WO2014034792A1 - Liquid crystal aligning agent and liquid crystal display element using same - Google Patents

Liquid crystal aligning agent and liquid crystal display element using same Download PDF

Info

Publication number
WO2014034792A1
WO2014034792A1 PCT/JP2013/073179 JP2013073179W WO2014034792A1 WO 2014034792 A1 WO2014034792 A1 WO 2014034792A1 JP 2013073179 W JP2013073179 W JP 2013073179W WO 2014034792 A1 WO2014034792 A1 WO 2014034792A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
aligning agent
alkyl group
Prior art date
Application number
PCT/JP2013/073179
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 淳
夏樹 佐藤
耕平 後藤
浩二 平賀
賢一 元山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2014533086A priority Critical patent/JP6233310B2/en
Priority to KR1020157007631A priority patent/KR102115015B1/en
Priority to CN201380054892.7A priority patent/CN104737069B/en
Publication of WO2014034792A1 publication Critical patent/WO2014034792A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element having the liquid crystal alignment film.
  • VA liquid crystal display elements are widely used for large-screen liquid crystal televisions and high-definition mobile applications (display units of digital cameras and mobile phones).
  • a slit is formed in the ITO (indium tin oxide) electrode of the MVA method (Multi Vertical Alignment) in which protrusions for controlling the direction in which the liquid crystal falls are formed on the TFT substrate or the color filter substrate.
  • MVA method Multi Vertical Alignment
  • PVA Plasma Vertical Alignment
  • PSA Polymer sustained Alignment
  • the PSA method is a technology that has attracted attention in recent years.
  • a photopolymerizable compound is added to a liquid crystal, an electric field is applied after the liquid crystal panel is manufactured, and ultraviolet light (UV) is irradiated to the liquid crystal panel in a state where the liquid crystal is tilted.
  • UV ultraviolet light
  • the polymerizable compound is photopolymerized to fix the alignment direction of the liquid crystal, cause a pretilt, and improve the response speed.
  • a slit is made in one electrode constituting the liquid crystal panel, and the structure on the opposite electrode pattern can be operated even without a protrusion such as MVA or a slit such as PVA. Panel transmittance can be obtained.
  • a liquid crystal layer is provided in which a liquid crystal alignment treatment agent using a polymer having a photoreactive side chain introduced into a polymer molecule is applied to a substrate and brought into contact with a liquid crystal alignment film obtained by baking.
  • a technology has been proposed in which a liquid crystal display element can be obtained by irradiating ultraviolet rays while applying a voltage to a liquid crystal display element without producing a polymerizable compound in the liquid crystal without adding a polymerizable compound. Yes. (See Patent Document 2.)
  • an inorganic liquid crystal alignment film material is also known together with an organic liquid crystal alignment film material such as polyimide which has been conventionally used.
  • an organic liquid crystal alignment film material such as polyimide which has been conventionally used.
  • a liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, trialkoxysilane, alcohol, and oxalic acid has been proposed as a coating-type inorganic liquid crystal alignment film material. It has been reported that a liquid crystal alignment film having excellent vertical alignment properties, heat resistance and uniformity is formed on a substrate. (See Patent Document 3)
  • Japanese Unexamined Patent Publication No. 2004-302061 Japanese Unexamined Patent Publication No. 2011-95967 Japanese Unexamined Patent Publication No. 09-281502 Japanese Unexamined Patent Publication No. 2005-250244
  • An object of the present invention is to use a liquid crystal to which a polymerizable compound is not added and treat the same as in the PSA method to improve the response speed after UV irradiation without reducing the vertical alignment force.
  • the present inventor conducted extensive research to achieve the above object, and as a result, at least one polymer (component (A)) selected from the group consisting of polyamic acid and polyimide and a specific polysiloxane ((B The present invention has been completed by finding that the above-mentioned object can be achieved by a liquid crystal aligning agent containing component)).
  • component (A) selected from the group consisting of polyamic acid and polyimide and a specific polysiloxane
  • the liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
  • Component (A) at least one polymer selected from the group consisting of polyamic acid and polyimide.
  • R 1 Si (OR 2 ) 3 (1) (R 1 is a structure of the following formula (2), and R 2 is an alkyl group having 1 to 5 carbon atoms.)
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 2 is a single bond, a linear or branched hydrocarbon group having 3 to 8 carbon atoms containing a double bond, or — (CR 17 R 18 ) b — (b is an integer of 1 to 15, R 17 and R 18 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms.
  • Y 4 may be a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton.
  • Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 6 is a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • n is an integer of 0-4.
  • R 3 Si (OR 4 ) 3 (3) R 3 is an alkyl group having 1 to 30 carbon atoms substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group or a styryl group, and R 4 is an alkyl group having 1 to 5 carbon atoms.
  • the liquid-crystal aligning agent of said 1 which is a polysiloxane obtained by polycondensing alkoxysilane which further contains the alkoxysilane represented by following formula (4).
  • R 5 is a hydrogen atom or a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group, which has 1 to 10 carbon atoms.
  • R 6 is an alkyl group having 1 to 5 carbon atoms, and n is an integer of 0 to 3.) 3.
  • the liquid crystal aligning agent according to 2 above wherein the alkoxysilane represented by the formula (4) is tetramethoxysilane or tetraethoxysilane. 4). Of all the alkoxysilanes used in the production of the polysiloxane (B), 2 to 20 mol% of the alkoxysilane represented by the formula (1) is used, and 5 alkoxysilanes represented by the formula (3) are used. 2. The liquid crystal aligning agent according to the above 1, which is used at ⁇ 80 mol%. 5. 4.
  • the component (B) is contained in an amount of 0.5 to 80 parts by mass, based on 100 parts by mass of the component (A), in which the component (B) is equivalent to the SiO 2 of the silicon atom contained in the component (B).
  • a liquid crystal alignment treatment agent capable of forming a liquid crystal alignment film capable of improving the response speed after UV irradiation without decreasing the vertical alignment force, and a liquid crystal alignment obtained from the liquid crystal alignment treatment agent
  • a liquid crystal display element having a film and a liquid crystal alignment film which has a liquid crystal alignment film and is treated in the same manner as the PSA system using a liquid crystal to which no polymerizable compound is added, thereby improving the response speed after UV irradiation.
  • the liquid crystal aligning agent of the present invention contains at least one polymer selected from the group consisting of polyamic acid and polyimide.
  • Specific structures of the polyamic acid and the polyimide are not particularly limited, and may be, for example, a polyamic acid or a polyimide contained in a known liquid crystal aligning agent.
  • the polyamic acid can be easily obtained by a (polycondensation) reaction between tetracarboxylic acid or a tetracarboxylic acid derivative and a diamine.
  • the manufacturing method of the polyamic acid and polyimide which are (A) component used for this invention is not specifically limited.
  • a polyamic acid is obtained by reacting one or more tetracarboxylic acid components selected from the group consisting of tetracarboxylic acids or derivatives thereof with a diamine component consisting of one or more diamine compounds. Get.
  • a method for obtaining polyimide a method of imidizing polyamic acid is used.
  • the polyamic acid obtained can be made into a homopolymer or a copolymer (copolymer) by appropriately selecting a tetracarboxylic acid component and a diamine component as raw materials.
  • the tetracarboxylic acid or a derivative thereof is tetracarboxylic acid, tetracarboxylic acid dihalide, or tetracarboxylic dianhydride.
  • tetracarboxylic dianhydrides are preferred because of their high reactivity with diamine compounds.
  • pyromellitic acid 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyl Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-di Carboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,
  • alicyclic tetracarboxylic acids are preferred from the viewpoint of the transparency of the coating film.
  • 1,2,3,4-cyclobutanetetracarboxylic acid, 2,3,5-tricarboxycyclopentylacetic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid, bicyclo [ 3,3,0] octane-2,4,6,8-tetracarboxylic acid, dihalides of these tetracarboxylic acids, or dianhydrides of these tetracarboxylic acids are preferred.
  • the above-mentioned tetracarboxylic acids or derivatives thereof can be used alone or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when formed into a liquid crystal alignment film.
  • the diamine used for production of the polyamic acid is not particularly limited.
  • p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m- Phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4- Diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3, , 3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-dicarboxy-4,4
  • Bis (3-aminopropyl) tetramethyldisiloxane is preferably used.
  • diamine which has an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or the macrocyclic substituent which consists of them in a diamine side chain
  • diamines represented by the following formulas [A1] to [A20] can be exemplified.
  • R 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 2 is —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—
  • R 3 is a hydrogen atom, carbon number 1 or more and 22 or less alkyl group or fluorine-containing alkyl group.
  • R 4 is —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • R 5 is an alkyl group, alkoxy, having 1 to 22 carbon atoms. Group, fluorine-containing alkyl group or fluorine-containing alkoxy group.
  • R 6 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, or —CH 2 —.
  • R 7 is an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group having 1 to 22 carbon atoms.
  • R 8 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O — Or —NH—
  • R 9 is a fluorine group, a cyano group, a trifluoromethyl group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, a hydroxyl group, or a carboxyl group.
  • the diamines described above can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed. If the diamine which has a hydroxyl group or a carboxyl group is used in the above-mentioned raw material of polyamic acid, the reaction efficiency of a polyamic acid or a polyimide and the crosslinkable compound mentioned later can be improved.
  • diamines include 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 3,3 '-Dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, formula [A22] to [ And diamines represented by A25].
  • R 10 is —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
  • R 11 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O -Or -NH-, R 12 is a hydroxyl group or a carboxyl group.
  • the solvent used for producing the polyamic acid is not particularly limited as long as the produced polyamic acid can be dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, Pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl Cellosolve acetate, ethyl cellosolve acetate, butyl car
  • the solvent may be used alone or in combination.
  • it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
  • water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
  • a method of adding a dispersion or solution in an organic solvent or a method of adding a diamine to a solution in which a tetracarboxylic acid or a derivative thereof is dispersed or dissolved in an organic solvent, or a tetracarboxylic acid or a derivative thereof and a diamine.
  • the method of adding alternately etc. are mentioned. Any of these methods may be used.
  • tetracarboxylic acid or a derivative thereof, or diamine is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
  • the temperature for synthesizing the polyamic acid can be selected from -20 to 150 ° C, but is preferably in the range of -5 to 100 ° C.
  • reaction can be performed by arbitrary density
  • the initial reaction may be carried out at a high concentration, and then an organic solvent may be added.
  • the ratio of the number of moles of the diamine component to the number of moles of tetracarboxylic acid or its derivative is preferably 0.8 to 1.2, more preferably 0.9 to 1.1. preferable. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • thermal imidization by heating and catalyst imidization using a catalyst are generally used, but the catalyst imidation in which the imidization reaction proceeds at a relatively low temperature is obtained. It is preferable that the molecular weight does not decrease.
  • the catalyst imidization can be performed by stirring the polyamic acid in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • the reaction temperature at this time is ⁇ 20 to 250 ° C., preferably 0 to 180 ° C. The higher the reaction temperature, the faster the imidization proceeds, but if it is too high, the molecular weight of the polyimide may decrease.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it becomes difficult to completely remove the reaction after completion of the reaction.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the organic solvent for the catalyst imidation is not limited as long as the polyamic acid dissolves. Specific examples thereof include N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl Urea, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, and the like.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the produced polyimide can be obtained by collecting the reaction solution into a poor solvent and collecting the produced precipitate.
  • the poor solvent to be used is not specifically limited.
  • methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like can be mentioned.
  • the polyimide that has been poured into a poor solvent and precipitated is filtered, and then can be powdered by drying at normal temperature or under reduced pressure at normal temperature or under reduced pressure.
  • the polyimide can be purified by repeating the steps of dissolving the polyimide powder in an organic solvent and reprecipitating it 2 to 10 times. When the impurities cannot be removed by a single precipitation recovery operation, it is preferable to perform this purification step.
  • the molecular weight of the polyimide used in the present invention is not particularly limited, but is preferably 2,000 to 200,000 in terms of weight average molecular weight, more preferably 4, from the viewpoint of ease of handling and stability of characteristics when a film is formed. 000 to 50,000.
  • the molecular weight is determined by GPC (gel permeation chromatography).
  • ⁇ (B) component polysiloxane> (B) component contained in the liquid-crystal aligning agent of this invention is obtained by polycondensing the alkoxysilane containing the alkoxysilane represented by Formula (1), and the alkoxysilane represented by Formula (3). Polysiloxane.
  • R 1 Si (OR 2 ) 3 (1) (R 1 is a structure of the following formula (2), and R 2 is an alkyl group having 1 to 5 carbon atoms.)
  • R 3 Si (OR 4 ) 3 (3) (R 3 is an alkyl group having 1 to 30 carbon atoms substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group, and R 4 is an alkyl group having 1 to 5 carbon atoms.)
  • R 1 (hereinafter also referred to as a specific organic group) of the alkoxysilane represented by the formula (1) has a structure represented by the above formula [2].
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. .
  • selecting a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO— It is preferable from the viewpoint of facilitating.
  • Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 17 R 18 ) b — (b is an integer of 1 to 15, R 17 and R 18 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Of these, — (CH 2 ) b — (b is an integer of 1 to 10) is preferable from the viewpoint of significantly improving the response speed of the liquid crystal display element.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 4 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted by an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 4 may be a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Among these, an organic group having 12 to 25 carbon atoms having any one of a benzene ring, a cyclohexane ring, and a steroid skeleton is preferable.
  • Y 5 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, It may be substituted with 3 alkoxyl groups, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • n is an integer of 0-4.
  • it is an integer of 0-2.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
  • liquid crystal alignment treatment agent using polysiloxane introduced with such side chains and photoreactive groups can achieve both response speed characteristics and good vertical alignment, it is similar to the liquid crystal skeleton.
  • a side chain having a structure it is presumed that the response speed and the vertical alignment, which are normally in a trade-off relationship, are compatible.
  • Preferable combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula (2) are pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.27).
  • the same combinations as (2-1) to (2-629) listed in Tables 6 to 47 of the above are listed.
  • Y 1 to Y 6 in the present invention are indicated as Y 1 to Y 6, but Y 1 to Y 6 should be read as Y 1 to Y 6 .
  • R 2 of the alkoxysilane represented by the formula (1) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, R 2 is a methyl group or an ethyl group.
  • Such an alkoxysilane represented by the formula (1) can be produced by a known method (Japanese Patent Laid-Open No. 61-28639). Although the specific example is given to the following, it is not limited to this.
  • R 5 is —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—
  • R 6 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, or a fluorine-containing alkyl group. Group or fluorine-containing alkoxy group.
  • R 7 is a single bond, —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, — (CH 2 ) n O— (n is an integer of 1 to 5), —OCH 2 — or — CH 2 — and R 8 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 9 is —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 — or —O—
  • R 10 is a fluorine group , Cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy group or hydroxyl group.
  • R 11 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 12 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • B 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and B 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • B 2 is an oxygen atom or —COO— * (where a bond with “*” is bonded to B 3 ), and B 1 is an oxygen atom or —COO— * (where “*” is attached).
  • the resulting bond is bonded to (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • the above-mentioned alkoxysilane is one kind or the like depending on the solubility in the solvent when the siloxane polymer is used, the orientation of the liquid crystal when the liquid crystal alignment film is used, the pretilt angle characteristics, the voltage holding ratio, the accumulated charge, etc. Two or more types can be mixed and used. Further, it can be used in combination with an alkoxysilane containing a long-chain alkyl group having 10 to 18 carbon atoms.
  • the alkoxysilane represented by the formula (1) having the specific organic group is preferably 1 mol% or more in order to obtain good liquid crystal alignment in all alkoxysilanes used for obtaining polysiloxane. More preferably, it is 1.5 mol% or more.
  • the liquid crystal alignment film More preferably, it is 2 mol% or more. Further, in order to obtain sufficient curing characteristics of the liquid crystal alignment film to be formed, 30 mol% or less is preferable. More preferably, it is 25 mol% or less. More preferably, it is 20 mol% or less.
  • R 3 (hereinafter also referred to as a second specific organic group) of the alkoxysilane represented by the formula (3) is an alkyl group substituted with an acrylic group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group.
  • the number of substituted hydrogen atoms is one or more, preferably one.
  • the alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. More preferably, it is 1-10.
  • R 4 of the alkoxysilane represented by the formula (3) is an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and particularly preferably an alkyl group having 1 to 2 carbon atoms.
  • alkoxysilane represented by Formula (3) is not limited to these.
  • 3-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, or styrylethyltrimethoxysilane is preferable.
  • the polysiloxane which is the component (B) is improved in adhesion to the substrate and affinity with liquid crystal molecules.
  • one or more alkoxysilanes represented by the following formula (4) can be used for the purpose of improving the properties.
  • the alkoxysilane represented by the formula (4) can impart various properties to the polysiloxane, and one or more types can be selected and used depending on the required properties.
  • R 5 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group.
  • R 6 is an alkyl group having 1 to 5, preferably 1 to 3 carbon atoms, and n is an integer of 0 to 3, preferably 0 to 2.
  • R 5 of the alkoxysilane represented by the formula (4) is a hydrogen atom or an organic group having 1 to 10 carbon atoms (hereinafter also referred to as a third organic group).
  • the third organic group include aliphatic hydrocarbons; ring structures such as aliphatic rings, aromatic rings and heterocycles; unsaturated bonds; heteroatoms such as oxygen atoms, nitrogen atoms and sulfur atoms; An organic group having 1 to 6 carbon atoms, which may be included and may have a branched structure. Further, this organic group may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group, or the like.
  • alkoxysilane represented by Formula (4) is not limited to this.
  • 3- (2-aminoethylaminopropyl) trimethoxysilane 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) Triethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethy
  • the alkoxysilane in which n is 0 is tetraalkoxysilane.
  • Tetraalkoxysilane is preferable for obtaining the polysiloxane of the present invention because it easily condenses with the alkoxysilane represented by the formulas (1) and (3).
  • the alkoxysilane represented by the formula (1) is preferably 2 to 20 mol%, particularly preferably 3 to 15 mol%, based on the total alkoxysilane used in the production of the polysiloxane of the component (B).
  • the alkoxysilane represented by the formula (3) is used in an amount of 5 to 80 mol%, particularly preferably 10 to 70 mol%, based on the total alkoxysilane used for the production of the polysiloxane of the component (B). Is desirable.
  • the alkoxysilane represented by the formula (4) is preferably 10 to 90 mol%, particularly preferably 20 to 20% of the total alkoxysilane used when used for the production of the polysiloxane of the component (B). It is desirable to use 90 mol%.
  • the method for obtaining the polysiloxane used in the present invention is not particularly limited, and can be obtained by polycondensation of an alkoxysilane having the above-mentioned alkoxysilane of formula (1) as an essential component in an organic solvent. Therefore, the polysiloxane is obtained as a solution uniformly dissolved in an organic solvent.
  • the method of hydrolyzing and condensing the alkoxysilane of the said Formula (1) in solvents, such as alcohol or glycol is mentioned.
  • the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 moles of water of all alkoxide groups in the alkoxysilane, but it is usually preferable to add an excess amount of water over 0.5 moles.
  • the amount of water used in the above reaction can be appropriately selected as desired, but it is usually within a range of 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane.
  • the amount is preferably 0.5 to 2.5 times mol, more preferably 0.5 to 1.5 times mol.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid;
  • a metal salt such as hydrochloric acid, sulfuric acid or nitric acid;
  • a method of heating and polycondensing a mixture of alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding succinic acid to alcohol in advance to make an alcohol solution of succinic acid, alkoxysilane is mixed while the solution is heated. In that case, the amount of succinic acid used is preferably 0.2 to 2 mol with respect to 1 mol of all alkoxy groups of the alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. A method of heating for several tens of minutes to several tens of hours under reflux is preferred so that the liquid does not evaporate or volatilize.
  • the plurality of alkoxysilanes may be mixed and reacted in advance, or a plurality of alkoxysilanes may be mixed and reacted in sequence.
  • the solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even when alkoxysilane does not melt
  • the polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol; ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5 -Glycols such as pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, Tylene glycol monobutyl ether, ethylene glycol mono
  • the polysiloxane polymerization solution (hereinafter also referred to as polymerization solution) obtained by the above method is a concentration obtained by converting silicon atoms of all alkoxysilanes charged as raw materials into SiO 2 (hereinafter also referred to as SiO 2 conversion concentration). ) Is preferably 20% by mass or less, particularly preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained.
  • the polysiloxane polymerization solution obtained by the above method may be used as the solution of the component (B) as it is, or if necessary, the solution obtained by the above method may be concentrated or solvent It is good also as a solution of (B) component by adding and diluting or substituting with another solvent.
  • the solvent to be used hereinafter also referred to as additive solvent
  • the additive solvent is not particularly limited as long as the polysiloxane is uniformly dissolved, and one kind or plural kinds can be arbitrarily selected and used.
  • the additive solvent examples include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, esters such as methyl acetate, ethyl acetate, and ethyl lactate in addition to the solvents mentioned as examples of the polymerization solvent. .
  • ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • esters such as methyl acetate, ethyl acetate, and ethyl lactate in addition to the solvents mentioned as examples of the polymerization solvent.
  • solvents can improve the applicability when applying the liquid crystal aligning agent on the substrate by adjusting the viscosity of the liquid crystal aligning agent, or by spin coating, flexographic printing, inkjet, or the like.
  • the solvent used in the solution of the component (B) is N, N′-dimethylformamide, N, N′-dimethylacetamide.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, and ethylene glycol monobutyl ether are preferred.
  • [Liquid crystal aligning agent] Content of (B) component (polysiloxane) in the liquid-crystal aligning agent of this invention is SiO of the silicon atom which (B) component has with respect to 100 mass parts of (A) component containing polyamic acid and / or a polyimide.
  • the value in terms of 2 is 0.5 to 80 parts by mass, preferably 0.5 to 50 parts by mass.
  • the content of the component (B) (polysiloxane) is more preferably 10 to 80 on the same basis in order not to deteriorate the vertical alignment of the liquid crystal. Part by mass, more preferably 20 to 70 parts by mass.
  • the liquid crystal aligning agent of the present invention is not particularly limited, it is usually necessary to form a uniform thin film of 0.01 to 1.0 ⁇ m on the substrate when producing the liquid crystal alignment film.
  • a coating solution containing an organic solvent for dissolving these components is preferable.
  • the content of the organic solvent is 90 to 99% by mass in the liquid crystal aligning agent from the viewpoint of forming a uniform thin film by coating. It is preferably 92 to 97% by mass. These contents can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
  • organic solvent used in the liquid crystal aligning agent of the present invention include organic solvents used in the above-described polyamic acid or polyimide synthesis reaction. Particularly preferred are N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone and the like. These organic solvents may be used alone or in combination of two or more.
  • the amount is preferably 80% by mass or less, more preferably 60% by mass or less in the organic solvent. Moreover, if the improvement of the uniformity of a coating film is anticipated, 5 mass% or more in an organic solvent is preferable, More preferably, it is 20 mass% or more.
  • the liquid crystal alignment treatment agent of the present invention can contain a compound for improving the adhesion between the coating film and the substrate, a surfactant for enhancing the flatness of the coating film, and the like.
  • the compound for improving the adhesion between the coating film and the substrate include the following functional silane-containing compounds.
  • the amount of these compounds added is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the component (A), from the viewpoint that the effect of improving adhesion can be obtained and the orientation of the liquid crystal is not lowered. More preferred is 1 to 20 parts by mass, and particularly 1 to 10 parts by mass.
  • the surfactant for improving the flatness of the coating film include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the content of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of component (A).
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied onto a substrate and baked, and then subjected to alignment treatment by rubbing treatment, light irradiation, or the like, or without alignment treatment in vertical alignment applications.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate; a plastic substrate such as an acrylic substrate or a polycarbonate substrate; Furthermore, it is preferable from the viewpoint of simplification of the process to use a substrate on which an ITO electrode or an IZO (indium zinc oxide) electrode for driving a liquid crystal is formed.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as metal aluminum can be used as the electrode.
  • a method for applying the liquid crystal alignment treatment agent is not particularly limited, but a method of performing screen printing, offset printing, flexographic printing, ink jet, or the like is common. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • the substrate after applying the liquid crystal aligning agent is placed on a hot plate at 70 to 100 ° C. for about 1 to 3 minutes to evaporate the solvent and then dried, and then fired.
  • the calcination can be performed at an arbitrary temperature of 100 to 350 ° C., preferably 120 to 300 ° C., more preferably 150 to 250 ° C. This baking can be performed with a hot plate, a hot-air circulating furnace, an infrared furnace, or the like.
  • the thickness of the coating film after baking is preferably 5 to 300 nm, more preferably The thickness is 10 to 150 nm, more preferably 50 to 100 nm.
  • the liquid crystal display element of the present invention is a display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention and then preparing a liquid crystal cell by a known method.
  • a pair of substrates on which a liquid crystal alignment film is formed are prepared, column spacers are formed on the liquid crystal alignment film on one substrate, or bead spacers are scattered on the liquid crystal alignment film.
  • the other side is bonded so that the surface is on the inside, and the liquid crystal is injected under reduced pressure to seal, or the liquid crystal is dropped on the liquid crystal alignment film surface where column spacers are formed or beads spacers are dispersed
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • TEOS tetraethoxysilane
  • C18 octadecyltriethoxysilane
  • C12 dodecyltriethoxysilane
  • UPS 3-ureidopropyltriethoxysilane
  • MPMS 3-methacryloxypropyltrimethoxysilane
  • VTMS vinyltrimethoxysilane
  • STMS styrylethyltrimethoxysilane
  • MTES Methyltriethoxysilane
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • BDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • BODA bicyclo [3,3 0] octane-2,4,6,8-tetracarboxylic dianhydride
  • the production of the liquid crystal cell and the evaluation of electrical characteristics, vertical alignment, reworkability, whitening characteristics, response speed, etc. were performed as follows.
  • liquid crystal alignment film surface of one of the substrates was turned inside and the two substrates were bonded together, and then the sealing agent was cured to produce an empty cell.
  • liquid crystal MLC-6608 (trade name, manufactured by Merck & Co., Inc.) was injected into the empty cell by vacuum injection to produce a liquid crystal cell.
  • the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
  • the liquid crystal aligning agent was spin-coated on the ITO electrode substrate on which the solid ITO electrode was formed. Then, after drying for 2 minutes with an 80 degreeC hotplate, it baked for 30 minutes in 200 degreeC or 220 degreeC hot-air circulation type oven, and formed the liquid crystal aligning film with a film thickness of 100 nm.
  • the substrate was immersed in NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd. at 50 ° C. for 10 minutes, washed with water, and dried in an 80 ° C. hot air circulation oven for 10 minutes. Thereafter, the state before and after the immersion is visually observed and the contact angle is measured. If the contact angle returns to the state before application of the liquid crystal alignment treatment agent, it can be reworked: ⁇ . went.
  • a liquid crystal alignment treatment agent is spin-coated on a chromium substrate (a glass substrate on which chromium is deposited), and is allowed to stand for 10 minutes in an atmosphere at a temperature of 23 ° C. and a relative humidity of 60%. It was visually observed whether or not this occurred.
  • [Evaluation of response speed] The change in luminance of the liquid crystal panel over time when an AC voltage of ⁇ 5 V and a rectangular wave with a frequency of 1 kHz was applied to the liquid crystal cell was captured with an oscilloscope.
  • the luminance When the voltage is not applied, the luminance is 0%, ⁇ 5V voltage is applied, the saturated luminance value is 100%, the time when the luminance changes from 10 to 90% is the rising response speed, and the liquid crystal
  • the response speed after irradiating heat or ultraviolet rays was evaluated while applying an AC or DC voltage to the cell obtained according to the cell manufacturing method.
  • Example 1 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A1) were mixed to obtain a liquid crystal aligning agent (8). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
  • Example 2 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A2) were mixed to obtain a liquid crystal aligning agent (9). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
  • Example 3 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A3) were mixed to obtain a liquid crystal aligning agent (10). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
  • Example 4 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A4) were mixed to obtain a liquid crystal aligning agent (11). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
  • Example 5 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A5) were mixed to obtain a liquid crystal aligning agent (12). Using this liquid crystal aligning agent, [Evaluation of response speed], [Evaluation of vertical alignment] and [Evaluation of reworkability] were performed. The results are shown in Table 7, Table 8, and Table 10. Furthermore, voltage holding ratio and ion density were evaluated according to [Evaluation of electrical characteristics]. The results are shown in Table 9.
  • Example 6 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A6) were mixed to obtain a liquid crystal aligning agent (13). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
  • Example 7 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A7) were mixed to obtain a liquid crystal aligning agent (14). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
  • Example 8 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A8) were mixed to obtain a liquid crystal aligning agent (15). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7. Furthermore, voltage holding ratio and ion density were evaluated according to [Evaluation of electrical characteristics]. The results are shown in Table 9.
  • Example 9 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A9) were mixed to obtain a liquid crystal aligning agent (16). Using this liquid crystal aligning agent, [Evaluation of response speed], [Evaluation of vertical alignment] and [Evaluation of reworkability] were performed. The results are shown in Table 7 and Table 10.
  • Example 10 3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A10) were mixed to obtain a liquid crystal aligning agent (17). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
  • Example 11 3.0 g of polysiloxane solution (B6) and 7.0 g of polyamic acid solution (A1) were mixed to obtain a liquid crystal aligning agent (18). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Tables 7 and 8.
  • the liquid crystal alignment treatment agent containing ureido group (Reference Example 1) has a VHR (voltage holding ratio) as compared with the liquid crystal alignment treatment agent not containing ureido group (Comparative Example 2). High and low ion density.
  • the liquid crystal alignment treatment agent containing at least one polymer selected from the group consisting of polyamic acid and polyimide is compared with the liquid crystal alignment treatment agent containing only the polysiloxane component. It was found that reworkability is high.
  • Example 7 In Table 7, in Example 1, the response speed after UV irradiation was fast, and the domain observation result after annealing was also good. On the other hand, in Comparative Example 8, the domain observation result after annealing was very good, but the response speed after UV irradiation was slow. In Comparative Example 7, the response speed was fast, but many domains were observed after annealing. Further, in Examples 2 to 11 and Comparative Examples 9 and 10, the response speed after UV irradiation was high, and the domain observation results after annealing showed very good results.
  • the response speed with respect to the UV irradiation amount is at least one polymer selected from the group consisting of polyamic acid and polyimide, compared with the liquid crystal alignment treatment agent consisting of polysiloxane alone in Comparative Example 11 and Comparative Example 12. It was found that the liquid crystal alignment treatment agent contained has a wider range of improved response speed to UV irradiation.
  • the liquid crystal aligning agent containing a ureido group has a higher VHR and ion density than the liquid crystal aligning agent containing no ureido group. was found to be low.
  • the liquid crystal alignment treatment agent containing at least one polymer selected from the group consisting of polyamic acid and polyimide is reworked compared to the liquid crystal alignment treatment agent composed of inorganic alone. It was found that the nature is high.
  • the liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention does not have a reduced vertical alignment force and has an excellent response speed after UV irradiation, and the liquid crystal display element having the liquid crystal alignment film of the present invention is It is useful for TFT liquid crystal display elements, TN liquid crystal display elements, VA liquid crystal display elements, and the like.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-190328 filed on August 30, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.

