よりも条件(c1)~条件(c5)が満たされることが好ましい。 However, satisfying the conditions (c1 ′) to (c5 ′) instead of the conditions (c1) to (c5) means that the thickness t of the intermediate layer 13 is increased. Therefore, from the viewpoint of material cost, it is preferable that the conditions (c1) to (c5) are satisfied rather than the conditions (c1 ′) to (c5 ′).
 ところで、従来技術の欄でも説明したように、昨今、光透過性基材12が面内の複屈折性を有する場合もある。光透過性基材12が面内の複屈折率を有する場合、光透過性基材12のシート面に沿った面内における各方向での屈折率は変化する。そして、上述した合成干渉光Lの強度を低下させる機能がより効果的に発揮されるためには、光透過性基材12の面内の平均屈折率nによって上述した式(a)および(b)の一方が満たされるだけでなく、次の条件(d)および(e)の一方が満たされることが好ましい。
  n1x<n<n    ・・・条件(d)
  n1y>n>n    ・・・条件(e)
ここで、条件(e)における「n1x」は、光透過性基材12の面内における最も屈折率が大きい方向である遅相軸方向における屈折率の値である。一方、条件(d)における「n1y」は、光透過性基材12の面内における最も屈折率が小さい方向である進相軸方向における屈折率の値である。
By the way, as described in the section of the prior art, the light-transmitting substrate 12 may have in-plane birefringence recently. When the light transmissive substrate 12 has an in-plane birefringence, the refractive index in each direction in the plane along the sheet surface of the light transmissive substrate 12 changes. In order to function to reduce the strength of the above synthesized interference light L r is more effectively exerted, the above expression by the mean refractive index n 1 in the plane of the light-transmitting substrate 12 (a) and 12 It is preferable that not only one of (b) is satisfied but also one of the following conditions (d) and (e) is satisfied.
n 1x <n 2 <n 3 ... condition (d)
n 1y > n 2 > n 3 ... condition (e)
Here, “n 1x ” in the condition (e) is a value of the refractive index in the slow axis direction, which is the direction in which the refractive index is the largest in the plane of the light transmissive substrate 12. On the other hand, “n 1y ” in condition (d) is the value of the refractive index in the fast axis direction, which is the direction in which the refractive index is the smallest in the plane of the light transmissive substrate 12.
 式(d)および式(e)の一方が満たされる場合には、光透過性基材12の面内の平均屈折率nだけでなく、光透過性基材12の面内の全ての方向における屈折率narbによって、次の条件(d’)および条件(e’)の一方が満たされることになる。
  narb<n<n   ・・・条件(d’)
  narb>n>n   ・・・条件(e’)
条件(d’)および条件(e’)の一方が満たされる場合には、光透過性基材12の面内の遅相軸方向に振動する偏光成分の光および光透過性基材12の面内の進相軸方向に振動する偏光成分の光の両方が、位相のずれに関して互いに同様の条件にて機能層15と中間層13との界面で反射し、且つ、位相のずれに関して互いに同様の条件にて中間層13と光透過性基材12との界面で反射する。すなわち、条件(d’)および条件(e’)の一方が満たされる場合には、機能層15の側から積層基材11の側へと積層体10内を進む光は、当該光の偏光状態に依らず、機能層15と中間層13との界面並びに中間層13と光透過性基材12との界面の両方の界面にて自由端反射する、或いは、両方の界面にて固定端反射する。このため、条件(d’)および条件(e’)の一方が満たされる場合には、偏光状態に依存することなく、上述した積層基材11からの反射光の光量(積層基材11での反射率)を低下させる機能および合成干渉光Lの強度を低下させる機能の両方が極めて有効に発揮される。
When one of the formulas (d) and (e) is satisfied, not only the average refractive index n 1 in the plane of the light transmissive substrate 12 but also all directions in the plane of the light transmissive substrate 12 One of the following conditions (d ′) and (e ′) is satisfied by the refractive index n arb at .
n arb <n 2 <n 3 ... condition (d ′)
n arb > n 2 > n 3 ... condition (e ′)
When one of the condition (d ′) and the condition (e ′) is satisfied, the light of the polarization component that vibrates in the slow axis direction in the plane of the light transmissive substrate 12 and the surface of the light transmissive substrate 12 Both of the polarized light components oscillating in the fast axis direction are reflected at the interface between the functional layer 15 and the intermediate layer 13 under the same conditions with respect to the phase shift, and the same with respect to the phase shift. Reflected at the interface between the intermediate layer 13 and the light-transmitting substrate 12 under conditions. That is, when one of the condition (d ′) and the condition (e ′) is satisfied, the light traveling in the laminated body 10 from the functional layer 15 side to the laminated base material 11 side is the polarization state of the light. Regardless of the relationship, free-end reflection is performed at both the interface between the functional layer 15 and the intermediate layer 13 and the interface between the intermediate layer 13 and the light-transmitting substrate 12, or fixed-end reflection is performed at both interfaces. . For this reason, when one of the condition (d ′) and the condition (e ′) is satisfied, the amount of reflected light from the laminated base material 11 described above (depending on the laminated base material 11) is not dependent on the polarization state. Both the function of reducing the (reflectance) and the function of reducing the intensity of the combined interference light L r are exhibited extremely effectively.
 その一方で、条件(a)および条件(b)の一方が満たされるものの、条件(d’)および条件(e’)の両方ともが満たされない場合には、機能層15の側から積層基材11の側へと積層体10内を進む光の一部が、当該光の偏光状態に依存して、機能層15と中間層13との界面並びに中間層13と光透過性基材12との界面の一方の界面にて自由端反射し、他方の界面にて固定端反射するようになる。このような光に対しては、上述した合成干渉光Lの強度を低下させる機能も、積層基材11からの反射光の光量(積層基材11での反射率)を低下させる機能も有効に及ぼすことはできない。しかしながら、条件(a)および条件(b)の一方が満たされる場合には、条件(d’)および条件(e’)の両方ともが満たされないような状況にても、機能層15の側から積層基材11の側へと積層体10内を進むより多くの光に対して、上述した干渉縞不可視化機能を有効に及ぼされる。すなわち、条件(a)および条件(b)の一方とともに、上述した条件(c1)~(c6)のいずれかが満たされる場合には、機能層15の側から積層体10へ入射した光に対して、上述した積層基材11からの反射光の光量(積層基材11での反射率)を低下させる機能および合成干渉光Lの強度を低下させる機能が、主として及ぼされることになり、干渉縞を効果的に目立たなくさせることができる。 On the other hand, when one of the condition (a) and the condition (b) is satisfied, but both the condition (d ′) and the condition (e ′) are not satisfied, the laminated base material is started from the functional layer 15 side. Depending on the polarization state of the light, a part of the light traveling in the laminated body 10 toward the 11 side is the interface between the functional layer 15 and the intermediate layer 13 and between the intermediate layer 13 and the light transmissive substrate 12. Free end reflection is performed at one of the interfaces, and fixed end reflection is performed at the other interface. For such light, the function of reducing the intensity of the synthetic interference light L r described above and the function of reducing the amount of reflected light from the laminated base material 11 (reflectance at the laminated base material 11) are also effective. Can not affect. However, when one of the condition (a) and the condition (b) is satisfied, even from the situation where both the condition (d ′) and the condition (e ′) are not satisfied, from the functional layer 15 side. The interference fringe invisible function described above is effectively exerted on more light that travels in the laminated body 10 toward the laminated substrate 11. That is, when any one of the above conditions (c1) to (c6) is satisfied together with one of the conditions (a) and (b), the light incident on the laminate 10 from the functional layer 15 side Te, function to lower the strength of the function and synthetic interference light L r lowering (reflectance at the laminated substrate 11) the amount of reflected light from the multilayer substrate 11 described above is, will be mainly exerted, interference Stripes can be effectively inconspicuous.
 加えて、光透過性基材12が面内の複屈折率を有する場合、図4に示された各層12,13,15の各方向d,dにおける屈折率n1x,n2x,n3x,n1y,n2y,n3yが、次のように設定されていることが好ましい。すなわち、積層基材11からの反射光の光量(積層基材11での反射率)を低下させる機能を有効に発揮する観点から、光透過性基材12の面内における最も屈折率が大きい方向である遅相軸方向dにおける屈折率n1x、光透過性基材12の遅相軸方向dと平行な方向における中間層の屈折率n2x、および、光透過性基材12の遅相軸方向dと平行な方向における機能層15の屈折率n3xが、
  n1x<n2x<n3x   ・・・条件(f)
  n1x>n2x>n3x   ・・・条件(g)
なる条件(f)および(g)のいずれか一方を満たし、光透過性基材12の面内において遅相軸方向dに直交する進相軸方向dにおける屈折率n1y、光透過性基材11の進相軸方向dと平行な方向における中間層13の屈折率n2y、および、光透過性基材12の進相軸方向dと平行となる方向における機能層15の屈折率n3yが、
  n1y<n2y<n3y   ・・・条件(h)
  n1y>n2y>n3y   ・・・条件(i)
なる条件(h)および(i)のいずれか一方を満たすことが好ましい。
In addition, if the light-transmitting substrate 12 having a birefringence in the plane, the direction d x of the layers 12, 13, 15 shown in FIG. 4, the refractive index at d y n 1x, n 2x, n 3x , n 1y , n 2y , and n 3y are preferably set as follows. That is, from the viewpoint of effectively exhibiting the function of reducing the amount of reflected light from the laminated base material 11 (reflectance at the laminated base material 11), the direction having the largest refractive index in the plane of the light transmissive base material 12 refractive index n 1x in the slow axis direction d x is the refractive index of the intermediate layer in the slow axis direction d x parallel to the direction of the light transmitting substrate 12 n 2x, and the light-transmitting substrate 12 slow The refractive index n 3x of the functional layer 15 in the direction parallel to the phase axis direction d x is
n 1x <n 2x <n 3x ... condition (f)
n 1x > n 2x > n 3x Condition (g)
The condition either satisfies one of (f) and (g), the refractive index n 1y in fast axis direction d y perpendicular to the slow axis direction d x in the plane of the light transmitting substrate 12, light transmitting refractive index n 2y of fast axis d y and the intermediate layer 13 in the parallel direction of the base 11, and, refraction fast axis d y and functional layer 15 in the direction parallel to light-transmitting substrate 12 The rate n 3y is
n 1y <n 2y <n 3y ... condition (h)
n 1y > n 2y > n 3y ... condition (i)
It is preferable to satisfy any one of the following conditions (h) and (i).
 条件(f)および(g)のいずれか一方が満たされ、且つ、条件(h)および(i)のいずれか一方が満たされる場合、中間層13は、機能層15と複屈性を有した光透過性基材12との間に配置され、光透過性基材12の遅相軸方向dおよび進相軸方向dの両方向において屈折率を二段階に分けて変化させる。これにより、機能層15と複屈性を有した光透過性基材12との間には、光透過性基材12の遅相軸方向dにおける屈折率が大きく変化する界面が存在せず、且つ、光透過性基材12の進相軸方向dにおける屈折率が大きく変化する界面も存在しない。すなわち、機能層15と複屈性を有した光透過性基材12との間には、光透過性基材12の遅相軸方向dおよび進相軸方向dの両方向における屈折率差が小さく、このために反射率が低くなる界面しか、存在しない。 When any one of the conditions (f) and (g) is satisfied and any one of the conditions (h) and (i) is satisfied, the intermediate layer 13 has birefringence with the functional layer 15. is disposed between the light-transmitting substrate 12 is varied divided refractive index in two stages in both the slow axis direction d x and fast axis direction d y of the light transmitting substrate 12. Thereby, there is no interface between the functional layer 15 and the light-transmitting base material 12 having birefringence, in which the refractive index in the slow axis direction d x of the light-transmitting base material 12 changes greatly. and no interface fast axis d refractive index in the y of the light-transmitting substrate 12 is largely changed even exist. That is, a relation between the functional layer 15 and the light-transmitting substrate 12 having a double tropism, refractive index difference in both the slow axis direction d x and fast axis direction d y of the light transmitting substrate 12 There is only an interface where the reflectivity is low and thus the reflectivity is low.
 したがって、機能層15の側から積層体10に入射した光が、光透過性基材12に向けて進む間に、反射により進行方向を折り返すことを、より効果的に防止することができる。これにより、機能層15の側から積層体10に入射する光のうち、機能層15の表面で反射する光と、機能層15と中間層13との界面または中間層13と光透過性基材12との界面で反射する光と、によって生じ得る干渉縞をより効果的に目立たなくさせることができる。 Therefore, it is possible to more effectively prevent the light incident on the laminated body 10 from the functional layer 15 side from turning back in the traveling direction due to reflection while traveling toward the light-transmitting substrate 12. Thereby, of the light incident on the laminate 10 from the functional layer 15 side, the light reflected on the surface of the functional layer 15 and the interface between the functional layer 15 and the intermediate layer 13 or the intermediate layer 13 and the light-transmitting substrate. The interference fringes that can be generated by the light reflected at the interface with the surface 12 can be made more inconspicuous.
 また、光透過性基材12の遅相軸方向dと平行な方向における中間層13の屈折率n2x、および、光透過性基材12の進相軸方向dと平行な方向における中間層13の屈折率n2yが、
  n2x>n2y  ・・・条件(j)
なる条件(j)を満たすことが好ましい。この場合、中間層13も面内の複屈折性を有するようになる。そして、条件(j)が満たされる場合には、機能層15と複屈性を有した光透過性基材12との間において、光透過性基材12の遅相軸方向dにおける屈折率を二回にわけて少しずつ変化させることができ、且つ、光透過性基材12の進相軸方向dにおける屈折率も二回にわけて少しずつ変化させることができる。これにより、機能層15の側から積層体10に入射した光が、光透過性基材12に進む間に、反射により進行方向を折り返すことを、より効果的に防止することができる。この結果、干渉縞をより効果的に目立たなくさせることができる。
The refractive index n 2x of the intermediate layer 13 in the slow axis direction d x parallel to the direction of the light transmitting substrate 12, and an intermediate in the fast axis direction d y parallel to the direction of the light transmitting substrate 12 The refractive index n 2y of the layer 13 is
n 2x > n 2y ... condition (j)
It is preferable to satisfy the following condition (j). In this case, the intermediate layer 13 also has in-plane birefringence. When the condition (j) is satisfied, the refractive index in the slow axis direction d x of the light transmissive substrate 12 between the functional layer 15 and the light transmissive substrate 12 having birefringence. the divided in two times can be changed little by little, and can be changed little by little fast axis refractive index in the direction d y of the light transmitting substrate 12 be divided into two times. Thereby, it can prevent more effectively that the light which injected into the laminated body 10 from the side of the functional layer 15 turns advancing direction by reflection, while advancing to the light transmissive base material 12. FIG. As a result, interference fringes can be made inconspicuous more effectively.
 また、条件(j)が満たされる場合に、光透過性基材12の遅相軸方向dにおける屈折率n1x、光透過性基材12の進相軸方向dにおける屈折率n1y、光透過性基材12の遅相軸方向dと平行な方向における中間層13の屈折率n2x、および、光透過性基材12の進相軸方向dと平行な方向における中間層13の屈折率n2yが、
  (n1x-n1y)>(n2x-n2y)  ・・・条件(k)
なる条件(k)を満たすことがさらに好ましい。例えば、光透過性基材12の遅相軸方向dと平行な方向における機能層15の屈折率n3x、および、光透過性基材12の進相軸方向dと平行な方向における機能層15の屈折率n3yが大きく相違しない場合、典型的には、機能層15が光学等方性であり、複屈性を有していない場合には、条件(j)及び条件(k)が満たされることによって、中間層13が必要以上に強い複屈折性を呈することなく、光透過性基材12の遅相軸方向dおよび進相軸方向dの両方向において、屈折率を少しずつ二回にわけて変化させることができる。これにより、機能層15の側から積層体10に入射した光が、光透過性基材12に進む間に、反射により進行方向を折り返すことを、さらに効果的に防止することができる。この結果、干渉縞をさらに効果的に目立たなくさせることができる。
Further, if the condition (j) is satisfied, the refractive index in the slow axis direction d x of the light transmitting substrate 12 n 1x, the refractive index in the fast axis direction d y of the light transmitting substrate 12 n 1y, refractive index n 2x of the intermediate layer 13 in the slow axis direction d x parallel to the direction of the light transmitting substrate 12, and the intermediate layer in the fast axis direction d y parallel to the direction of the light transmitting substrate 12 13 The refractive index n 2y of
(N 1x -n 1y )> (n 2x -n 2y ) ... condition (k)
More preferably, the following condition (k) is satisfied. For example, the refractive index n 3x functional layer 15 in the slow axis direction d x parallel to the direction of the light transmitting substrate 12, and, the fast axis direction d y and functions in parallel with the direction of the light-transmitting substrate 12 When the refractive index n 3y of the layer 15 is not significantly different, typically, when the functional layer 15 is optically isotropic and does not have birefringence, the condition (j) and the condition (k) by is satisfied, without intermediate layer 13 exhibits a strong birefringence than necessary, in both the slow axis direction d x and fast axis direction d y of the light transmitting substrate 12, a refractive index slightly It can be changed in two steps. Thereby, it is possible to more effectively prevent the light incident on the laminated body 10 from the functional layer 15 side from turning back in the traveling direction due to reflection while traveling to the light transmissive substrate 12. As a result, the interference fringes can be made more inconspicuous.
 また、図5に示すように、積層基材11を法線方向(積層基材11のシート面への法線方向)から観察した場合に、光透過性基材12の遅相軸方向dと、中間層13の面内における最も屈折率が大きい方向である中間層13の遅相軸方向dと、によってなされる角度θの大きさが、45°未満(条件(la))であることが好ましく、30°未満(条件(lb))であることがさらに好ましい。この角度θが小さいほど、中間層13の面内での屈折率の大小の分布が、光透過性基材12の面内での屈折率の大小の分布と同傾向を示すようになる。 In addition, as shown in FIG. 5, when the laminated base material 11 is observed from the normal direction (normal direction to the sheet surface of the laminated base material 11), the slow axis direction d x of the light transmissive base material 12. When the size of the angle made with the slow axis direction d a of the intermediate layer 13 is a direction most refractive index is larger in the plane of the intermediate layer 13, the θ is less than 45 ° (condition (la)) It is preferable that the angle is less than 30 ° (condition (lb)). As the angle θ is smaller, the distribution of the refractive index in the plane of the intermediate layer 13 shows the same tendency as the distribution of the refractive index in the plane of the light transmissive substrate 12.
 すなわち、条件(la)が満たされてこの角度θが45°未満の場合、上述してきた光透過性基材12の遅相軸方向dおよび進相軸方向dの二方向だけでなく、光透過性基材12のシート面に沿った種々の方向における屈折率を、機能層15と光透過性基材12との間で、大きく変化させることなく、二回に分けてしだいに変化させる上で、優位な状況となる。さらに、条件(lb)が満たされてこの角度θが30°未満の場合には、上述してきた光透過性基材12の遅相軸方向dおよび進相軸方向dの二方向だけでなく、光透過性基材12のシート面に沿った概ねすべての方向における屈折率が、機能層15と光透過性基材12との間で、大きく変化することなく、二回に分けてしだいに変化していくようになる。とりわけ、この角度θが0°の場合、つまり、光透過性基材12の遅相軸方向dと中間層13の遅相軸方向dとが平行な場合(条件(m))には、各方向における屈折率が、異なる方向の屈折率の変化と同様に傾向を呈しながら、機能層15と光透過性基材12との間で二回にわけてしだいに変化していく。これにより、機能層15の側から積層体10に入射した光が、光透過性基材12に進む間に、反射により進行方向を折り返すことを、極めて効果的に防止することができ、干渉縞を極めて効果的に目立たなくさせることができる。 That is, if the angle θ the condition (la) is satisfied is less than 45 °, not only the two directions along the slow axis d x and fast axis direction d y of the light transmissive substrate 12 which has been described above, The refractive index in various directions along the sheet surface of the light transmissive substrate 12 is gradually changed in two steps without largely changing between the functional layer 15 and the light transmissive substrate 12. On top of that, the situation will be superior. Furthermore, the condition (lb) is met when the angle θ is less than 30 ° is only two directions along the slow axis d x and fast axis direction d y of the light transmissive substrate 12 which has been described above The refractive index in almost all directions along the sheet surface of the light transmissive substrate 12 does not change greatly between the functional layer 15 and the light transmissive substrate 12, and can be divided into two steps. Will change. Especially, if the angle θ is 0 °, that is, when the slow axis direction d a of the slow axis direction d x and the intermediate layer 13 of the light transmitting substrate 12 are parallel (condition (m)) is The refractive index in each direction gradually changes twice between the functional layer 15 and the light-transmitting substrate 12 while exhibiting the same tendency as the change in the refractive index in different directions. Thereby, it is possible to extremely effectively prevent the light incident on the laminated body 10 from the side of the functional layer 15 from turning back due to reflection while traveling to the light-transmitting base material 12. Can be made extremely inconspicuous.
 ここで図5における光透過性基材12上に描かれた楕円は、光透過性基材12の屈折率の分布を示す屈折率楕円体の一例についての光透過性基材12上での断面を示している。同様に、図5における中間層13上に描かれた楕円は、中間層13の屈折率の分布を示す屈折率楕円体の一例についての中間層13上での断面を示している。 Here, the ellipse drawn on the light transmissive substrate 12 in FIG. 5 is a cross-section on the light transmissive substrate 12 for an example of a refractive index ellipsoid showing the refractive index distribution of the light transmissive substrate 12. Is shown. Similarly, an ellipse drawn on the intermediate layer 13 in FIG. 5 shows a cross section on the intermediate layer 13 for an example of a refractive index ellipsoid showing the refractive index distribution of the intermediate layer 13.
 さらに、光透過性基材12の遅相軸方向dにおける屈折率n1x、光透過性基材13の進相軸方向dにおける屈折率n1y、中間層13の遅相軸方向dにおける屈折率n2a、および、中間層の進相軸方向dにおける屈折率n2bが、
  (n1x-n1y)>(n2a-n2b)  ・・・条件(n)
なる条件(n)を満たすことが好ましい。条件(n)が満たされる場合、上述した条件(k)が満たされる場合と同様に、中間層13が必要以上に強い複屈折性を有することを防止することができ、これにより、干渉縞を効果的に目立たなくさせることができる。
Further, the refractive index in the slow axis direction d x of the light transmitting substrate 12 n 1x, the refractive index in the fast axis direction d y of the light transmitting substrate 13 n 1y, slow axis direction d a of the intermediate layer 13 refractive index n 2a in, and the refractive index n 2b in the fast axis direction d b of the intermediate layer,
(N 1x −n 1y )> (n 2a −n 2b )... Condition (n)
It is preferable to satisfy the following condition (n). When the condition (n) is satisfied, as in the case where the condition (k) is satisfied, the intermediate layer 13 can be prevented from having an unnecessarily strong birefringence. It can be effectively inconspicuous.
<光透過性基材>
 次に、光透過性基材12について詳述する。光透過性基材12としては、光透過性を有すれば特に限定されないが、例えば、セルロースアシレート基材、シクロオレフィンポリマー基材、ポリカーボネート基材、アクリレート系ポリマー基材、ポリエステル基材、またはガラス基材が挙げられる。
<Light transmissive substrate>
Next, the light transmissive substrate 12 will be described in detail. The light-transmitting substrate 12 is not particularly limited as long as it has light-transmitting properties. For example, a cellulose acylate substrate, a cycloolefin polymer substrate, a polycarbonate substrate, an acrylate polymer substrate, a polyester substrate, or A glass substrate is mentioned.
 セルロースアシレート基材としては、例えば、セルローストリアセテート基材、セルロースジアセテート基材が挙げられる。シクロオレフィンポリマー基材としては、例えばノルボルネン系モノマーおよび単環シクロオレフィンモノマー等の重合体からなる基材が挙げられる。 Examples of the cellulose acylate substrate include a cellulose triacetate substrate and a cellulose diacetate substrate. As a cycloolefin polymer base material, the base material which consists of polymers, such as a norbornene-type monomer and a monocyclic cycloolefin monomer, is mentioned, for example.
 シクロオレフィンポリマー基材としては、例えばノルボルネン系モノマーおよび単環シクロオレフィンモノマー等の重合体からなる基材が挙げられる。 Examples of the cycloolefin polymer substrate include a substrate made of a polymer such as a norbornene monomer and a monocyclic cycloolefin monomer.
 ポリカーボネート基材としては、例えば、ビスフェノール類(ビスフェノールA等)をベースとする芳香族ポリカーボネート基材、ジエチレングリコールビスアリルカーボネート等の脂肪族ポリカーボネート基材等が挙げられる。 Examples of the polycarbonate substrate include aromatic polycarbonate substrates based on bisphenols (bisphenol A and the like), aliphatic polycarbonate substrates such as diethylene glycol bisallyl carbonate, and the like.
 アクリレート系ポリマー基材としては、例えば、ポリ(メタ)アクリル酸メチル基材、ポリ(メタ)アクリル酸エチル基材、(メタ)アクリル酸メチル-(メタ)アクリル酸ブチル共重合体基材等が挙げられる。 Examples of the acrylate polymer substrate include a poly (meth) methyl acrylate substrate, a poly (meth) ethyl acrylate substrate, a (meth) methyl acrylate- (meth) butyl acrylate copolymer substrate, and the like. Can be mentioned.
 ポリエステル基材としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレンナフタレート、ポリエチレン-2,6-ナフタレートの少なくとも1種を構成成分とする基材等が挙げられる。 Examples of the polyester substrate include at least one of polyethylene terephthalate, polypropylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene naphthalate, and polyethylene-2,6-naphthalate. The base material etc. which are made into a structural component are mentioned.
 ガラス基材としては、例えば、ソーダライムシリカガラス、ホウ珪酸塩ガラス、無アルカリガラス等のガラス基材が挙げられる。 Examples of the glass substrate include glass substrates such as soda lime silica glass, borosilicate glass, and alkali-free glass.
 光透過性基材12の面内の平均屈折率nは、1.40以上1.80以下とすることが可能である。 The in-plane average refractive index n 1 of the light transmissive substrate 12 can be 1.40 or more and 1.80 or less.
 また、光透過性基材12は、可視光領域における透過率が80%以上であることが好ましく、84%以上であるものがより好ましい。なお、上記透過率は、JISK7361-1(プラスチック-透明材料の全光透過率の試験方法)により測定することができる。 Further, the light-transmitting substrate 12 preferably has a transmittance in the visible light region of 80% or more, more preferably 84% or more. The transmittance can be measured by JISK7361-1 (Plastic—Testing method of total light transmittance of transparent material).
 さらに、光透過性基材12には本発明の趣旨を逸脱しない範囲で、けん化処理、グロー放電処理、コロナ放電処理、紫外線(UV)処理、及び火炎処理等の表面処理を行ってもよい。 Furthermore, the light transmissive substrate 12 may be subjected to surface treatment such as saponification treatment, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment, and flame treatment without departing from the spirit of the present invention.
 ところで、光透過性基材12は、面内での複屈折率を有していてもよい。面内での複屈折率を有する光透過性基材12は、一般的に、機械的特性、透明性、熱等に対する安定性の面において優れるとともに、コスト的に極めて有利である。以下、面内での複屈折性を有する光透過性基材12について説明する。 Incidentally, the light transmissive substrate 12 may have an in-plane birefringence. The light-transmitting substrate 12 having an in-plane birefringence is generally excellent in terms of mechanical properties, transparency, stability to heat, and the like, and is extremely advantageous in terms of cost. Hereinafter, the light transmissive substrate 12 having in-plane birefringence will be described.
 光学異方性の光透過性基材12は物性やコスト面で有利であるが、その一方で、このような光学異方性の光透過性基材12を、一方の直線偏光成分の光によって画像を形成する液晶表示パネルのような表示デバイスに重ねると、ニジムラと呼ばれる色模様として観察されるムラ模様が発生してしまうことがある。このニジムラに対処するため、光透過性基材12は、3000nm以上のリタデーションを有している。3000nm以上のリタデーションを有する光透過性基材であれば、当該光透過性基材を画像表示装置に組み込んだとしても、画像表示装置の表示画像にニジムラが生じることを効果的に抑制することができる。ニジムラを不可視化し得るメカニズムの詳細は不明であるが、光透過性基材12に高リタデーションを付与することによって、ニジムラを生じさせていた光がより連続的なスペクトル分布を有するようになり、これにより、もはや特異な色を呈するムラとして視認されなくなると予想される。 The optically anisotropic light-transmitting substrate 12 is advantageous in terms of physical properties and cost. On the other hand, such an optically anisotropic light-transmitting substrate 12 is converted into light by one linearly polarized light component. When the image is superimposed on a display device such as a liquid crystal display panel that forms an image, a non-uniform pattern that is observed as a color pattern called “nizimura” may occur. In order to cope with this nidimra, the light transmissive substrate 12 has a retardation of 3000 nm or more. If it is a light-transmitting base material having a retardation of 3000 nm or more, even if the light-transmitting base material is incorporated in an image display device, it is possible to effectively suppress the occurrence of Nizimura in the display image of the image display device. it can. Although the details of the mechanism that can make NDIMURA invisible are unclear, by giving high retardation to the light-transmitting substrate 12, the light that has caused NDJ has a more continuous spectral distribution, As a result, it is expected that it will no longer be visually recognized as unevenness exhibiting a unique color.
 また、このような高リタデーションの光透過性基材12を用いることにより、従来広く用いられてきたトリアセチルセルロース製基材等の光学等方性基材と比較して優れた次の作用効果を奏し得る。一方の直線偏光成分の光によって画像を形成する液晶表示パネルのような表示デバイスに光学等方性の基材を重ねた場合、サングラスに代表される偏光眼鏡を装着した観察者が、当該偏光眼鏡の吸収軸の向きに依存して、画像表示装置の画像を明るく観察することができない、さらには、画像表示装置の画像を観察することができないといった不具合が生じていた。一方、光学異方性の光透過性基材12、とりわけ、3000nm以上の高リタデーションの光透過性基材12を用いた場合、光学等方性の基材を用いた場合と比較して、偏光眼鏡の吸収軸の向きに依らず、画像をより明るく観察することができた。このような現象は、表示デバイスから投射される画像光の偏光状態が、光学異方性の光透過性基材12、とりわけ、3000nm以上の高リタデーションの光透過性基材12によって乱されることによるものと推測される。昨今、表示装置の使用環境が急速に多様化し、例えば、携帯デバイスや屋外で使用されるデバイス等へも広く適用されている。このような表示装置の使用態様の多様化にともない、観察者が偏光眼鏡を装着した状態で表示装置を観察する状況がより頻繁に生じることが予想される。このような傾向からも、光学異方性の光透過性基材12、とりわけ、3000nm以上の高リタデーションの光透過性基材12の光学フィルム10への適用は非常に有用である。 In addition, by using such a light transmissive substrate 12 having a high retardation, the following effects can be obtained which are superior to those of an optically isotropic substrate such as a triacetyl cellulose substrate that has been widely used conventionally. . When an optically isotropic substrate is superimposed on a display device such as a liquid crystal display panel that forms an image with light of one linearly polarized light component, an observer wearing polarized glasses represented by sunglasses Depending on the direction of the absorption axis, there is a problem that the image on the image display device cannot be observed brightly, and further that the image on the image display device cannot be observed. On the other hand, when using the optically anisotropic light-transmitting substrate 12, in particular, the light-transmitting substrate 12 having a high retardation of 3000 nm or more, compared with the case of using an optically isotropic substrate, polarized light The image could be observed brighter regardless of the direction of the absorption axis of the glasses. In such a phenomenon, the polarization state of the image light projected from the display device is disturbed by the optically anisotropic light-transmitting substrate 12, particularly, the light-transmitting substrate 12 having a high retardation of 3000 nm or more. It is estimated that In recent years, the usage environment of display devices has rapidly diversified, and is widely applied to, for example, portable devices and devices used outdoors. With such diversification of usage modes of the display device, it is expected that a situation in which the observer observes the display device while wearing polarized glasses is expected to occur more frequently. Also from such a tendency, application of the optically anisotropic light-transmitting substrate 12 to the optical film 10 of the light-transmitting substrate 12 having a high retardation of 3000 nm or more, in particular, is very useful.
 なお、リタデーションは、面内の複屈折性の程度を表す指標である。ニジムラ防止性及び薄膜化の観点から、6000nm以上25000nm以下であることがより好ましく、8000nm以上20000nm以下であることがさらに好ましい。 Note that retardation is an index representing the degree of in-plane birefringence. From the viewpoint of preventing azimuth and thinning, it is more preferably 6000 nm or more and 25000 nm or less, and further preferably 8000 nm or more and 20000 nm or less.
 リタデーションRe(単位:nm)は、光透過性基材の面内において最も屈折率が大きい方向(遅相軸方向)の屈折率(n1x)と、遅相軸方向と直交する方向(進相軸方向)の屈折率(n1y)と、光透過性基材の厚みd(単位:nm)とを用いて、下記式(7)で表される。
  Re=(n1x-n1y)×d  …(7)
Retardation Re (unit: nm) is the refractive index (n 1x ) in the direction with the highest refractive index (slow axis direction) in the plane of the light transmissive substrate, and the direction (fast phase) perpendicular to the slow axis direction. Using the refractive index (n 1y ) in the axial direction and the thickness d (unit: nm) of the light-transmitting substrate, it is represented by the following formula (7).
Re = (n 1x −n 1y ) × d (7)
 リタデーションは、例えば、王子計測機器製KOBRA-WRを用いて、測定角0°かつ測定波長548.2nmに設定して、測定された値とすることができる。また、リタデーションは、次の方法でも求めることができる。まず、二枚の偏光板を用いて、光透過性基材の配向軸方向を求め、配向軸方向に対して直交する二つの軸の屈折率(n1x,n1y)を、アッベ屈折率計(アタゴ社製 NAR-4T)によって求める。ここで、より大きい屈折率を示す軸を遅相軸と定義する。また、光透過性基材の厚みを例えば電気マイクロメータ(アンリツ社製)を用いて測定する。そして、得られた屈折率を用いて、屈折率差(n1x-n1y)(以下、n1x-n1yをΔnと称する)を算出し、この屈折率差Δnと光透過性基材の厚みd(nm)との積により、リタデーションを求めることができる。 For example, the retardation can be set to a measured value using a KOBRA-WR manufactured by Oji Scientific Instruments with a measurement angle of 0 ° and a measurement wavelength of 548.2 nm. The retardation can also be obtained by the following method. First, using two polarizing plates, the orientation axis direction of the light-transmitting substrate is obtained, and the refractive indexes (n 1x , n 1y ) of two axes perpendicular to the orientation axis direction are obtained as Abbe refractometers. (NAR-4T manufactured by Atago Co., Ltd.) Here, an axis showing a larger refractive index is defined as a slow axis. Further, the thickness of the light-transmitting substrate is measured using, for example, an electric micrometer (manufactured by Anritsu). Then, using the obtained refractive index, a refractive index difference (n 1x −n 1y ) (hereinafter, n 1x −n 1y is referred to as Δn) is calculated, and this refractive index difference Δn and the light-transmitting substrate The retardation can be obtained by the product of the thickness d (nm).
 光透過性基材12のリタデーションを3000nm以上とする観点からは、光透過性基材12の遅相軸方向の屈折率n1xと進相軸方向の屈折率n1yとの差(以下、「屈折率差Δn」とも表記する)は、0.05~0.20となっていることが好ましい。上記屈折率差Δnが0.05未満であると、上述したリタデーション値を得るために必要な膜厚が厚くなる。一方、上記屈折率差Δnが0.20を超えると、光透過性基材12に裂け、破れ等が生じやすくなり、工業材料としての実用性が著しく低下する。より好ましくは、上記屈折率差Δnの下限は0.07、上記屈折率差Δnの上限は0.15である。なお、上記屈折率差Δnが0.15を超える場合、光透過性基材12の種類によっては、耐湿熱性試験での光透過性基材12の耐久性が劣ることがある。耐湿熱性試験での優れた耐久性を確保する観点からは、上記屈折率差Δnのより好ましい上限は0.12である。 From the viewpoint of setting the retardation of the light transmissive substrate 12 to 3000 nm or more, the difference between the refractive index n 1x in the slow axis direction and the refractive index n 1y in the fast axis direction of the light transmissive substrate 12 (hereinafter, “ The refractive index difference Δn ”is preferably 0.05 to 0.20. When the refractive index difference Δn is less than 0.05, the film thickness necessary for obtaining the retardation value described above increases. On the other hand, when the refractive index difference Δn exceeds 0.20, the light transmissive substrate 12 is easily torn and torn, and the practicality as an industrial material is significantly reduced. More preferably, the lower limit of the refractive index difference Δn is 0.07, and the upper limit of the refractive index difference Δn is 0.15. In addition, when the said refractive index difference (DELTA) n exceeds 0.15, depending on the kind of the light transmissive base material 12, durability of the light transmissive base material 12 in a heat-and-moisture resistance test may be inferior. From the viewpoint of securing excellent durability in the heat and humidity resistance test, a more preferable upper limit of the refractive index difference Δn is 0.12.
 また、光透過性基材12の遅相軸方向dにおける屈折率n1xとしては、1.60~1.80であることが好ましく、より好ましい下限は1.65、より好ましい上限は1.75である。また、光透過性基材12の進相軸方向dにおける屈折率n1yとしては、1.50~1.70であることが好ましく、より好ましい下限は1.55、より好ましい上限は1.65である。光透過性基材12の遅相軸方向dにおける屈折率n1xおよび進相軸方向dにおける屈折率n1yが上記範囲にあり、且つ、上述した屈折率差Δnの関係が満たされることで、より好適なニジムラの抑制効果を得ることができる。 The refractive index n 1x in the slow axis direction d x of the light transmissive substrate 12 is preferably 1.60 to 1.80, more preferably 1.65, and more preferably 1. 75. As the refractive index n 1y in the fast axis direction d y of the light transmitting substrate 12 is preferably 1.50 to 1.70 and more preferable lower limit is 1.55, more preferred upper limit 1. 65. Refractive index n 1y in the refractive index n 1x and fast axis direction d y in the slow axis direction d x of the light transmitting substrate 12 is in the above range and be satisfied relationship refractive index difference Δn described above Thus, it is possible to obtain a more preferable effect of suppressing azimuth.
 面内の複屈折性を有した光透過性基材12の厚みは、特に限定されないが、通常、5μm以上1000μm以下とすることが可能であり、光透過性基材12の厚みの下限はハンドリング性等の観点から15μm以上が好ましく、25μm以上がより好ましい。光透過性基材12の厚みの上限は薄膜化の観点から80μm以下であることが好ましい。 The thickness of the light-transmitting substrate 12 having in-plane birefringence is not particularly limited, but can usually be 5 μm or more and 1000 μm or less, and the lower limit of the thickness of the light-transmitting substrate 12 is handling. From the viewpoint of properties and the like, 15 μm or more is preferable, and 25 μm or more is more preferable. The upper limit of the thickness of the light transmissive substrate 12 is preferably 80 μm or less from the viewpoint of thinning.
 光透過性基材12として、リタデーションが3000nm以上のポリエステル基材を用いる場合、ポリエステル基材の厚みとしては、15μm以上500μm以下とすることが好ましい。15μm未満であると、ポリエステル基材のリタデーションを3000nm以上にできず、また、力学特性の異方性が顕著となり、裂け、破れ等を生じやすくなり、工業材料としての実用性が著しく低下することがある。一方、500μmを超えると、高分子フィルム特有のしなやかさが低下し、工業材料としての実用性が低下するおそれがある。上記ポリエステル基材の厚さのより好ましい下限は50μm、より好ましい上限は400μmであり、更により好ましい上限は300μmである。 When a polyester substrate having a retardation of 3000 nm or more is used as the light transmissive substrate 12, the thickness of the polyester substrate is preferably 15 μm or more and 500 μm or less. When the thickness is less than 15 μm, the retardation of the polyester base material cannot be increased to 3000 nm or more, the anisotropy of mechanical properties becomes remarkable, and tearing, tearing, etc. are likely to occur, and the practicality as an industrial material is significantly reduced. There is. On the other hand, when it exceeds 500 μm, the flexibility specific to the polymer film is lowered, and the practicality as an industrial material may be lowered. The minimum with more preferable thickness of the said polyester base material is 50 micrometers, a more preferable upper limit is 400 micrometers, and a still more preferable upper limit is 300 micrometers.
 面内の複屈折性を有した光透過性基材12としては、3000nm以上のリタデーションを有するものであれば、特に限定されず、アクリル基材、ポリエステル基材、ポリカーボネート基材、シクロオレフィンポリマー基材等が挙げられる。これらの中でも、コストおよび機械的強度の観点からポリエステル基材が好ましい。 The light-transmitting substrate 12 having in-plane birefringence is not particularly limited as long as it has a retardation of 3000 nm or more, and is an acrylic substrate, a polyester substrate, a polycarbonate substrate, a cycloolefin polymer group. Materials and the like. Among these, a polyester base material is preferable from the viewpoint of cost and mechanical strength.
 ポリエステル基材に用いられるポリエステルは、これらの上記ポリエステルの共重合体であってもよく、上記ポリエステルを主体(例えば80モル%以上の成分)とし、少割合(例えば20モル%以下)の他の種類の樹脂とブレンドしたものであってもよい。ポリエステルとしてポリエチレンテレフタレート又はポリエチレン-2,6-ナフタレートが力学的物性や光学物性等のバランスが良いので特に好ましい。特に、ポリエチレンテレフタレートは汎用性が高く、入手が容易である点において好ましい。本発明においてはポリエチレンテレフタレートのような、汎用性が極めて高いフィルムであっても、表示品質の高い液晶表示装置を作製することが可能な、光学フィルムを得ることができる。更に、ポリエチレンテレフタレートは、透明性、熱又は機械的特性に優れ、延伸加工によりリタデーションの制御が可能であり、固有複屈折が大きく、膜厚が薄くても比較的容易に大きなリタデーションが得られる。 The polyester used for the polyester substrate may be a copolymer of the above-mentioned polyester, and the polyester is the main component (for example, a component of 80 mol% or more), and a small proportion (for example, 20 mol% or less) It may be blended with a kind of resin. Polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferred as the polyester because of its good balance between mechanical properties and optical properties. In particular, polyethylene terephthalate is preferable because it is highly versatile and easily available. In the present invention, an optical film capable of producing a liquid crystal display device with high display quality can be obtained even if the film is extremely versatile, such as polyethylene terephthalate. Furthermore, polyethylene terephthalate is excellent in transparency, heat or mechanical properties, can be controlled by stretching, has a large intrinsic birefringence, and can obtain a large retardation relatively easily even when the film thickness is small.
 例えば、3000nm以上のリタデーションを有するポリエステル基材を得る方法としては、ポリエチレンテレフタレート等のポリエステルを溶融し、シート状に押出し成形された未延伸ポリエステルをガラス転移温度以上の温度においてテンター等を用いて横延伸後、熱処理を施す方法が挙げられる。上記横延伸温度としては、80~130℃が好ましく、より好ましくは90~120℃である。また、横延伸倍率は2.5~6.0倍が好ましく、より好ましくは3.0~5.5倍である。上記横延伸倍率が6.0倍を超えると、得られるポリエステル基材の透明性が低下しやすくなり、延伸倍率が2.5倍未満であると、延伸張力も小さくなるため、得られるポリエステル基材の複屈折が小さくなり、所望のリタデーションを得るための膜厚が厚くなってしまう。また、ポリエステル基材をシート状に押出し成形する際に、流れ方向(機械方向)への延伸、すなわち、縦方向延伸を行っても良い。この場合、上記屈折率差Δnの値を上述した好ましい範囲に安定して確保する観点から、上記縦延伸は、延伸倍率が2倍以下であることが好ましい。なお、押出し成形時に縦延伸させることに代えて、上記未延伸ポリエステルの横延伸を上記条件で行った後に、縦延伸を行うようにしてもよい。また、上記熱処理時の処理温度としては、100~250℃が好ましく、より好ましくは180~245℃である。 For example, as a method of obtaining a polyester base material having a retardation of 3000 nm or more, a polyester such as polyethylene terephthalate is melted, and the unstretched polyester extruded and formed into a sheet shape is transversal using a tenter or the like at a temperature equal to or higher than the glass transition temperature. A method of performing a heat treatment after stretching is mentioned. The transverse stretching temperature is preferably 80 to 130 ° C, more preferably 90 to 120 ° C. The transverse draw ratio is preferably 2.5 to 6.0 times, more preferably 3.0 to 5.5 times. When the transverse draw ratio exceeds 6.0 times, the transparency of the resulting polyester base material tends to be lowered, and when the draw ratio is less than 2.5 times, the draw tension becomes small. The birefringence of the material is reduced, and the film thickness for obtaining the desired retardation is increased. Further, when the polyester base material is extruded into a sheet shape, stretching in the flow direction (machine direction), that is, longitudinal stretching may be performed. In this case, from the viewpoint of stably ensuring the value of the refractive index difference Δn within the above-described preferred range, the longitudinal stretching preferably has a stretching ratio of 2 times or less. Instead of longitudinal stretching during extrusion molding, longitudinal stretching may be performed after lateral stretching of the unstretched polyester is performed under the above conditions. The treatment temperature during the heat treatment is preferably 100 to 250 ° C., more preferably 180 to 245 ° C.
 上述した方法で作製したポリエステル基材のリタデーションを3000nm以上に制御する方法としては、延伸倍率や延伸温度、作製するポリエステル基材の膜厚を適宜設定する方法が挙げられる。具体的には、例えば、延伸倍率が高いほど、延伸温度が低いほど、また、膜厚が厚いほど、高いリタデーションを得やすくなり、延伸倍率が低いほど、延伸温度が高いほど、また、膜厚が薄いほど、低いリタデーションを得やすくなる。 Examples of a method for controlling the retardation of the polyester substrate produced by the above-described method to 3000 nm or more include a method of appropriately setting the draw ratio, the drawing temperature, and the film thickness of the produced polyester substrate. Specifically, for example, the higher the stretching ratio, the lower the stretching temperature, and the thicker the film, the easier it is to obtain high retardation. The lower the stretching ratio, the higher the stretching temperature, and the film thickness. The thinner, the easier it is to obtain low retardation.
<中間層>
 次に、中間層13について詳述する。中間層13は、その厚みt〔nm〕およびその面内での平均屈折率nに関する上述した条件を満たすことにより、機能層15と中間層13との界面での反射光Lr1および中間層13と光透過性基材12との界面での反射光Lr2を重ね合わせてなる合成反射光Lの光強度(振幅)を低下させ、合成反射光Lに起因した干渉縞が視認されることを抑制する。中間層13は、厚みt〔nm〕および面内での平均屈折率nに関する上述した条件を満たす限りにおいて、特に限定されない。
<Intermediate layer>
Next, the intermediate layer 13 will be described in detail. The intermediate layer 13 satisfies the above-described conditions regarding the thickness t [nm] and the in-plane average refractive index n 2 , thereby reflecting the reflected light L r1 and the intermediate layer at the interface between the functional layer 15 and the intermediate layer 13. 13 reduces the light intensity (amplitude) of the combined reflected light L r formed by superimposing the reflected light L r2 at the interface between the light transmitting base 12 and the interference fringes caused by the combined reflected light L r. It suppresses that. The intermediate layer 13 is not particularly limited as long as the above-described conditions regarding the thickness t [nm] and the in-plane average refractive index n 2 are satisfied.
 また、中間層13は、合成反射光Lの光強度(振幅)を低下させて干渉縞の発生を抑制すること以外の機能を有していてもよい。例えば、プライマー層、より具体的な例として、易接着層として機能するプライマー層の厚みおよび面内の平均屈折率を調節することによって、当該プライマー層が中間層13を形成するようにしてもよい。このような例によれば、干渉縞の発生を防止する観点から、積層体10に新たな中間層13を設ける必要を排除することができる。逆に言えば、易接着性等を確保するために設けられていた層を、干渉縞不可視化に利用することができ、積層体10の材料費の観点から非常に好ましい。 The intermediate layer 13 may have a function other than suppressing the occurrence of interference fringe by reducing the light intensity of the synthesized reflected light L r (amplitude). For example, the primer layer may form the intermediate layer 13 by adjusting the thickness and the in-plane average refractive index of the primer layer functioning as an easy adhesion layer as a more specific example. . According to such an example, it is possible to eliminate the necessity of providing a new intermediate layer 13 in the stacked body 10 from the viewpoint of preventing the occurrence of interference fringes. In other words, the layer provided for ensuring easy adhesion and the like can be used for invisible interference fringes, which is very preferable from the viewpoint of the material cost of the laminate 10.
 したがって、中間層13は、公知のプライマー層と同様の材料から構成することが可能である。具体的には、中間層13に含まれる樹脂は、例えば、ポリウレタン樹脂、ポリエステル樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、塩化ビニル-酢酸ビニル共重合体、アクリル樹脂、ポリビニルアルコール系樹脂、ポリビニルアセタール樹脂、エチレンと酢酸ビニルまたはアクリル酸などとの共重合体、エチレンとスチレンおよび/またはブタジエンなどとの共重合体、オレフィン樹脂などの熱可塑性樹脂および/またはその変性樹脂、光重合性化合物の重合体、およびエポキシ樹脂などの熱硬化性樹脂等の少なくともいずれかから構成することが可能である。 Therefore, the intermediate layer 13 can be made of the same material as the known primer layer. Specifically, the resin contained in the intermediate layer 13 is, for example, polyurethane resin, polyester resin, polyvinyl chloride resin, polyvinyl acetate resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, polyvinyl alcohol resin. , Polyvinyl acetal resin, copolymer of ethylene and vinyl acetate or acrylic acid, copolymer of ethylene and styrene and / or butadiene, thermoplastic resin such as olefin resin and / or modified resin thereof, photopolymerization It can be composed of at least one of a polymer of a compound and a thermosetting resin such as an epoxy resin.
 上記光重合性化合物は、光重合性官能基を少なくとも1つ有するものである。本明細書における、「光重合性官能基」とは、光照射により重合反応し得る官能基である。光重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性二重結合が挙げられる。なお、「(メタ)アクリロイル基」とは、「アクリロイル基」および「メタクリロイル基」の両方を含む意味である。また、光重合性化合物を重合する際に照射される光としては、可視光線、並びに紫外線、X線、電子線、α線、β線、およびγ線のような電離放射線が挙げられる。 The photopolymerizable compound has at least one photopolymerizable functional group. In the present specification, the “photopolymerizable functional group” is a functional group capable of undergoing a polymerization reaction by light irradiation. Examples of the photopolymerizable functional group include ethylenic double bonds such as a (meth) acryloyl group, a vinyl group, and an allyl group. The “(meth) acryloyl group” means to include both “acryloyl group” and “methacryloyl group”. The light irradiated when polymerizing the photopolymerizable compound includes visible light and ionizing radiation such as ultraviolet rays, X-rays, electron beams, α rays, β rays, and γ rays.
 光重合性化合物としては、光重合性モノマー、光重合性オリゴマー、または光重合性ポリマーが挙げられ、これらを適宜調整して、用いることができる。光重合性化合物としては、光重合性モノマーと、光重合性オリゴマーまたは光重合性ポリマーとの組み合わせが好ましい。 Examples of the photopolymerizable compound include a photopolymerizable monomer, a photopolymerizable oligomer, and a photopolymerizable polymer, which can be appropriately adjusted and used. As the photopolymerizable compound, a combination of a photopolymerizable monomer and a photopolymerizable oligomer or photopolymerizable polymer is preferable.
 後述する機能層15が光重合性化合物を用いて形成される場合にあっては、該光重合性化合物の重合を開始させることが可能な重合開始剤を中間層13に添加しておくことが好ましい。これにより、機能層15を硬化させるときに中間層13と機能層15とを強固に架橋させることができる。 When the functional layer 15 described later is formed using a photopolymerizable compound, a polymerization initiator capable of initiating polymerization of the photopolymerizable compound may be added to the intermediate layer 13 in advance. preferable. Thereby, when hardening the functional layer 15, the intermediate | middle layer 13 and the functional layer 15 can be bridge | crosslinked firmly.
 中間層13の屈折率を調整するため、微小粒径、例えば100nm以下の粒子が上記樹脂内に含有されていてもよい。一例として、中間層13の屈折率を低下させるため、シリカやフッ化マグネシウム等の低屈折率粒子が中間層に含有されていてもよいし、中間層13の屈折率を上昇させるため、酸化チタンや酸化ジルコニウム等の金属酸化物粒子が中間層に含有されていてもよい。 In order to adjust the refractive index of the intermediate layer 13, a fine particle size, for example, a particle of 100 nm or less may be contained in the resin. As an example, low refractive index particles such as silica and magnesium fluoride may be contained in the intermediate layer in order to reduce the refractive index of the intermediate layer 13, and titanium oxide in order to increase the refractive index of the intermediate layer 13. And metal oxide particles such as zirconium oxide may be contained in the intermediate layer.
 中間層13の厚みは、干渉縞を不可視化する観点から、上述した条件(c1)~(c5)のいずれかを満たすように設定することができる。中間層13の面内の平均屈折率nは、上述した条件(a)及び条件(b)のうちの一方とともに、条件(c1)~(c5)のいずれかを満たすように設定することができ、例えば1.40以上1.80以下とすることが可能である。 The thickness of the intermediate layer 13 can be set so as to satisfy any of the conditions (c1) to (c5) described above from the viewpoint of making the interference fringes invisible. The in-plane average refractive index n 2 of the intermediate layer 13 may be set so as to satisfy any one of the conditions (c1) to (c5) along with one of the conditions (a) and (b) described above. For example, it can be 1.40 or more and 1.80 or less.
 ところで、中間層13は、面内での複屈折率を有していてもよい。以下、面内での複屈折性を有する光透過性基材12について説明する。 Incidentally, the intermediate layer 13 may have an in-plane birefringence. Hereinafter, the light transmissive substrate 12 having in-plane birefringence will be described.
 面内複屈折性を有した中間層13は、屈折率異方性を有する分子(例えば液晶分子)または化合物を配向させてなる層によって形成され得る。このような中間層13は、屈折率異方性分子または屈折率異方性化合物を含む組成物を光透過性基材12上に塗布し、当該組成物を硬化させることによって得られる。一例として、光透過性基材12が、延伸フィルム等からなり、規則性を持った分子配向を有している場合には、当該光透過性基材12上に塗布された液晶分子が、その性質上、光透過性基材12の分子配向に対応した規則性をもって配向されるようになり得る。これにより、得られた中間層13は、光透過性基材12の複屈折性に対応した面内複屈折性を有するようになり、この中間層13によって上述した条件(f)~(n)が満たされ得る。なお、中間層13中に含まれる屈折率異方性分子や屈折率異方性化合物の配向をより安定させる観点からは、光透過性基材12の配向のみに依存するのではなく、ラビング配向や光配向により、中間層13中に含まれる屈折率異方性分子や屈折率異方性化合物を積極的に配向させるようにしてもよい。 The intermediate layer 13 having in-plane birefringence can be formed by a layer formed by aligning molecules (for example, liquid crystal molecules) or compounds having refractive index anisotropy. Such an intermediate layer 13 is obtained by applying a composition containing a refractive index anisotropic molecule or a refractive index anisotropic compound on the light-transmitting substrate 12 and curing the composition. As an example, when the light-transmitting substrate 12 is made of a stretched film or the like and has a regular molecular orientation, the liquid crystal molecules applied on the light-transmitting substrate 12 are Due to the nature, the light transmissive substrate 12 can be oriented with regularity corresponding to the molecular orientation. As a result, the obtained intermediate layer 13 has in-plane birefringence corresponding to the birefringence of the light-transmitting substrate 12, and the conditions (f) to (n) described above are determined by the intermediate layer 13. Can be satisfied. From the viewpoint of further stabilizing the orientation of the refractive index anisotropic molecules and refractive index anisotropic compounds contained in the intermediate layer 13, the rubbing orientation is not dependent on the orientation of the light-transmitting substrate 12 alone. Alternatively, the refractive index anisotropic molecule or refractive index anisotropic compound contained in the intermediate layer 13 may be positively aligned by photo-orientation.