Abstract

Provided are: a liquid crystal aligning agent which is capable of forming a liquid crystal alignment film that is able to improve the response speed after UV irradiation without being decreased in vertical alignment ability; and a liquid crystal display element which comprises a liquid crystal alignment film obtained from the liquid crystal aligning agent and is processed similarly to PSA type liquid crystal display elements using liquid crystals to which a liquid crystal polymerizable compound is not added, said liquid crystal display element having improved response speed after UV irradiation. A liquid crystal aligning agent which contains: at least one kind of a polymer (component (A)) that is selected from the group consisting of polyamic acids and polyimides; and a polysiloxane (component (B)) that is obtained by polycondensing alkoxysilanes including an alkoxysilane represented by formula (1) and an alkoxysilane represented by formula (3). R1Si(OR2)3 (1) (In formula (1), R1 represents a group represented by formula (2); and R2 represents an alkyl group having 1-5 carbon atoms.) (In formula (2), Y1 represents a single bond or the like; Y2 represents a single bond or the like; Y3 represents a single bond or the like; Y4 represents a divalent cyclic group such as a benzene ring, or the like; Y5 represents a divalent cyclic group such as a benzene ring, or the like; Y6 represents an alkyl group having 1-18 carbon atoms, or the like; and n represents a number of 0-4.) R3Si(OR4)3 (3) (In formula (3), R3 represents an acryl group, an acryloxy group, a methacryl group, a methacryloxy group or an alkyl group having 1-30 carbon atoms and substituted by a styryl group; and R4 represents an alkyl group having 1-5 carbon atoms.)

Description

液晶配向処理剤及びそれを用いた液晶表示素子Liquid crystal alignment treatment agent and liquid crystal display element using the same
 本発明は、液晶配向処理剤、及び前記液晶配向処理剤から得られる液晶配向膜、並びにその液晶配向膜を有する液晶表示素子に関する。 The present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element having the liquid crystal alignment film.
 近年、液晶表示素子の表示方式の中でも、垂直(VA)方式の液晶表示素子は、大画面の液晶テレビや高精細なモバイル用途(デジタルカメラや携帯電話の表示部)など、広く利用されている。VA方式には、液晶の倒れる方向を制御するための突起をTFT基板やカラーフィルタ基板に形成するMVA方式(Multi Vertical Alignment)や、基板のITO(インジウム・スズ酸化物)電極にスリットを形成し、電界によって液晶の倒れる方向を制御するPVA(Patterned Vertical Alignment)方式が知られている。
別の配向方式として、PSA(Polymer sustained Alignment)方式がある。
In recent years, among liquid crystal display element display methods, vertical (VA) liquid crystal display elements are widely used for large-screen liquid crystal televisions and high-definition mobile applications (display units of digital cameras and mobile phones). . In the VA method, a slit is formed in the ITO (indium tin oxide) electrode of the MVA method (Multi Vertical Alignment) in which protrusions for controlling the direction in which the liquid crystal falls are formed on the TFT substrate or the color filter substrate. In addition, a PVA (Patterned Vertical Alignment) system is known that controls the direction in which the liquid crystal is tilted by an electric field.
As another alignment method, there is a PSA (Polymer sustained Alignment) method.
 VA方式の中でも、PSA方式は近年注目されている技術である。この方式は、液晶中に光重合性化合物を添加し、液晶パネルの作製後に、電界を印加し、液晶が倒れた状態で紫外線(UV)を液晶パネルに照射する。その結果、重合性化合物が光重合することで、液晶の配向方向が固定化され、プレチルトが生じ、応答速度が向上する。液晶パネルを構成する片側の電極にスリットを作製し、対向側の電極パターンには、MVAのような突起やPVAのようなスリットを設けていない構造でも動作可能であり、製造の簡略化や優れたパネル透過率が得られることを特徴としている。(特許文献1参照。) Among the VA methods, the PSA method is a technology that has attracted attention in recent years. In this method, a photopolymerizable compound is added to a liquid crystal, an electric field is applied after the liquid crystal panel is manufactured, and ultraviolet light (UV) is irradiated to the liquid crystal panel in a state where the liquid crystal is tilted. As a result, the polymerizable compound is photopolymerized to fix the alignment direction of the liquid crystal, cause a pretilt, and improve the response speed. A slit is made in one electrode constituting the liquid crystal panel, and the structure on the opposite electrode pattern can be operated even without a protrusion such as MVA or a slit such as PVA. Panel transmittance can be obtained. (See Patent Document 1.)
 しかし、PSA方式の液晶表示素子においては、液晶に添加する重合性化合物の溶解性が低く、その添加量を増やすと低温時に析出するという問題がある。また、重合性化合物の添加量を減らすと良好な配向状態、応答速度が得られなくなる。さらに、液晶中に残留する未反応の重合性化合物は液晶中の不純物となり、液晶表示素子の信頼性を低下させるという問題もある。
 そこで、ポリマー分子中に光反応性の側鎖を導入したポリマーを用いた液晶配向処理剤を基板に塗布し、焼成して得られた液晶配向膜に接触させた液晶層を設け、この液晶層に電圧を印加しながら紫外線を照射して、液晶表示素子を作製することにより、液晶中に重合性化合物を添加せずとも、応答速度の速い液晶表示素子を得ることが出来る技術が提案されている。(特許文献2参照。)
However, in the PSA type liquid crystal display element, there is a problem that the polymerizable compound added to the liquid crystal has low solubility, and when the addition amount is increased, it is precipitated at a low temperature. Moreover, when the addition amount of the polymerizable compound is reduced, a good alignment state and response speed cannot be obtained. Furthermore, the unreacted polymerizable compound remaining in the liquid crystal becomes an impurity in the liquid crystal, and there is a problem that the reliability of the liquid crystal display element is lowered.
Accordingly, a liquid crystal layer is provided in which a liquid crystal alignment treatment agent using a polymer having a photoreactive side chain introduced into a polymer molecule is applied to a substrate and brought into contact with a liquid crystal alignment film obtained by baking. A technology has been proposed in which a liquid crystal display element can be obtained by irradiating ultraviolet rays while applying a voltage to a liquid crystal display element without producing a polymerizable compound in the liquid crystal without adding a polymerizable compound. Yes. (See Patent Document 2.)
 一方、従来から用いられているポリイミド等の有機系の液晶配向膜材料と共に、無機系の液晶配向膜材料も知られている。例えば、塗布型の無機系の液晶配向膜材料として、テトラアルコキシシランと、トリアルコキシシランと、アルコールと、蓚酸との反応生成物を含有する液晶配向剤組成物が提案され、液晶表示素子の電極基板上で、垂直配向性、耐熱性及び均一性に優れる液晶配向膜を形成することが報告されている。(特許文献3参照。) On the other hand, an inorganic liquid crystal alignment film material is also known together with an organic liquid crystal alignment film material such as polyimide which has been conventionally used. For example, a liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, trialkoxysilane, alcohol, and oxalic acid has been proposed as a coating-type inorganic liquid crystal alignment film material. It has been reported that a liquid crystal alignment film having excellent vertical alignment properties, heat resistance and uniformity is formed on a substrate. (See Patent Document 3)
 また、テトラアルコキシシラン、特定のトリアルコキシシラン及び水との反応生成物と、特定のグリコールエーテル系溶媒を含有する液晶配向処理剤組成物が提案され、表示不良を防止し、長時間の駆動後も残像特性の良好な、液晶を配向させる能力を低下させることなく、且つ光及び熱に対する電圧保持率の低下が少ない液晶配向膜を形成することが報告されている。(特許文献4参照。) In addition, a liquid crystal aligning agent composition containing a reaction product of tetraalkoxysilane, a specific trialkoxysilane and water and a specific glycol ether solvent is proposed to prevent display defects and after a long drive. However, it has been reported that a liquid crystal alignment film having good afterimage characteristics, without decreasing the ability to align liquid crystals, and with little decrease in voltage holding ratio against light and heat is reported. (See Patent Document 4)
日本特開2004-302061号公報Japanese Unexamined Patent Publication No. 2004-302061 日本特開2011-95967号公報Japanese Unexamined Patent Publication No. 2011-95967 日本特開平09-281502号公報Japanese Unexamined Patent Publication No. 09-281502 日本特開2005-250244号公報Japanese Unexamined Patent Publication No. 2005-250244
 垂直配向をするVAモードにおいては、垂直配向をさせるための強い垂直配向力が必要であるが、重合性化合物を用いないこの方式では、垂直配向力を向上させるとUV照射後の応答速度は遅くなり、UV照射後の応答速度を向上させると、垂直配向力が低下する。垂直配向力とUV照射後の応答速度向上はトレードオフの関係にある。 In the VA mode in which the vertical alignment is performed, a strong vertical alignment force is required for the vertical alignment. However, in this method without using a polymerizable compound, the response speed after UV irradiation becomes slow when the vertical alignment force is improved. Thus, when the response speed after UV irradiation is improved, the vertical alignment force decreases. There is a trade-off relationship between the vertical alignment force and the response speed improvement after UV irradiation.
 本発明の課題は、重合性化合物を添加しない液晶を用いて、PSA方式と同様に処理し、UV照射後の応答速度を向上させる方式の液晶表示素子においても、垂直配向力を低下させることなく、UV照射後の応答速度を向上させ得る液晶配向膜を形成可能な液晶配向処理剤、該液晶配向処理剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子を提供することである。 An object of the present invention is to use a liquid crystal to which a polymerizable compound is not added and treat the same as in the PSA method to improve the response speed after UV irradiation without reducing the vertical alignment force. By providing a liquid crystal alignment treatment agent capable of forming a liquid crystal alignment film capable of improving the response speed after UV irradiation, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element having the liquid crystal alignment film. is there.
 本発明者は、上記の目的を達成するため、鋭意研究を進めたところ、ポリアミック酸及びポリイミドからなる群から選ばれる少なくとも一種の重合体((A)成分)と、特定のポリシロキサン((B)成分)とを含有する液晶配向処理剤により上記の目的を達成し得ることを見出し、本発明を完成させた。 The present inventor conducted extensive research to achieve the above object, and as a result, at least one polymer (component (A)) selected from the group consisting of polyamic acid and polyimide and a specific polysiloxane ((B The present invention has been completed by finding that the above-mentioned object can be achieved by a liquid crystal aligning agent containing component)).
 すなわち、本発明は以下の要旨を有するものである。
1.下記の(A)成分及び(B)成分を含有することを特徴とする液晶配向処理剤。
(A)成分:ポリアミック酸及びポリイミドからなる群から選ばれる少なくとも一種類の重合体。
(B)成分:式(1)で表されるアルコキシシラン及び式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサン。

     RSi(OR     (1)

(Rは下記式(2)の構造であり、Rは炭素原子数1~5のアルキル基である。)
Figure JPOXMLDOC01-appb-C000002
(Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。
は単結合、二重結合を含有する炭素数3~8の直鎖状若しくは分岐状の炭化水素基、又は-(CR17R18b-(bは1~15の整数であり、R17、R18はそれぞれ独立に、水素原子又は炭素数1~3のアルキル基である。)である。
は単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。
はベンゼン環、シクロへキシル環、及び複素環から選ばれる2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、又はフッ素原子で置換されていてもよい。さらに、Yはステロイド骨格を有する炭素数12~25の2価の有機基であってもよい。
はベンゼン環、シクロへキシル環及び複素環よりなる群から選ばれる2価の環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
は水素原子又は炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数である。)

     RSi(OR     (3)

(Rは、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換された炭素数1~30のアルキル基であり、Rは炭素数1~5のアルキル基である。)
That is, the present invention has the following gist.
1. The liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
Component (A): at least one polymer selected from the group consisting of polyamic acid and polyimide.
(B) Component: Polysiloxane obtained by polycondensation of alkoxysilane represented by formula (1) and alkoxysilane containing alkoxysilane represented by formula (3).