 また、別の方法として、樹脂層を延伸することによって、面内複屈折性を有した中間層13を得ることもできる。一般的に、温度等の条件を調節した上で、樹脂からなる層を延伸することにより、当該樹脂からなる層は面内複屈折性を呈するようになる。したがって、延伸前の光透過性基材12上に中間層13を作製し、光透過性基材12および中間層13を同時に延伸することにより、光透過性基材12に複屈折性を付与することができるとともに、光透過性基材12の複屈折性に対応した複屈折性を中間層13にも付与することができる。 As another method, the intermediate layer 13 having in-plane birefringence can be obtained by stretching the resin layer. Generally, by stretching a layer made of a resin after adjusting conditions such as temperature, the layer made of the resin exhibits in-plane birefringence. Therefore, the intermediate layer 13 is produced on the light-transmitting substrate 12 before stretching, and the light-transmitting substrate 12 and the intermediate layer 13 are simultaneously stretched to impart birefringence to the light-transmitting substrate 12. In addition, the birefringence corresponding to the birefringence of the light transmissive substrate 12 can also be imparted to the intermediate layer 13.
 より具体的には、まず、中間層13をなすようになる組成物を、上述した延伸前の光透過性基材12上に塗布し、当該組成物を光透過性基材12上で硬化させることによって中間層13が得られる。中間層13をなすようになる材料としては、延伸により複屈折性を示す樹脂材料を広く用いることができ、また、光透過性基材12に対する親和性が高いことが好ましい。熱可塑性または熱硬化性のポリエステル樹脂、ウレタン樹脂、アクリル樹脂、および、これらの変性体等が、中間層13をなす樹脂材料として、例示される。なお、中間層13をなすようになる組成物を塗布される光透過性基材12は、上述した種々の樹脂フィルムを用いることができるが、押し出し成形時に機械方向に低倍率で延伸された樹脂フィルムであることが好ましい。機械方向(光透過性基材12の押し出し成形時における押し出し方向)への延伸により光透過性基材12の平坦性が確保されるため、当該光透過性基材12上に形成される中間層13を均一化させることができる。 More specifically, first, the composition that forms the intermediate layer 13 is applied onto the light-transmitting substrate 12 before stretching, and the composition is cured on the light-transmitting substrate 12. Thus, the intermediate layer 13 is obtained. As a material for forming the intermediate layer 13, a resin material exhibiting birefringence by stretching can be widely used, and it is preferable that the affinity for the light-transmitting substrate 12 is high. Examples of the resin material forming the intermediate layer 13 include thermoplastic or thermosetting polyester resins, urethane resins, acrylic resins, and modified products thereof. The light-transmitting substrate 12 to which the composition that forms the intermediate layer 13 is applied can use the various resin films described above, but the resin stretched at a low magnification in the machine direction during extrusion molding. A film is preferred. Since the flatness of the light transmissive substrate 12 is ensured by stretching in the machine direction (extrusion direction at the time of extrusion molding of the light transmissive substrate 12), the intermediate layer formed on the light transmissive substrate 12 13 can be made uniform.
 その後、光透過性基材12および光透過性基材12上に形成された中間層13を含む積層基材11を、ガラス転移点温度以上に加熱した状態で、機械方向と直交する横方向に延伸する。上述したように、横方向への延伸倍率が縦方向への延伸倍率と比較して非常に大きくなっている場合、光透過性基材12の延伸軸は概ね横方向に向き、一具体例としてポリエステルテレフタレートフィルムからなる光透過性基材12の遅相軸は概ね横方向に延びる。一方、中間層13は横方向にしか延伸されていない。したがって、中間層13が、光透過性基材12よりも複屈性を付与され難い樹脂材料から形成されていたとしても、光透過性基材12の複屈折性に対応した異方性での複屈折性を或る程度付与されることになる。 Thereafter, the laminated substrate 11 including the light transmissive substrate 12 and the intermediate layer 13 formed on the light transmissive substrate 12 is heated in the horizontal direction perpendicular to the machine direction in a state of being heated to the glass transition temperature or higher. Stretch. As described above, when the stretching ratio in the transverse direction is very large compared to the stretching ratio in the longitudinal direction, the stretching axis of the light-transmitting substrate 12 is generally oriented in the lateral direction. The slow axis of the light-transmitting substrate 12 made of a polyester terephthalate film extends substantially in the lateral direction. On the other hand, the intermediate layer 13 is stretched only in the lateral direction. Therefore, even if the intermediate layer 13 is formed of a resin material that is less likely to be birefringent than the light-transmitting substrate 12, the anisotropy corresponding to the birefringence of the light-transmitting substrate 12 A certain degree of birefringence is imparted.
 以上の方法によれば、光透過性基材12に複屈折性を付与するための延伸加工によって、光透過性基材12だけでなく、中間層13にも複屈折性を付与することができる。加えて、光透過性基材12と中間層13とが加熱された状態で延伸されるため、光透過性基材12と中間層13との接着性が向上するという利点を享受することができる。 According to the above method, birefringence can be imparted not only to the light transmissive substrate 12 but also to the intermediate layer 13 by the stretching process for imparting birefringence to the light transmissive substrate 12. . In addition, since the light-transmitting substrate 12 and the intermediate layer 13 are stretched in a heated state, the advantage that the adhesiveness between the light-transmitting substrate 12 and the intermediate layer 13 is improved can be enjoyed. .
 中間層13の各屈折率n、n2x、n2y、n2a、n2b(図4および図5参照)については、既に説明したように、光透過性基材12の各屈折率n、n1x、n1yおよび機能層15の各屈折率n、n3x、n3yと関連をもって適宜設定され得る。一例として、光透過性基材12がポリエチレンテレフタレートフィルムからなり、機能層15がハードコート層として機能する場合、中間層13の上記屈折率nを、1.50~1.70とすることができ、中間層13の上記屈折率n2xを、1.55~1.75とすることができ、中間層13の上記屈折率n2yを、1.45~1.65とすることができ、中間層13の上記屈折率n2aを、1.55~1.75とすることができ、中間層13の上記屈折率n2bを、1.45~1.65とすることができる。 Each refractive index n 2 of the intermediate layer 13, n 2x, n 2y, n 2a, the n 2b (see FIGS. 4 and 5), as already described, the refractive index n 1 of the light-transmitting substrate 12 , N 1x , n 1y and the refractive indexes n 3 , n 3x , n 3y of the functional layer 15 can be set as appropriate. As an example, when the light-transmitting substrate 12 is made of a polyethylene terephthalate film and the functional layer 15 functions as a hard coat layer, the refractive index n 2 of the intermediate layer 13 is set to 1.50 to 1.70. The refractive index n 2x of the intermediate layer 13 can be 1.55 to 1.75, the refractive index n 2y of the intermediate layer 13 can be 1.45 to 1.65, The refractive index n 2a of the intermediate layer 13 can be 1.55 to 1.75, and the refractive index n 2b of the intermediate layer 13 can be 1.45 to 1.65.
<機能層、第2機能層>
 次に、機能層15および第2機能層17について説明する。機能層15および第2機能層17は、積層体10において、何らかの機能を発揮することを意図された層であり、具体的には、例えば、ハードコート性、反射防止性、帯電防止性、または防汚性等の機能を発揮する層が挙げられる。既に説明したように、積層体10に含まれる機能層の数は、当該積層体の用途等に応じて、一以上の任意の数とすることができる。図1に示された積層体10では、機能層15が、積層基材11の中間層13一方の面上に形成されたハードコート層から構成されている。また、図2に示された積層体10では、機能層15が、中間層13の一方の面上に形成されたハードコート層から構成されるとともに、第2機能層17が、ハードコート層の中間層13とは逆側の面上に形成された低屈折率層から構成されている。以下、機能層15としてのハードコート層、および、第2機能層17としての低屈折率層について、説明する。
<Functional layer, second functional layer>
Next, the functional layer 15 and the second functional layer 17 will be described. The functional layer 15 and the second functional layer 17 are layers that are intended to exhibit some function in the laminate 10, and specifically include, for example, hard coat properties, antireflection properties, antistatic properties, or Examples include layers that exhibit functions such as antifouling properties. As already described, the number of functional layers included in the stacked body 10 can be any number of one or more depending on the use of the stacked body. In the laminated body 10 shown in FIG. 1, the functional layer 15 is composed of a hard coat layer formed on one surface of the intermediate layer 13 of the laminated base material 11. Moreover, in the laminated body 10 shown by FIG. 2, while the functional layer 15 is comprised from the hard-coat layer formed on the one surface of the intermediate | middle layer 13, the 2nd functional layer 17 is a hard-coat layer. The intermediate layer 13 is composed of a low refractive index layer formed on a surface opposite to the intermediate layer 13. Hereinafter, the hard coat layer as the functional layer 15 and the low refractive index layer as the second functional layer 17 will be described.
 ハードコート層とは、光学フィルムの耐擦傷性を向上させるための層であり、具体的には、JIS K5600-5-4(1999)で規定される鉛筆硬度試験(4.9N荷重)で「H」以上の硬度を有する層であることが好ましい。ハードコート層は、一例として、光重合性化合物を含むハードコート層用組成物を、中間層13上に塗布し、乾燥させた後、塗膜状のハードコート層用組成物に紫外線等の光を照射して、光重合性化合物を重合(架橋)させることによって、作製され得る。なお、光重合性化合物は、光重合性官能基を少なくとも1つ有するものである。「光重合性官能基」の定義は、中間層13の欄の記載と同様である。 The hard coat layer is a layer for improving the scratch resistance of the optical film. Specifically, it is determined by a pencil hardness test (4.9 N load) defined in JIS K5600-5-4 (1999). A layer having a hardness equal to or higher than “H” is preferable. As an example, the hard coat layer is obtained by applying a composition for a hard coat layer containing a photopolymerizable compound onto the intermediate layer 13 and drying it, and then applying light such as ultraviolet rays to the coating-like composition for a hard coat layer. To polymerize (crosslink) the photopolymerizable compound. The photopolymerizable compound has at least one photopolymerizable functional group. The definition of “photopolymerizable functional group” is the same as described in the column of the intermediate layer 13.
 この方法で得られたハードコート層は、光学等方性となり、面内複屈折性を有さない。得られたハードコート層の面内の平均屈折率nを、1.45~1.65とすることができる。ハードコート層の膜厚(硬化時)は0.1~100μm、好ましくは0.5~20μmの範囲である。上記ハードコート層の膜厚は、断面を電子顕微鏡(SEM、TEM、STEM)で観察し、測定した値である。 The hard coat layer obtained by this method is optically isotropic and does not have in-plane birefringence. The in-plane average refractive index n 3 of the obtained hard coat layer can be 1.45 to 1.65. The thickness of the hard coat layer (when cured) is in the range of 0.1 to 100 μm, preferably 0.5 to 20 μm. The film thickness of the hard coat layer is a value measured by observing the cross section with an electron microscope (SEM, TEM, STEM).
 光重合性化合物としては、光重合性モノマー、光重合性オリゴマー、または光重合性ポリマーが挙げられ、これらを適宜調整して、用いることができる。光重合性化合物としては、光重合性モノマーと、光重合性オリゴマーまたは光重合性ポリマーとの組み合わせが好ましい。 Examples of the photopolymerizable compound include a photopolymerizable monomer, a photopolymerizable oligomer, and a photopolymerizable polymer, which can be appropriately adjusted and used. As the photopolymerizable compound, a combination of a photopolymerizable monomer and a photopolymerizable oligomer or photopolymerizable polymer is preferable.
光重合性モノマー
 光重合性モノマーは、重量平均分子量が1000未満のものである。光重合性モノマーとしては、光重合性官能基を2つ(すなわち、2官能)以上有する多官能モノマーが好ましい。本明細書において、「重量平均分子量」は、THF等の溶媒に溶解して、従来公知のゲルパーミエーションクロマトグラフィー(GPC)法によるポリスチレン換算により得られる値である。
Photopolymerizable monomer The photopolymerizable monomer has a weight average molecular weight of less than 1000. The photopolymerizable monomer is preferably a polyfunctional monomer having two or more photopolymerizable functional groups (that is, bifunctional). In the present specification, the “weight average molecular weight” is a value obtained by dissolving in a solvent such as THF and converting to polystyrene by a conventionally known gel permeation chromatography (GPC) method.
 2官能以上のモノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、ポリエステルトリ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、アダマンチルジ(メタ)アクリレート、イソボロニルジ(メタ)アクリレート、ジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートや、これらをPO、EO等で変性したものが挙げられる。 Examples of the bifunctional or higher monomer include trimethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and pentaerythritol tri (meth). Acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditri Methylolpropane tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol octa (meth) acrylate, Trapentaerythritol deca (meth) acrylate, isocyanuric acid tri (meth) acrylate, isocyanuric acid di (meth) acrylate, polyester tri (meth) acrylate, polyester di (meth) acrylate, bisphenol di (meth) acrylate, diglycerin tetra ( (Meth) acrylate, adamantyl di (meth) acrylate, isoboronyl di (meth) acrylate, dicyclopentane di (meth) acrylate, tricyclodecane di (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and these are PO, EO And the like modified.
 これらの中でも硬度が高い防眩層を得る観点から、3官能以上の多官能モノマーである、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)等が好ましい。 Among these, from the viewpoint of obtaining an antiglare layer having high hardness, pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate (PETTA), di-functional monomers having three or more functionalities. Pentaerythritol pentaacrylate (DPPA) and the like are preferable.
光重合性オリゴマー
 光重合性オリゴマーは、重量平均分子量が1000以上10000未満のものである。光重合性オリゴマーとしては、2官能以上の多官能オリゴマーが好ましい。多官能オリゴマーとしては、ポリエステル(メタ)アクリレート、 ウレタン(メタ)アクリレート、ポリエステル-ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、メラミン(メタ)アクリレート、イソシアヌレート(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
The photopolymerizable oligomer The photopolymerizable oligomer has a weight average molecular weight of 1,000 or more and less than 10,000. The photopolymerizable oligomer is preferably a bifunctional or higher polyfunctional oligomer. Polyfunctional oligomers include polyester (meth) acrylate, urethane (meth) acrylate, polyester-urethane (meth) acrylate, polyether (meth) acrylate, polyol (meth) acrylate, melamine (meth) acrylate, isocyanurate (meth) Examples include acrylate and epoxy (meth) acrylate.
光重合性ポリマー
 光重合性ポリマーは、重量平均分子量が10000以上のものであり、重量平均分子量としては10000以上80000以下が好ましく、10000以上40000以下がより好ましい。重量平均分子量が80000を超える場合は、粘度が高いため塗工適性が低下してしまい、得られる光学積層体の外観が悪化するおそれがある。上記多官能ポリマーとしては、ウレタン(メタ)アクリレート、イソシアヌレート(メタ)アクリレート、ポリエステル-ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
Photopolymerizable polymer The photopolymerizable polymer has a weight average molecular weight of 10,000 or more, and the weight average molecular weight is preferably 10,000 or more and 80,000 or less, and more preferably 10,000 or more and 40,000 or less. When the weight average molecular weight exceeds 80,000, the viscosity is high, so that the coating suitability is lowered, and the appearance of the obtained optical laminate may be deteriorated. Examples of the polyfunctional polymer include urethane (meth) acrylate, isocyanurate (meth) acrylate, polyester-urethane (meth) acrylate, and epoxy (meth) acrylate.
 ハードコート層用組成物には、上記微粒子および光重合性化合物の他、必要に応じて、熱可塑性樹脂、熱硬化性樹脂、溶剤、重合開始剤を添加してもよい。さらに、ハードコート層用組成物には、ハードコート層の硬度を高くする、硬化収縮を抑える、または屈折率を制御する等の目的に応じて、従来公知の分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、易滑剤等を添加していてもよい。 In addition to the fine particles and the photopolymerizable compound, if necessary, a thermoplastic resin, a thermosetting resin, a solvent, and a polymerization initiator may be added to the hard coat layer composition. Furthermore, the hard coat layer composition includes a conventionally known dispersant, surfactant, antistatic agent depending on the purpose such as increasing the hardness of the hard coat layer, suppressing curing shrinkage, or controlling the refractive index. Agent, silane coupling agent, thickener, anti-coloring agent, coloring agent (pigment, dye), antifoaming agent, leveling agent, flame retardant, UV absorber, adhesion-imparting agent, polymerization inhibitor, antioxidant, surface A modifier, a lubricant, etc. may be added.
 とりわけ、機能層15の屈折率を調整して上述の条件(a)および(b)の一方を満たすようにする観点からは、微小粒径、例えば100nm以下の粒子が機能層形成用組成物(ハードコート層形成用組成物)内に含有させることが有効である。一例として、機能能15の屈折率を低下させるため、シリカやフッ化マグネシウム等の低屈折率粒子が機能層に含有されていてもよいし、機能層15の屈折率を上昇させるため、酸化チタンや酸化ジルコニウム等の金属酸化物粒子が機能層に含有されていてもよい。 In particular, from the viewpoint of adjusting the refractive index of the functional layer 15 so as to satisfy one of the above-described conditions (a) and (b), particles having a fine particle size, for example, 100 nm or less are functional layer-forming compositions ( It is effective to contain it in the composition for forming a hard coat layer. As an example, low refractive index particles such as silica and magnesium fluoride may be contained in the functional layer in order to reduce the refractive index of the functional ability 15, and in order to increase the refractive index of the functional layer 15, titanium oxide. And metal oxide particles such as zirconium oxide may be contained in the functional layer.
 ハードコート層用組成物に添加される熱可塑性樹脂としては、非結晶性で、かつ有機溶剤(特に複数のポリマーや硬化性化合物を溶解可能な共通溶媒)に可溶であることが好ましい。特に、透明性や耐候性という観点から、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。 The thermoplastic resin added to the hard coat layer composition is preferably non-crystalline and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds). In particular, from the viewpoint of transparency and weather resistance, styrene resins, (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives (cellulose esters, etc.) and the like are preferable.
 ハードコート層用組成物に添加される熱硬化性樹脂としては、特に限定されず、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等を挙げることができる。 The thermosetting resin added to the hard coat layer composition is not particularly limited. For example, phenol resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin. Aminoalkyd resins, melamine-urea cocondensation resins, silicon resins, polysiloxane resins, and the like.
 次に低屈折率層は、外部からの光(例えば蛍光灯、自然光等)が積層体10の表面にて反射する際、その反射率を低くするという役割を果たす層である。上記低屈折率層は、その屈折率がハードコート層よりも小さく、かつ、空気よりも大きいものである。具体的には、低屈折率層の屈折率は、1.1~2.0の範囲内であることが好ましく、1.2~1.8の範囲内であることがより好ましく、1.3~1.6の範囲内であることがさらに好ましい。低屈折率層の屈折率が上記範囲内である場合、積層体10への映り込みを効果的防止することができる。また、低屈折率層の屈折率は、低屈折率層内にて、積層体10の内部の側から、積層体10の表面の側に向かって、なだらかに屈折率が空気の屈折率に向かって変化しているものであってもよい。 Next, the low refractive index layer is a layer that plays a role of reducing the reflectance when external light (for example, a fluorescent lamp, natural light, etc.) is reflected on the surface of the laminate 10. The low refractive index layer has a refractive index smaller than that of the hard coat layer and larger than that of air. Specifically, the refractive index of the low refractive index layer is preferably in the range of 1.1 to 2.0, more preferably in the range of 1.2 to 1.8, and 1.3 More preferably, it is within the range of -1.6. When the refractive index of the low refractive index layer is within the above range, reflection on the laminate 10 can be effectively prevented. Further, the refractive index of the low refractive index layer is such that the refractive index is gradually directed toward the refractive index of air from the inner side of the laminated body 10 toward the surface side of the laminated body 10 in the low refractive index layer. May have changed.
 上記低屈折率層に用いられる材料としては、上述した屈折率を有する低屈折率層を形成できるものであれば特に限定されず、例えば、上述したハードコート層用組成物で説明した樹脂材料を含有することが好ましい。また上記低屈折率層は、上記樹脂材料に加えて、シリコーン含有共重合体、フッ素含有共重合体及び、微粒子を含有することで屈折率を調整することができる。上記シリコーン含有共重合体としては、例えば、シリコーン含有ビニリデン共重合体が挙げられる。また、上記フッ素含有共重合体の具体例としては、例えば、フッ化ビニリデンとヘキサフルオロプロピレンとを含有するモノマー組成物を共重合することによって得られる共重合体が挙げられる。また、上記微粒子としては、例えば、シリカ微粒子、アクリル微粒子、スチレン微粒子、アクリルスチレン共重合微粒子、空隙を有する微粒子が挙げられえる。なお、「空隙を有する微粒子」とは、微粒子の内部に気体が充填された構造及び/又は気体を含む多孔質構造体を形成し、微粒子本来の屈折率に比べて微粒子中の気体の占有率に反比例して屈折率が低下する微粒子を意味する。 The material used for the low refractive index layer is not particularly limited as long as the low refractive index layer having the above-described refractive index can be formed. For example, the resin material described in the hard coat layer composition described above is used. It is preferable to contain. In addition to the resin material, the low refractive index layer can adjust the refractive index by containing a silicone-containing copolymer, a fluorine-containing copolymer, and fine particles. Examples of the silicone-containing copolymer include a silicone-containing vinylidene copolymer. Specific examples of the fluorine-containing copolymer include a copolymer obtained by copolymerizing a monomer composition containing vinylidene fluoride and hexafluoropropylene. Examples of the fine particles include silica fine particles, acrylic fine particles, styrene fine particles, acrylic styrene copolymer fine particles, and fine particles having voids. The term “fine particles having voids” refers to a structure in which fine particles are filled with gas and / or a porous structure containing gas, and the occupancy ratio of the gas in the fine particles compared to the original refractive index of the fine particles. Means a fine particle whose refractive index decreases in inverse proportion to
 なお、ここでは、機能層15がハードコート層として構成され、第2機能層17が低屈折率層として構成された例を示したが、これらの例に限られず、積層体10が、ハードコート層および低屈折率層の少なくとも一方に加えて或いはハードコート層および低屈折率層の少なくとも一方に代えて、耐電防止層、防眩層、防汚層等の他の機能を有した層を含むようにしてもよい。 Here, examples are shown in which the functional layer 15 is configured as a hard coat layer and the second functional layer 17 is configured as a low refractive index layer. However, the present invention is not limited to these examples. In addition to at least one of the layer and the low refractive index layer, or in place of at least one of the hard coat layer and the low refractive index layer, a layer having other functions such as an antistatic layer, an antiglare layer, and an antifouling layer is included. You may make it.
 帯電防止層は、例えば、上記ハードコート層用組成物中に帯電防止剤を含有させることで形成することができる。上記帯電防止剤としては従来公知のものを用いることができ、例えば、第4級アンモニウム塩等のカチオン性帯電防止剤や、スズドープ酸化インジウム(ITO)等の微粒子や、導電性ポリマー等を用いることができる。上記帯電防止剤を用いる場合、その含有量は、全固形分の合計質量に対して1~30質量%であることが好ましい。 The antistatic layer can be formed, for example, by adding an antistatic agent to the hard coat layer composition. As the antistatic agent, conventionally known ones can be used. For example, a cationic antistatic agent such as a quaternary ammonium salt, fine particles such as tin-doped indium oxide (ITO), a conductive polymer, or the like can be used. Can do. When the antistatic agent is used, the content thereof is preferably 1 to 30% by mass with respect to the total mass of the total solid content.
 また、防眩層は、例えば、上記ハードコート層用組成物中に防眩剤を含有させることで形成することができる。上記防眩剤としては特に限定されず、公知の無機系又は有機系の各種微粒子を用いることができる。上記微粒子の平均粒径としては特に限定されないが、一般的には、0.01~20μm程度とすれば良い。また、上記微粒子の形状は、真球状、楕円状等のいずれであっても良く、好ましくは真球状のものが挙げられる。  The antiglare layer can be formed, for example, by adding an antiglare agent to the hard coat layer composition. The antiglare agent is not particularly limited, and various known inorganic or organic fine particles can be used. The average particle size of the fine particles is not particularly limited, but generally may be about 0.01 to 20 μm. Further, the shape of the fine particles may be any of a spherical shape, an elliptical shape, etc., and preferably a spherical shape.
 上記微粒子は、防眩性を発揮するものであり、好ましくは透明性の微粒子である。このような微粒子の具体例としては、無機系であれば、例えば、シリカビーズ、有機系であれば、例えば、プラスチックビーズが挙げられる。上記プラスチックビーズの具体例としては、例えば、スチレンビーズ(屈折率1.60)、メラミンビーズ(屈折率1.57)、アクリルビーズ(屈折率1.49)、アクリル-スチレンビーズ(屈折率1.54)、ポリカーボネートビーズ、ポリエチレンビーズ等が挙げられる。 The fine particles exhibit anti-glare properties, and are preferably transparent fine particles. Specific examples of such fine particles include silica beads if they are inorganic, and plastic beads if they are organic. Specific examples of the plastic beads include, for example, styrene beads (refractive index 1.60), melamine beads (refractive index 1.57), acrylic beads (refractive index 1.49), acrylic-styrene beads (refractive index 1. 54), polycarbonate beads, polyethylene beads and the like.
 上記防汚層は、液晶表示装置の最表面に汚れ(指紋、水性又は油性のインキ類、鉛筆等)が付着しにくく、又は付着した場合でも容易に拭取ることができるという役割を担う層である。また、上記防汚層の形成により、液晶表示装置に対して防汚性と耐擦傷性の改善を図ることも可能となる。上記防汚層は、例えば、防汚染剤及び樹脂を含む組成物により形成することができる。 The antifouling layer is a layer that plays a role of preventing dirt (fingerprints, water-based or oily inks, pencils, etc.) from adhering to the outermost surface of the liquid crystal display device or being able to wipe off easily even if adhering. is there. Further, by forming the antifouling layer, it is possible to improve the antifouling property and scratch resistance of the liquid crystal display device. The antifouling layer can be formed of a composition containing an antifouling agent and a resin, for example.
 上記防汚染剤は、液晶表示装置の最表面の汚れ防止を主目的とするものであり、液晶表示装置に耐擦傷性を付与することもできる。上記防汚染剤としては、例えば、フッ素系化合物、ケイ素系化合物、又は、これらの混合化合物が挙げられる。より具体的には、2-パーフロロオクチルエチルトリアミノシラン等のフロロアルキル基を有するシランカップリング剤等が挙げられ、特に、アミノ基を有するものが好ましくは使用することができる。上記樹脂としては特に限定されず、上述のハードコート層用組成物で例示した樹脂材料が挙げられる。  The above-mentioned antifouling agent is mainly intended to prevent contamination of the outermost surface of the liquid crystal display device, and can also impart scratch resistance to the liquid crystal display device. Examples of the antifouling agent include fluorine compounds, silicon compounds, and mixed compounds thereof. More specific examples include silane coupling agents having a fluoroalkyl group such as 2-perfluorooctylethyltriaminosilane, and those having an amino group can be preferably used. It does not specifically limit as said resin, The resin material illustrated with the above-mentioned composition for hard-coat layers is mentioned.