R 1 Si (OR 2 ) 3 (1)

(R 1 is a structure of the following formula (2), and R 2 is an alkyl group having 1 to 5 carbon atoms.)
Figure JPOXMLDOC01-appb-C000002
(Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
Y 2 is a single bond, a linear or branched hydrocarbon group having 3 to 8 carbon atoms containing a double bond, or — (CR 17 R 18 ) b — (b is an integer of 1 to 15, R 17 and R 18 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. It may be substituted with 3 alkoxyl groups, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Further, Y 4 may be a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton.
Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
Y 6 is a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. n is an integer of 0-4. )

R 3 Si (OR 4 ) 3 (3)

(R 3 is an alkyl group having 1 to 30 carbon atoms substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group or a styryl group, and R 4 is an alkyl group having 1 to 5 carbon atoms.)
2.(B)成分が、下記式(4)で表されるアルコキシシランをさらに含有する、アルコキシシランを重縮合して得られるポリシロキサンである、上記1に記載の液晶配向処理剤。
     (RSi(OR4-n     (4)

(式(4)中、Rは、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基で置換されていてもよい、炭素原子数1~10の炭化水素基である。Rは炭素原子数1~5のアルキル基であり、nは0~3の整数である。)
3.前記式(4)で表されるアルコキシシランが、テトラメトキシシラン又はテトラエトキシシランである上記2に記載の液晶配向処理剤。
4.(B)成分のポリシロキサンの製造に使用される全アルコキシシラン中、式(1)で表されるアルコキシシランが2~20モル%使用され、かつ式(3)で表されるアルコキシシランが5~80モル%使用される上記1に記載の液晶配向処理剤。
5.(B)成分のポリシロキサンの製造に使用される全アルコキシシラン中、式(4)で表されるアルコキシシランが10~90モル%使用される上記2又は3に記載の液晶配向処理剤。
6.(A)成分の100質量部に対し、(B)成分が、(B)成分が有するケイ素原子のSiO換算値で、0.5~80質量部含有される上記1~5のいずれかに記載の液晶配向処理剤。
7.有機溶媒をさらに含有し、該有機溶媒が液晶配向処理剤中、90~99質量%含有される上記1~6のいずれかに記載の液晶配向処理剤。
8.上記1~7のいずれかに記載の液晶配向処理剤を基板上に塗布し、乾燥し、焼成して得られる液晶配向膜。
9.前記焼成を、温度100~350℃で行い、形成される、上記8に記載の液晶配向膜。
10.焼成後の塗膜の厚みが、5~300nmである、上記8又は9に記載の液晶配向膜。
11.上記8~10のいずれかに記載の液晶配向膜を有する液晶表示素子。
2. (B) The liquid-crystal aligning agent of said 1 which is a polysiloxane obtained by polycondensing alkoxysilane which further contains the alkoxysilane represented by following formula (4).
(R 5 ) n Si (OR 6 ) 4-n (4)

(In the formula (4), R 5 is a hydrogen atom or a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, or a ureido group, which has 1 to 10 carbon atoms. R 6 is an alkyl group having 1 to 5 carbon atoms, and n is an integer of 0 to 3.)
3. 3. The liquid crystal aligning agent according to 2 above, wherein the alkoxysilane represented by the formula (4) is tetramethoxysilane or tetraethoxysilane.
4). Of all the alkoxysilanes used in the production of the polysiloxane (B), 2 to 20 mol% of the alkoxysilane represented by the formula (1) is used, and 5 alkoxysilanes represented by the formula (3) are used. 2. The liquid crystal aligning agent according to the above 1, which is used at ˜80 mol%.
5. 4. The liquid crystal aligning agent according to 2 or 3 above, wherein 10 to 90 mol% of the alkoxysilane represented by the formula (4) is used in all alkoxysilanes used in the production of the component (B) polysiloxane.
6). The component (B) is contained in an amount of 0.5 to 80 parts by mass, based on 100 parts by mass of the component (A), in which the component (B) is equivalent to the SiO 2 of the silicon atom contained in the component (B). The liquid crystal aligning agent of description.
7). 7. The liquid crystal aligning agent according to any one of 1 to 6 above, further comprising an organic solvent, wherein the organic solvent is contained in 90 to 99% by mass in the liquid crystal aligning agent.
8). 8. A liquid crystal alignment film obtained by applying the liquid crystal alignment treatment agent according to any one of 1 to 7 on a substrate, drying and baking.
9. 9. The liquid crystal alignment film as described in 8 above, which is formed by performing the baking at a temperature of 100 to 350 ° C.
10. 10. The liquid crystal alignment film as described in 8 or 9 above, wherein the thickness of the fired coating film is 5 to 300 nm.
11. 11. A liquid crystal display device having the liquid crystal alignment film according to any one of 8 to 10 above.
 本発明によれば、垂直配向力を低下させることなく、UV照射後の応答速度を向上させることが可能な液晶配向膜を形成可能な液晶配向処理剤、該液晶配向処理剤から得られる液晶配向膜、及び該液晶配向膜を有し、重合性化合物を添加しない液晶を用いて、PSA方式と同様に処理し、UV照射後の応答速度を向上させる方式の液晶表示素子が提供される。 According to the present invention, a liquid crystal alignment treatment agent capable of forming a liquid crystal alignment film capable of improving the response speed after UV irradiation without decreasing the vertical alignment force, and a liquid crystal alignment obtained from the liquid crystal alignment treatment agent There is provided a liquid crystal display element having a film and a liquid crystal alignment film which has a liquid crystal alignment film and is treated in the same manner as the PSA system using a liquid crystal to which no polymerizable compound is added, thereby improving the response speed after UV irradiation.
<(A)成分:ポリアミック酸及び/又はポリイミド>
 本発明の液晶配向処理剤には、ポリアミック酸及びポリイミドからなる群から選ばれる少なくとも一種類のポリマーを含有する。このポリアミック酸及びポリイミドの具体的な構造は特に限定されず、例えば、公知の液晶配向処理剤に含有されているポリアミック酸又はポリイミドであってもよい。
<(A) component: polyamic acid and / or polyimide>
The liquid crystal aligning agent of the present invention contains at least one polymer selected from the group consisting of polyamic acid and polyimide. Specific structures of the polyamic acid and the polyimide are not particularly limited, and may be, for example, a polyamic acid or a polyimide contained in a known liquid crystal aligning agent.
 ポリアミック酸は、テトラカルボン酸又はテトラカルボン酸の誘導体と、ジアミンとの(重縮合)反応によって容易に得ることができる。
 本発明に用いる(A)成分であるポリアミック酸及びポリイミドの製造方法は、特に限定されない。一般的には、テトラカルボン酸又はその誘導体からなる群から選ばれる1種又は複数種からなるテトラカルボン酸成分と、1種又は複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミック酸を得る。
 さらに、ポリイミドを得る方法としては、ポリアミック酸をイミド化する方法が用いられる。
The polyamic acid can be easily obtained by a (polycondensation) reaction between tetracarboxylic acid or a tetracarboxylic acid derivative and a diamine.
The manufacturing method of the polyamic acid and polyimide which are (A) component used for this invention is not specifically limited. Generally, a polyamic acid is obtained by reacting one or more tetracarboxylic acid components selected from the group consisting of tetracarboxylic acids or derivatives thereof with a diamine component consisting of one or more diamine compounds. Get.
Furthermore, as a method for obtaining polyimide, a method of imidizing polyamic acid is used.
 その際、得られるポリアミック酸は、原料であるテトラカルボン酸成分とジアミン成分とを適宜選択することによって単重合体(ホモポリマー)又は共重合体(コポリマー)とすることができる。
 ここで、テトラカルボン酸又はその誘導体とは、テトラカルボン酸、テトラカルボン酸ジハライド又はテトラカルボン酸二無水物である。なかでも、テトラカルボン酸二無水物はジアミン化合物との反応性が高いので好ましい。
In that case, the polyamic acid obtained can be made into a homopolymer or a copolymer (copolymer) by appropriately selecting a tetracarboxylic acid component and a diamine component as raw materials.
Here, the tetracarboxylic acid or a derivative thereof is tetracarboxylic acid, tetracarboxylic acid dihalide, or tetracarboxylic dianhydride. Of these, tetracarboxylic dianhydrides are preferred because of their high reactivity with diamine compounds.
 具体的には、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸、などのテトラカルボン酸が挙げられる。更に、これらのテトラカルボン酸のジハロゲン化物、又はテトラカルボン酸の二無水物などが挙げられる。 Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyl Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-di Carboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxy) Enyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3 , 4-dicarboxyphenyl) pyridine, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4, 9,10-perylenetetracarboxylic acid, 1,3-diphenyl-1,2,3,4-cyclobutanetetracarboxylic acid, oxydiphthaltetracarboxylic acid, 1,2,3,4-cyclobutanetetracarboxylic acid, 2,3,4-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,3,4-tetramethyl-1 2,3,4-cyclobutanetetracarboxylic acid, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1 2,3,4-cycloheptanetetracarboxylic acid, 2,3,4,5-tetrahydrofurantetracarboxylic acid, 3,4-dicarboxy-1-cyclohexylsuccinic acid, 2,3,5-tricarboxycyclopentylacetic acid 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic acid, bicyclo [4, 3,0] nonane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0] decane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0] decane- 2,4,8,10-tetracarboxylic acid, tricyclo [6.3.0.0 <2,6>] undecane-3,5,9,11-tetracarboxylic acid, 1,2,3,4-butane Tetracarboxylic acid, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic acid, tetracyclo [6,2,1,1,0,2,7] dodeca-4, And tetracarboxylic acids such as 5,9,10-tetracarboxylic acid. Furthermore, the dihalides of these tetracarboxylic acids, the dianhydrides of tetracarboxylic acids, etc. are mentioned.
 なかでも、塗膜の透明性の点から脂環式テトラカルボン酸、これらの二無水物又はこれらのジカルボン酸ジハロゲン化物が好ましい。特に1,2,3,4-シクロブタンテトラカルボン酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸、これらテトラカルボン酸のジハロゲン化物、又はこれらテトラカルボン酸の二無水物が好ましい。 Of these, alicyclic tetracarboxylic acids, their dianhydrides, or their dicarboxylic acid dihalides are preferred from the viewpoint of the transparency of the coating film. In particular, 1,2,3,4-cyclobutanetetracarboxylic acid, 2,3,5-tricarboxycyclopentylacetic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid, bicyclo [ 3,3,0] octane-2,4,6,8-tetracarboxylic acid, dihalides of these tetracarboxylic acids, or dianhydrides of these tetracarboxylic acids are preferred.
 上記したテトラカルボン酸又はその誘導体は、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上混合して使用することができる。
 ポリアミック酸の製造に使用されるジアミンは特に限定されない。具体的には、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、1,3-ビス(4-アミノフェネチル)ウレアなどの芳香族ジアミン;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンなどの脂肪族ジアミンなどを挙げることができる。
 なかでも、電気特性、ポリシロキサンとの相溶性等の観点から、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、1,3-ビス(4-アミノフェネチル)ウレア、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサンが好ましく用いられる。
The above-mentioned tetracarboxylic acids or derivatives thereof can be used alone or in combination of two or more according to properties such as liquid crystal alignment properties, voltage holding properties, and accumulated charges when formed into a liquid crystal alignment film.
The diamine used for production of the polyamic acid is not particularly limited. Specifically, p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m- Phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4- Diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3, , 3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-dicarboxy-4,4′-diaminobiphenyl, , 3'-difluoro-4,4'-biphenyl, 3,3'-trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2 ' -Diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3'-diamino Diphenylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline 3,3′-sulfonyldianiline, bis (4-aminophenyl) silane, bi (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4'- Diaminodiphenylamine, 3,3′-diaminodiphenylamine, 3,4′-diaminodiphenylamine, 2,2′-diaminodiphenylamine, 2,3′-diaminodiphenylamine, N-methyl (4,4′-diaminodiphenyl) amine, N -Methyl (3,3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'- Diaminodiphenyl) amine, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 3,4′-diamidine Benzophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8- Diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis (3 -Aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis ( 3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenyl) Xyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4 -Aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis ( Methylene)] dianiline, 3,4 ′-[1,4-phenylenebis (methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4 -Phenylenebis (methylene)] dianiline, 3,3 '-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis (3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4- Aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) Terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide) N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-fluoro Nylene) bis (3-aminobenzamide), N, N ′-(1,3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′- Bis (3-aminophenyl) terephthalamide, N, N′-bis (4-aminophenyl) isophthalamide, N, N′-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) ) Anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-amino) Phenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoro Propane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, 1,3-bis (4-aminophenoxy) propane, 1,3 -Bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, , 5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-amino) Phenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4- Aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-amino Phenoxy) undecane, 1,11- (3-aminophenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane, 1,3-bis (4-aminophenethyl) ) Aromatic diamines such as urea; bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, etc. 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, And aliphatic diamines such as 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,3-bis (3-aminopropyl) tetramethyldisiloxane Can do.
Of these, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, 1,3-bis (4-aminophenethyl) urea, 1,3-diaminobenzoic acid, from the viewpoint of electrical properties, compatibility with polysiloxane, and the like. Bis (3-aminopropyl) tetramethyldisiloxane is preferably used.
 また、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環、又はそれらからなる大環状置換体を有するジアミンを挙げることができる。
 具体的には、下記式[A1]~[A20]で表されるジアミンを例示することができる。
Figure JPOXMLDOC01-appb-C000003
(Rは、炭素数1以上22以下のアルキル基又はフッ素含有アルキル基である。)
Moreover, the diamine which has an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, or the macrocyclic substituent which consists of them in a diamine side chain can be mentioned.
Specifically, diamines represented by the following formulas [A1] to [A20] can be exemplified.
Figure JPOXMLDOC01-appb-C000003
(R 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000004
(Rは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-であり、Rは、水素原子、炭素数1以上22以下の、アルキル基又はフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000004
(R 2 is —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—, and R 3 is a hydrogen atom, carbon number 1 or more and 22 or less alkyl group or fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000005
(Rは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-であり、Rは、炭素数1以上22以下の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000005
(R 4 is —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and R 5 is an alkyl group, alkoxy, having 1 to 22 carbon atoms. Group, fluorine-containing alkyl group or fluorine-containing alkoxy group.)
Figure JPOXMLDOC01-appb-C000006
(Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-である。Rは、炭素数1以上22以下の、アルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000006
(R 6 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, or —CH 2 —. R 7 is an alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group having 1 to 22 carbon atoms.
Figure JPOXMLDOC01-appb-C000007
(Rは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-であり、Rは、フッ素基、シアノ基、トリフルオロメチル基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、水酸基、又はカルボキシル基である。)
Figure JPOXMLDOC01-appb-C000007
(R 8 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O — Or —NH—, and R 9 is a fluorine group, a cyano group, a trifluoromethyl group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, a hydroxyl group, or a carboxyl group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 さらに、下記式[A21]で示されるようなジアミノシロキサンなども挙げることができる。
Figure JPOXMLDOC01-appb-C000009
(mは、1~10の整数である。)
Furthermore, the diaminosiloxane etc. which are shown by following formula [A21] can also be mentioned.
Figure JPOXMLDOC01-appb-C000009
(M is an integer from 1 to 10.)
 上記したジアミンは、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 上記したポリアミック酸の原料の中で、水酸基又はカルボキシル基を有するジアミンを使用すると、ポリアミック酸又はポリイミドと、後記する架橋性化合物との反応効率を高めることができる。
 このようなジアミンの具体例としては、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、式[A22]~[A25]で示されるジアミンなどが挙げられる。
The diamines described above can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
If the diamine which has a hydroxyl group or a carboxyl group is used in the above-mentioned raw material of polyamic acid, the reaction efficiency of a polyamic acid or a polyimide and the crosslinkable compound mentioned later can be improved.
Specific examples of such diamines include 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 3,3 '-Dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'-diaminobiphenyl, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, formula [A22] to [ And diamines represented by A25].
Figure JPOXMLDOC01-appb-C000010
(R10は、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-である。)
Figure JPOXMLDOC01-appb-C000010
(R 10 is —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.)
Figure JPOXMLDOC01-appb-C000011
(R11は、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-である。R12は、水酸基、又はカルボキシル基である。)
Figure JPOXMLDOC01-appb-C000011
(R 11 is —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O -Or -NH-, R 12 is a hydroxyl group or a carboxyl group.)
 ポリアミック酸を製造する際に用いられる溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどである。 The solvent used for producing the polyamic acid is not particularly limited as long as the produced polyamic acid can be dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethylurea, Pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl Cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoyl Propyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether , Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybuty Acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, Dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, Methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, and the like.
 これらは単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
 ポリアミック酸を製造する際のテトラカルボン酸若しくはその誘導体とジアミンとを有機溶媒中で反応させる方法としては、ジアミンを有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸若しくはその誘導体をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸若しくはその誘導体を、有機溶媒に分散あるいは溶解させた溶液にジアミンを添加する方法、テトラカルボン酸若しくはその誘導体とジアミンとを交互に添加する方法などが挙げられる。これらは、いずれの方法であってもよい。また、テトラカルボン酸若しくはその誘導体、又はジアミンが複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
These may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate. In addition, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
As a method for reacting tetracarboxylic acid or its derivative and diamine in the production of polyamic acid in an organic solvent, a solution in which diamine is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic acid or its derivative is left as it is. Or a method of adding a dispersion or solution in an organic solvent, or a method of adding a diamine to a solution in which a tetracarboxylic acid or a derivative thereof is dispersed or dissolved in an organic solvent, or a tetracarboxylic acid or a derivative thereof and a diamine. The method of adding alternately etc. are mentioned. Any of these methods may be used. Further, when tetracarboxylic acid or a derivative thereof, or diamine is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
 ポリアミック酸を合成する際の温度は-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。
 また、反応は任意の濃度で行うことができる。しかし、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加しても構わない。
 ポリアミック酸の製造において、テトラカルボン酸若しくはその誘導体のモル数に対する、ジアミン成分のモル数の比は0.8~1.2であることが好ましく、0.9~1.1であることがより好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
The temperature for synthesizing the polyamic acid can be selected from -20 to 150 ° C, but is preferably in the range of -5 to 100 ° C.
Moreover, reaction can be performed by arbitrary density | concentrations. However, if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. More preferably, it is 5 to 30% by mass. The initial reaction may be carried out at a high concentration, and then an organic solvent may be added.
In the production of polyamic acid, the ratio of the number of moles of the diamine component to the number of moles of tetracarboxylic acid or its derivative is preferably 0.8 to 1.2, more preferably 0.9 to 1.1. preferable. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
 ポリアミック酸をイミド化させる方法としては、加熱による熱イミド化、触媒を使用する触媒イミド化が一般的であるが、比較的低温でイミド化反応が進行する触媒イミド化の方が、得られるポリイミドの分子量低下が起こりにくく好ましい。 As a method for imidizing polyamic acid, thermal imidization by heating and catalyst imidization using a catalyst are generally used, but the catalyst imidation in which the imidization reaction proceeds at a relatively low temperature is obtained. It is preferable that the molecular weight does not decrease.
 触媒イミド化は、ポリアミック酸を有機溶媒中において、塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。このときの反応温度は-20~250℃、好ましくは0~180℃である。反応温度が高い方がイミド化は早く進行するが、高すぎるとポリイミドの分子量が低下する場合がある。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒や酸無水物の量が少ないと反応が十分に進行せず、また多すぎると反応終了後に完全に除去することが困難となる。 The catalyst imidization can be performed by stirring the polyamic acid in an organic solvent in the presence of a basic catalyst and an acid anhydride. The reaction temperature at this time is −20 to 250 ° C., preferably 0 to 180 ° C. The higher the reaction temperature, the faster the imidization proceeds, but if it is too high, the molecular weight of the polyimide may decrease. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. If the amount of the basic catalyst or acid anhydride is small, the reaction does not proceed sufficiently. If the amount is too large, it becomes difficult to completely remove the reaction after completion of the reaction.
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
 触媒イミド化の際の有機溶媒としては、ポリアミック酸が溶解するものであれば限定されない。その具体例を挙げるならば、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトンなどである。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The organic solvent for the catalyst imidation is not limited as long as the polyamic acid dissolves. Specific examples thereof include N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl Urea, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, and the like. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 生成したポリイミドは、上記反応溶液を貧溶媒に投入して生成した沈殿を回収することで得られる。その際、用いる貧溶媒は特に限定されない。例えば、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリイミドは、濾過した後、常圧あるいは減圧下で、常温あるいは加熱乾燥して粉末とすることができる。そのポリイミド粉末を、更に有機溶媒に溶解して、再沈殿する操作を2~10回繰り返すと、ポリイミドを精製することもできる。一度の沈殿回収操作では不純物が除ききれないときは、この精製工程を行うことが好ましい。 The produced polyimide can be obtained by collecting the reaction solution into a poor solvent and collecting the produced precipitate. In that case, the poor solvent to be used is not specifically limited. For example, methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like can be mentioned. The polyimide that has been poured into a poor solvent and precipitated is filtered, and then can be powdered by drying at normal temperature or under reduced pressure at normal temperature or under reduced pressure. The polyimide can be purified by repeating the steps of dissolving the polyimide powder in an organic solvent and reprecipitating it 2 to 10 times. When the impurities cannot be removed by a single precipitation recovery operation, it is preferable to perform this purification step.
 本発明に用いるポリイミドの分子量は特に制限されないが、取り扱いのしやすさと、膜形成した際の特性の安定性の観点から重量平均分子量で2,000~200,000が好ましく、より好ましくは4,000~50,000である。分子量は、GPC(ゲルパーミエッションクロマトグラフィ)により求めたものである。 The molecular weight of the polyimide used in the present invention is not particularly limited, but is preferably 2,000 to 200,000 in terms of weight average molecular weight, more preferably 4, from the viewpoint of ease of handling and stability of characteristics when a film is formed. 000 to 50,000. The molecular weight is determined by GPC (gel permeation chromatography).
<(B)成分:ポリシロキサン>
 本発明の液晶配向処理剤に含有される(B)成分は、式(1)で表されるアルコキシシラン及び式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンである。