 上記防汚層は、例えば、上述のハードコート層の上に形成することができる。特に、防汚層が最表面になるように形成することが好ましい。上記防汚層は、例えばハードコート層自身に防汚性能を付与することにより代替することもできる。 The antifouling layer can be formed on the hard coat layer, for example. In particular, it is preferable to form the antifouling layer so as to be the outermost surface. The antifouling layer can be replaced by imparting antifouling performance to the hard coat layer itself, for example.
<積層体について>
 第1の実施の形態として以上に説明してきた積層体10によれば、機能層15と光透過性基材12との間に、中間層13が設けられている。そして、光透過性基材12の面内の平均屈折率n、中間層13の面内の平均屈折率n、機能層15の面内の平均屈折率n、および、中間層13の厚みt〔nm〕が、上述した条件(a)および条件(b)のうちの一方を満たすとともに、条件(c1)~(c5)の少なくとも一つを満たすように調整されている。この結果、機能層15の側から積層体10へ入射して機能層15と中間層13との界面での反射する光Lr1および中間層13と光透過性基材12との界面での反射光Lr2を重ね合わせてなる合成反射光Lの光強度(振幅)を有効に低下させることができる。したがって、積層体10の表面で反射する光と、積層体10の内部で反射する光と、の干渉に起因して視認され得るようになる干渉縞を効果的に目立たなくさせることができる。
<About the laminate>
According to the laminate 10 described above as the first embodiment, the intermediate layer 13 is provided between the functional layer 15 and the light transmissive substrate 12. Then, the average refractive index n 1 in the plane of the light transmissive substrate 12, the average refractive index n 2 in the plane of the intermediate layer 13, the average refractive index n 3 in the plane of the functional layer 15, and the intermediate layer 13 The thickness t [nm] is adjusted so as to satisfy one of the conditions (a) and (b) described above and at least one of the conditions (c1) to (c5). As a result, the light L r1 incident on the laminate 10 from the functional layer 15 side and reflected at the interface between the functional layer 15 and the intermediate layer 13 and the reflection at the interface between the intermediate layer 13 and the light transmissive substrate 12 are reflected. the light intensity of the composed by superimposing light L r2 synthesized reflected light L r (amplitude) can be reduced effectively. Therefore, the interference fringes that can be visually recognized due to the interference between the light reflected on the surface of the laminate 10 and the light reflected inside the laminate 10 can be effectively made inconspicuous.
 また、光透過性基材12の面内の平均屈折率n、中間層13の面内の平均屈折率nおよび機能層15の面内の平均屈折率nが、上述した条件(a)および条件(b)のうちの一方を満たさすように調整され、光透過性基材12と機能層15との間に、屈折率が大きく変化する光学界面が存在しない。すなわち、光透過性基材12と機能層15との間に、屈折率差が大きいことから反射率が高くなってしまう界面が存在しない。したがって、機能層15の側から積層体10内に入射したが光が、光透過性基材12に到達するまでに反射してしまうことを効果的に防止することができる。これにより、積層体10の表面で反射する光と、積層体10の内部で反射する光と、の干渉に起因して視認され得るようになる干渉縞を効果的に目立たなくさせることができる。 Further, the average refractive index n 1 in the plane of the light transmissive substrate 12, the average refractive index n 2 in the plane of the intermediate layer 13, and the average refractive index n 3 in the plane of the functional layer 15 are the above-described conditions (a ) And the condition (b), and there is no optical interface between which the refractive index changes greatly between the light-transmitting substrate 12 and the functional layer 15. That is, there is no interface between the light-transmitting substrate 12 and the functional layer 15 that causes a high reflectivity due to a large difference in refractive index. Therefore, although it entered into the laminated body 10 from the functional layer 15 side, light can be effectively prevented from being reflected before reaching the light-transmitting substrate 12. Thereby, the interference fringes that can be visually recognized due to the interference between the light reflected on the surface of the laminated body 10 and the light reflected on the inside of the laminated body 10 can be effectively made inconspicuous.
 また、光透過性基材12のリタデーションを3000nm以上に設定することにより、ニジムラを目立たなくさせることができる。したがって、ここで説明した積層体10によれば、ニジムラおよび干渉縞の両方を効果的に目立たなくさせることができる。さらには、サングラス越しでの鑑賞にも適するようになる。 Further, by setting the retardation of the light-transmitting substrate 12 to 3000 nm or more, Nizimura can be made inconspicuous. Therefore, according to the laminated body 10 demonstrated here, both a nizimura and an interference fringe can be made effectively inconspicuous. Furthermore, it will be suitable for viewing through sunglasses.
 さらに、中間層13がプライマー層によって実現されるようにすれば、実質的な材料費の増加や製造工程の増加等を生じさせることなく、上述した有用な作用効果を確保することができる。 Furthermore, if the intermediate layer 13 is realized by the primer layer, the above-described useful effects can be ensured without causing a substantial increase in material costs, an increase in manufacturing steps, and the like.
≪偏光板≫
 積層体10は、例えば、偏光板20に組み込んで使用することができる。図7は、図1に示された積層体10を組み込んだ偏光板20の概略構成図である。図7に示されるように偏光板20は、積層体10と、偏光素子21と、保護フィルム22とを備えている。偏光素子21は、積層基材11の機能層15が形成されている面とは反対側の面に形成されている。保護フィルム22は、偏光素子21の積層体10が設けられている面とは反対側の面に設けられている。保護フィルム22は位相差フィルムであってもよい。
≪Polarizing plate≫
The laminated body 10 can be used by being incorporated in the polarizing plate 20, for example. FIG. 7 is a schematic configuration diagram of a polarizing plate 20 incorporating the laminate 10 shown in FIG. As shown in FIG. 7, the polarizing plate 20 includes a laminate 10, a polarizing element 21, and a protective film 22. The polarizing element 21 is formed on the surface of the laminated substrate 11 opposite to the surface on which the functional layer 15 is formed. The protective film 22 is provided on the surface opposite to the surface on which the laminated body 10 of the polarizing elements 21 is provided. The protective film 22 may be a retardation film.
 偏光素子21としては、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等が挙げられる。 Examples of the polarizing element 21 include a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film dyed and stretched with iodine or the like.
≪液晶表示パネル≫
 積層体10および偏光板20は、液晶表示パネルに組み込んで使用することができる。図7は、図1に示された積層体10、並びに、図6に示された偏光板20を組み込んだ液晶表示パネル30の概略構成図である。
≪LCD panel≫
The laminate 10 and the polarizing plate 20 can be used by being incorporated in a liquid crystal display panel. FIG. 7 is a schematic configuration diagram of the liquid crystal display panel 30 in which the laminate 10 shown in FIG. 1 and the polarizing plate 20 shown in FIG. 6 are incorporated.
 図7に示される液晶表示パネルは、光源側(バックライトユニット側)から観察者側に向けて、トリアセチルセルロースフィルム(TACフィルム)等の保護フィルム31、偏光素子32、位相差フィルム33、接着剤層34、液晶セル35、接着剤層36、位相差フィルム37、偏光素子21、積層体10の順に積層された構造を有している。液晶セル35は、2枚のガラス基材間に、液晶層、配向膜、電極層、カラーフィルタ等を配置したものである。 The liquid crystal display panel shown in FIG. 7 has a protective film 31, such as a triacetyl cellulose film (TAC film), a polarizing element 32, a retardation film 33, an adhesive, from the light source side (backlight unit side) to the viewer side. The agent layer 34, the liquid crystal cell 35, the adhesive layer 36, the retardation film 37, the polarizing element 21, and the laminate 10 are sequentially laminated. In the liquid crystal cell 35, a liquid crystal layer, an alignment film, an electrode layer, a color filter, and the like are disposed between two glass substrates.
 位相差フィルム33、37としては、トリアセチルセルロースフィルムやシクロオレフィンポリマーフィルムが挙げられる。位相差フィルム37は、保護フィルム22と同一であってもよい。接着剤層34、36を構成する接着剤としては、感圧接着剤(PSA)が挙げられる。 Examples of the retardation films 33 and 37 include a triacetyl cellulose film and a cycloolefin polymer film. The retardation film 37 may be the same as the protective film 22. Examples of the adhesive constituting the adhesive layers 34 and 36 include a pressure sensitive adhesive (PSA).
≪画像表示装置≫
 積層体10、偏光板20、液晶表示パネル30は、画像表示装置に組み込んで使用することができる。画像表示装置としては、例えば液晶ディスプレイ(LCD)、陰極線管表示装置(CRT)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、タブレットPC、電子ペーパー等が挙げられる。図8は、図1に示された積層体10、図6に示された偏光板20、並びに、図7に示された液晶表示パネル30を組み込んだ画像表示装置40の一例である液晶ディスプレイの概略構成図である。
≪Image display device≫
The laminate 10, the polarizing plate 20, and the liquid crystal display panel 30 can be used by being incorporated in an image display device. Examples of the image display device include a liquid crystal display (LCD), a cathode ray tube display device (CRT), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), a touch panel, a tablet PC, and electronic paper. Can be mentioned. FIG. 8 shows a liquid crystal display as an example of an image display device 40 incorporating the laminate 10 shown in FIG. 1, the polarizing plate 20 shown in FIG. 6, and the liquid crystal display panel 30 shown in FIG. It is a schematic block diagram.
 図8に示される画像表示装置40は、液晶ディスプレイである。画像表示装置30は、バックライトユニット41と、バックライトユニット41よりも観察者側に配置された、積層体10を備える液晶表示パネル30とから構成されている。バックライトユニット41としては、公知のバックライトユニットが使用できる。 The image display device 40 shown in FIG. 8 is a liquid crystal display. The image display device 30 includes a backlight unit 41 and a liquid crystal display panel 30 including the laminate 10 that is disposed closer to the viewer than the backlight unit 41. A known backlight unit can be used as the backlight unit 41.
≪タッチパネルセンサおよびタッチパネル装置≫
 また、上述した積層体10は、上述してきた用途以外の用途として、タッチパネルセンサおよびタッチパネルの一部を構成することができる。図9は、図1に示された積層体10が組み込まれたタッチパネルセンサ50およびタッチパネル装置55の概略構成図である。
≪Touch panel sensor and touch panel device≫
Moreover, the laminated body 10 mentioned above can comprise a touch panel sensor and a part of touch panel as uses other than the use mentioned above. FIG. 9 is a schematic configuration diagram of the touch panel sensor 50 and the touch panel device 55 in which the laminate 10 illustrated in FIG. 1 is incorporated.
 図9に示されるようにタッチパネルセンサ50は、積層体10と、センサ電極51と、を有している。センサ電極51は、積層基材11の機能層15が形成されている面とは反対側の面に形成されている。タッチパネル装置55は、タッチパネルセンサ50と、タッチパネルセンサ50のセンサ電極51と電気的に接続された制御装置53と、を有している。制御装置53は、機能層15上における接触位置に応じて変化する電流値に基づいて、接触位置を検出するように構成されている。 As shown in FIG. 9, the touch panel sensor 50 includes the laminate 10 and the sensor electrode 51. The sensor electrode 51 is formed on the surface opposite to the surface on which the functional layer 15 of the laminated base material 11 is formed. The touch panel device 55 includes a touch panel sensor 50 and a control device 53 that is electrically connected to the sensor electrode 51 of the touch panel sensor 50. The control device 53 is configured to detect the contact position based on a current value that changes in accordance with the contact position on the functional layer 15.
 図9に示されたタッチパネル装置55は、一例として表面型の静電容量方式のタッチパネルを構成している。したがって、センサ電極51は面状に形成され、センサ電極51の四隅が制御装置53と導通されている。タッチパネル装置55およびタッチパネルセンサ50は、図9に示された例に限られず、投影型の静電容量方式として構成されてもよいし、抵抗膜方式として構成されてもよい。 The touch panel device 55 shown in FIG. 9 constitutes a surface-type capacitive touch panel as an example. Therefore, the sensor electrode 51 is formed in a planar shape, and the four corners of the sensor electrode 51 are electrically connected to the control device 53. The touch panel device 55 and the touch panel sensor 50 are not limited to the example illustrated in FIG. 9, and may be configured as a projection-type capacitance method or a resistance film method.
≪その他の用途≫
 さらに、上述した積層体10は、干渉縞の発生が回避されるべき種々の用途で使用され得る。例えば、積層体10が、時計や、メーター類等の機器の表示部の窓材としても使用され得る。
≪Other uses≫
Furthermore, the laminate 10 described above can be used in various applications where the generation of interference fringes should be avoided. For example, the laminate 10 can be used as a window material for a display unit of a device such as a watch or a meter.
「第2の実施の形態」
 次に、本発明の第2の実施の形態について説明する。図10は本発明の第2の実施の形態を説明するための図である。図10は、図3に対応する第2の実施の形態に係る図であって、第2の実施の形態に係る積層体内で反射した光の波形を説明するための図である。なお、第2の実施の形態は、積層体の各層の屈折率の関係、並びに、中間層の厚みにおいて、上述した第1の実施の形態と異なり、その他において、上述した第1の実施の形態と同一に構成し得る。そして、層構成に関する図1、図2、図6~図9は、第2の実施の形態にも共通する図面である。以下に説明する第2の実施の形態の各構成に対して、第1の実施の形態の対応する構成に対して用いた符号と同一の符号を用い、第1の実施の形態と重複する説明を省略する。
“Second Embodiment”
Next, a second embodiment of the present invention will be described. FIG. 10 is a diagram for explaining a second embodiment of the present invention. FIG. 10 is a diagram according to the second embodiment corresponding to FIG. 3, and is a diagram for explaining a waveform of light reflected in the laminated body according to the second embodiment. Note that the second embodiment differs from the first embodiment described above in terms of the refractive index relationship of each layer of the laminate and the thickness of the intermediate layer, and otherwise the first embodiment described above. Can be configured identically. FIG. 1, FIG. 2, and FIG. 6 to FIG. 9 relating to the layer structure are also common to the second embodiment. For each configuration of the second embodiment described below, the same reference numerals as those used for the corresponding configuration of the first embodiment are used, and the description is duplicated with the first embodiment. Is omitted.
≪積層体≫
<積層体の全体構成>
 まず、第2の実施の形態に係る積層体10の全体構成について説明する。図1に示すように、第2の実施の形態に係る積層体10は、第1の実施の形態と同様に、積層基材11と、積層基材11の一方の面上に形成された機能層15と、を有している。積層基材11は、光透過性基材12と、光透過性基材12と積層された中間層13と、を有している。積層体10内において、中間層13は、光透過性基材12と機能層15との間に位置する。すなわち、機能層15は、中間層13の側から積層基材11に積層されている。図示された例において、積層基材11内において、中間層13は、光透過性基材12の一方の面上に形成されている。すなわち、積層体10は、光透過性基材12、中間層13、機能層15の三つの層をこの順番で含むように構成されており、中間層13は、光透過性基材12および機能層15に隣接して配置され、光透過性基材12および機能層15との間で、それぞれ、界面を形成している。
≪Laminated body≫
<Overall structure of laminate>
First, the overall configuration of the laminate 10 according to the second embodiment will be described. As shown in FIG. 1, the laminated body 10 which concerns on 2nd Embodiment is the function formed on the one side of the laminated base material 11 and the laminated base material 11 similarly to 1st Embodiment. And a layer 15. The laminated substrate 11 includes a light transmissive substrate 12 and an intermediate layer 13 laminated with the light transmissive substrate 12. In the laminate 10, the intermediate layer 13 is located between the light transmissive substrate 12 and the functional layer 15. That is, the functional layer 15 is laminated on the laminated base material 11 from the intermediate layer 13 side. In the illustrated example, the intermediate layer 13 is formed on one surface of the light transmissive substrate 12 in the laminated substrate 11. That is, the laminate 10 is configured to include three layers of the light transmissive substrate 12, the intermediate layer 13, and the functional layer 15 in this order. The intermediate layer 13 includes the light transmissive substrate 12 and the function. It arrange | positions adjacent to the layer 15 and forms the interface between the transparent base material 12 and the functional layer 15, respectively.
 なお、図2には、図1に示された積層体の一変形例としての積層体が示されている。図2に示された積層体10では、機能層15の積層基材11に対面しない側の面上に第2機能層17が形成されている点において、図1の積層体と異なっている。図1に示された積層体10では、機能層15が、積層基材11の一方の面上に形成されたハードコート層から構成されるようにしてもよい。一方、図2に示された積層体10では、機能層15が、積層基材11の一方の面上に形成されたハードコート層から構成されるとともに、第2機能層17が、ハードコート層の積層基材11とは逆側の面上に形成された低屈折率層から構成されるようにしてもよい。 Note that FIG. 2 shows a laminate as a modification of the laminate shown in FIG. The laminated body 10 shown in FIG. 2 is different from the laminated body of FIG. 1 in that the second functional layer 17 is formed on the surface of the functional layer 15 that does not face the laminated base material 11. In the laminated body 10 shown in FIG. 1, the functional layer 15 may be composed of a hard coat layer formed on one surface of the laminated base material 11. On the other hand, in the laminate 10 shown in FIG. 2, the functional layer 15 is composed of a hard coat layer formed on one surface of the laminated substrate 11, and the second functional layer 17 is a hard coat layer. You may make it comprise from the low-refractive-index layer formed on the surface on the opposite side to the laminated base material 11 of.
 ここで説明する積層体10は、次の条件(o)および条件(p)の一方とともに、少なくとも次の条件(q1)を満たす。
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
  0<t<λmax/(12×n)  ・・・条件(q1)
The laminated body 10 demonstrated here satisfy | fills at least the following condition (q1) with one of the following conditions (o) and conditions (p).
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
0 <t <λ max / (12 × n 2 ) Condition (q1)
 ここで条件(o)~(q1)並びに後述する条件(q2)~(q6)において、「n」は光透過性基材12の面内の平均屈折率であり、「n」は中間層13の面内の平均屈折率であり、「n」は機能層15の面内の平均屈折率である。また、条件(q1)並びに後述する条件(q2)~(q6)において、「λmax」は可視光の最長波長〔nm〕であり、「λmin」は可視光の最短波長〔nm〕であり、「t」は中間層13の厚み〔nm〕である。面内の平均屈折率とは、対象となるシート状の層のそのシート面に沿って延びる互いに直交する二つの方向での屈折率の平均値である。対象となる層が光学等方性であれば、当該層のシート面に沿った各方向における屈折率は同一となる。一方、対象となる層が光学異方性であれば、当該層のシート面に沿った各方向における屈折率は相違する。 Here, in the conditions (o) to (q1) and the conditions (q2) to (q6) described later, “n 1 ” is the average refractive index in the plane of the light-transmitting substrate 12, and “n 2 ” is intermediate The in-plane average refractive index of the layer 13, and “n 3 ” is the in-plane average refractive index of the functional layer 15. In the condition (q1) and the conditions (q2) to (q6) described later, “λ max ” is the longest wavelength [nm] of visible light, and “λ min ” is the shortest wavelength [nm] of visible light. , “T” is the thickness [nm] of the intermediate layer 13. The in-plane average refractive index is an average value of refractive indexes in two directions perpendicular to each other extending along the sheet surface of the sheet-like layer as a target. If the target layer is optically isotropic, the refractive index in each direction along the sheet surface of the layer is the same. On the other hand, if the target layer is optically anisotropic, the refractive index in each direction along the sheet surface of the layer is different.
 なお、「シート面(フィルム面、板面)」とは、対象となるシート状(フィルム状、板状)の層または部材を全体的かつ大局的に見た場合において対象となるシート状の層または部材の平面方向と一致する面のことを指す。一実施の形態として説明する積層体10において、光透過性基材12のシート面、中間層13のシート面、機能層15のシート面、第2機能層17のシート面、積層基材11のシート面、および、積層体10のシート面は、互いに平行となっている。 The “sheet surface (film surface, plate surface)” is a sheet-like layer that is a target when the target sheet-like (film-like, plate-like) layer or member is viewed as a whole and globally. Or the surface which corresponds with the planar direction of a member is pointed out. In the laminate 10 described as an embodiment, the sheet surface of the light transmissive substrate 12, the sheet surface of the intermediate layer 13, the sheet surface of the functional layer 15, the sheet surface of the second functional layer 17, and the laminated substrate 11. The sheet surface and the sheet surface of the laminate 10 are parallel to each other.
 第2の実施の形態においても、各層の面内における各方向での屈折率、各層の面内の平均屈折率n,n,n、中間層13の厚み(硬化時)tは、第1の実施の形態で説明した方法にて、測定することができる。 Also in the second embodiment, the refractive index in each direction in the plane of each layer, the average refractive index n 1 , n 2 , n 3 in the plane of each layer, and the thickness (when cured) t of the intermediate layer 13 are: It can be measured by the method described in the first embodiment.
 積層体10によって、上述した条件(o)および条件(p)の一方とともに、少なくとも条件(q1)を満たされる場合、積層体10に干渉縞が発生してしまうことを有効に抑制することができる。ここで不可視化対象となる干渉縞は、機能層15の側から図1の積層体10へ向かう光(図10の光L)のうちの、機能層15の表面での反射光と、積層基材11からの反射光(図10の光L)と、の干渉により生じる干渉縞である。同様に、第2機能層17の側から図2の積層体10へ向かう光のうちの、第2機能層17の表面での反射光または第2機能層17と機能層15との界面での反射光と、積層基材11からの反射光と、の干渉により生じる干渉縞も、不可視化対象となる干渉縞となる。ここで、積層基材11からの反射光とは、機能層15と中間層13との界面での反射光(図10の光Lr1)および中間層13と光透過性基材12との界面での反射光(図10の光Lr2)のことである。 When the laminate 10 satisfies at least the condition (q1) together with one of the condition (o) and the condition (p) described above, the occurrence of interference fringes in the laminate 10 can be effectively suppressed. . Here the invisible object interference pattern of the light traveling from the side of the functional layer 15 to the laminate 10 of FIG. 1 (light L i in FIG. 10), and the reflected light on the surface of the functional layer 15, stacked It is an interference fringe produced by interference with the reflected light from the base material 11 (light L r in FIG. 10). Similarly, of the light traveling from the second functional layer 17 side to the stacked body 10 in FIG. 2, the reflected light on the surface of the second functional layer 17 or the interface between the second functional layer 17 and the functional layer 15. Interference fringes generated by interference between the reflected light and the reflected light from the laminated base material 11 are also interference fringes to be invisible. Here, the reflected light from the laminated substrate 11 refers to the reflected light at the interface between the functional layer 15 and the intermediate layer 13 (light L r1 in FIG. 10) and the interface between the intermediate layer 13 and the light transmissive substrate 12. Is reflected light (light L r2 in FIG. 10).
 そして以下に説明するように、条件(o)および条件(p)の一方とともに条件(q1)が満たされる場合には、可視光域に含まれる少なくとも一部分の波長域の光に関し、積層体10の内部を機能層15の側から積層基材11側へ向かい積層基材11で反射されて機能層15の側へ戻る光の強度を効果的に低下させることができる。すなわち、干渉縞を引き起こす原因となる光の強度を低下させることにより、可視光域に含まれる少なくとも一部分の波長域の光に起因した干渉縞を有意に目立たなくさせることができる。 As described below, when the condition (q1) is satisfied together with one of the condition (o) and the condition (p), the light of the laminated body 10 is related to light in at least a part of the wavelength region included in the visible light region. It is possible to effectively reduce the intensity of light which is reflected from the laminated base material 11 toward the laminated base material 11 side from the functional layer 15 side and returns to the functional layer 15 side. That is, by reducing the intensity of light that causes interference fringes, interference fringes resulting from light in at least a part of the wavelength region included in the visible light region can be made significantly inconspicuous.
 積層体に生じる干渉縞を不可視化する方法としては、混在領域を設けることによって積層体内の界面をぼやかす方法および積層体の表面に凹凸を形成する方法も挙げられる。しかしながら、上述したように、混在領域を設ける方法では、積層体10の強度を確保するため、機能層の厚みを厚くする必要が生じる。このため、この手法を採用した場合には、材料費が嵩んで積層体10の製造コストが上昇してしまうといった不具合が生じる。また、積層体10の表面に凹凸を形成する方法を採用すると、積層体10を介して観察される画像の画質が劣化してしまう。具体的には、画面に白濁感が生じてコントラストが低下し、画像のテリや輝きが無くなってしまう。 Examples of a method of making the interference fringes generated in the laminate invisible include a method of blurring an interface in the laminate by providing a mixed region and a method of forming irregularities on the surface of the laminate. However, as described above, in the method of providing the mixed region, it is necessary to increase the thickness of the functional layer in order to ensure the strength of the stacked body 10. For this reason, when this method is adopted, the material cost increases and the manufacturing cost of the laminate 10 increases. If a method of forming irregularities on the surface of the laminate 10 is adopted, the image quality of an image observed through the laminate 10 is deteriorated. Specifically, a cloudiness is generated on the screen, the contrast is lowered, and the image is not terrified or bright.
 これに対して、条件(o)および条件(p)の一方とともに条件(q1)を満たす積層体10には、混在領域を設ける必要、さらには機能層の厚みを増大する必要が生じない。また、中間層13が一例として、たとえば易接着層等のプライマー層からなる場合には、干渉縞対策のみを目的として追加の層を積層体10に設ける必要もなく、コスト面でのデメリットが発生しない。また、混在領域を設けること自体が困難であるポリエステル基材を、光透過性基材12として用いることが可能となる。ポリエステル基材からなる光透過性基材12は、コスト面や安定性等において非常に優れる。 On the other hand, the laminated body 10 that satisfies the condition (q1) together with one of the condition (o) and the condition (p) does not need to be provided with a mixed region and further need not increase the thickness of the functional layer. Further, when the intermediate layer 13 is made of, for example, a primer layer such as an easy-adhesion layer, there is no need to provide an additional layer on the laminate 10 only for the purpose of preventing interference fringes, resulting in cost disadvantages. do not do. In addition, it is possible to use a polyester base material for which it is difficult to provide the mixed region as the light transmissive base material 12. The light transmissive substrate 12 made of a polyester substrate is very excellent in terms of cost and stability.
 加えて、条件(o)および条件(p)の一方とともに条件(q1)を満たす積層体10では、拡散を引き起こす必要がないことから表面を平滑に保ちながら、干渉縞の発生を効果的に防止することができる。したがって、積層体10を介して観察される画像の画質に悪影響を及ぼすことなく干渉縞を不可視化することができる。すなわち、条件(o)および条件(p)の一方とともに条件(q1)を満たす積層体10では、テリ輝きを画像に付与しながら、白濁感及び干渉縞の発生を防止することが可能となる。 In addition, in the laminate 10 that satisfies the condition (q1) together with either the condition (o) or the condition (p), it is not necessary to cause diffusion, so that the generation of interference fringes is effectively prevented while keeping the surface smooth. can do. Therefore, the interference fringes can be made invisible without adversely affecting the image quality of the image observed through the laminate 10. That is, in the laminate 10 that satisfies the condition (q1) together with either the condition (o) or the condition (p), it is possible to prevent the occurrence of cloudiness and interference fringes while imparting a terry shine to the image.
 ここで、図10を参照して、条件(o)および条件(p)の一方とともに条件(q1)を満たす積層体10によって発現される干渉縞不可視化機能、言い換えると、干渉縞の発生、すなわち干渉縞が目視で確認されることを抑制する機能、さらに言い換えると干渉縞を目立たなくさせる機能について説明する。 Here, referring to FIG. 10, the interference fringe invisible function expressed by the laminate 10 that satisfies the condition (q1) together with one of the condition (o) and the condition (p), in other words, generation of interference fringes, A function of suppressing the interference fringes from being visually confirmed, and in other words, a function of making the interference fringes inconspicuous will be described.
 条件(o)および条件(p)の一方が満たされる場合、機能層15の側から積層体10へ入射した光は、機能層15と中間層13との界面および中間層13と光透過性基材12との界面のうちの一方の界面にて自由端反射し、他方の界面にて固定端反射するようになる。図10に示された積層体10では、条件(o)および条件(p)のうちの条件(p)が満たされ、機能層15の側から積層体10へ入射した光は、機能層15と中間層13との界面で固定端反射して位相がπ〔rad〕ずれ、中間層13と光透過性基材12との界面で自由端反射して位相を維持する。 When one of the condition (o) and the condition (p) is satisfied, the light incident on the stacked body 10 from the functional layer 15 side is the interface between the functional layer 15 and the intermediate layer 13 and the intermediate layer 13 and the light transmitting group. The free end reflection occurs at one of the interfaces with the material 12, and the fixed end reflection occurs at the other interface. In the laminated body 10 shown in FIG. 10, the condition (p) out of the conditions (o) and (p) is satisfied, and the light incident on the laminated body 10 from the functional layer 15 side The phase is shifted by π [rad] at the fixed end reflection at the interface with the intermediate layer 13, and the phase is maintained at the free end reflection at the interface between the intermediate layer 13 and the light-transmitting substrate 12.
 図10に示された例では、積層体10の法線方向ndに沿った断面が示されている。そして図10では、機能層15の側から積層体10へ入射した入射光L、機能層15と中間層13と界面で反射した反射光Lr1、中間層13と光透過性基材12との界面で反射した反射光Lr2、および、反射光Lr1および反射Lr2の合成である合成反射光Lについて、或る瞬間での振動状態が示されている。図10に示すように、x軸が積層体10の法線方向に延び、y軸が機能層15と中間層13との界面を延びるようにxy座標を設定すると、各光L,Lr1,Lr2,Lの波形は、それぞれ、次の式(8)~(11)にて表される。なお、以下の式(8)~(11)において「λ」は光の波長〔nm〕である。
 Yi=sin((x×n3/λ)×2π) ・・・式(8)
 Yr1=sin((x×n3/λ)×2π)    ・・・式(9)
 Yr2=-sin(((x×n3/λ)+(2t×n2/λ))×2π)   ・・・式(10)
 Yr=-2・sin(2t×n2×π/λ) ・cos(((x×n3/λ)+(t×n2/λ))×2π)
                      ・・・式(11)
In the example illustrated in FIG. 10, a cross section along the normal direction nd of the stacked body 10 is illustrated. In FIG. 10, incident light L i incident on the laminate 10 from the functional layer 15 side, reflected light L r1 reflected at the interface between the functional layer 15 and the intermediate layer 13, the intermediate layer 13, and the light transmissive substrate 12 The vibration state at a certain moment is shown with respect to the reflected light L r2 reflected at the interface and the combined reflected light L r which is a combination of the reflected light L r1 and the reflected L r2 . As shown in FIG. 10, when the xy coordinates are set so that the x-axis extends in the normal direction of the stacked body 10 and the y-axis extends the interface between the functional layer 15 and the intermediate layer 13, each light L i , L r1. , L r2 and L r are respectively represented by the following equations (8) to (11). In the following formulas (8) to (11), “λ” is the wavelength of light [nm].
Y i = sin ((x × n 3 / λ) × 2π) (8)
Y r1 = sin ((x × n 3 / λ) × 2π) (9)
Y r2 = −sin (((x × n 3 / λ) + (2t × n 2 / λ)) × 2π) (10)
Y r = -2 · sin (2t × n 2 × π / λ) cos (((x × n 3 / λ) + (t × n 2 / λ)) × 2π)
... Formula (11)
 すなわち、干渉縞を引き起こすことになる積層基材11からの合成反射光Lの強度は、当該光の波形の振幅を示す「2・sin(2t・n2・π/λ)」によって表される。干渉縞は、合成反射光Lの強度が弱い程、目立たなくなる。したがって、合成反射光Lの振幅が最大値(「2」)の半分未満(「1」未満)となる次の式(12)が満たされる場合に、波長λの光に起因した干渉縞を目立たなくさせる観点から優位な状況となり、振幅が最大値の半分を超えてしまう次の式(13)が満たされる場合に、波長λの光に起因した干渉縞を目立たなくさせる観点から劣位な状況となる。
  t<λ/(12×n)  ・・・式(12)
  t>λ/(12×n)  ・・・式(13)
以上のことから、条件(p)とともに条件(q1)が満たされる場合に、可視光最長波長の光を含む少なくとも一部分の可視光波長域の光が、干渉縞として視認されることを防止する上で有効となる。言い換えると、少なくとも一部分の可視光に関し、干渉縞を有効に不可視化することができる。
That is, the intensity of the synthetic reflected light L r from the laminated base material 11 that causes interference fringes is expressed by “2 · sin (2t · n 2 · π / λ)” indicating the amplitude of the waveform of the light. The The interference fringes become less noticeable as the intensity of the combined reflected light L r is weaker. Therefore, when the following equation (12) in which the amplitude of the combined reflected light L r is less than half of the maximum value (“2”) (less than “1”) is satisfied, The situation is superior from the standpoint of making it inconspicuous, and the situation is inferior from the viewpoint of making the interference fringes caused by light of wavelength λ inconspicuous when the following equation (13) in which the amplitude exceeds half of the maximum value is satisfied It becomes.
t <λ / (12 × n 2 ) (12)
t> λ / (12 × n 2 ) (13)
From the above, when the condition (q1) is satisfied together with the condition (p), at least a part of light in the visible light wavelength region including light having the longest visible light wavelength is prevented from being visually recognized as interference fringes. It becomes effective in. In other words, the interference fringes can be effectively invisible with respect to at least a part of visible light.
 また、条件(p)に換えて条件(o)とともに条件(q1)が満たされる場合についても、少なくとも一部分の可視光波長域の光に関し、干渉縞を有効に不可視化することができる。条件(o)が満たされる場合には、機能層15の側から積層体10へ入射した光は、中間層13と光透過性基材12との界面で固定端反射して位相がπ〔rad〕ずれ、機能層15と中間層13との界面で自由端反射して位相を維持する。したがって、図10の入射光Liに対してπ〔rad〕だけ位相が遅れた光が、条件(o)および条件(q1)を満たす積層体10に機能層15の側から入射した場合、積層基材11での反射光が図10に示された反射光Lr1,Lr2,Lと同様の波形を呈するようになる。この点から、条件(p)に換えて条件(o)とともに条件(q1)が満たされる場合についても、少なくとも一部分の可視光に関し干渉縞を有効に不可視化し得ることが、理解される。 Further, when the condition (q1) is satisfied together with the condition (o) instead of the condition (p), the interference fringes can be effectively invisible with respect to at least a part of the light in the visible light wavelength region. When the condition (o) is satisfied, the light incident on the stacked body 10 from the functional layer 15 side is reflected at the fixed end at the interface between the intermediate layer 13 and the light transmissive substrate 12 and has a phase of π [rad The phase is maintained by reflecting off the free end at the interface between the functional layer 15 and the intermediate layer 13. Therefore, when light whose phase is delayed by π [rad] with respect to the incident light Li in FIG. 10 is incident on the stacked body 10 satisfying the conditions (o) and (q1) from the functional layer 15 side, The reflected light from the material 11 has the same waveform as the reflected light L r1 , L r2 , L r shown in FIG. From this point, it is understood that even when the condition (q1) is satisfied together with the condition (o) instead of the condition (p), the interference fringes can be effectively invisible with respect to at least a part of visible light.
 以上のことから、上述した条件(o)および(p)の一方とともに条件(q1)が満たされる場合、可視光最長波長の光を含む少なくとも一部分の可視光波長域の光が、干渉縞として視認されることを効果的に防止することができる。言い換えると、上述した条件(o)および(p)の一方とともに条件(q1)が満たされる場合、少なくとも一部分の可視光に関し、干渉縞を有効に不可視化することができる。さらに言い換えると、上述した条件(o)および(p)の一方とともに条件(q1)が満たされると、観察者が感知し得る干渉縞不可視化機能(干渉縞を目立たなくさせる機能)が発現されることを期待することができる。 From the above, when the condition (q1) is satisfied together with one of the above-described conditions (o) and (p), at least a part of light in the visible light wavelength region including light having the longest visible light wavelength is visually recognized as interference fringes. Can be effectively prevented. In other words, when the condition (q1) is satisfied together with one of the above conditions (o) and (p), the interference fringes can be effectively invisible with respect to at least a part of visible light. In other words, when the condition (q1) is satisfied together with one of the above conditions (o) and (p), an interference fringe invisible function (a function of making the interference fringe inconspicuous) that can be perceived by the observer is expressed. I can expect that.
 また、干渉縞を不可視化する観点からは、上述した条件(o)および条件(p)の一方とともに、次の条件(q2)が満たされることも好ましい。
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
  0<t<((λmin+λmax)/2)/(12×n
                      ・・・条件(q2)
条件(o)および条件(p)の一方とともに条件(q2)が満たされる場合には、可視光域の半分以上を占める波長域の光に対して、干渉縞不可視化機能を有効に発揮することができる。言い換えると、条件(o)および(p)の一方とともに条件(q2)が満たされると、可視光域のうちの半分以上の波長域の光に起因した干渉縞を有効に不可視化することができる。
Further, from the viewpoint of making the interference fringes invisible, it is also preferable that the following condition (q2) is satisfied together with one of the condition (o) and the condition (p) described above.
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
0 <t <((λ min + λ max ) / 2) / (12 × n 2 )
... Condition (q2)
When the condition (q2) is satisfied together with one of the condition (o) and the condition (p), the interference fringe invisible function is effectively exhibited for light in a wavelength region that occupies half or more of the visible light region. Can do. In other words, when the condition (q2) is satisfied together with one of the conditions (o) and (p), interference fringes caused by light in a wavelength region of more than half of the visible light region can be effectively invisible. .
 さらに、干渉縞を不可視化する観点からは、上述した条件(o)および条件(p)の一方とともに、次の条件(q3)が満たされることがより好ましい。
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
  0<t<(λmin/2)/(12×n)・・・条件(q3)
条件(o)および条件(p)の一方とともに条件(q3)が満たされる場合には、可視光域のうちの全域の光に対して、干渉縞不可視化機能を有効に発揮することができる。すなわち、条件(o)および(p)の一方とともに条件(q3)が満たされると、すべての色の干渉縞が視認されることを有効に防止することができる。
Furthermore, from the viewpoint of making the interference fringes invisible, it is more preferable that the following condition (q3) is satisfied together with one of the above-described condition (o) and condition (p).
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
0 <t <(λ min / 2) / (12 × n 2 ) ... condition (q3)
When the condition (q3) is satisfied together with one of the condition (o) and the condition (p), the interference fringe invisible function can be effectively exhibited with respect to light in the entire visible light range. That is, when the condition (q3) is satisfied together with one of the conditions (o) and (p), it is possible to effectively prevent the interference fringes of all colors from being visually recognized.
 なお、JISZ8120の定義によれば、可視光波長域の最長波長λmaxは、830nmとなり、可視光波長域の最短波長λminは、360nmとすることができる。 According to the definition of JISZ8120, the longest wavelength λ max in the visible light wavelength region can be 830 nm, and the shortest wavelength λ min in the visible light wavelength region can be 360 nm.
 また、干渉縞を不可視化する観点からは、上述した条件(o)および条件(p)の一方とともに、次の条件(q4)または条件(q5)が満たされるようにすることも有効である。
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
  0<t〔nm〕<555/(12×n)  ・・・条件(q4)
  0<t〔nm〕<507/(12×n)  ・・・条件(q5)
Further, from the viewpoint of making the interference fringes invisible, it is also effective to satisfy the following condition (q4) or condition (q5) together with one of the condition (o) and the condition (p) described above.
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
0 <t [nm] <555 / (12 × n 2 ) Condition (q4)
0 <t [nm] <507 / (12 × n 2 ) Condition (q5)
 国際照明委員会(CIE)は、可視光域内の各波長域の光に対する人間の感度は異なっていることを報告している。国際照明委員会(CIE)によれば、明るい場所に順応したときに人間が最も感じやすい光の波長は、555nmであり、暗い場所に順応したときに人間が最も感じやすい光の波長は、507nmである。したがって、条件(o)および条件(p)の一方とともに条件(q4)が満たされる場合には、明所において最も人間に感知されやすい波長域の光に対して、干渉縞不可視化機能を有効に発揮することができる。すなわち、条件(o)および(p)の一方とともに条件(q4)が満たされると、明るい場所にて干渉縞が視認されることを有効に防止することができる。一方、条件(o)および条件(p)の一方とともに条件(q5)が満たされる場合には、明所において最も人間に感知されやすい波長域の光に対してだけでなく、暗所において人間に最も感知されやすい波長域の光に対しても、干渉縞不可視化機能を有効に発揮することができる。すなわち、条件(o)および(p)の一方とともに条件(q5)が満たされると、明るい場所および暗い場所の両方において干渉縞が視認されることを有効に防止することができる。 The International Commission on Illumination (CIE) reports that human sensitivity to light in each wavelength range within the visible light range is different. According to the International Commission on Illumination (CIE), the wavelength of light that is most easily felt by humans when adapting to a bright place is 555 nm, and the wavelength of light that is most easily felt by humans when adapting to a dark place is 507 nm. It is. Therefore, when the condition (q4) is satisfied together with one of the condition (o) and the condition (p), the interference fringe invisible function is effectively enabled for light in a wavelength range that is most easily detected by humans in a bright place. It can be demonstrated. That is, when the condition (q4) is satisfied together with one of the conditions (o) and (p), it is possible to effectively prevent the interference fringes from being visually recognized in a bright place. On the other hand, when the condition (q5) is satisfied together with one of the condition (o) and the condition (p), not only the light in the wavelength range that is most easily sensed by humans in the bright place but also the human being in the dark place. The interference fringe invisible function can be effectively exhibited even for light in the wavelength range that is most easily sensed. That is, when the condition (q5) is satisfied together with one of the conditions (o) and (p), it is possible to effectively prevent the interference fringes from being visually recognized in both a bright place and a dark place.
 加えて、本件発明者らが鋭意実験を行ったところ、上述した条件(o)および条件(p)の一方とともに、次の条件(q6)が満たされる場合、注意深く観察したとしても干渉縞が視認されてしまうことを極めて効果的に抑制することができた。
  n>n、且つ、n<n  ・・・条件(o)
  n<n、且つ、n>n  ・・・条件(p)
  3≦t〔nm〕≦30  ・・・条件(q6)
In addition, when the present inventors conducted intensive experiments, interference fringes are visually recognized even when carefully observed when the following condition (q6) is satisfied along with one of the above-described conditions (o) and (p). It was possible to very effectively suppress the occurrence.
n 1 > n 2 and n 2 <n 3 ... condition (o)
n 1 <n 2 and n 2 > n 3 ... condition (p)
3 ≦ t [nm] ≦ 30 Condition (q6)
 なお、上述した式(12)だけでなく、自然数kを用いた次の式(12’)が満たされる場合にも、波長λの光に起因した干渉縞を目立たなくさせる観点において優位な状況となる。式(12’)が満たされる場合、式(12)が満たされる場合と比較して、反射光Lr2の光路が(λ×k)/(2×n)〔nm〕長くなるだけで、合成反射光Lの波形に変化は生じない。このため、式(12’)が満たされる場合、式(12)が満たされる場合と同様の作用効果を期待することができる。
  -λ/(12×n2)<t-(k×λ)/(2×n2)<λ/(12×n2)  
                      ・・・式(12’)
したがって、条件(o)および条件(p)のうちの一方とともに次の条件(q1’)が満たされる場合、条件(o)および条件(p)のうちの一方とともに条件(q1)が満たされる場合と同様の作用効果を期待することができる。
  -λmax/(12×n2)<t-(k×λmax)/(2×n2)<λmax/(12×n2)
                      ・・・条件(q1’)
In addition, not only the above-described equation (12) but also the following equation (12 ′) using the natural number k is satisfied, the situation is advantageous in terms of making the interference fringes caused by the light of wavelength λ inconspicuous. Become. When Expression (12 ′) is satisfied, the optical path of the reflected light L r2 is only (λ × k) / (2 × n 2 ) [nm] longer than that when Expression (12) is satisfied. change in the waveform of the synthesized reflected light L r does not occur. For this reason, when Formula (12 ') is satisfy | filled, the effect similar to the case where Formula (12) is satisfy | filled can be anticipated.
-λ / (12 × n 2 ) <t- (k × λ) / (2 × n 2 ) <λ / (12 × n 2 )
... Formula (12 ')
Therefore, when the next condition (q1 ′) is satisfied together with one of the condition (o) and the condition (p), the condition (q1) is satisfied together with one of the condition (o) and the condition (p). The same effect can be expected.
max / (12 × n 2 ) <t- (k × λ max ) / (2 × n 2 ) <λ max / (12 × n 2 )
... Condition (q1 ')
 また、条件(q2)~条件(q5)についても、同様の理由から、これら条件(q2)~条件(q5)に代えて次の条件(q2’)~条件(q5’)が満たされる場合にも、条件(q2)~条件(q5)が満たされる場合と同様の作用効果を期待することができる。
  -((λmin+λmax)/2)/(12×n2)<
    t-(k×((λmin+λmax)/2))/(2×n2)<
      ((λmin+λmax)/2)/(12×n2)  ・・・条件(q2’)
  -λmin/(12×n2)<t-(k×λmin)/(2×n2)<λmin/(12×n2)
                      ・・・条件(q3’)
  -555/(12×n2)<t-(k×555)/(2×n2)<555/(12×n2) 
                      ・・・条件(q4’)
  -507/(12×n2)<t-(k×507)/(2×n2)<507/(12×n2) 
                      ・・・条件(q5’)
For the same reason, the conditions (q2) to (q5) are satisfied when the following conditions (q2 ′) to (q5 ′) are satisfied instead of these conditions (q2) to (q5). Also, it is possible to expect the same effect as when the conditions (q2) to (q5) are satisfied.
-((λ min + λ max ) / 2) / (12 × n 2 ) <
t- (k × ((λ min + λ max ) / 2)) / (2 × n 2 ) <
((λ min + λ max ) / 2) / (12 × n 2 ) Condition (q2 ′)
min / (12 × n 2 ) <t- (k × λ min ) / (2 × n 2 ) <λ min / (12 × n 2 )
... Condition (q3 ')
-555 / (12 × n 2 ) <t- (k × 555) / (2 × n 2 ) <555 / (12 × n 2 )
... Condition (q4 ')
-507 / (12 × n 2 ) <t- (k × 507) / (2 × n 2 ) <507 / (12 × n 2 )
... Condition (q5 ')
 ただし、条件(q1)~条件(q5)に代えて条件(q1’)~条件(q5’)が満たされることは、中間層13の厚みtが増加することを意味している。したがって、材料費の観点から、条件(q1’)~条件(q5’)よりも条件(q1)~条件(q5)が満たされることが好ましい。 However, satisfying the condition (q1 ′) to the condition (q5 ′) instead of the condition (q1) to the condition (q5) means that the thickness t of the intermediate layer 13 is increased. Therefore, from the viewpoint of material cost, it is preferable that the conditions (q1) to (q5) are satisfied rather than the conditions (q1 ') to (q5').
 ところで、従来技術の欄でも説明したように、昨今、光透過性基材12が面内の複屈折性を有する場合もある。光透過性基材12が面内の複屈折率を有する場合、光透過性基材12のシート面に沿った面内における各方向での屈折率は変化する。そして、上述した干渉縞不可視化機能がより効果的に発揮されるためには、光透過性基材12の面内の平均屈折率nによって上述した条件(o)および(p)の一方が満たされるだけでなく、次の条件(r)および(s)の一方が満たされることが好ましい。
  n1y>n、且つ、n<n  ・・・条件(r)
  n1x<n、且つ、n>n  ・・・条件(s)
ここで、条件(s)における「n1x」は、光透過性基材12の面内における最も屈折率が大きい方向である遅相軸方向における屈折率の値である。一方、条件(r)における「n1y」は、光透過性基材12の面内における最も屈折率が小さい方向である進相軸方向における屈折率の値である。
By the way, as described in the section of the prior art, the light-transmitting substrate 12 may have in-plane birefringence recently. When the light transmissive substrate 12 has an in-plane birefringence, the refractive index in each direction in the plane along the sheet surface of the light transmissive substrate 12 changes. And in order for the interference fringe invisible function described above to be exhibited more effectively, one of the above-described conditions (o) and (p) is determined by the average refractive index n 1 in the plane of the light transmissive substrate 12. In addition to being satisfied, it is preferable that one of the following conditions (r) and (s) is satisfied.
n 1y > n 2 and n 2 <n 3 ... condition (r)
n 1x <n 2 and n 2 > n 3 ... condition (s)
Here, “n 1x ” in the condition (s) is the value of the refractive index in the slow axis direction, which is the direction in which the refractive index is the largest in the plane of the light transmissive substrate 12. On the other hand, “n 1y ” in the condition (r) is a value of the refractive index in the fast axis direction, which is the direction in which the refractive index is the smallest in the plane of the light transmissive substrate 12.
 条件(r)および条件(s)の一方が満たされる場合には、光透過性基材12の面内の平均屈折率nだけでなく、光透過性基材12の面内の全ての方向における屈折率narbによって、次の条件(t)および条件(u)の一方が満たされることになる。
  narb>n、且つ、n<n ・・・条件(t)
  narb<n、且つ、n>n ・・・条件(u)
条件(t)および条件(u)の一方が満たされる場合には、光透過性基材12の面内の遅相軸方向に振動する偏光成分の光および光透過性基材12の面内の進相軸方向に振動する偏光成分の光の両方が、位相のずれに関して互いに同様の条件にて機能層15と中間層13との界面で反射し、且つ、位相のずれに関して互いに同様の条件にて中間層13と光透過性基材12との界面で反射する。すなわち、条件(t)および条件(u)の一方が満たされる場合には、機能層15の側から積層基材11の側へと積層体10内を進む光は、当該光の偏光状態に依らず、機能層15と中間層13との界面並びに中間層13と光透過性基材12との界面の一方の界面にて自由端反射し、他方の界面にて固定端反射する。このため、条件(t)および条件(u)の一方が満たされる場合には、偏光状態に依存することなく上述した干渉縞不可視化機能が極めて有効に発揮される。
When one of the condition (r) and the condition (s) is satisfied, not only the average refractive index n 1 in the plane of the light transmissive substrate 12 but also all directions in the plane of the light transmissive substrate 12 One of the following conditions (t) and (u) is satisfied by the refractive index n arb at .
n arb > n 2 and n 2 <n 3 ... condition (t)
n arb <n 2 and n 2 > n 3 ... Condition (u)
When one of the condition (t) and the condition (u) is satisfied, the light of the polarization component that vibrates in the slow axis direction in the plane of the light transmissive substrate 12 and the surface of the light transmissive substrate 12 Both of the polarized light components oscillating in the fast axis direction are reflected at the interface between the functional layer 15 and the intermediate layer 13 under the same conditions with respect to the phase shift, and under the same conditions with respect to the phase shift. Then, the light is reflected at the interface between the intermediate layer 13 and the light transmissive substrate 12. That is, when one of the condition (t) and the condition (u) is satisfied, the light traveling through the laminated body 10 from the functional layer 15 side to the laminated base material 11 side depends on the polarization state of the light. First, free end reflection is performed at one of the interface between the functional layer 15 and the intermediate layer 13 and the interface between the intermediate layer 13 and the light-transmitting substrate 12, and fixed end reflection is performed at the other interface. For this reason, when one of the condition (t) and the condition (u) is satisfied, the above-described interference fringe invisible function is exhibited extremely effectively without depending on the polarization state.
 その一方で、条件(o)および条件(p)の一方が満たされるものの、条件(t)および条件(u)の両方が満たされない場合には、機能層15の側から積層基材11の側へと積層体10内を進む光の一部が、当該光の偏光状態に依存して、機能層15と中間層13との界面並びに中間層13と光透過性基材12との界面の両方にて、自由端反射または固定端反射するようになる。このような光に対しては、上述した干渉縞不可視化機能を有効に及ぼすことができない。しかしながら、条件(o)および条件(p)の一方が満たされる場合には、条件(t)および条件(u)の両方が満たされないような状況にても、機能層15の側から積層基材11の側へと積層体10内を進むより多くの光に対して、上述した干渉縞不可視化機能を有効に及ぼされる。すなわち、条件(o)および条件(p)の一方とともに、上述した条件(q1)~(q6)のいずれかが満たされる場合には、機能層15の側から積層体10へ入射した光に対して上述した干渉縞不可視化機能が主として及ぼされることになり、干渉縞を効果的に目立たなくさせることができる。 On the other hand, when one of the condition (o) and the condition (p) is satisfied but both the condition (t) and the condition (u) are not satisfied, the functional layer 15 side to the laminated base material 11 side are satisfied. Depending on the polarization state of the light, part of the light traveling through the laminated body 10 depends on both the interface between the functional layer 15 and the intermediate layer 13 and the interface between the intermediate layer 13 and the light-transmitting substrate 12. Thus, free end reflection or fixed end reflection occurs. The interference fringe invisible function described above cannot be effectively exerted on such light. However, when one of the condition (o) and the condition (p) is satisfied, the laminated base material from the functional layer 15 side even in a situation where both the condition (t) and the condition (u) are not satisfied. The above-described interference fringe invisible function is effectively exerted on more light that travels through the laminate 10 toward the 11 side. That is, when any one of the above conditions (q1) to (q6) is satisfied together with one of the conditions (o) and (p), the light incident on the stacked body 10 from the functional layer 15 side Therefore, the interference fringe invisible function described above is mainly exerted, and the interference fringes can be effectively made inconspicuous.
 また、上述の干渉縞不可視化機能がより有効に発揮され得る観点から、機能層15の面内の平均屈折率nと光透過性基材12の面内の平均屈折率nとが近い値を取っていることが好ましく、機能層15の面内の平均屈折率nおよび光透過性基材12の面内の平均屈折率nが等しくなっていることが最も好ましい。本件発明者らが研究を重ねたところ、次の条件(v)が満たされる場合に、干渉縞不可視化機能がより有効に発揮された。
  |n-n|≦0.03 ・・・条件(v)
Moreover, from the viewpoint that the above-described interference fringe invisible function can be more effectively exhibited, the average refractive index n 3 in the plane of the functional layer 15 and the average refractive index n 1 in the plane of the light transmissive substrate 12 are close to each other. The average refractive index n 3 in the plane of the functional layer 15 and the average refractive index n 1 in the plane of the light transmissive substrate 12 are most preferably equal. As a result of repeated studies by the present inventors, the interference fringe invisible function was more effectively exhibited when the following condition (v) was satisfied.
| N 1 −n 3 | ≦ 0.03 Condition (v)
<光透過性基材>
 次に、光透過性基材12は、光透過性を有すれば特に限定されず、その屈折率に関する上述した条件を満たすように構成される。例えば、光透過性基材12は、第1の実施の形態において説明した光透過性基材と同様とすることができる。
<Light transmissive substrate>
Next, the light transmissive substrate 12 is not particularly limited as long as it has light transmissive properties, and is configured to satisfy the above-described conditions regarding the refractive index. For example, the light transmissive substrate 12 can be the same as the light transmissive substrate described in the first embodiment.
<中間層>