     RSi(OR     (1)

(Rは下記式(2)の構造であり、Rは炭素原子数1~5のアルキル基である。)
Figure JPOXMLDOC01-appb-C000012
     RSi(OR     (3)

(Rは、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基、又はスチリル基で置換された炭素数1~30のアルキル基であり、Rは炭素数1~5のアルキル基である。)
 式(1)で表されるアルコキシシランのR(以下、特定有機基ともいう)は、上記の式[2]で表す構造である。
<(B) component: polysiloxane>
(B) component contained in the liquid-crystal aligning agent of this invention is obtained by polycondensing the alkoxysilane containing the alkoxysilane represented by Formula (1), and the alkoxysilane represented by Formula (3). Polysiloxane.

R 1 Si (OR 2 ) 3 (1)

(R 1 is a structure of the following formula (2), and R 2 is an alkyl group having 1 to 5 carbon atoms.)
Figure JPOXMLDOC01-appb-C000012
R 3 Si (OR 4 ) 3 (3)

(R 3 is an alkyl group having 1 to 30 carbon atoms substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group, and R 4 is an alkyl group having 1 to 5 carbon atoms.)
R 1 (hereinafter also referred to as a specific organic group) of the alkoxysilane represented by the formula (1) has a structure represented by the above formula [2].
 式(2)中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。なかでも、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又は-COO-を選択することは、側鎖構造の合成を容易にする観点から好ましい。なかでも、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又は-COO-を選択することがより好ましい。 In the formula (2), Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. . Among them, selecting a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or —COO— It is preferable from the viewpoint of facilitating. Among these, it is more preferable to select a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
 Yは単結合、二重結合を含有する炭素数3~8の直鎖状若しくは分岐状の炭化水素基、又は-(CR17R18-(bは1~15の整数であり、R17、R18はそれぞれ独立に、水素原子又は炭素数1~3のアルキル基である。)である。なかでも、液晶表示素子の応答速度をより顕著に改善させる観点からは、-(CH-(bは1~10の整数である)が好ましい。
 Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。なかでも、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-を選択することは、側鎖構造の合成を容易にする観点から好ましい。なかでも、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-又は-OCO-を選択することがより好ましい。
Y 2 is a straight or branched hydrocarbon group having 3 to 8 carbon atoms containing a single bond or a double bond, or — (CR 17 R 18 ) b — (b is an integer of 1 to 15, R 17 and R 18 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Of these, — (CH 2 ) b — (b is an integer of 1 to 10) is preferable from the viewpoint of significantly improving the response speed of the liquid crystal display element.
Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—. Among them, selecting a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO— This is preferable from the viewpoint of facilitating synthesis of the structure. Among these, it is more preferable to select a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or —OCO—.
 Yはベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子により置換されていてもよい。さらに、Yは、ステロイド骨格を有する炭素数12~25の有機基より選ばれる2価の有機基であってもよい。なかでも、ベンゼン環、シクロへキサン環又はステロイド骨格のうちのいずれかを有する炭素数12~25の有機基が好ましい。 Y 4 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted by an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Further, Y 4 may be a divalent organic group selected from organic groups having 12 to 25 carbon atoms having a steroid skeleton. Among these, an organic group having 12 to 25 carbon atoms having any one of a benzene ring, a cyclohexane ring, and a steroid skeleton is preferable.
 Yはベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
 nは0~4の整数である。好ましくは、0~2の整数である。
Y 5 is a cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, It may be substituted with 3 alkoxyl groups, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
n is an integer of 0-4. Preferably, it is an integer of 0-2.
 Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基であることが好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。さらに好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。 Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. Among these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
 このような側鎖と光反応性基を導入したポリシロキサンを用いた液晶配向処理剤が、なぜ応答速度特性と良好な垂直配向性を両立出来るのかについては定かではないが、液晶骨格と類似した構造を有する側鎖を用いることで、通常はトレードオフの関係にある応答速度と垂直配向性が両立しているものと推察される。
 式(2)におけるY、Y、Y、Y、Y、Y及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY~Yが、Y1~Y6として示されているが、Y1~Y6は、Y~Yに読み替えるものとする。
Although it is not clear why the liquid crystal alignment treatment agent using polysiloxane introduced with such side chains and photoreactive groups can achieve both response speed characteristics and good vertical alignment, it is similar to the liquid crystal skeleton. By using a side chain having a structure, it is presumed that the response speed and the vertical alignment, which are normally in a trade-off relationship, are compatible.
Preferable combinations of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula (2) are pages 13 to 34 of International Publication No. WO2011 / 132751 (published 2011.10.27). The same combinations as (2-1) to (2-629) listed in Tables 6 to 47 of the above are listed. In each table of the International Publication, Y 1 to Y 6 in the present invention are indicated as Y 1 to Y 6, but Y 1 to Y 6 should be read as Y 1 to Y 6 .
 式(1)で表されるアルコキシシランのRは、炭素原子数1~5、好ましくは1~3のアルキル基である。より好ましくは、Rがメチル基又はエチル基である。
 このような式(1)で表されるアルコキシシランは、公知の方法(日本特開昭61-28639号公報)によって製造することができる。
以下にその具体例を挙げるが、これに限定されるものではない。
R 2 of the alkoxysilane represented by the formula (1) is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. More preferably, R 2 is a methyl group or an ethyl group.
Such an alkoxysilane represented by the formula (1) can be produced by a known method (Japanese Patent Laid-Open No. 61-28639).
Although the specific example is given to the following, it is not limited to this.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(Rは-O-、-OCH-、-CHO-、-COOCH-又は-CHOCO-であり、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000018
(R 5 is —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 — or —CH 2 OCO—, and R 6 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, or a fluorine-containing alkyl group. Group or fluorine-containing alkoxy group.)
Figure JPOXMLDOC01-appb-C000019
(Rは単結合、-COO-、-OCO-、-COOCH-、-CHOCO-、-(CHO-(nは1~5の整数)、-OCH-又は-CH-であり、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000019
(R 7 is a single bond, —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, — (CH 2 ) n O— (n is an integer of 1 to 5), —OCH 2 — or — CH 2 — and R 8 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000020
(Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-又は-O-であり、R10はフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。)
Figure JPOXMLDOC01-appb-C000020
(R 9 is —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 — or —O—, and R 10 is a fluorine group , Cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy group or hydroxyl group.)
Figure JPOXMLDOC01-appb-C000021
(R11は炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000021
(R 11 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000022
(R12は、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。)
Figure JPOXMLDOC01-appb-C000022
(R 12 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.)
Figure JPOXMLDOC01-appb-C000023
(Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基であり、Bは1,4-シクロへキシレン基又は1,4-フェニレン基である。
は酸素原子又は-COO-*(但し、「*」を付した結合手がBと結合する。)であり、Bは酸素原子又は-COO-*(但し、「*」を付した結合手が(CH)a)と結合する。)である。
 また、aは0又は1の整数であり、aは2~10の整数であり、aは0又は1の整数である。)
Figure JPOXMLDOC01-appb-C000023
(B 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and B 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group.
B 2 is an oxygen atom or —COO— * (where a bond with “*” is bonded to B 3 ), and B 1 is an oxygen atom or —COO— * (where “*” is attached). The resulting bond is bonded to (CH 2 ) a 2 ). ).
A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1. )
 上記のアルコキシシランは、シロキサンポリマーとした際の溶媒への溶解性、液晶配向膜とした場合における液晶の配向性、プレチルト角特性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。また、炭素数10~18の長鎖アルキル基を含有するアルコキシシランとの併用も可能である。
 上記の特定有機基を有する式(1)で表されるアルコキシシランは、ポリシロキサンを得るために用いる全アルコキシシラン中において、良好な液晶配向性を得るため、1モル%以上が好ましい。より好ましくは1.5モル%以上である。更に好ましくは2モル%以上である。また、形成される液晶配向膜の充分な硬化特性を得るためには、30モル%以下が好ましい。より好ましくは25モル%以下である。さらに好ましくは20モル%以下である。
The above-mentioned alkoxysilane is one kind or the like depending on the solubility in the solvent when the siloxane polymer is used, the orientation of the liquid crystal when the liquid crystal alignment film is used, the pretilt angle characteristics, the voltage holding ratio, the accumulated charge, etc. Two or more types can be mixed and used. Further, it can be used in combination with an alkoxysilane containing a long-chain alkyl group having 10 to 18 carbon atoms.
The alkoxysilane represented by the formula (1) having the specific organic group is preferably 1 mol% or more in order to obtain good liquid crystal alignment in all alkoxysilanes used for obtaining polysiloxane. More preferably, it is 1.5 mol% or more. More preferably, it is 2 mol% or more. Further, in order to obtain sufficient curing characteristics of the liquid crystal alignment film to be formed, 30 mol% or less is preferable. More preferably, it is 25 mol% or less. More preferably, it is 20 mol% or less.
 式(3)で表されるアルコキシシランのR(以下、第二の特定有機基ともいう)は、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換されたアルキル基である。置換されている水素原子は1つ以上であり、好ましくは1つである。アルキル基の炭素原子数は1~30が好ましく、より好ましくは1~20である。更に好ましくは1~10である。
 式(3)で表されるアルコキシシランのRは、炭素数1~5のアルキル基であり、好ましくは炭素数1~3のアルキル基であり、特に好ましくは炭素数1~2のアルキル基である
R 3 (hereinafter also referred to as a second specific organic group) of the alkoxysilane represented by the formula (3) is an alkyl group substituted with an acrylic group, an acryloxy group, a methacryl group, a methacryloxy group, or a styryl group. The number of substituted hydrogen atoms is one or more, preferably one. The alkyl group preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms. More preferably, it is 1-10.
R 4 of the alkoxysilane represented by the formula (3) is an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and particularly preferably an alkyl group having 1 to 2 carbon atoms. Is
 式(3)で表されるアルコキシシランの具体例を挙げるが、これらに限定されるものではでない。例えば、3-メタクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、アクリロキシエチルトリメトキシシラン、アクリロキシエチルトリエトキシシラン、スチリルエチルトリメトキシシラン、スチリルエチルトリエトキシシラン、3-(N-スチリルメチル-2-アミノエチルアミノ)プロピルトリメトキシシランなどである。なかでも、3-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、又はスチリルエチルトリメトキシシランが好ましい。 Although the specific example of the alkoxysilane represented by Formula (3) is given, it is not limited to these. For example, 3-methacryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, acryloxyethyltrimethoxysilane, Acryloxyethyltriethoxysilane, styrylethyltrimethoxysilane, styrylethyltriethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, and the like. Of these, 3-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, or styrylethyltrimethoxysilane is preferable.
 (B)成分であるポリシロキサンの製造には、式(1)で表されるアルコキシシラン及び式(3)で表されるアルコキシシラン以外に、基板との密着性の向上、液晶分子との親和性改善等を目的として、本発明の効果を損なわない限りにおいて、下記式(4)で表されるアルコキシシランを一種又は複数種使用することもできる。
 式(4)で表されるアルコキシシランは、ポリシロキサンに種々の特性を付与させることが可能であり、必要な特性に応じて一種又は複数種を選択して用いることができる。

   (RSi(OR4-n     (4)

(Rは、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基で置換されていてもよい、炭素原子数1~10の炭化水素基である。Rは炭素原子数1~5、好ましくは1~3のアルキル基である。nは0~3、好ましくは0~2の整数である。)
In addition to the alkoxysilane represented by the formula (1) and the alkoxysilane represented by the formula (3), the polysiloxane which is the component (B) is improved in adhesion to the substrate and affinity with liquid crystal molecules. As long as the effects of the present invention are not impaired, one or more alkoxysilanes represented by the following formula (4) can be used for the purpose of improving the properties.
The alkoxysilane represented by the formula (4) can impart various properties to the polysiloxane, and one or more types can be selected and used depending on the required properties.

(R 5 ) n Si (OR 6 ) 4-n (4)