 次に、中間層13について詳述する。中間層13は、その厚みt〔nm〕およびその面内での平均屈折率nに関する上述した条件を満たすことにより、機能層15と中間層13との界面での反射光Lr1および中間層13と光透過性基材12との界面での反射光Lr2を重ね合わせてなる合成反射光Lの光強度(振幅)を低下させ、合成反射光Lに起因した干渉縞が視認されることを抑制する。中間層13は、厚みt〔nm〕および面内での平均屈折率nに関する上述した条件を満たす限りにおいて、特に限定されない。
<Intermediate layer>
Next, the intermediate layer 13 will be described in detail. The intermediate layer 13 satisfies the above-described conditions regarding the thickness t [nm] and the in-plane average refractive index n 2 , thereby reflecting the reflected light L r1 and the intermediate layer at the interface between the functional layer 15 and the intermediate layer 13. 13 reduces the light intensity (amplitude) of the combined reflected light L r formed by superimposing the reflected light L r2 at the interface between the light transmitting base 12 and the interference fringes caused by the combined reflected light L r. It suppresses that. The intermediate layer 13 is not particularly limited as long as the above-described conditions regarding the thickness t [nm] and the in-plane average refractive index n 2 are satisfied.
 すなわち、中間層13の厚みは、干渉縞を不可視化する観点から、上述した条件(q1)~(q6)のいずれかを満たすように設定することができる。なお、中間層13の厚みは、膜厚の均一化を図る観点から3nm以上となっていることが好ましい。一方、中間層13の面内の平均屈折率nは、上述した条件(o)及び条件(p)のうちの一方とともに、条件(q1)~(q6)のいずれかを満たすように設定することができ、例えば1.40以上1.80以下とすることが可能である。 That is, the thickness of the intermediate layer 13 can be set so as to satisfy any of the above-described conditions (q1) to (q6) from the viewpoint of making the interference fringes invisible. The thickness of the intermediate layer 13 is preferably 3 nm or more from the viewpoint of making the film thickness uniform. On the other hand, the in-plane average refractive index n 2 of the intermediate layer 13 is set so as to satisfy any one of the conditions (q1) to (q6) together with one of the conditions (o) and (p) described above. For example, it can be 1.40 or more and 1.80 or less.
<機能層、第2機能層>
 次に、機能層15および第2機能層17について説明する。機能層15および第2機能層17は、積層体10において、何らかの機能を発揮することを意図された層であり、その屈折率に関する上述した条件を満たすように構成される。機能層15および第2機能層17は、具体的には、例えば、ハードコート性、反射防止性、帯電防止性、または防汚性等の機能を発揮する層が挙げられる。既に説明したように、積層体10に含まれる機能層の数は、当該積層体の用途等に応じて、一以上の任意の数とすることができる。図1に示された積層体10では、機能層15が、積層基材11の中間層13一方の面上に形成されたハードコート層から構成されている。また、図2に示された積層体10では、機能層15が、中間層13の一方の面上に形成されたハードコート層から構成されるとともに、第2機能層17が、ハードコート層の中間層13とは逆側の面上に形成された低屈折率層から構成されている。機能層15としてのハードコート層、および、第2機能層17としての低屈折率層は、それぞれ、第1の実施の形態において説明したハードコート層及び低屈折率層と同様とすることができる。
<Functional layer, second functional layer>
Next, the functional layer 15 and the second functional layer 17 will be described. The functional layer 15 and the second functional layer 17 are layers that are intended to exhibit some function in the stacked body 10 and are configured to satisfy the above-described conditions regarding the refractive index. Specific examples of the functional layer 15 and the second functional layer 17 include layers that exhibit functions such as hard coat properties, antireflection properties, antistatic properties, and antifouling properties. As already described, the number of functional layers included in the stacked body 10 can be any number of one or more depending on the use of the stacked body. In the laminated body 10 shown in FIG. 1, the functional layer 15 is composed of a hard coat layer formed on one surface of the intermediate layer 13 of the laminated base material 11. Moreover, in the laminated body 10 shown by FIG. 2, while the functional layer 15 is comprised from the hard-coat layer formed on the one surface of the intermediate | middle layer 13, the 2nd functional layer 17 is a hard-coat layer. The intermediate layer 13 is composed of a low refractive index layer formed on a surface opposite to the intermediate layer 13. The hard coat layer as the functional layer 15 and the low refractive index layer as the second functional layer 17 can be the same as the hard coat layer and the low refractive index layer described in the first embodiment, respectively. .
 なお、上述したように、干渉縞不可視化機能がより有効に発揮され得る観点から、機能層15の面内の平均屈折率nと光透過性基材12の面内の平均屈折率nとが、近い値を取るように、或いは等しくなるように、或いは条件(v)を満たすように調整されていることが好ましい。
  |n-n|≦0.03 ・・・条件(v)
そして、機能層15の屈折率を調整する観点から、微小粒径、例えば100nm以下の粒子が機能層形成用組成物(ハードコート層形成用組成物)内に含有させてもよい。一例として、機能能15の屈折率を低下させるため、シリカやフッ化マグネシウム等の低屈折率粒子が機能層に含有されていてもよいし、機能層15の屈折率を上昇させるため、酸化チタンや酸化ジルコニウム等の金属酸化物粒子が機能層に含有されていてもよい。
As described above, from the viewpoint that the interference fringe invisible function can be more effectively exhibited, the in-plane average refractive index n 3 and the light-transmitting base material 12 in-plane average refractive index n 1 Are adjusted so as to take close values, become equal, or satisfy the condition (v).
| N 1 −n 3 | ≦ 0.03 Condition (v)
From the viewpoint of adjusting the refractive index of the functional layer 15, fine particles having a particle diameter of, for example, 100 nm or less may be contained in the functional layer forming composition (hard coat layer forming composition). As an example, low refractive index particles such as silica and magnesium fluoride may be contained in the functional layer in order to reduce the refractive index of the functional ability 15, and in order to increase the refractive index of the functional layer 15, titanium oxide. And metal oxide particles such as zirconium oxide may be contained in the functional layer.
<積層体について>
 第2の実施の形態として以上に説明してきた積層体10によれば、機能層15と光透過性基材12との間に、中間層13が設けられている。そして、光透過性基材12の面内の平均屈折率n、中間層13の面内の平均屈折率n、機能層15の面内の平均屈折率n、および、中間層13の厚みt〔nm〕が、上述した条件(o)および条件(p)のうちの一方を満たすとともに、条件(q1)~(q6)の少なくとも一つを満たすように調整されている。この結果、機能層15の側から積層体10へ入射して機能層15と中間層13との界面での反射する光Lr1および中間層13と光透過性基材12との界面での反射光Lr2を重ね合わせてなる合成反射光Lの光強度(振幅)を有効に低下させることができる。したがって、積層体10の表面で反射する光と、積層体10の内部で反射する光と、の干渉に起因して視認され得るようになる干渉縞を効果的に目立たなくさせることができる。
<About the laminate>
According to the laminate 10 described above as the second embodiment, the intermediate layer 13 is provided between the functional layer 15 and the light transmissive substrate 12. Then, the average refractive index n 1 in the plane of the light transmissive substrate 12, the average refractive index n 2 in the plane of the intermediate layer 13, the average refractive index n 3 in the plane of the functional layer 15, and the intermediate layer 13 The thickness t [nm] is adjusted so as to satisfy one of the above conditions (o) and (p) and at least one of the conditions (q1) to (q6). As a result, the light L r1 incident on the laminate 10 from the functional layer 15 side and reflected at the interface between the functional layer 15 and the intermediate layer 13 and the reflection at the interface between the intermediate layer 13 and the light transmissive substrate 12 are reflected. the light intensity of the composed by superimposing light L r2 synthesized reflected light L r (amplitude) can be reduced effectively. Therefore, the interference fringes that can be visually recognized due to the interference between the light reflected on the surface of the laminate 10 and the light reflected inside the laminate 10 can be effectively made inconspicuous.
 また、第1の実施の形態と同様に、光透過性基材12のリタデーションを3000nm以上に設定することにより、ニジムラを目立たなくさせることができる。したがって、ここで説明した積層体10によれば、ニジムラおよび干渉縞の両方を効果的に目立たなくさせることができる。さらには、サングラス越しでの鑑賞にも適するようになる。 Further, similarly to the first embodiment, by setting the retardation of the light-transmitting substrate 12 to 3000 nm or more, it is possible to make the azimuth inconspicuous. Therefore, according to the laminated body 10 demonstrated here, both a nizimura and an interference fringe can be made effectively inconspicuous. Furthermore, it will be suitable for viewing through sunglasses.
 さらに、中間層13がプライマー層によって実現されるようにすれば、実質的な材料費の増加や製造工程の増加等を生じさせることなく、上述した有用な作用効果を確保することができる。 Furthermore, if the intermediate layer 13 is realized by the primer layer, the above-described useful effects can be ensured without causing a substantial increase in material costs, an increase in manufacturing steps, and the like.
≪用途≫
 第2の実施の形態の積層体10は、第1の実施の形態の積層体と同様に、例えば、偏光板20(図6参照)、液晶表示パネル30(図7参照)、画像表示装置40(図8参照)、タッチパネルセンサ50(図9参照)、タッチパネル装置55(図9参照)に組み込まれて使用され得る。またその他の用途として、積層体10は、干渉縞の発生が回避されるべき種々の用途で使用され得る。例えば、積層体10が、時計や、メーター類等の機器の表示部の窓材としても使用され得る。
≪Usage≫
The laminated body 10 of 2nd Embodiment is the same as the laminated body of 1st Embodiment, for example, the polarizing plate 20 (refer FIG. 6), the liquid crystal display panel 30 (refer FIG. 7), and the image display apparatus 40. FIG. (See FIG. 8), the touch panel sensor 50 (see FIG. 9), and the touch panel device 55 (see FIG. 9) can be incorporated and used. As another application, the laminate 10 can be used in various applications where the generation of interference fringes should be avoided. For example, the laminate 10 can be used as a window material for a display unit of a device such as a watch or a meter.
 本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの記載に限定されない。 In order to describe the present invention in detail, examples will be described below, but the present invention is not limited to these descriptions.
「第1の実施例」
 まず、として、上述した第1の実施の形態に関する「第1の実施例」について説明する。
“First Example”
First, the “first example” related to the first embodiment will be described.
<機能層用組成物の調製>
 下記に示す組成となるように各成分を配合して、機能層用組成物を得た。
(機能層用組成物1)
・ジペンタエリスリトールヘキサアクリレート(DPHA)(日本化薬社製):100質量部
・重合開始剤(製品名「イルガキュア184」、BASFジャパン社製):5質量部
・ポリエーテル変性シリコーン(製品名「TSF4460」、モメンティブ・パフォーマンス・マテリアルズ社製):0.025質量部
・トルエン:120質量部
・メチルイソブチルケトン(MIBK):60質量部
 上記組成の機能層用組成物1により形成した硬化塗膜の単独の屈折率を測定したところ、1.52であった。
<Preparation of functional layer composition>
Each component was mix | blended so that it might become a composition shown below, and the composition for functional layers was obtained.
(Composition 1 for functional layer)
-Dipentaerythritol hexaacrylate (DPHA) (manufactured by Nippon Kayaku Co., Ltd.): 100 parts by mass-Polymerization initiator (product name "Irgacure 184", manufactured by BASF Japan): 5 parts by mass-Polyether-modified silicone (product name " TSF4460 ", manufactured by Momentive Performance Materials): 0.025 parts by mass-Toluene: 120 parts by mass-Methyl isobutyl ketone (MIBK): 60 parts by mass A cured coating film formed from the functional layer composition 1 having the above composition. The single refractive index of was measured and found to be 1.52.
(機能層用組成物2)
・ジペンタエリスリトールヘキサアクリレート(DPHA)(日本化薬社製):100質量部
・酸化チタン微粒子(製品名「TTO51(C)、石原産業製):30質量部
・分散剤(製品名ディスパービック163、ビックケミー・ジャパン社製):5質量部
・重合開始剤(製品名「イルガキュア184」、BASFジャパン社製):5質量部
・ポリエーテル変性シリコーン(製品名「TSF4460」、モメンティブ・パフォーマンス・マテリアルズ社製):0.025質量部
・メチルイソブチルケトン(MIBK):220質量部
 上記組成の機能層用組成物により形成した硬化塗膜の単独の屈折率を測定したところ、1.75であった。
(Functional layer composition 2)
Dipentaerythritol hexaacrylate (DPHA) (manufactured by Nippon Kayaku Co., Ltd.): 100 parts by mass Titanium oxide fine particles (product name “TTO51 (C), manufactured by Ishihara Sangyo): 30 parts by mass Dispersant (product name Dispersic 163) , Manufactured by Big Chemie Japan, Inc.): 5 parts by mass, polymerization initiator (product name “Irgacure 184”, manufactured by BASF Japan): 5 parts by mass, polyether-modified silicone (product name “TSF4460”, Momentive Performance Materials) Co., Ltd.): 0.025 parts by mass / methyl isobutyl ketone (MIBK): 220 parts by mass The refractive index of the cured coating film formed from the functional layer composition having the above composition was 1.75. .
<中間層用組成物の調製>
 下記に示す組成となるように各成分を配合して、中間層用組成物を得た。
(中間層用組成物1)
・ポリエステル樹脂の水分散体(固形分60%):28.0質量部
・水:72.0質量部
 上記組成の中間層用組成物により形成した硬化塗膜の単独の屈折率を測定したところ、1.57であった。
<Preparation of composition for intermediate layer>
Each component was mix | blended so that it might become the composition shown below, and the composition for intermediate | middle layers was obtained.
(Composition 1 for intermediate layer)
-Aqueous dispersion of polyester resin (solid content 60%): 28.0 parts by mass-Water: 72.0 parts by mass When the refractive index of a cured coating film formed from the intermediate layer composition having the above composition was measured. 1.57.
(中間層用組成物2)
・ポリエステル樹脂の水分散体(固形分60%):20質量部
・酸化チタン微粒子の水分散液(固形分20%):10質量部
・水:70質量部
 上記組成の中間層用組成物により形成した硬化塗膜の単独の屈折率を測定したところ、1.70であった。
(Composition 2 for intermediate layer)
-Aqueous dispersion of polyester resin (solid content 60%): 20 parts by mass-Aqueous dispersion of titanium oxide fine particles (solid content 20%): 10 parts by mass-Water: 70 parts by mass By the composition for intermediate layer having the above composition It was 1.70 when the independent refractive index of the formed cured coating film was measured.
(実施例1)
 溶融ポリエチレンテレフタレートを、290℃で溶融して、フィルム形成ダイを通して、シート状に押出し、水冷冷却した回転急冷ドラム上に密着させて冷却し、未延伸フィルムを作製した。この未延伸フィルムを二軸延伸試験装置(東洋精機社製)にて、120℃にて1分間予熱した後、120℃にて、延伸倍率3.5倍に延伸した後、その両面に中間層用組成物1をロールコーターにて均一に塗布した。次いで、この塗布フィルムを引続き95℃で乾燥し、その延伸方向とは90度の方向に延伸倍率1.5倍にて延伸を行い、リタデーション=4800nm、膜厚=80μm、n1x=1.68、n1y=1.62、平均屈折率1.65のポリエステル基材を得た。また、中間層の膜厚は90nmであった。
(Example 1)
Molten polyethylene terephthalate was melted at 290 ° C., extruded through a film-forming die, into a sheet form, closely contacted on a water-cooled cooled quenching drum, and cooled to produce an unstretched film. This unstretched film was preheated at 120 ° C. for 1 minute using a biaxial stretching test apparatus (manufactured by Toyo Seiki Co., Ltd.), then stretched at 120 ° C. at a stretch ratio of 3.5 times, and then an intermediate layer on both surfaces. The composition 1 was applied uniformly with a roll coater. Next, this coated film was subsequently dried at 95 ° C., and stretched at a stretching ratio of 1.5 times in the direction of 90 ° with respect to the stretching direction, retardation = 4800 nm, film thickness = 80 μm, n 1x = 1.68. , N 1y = 1.62, and a polyester base material having an average refractive index of 1.65 was obtained. The film thickness of the intermediate layer was 90 nm.
 その後、形成した中間層上に、機能層用組成物1をバーコーターにて塗布し、70℃で1分間乾燥して、溶剤を除去して塗膜を形成した。次いで、その塗膜に紫外線照射装置〔フュージョンUVシステムジャパン社製:Hバルブ(商品名)〕を用いて、照射量150mJ/cmで紫外線照射を行い、乾燥硬化後の膜厚6.0μmの機能層を形成し、積層体を製造した。 Thereafter, the functional layer composition 1 was applied onto the formed intermediate layer with a bar coater, dried at 70 ° C. for 1 minute, and the solvent was removed to form a coating film. Next, the coating film was irradiated with ultraviolet rays at an irradiation amount of 150 mJ / cm 2 using an ultraviolet irradiation device [manufactured by Fusion UV System Japan Co., Ltd .: H bulb (trade name)], and the film thickness after drying and curing was 6.0 μm. A functional layer was formed to produce a laminate.
(実施例2)
 中間層の膜厚を67nmとした以外は、実施例1と同様にして実施例2の積層体を製造した。
(Example 2)
A laminate of Example 2 was manufactured in the same manner as Example 1 except that the film thickness of the intermediate layer was 67 nm.
(実施例3)
 中間層の膜厚を115nmとした以外は、実施例1と同様にして実施例3の積層体を製造した。
(Example 3)
A laminate of Example 3 was manufactured in the same manner as Example 1 except that the film thickness of the intermediate layer was 115 nm.
(実施例4)
 中間層用組成物1に代えて中間層用組成物2を用い、機能層用組成物1に代えて機能層用組成物2を用いた以外は、実施例1と同様にして実施例4の積層体を製造した。中間層の膜厚は80nmであった。
Example 4
Example 4 is the same as Example 1 except that the composition 2 for the intermediate layer is used instead of the composition 1 for the intermediate layer and the composition 2 for the functional layer is used instead of the composition 1 for the functional layer. A laminate was produced. The film thickness of the intermediate layer was 80 nm.
(実施例5)
 中間層の膜厚を62nmとした以外は、実施例4と同様にして実施例5の積層体を製造した。
(Example 5)
A laminate of Example 5 was manufactured in the same manner as Example 4 except that the thickness of the intermediate layer was 62 nm.
(実施例6)
 中間層の膜厚を105nmとした以外は、実施例4と同様にして実施例6の積層体を製造した。
(Example 6)
A laminate of Example 6 was manufactured in the same manner as Example 4 except that the thickness of the intermediate layer was 105 nm.
(比較例1)
 中間層の膜厚を30nmとした以外は、実施例1と同様にして比較例1の積層体を製造した。
(Comparative Example 1)
A laminate of Comparative Example 1 was manufactured in the same manner as Example 1 except that the film thickness of the intermediate layer was 30 nm.
(比較例2)
 中間層の膜厚を140nmとした以外は、実施例1と同様にして比較例2の積層体を製造した。
(Comparative Example 2)
A laminate of Comparative Example 2 was manufactured in the same manner as Example 1 except that the film thickness of the intermediate layer was 140 nm.
(比較例3)
 中間層の膜厚を30nmとした以外は、実施例4と同様にして比較例3の積層体を製造した。
(Comparative Example 3)
A laminate of Comparative Example 3 was manufactured in the same manner as Example 4 except that the thickness of the intermediate layer was 30 nm.
(比較例4)
 中間層の膜厚を140nmとした以外は、実施例4と同様にして比較例4の積層体を製造した。
(Comparative Example 4)
A laminate of Comparative Example 4 was manufactured in the same manner as Example 4 except that the thickness of the intermediate layer was 140 nm.
(干渉縞の評価)
干渉縞の有無を下記基準で評価した。サンプルは塗工面の反対側を黒インキで塗りつぶし、塗工面に三波長蛍光灯をあて、反射観察にて評価を行った。評価基準を以下のように設定した評価結果を、表1に示す。
A:注意深く観察したが干渉縞の発生を視認することができなかった。
B:注意深く観察すると、実使用上問題とならない非常に薄い干渉縞が観察された。
C:干渉縞がはっきり観察される。
(Evaluation of interference fringes)
The presence or absence of interference fringes was evaluated according to the following criteria. The sample was evaluated by reflection observation by painting the opposite side of the coated surface with black ink and applying a three-wavelength fluorescent lamp to the coated surface. Table 1 shows the evaluation results in which the evaluation criteria are set as follows.
A: Although carefully observed, the occurrence of interference fringes could not be visually confirmed.
B: When observed carefully, very thin interference fringes that do not cause a problem in actual use were observed.
C: Interference fringes are clearly observed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
「第2の実施例」
 次に、上述した第2の実施の形態に関する「第2の実施例」について説明する。
"Second Example"
Next, a “second example” relating to the above-described second embodiment will be described.
<機能層用組成物の調製>
 下記に示す組成となるように各成分を配合して、機能層用組成物を得た。
(機能層用組成物3)
・ジペンタエリスリトールヘキサアクリレート(DPHA)(日本化薬社製):35質量部
・ジルコニア微粒子含有ハードコート組成物(製品名「デソライトZ7404」、JSR社製):110質量部
・重合開始剤(製品名「イルガキュア184」、BASFジャパン社製):5質量部
・ポリエーテル変性シリコーン(製品名「TSF4460」、モメンティブ・パフォーマンス・マテリアルズ社製):0.025質量部
・トルエン:100質量部
・メチルイソブチルケトン(MIBK):40質量部
 上記組成の機能層用組成物3により形成した硬化塗膜の単独の屈折率を測定したところ、1.65であった。
<Preparation of functional layer composition>
Each component was mix | blended so that it might become a composition shown below, and the composition for functional layers was obtained.
(Functional layer composition 3)
Dipentaerythritol hexaacrylate (DPHA) (manufactured by Nippon Kayaku Co., Ltd.): 35 parts by mass. Hard coat composition containing zirconia fine particles (product name “Desolite Z7404”, manufactured by JSR): 110 parts by mass. Polymerization initiator (product) Name “Irgacure 184” (manufactured by BASF Japan): 5 parts by mass / polyether-modified silicone (product name “TSF4460”, manufactured by Momentive Performance Materials): 0.025 parts by mass / toluene: 100 parts by mass / methyl Isobutyl ketone (MIBK): 40 parts by mass The refractive index of the cured coating film formed from the functional layer composition 3 having the above composition was measured and found to be 1.65.
<中間層用組成物の調製>
 下記に示す組成となるように各成分を配合して、中間層用組成物を得た。
(中間層用組成物3)
・ポリエステル樹脂の水分散体(固形分60%):28.0質量部
・水:72.0質量部
 上記組成の中間層用組成物3により形成した硬化塗膜の単独の屈折率を測定したところ、1.57であった。
<Preparation of composition for intermediate layer>
Each component was mix | blended so that it might become the composition shown below, and the composition for intermediate | middle layers was obtained.
(Composition 3 for intermediate layer)
-Aqueous dispersion of polyester resin (solid content 60%): 28.0 parts by mass-Water: 72.0 parts by mass The refractive index of a cured coating film formed from the intermediate layer composition 3 having the above composition was measured. However, it was 1.57.
(中間層用組成物4)
・ポリエステル樹脂の水分散体(固形分60%):20質量部
・酸化チタン微粒子の水分散液(固形分20%):10質量部
・水:70質量部
 上記組成の中間層用組成物4により形成した硬化塗膜の単独の屈折率を測定したところ、1.70であった。
(Composition 4 for intermediate layer)
-Aqueous dispersion of polyester resin (solid content 60%): 20 parts by mass-Aqueous dispersion of titanium oxide fine particles (solid content 20%): 10 parts by mass-Water: 70 parts by mass It was 1.70 when the single refractive index of the cured coating film formed by this was measured.
(実施例7)
 溶融ポリエチレンテレフタレートを、290℃で溶融して、フィルム形成ダイを通して、シート状に押出し、水冷冷却した回転急冷ドラム上に密着させて冷却し、未延伸フィルムを作製した。この未延伸フィルムを二軸延伸試験装置(東洋精機社製)にて、120℃にて1分間予熱した後、120℃にて、延伸倍率3.5倍に延伸した後、その両面に中間層用組成物3をロールコーターにて均一に塗布した。次いで、この塗布フィルムを引続き95℃で乾燥し、その延伸方向とは90度の方向に延伸倍率1.5倍にて延伸を行い、リタデーション=4800nm、膜厚=80μm、n1x=1.68、n1y=1.62、平均屈折率1.65のポリエステル基材を得た。また、中間層の膜厚は20nmであった。
(Example 7)
Molten polyethylene terephthalate was melted at 290 ° C., extruded through a film-forming die, into a sheet form, closely contacted on a water-cooled cooled quenching drum, and cooled to produce an unstretched film. This unstretched film was preheated at 120 ° C. for 1 minute using a biaxial stretching test apparatus (manufactured by Toyo Seiki Co., Ltd.), then stretched at 120 ° C. at a stretch ratio of 3.5 times, and then an intermediate layer on both surfaces. The composition 3 was applied uniformly with a roll coater. Next, this coated film was subsequently dried at 95 ° C., and stretched at a stretching ratio of 1.5 times in the direction of 90 ° with respect to the stretching direction, retardation = 4800 nm, film thickness = 80 μm, n 1x = 1.68. , N 1y = 1.62, and a polyester base material having an average refractive index of 1.65 was obtained. The film thickness of the intermediate layer was 20 nm.
 その後、形成した中間層上に、機能層用組成物3をバーコーターにて塗布し、70℃で1分間乾燥して、溶剤を除去して塗膜を形成した。次いで、その塗膜に紫外線照射装置〔フュージョンUVシステムジャパン社製:Hバルブ(商品名)〕を用いて、照射量150mJ/cmで紫外線照射を行い、乾燥硬化後の膜厚6.0μmの機能層を形成し、積層体を製造した。 Thereafter, the functional layer composition 3 was applied onto the formed intermediate layer with a bar coater, dried at 70 ° C. for 1 minute, and the solvent was removed to form a coating film. Next, the coating film was irradiated with ultraviolet rays at an irradiation amount of 150 mJ / cm 2 using an ultraviolet irradiation device [manufactured by Fusion UV System Japan Co., Ltd .: H bulb (trade name)], and the film thickness after drying and curing was 6.0 μm. A functional layer was formed to produce a laminate.
(実施例8)
 中間層の膜厚を30nmとした以外は、実施例7と同様にして実施例8の積層体を製造した。
(Example 8)
A laminate of Example 8 was manufactured in the same manner as Example 7 except that the film thickness of the intermediate layer was 30 nm.
(実施例9)
 中間層の膜厚を40nmとした以外は、実施例7と同様にして実施例9の積層体を製造した。
Example 9
A laminate of Example 9 was manufactured in the same manner as Example 7 except that the thickness of the intermediate layer was 40 nm.
(実施例10)
 中間層用組成物3に代えて中間層用組成物4を用いた以外は、実施例7と同様にして実施例10の積層体を製造した。中間層の膜厚は18nmであった。
(Example 10)
A laminate of Example 10 was manufactured in the same manner as Example 7 except that the intermediate layer composition 4 was used instead of the intermediate layer composition 3. The film thickness of the intermediate layer was 18 nm.
(実施例11)
 中間層の膜厚を30nmとした以外は、実施例10と同様にして実施例11の積層体を製造した。
(Example 11)
A laminate of Example 11 was manufactured in the same manner as Example 10 except that the thickness of the intermediate layer was 30 nm.
(実施例12)
 中間層の膜厚を35nmとした以外は、実施例10と同様にして実施例12の積層体を製造した。
Example 12
A laminate of Example 12 was manufactured in the same manner as Example 10 except that the thickness of the intermediate layer was 35 nm.
(比較例5)
 中間層の膜厚を70nmとした以外は、実施例7と同様にして比較例5の積層体を製造した。
(Comparative Example 5)
A laminate of Comparative Example 5 was manufactured in the same manner as Example 7 except that the thickness of the intermediate layer was set to 70 nm.
(比較例6)
 中間層の膜厚を70nmとした以外は、実施例10と同様にして比較例6の積層体を製造した。
(Comparative Example 6)
A laminate of Comparative Example 6 was manufactured in the same manner as Example 10 except that the thickness of the intermediate layer was set to 70 nm.
(干渉縞の評価)
干渉縞の有無を下記基準で評価した。サンプルは塗工面の反対側を黒インキで塗りつぶし、塗工面に三波長蛍光灯をあて、反射観察にて評価を行った。評価基準を以下のように設定した評価結果を、表2に示す。
A:注意深く観察したが干渉縞の発生を視認することができなかった。
B:注意深く観察すると、実使用上問題とならない非常に薄い干渉縞が観察された。
C:干渉縞がはっきり観察される。
(Evaluation of interference fringes)
The presence or absence of interference fringes was evaluated according to the following criteria. The sample was evaluated by reflection observation by painting the opposite side of the coated surface with black ink and applying a three-wavelength fluorescent lamp to the coated surface. Table 2 shows the evaluation results in which the evaluation criteria are set as follows.
A: Although carefully observed, the occurrence of interference fringes could not be visually confirmed.
B: When observed carefully, very thin interference fringes that do not cause a problem in actual use were observed.
C: Interference fringes are clearly observed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (28)