(R 5 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group. R 6 is an alkyl group having 1 to 5, preferably 1 to 3 carbon atoms, and n is an integer of 0 to 3, preferably 0 to 2.)
 式(4)で表されるアルコキシシランのRは水素原子又は炭素原子数が1~10の有機基(以下、第三の有機基ともいう)である。第三の有機基の例としては、脂肪族炭化水素;脂肪族環、芳香族環、ヘテロ環のような環構造;不飽和結合;酸素原子、窒素原子、硫黄原子等のヘテロ原子;等を含んでいてもよく、分岐構造を有していてもよい、炭素原子数が1~6の有機基である。さらに、この有機基はハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基などで置換されていてもよい。 R 5 of the alkoxysilane represented by the formula (4) is a hydrogen atom or an organic group having 1 to 10 carbon atoms (hereinafter also referred to as a third organic group). Examples of the third organic group include aliphatic hydrocarbons; ring structures such as aliphatic rings, aromatic rings and heterocycles; unsaturated bonds; heteroatoms such as oxygen atoms, nitrogen atoms and sulfur atoms; An organic group having 1 to 6 carbon atoms, which may be included and may have a branched structure. Further, this organic group may be substituted with a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group, a ureido group, or the like.
 式(4)で表されるアルコキシシランの具体例を挙げるが、これに限定されるものではない。例えば、3-(2-アミノエチルアミノプロピル)トリメトキシシラン、3-(2-アミノエチルアミノプロピル)トリエトキシシラン、2-アミノエチルアミノメチルトリメトキシシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、3-メルカプトプロピルトリエトキシシラン、メルカプトメチルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、クロロプロピルトリエトキシシラン、ブロモプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3-アミノプロピルメチルジエトキシシラン、3―アミノプロピルジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリプロポキシシラン等が挙げられる。 Although the specific example of the alkoxysilane represented by Formula (4) is given, it is not limited to this. For example, 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) triethoxysilane, 2-aminoethylaminomethyltrimethoxysilane, 2- (2-aminoethylthioethyl) Triethoxysilane, 3-mercaptopropyltriethoxysilane, mercaptomethyltrimethoxysilane, vinyltriethoxysilane, 3-isocyanatopropyltriethoxysilane, trifluoropropyltrimethoxysilane, chloropropyltriethoxysilane, bromopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, dimethyldiethoxysilane, dimethyldimethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, diphenyldimethoxysilane, diphenyl Diethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltri Examples include propoxysilane.
 式(4)で表されるアルコキシシランにおいて、nが0であるアルコキシシランは、テトラアルコキシシランである。テトラアルコキシシランは、式(1)及び(3)で表されるアルコキシシランと縮合し易いので、本発明のポリシロキサンを得るために好ましい。
 このような式(4)において、nが0であるアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン又はテトラブトキシシランがより好ましく、特に、テトラメトキシシラン又はテトラエトキシシランが好ましい。
In the alkoxysilane represented by the formula (4), the alkoxysilane in which n is 0 is tetraalkoxysilane. Tetraalkoxysilane is preferable for obtaining the polysiloxane of the present invention because it easily condenses with the alkoxysilane represented by the formulas (1) and (3).
In such a formula (4), as alkoxysilane whose n is 0, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or tetrabutoxysilane is more preferable, and tetramethoxysilane or tetraethoxysilane is particularly preferable.
 本発明では、式(1)で表されるアルコキシシランが、(B)成分のポリシロキサンの製造に使用される全アルコキシシラン中、好ましくは2~20モル%、特に好ましくは3~15モル%使用され、かつ式(3)で表されるアルコキシシランが、(B)成分のポリシロキサンの製造に使用される全アルコキシシラン中、5~80モル%、特に好ましくは10~70モル%使用されるのが望ましい。
 また、式(4)で表されるアルコキシシランは、(B)成分のポリシロキサンの製造に使用される場合、使用される全アルコキシシラン中、好ましくは10~90モル%、特に好ましくは20~90モル%使用されるのが望ましい。
In the present invention, the alkoxysilane represented by the formula (1) is preferably 2 to 20 mol%, particularly preferably 3 to 15 mol%, based on the total alkoxysilane used in the production of the polysiloxane of the component (B). And the alkoxysilane represented by the formula (3) is used in an amount of 5 to 80 mol%, particularly preferably 10 to 70 mol%, based on the total alkoxysilane used for the production of the polysiloxane of the component (B). Is desirable.
Further, the alkoxysilane represented by the formula (4) is preferably 10 to 90 mol%, particularly preferably 20 to 20% of the total alkoxysilane used when used for the production of the polysiloxane of the component (B). It is desirable to use 90 mol%.
[(B)成分のポリシロキサンの製造方法]
 本発明に用いるポリシロキサンを得る方法は特に限定されないが、上記した式(1)のアルコキシシランを必須成分とするアルコキシシランを有機溶媒中で重縮合させて得られる。そのため、ポリシロキサンは有機溶媒に均一に溶解した溶液として得られる。
 例えば、上記式(1)のアルコキシシランをアルコール又はグリコールなどの溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシド基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加えるのが好ましい。
[Method for producing polysiloxane of component (B)]
The method for obtaining the polysiloxane used in the present invention is not particularly limited, and can be obtained by polycondensation of an alkoxysilane having the above-mentioned alkoxysilane of formula (1) as an essential component in an organic solvent. Therefore, the polysiloxane is obtained as a solution uniformly dissolved in an organic solvent.
For example, the method of hydrolyzing and condensing the alkoxysilane of the said Formula (1) in solvents, such as alcohol or glycol, is mentioned. At that time, the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis. In the case of complete hydrolysis, theoretically, it is sufficient to add 0.5 moles of water of all alkoxide groups in the alkoxysilane, but it is usually preferable to add an excess amount of water over 0.5 moles.
 本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.5~2.5倍モルの範囲で行われる。好ましくは0.5~2.5倍モル、より好ましくは0.5~1.5倍モルである。
 また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸、フマル酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、硝酸などの金属塩;などの触媒が用いられる。また、アルコキシシランが溶解した溶液を加熱することで、更に、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択できる。例えば、50℃で24時間加熱・撹拌する、還流下で1時間加熱・撹拌するなどの方法が挙げられる。
In the present invention, the amount of water used in the above reaction can be appropriately selected as desired, but it is usually within a range of 0.5 to 2.5 moles of all alkoxy groups in the alkoxysilane. The amount is preferably 0.5 to 2.5 times mol, more preferably 0.5 to 1.5 times mol.
Also, usually for the purpose of promoting hydrolysis / condensation reaction, acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid, fumaric acid; A metal salt such as hydrochloric acid, sulfuric acid or nitric acid; It is also common to further promote hydrolysis / condensation reaction by heating a solution in which alkoxysilane is dissolved. At that time, the heating temperature and the heating time can be appropriately selected as desired. For example, a method of heating / stirring at 50 ° C. for 24 hours or heating / stirring under reflux for 1 hour can be mentioned.
 また、別法として、例えば、アルコキシシラン、溶媒及び蓚酸の混合物を加熱して重縮合する方法が挙げられる。具体的には、予めアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、該溶液を加熱した状態で、アルコキシシランを混合する方法である。その際、用いる蓚酸の量は、アルコキシシランが有する全アルコキシ基の1モルに対して0.2~2モルとすることが好ましい。この方法における加熱は、液温50~180℃で行うことができる。好ましくは、液の蒸発や揮散などが起こらないように、還流下で数十分~十数時間加熱する方法である。
 複数のアルコキシシランを用いてポリシロキサンを得る場合は、複数のアルコキシシランをあらかじめ混合してから反応させても良いが、複数のアルコキシシランを順次混合して反応させてもよい。
As another method, for example, a method of heating and polycondensing a mixture of alkoxysilane, a solvent and oxalic acid can be mentioned. Specifically, after adding succinic acid to alcohol in advance to make an alcohol solution of succinic acid, alkoxysilane is mixed while the solution is heated. In that case, the amount of succinic acid used is preferably 0.2 to 2 mol with respect to 1 mol of all alkoxy groups of the alkoxysilane. Heating in this method can be performed at a liquid temperature of 50 to 180 ° C. A method of heating for several tens of minutes to several tens of hours under reflux is preferred so that the liquid does not evaporate or volatilize.
When polysiloxane is obtained using a plurality of alkoxysilanes, the plurality of alkoxysilanes may be mixed and reacted in advance, or a plurality of alkoxysilanes may be mixed and reacted in sequence.
 アルコキシシランを重縮合する際に用いられる溶媒(以下、重合溶媒ともいう)は、アルコキシシランを溶解するものであれば特に限定されない。また、アルコキシシランが溶解しない場合でも、アルコキシシランの重縮合反応の進行とともに溶解するものであればよい。一般的には、アルコキシシランの重縮合反応によりアルコールが生成するため、アルコール類、グリコール類、グリコールエーテル類、又はアルコール類と相溶性の良好な有機溶媒が用いられる。 The solvent used for polycondensation of alkoxysilane (hereinafter also referred to as polymerization solvent) is not particularly limited as long as it can dissolve alkoxysilane. Moreover, even when alkoxysilane does not melt | dissolve, what melt | dissolves as the polycondensation reaction of alkoxysilane progresses is sufficient. In general, since an alcohol is generated by a polycondensation reaction of alkoxysilane, an alcohol, a glycol, a glycol ether, or an organic solvent having good compatibility with the alcohol is used.
 上記重合溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノール,ジアセトンアルコール等のアルコール類;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、へキシレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2,4-ペンタンジオール、2,3-ペンタンジオール、1,6-ヘキサンジオール等のグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、プロピレングリコールジブチルエーテル等のグリコールエーテル類;N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、m-クレゾール等が挙げられる。本発明においては、上記の重合溶媒を複数種混合して用いてもよい。 Specific examples of the polymerization solvent include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol; ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, hexylene glycol, 1,3-propanediol, 1, 2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5 -Glycols such as pentanediol, 2,4-pentanediol, 2,3-pentanediol, 1,6-hexanediol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, Tylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, Diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, pro Glycol ethers such as lenglycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dipropyl ether, propylene glycol dibutyl ether; N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N -Ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, m-cresol and the like. In the present invention, a plurality of the above polymerization solvents may be mixed and used.
 上記の方法で得られたポリシロキサンの重合溶液(以下、重合溶液ともいう。)は、原料として仕込んだ全アルコキシシランのケイ素原子をSiOに換算した濃度(以下、SiO換算濃度ともいう。)で、20質量%以下が好ましく、特に5~15質量%とすることが好ましい。この濃度範囲において任意の濃度を選択することにより、ゲルの生成を抑え、均質な溶液を得ることができる。 The polysiloxane polymerization solution (hereinafter also referred to as polymerization solution) obtained by the above method is a concentration obtained by converting silicon atoms of all alkoxysilanes charged as raw materials into SiO 2 (hereinafter also referred to as SiO 2 conversion concentration). ) Is preferably 20% by mass or less, particularly preferably 5 to 15% by mass. By selecting an arbitrary concentration within this concentration range, gel formation can be suppressed and a homogeneous solution can be obtained.
[(B)成分のポリシロキサンの溶液]
 本発明においては、上記の方法で得られたポリシロキサンの重合溶液をそのまま(B)成分の溶液としてもよいし、必要に応じて、上記の方法で得られた溶液を、濃縮したり、溶媒を加えて希釈したり又は他の溶媒に置換して、(B)成分の溶液としてもよい。
 その際、用いる溶媒(以下、添加溶媒ともいう)は、重合溶媒と同じでもよいし、別の溶媒でもよい。この添加溶媒は、ポリシロキサンが均一に溶解している限りにおいて特に限定されず、一種でも複数種でも任意に選択して用いることができる。
[Solution of (B) Component Polysiloxane]
In the present invention, the polysiloxane polymerization solution obtained by the above method may be used as the solution of the component (B) as it is, or if necessary, the solution obtained by the above method may be concentrated or solvent It is good also as a solution of (B) component by adding and diluting or substituting with another solvent.
In that case, the solvent to be used (hereinafter also referred to as additive solvent) may be the same as the polymerization solvent, or may be another solvent. The additive solvent is not particularly limited as long as the polysiloxane is uniformly dissolved, and one kind or plural kinds can be arbitrarily selected and used.
 添加溶媒の具体例としては、上記の重合溶媒の例として挙げた溶媒のほかに、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸メチル、酢酸エチル、乳酸エチル等のエステル類等が挙げられる。
 これらの溶媒は、液晶配向処理剤の粘度の調整、又はスピンコート、フレキソ印刷、インクジェット等で液晶配向処理剤を基板上に塗布する際の塗布性を向上できる。
Specific examples of the additive solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, esters such as methyl acetate, ethyl acetate, and ethyl lactate in addition to the solvents mentioned as examples of the polymerization solvent. .
These solvents can improve the applicability when applying the liquid crystal aligning agent on the substrate by adjusting the viscosity of the liquid crystal aligning agent, or by spin coating, flexographic printing, inkjet, or the like.
 本発明では、(A)成分であるポリアミック酸及び/又はポリイミドと混合することから、(B)成分の溶液で使用する溶媒としては、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、エチレングリコールモノブチルエーテルが好ましい。
 さらに、本発明では、(A)成分であるポリアミック酸及び/又はポリイミドと混合する前に、ポリシロキサンを製造する際に使用、又は発生するアルコールを常圧又は減圧で留去することがより好ましい。
In the present invention, since it is mixed with the polyamic acid and / or polyimide as the component (A), the solvent used in the solution of the component (B) is N, N′-dimethylformamide, N, N′-dimethylacetamide. N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, dimethyl sulfone, hexamethyl sulfoxide, γ-butyrolactone, and ethylene glycol monobutyl ether are preferred.
Furthermore, in the present invention, before mixing with the polyamic acid and / or polyimide as the component (A), it is more preferable to distill off the alcohol used or generated when producing the polysiloxane at normal pressure or reduced pressure. .
[液晶配向処理剤]
 本発明の液晶配向処理剤における(B)成分(ポリシロキサン)の含有量は、ポリアミック酸及び/又はポリイミドを含む(A)成分100質量部に対して、(B)成分が有するケイ素原子のSiO換算値で0.5~80質量部であり、好ましくは0.5~50質量部である。また、MVA、PVA、PSA等の垂直配向型の場合は、液晶の垂直配向性を低下させないために、(B)成分(ポリシロキサン)の含有量は、同じ基準で、より好ましくは10~80質量部であり、さらに好ましくは20~70質量部である。
[Liquid crystal aligning agent]
Content of (B) component (polysiloxane) in the liquid-crystal aligning agent of this invention is SiO of the silicon atom which (B) component has with respect to 100 mass parts of (A) component containing polyamic acid and / or a polyimide. The value in terms of 2 is 0.5 to 80 parts by mass, preferably 0.5 to 50 parts by mass. In the case of a vertical alignment type such as MVA, PVA, and PSA, the content of the component (B) (polysiloxane) is more preferably 10 to 80 on the same basis in order not to deteriorate the vertical alignment of the liquid crystal. Part by mass, more preferably 20 to 70 parts by mass.
 本発明の液晶配向処理剤は特に限定されないが、通常、液晶配向膜を作製する際に、基板上に0.01~1.0μmの均一な薄膜を形成する必要があることから、(A)成分及び(B)成分に加えて、これらの成分を溶解させる有機溶媒を含有する塗布液であることが好ましい。
 本発明の液晶配向処理剤が上記有機溶媒を含有する場合は、塗布により均一な薄膜を形成するという観点から、有機溶媒の含有量は、液晶配向処理剤中、90~99質量%であることが好ましく、92~97質量%であることがより好ましい。これらの含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。
Although the liquid crystal aligning agent of the present invention is not particularly limited, it is usually necessary to form a uniform thin film of 0.01 to 1.0 μm on the substrate when producing the liquid crystal alignment film. In addition to the component and the component (B), a coating solution containing an organic solvent for dissolving these components is preferable.
When the liquid crystal aligning agent of the present invention contains the above organic solvent, the content of the organic solvent is 90 to 99% by mass in the liquid crystal aligning agent from the viewpoint of forming a uniform thin film by coating. It is preferably 92 to 97% by mass. These contents can be appropriately changed depending on the film thickness of the target liquid crystal alignment film.
 本発明の液晶配向処理剤に用いる有機溶媒の具体例としては、前述したポリアミック酸又はポリイミドの合成反応に用いられる有機溶媒を挙げることができる。特に好ましくは、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトンなどである。これらの有機溶媒は1種類でもよく、2種類以上を併用してもよい。 Specific examples of the organic solvent used in the liquid crystal aligning agent of the present invention include organic solvents used in the above-described polyamic acid or polyimide synthesis reaction. Particularly preferred are N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone and the like. These organic solvents may be used alone or in combination of two or more.
 また、有機溶媒中には、塗膜の均一性を向上させる目的で、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールモノへキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、2-(2-エトキシプロポキシ)プロパノール、ジアセトンアルコール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなど、低表面張力を有する溶媒を含有することが好ましい。 Also, in organic solvents, for the purpose of improving the uniformity of the coating film, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol mono Hexyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monoethyl ether acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy- 2-propanol, 1- Toxi-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, di Propylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, 4-hydroxy-4-methyl-2-pentanone, 2- (2-ethoxypropoxy) propanol, diacetone alcohol, methyl lactate, ethyl lactate, It is preferable to contain a solvent having a low surface tension such as lactic acid n-propyl ester, lactic acid n-butyl ester, and lactyl isoamyl ester.
 これらの溶媒は通常1種類又は2種類以上を混合して用いられる。これらの溶媒は一般的にポリアミック酸又はポリイミドを溶解させる能力が低いので、有機溶媒中の80質量%以下であることが好ましく、より好ましくは60質量%以下である。また、塗膜の均一性の向上を期待するのであれば、有機溶媒中の5質量%以上が好ましく、より好ましくは20質量%以上である。
 さらに、本発明の液晶液晶配向処理剤は、塗膜と基板との密着性を向上させる化合物、塗膜の平坦化性を高めるための界面活性剤等を含有することが可能である。
These solvents are usually used alone or in combination of two or more. Since these solvents generally have a low ability to dissolve polyamic acid or polyimide, the amount is preferably 80% by mass or less, more preferably 60% by mass or less in the organic solvent. Moreover, if the improvement of the uniformity of a coating film is anticipated, 5 mass% or more in an organic solvent is preferable, More preferably, it is 20 mass% or more.
Furthermore, the liquid crystal alignment treatment agent of the present invention can contain a compound for improving the adhesion between the coating film and the substrate, a surfactant for enhancing the flatness of the coating film, and the like.
 塗膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシランなどである。 Specific examples of the compound for improving the adhesion between the coating film and the substrate include the following functional silane-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyl Triethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3, 6-Diazano Acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyl Trimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, etc. .
 これらの化合物の添加量は、密着性向上の効果を得ることができ、液晶の配向性を低下させないという観点から、(A)成分100質量部に対して0.1~30質量部が好ましく、より好ましくは1~20質量部であり、特には1~10質量部である。
 塗膜の平坦化性を高めるための界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えばエフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製))、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。
 これらの界面活性剤の含有量は、(A)成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
The amount of these compounds added is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the component (A), from the viewpoint that the effect of improving adhesion can be obtained and the orientation of the liquid crystal is not lowered. More preferred is 1 to 20 parts by mass, and particularly 1 to 10 parts by mass.
Examples of the surfactant for improving the flatness of the coating film include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant. More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
The content of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of component (A).
<液晶配向膜・液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布し、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しでも液晶配向膜として用いることができる。
 この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板;アクリル基板やポリカーボネート基板などのプラスチック基板;などを用いることができる。さらに、液晶駆動のためのITO電極やIZO(インジウム・亜鉛酸化物)電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極は金属アルミニウム等の光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied onto a substrate and baked, and then subjected to alignment treatment by rubbing treatment, light irradiation, or the like, or without alignment treatment in vertical alignment applications. .
In this case, the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate; a plastic substrate such as an acrylic substrate or a polycarbonate substrate; Furthermore, it is preferable from the viewpoint of simplification of the process to use a substrate on which an ITO electrode or an IZO (indium zinc oxide) electrode for driving a liquid crystal is formed. Further, in the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as metal aluminum can be used as the electrode.
 液晶配向処理剤の塗布方法は特に限定されないが、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。
 液晶配向処理剤を塗布した後の基板は、70~100℃のホットプレート上に1~3分程度置いて溶媒を揮発させて乾燥し、その後、焼成を行う。焼成は、100~350℃の任意の温度で行うことができるが、好ましくは120~300℃であり、さらに好ましくは150~250℃である。この焼成はホットプレート、熱風循環炉、赤外線炉などで行うことができる。
A method for applying the liquid crystal alignment treatment agent is not particularly limited, but a method of performing screen printing, offset printing, flexographic printing, ink jet, or the like is common. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
The substrate after applying the liquid crystal aligning agent is placed on a hot plate at 70 to 100 ° C. for about 1 to 3 minutes to evaporate the solvent and then dried, and then fired. The calcination can be performed at an arbitrary temperature of 100 to 350 ° C., preferably 120 to 300 ° C., more preferably 150 to 250 ° C. This baking can be performed with a hot plate, a hot-air circulating furnace, an infrared furnace, or the like.
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~150nm、さらに好ましくは50~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで処理される。 If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably The thickness is 10 to 150 nm, more preferably 50 to 100 nm. When the liquid crystal is aligned horizontally or tilted, the fired coating film is treated with rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、表示素子としたものである。液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、片方の基板の液晶配向膜上にカラムスペーサーを形成したり、ビーズスペーサーを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、カラムスペーサーを形成したり、ビーズスペーサーを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 The liquid crystal display element of the present invention is a display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention and then preparing a liquid crystal cell by a known method. To give an example of liquid crystal cell preparation, a pair of substrates on which a liquid crystal alignment film is formed are prepared, column spacers are formed on the liquid crystal alignment film on one substrate, or bead spacers are scattered on the liquid crystal alignment film. The other side is bonded so that the surface is on the inside, and the liquid crystal is injected under reduced pressure to seal, or the liquid crystal is dropped on the liquid crystal alignment film surface where column spacers are formed or beads spacers are dispersed After that, a method of sealing the substrate together can be exemplified. The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 以下、本発明を実施例によりさらに具体的に説明するが、これらに限定して解釈されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention should not be construed as being limited thereto.
 実施例で用いた化合物における略語は以下のとおりである。
(アルコキシシランモノマー)
TEOS:テトラエトキシシラン
C18:オクタデシルトリエトキシシラン
C12:ドデシルトリエトキシシラン
UPS:3-ウレイドプロピルトリエトキシシラン
MPMS:3-メタクリロキシプロピルトリメトキシシラン
VTMS:ビニルトリメトキシシラン
STMS:スチリルエチルトリメトキシシラン
MTES:メチルトリエトキシシラン
Abbreviations in the compounds used in the examples are as follows.
(Alkoxysilane monomer)
TEOS: tetraethoxysilane C18: octadecyltriethoxysilane C12: dodecyltriethoxysilane UPS: 3-ureidopropyltriethoxysilane MPMS: 3-methacryloxypropyltrimethoxysilane VTMS: vinyltrimethoxysilane STMS: styrylethyltrimethoxysilane MTES : Methyltriethoxysilane
(テトラカルボン酸二無水物)
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
BDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride PMDA: pyromellitic dianhydride BODA: bicyclo [3,3 0] octane-2,4,6,8-tetracarboxylic dianhydride
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(ジアミン化合物)
m-PDA:m-フェニレンジアミン
DBA:3,5-ジアミノ安息香酸
DDM:4,4’-ジアミノジフェニルメタン
4,4'DADPA:4,4’-ジアミノジフェニルアミン
BAPU:1,3-ビス(4-アミノフェネチル)ウレア
Sin0:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン
PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
(Diamine compound)
m-PDA: m-phenylenediamine DBA: 3,5-diaminobenzoic acid DDM: 4,4′-diaminodiphenylmethane
4,4′DADPA: 4,4′-diaminodiphenylamine BAPU: 1,3-bis (4-aminophenethyl) urea Sin0: 1,3-bis (3-aminopropyl) tetramethyldisiloxane PCH7DAB: 1,3- Diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(有機溶媒)
THF:テトラヒドロフラン
DMF:ジメチルホルムアミド
NMP:N-メチル-2-ピロリドン
BCS:2-ブトキシエタノール
(Organic solvent)
THF: tetrahydrofuran DMF: dimethylformamide NMP: N-methyl-2-pyrrolidone BCS: 2-butoxyethanol
 NMRの測定、分子量の測定、イミド化率の測定等は、以下のように行った。
H-NMRの測定)
 H-NMR(500MHz、プロトンNMR)は、日本電子データム社製のNMR測定器(JNW-ECA500)を用い、重クロロホルム(CDCl)中、内部標準にテトラメチルシラン(TMS)を用いて測定した。
The measurement of NMR, the measurement of molecular weight, the measurement of imidation rate, etc. were performed as follows.
(Measurement of 1 H-NMR)
1 H-NMR (500 MHz, proton NMR) is measured using an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum, using tetramethylsilane (TMS) as an internal standard in deuterated chloroform (CDCl 3 ). did.
(ポリアミック酸及びポリイミドの分子量測定)
 分子量は、昭和電工社製 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用い、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml(ミリリットル)/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、及び30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、及び1,000)。
(Measurement of molecular weight of polyamic acid and polyimide)
The molecular weight was measured as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko KK and a column (KD-803, KD-805) manufactured by Shodex.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml (milliliter) / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / min Standard sample for preparation of calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation, and polyethylene glycol manufactured by Polymer Laboratory (Molecular weight about 12,000, 4,000, and 1,000).
(イミド化率の測定)
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05質量%TMS(テトラメチルシラン)混合品)0.53mLを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製のNMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidization rate)
Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku Co., Ltd.) and add 0.53 mL of deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixture) Then, it was completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. Using the integrated value, the following formula was used.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
<化合物10の合成>
 マグネチックスターラーを備えた500mL四口フラスコに、化合物9を30.00g、炭酸カリウムを25.24g、及びDMFを120g仕込み、室温下、臭化アリルを22.10g滴下した。その後、50℃にて11時間攪拌した。反応液を500gの酢酸エチルで希釈し、有機層を200gの純水で3回洗浄した。分離した有機層を硫酸ナトリウムで乾燥させ、これを濾過した。その後、濾液を濃縮乾燥し、化合物10を34.80g得た(収率100%)。
1H-NMR(500MHz) in CDCl3: 0.90ppm(t, J = 7.2 Hz, 3H), 0.99-1.09ppm(m, 2H), 1.18-1.46ppm(m, 11H), 1.84-1.89ppm(m, 4H), 2.37-2.44ppm(m, 1H), 4.51ppm(dt, J = 5.4 Hz, 1.6 Hz, 2H), 5.26ppm(dq, J = 10.6 Hz, 1.6 Hz, 1H), 5.40ppm(dq, J = 17.2 Hz, 1.6 Hz, 1H), 6.07ppm(ddd, J = 17.2 Hz, 10.6 Hz, 5.4 Hz, 1H), 6.83ppm(dd, J = 8.8 Hz, 2.9 Hz, 2H), 7.10ppm(dd, J = 8.8 Hz, 2.9 Hz, 2H)
<Synthesis of Compound 10>
In a 500 mL four-necked flask equipped with a magnetic stirrer, 30.00 g of compound 9, 25.24 g of potassium carbonate, and 120 g of DMF were charged, and 22.10 g of allyl bromide was dropped at room temperature. Then, it stirred at 50 degreeC for 11 hours. The reaction solution was diluted with 500 g of ethyl acetate, and the organic layer was washed 3 times with 200 g of pure water. The separated organic layer was dried over sodium sulfate and filtered. Thereafter, the filtrate was concentrated and dried to obtain 34.80 g of Compound 10 (yield 100%).
1 H-NMR (500 MHz) in CDCl 3 : 0.90 ppm (t, J = 7.2 Hz, 3H), 0.99-1.09 ppm (m, 2H), 1.18-1.46 ppm (m, 11H), 1.84-1.89 ppm (m , 4H), 2.37-2.44ppm (m, 1H), 4.51ppm (dt, J = 5.4 Hz, 1.6 Hz, 2H), 5.26ppm (dq, J = 10.6 Hz, 1.6 Hz, 1H), 5.40ppm (dq , J = 17.2 Hz, 1.6 Hz, 1H), 6.07 ppm (ddd, J = 17.2 Hz, 10.6 Hz, 5.4 Hz, 1H), 6.83 ppm (dd, J = 8.8 Hz, 2.9 Hz, 2H), 7.10 ppm ( (dd, J = 8.8 Hz, 2.9 Hz, 2H)
<化合物11の合成>
 マグネチックスターラーを備えた300mL四口フラスコに、化合物10を20.00g、及びトルエンを120g仕込み、室温にて攪拌した。次に、karstedt触媒(白金(0)-1,1,3,3-テトラメチルジシロキサン錯体 0.1mol/L キシレン溶液)700μlを添加した後、トリメトキシシランを12.4mL滴下した。室温にて29時間攪拌後、反応液を濃縮乾燥し、粗物を得た。得られた粗物を減圧蒸留し、外温245℃/圧力0.8torrの条件で留出させ、化合物11を12.15g得た(収率43%)。
1H-NMR(500MHz) in CDCl3: 0.76-0.82ppm(m, 2H), 0.89ppm(t, J = 7.2 Hz, 3H), 0.98-1.08ppm(m, 2H), 1.18-1.45ppm(m, 11H), 1.84-1.93ppm(m, 6H), 2.36-2.43ppm(m, 1H), 3.58ppm(s, 9H), 3.91ppm(t, J = 6.8 Hz, 2H), 6.81ppm(d, J = 8.8 Hz, 2H), 7.08ppm(d, J = 8.8 Hz, 2H)
<Synthesis of Compound 11>
A 300 mL four-necked flask equipped with a magnetic stirrer was charged with 20.00 g of compound 10 and 120 g of toluene and stirred at room temperature. Next, 700 μl of karstedt catalyst (platinum (0) -1,1,3,3-tetramethyldisiloxane complex 0.1 mol / L xylene solution) was added, and 12.4 mL of trimethoxysilane was added dropwise. After stirring at room temperature for 29 hours, the reaction solution was concentrated and dried to obtain a crude product. The resulting crude product was distilled under reduced pressure and distilled under conditions of an external temperature of 245 ° C./pressure of 0.8 torr to obtain 12.15 g of Compound 11 (43% yield).
1 H-NMR (500 MHz) in CDCl 3 : 0.76-0.82 ppm (m, 2H), 0.89 ppm (t, J = 7.2 Hz, 3H), 0.98-1.08 ppm (m, 2H), 1.18-1.45 ppm (m , 11H), 1.84-1.93ppm (m, 6H), 2.36-2.43ppm (m, 1H), 3.58ppm (s, 9H), 3.91ppm (t, J = 6.8 Hz, 2H), 6.81ppm (d, J = 8.8 Hz, 2H), 7.08 ppm (d, J = 8.8 Hz, 2H)
[(A)成分(ポリアミック酸及びポリイミド)の合成]
<合成例1>
 テトラカルボン酸二無水物成分としてCBDA 97.1g(0.5mol)、ジアミン成分としてDBA 76.1g(0.5mol)をNMP 1270g中で混合し、室温で5時間反応させてポリアミック酸溶液を得た。重合反応は容易にかつ均一に進行した。得られたポリアミック酸の数平均分子量は16,800であり、重量平均分子量は48,300であった。さらに、この溶液をポリアミック酸4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリアミック酸溶液(A1)を得た。
[Synthesis of component (A) (polyamic acid and polyimide)]
<Synthesis Example 1>
97.1 g (0.5 mol) of CBDA as a tetracarboxylic dianhydride component and 76.1 g (0.5 mol) of DBA as a diamine component are mixed in 1270 g of NMP and reacted at room temperature for 5 hours to obtain a polyamic acid solution. It was. The polymerization reaction proceeded easily and uniformly. The number average molecular weight of the obtained polyamic acid was 16,800, and the weight average molecular weight was 48,300. Furthermore, NMP and BCS were added so that this solution might be 4 weight% of polyamic acid, 76 weight% of NMP, and 20 weight% of BCS, and the polyamic acid solution (A1) was obtained.
<合成例2>
 テトラカルボン酸二無水物成分としてBDA 79.1g(0.4mol)、ジアミン成分としてDBA 60.9g(0.4mol)をNMP 560g中で混合し、室温で7時間反応させてポリアミック酸溶液を得た。重合反応は容易にかつ均一に進行した。得られたポリアミック酸の数平均分子量は9,800であり、重量平均分子量は31,300であった。さらに、この溶液をポリアミック酸4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリアミック酸溶液(A2)を得た。
<Synthesis Example 2>
As a tetracarboxylic dianhydride component, 79.1 g (0.4 mol) of BDA and 60.9 g (0.4 mol) of DBA as a diamine component were mixed in 560 g of NMP and reacted at room temperature for 7 hours to obtain a polyamic acid solution. It was. The polymerization reaction proceeded easily and uniformly. The number average molecular weight of the obtained polyamic acid was 9,800, and the weight average molecular weight was 31,300. Furthermore, NMP and BCS were added so that this solution might become 4 weight% of polyamic acid, 76 weight% of NMP, and 20 weight% of BCS, and the polyamic acid solution (A2) was obtained.
<合成例3>
 テトラカルボン酸二無水物成分としてPMDA 106.1g(0.49mol)、ジアミン成分としてDBA 76.1g(0.5mol)をNMP 1336g中で混合し、室温で5時間反応させてポリアミック酸溶液を得た。重合反応は容易にかつ均一に進行した。得られたポリアミック酸の数平均分子量は15,600であり、重量平均分子量は44,300であった。さらに、この溶液をポリアミック酸4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリアミック酸溶液(A3)を得た。
<Synthesis Example 3>
106.1 g (0.49 mol) of PMDA as a tetracarboxylic dianhydride component and 76.1 g (0.5 mol) of DBA as a diamine component were mixed in 1336 g of NMP and reacted at room temperature for 5 hours to obtain a polyamic acid solution. It was. The polymerization reaction proceeded easily and uniformly. The number average molecular weight of the obtained polyamic acid was 15,600, and the weight average molecular weight was 44,300. Furthermore, NMP and BCS were added so that this solution might become 4 weight% of polyamic acid, 76 weight% of NMP, and 20 weight% of BCS, and the polyamic acid solution (A3) was obtained.
<合成例4>
 テトラカルボン酸二無水物成分としてPMDA 102.8g(0.47mol)、ジアミン成分としてBAPU 149.2g(0.5mol)をNMP 1843g中で混合し、室温で5時間反応させてポリアミック酸溶液を得た。重合反応は容易にかつ均一に進行した。得られたポリアミック酸の数平均分子量は13,800であり、重量平均分子量は41,400であった。さらに、この溶液をポリアミック酸4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリアミック酸溶液(A4)を得た。
<Synthesis Example 4>
102.8 g (0.47 mol) of PMDA as a tetracarboxylic dianhydride component and 149.2 g (0.5 mol) of BAPU as a diamine component are mixed in 1843 g of NMP and reacted at room temperature for 5 hours to obtain a polyamic acid solution. It was. The polymerization reaction proceeded easily and uniformly. The number average molecular weight of the obtained polyamic acid was 13,800, and the weight average molecular weight was 41,400. Furthermore, NMP and BCS were added so that this solution might become 4 weight% of polyamic acid, 76 weight% of NMP, and 20 weight% of BCS, and the polyamic acid solution (A4) was obtained.
<合成例5>
 テトラカルボン酸二無水物成分としてCBDA 94.1g(0.48mol)、ジアミン成分としてBAPU 149.2g(0.5mol)をNMP 1784g中で混合し、室温で5時間反応させてポリアミック酸溶液を得た。重合反応は容易にかつ均一に進行した。得られたポリアミック酸の数平均分子量は15,200であり、重量平均分子量は46,700であった。さらに、この溶液をポリアミック酸4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリアミック酸溶液(A5)を得た。
<Synthesis Example 5>
94.1 g (0.48 mol) of CBDA as a tetracarboxylic dianhydride component and 149.2 g (0.5 mol) of BAPU as a diamine component are mixed in 1784 g of NMP and reacted at room temperature for 5 hours to obtain a polyamic acid solution. It was. The polymerization reaction proceeded easily and uniformly. The number average molecular weight of the obtained polyamic acid was 15,200, and the weight average molecular weight was 46,700. Furthermore, NMP and BCS were added so that this solution might become 4 weight% of polyamic acid, 76 weight% of NMP, and 20 weight% of BCS, and the polyamic acid solution (A5) was obtained.
<合成例6>
 テトラカルボン酸二無水物成分としてCBDA 78.2g(0.4mol)、ジアミン成分としてm-PDA 43.2g(0.4mol)をNMP 664g中で混合し、室温で5時間反応させてポリアミック酸溶液を得た。重合反応は容易にかつ均一に進行した。得られたポリアミック酸の数平均分子量は21,800であり、重量平均分子量は51,500であった。さらに、この溶液をポリアミック酸4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリアミック酸溶液(A6)を得た。
<Synthesis Example 6>
78.2 g (0.4 mol) of CBDA as a tetracarboxylic dianhydride component and 43.2 g (0.4 mol) of m-PDA as a diamine component are mixed in 664 g of NMP and reacted at room temperature for 5 hours to give a polyamic acid solution. Got. The polymerization reaction proceeded easily and uniformly. The number average molecular weight of the obtained polyamic acid was 21,800, and the weight average molecular weight was 51,500. Furthermore, NMP and BCS were added so that this solution might become 4 weight% of polyamic acid, 76 weight% of NMP, and 20 weight% of BCS, and the polyamic acid solution (A6) was obtained.
<合成例7>
 テトラカルボン酸二無水物成分としてCBDA 19.2g(0.098mol)、ジアミン成分としてDDM 19.8g(0.1mol)をNMP 221.3g中で混合し、室温で24時間反応させてポリアミック酸溶液を得た。重合反応は容易にかつ均一に進行した。得られたポリアミック酸の数平均分子量は18,800であり、重量平均分子量は52,300であった。さらに、この溶液をポリアミック酸4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリアミック酸溶液(A7)を得た。
<Synthesis Example 7>
19.2 g (0.098 mol) of CBDA as a tetracarboxylic dianhydride component and 19.8 g (0.1 mol) of DDM as a diamine component are mixed in 221.3 g of NMP and reacted at room temperature for 24 hours to give a polyamic acid solution. Got. The polymerization reaction proceeded easily and uniformly. The number average molecular weight of the obtained polyamic acid was 18,800, and the weight average molecular weight was 52,300. Furthermore, NMP and BCS were added so that this solution might become 4 weight% of polyamic acid, 76 weight% of NMP, and 20 weight% of BCS, and the polyamic acid solution (A7) was obtained.
<合成例8>
 テトラカルボン酸二無水物成分としてCBDA 19.6g(0.1mol)、ジアミン成分として4,4'DADPA 18.7g(0.094mol)をNMP 345.1g中で混合し、室温で5時間反応させてポリアミック酸溶液を得た。重合反応は容易にかつ均一に進行した。得られたポリアミック酸の数平均分子量は17,500であり、重量平均分子量は48,100であった。さらに、この溶液をポリアミック酸4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリアミック酸溶液(A8)を得た。
<Synthesis Example 8>
19.6 g (0.1 mol) of CBDA as a tetracarboxylic dianhydride component and 18.7 g (0.094 mol) of 4,4′DADPA as a diamine component were mixed in 345.1 g of NMP and reacted at room temperature for 5 hours. Thus, a polyamic acid solution was obtained. The polymerization reaction proceeded easily and uniformly. The number average molecular weight of the obtained polyamic acid was 17,500, and the weight average molecular weight was 48,100. Furthermore, NMP and BCS were added so that this solution might be 4 weight% of polyamic acid, 76 weight% of NMP, and 20 weight% of BCS, and the polyamic acid solution (A8) was obtained.
<合成例9>
 BODA 150.1g(0.6mol)、DBA 60.9g(0.4mol)、及びPCH7DAB 152.2g(0.4mol)をNMP 1290g中で混合し、80℃で5時間反応させた。その後、CBDA 38.8g(0.2mol)とNMP 320gを加え、40℃で3時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液 100.8gにNMPを加え、6質量%に希釈した。その後、イミド化触媒として無水酢酸 10.66g、及びピリジン 8.26gを加え、80℃で3時間反応させた。その後、この反応溶液をメタノール 1300ml中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、次いで100℃で減圧乾燥し、ポリイミド粉末(C1)を得た。このポリイミドのイミド化率は55%であり、数平均分子量は28,500であり、重量平均分子量は66,100であった。
 このポリイミド粉末(C1)7.4gにNMPを41.9g加え、80℃にて40時間攪拌して溶解させた。さらに、この溶液をポリイミド4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリイミド溶液(A9)を得た。
<Synthesis Example 9>
150.1 g (0.6 mol) of BODA, 60.9 g (0.4 mol) of DBA, and 152.2 g (0.4 mol) of PCH7DAB were mixed in 1290 g of NMP and reacted at 80 ° C. for 5 hours. Thereafter, 38.8 g (0.2 mol) of CBDA and 320 g of NMP were added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution. NMP was added to 100.8 g of this polyamic acid solution and diluted to 6% by mass. Thereafter, 10.66 g of acetic anhydride and 8.26 g of pyridine were added as an imidization catalyst, and reacted at 80 ° C. for 3 hours. Thereafter, this reaction solution was poured into 1300 ml of methanol, and the resulting precipitate was separated by filtration. This precipitate was washed with methanol and then dried under reduced pressure at 100 ° C. to obtain a polyimide powder (C1). The imidation ratio of this polyimide was 55%, the number average molecular weight was 28,500, and the weight average molecular weight was 66,100.
47.4 g of NMP was added to 7.4 g of this polyimide powder (C1), and dissolved by stirring at 80 ° C. for 40 hours. Furthermore, NMP and BCS were added so that this solution might become 4 weight% of polyimide, 76 weight% of NMP, and 20 weight% of BCS, and the polyimide solution (A9) was obtained.
<合成例10>
 BODA 7.5g(30.0mmol)、DBA 1.8(12.0mmol)、Sin0 2.0g(8.0mmol)、及びPCH7DAB 7.6g(20.0mmol)をNMP 55g中で混合し、80℃で5時間反応させた。その後、CBDA 1.9g(10.0mmol)とNMP 27.0gを加え、40℃で3時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液 30.0gにNMPを加え、6質量%に希釈した。その後、イミド化触媒として無水酢酸 2.99g、及びピリジン 2.32gを加え、80℃で3時間反応させた。その後、この反応溶液をメタノール 370ml中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、次いで100℃で減圧乾燥し、ポリイミド粉末(C2)を得た。このポリイミドのイミド化率は57%であり、数平均分子量は26,800であり、重量平均分子量は63,400であった。
 このポリイミド粉末(C2)7.4gにNMPを41.9g加え、80℃にて40時間攪拌して溶解させた。さらに、この溶液をポリイミド4重量%、NMP76重量%、及びBCS20重量%となるようにNMPとBCSを加え、ポリイミド溶液(A10)を得た。
<Synthesis Example 10>
BODA 7.5 g (30.0 mmol), DBA 1.8 (12.0 mmol), Sin0 2.0 g (8.0 mmol), and PCH7DAB 7.6 g (20.0 mmol) were mixed in 55 g of NMP and 80 ° C. For 5 hours. Thereafter, 1.9 g (10.0 mmol) of CBDA and 27.0 g of NMP were added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution. NMP was added to 30.0 g of this polyamic acid solution, and diluted to 6% by mass. Thereafter, 2.99 g of acetic anhydride and 2.32 g of pyridine were added as an imidization catalyst, and reacted at 80 ° C. for 3 hours. Thereafter, this reaction solution was put into 370 ml of methanol, and the resulting precipitate was separated by filtration. This precipitate was washed with methanol and then dried under reduced pressure at 100 ° C. to obtain a polyimide powder (C2). The imidation ratio of this polyimide was 57%, the number average molecular weight was 26,800, and the weight average molecular weight was 63,400.
47.4 g of NMP was added to 7.4 g of this polyimide powder (C2), and dissolved by stirring at 80 ° C. for 40 hours. Furthermore, NMP and BCS were added so that this solution might become 4 weight% of polyimide, 76 weight% of NMP, and 20 weight% of BCS, and the polyimide solution (A10) was obtained.
[(B)成分(ポリシロキサン)の合成]
<合成例11>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中で、BCS29.5g、TEOS38.8g、及び上記で得られた化合物11の4.1gを混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS14.7g、水10.8g及び触媒として蓚酸0.2gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、UPS含有量が92質量%のメタノール溶液1.2gとBCS0.9gとの混合液を加えた。更に30分間還流させ、その後放冷して、SiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g及びNMP20.0gを混合し、SiO換算濃度が4重量%のポリシロキサン溶液[B1]を得た。
[Synthesis of (B) Component (Polysiloxane)]
<Synthesis Example 11>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 29.5 g of BCS, 38.8 g of TEOS, and 4.1 g of the compound 11 obtained above were mixed to prepare a solution of an alkoxysilane monomer. did. To this solution, a solution in which 14.7 g of BCS, 10.8 g of water and 0.2 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 1.2 g of a methanol solution having a UPS content of 92% by mass and 0.9 g of BCS was added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
10.0 g of the obtained polysiloxane solution and 20.0 g of NMP were mixed to obtain a polysiloxane solution [B1] having a SiO 2 equivalent concentration of 4% by weight.
<合成例12>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中で、BCS29.4g、TEOS38.8g、及びC18 4.2gを混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS14.7g、水10.8g及び触媒として蓚酸0.2gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、UPS含有量が92質量%のメタノール溶液1.2gとBCS0.9gとの混合液を加えた。更に30分間還流させ、その後放冷して、SiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g及びNMP20.0gを混合し、SiO換算濃度が4重量%のポリシロキサン溶液[B2]を得た。
<Synthesis Example 12>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 29.4 g of BCS, 38.8 g of TEOS, and 4.2 g of C18 were mixed to prepare an alkoxysilane monomer solution. To this solution, a solution in which 14.7 g of BCS, 10.8 g of water and 0.2 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 1.2 g of a methanol solution having a UPS content of 92% by mass and 0.9 g of BCS was added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
10.0 g of the obtained polysiloxane solution and 20.0 g of NMP were mixed to obtain a polysiloxane solution [B2] having a SiO 2 equivalent concentration of 4% by weight.
<合成例13>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中で、BCS30.2g、TEOS39.6g、及び上記で得られた化合物11の4.1gを混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS14.7g、水10.8g及び触媒として蓚酸0.2gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して60分間還流させ、次いで放冷して、SiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g及びNMP20.0gを混合し、SiO換算濃度が4重量%のポリシロキサン溶液[B3]を得た。
<Synthesis Example 13>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 30.2 g of BCS, 39.6 g of TEOS, and 4.1 g of the compound 11 obtained above were mixed to prepare an alkoxysilane monomer solution. did. To this solution, a solution in which 14.7 g of BCS, 10.8 g of water and 0.2 g of oxalic acid as a catalyst were mixed in advance was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Then heated using an oil bath and refluxed 60 minutes, then allowed to cool, SiO 2 conversion concentration was obtained 12 wt% of a polysiloxane solution.
10.0 g of the obtained polysiloxane solution and 20.0 g of NMP were mixed to obtain a polysiloxane solution [B3] having a SiO 2 equivalent concentration of 4% by weight.
<合成例14>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中で、BCS28.2g、TEOS37.5g、及び上記で得られた化合物11の4.1gを混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS14.1g、水10.8g及び触媒として蓚酸0.4gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、UPS含有量が92質量%のメタノール溶液2.9gとBCS2.1gとの混合液を加えた。更に30分間還流させ、その後放冷して、SiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g及びNMP20.0gを混合し、SiO換算濃度が4重量%のポリシロキサン溶液[B4]を得た。
<Synthesis Example 14>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 28.2 g of BCS, 37.5 g of TEOS, and 4.1 g of the compound 11 obtained above were mixed to prepare a solution of an alkoxysilane monomer. did. To this solution, a solution prepared by previously mixing 14.1 g of BCS, 10.8 g of water and 0.4 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 2.9 g of a methanol solution having a UPS content of 92% by mass and 2.1 g of BCS was added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
10.0 g of the obtained polysiloxane solution and 20.0 g of NMP were mixed to obtain a polysiloxane solution [B4] having a SiO 2 equivalent concentration of 4% by weight.
<合成例15>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中で、BCS25.4g、TEOS20.0g、上記で得られた化合物11 8.2g、及びMPMS19.9gを混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS12.7g、水10.8g及び触媒として蓚酸1.1gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、UPS含有量が92質量%のメタノール溶液1.2gとBCS0.9gとの混合液を加えた。更に30分間還流させ、その後放冷して、SiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g及びNMP20.0gを混合し、SiO換算濃度が4重量%のポリシロキサン溶液[B5]を得た。
<Synthesis Example 15>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 25.4 g of BCS, 20.0 g of TEOS, 8.2 g of the compound 11 obtained above, and 19.9 g of MPMS were mixed to obtain an alkoxysilane monomer. A solution was prepared. A solution prepared by mixing 12.7 g of BCS, 10.8 g of water and 1.1 g of oxalic acid as a catalyst in advance was added dropwise to this solution over 30 minutes at room temperature, and the mixture was further stirred at room temperature for 30 minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 1.2 g of a methanol solution having a UPS content of 92% by mass and 0.9 g of BCS was added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
10.0 g of the obtained polysiloxane solution and 20.0 g of NMP were mixed to obtain a polysiloxane solution [B5] having a SiO 2 equivalent concentration of 4% by weight.
<合成例16>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中で、BCS25.2g、TEOS20.0g、上記で得られた化合物11 8.2g、及びSTMS20.2gを混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS12.6g、水10.8g及び触媒として蓚酸1.1gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、UPS含有量が92質量%のメタノール溶液1.2gとBCS0.9gとの混合液を加えた。更に30分間還流させ、その後放冷して、SiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g及びNMP20.0gを混合し、SiO換算濃度が4重量%のポリシロキサン溶液[B6]を得た。
<Synthesis Example 16>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 25.2 g of BCS, 20.0 g of TEOS, 8.2 g of the compound 11 obtained above, and 20.2 g of STMS were mixed to obtain an alkoxysilane monomer. A solution was prepared. A solution in which 12.6 g of BCS, 10.8 g of water and 1.1 g of oxalic acid as a catalyst were mixed in advance was added dropwise to this solution over 30 minutes at room temperature, and the mixture was further stirred at room temperature for 30 minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 1.2 g of a methanol solution having a UPS content of 92% by mass and 0.9 g of BCS was added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
10.0 g of the obtained polysiloxane solution and 20.0 g of NMP were mixed to obtain a polysiloxane solution [B6] having a SiO 2 equivalent concentration of 4% by weight.
<合成例17>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中で、BCS25.8g、TEOS20.0g、C18 4.2g、C12 3.3g、及びMPMS19.9gを混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS12.9g、水10.8g及び触媒として蓚酸1.1gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、UPS含有量が92質量%のメタノール溶液1.2gとBCS0.9gとの混合液を加えた。更に30分間還流させ、その後放冷して、SiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g及びNMP20.0gを混合し、SiO換算濃度が4重量%のポリシロキサン溶液[B7]を得た。
<Synthesis Example 17>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 25.8 g of BCS, 20.0 g of TEOS, 4.2 g of C18, 3.3 g of C12, and 19.9 g of MPMS were mixed to obtain a solution of an alkoxysilane monomer. Was prepared. A solution in which 12.9 g of BCS, 10.8 g of water and 1.1 g of oxalic acid as a catalyst were mixed in advance was added dropwise to this solution over 30 minutes at room temperature, and the mixture was further stirred at room temperature for 30 minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 1.2 g of a methanol solution having a UPS content of 92% by mass and 0.9 g of BCS was added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
10.0 g of the obtained polysiloxane solution and 20.0 g of NMP were mixed to obtain a polysiloxane solution [B7] having a SiO 2 equivalent concentration of 4% by weight.
<合成例18>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中で、BCS31.5g、TEOS37.1g、及びMTES3.6gを混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS15.7g、水10.8g及び触媒として蓚酸0.1gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して60分間還流させた後、放冷してSiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g及びNMP20.0gを混合し、SiO換算濃度が4重量%のポリシロキサン溶液[B8]を得た。
<Synthesis Example 18>
In a 200 mL four-necked reaction flask equipped with a thermometer and a reflux tube, 31.5 g of BCS, 37.1 g of TEOS, and 3.6 g of MTES were mixed to prepare an alkoxysilane monomer solution. A solution prepared by mixing 15.7 g of BCS, 10.8 g of water and 0.1 g of oxalic acid as a catalyst in advance was added dropwise to this solution over 30 minutes at room temperature, and the mixture was further stirred at room temperature for 30 minutes. Thereafter, the mixture was heated using an oil bath and refluxed for 60 minutes, and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
10.0 g of the obtained polysiloxane solution and 20.0 g of NMP were mixed to obtain a polysiloxane solution [B8] having a SiO 2 equivalent concentration of 4% by weight.
<合成例19>
 温度計及び還流管を備え付けた200mLの四つ口反応フラスコ中で、BCS26.2g、TEOS20.8g、上記で得られた化合物11 8.2g、及びMPMS19.9gを混合して、アルコキシシランモノマーの溶液を調製した。この溶液に、予めBCS13.1g、水10.8g及び触媒として蓚酸1.1gを混合した溶液を、室温下で30分かけて滴下し、さらに室温で30分間撹拌した。その後、オイルバスを用いて加熱して30分間還流させた後、UPS含有量が92質量%のメタノール溶液0.6gとBCS0.4gとの混合液を加えた。更に30分間還流させ、その後放冷して、SiO換算濃度が12重量%のポリシロキサン溶液を得た。
 得られたポリシロキサン溶液10.0g及びNMP20.0gを混合し、SiO換算濃度が4重量%のポリシロキサン溶液[B9]を得た。
<Synthesis Example 19>
In a 200 mL four-neck reaction flask equipped with a thermometer and a reflux tube, 26.2 g of BCS, 20.8 g of TEOS, 8.2 g of the compound 11 obtained above, and 19.9 g of MPMS were mixed to obtain an alkoxysilane monomer. A solution was prepared. To this solution, a solution prepared by previously mixing 13.1 g of BCS, 10.8 g of water and 1.1 g of oxalic acid as a catalyst was added dropwise over 30 minutes at room temperature, and further stirred at room temperature for 30 minutes. Then, after heating using an oil bath and refluxing for 30 minutes, a mixed solution of 0.6 g of a methanol solution having a UPS content of 92% by mass and 0.4 g of BCS was added. The mixture was further refluxed for 30 minutes and then allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12% by weight.
10.0 g of the obtained polysiloxane solution and 20.0 g of NMP were mixed to obtain a polysiloxane solution [B9] having a SiO 2 equivalent concentration of 4% by weight.
 液晶セルの作製 、及び電気特性、垂直配向性、リワーク性、白化特性、応答速度等の評価は、以下のように行った。
[液晶セルの作製]
 液晶配向処理剤を、ベタITO電極が形成されているITO電極基板、又は画素サイズが100μm×300μm(ミクロン)で、ライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートした。次いで、80℃のホットプレートで2分間乾燥した後、200℃若しくは220℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。この基板を2枚(ベタ基板同士、又はベタ基板とパターン基板)用意し、一方の基板の液晶配向膜面上に4μm若しくは6μmのビーズスペーサーを散布した後、その上からシール剤を印刷した。他方の基板の液晶配向膜面を内側にし、両基板を張り合わせた後、シール剤を硬化させて空セルを作製した。その後、空セルに減圧注入法によって、液晶MLC-6608(メルク社製、商品名)を注入し、液晶セルを作製した。