  1.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n<n<n ・・・条件(a)
      n>n>n ・・・条件(b)
    なる条件(a)および条件(b)のいずれか一方を満たし、
     前記中間層の厚みt、可視光の最短波長λminと可視光の最長波長λmaxとの中間の波長λave、および、前記中間層の面内の平均屈折率nが、
      λave/(6×n)<t<λave/(3×n)  
                          ・・・条件(c1)
    なる条件(c1)を満たす、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 <n 2 <n 3 Condition (a)
    n 1 > n 2 > n 3 ... Condition (b)
    Either one of the following conditions (a) or (b)
    The thickness t of the intermediate layer, the wavelength λ ave intermediate between the shortest wavelength λ min of visible light and the longest wavelength λ max of visible light, and the in-plane average refractive index n 2 are
    λ ave / (6 × n 2 ) <t <λ ave / (3 × n 2 )
    ... Condition (c1)
    A laminate that satisfies the following condition (c1).
  2.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n<n<n ・・・条件(a)
      n>n>n ・・・条件(b)
    なる条件(a)および条件(b)のいずれか一方を満たし、
     前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
      110/n≦t≦170/n  ・・・条件(c2)
    なる条件(c2)を満たす、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 <n 2 <n 3 Condition (a)
    n 1 > n 2 > n 3 ... Condition (b)
    Either one of the following conditions (a) or (b)
    The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
    110 / n 2 ≦ t ≦ 170 / n 2 ... Condition (c2)
    A laminate that satisfies the following condition (c2).
  3.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n<n<n ・・・条件(a)
      n>n>n ・・・条件(b)
    なる条件(a)および条件(b)のいずれか一方を満たし、
     前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
      555/(6×n)<t<555/(3×n)  
                          ・・・条件(c3)
    なる条件(c3)を満たす、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 <n 2 <n 3 Condition (a)
    n 1 > n 2 > n 3 ... Condition (b)
    Either one of the following conditions (a) or (b)
    The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
    555 / (6 × n 2 ) <t <555 / (3 × n 2 )
    ... Condition (c3)
    A laminate that satisfies the following condition (c3).
  4.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n<n<n ・・・条件(a)
      n>n>n ・・・条件(b)
    なる条件(a)および条件(b)のいずれか一方を満たし、
     前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
      507/(6×n)<t<507/(3×n)  
                          ・・・条件(c4)
    なる条件(c4)を満たす、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 <n 2 <n 3 Condition (a)
    n 1 > n 2 > n 3 ... Condition (b)
    Either one of the following conditions (a) or (b)
    The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
    507 / (6 × n 2 ) <t <507 / (3 × n 2 )
    ... Condition (c4)
    A laminate that satisfies the following condition (c4).
  5.  前記光透過性基材は、面内の複屈折性を有し、
     前記光透過性基材の面内における最も屈折率が大きい方向である遅相軸方向における屈折率n1x、前記光透過性基材の前記遅相軸方向に直交する進相軸方向における屈折率n1y、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n1x<n<n    ・・・条件(d)
      n1y>n>n    ・・・条件(e)
    なる条件(d)および(e)のいずれか一方を満たす、請求項1~4のいずれか一項に記載の積層体。
    The light-transmitting substrate has in-plane birefringence,
    Refractive index n 1x in the slow axis direction that is the direction with the highest refractive index in the plane of the light transmissive substrate, and refractive index in the fast axis direction perpendicular to the slow axis direction of the light transmissive substrate. n 1y , the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer,
    n 1x <n 2 <n 3 ... condition (d)
    n 1y > n 2 > n 3 ... condition (e)
    The laminated body according to any one of claims 1 to 4, which satisfies any one of the following conditions (d) and (e):
  6.  前記光透過性基材は、面内の複屈折性を有し、
     前記光透過性基材の面内における最も屈折率が大きい方向である遅相軸方向における屈折率n1x、前記光透過性基材の前記遅相軸方向と平行な方向における前記中間層の屈折率n2x、および、前記光透過性基材の前記遅相軸方向と平行な方向における前記機能層の屈折率n3xが、
      n1x<n2x<n3x   ・・・条件(f)
      n1x>n2x>n3x   ・・・条件(g)
    なる条件(f)および(g)のいずれか一方を満たし、
     前記光透過性基材の前記遅相軸方向に直交する進相軸方向における屈折率n1y、前記光透過性基材の前記進相軸方向と平行な方向における前記中間層の屈折率n2y、および、前記光透過性基材の前記進相軸方向と平行な方向における前記機能層の屈折率n3yが、
      n1y<n2y<n3y   ・・・条件(h)
      n1y>n2y>n3y   ・・・条件(i)
    なる条件(h)および(i)のいずれか一方を満たす、請求項1~4のいずれか一項に記載の積層体。
    The light-transmitting substrate has in-plane birefringence,
    Refractive index n 1x in the slow axis direction that is the direction with the highest refractive index in the plane of the light transmissive substrate, and refraction of the intermediate layer in a direction parallel to the slow axis direction of the light transmissive substrate. The refractive index n 3x of the functional layer in the direction parallel to the slow axis direction of the refractive index n 2x and the light transmissive substrate,
    n 1x <n 2x <n 3x ... condition (f)
    n 1x > n 2x > n 3x Condition (g)
    Satisfy one of the following conditions (f) and (g):
    Refractive index n 1y in the fast axis direction orthogonal to the slow axis direction of the light transmissive substrate, and refractive index n 2y of the intermediate layer in a direction parallel to the fast axis direction of the light transmissive substrate. And the refractive index n 3y of the functional layer in the direction parallel to the fast axis direction of the light transmissive substrate is
    n 1y <n 2y <n 3y ... condition (h)
    n 1y > n 2y > n 3y ... condition (i)
    The laminate according to any one of claims 1 to 4, which satisfies any one of the following conditions (h) and (i):
  7.  前記中間層は、面内の複屈折性を有し、
     前記光透過性基材の前記遅相軸方向と平行な方向における前記中間層の屈折率n2x、および、前記光透過性基材の前記進相軸方向と平行な方向における前記中間層の屈折率n2yが、
      n2x>n2y
    なる関係を満たす、請求項6に記載の積層体。
    The intermediate layer has in-plane birefringence,
    The refractive index n 2x of the intermediate layer in a direction parallel to the slow axis direction of the light transmissive substrate, and the refraction of the intermediate layer in a direction parallel to the fast axis direction of the light transmissive substrate. The rate n 2y is
    n 2x > n 2y
    The laminate according to claim 6, satisfying the following relationship.
  8. 前記光透過性基材の前記遅相軸方向における屈折率n1x、前記光透過性基材の前記進相軸方向における屈折率n1y、前記光透過性基材の前記遅相軸方向と平行な方向における前記中間層の屈折率n2x、および、前記光透過性基材の前記進相軸方向と平行な方向における前記中間層の屈折率n2yが、
      (n1x-n1y)>(n2x-n2y
    なる関係を満たす、請求項7に記載の積層体。
    The refractive index n 1x in the slow axis direction of the light transmissive substrate, the refractive index n 1y in the fast axis direction of the light transmissive substrate, and parallel to the slow axis direction of the light transmissive substrate. refractive index n 2x of the intermediate layer in a direction, and a refractive index n 2y of the intermediate layer in the fast axis direction parallel to the direction of the light transmitting substrate,
    (N 1x -n 1y )> (n 2x -n 2y )
    The laminated body of Claim 7 which satisfy | fills the relationship which becomes.
  9.  前記中間層は、面内の複屈折性を有し、
     前記積層体を法線方向から観察した場合に、前記光透過性基材の前記遅相軸方向と、前記中間層の面内における最も屈折率が大きい方向である前記中間層の遅相軸方向と、によってなされる角度の大きさが、30°未満である、請求項6に記載の積層体。
    The intermediate layer has in-plane birefringence,
    When the laminate is observed from the normal direction, the slow axis direction of the light-transmitting substrate and the slow axis direction of the intermediate layer that is the direction in which the refractive index is greatest in the plane of the intermediate layer The laminate according to claim 6, wherein the magnitude of the angle formed by is less than 30 °.
  10.  前記中間層は、面内の複屈折性を有し、
     前記光透過性基材の前記遅相軸方向が、前記中間層の面内における最も屈折率が大きい方向である前記中間層の遅相軸方向と平行となっている、請求項6に記載の積層体。
    The intermediate layer has in-plane birefringence,
    The slow axis direction of the light-transmitting substrate is parallel to the slow axis direction of the intermediate layer, which is the direction having the largest refractive index in the plane of the intermediate layer. Laminated body.
  11.  前記中間層は、面内の複屈折性を有し、
     前記光透過性基材の前記遅相軸方向における屈折率n1x、前記光透過性基材の前記進相軸方向における屈折率n1y、前記中間層の面内における最も屈折率が大きい方向である前記中間層の遅相軸方向における屈折率n2a、および、前記中間層の前記遅相軸方向に直交する前記中間層の進相軸方向における屈折率n2bが、
      (n1x-n1y)>(n2a-n2b
    なる関係を満たす、請求項6に記載の積層体。
    The intermediate layer has in-plane birefringence,
    The refractive index n 1x in the slow axis direction of the light transmissive substrate, the refractive index n 1y in the fast axis direction of the light transmissive substrate, and the direction in which the refractive index is greatest in the plane of the intermediate layer A refractive index n 2a in the slow axis direction of the intermediate layer, and a refractive index n 2b in the fast axis direction of the intermediate layer orthogonal to the slow axis direction of the intermediate layer,
    (N 1x -n 1y )> (n 2a -n 2b )
    The laminate according to claim 6, satisfying the following relationship.
  12.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n>n、且つ、n<n  ・・・条件(o)
      n<n、且つ、n>n  ・・・条件(p)
    なる条件(o)および条件(p)のいずれか一方を満たし、
     前記中間層の厚みt、可視光の最長波長λmax、および、前記中間層の面内の平均屈折率nが、
      0<t<λmax/(12×n)    ・・・条件(q1)
    なる条件(q1)を満たす、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 > n 2 and n 2 <n 3 ... condition (o)
    n 1 <n 2 and n 2 > n 3 ... condition (p)
    Either one of the following conditions (o) or (p) is satisfied,
    The thickness t of the intermediate layer, the longest wavelength λ max of visible light, and the average refractive index n 2 in the plane of the intermediate layer are
    0 <t <λ max / (12 × n 2 ) Condition (q1)
    A laminate that satisfies the following condition (q1).
  13.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n>n、且つ、n<n  ・・・条件(o)
      n<n、且つ、n>n  ・・・条件(p)
    なる条件(o)および条件(p)のいずれか一方を満たし、
     前記中間層の厚みt、可視光の最短波長λmin、可視光の最長波長λmax、および、前記中間層の面内の平均屈折率nが、
      0<t<((λmin+λmax)/2)/(12×n
                          ・・・条件(q2)
    なる条件(q2)を満たす、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 > n 2 and n 2 <n 3 ... condition (o)
    n 1 <n 2 and n 2 > n 3 ... condition (p)
    Either one of the following conditions (o) or (p) is satisfied,
    The thickness t of the intermediate layer, the shortest wavelength λ min of visible light, the longest wavelength λ max of visible light, and the in-plane average refractive index n 2 are
    0 <t <((λ min + λ max ) / 2) / (12 × n 2 )
    ... Condition (q2)
    A laminate that satisfies the following condition (q2).
  14.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n>n、且つ、n<n  ・・・条件(o)
      n<n、且つ、n>n  ・・・条件(p)
    なる条件(o)および条件(p)のいずれか一方を満たし、
     前記中間層の厚みt、可視光の最短波長λmin、および、前記中間層の面内の平均屈折率nが、
      0<t<λmin/(12×n)  ・・・条件(q3)
    なる条件(q3)を満たす、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 > n 2 and n 2 <n 3 ... condition (o)
    n 1 <n 2 and n 2 > n 3 ... condition (p)
    Either one of the following conditions (o) or (p) is satisfied,
    The thickness t of the intermediate layer, the shortest wavelength λ min of visible light, and the in-plane average refractive index n 2 are
    0 <t <λ min / (12 × n 2 ) Condition (q3)
    A laminate that satisfies the following condition (q3).
  15.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n>n、且つ、n<n  ・・・条件(o)
      n<n、且つ、n>n  ・・・条件(p)
    なる条件(o)および条件(p)のいずれか一方を満たし、
     前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
      0<t<555/(12×n)   ・・・条件(q4)
    なる条件(q4)を満たす、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 > n 2 and n 2 <n 3 ... condition (o)
    n 1 <n 2 and n 2 > n 3 ... condition (p)
    Either one of the following conditions (o) or (p) is satisfied,
    The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
    0 <t <555 / (12 × n 2 ) Condition (q4)
    A laminate that satisfies the following condition (q4).
  16.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n>n、且つ、n<n  ・・・条件(o)
      n<n、且つ、n>n  ・・・条件(p)
    なる条件(o)および条件(p)のいずれか一方を満たし、
     前記中間層の厚みt〔nm〕、および、前記中間層の面内の平均屈折率nが、
      0<t<507/(12×n)  ・・・条件(q5)
    なる条件(q5)を満たす、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 > n 2 and n 2 <n 3 ... condition (o)
    n 1 <n 2 and n 2 > n 3 ... condition (p)
    Either one of the following conditions (o) or (p) is satisfied,
    The thickness t [nm] of the intermediate layer and the average refractive index n 2 in the plane of the intermediate layer are
    0 <t <507 / (12 × n 2 ) Condition (q5)
    A laminate that satisfies the following condition (q5).
  17.  光透過性基材と、
     前記光透過性基材に隣接して前記光透過性基材に積層された中間層と、
     前記中間層に隣接して、前記中間層に前記光透過性基材とは反対の側から積層された機能層と、を備え、
     前記光透過性基材の面内の平均屈折率n、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n>n、且つ、n<n  ・・・条件(o)
      n<n、且つ、n>n  ・・・条件(p)
    なる条件(o)および条件(p)のいずれか一方を満たし、
     前記中間層の厚みが、3nm以上30nm以下である、積層体。
    A light transmissive substrate;
    An intermediate layer laminated on the light transmissive substrate adjacent to the light transmissive substrate;
    A functional layer laminated adjacent to the intermediate layer from the side opposite to the light-transmitting substrate;
    The average refractive index n 1 in the plane of the light transmissive substrate, the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer are:
    n 1 > n 2 and n 2 <n 3 ... condition (o)
    n 1 <n 2 and n 2 > n 3 ... condition (p)
    Either one of the following conditions (o) or (p) is satisfied,
    The laminated body whose thickness of the said intermediate | middle layer is 3 nm or more and 30 nm or less.
  18.  前記光透過性基材は、面内の複屈折性を有し、
     前記光透過性基材の面内における最も屈折率が大きい方向である遅相軸方向における屈折率n1x、前記光透過性基材の前記遅相軸方向に直交する進相軸方向における屈折率n1y、前記中間層の面内の平均屈折率n、および、前記機能層の面内の平均屈折率nが、
      n1y>n、且つ、n<n  ・・・条件(r)
      n1x<n、且つ、n>n  ・・・条件(s)
    なる条件(r)および(s)のいずれか一方を満たす、請求項12~17のいずれか一項に記載の積層体。
    The light-transmitting substrate has in-plane birefringence,
    Refractive index n 1x in the slow axis direction that is the direction with the highest refractive index in the plane of the light transmissive substrate, and refractive index in the fast axis direction perpendicular to the slow axis direction of the light transmissive substrate. n 1y , the average refractive index n 2 in the plane of the intermediate layer, and the average refractive index n 3 in the plane of the functional layer,
    n 1y > n 2 and n 2 <n 3 ... condition (r)
    n 1x <n 2 and n 2 > n 3 ... condition (s)
    The laminated body according to any one of claims 12 to 17, which satisfies any one of the following conditions (r) and (s):
  19.  前記光透過性基材が、面内の複屈折性を有し、
     前記光透過性基材のリタデーションが、3000nm以上である、請求項1~4及び12~17のいずれか一項に記載の積層体。
    The light-transmitting substrate has in-plane birefringence,
    The laminate according to any one of claims 1 to 4 and 12 to 17, wherein the retardation of the light-transmitting substrate is 3000 nm or more.
  20.  前記光透過性基材が、ポリエステル基材である、請求項19に記載の積層体。 The laminate according to claim 19, wherein the light-transmitting substrate is a polyester substrate.
  21.  前記機能層は、ハードコート層である、請求項1~4及び12~17のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4 and 12 to 17, wherein the functional layer is a hard coat layer.
  22.  前記機能層の前記中間層側とは反対側に設けられた第2機能層を、さらに備える、請求項1~4及び12~17のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4 and 12 to 17, further comprising a second functional layer provided on a side opposite to the intermediate layer side of the functional layer.
  23.  前記第2機能層が、前記機能層よりも低い屈折率を有する低屈折率層である、請求項22に記載の積層体。 The laminate according to claim 22, wherein the second functional layer is a low refractive index layer having a lower refractive index than the functional layer.
  24.  偏光素子と、
     請求項1~4及び12~17のいずれか一項に記載の積層体と、を備える、偏光板。
    A polarizing element;
    A polarizing plate comprising: the laminate according to any one of claims 1 to 4 and 12 to 17.
  25.  請求項1~4及び12~17のいずれか一項に記載の積層体、または、請求項24の偏光板を備える、液晶表示パネル。 A liquid crystal display panel comprising the laminate according to any one of claims 1 to 4 and 12 to 17, or the polarizing plate of claim 24.
  26.  請求項1~4及び12~17のいずれか一項に記載の積層体、請求項24に記載の偏光板、または、請求項25に記載の液晶表示パネルを備える、画像表示装置。 An image display device comprising the laminate according to any one of claims 1 to 4 and 12 to 17, the polarizing plate according to claim 24, or the liquid crystal display panel according to claim 25.
  27.  請求項1~4及び12~17のいずれか一項に記載の積層体と、
     前記積層体と接合されたセンサ電極と、を備える、タッチパネルセンサ。
    The laminate according to any one of claims 1 to 4 and 12 to 17,
    A touch panel sensor comprising a sensor electrode joined to the laminate.
  28.  請求項27に記載のタッチパネルセンサを備える、タッチパネル装置。 A touch panel device comprising the touch panel sensor according to claim 27.
PCT/JP2013/073319 2012-08-31 2013-08-30 Laminate, polarizer, liquid crystal panel, touch panel sensor, touch panel device, and image display device WO2014034846A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157002244A KR101982377B1 (en) 2012-08-31 2013-08-30 Laminate, polarizer, liquid crystal panel, touch panel sensor, touch panel device, and image display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012192323A JP6048009B2 (en) 2012-08-31 2012-08-31 Laminated body, polarizing plate, liquid crystal panel, touch panel sensor, touch panel device and image display device
JP2012-192371 2012-08-31
JP2012-192323 2012-08-31
JP2012192371A JP6048010B2 (en) 2012-08-31 2012-08-31 Laminated body, polarizing plate, liquid crystal panel, touch panel sensor, touch panel device and image display device