 液晶セルを作製した後は、液晶セルに交流または直流の電圧を印加しながら、熱や紫外線を照射することで、液晶分子の配向を制御することができる。
The production of the liquid crystal cell and the evaluation of electrical characteristics, vertical alignment, reworkability, whitening characteristics, response speed, etc. were performed as follows.
[Production of liquid crystal cell]
An ITO electrode substrate on which a solid ITO electrode is formed or an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 μm × 300 μm (micron) and a line / space of 5 μm is formed. The surface was spin coated. Next, after drying for 2 minutes on a hot plate at 80 ° C., baking was performed in a hot air circulation oven at 200 ° C. or 220 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm. Two substrates (solid substrates, or a solid substrate and a pattern substrate) were prepared, and 4 μm or 6 μm bead spacers were sprayed on the liquid crystal alignment film surface of one of the substrates, and a sealing agent was printed thereon. The liquid crystal alignment film surface of the other substrate was turned inside and the two substrates were bonded together, and then the sealing agent was cured to produce an empty cell. Thereafter, liquid crystal MLC-6608 (trade name, manufactured by Merck & Co., Inc.) was injected into the empty cell by vacuum injection to produce a liquid crystal cell.
After the liquid crystal cell is manufactured, the orientation of the liquid crystal molecules can be controlled by irradiating heat or ultraviolet rays while applying an AC or DC voltage to the liquid crystal cell.
[電気特性(電圧保持率及びイオン密度)の評価]
 液晶セルを60℃の温度下で、1Vの電圧を60μs印加して1667ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHR)として計算した。
 さらに、上記の液晶セルを用いて、60℃の温度下でのイオン密度の測定を行った。すなわち、液晶セルに電圧±10V、周波数0.01Hzの三角波を印可した時のイオン密度を測定した。測定装置は、東陽テクニカ社製の6245型液晶物性評価装置を用いた。
[Evaluation of electrical characteristics (voltage holding ratio and ion density)]
A voltage of 1V was applied to the liquid crystal cell at a temperature of 60 ° C. for 60 μs, a voltage after 1667 ms was measured, and how much the voltage was held was calculated as a voltage holding ratio (VHR).
Furthermore, the ion density was measured at a temperature of 60 ° C. using the liquid crystal cell. That is, the ion density was measured when a triangular wave having a voltage of ± 10 V and a frequency of 0.01 Hz was applied to the liquid crystal cell. The measuring device used was a 6245 type liquid crystal property evaluation device manufactured by Toyo Technica.
[垂直配向性の評価]
 液晶セルを100℃の循環式オーブンで30分のアニールを行った。その後、取り出したセルを、偏光板をクロスニコルにした状態で、顕微鏡観察を行い、液晶の配向乱れであるドメイン(Domain)の状態を観察した。
[Evaluation of vertical alignment]
The liquid crystal cell was annealed in a circulating oven at 100 ° C. for 30 minutes. Thereafter, the extracted cell was observed with a microscope in a state where the polarizing plate was in a crossed Nicol state, and the state of the domain (Domain) that was the disorder of the alignment of the liquid crystal was observed.
[リワーク性の評価]
 液晶配向処理剤を、ベタITO電極が形成されているITO電極基板上にスピンコートした。その後、80℃のホットプレートで2分間乾燥した後、200℃若しくは220℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。この基板を50℃の東京応化工業社製のNMD-3に10分間浸漬した後、水洗し、80℃熱風循環式オーブンで10分間乾燥させた。その後、浸漬前後の状態を目視での観察及び接触角測定を行い、接触角が液晶配向処理剤の塗布前の状態に戻るものをリワーク可能:○、戻らないものをリワーク不可:×とし評価を行った。
[Evaluation of reworkability]
The liquid crystal aligning agent was spin-coated on the ITO electrode substrate on which the solid ITO electrode was formed. Then, after drying for 2 minutes with an 80 degreeC hotplate, it baked for 30 minutes in 200 degreeC or 220 degreeC hot-air circulation type oven, and formed the liquid crystal aligning film with a film thickness of 100 nm. The substrate was immersed in NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd. at 50 ° C. for 10 minutes, washed with water, and dried in an 80 ° C. hot air circulation oven for 10 minutes. Thereafter, the state before and after the immersion is visually observed and the contact angle is measured. If the contact angle returns to the state before application of the liquid crystal alignment treatment agent, it can be reworked: ○. went.
[白化特性の評価]
 液晶配向処理剤をクロム基板(クロムを蒸着したガラス基板)にスピンコートし、温度23℃、相対湿度60%の雰囲気下で10分間放置し、その後、塗膜面端部に重合体の凝集物が発生しているかどうかを目視観察した。
[応答速度の評価]
 液晶セルに、±5VのAC電圧、周波数1kHzの矩形波を印加した際の、液晶パネルの輝度の時間変化をオシロスコープにて取り込んだ。電圧を印加していない時の輝度を0%、±5Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10~90%まで変化する時間を立ち上がりの応答速度とし、上記液晶セルの作製方法に従って得られたセルについて交流または直流の電圧を印加しながら、熱や紫外線を照射した後の応答速度の評価を行った。
[Evaluation of whitening characteristics]
A liquid crystal alignment treatment agent is spin-coated on a chromium substrate (a glass substrate on which chromium is deposited), and is allowed to stand for 10 minutes in an atmosphere at a temperature of 23 ° C. and a relative humidity of 60%. It was visually observed whether or not this occurred.
[Evaluation of response speed]
The change in luminance of the liquid crystal panel over time when an AC voltage of ± 5 V and a rectangular wave with a frequency of 1 kHz was applied to the liquid crystal cell was captured with an oscilloscope. When the voltage is not applied, the luminance is 0%, ± 5V voltage is applied, the saturated luminance value is 100%, the time when the luminance changes from 10 to 90% is the rising response speed, and the liquid crystal The response speed after irradiating heat or ultraviolet rays was evaluated while applying an AC or DC voltage to the cell obtained according to the cell manufacturing method.
(参考例1)
 ポリシロキサン溶液(B1)を液晶配向処理剤として用い、[垂直配向性の評価]及び[リワーク性の評価]を行った。結果は表1及び表3に示す。更に、[電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表2に示す。
(Reference Example 1)
Using the polysiloxane solution (B1) as a liquid crystal alignment treatment agent, [Evaluation of vertical alignment] and [Evaluation of reworkability] were performed. The results are shown in Tables 1 and 3. Furthermore, according to [Evaluation of electrical characteristics], the voltage holding ratio and the ion density were evaluated. The results are shown in Table 2.
(参考例2)
 ポリシロキサン溶液(B1)3.0gとポリアミック酸溶液(A1)7.0gを混合し、液晶配向処理剤(1)を得た。この液晶配向処理剤を用いて、[リワーク性の評価]、[白化特性の評価]及び[垂直配向性の評価]を行った。結果は表3、表4及び表5に示す。更に、[電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表6に示す。
(Reference Example 2)
3.0 g of polysiloxane solution (B1) and 7.0 g of polyamic acid solution (A1) were mixed to obtain a liquid crystal aligning agent (1). Using this liquid crystal aligning agent, [reworkability evaluation], [whitening property evaluation] and [vertical alignment evaluation] were performed. The results are shown in Table 3, Table 4 and Table 5. Furthermore, according to [Evaluation of electrical characteristics], the voltage holding ratio and the ion density were evaluated. The results are shown in Table 6.
(参考例3)
 ポリシロキサン溶液(B1)3.0gとポリアミック酸溶液(A2)7.0gを混合し、液晶配向処理剤(2)を得た。この液晶配向処理剤を用いて、[リワーク性の評価]を行った。結果は表3示す。
(Reference Example 3)
3.0 g of polysiloxane solution (B1) and 7.0 g of polyamic acid solution (A2) were mixed to obtain a liquid crystal aligning agent (2). [Evaluation of reworkability] was performed using this liquid crystal aligning agent. The results are shown in Table 3.
(参考例4)
 ポリシロキサン溶液(B1)3.0gとポリアミック酸溶液(A3)7.0gを混合し、液晶配向処理剤(3)を得た。この液晶配向処理剤を用いて、[リワーク性の評価]を行った。結果は表3示す。
(Reference Example 4)
3.0 g of polysiloxane solution (B1) and 7.0 g of polyamic acid solution (A3) were mixed to obtain a liquid crystal aligning agent (3). [Evaluation of reworkability] was performed using this liquid crystal aligning agent. The results are shown in Table 3.
(参考例5)
 ポリシロキサン溶液(B1)3.0gとポリアミック酸溶液(A4)7.0gを混合し、液晶配向処理剤(4)を得た。この液晶配向処理剤を用いて、[リワーク性の評価]を行った。結果は表3示す。
(Reference Example 5)
3.0 g of polysiloxane solution (B1) and 7.0 g of polyamic acid solution (A4) were mixed to obtain a liquid crystal aligning agent (4). [Evaluation of reworkability] was performed using this liquid crystal aligning agent. The results are shown in Table 3.
(参考例6)
 ポリシロキサン溶液(B1)3.0gとポリアミック酸溶液(A5)7.0gを混合し、液晶配向処理剤(5)を得た。この液晶配向処理剤を用いて、[リワーク性の評価]、[白化特性の評価]及び[垂直配向性の評価]を行った。結果は表3、表4及び表5に示す。更に、[電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表6に示す。
(Reference Example 6)
3.0 g of polysiloxane solution (B1) and 7.0 g of polyamic acid solution (A5) were mixed to obtain a liquid crystal aligning agent (5). Using this liquid crystal aligning agent, [reworkability evaluation], [whitening property evaluation] and [vertical alignment evaluation] were performed. The results are shown in Table 3, Table 4 and Table 5. Furthermore, according to [Evaluation of electrical characteristics], the voltage holding ratio and the ion density were evaluated. The results are shown in Table 6.
(参考例7)
 ポリシロキサン溶液(B4)3.0gとポリアミック酸溶液(A1)7.0gを混合し、液晶配向処理剤(6)を得た。この液晶配向処理剤を用いて、[白化特性の評価]を行った。結果は表6に示す。
(Reference Example 7)
3.0 g of polysiloxane solution (B4) and 7.0 g of polyamic acid solution (A1) were mixed to obtain a liquid crystal aligning agent (6). Using this liquid crystal aligning agent, [Evaluation of whitening characteristics] was performed. The results are shown in Table 6.
(参考例8)
 ポリシロキサン溶液(B4)3.0gとポリアミック酸溶液(A2)7.0gを混合し、液晶配向処理剤(7)を得た。この液晶配向処理剤を用いて、[白化特性の評価]を行った。結果は表6に示す。
(Reference Example 8)
3.0 g of polysiloxane solution (B4) and 7.0 g of polyamic acid solution (A2) were mixed to obtain a liquid crystal aligning agent (7). Using this liquid crystal aligning agent, [Evaluation of whitening characteristics] was performed. The results are shown in Table 6.
(実施例1)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A1)7.0gを混合し、液晶配向処理剤(8)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。
(Example 1)
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A1) were mixed to obtain a liquid crystal aligning agent (8). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
(実施例2)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A2)7.0gを混合し、液晶配向処理剤(9)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。
(Example 2)
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A2) were mixed to obtain a liquid crystal aligning agent (9). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
(実施例3)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A3)7.0gを混合し、液晶配向処理剤(10)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。
(Example 3)
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A3) were mixed to obtain a liquid crystal aligning agent (10). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
(実施例4)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A4)7.0gを混合し、液晶配向処理剤(11)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。
Example 4
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A4) were mixed to obtain a liquid crystal aligning agent (11). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
(実施例5)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A5)7.0gを混合し、液晶配向処理剤(12)を得た。この液晶配向処理剤を用いて、[応答速度の評価]、[垂直配向性の評価]、及び[リワーク性の評価]を行った。結果は表7、表8及び表10に示す。更には、[電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表9に示す。
(Example 5)
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A5) were mixed to obtain a liquid crystal aligning agent (12). Using this liquid crystal aligning agent, [Evaluation of response speed], [Evaluation of vertical alignment] and [Evaluation of reworkability] were performed. The results are shown in Table 7, Table 8, and Table 10. Furthermore, voltage holding ratio and ion density were evaluated according to [Evaluation of electrical characteristics]. The results are shown in Table 9.
(実施例6)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A6)7.0gを混合し、液晶配向処理剤(13)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。
(Example 6)
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A6) were mixed to obtain a liquid crystal aligning agent (13). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
(実施例7)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A7)7.0gを混合し、液晶配向処理剤(14)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。
(Example 7)
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A7) were mixed to obtain a liquid crystal aligning agent (14). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
(実施例8)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A8)7.0gを混合し、液晶配向処理剤(15)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。更には、[電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表9に示す。
(Example 8)
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A8) were mixed to obtain a liquid crystal aligning agent (15). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7. Furthermore, voltage holding ratio and ion density were evaluated according to [Evaluation of electrical characteristics]. The results are shown in Table 9.
(実施例9)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A9)7.0gを混合し、液晶配向処理剤(16)を得た。この液晶配向処理剤を用いて、[応答速度の評価]、[垂直配向性の評価]及び[リワーク性の評価]を行った。結果は表7及び表10に示す。
Example 9
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A9) were mixed to obtain a liquid crystal aligning agent (16). Using this liquid crystal aligning agent, [Evaluation of response speed], [Evaluation of vertical alignment] and [Evaluation of reworkability] were performed. The results are shown in Table 7 and Table 10.
(実施例10)
 ポリシロキサン溶液(B5)3.0gとポリアミック酸溶液(A10)7.0gを混合し、液晶配向処理剤(17)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。
(Example 10)
3.0 g of polysiloxane solution (B5) and 7.0 g of polyamic acid solution (A10) were mixed to obtain a liquid crystal aligning agent (17). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
(実施例11)
 ポリシロキサン溶液(B6)3.0gとポリアミック酸溶液(A1)7.0gを混合し、液晶配向処理剤(18)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7及び表8に示す。
(Example 11)
3.0 g of polysiloxane solution (B6) and 7.0 g of polyamic acid solution (A1) were mixed to obtain a liquid crystal aligning agent (18). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Tables 7 and 8.
(比較例1)
 ポリシロキサン溶液(B2)を液晶配向処理剤として用いて、[垂直配向性の評価]及び[リワーク性の評価]を行った。結果は表1及び表3に示す。
(Comparative Example 1)
[Evaluation of vertical alignment] and [Evaluation of reworkability] were performed using the polysiloxane solution (B2) as a liquid crystal alignment treatment agent. The results are shown in Tables 1 and 3.
(比較例2)
 ポリシロキサン溶液(B3)を液晶配向処理剤として用いて、 [電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表2に示す。更に、[リワーク性の評価]を行った。結果は表3に示す。
(Comparative Example 2)
Using the polysiloxane solution (B3) as a liquid crystal aligning agent, voltage holding ratio and ion density were evaluated according to [Evaluation of electrical characteristics]. The results are shown in Table 2. Furthermore, [reworkability evaluation] was performed. The results are shown in Table 3.
(比較例3)
 ポリシロキサン溶液(B2)3.0gとポリアミック酸溶液(A1)7.0gを混合し、液晶配向処理剤(19)を得た。この液晶配向処理剤を用いて、[垂直配向性の評価]及び[白化特性の評価]を行った。結果は表4及び表5に示す。
(Comparative Example 3)
3.0 g of polysiloxane solution (B2) and 7.0 g of polyamic acid solution (A1) were mixed to obtain a liquid crystal aligning agent (19). Using this liquid crystal aligning agent, [Evaluation of vertical alignment] and [Evaluation of whitening characteristics] were performed. The results are shown in Tables 4 and 5.
(比較例4)
 ポリシロキサン溶液(B2)3.0gとポリアミック酸溶液(A5)7.0gを混合し、液晶配向処理剤(20)を得た。この液晶配向処理剤を用いて、[垂直配向性の評価]及び[白化特性の評価]を行った。結果は表4及び表5に示す。
(Comparative Example 4)
3.0 g of polysiloxane solution (B2) and 7.0 g of polyamic acid solution (A5) were mixed to obtain a liquid crystal aligning agent (20). Using this liquid crystal aligning agent, [Evaluation of vertical alignment] and [Evaluation of whitening characteristics] were performed. The results are shown in Tables 4 and 5.
(比較例5)
 ポリシロキサン溶液(B3)3.0gとポリアミック酸溶液(A1)7.0gを混合し、液晶配向処理剤(21)を得た。この液晶配向処理剤を用いて、[電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表6に示す。
(Comparative Example 5)
3.0 g of polysiloxane solution (B3) and 7.0 g of polyamic acid solution (A1) were mixed to obtain a liquid crystal aligning agent (21). Using this liquid crystal aligning agent, voltage holding ratio and ion density were evaluated in accordance with [Evaluation of electrical characteristics]. The results are shown in Table 6.
(比較例6)
 ポリシロキサン溶液(B3)3.0gとポリアミック酸溶液(A5)7.0gを混合し、液晶配向処理剤(22)を得た。この液晶配向処理剤を用いて、[電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表6に示す。
(Comparative Example 6)
3.0 g of polysiloxane solution (B3) and 7.0 g of polyamic acid solution (A5) were mixed to obtain a liquid crystal aligning agent (22). Using this liquid crystal aligning agent, voltage holding ratio and ion density were evaluated in accordance with [Evaluation of electrical characteristics]. The results are shown in Table 6.
(比較例7)
 ポリシロキサン溶液(B7)3.0gとポリアミック酸溶液(A1)7.0gを混合し、液晶配向処理剤(23)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。
(Comparative Example 7)
3.0 g of polysiloxane solution (B7) and 7.0 g of polyamic acid solution (A1) were mixed to obtain a liquid crystal aligning agent (23). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7.
(比較例8)
 ポリイミド/ポリアミック酸溶液(A9)を液晶配向処理剤として用いて、[応答速度の評価]及び[垂直配向性の評価]及びを行った。結果は表7及び表8に示す。
(Comparative Example 8)
[Evaluation of response speed] and [Evaluation of vertical alignment] were performed using a polyimide / polyamic acid solution (A9) as a liquid crystal alignment treatment agent. The results are shown in Tables 7 and 8.
(比較例9)
 ポリシロキサン溶液(B8)3.0gとポリアミック酸溶液(A5)7.0gを混合し、液晶配向処理剤(24)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。更に、[電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表9に示す。
(Comparative Example 9)
3.0 g of polysiloxane solution (B8) and 7.0 g of polyamic acid solution (A5) were mixed to obtain a liquid crystal aligning agent (24). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7. Furthermore, according to [Evaluation of electrical characteristics], the voltage holding ratio and the ion density were evaluated. The results are shown in Table 9.
(比較例10)
 ポリシロキサン溶液(B8)3.0gとポリアミック酸溶液(A8)7.0gを混合し、液晶配向処理剤(25)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[垂直配向性の評価]を行った。結果は表7に示す。更に、[電気特性の評価]に従い、電圧保持率及びイオン密度の評価を行った。結果は表9に示す。
(Comparative Example 10)
3.0 g of polysiloxane solution (B8) and 7.0 g of polyamic acid solution (A8) were mixed to obtain a liquid crystal aligning agent (25). [Evaluation of response speed] and [Evaluation of vertical alignment] were performed using this liquid crystal alignment treatment agent. The results are shown in Table 7. Furthermore, according to [Evaluation of electrical characteristics], the voltage holding ratio and the ion density were evaluated. The results are shown in Table 9.
(比較例11)
 ポリシロキサン溶液(B5)3.0gとポリシロキサン溶液(B9)7.0gを混合し、液晶配向処理剤(26)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[リワーク性の評価]を行った。結果は表8及び表10に示す。
(Comparative Example 11)
3.0 g of polysiloxane solution (B5) and 7.0 g of polysiloxane solution (B9) were mixed to obtain a liquid crystal aligning agent (26). [Evaluation of response speed] and [Evaluation of reworkability] were performed using this liquid crystal aligning agent. The results are shown in Table 8 and Table 10.
(比較例12)
 ポリシロキサン溶液(B6)3.0gとポリシロキサン溶液(B9)7.0gを混合し、液晶配向処理剤(27)を得た。この液晶配向処理剤を用いて、[応答速度の評価]及び[リワーク性の評価]を行った。結果は表8及び表10に示す。
(Comparative Example 12)
3.0 g of polysiloxane solution (B6) and 7.0 g of polysiloxane solution (B9) were mixed to obtain a liquid crystal aligning agent (27). [Evaluation of response speed] and [Evaluation of reworkability] were performed using this liquid crystal aligning agent. The results are shown in Table 8 and Table 10.
Figure JPOXMLDOC01-appb-T000027
 表1において、参考例1の液晶セルでは、アニール後に、配向乱れであるドメインは全く観察されなかった。一方、比較例1の液晶セルでは、アニール後に、配向乱れであるドメインが多数観察された。
Figure JPOXMLDOC01-appb-T000027
In Table 1, in the liquid crystal cell of Reference Example 1, no domain having alignment disorder was observed after annealing. On the other hand, in the liquid crystal cell of Comparative Example 1, many domains having alignment disorder were observed after annealing.
Figure JPOXMLDOC01-appb-T000028
 表2において、電気特性に関しても、ウレイド基を含有する液晶配向処理剤(参考例1)は、ウレイド基を含有しない液晶配向処理剤(比較例2)と比較し、VHR(電圧保持率)が高く、イオン密度が低いことがわかった。
Figure JPOXMLDOC01-appb-T000028
In Table 2, regarding the electrical characteristics, the liquid crystal alignment treatment agent containing ureido group (Reference Example 1) has a VHR (voltage holding ratio) as compared with the liquid crystal alignment treatment agent not containing ureido group (Comparative Example 2). High and low ion density.
Figure JPOXMLDOC01-appb-T000029
 表3において、リワーク性に関して、ポリシロキサンの成分だけを含有する液晶配向処理剤と比較し、ポリアミック酸及びポリイミドからなる群から選ばれる少なくとも一種類の重合体を含有する液晶配向処理剤の方が、リワーク性が高いことがわかった。
Figure JPOXMLDOC01-appb-T000029
In Table 3, with respect to reworkability, the liquid crystal alignment treatment agent containing at least one polymer selected from the group consisting of polyamic acid and polyimide is compared with the liquid crystal alignment treatment agent containing only the polysiloxane component. It was found that reworkability is high.
Figure JPOXMLDOC01-appb-T000030
 表4において、ウレイド基を含有する液晶配向処理剤は、ウレイド基を含有しない液晶配向処理剤と比較し、白化特性に優れることがわかった。
Figure JPOXMLDOC01-appb-T000030
In Table 4, it turned out that the liquid-crystal aligning agent containing a ureido group is excellent in the whitening characteristic compared with the liquid-crystal aligning agent which does not contain a ureido group.
Figure JPOXMLDOC01-appb-T000031
 表5において、表1と同様に参考例2、6の液晶セルでは、アニール後に、配向乱れであるドメインは全く観察されなかった。一方、比較例3、4の液晶セルでは、アニール後に、配向乱れであるドメインが多数観察された。
Figure JPOXMLDOC01-appb-T000031
In Table 5, as in Table 1, in the liquid crystal cells of Reference Examples 2 and 6, no domain having alignment disorder was observed after annealing. On the other hand, in the liquid crystal cells of Comparative Examples 3 and 4, a large number of domains with disordered alignment were observed after annealing.
Figure JPOXMLDOC01-appb-T000032
 表6において、表2と同様に電気特性に関しても、ウレイド基を含有する液晶配向処理剤(参考例2、6)は、ウレイド基を含有しない液晶配向処理剤(比較例5、6)と比較し、VHRが高く、イオン密度が低いことがわかった。
Figure JPOXMLDOC01-appb-T000032
In Table 6, regarding the electrical characteristics as in Table 2, the liquid crystal aligning agent containing ureido groups (Reference Examples 2 and 6) is compared with the liquid crystal aligning agent containing no ureido groups (Comparative Examples 5 and 6). It was found that the VHR was high and the ion density was low.
Figure JPOXMLDOC01-appb-T000033
 応答速度の判定 ○:早い(良好) ×:遅い(悪い)
 アニール後のドメイン観察結果
  ×:ドメインが多数観察される
  ○:良好
  ◎:非常に良好
Figure JPOXMLDOC01-appb-T000033
Judgment of response speed ○: Fast (good) ×: Slow (bad)
Domain observation result after annealing ×: Many domains are observed ○: Good ◎: Very good
 表7において、実施例1ではUV照射後の応答速度が速く、かつアニール後のドメイン観察結果でも、良好な結果であった。一方、比較例8においては、アニール後のドメイン観察結果は非常に良好であるが、UV照射後の応答速度が遅かった。比較例7においては、応答速度は速かったが、アニール後にドメインが多数観察された。
 更に実施例2~11、比較例9及び10においては、UV照射後の応答速度が速く、且つアニール後のドメイン観察結果でも非常に良好な結果を示した。
In Table 7, in Example 1, the response speed after UV irradiation was fast, and the domain observation result after annealing was also good. On the other hand, in Comparative Example 8, the domain observation result after annealing was very good, but the response speed after UV irradiation was slow. In Comparative Example 7, the response speed was fast, but many domains were observed after annealing.
Further, in Examples 2 to 11 and Comparative Examples 9 and 10, the response speed after UV irradiation was high, and the domain observation results after annealing showed very good results.
Figure JPOXMLDOC01-appb-T000034
 応答速度の判定
  ○:早い(非常に良好)<50msec
  △:早い(良好)<50~100msec
  ×:遅い(悪い)>200msec
Figure JPOXMLDOC01-appb-T000034
Response speed judgment ○: Fast (very good) <50 msec
Δ: Fast (good) <50 to 100 msec
X: Slow (bad)> 200 msec
 表8において、UV照射量に対する応答速度は、比較例11及び比較例12のポリシロキサン単独からなる液晶配向処理剤と比較し、ポリアミック酸及びポリイミドからなる群から選ばれる少なくとも一種類の重合体を含有する液晶配向処理剤の方が、UV照射に対する応答速度の向上する範囲が広いことがわかった。 In Table 8, the response speed with respect to the UV irradiation amount is at least one polymer selected from the group consisting of polyamic acid and polyimide, compared with the liquid crystal alignment treatment agent consisting of polysiloxane alone in Comparative Example 11 and Comparative Example 12. It was found that the liquid crystal alignment treatment agent contained has a wider range of improved response speed to UV irradiation.
Figure JPOXMLDOC01-appb-T000035
 表9においては、表2、及び表6と同様に、電気特性に関しても、ウレイド基を含有する液晶配向処理剤は、ウレイド基を含有しない液晶配向処理剤と比較し、VHRが高く、イオン密度が低いことがわかった。
Figure JPOXMLDOC01-appb-T000035
In Table 9, as in Tables 2 and 6, regarding the electrical characteristics, the liquid crystal aligning agent containing a ureido group has a higher VHR and ion density than the liquid crystal aligning agent containing no ureido group. Was found to be low.
Figure JPOXMLDOC01-appb-T000036
 表10において、表3と同様に、無機単独からなる液晶配向処理剤と比較し、ポリアミック酸及びポリイミドからなる群から選ばれる少なくとも一種類の重合体を含有する液晶配向処理剤の方が、リワーク性が高いことがわかった。
Figure JPOXMLDOC01-appb-T000036
In Table 10, as in Table 3, the liquid crystal alignment treatment agent containing at least one polymer selected from the group consisting of polyamic acid and polyimide is reworked compared to the liquid crystal alignment treatment agent composed of inorganic alone. It was found that the nature is high.
 本発明の液晶配向処理剤を用いて形成された液晶配向膜は、垂直配向力が低下せず、UV照射後の応答速度も優れており、本発明の液晶配向膜を有する液晶表示素子は、TFT液晶表示素子、TN液晶表示素子、VA液晶表示素子などに有用である。
 なお、2012年8月30日に出願された日本特許出願2012-190328号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal alignment film formed using the liquid crystal aligning agent of the present invention does not have a reduced vertical alignment force and has an excellent response speed after UV irradiation, and the liquid crystal display element having the liquid crystal alignment film of the present invention is It is useful for TFT liquid crystal display elements, TN liquid crystal display elements, VA liquid crystal display elements, and the like.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2012-190328 filed on August 30, 2012 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (11)