Publications (1)

Publication Number Publication Date
WO2014034846A1 true WO2014034846A1 (en) 2014-03-06

Family

ID=50183651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073319 WO2014034846A1 (en) 2012-08-31 2013-08-30 Laminate, polarizer, liquid crystal panel, touch panel sensor, touch panel device, and image display device

Country Status (3)

Country Link
KR (1) KR101982377B1 (en)
TW (2) TWI656387B (en)
WO (1) WO2014034846A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180354227A1 (en) * 2017-06-13 2018-12-13 Samsung Display Co., Ltd. Window for display device and display device including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112199979A (en) * 2019-07-07 2021-01-08 奕力科技股份有限公司 Display device capable of detecting fingerprint of finger and fingerprint identification chip

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137109A (en) * 1998-10-30 2000-05-16 Shimadzu Corp Reflection preventive device using diffraction grating
JP2002156508A (en) * 2000-11-21 2002-05-31 Fuji Photo Film Co Ltd Optical film, polarizing plate and picture display device
JP2006163151A (en) * 2004-12-09 2006-06-22 Bridgestone Corp Antireflection film and filter for display having this antireflection film
JP2008170583A (en) * 2007-01-10 2008-07-24 Sony Corp Liquid crystal display and projection liquid crystal display
JP2009150998A (en) * 2007-12-19 2009-07-09 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
WO2011114900A1 (en) * 2010-03-17 2011-09-22 シャープ株式会社 Touch sensor-equipped display device
JP2012237928A (en) * 2011-05-13 2012-12-06 Fujifilm Corp Optical film, polarizing plate, image display device and three-dimensional image display system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399376B2 (en) * 2004-05-04 2008-07-15 Eastman Kodak Company Polarizing plate laminated with an improved glue composition and a method of manufacturing the same
JP5202889B2 (en) * 2007-06-29 2013-06-05 日東電工株式会社 Multilayer polarizing plate, method for producing the same, and liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137109A (en) * 1998-10-30 2000-05-16 Shimadzu Corp Reflection preventive device using diffraction grating
JP2002156508A (en) * 2000-11-21 2002-05-31 Fuji Photo Film Co Ltd Optical film, polarizing plate and picture display device
JP2006163151A (en) * 2004-12-09 2006-06-22 Bridgestone Corp Antireflection film and filter for display having this antireflection film
JP2008170583A (en) * 2007-01-10 2008-07-24 Sony Corp Liquid crystal display and projection liquid crystal display
JP2009150998A (en) * 2007-12-19 2009-07-09 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
WO2011114900A1 (en) * 2010-03-17 2011-09-22 シャープ株式会社 Touch sensor-equipped display device
JP2012237928A (en) * 2011-05-13 2012-12-06 Fujifilm Corp Optical film, polarizing plate, image display device and three-dimensional image display system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180354227A1 (en) * 2017-06-13 2018-12-13 Samsung Display Co., Ltd. Window for display device and display device including the same

Also Published As

Publication number Publication date
TW201908829A (en) 2019-03-01
KR101982377B1 (en) 2019-05-27
KR20150048709A (en) 2015-05-07
TW201427825A (en) 2014-07-16
TWI656387B (en) 2019-04-11
TWI654085B (en) 2019-03-21

Similar Documents

Publication Publication Date Title
JP6617985B2 (en) Polarizing plate, image display device, and method for improving bright place contrast in image display device
KR101401815B1 (en) Optical layered body, polarizing plate, polarizing plate fabrication method, image display device, image display device manufacturing method, and image display device visual recognizability improvement method
WO2011065531A1 (en) Optical film and touch panel
JP6167480B2 (en) Optical film, polarizing plate, liquid crystal panel, and image display device
JP6213804B2 (en) Optical film substrate, optical film, polarizing plate, liquid crystal panel, and image display device
JP2015068847A (en) Polarizing plate, image display device, and method of improving bright field contrast of image display device
JP2014032317A (en) Substrate for optical film, optical film, polarizing plate, liquid crystal panel and image display device
JP6048010B2 (en) Laminated body, polarizing plate, liquid crystal panel, touch panel sensor, touch panel device and image display device
JP6815955B2 (en) Laminates, polarizing plates, liquid crystal display panels and image display devices
JP6048009B2 (en) Laminated body, polarizing plate, liquid crystal panel, touch panel sensor, touch panel device and image display device
WO2014034846A1 (en) Laminate, polarizer, liquid crystal panel, touch panel sensor, touch panel device, and image display device
JP6521007B2 (en) Polarizing plate, image display device, and method for improving light contrast in image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832993

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157002244

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832993

Country of ref document: EP

Kind code of ref document: A1