  1.  下記の(A)成分及び(B)成分を含有することを特徴とする液晶配向処理剤。
    (A)成分:ポリアミック酸及びポリイミドからなる群から選ばれる少なくとも一種類の重合体。
    (B)成分:式(1)で表されるアルコキシシラン及び式(3)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサン。

         RSi(OR     (1)

    (Rは下記式(2)の構造であり、Rは炭素原子数1~5のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000001
    (Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。
    は単結合、二重結合を含有する炭素数3~8の直鎖状若しくは分岐状の炭化水素基、又は-(CR17R18b-(bは1~15の整数であり、R17、R18はそれぞれ独立に、水素原子又は炭素数1~3のアルキル基である。)である。
    は単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又は-OCO-である。
    はベンゼン環、シクロへキシル環、及び複素環から選ばれる2価の環状基であり、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、又はフッ素原子で置換されていてもよい。さらに、Yはステロイド骨格を有する炭素数12~25の2価の有機基であってもよい。
    はベンゼン環、シクロへキシル環及び複素環よりなる群から選ばれる2価の環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
    は水素原子又は炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数である。)

         RSi(OR     (3)

    (Rは、アクリル基、アクリロキシ基、メタクリル基、メタクリロキシ基又はスチリル基で置換された炭素数1~30のアルキル基であり、Rは炭素数1~5のアルキル基である。)
    The liquid crystal aligning agent characterized by containing the following (A) component and (B) component.
    Component (A): at least one polymer selected from the group consisting of polyamic acid and polyimide.
    (B) Component: Polysiloxane obtained by polycondensation of alkoxysilane represented by formula (1) and alkoxysilane containing alkoxysilane represented by formula (3).

    R 1 Si (OR 2 ) 3 (1)

    (R 1 is a structure of the following formula (2), and R 2 is an alkyl group having 1 to 5 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000001
    (Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
    Y 2 is a single bond, a linear or branched hydrocarbon group having 3 to 8 carbon atoms containing a double bond, or — (CR 17 R 18 ) b — (b is an integer of 1 to 15, R 17 and R 18 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
    Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
    Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, or 1 to 3 carbon atoms. It may be substituted with 3 alkoxyl groups, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Further, Y 4 may be a divalent organic group having 12 to 25 carbon atoms having a steroid skeleton.
    Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexyl ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, carbon It may be substituted with an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
    Y 6 is a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. n is an integer of 0-4. )

    R 3 Si (OR 4 ) 3 (3)

    (R 3 is an alkyl group having 1 to 30 carbon atoms substituted with an acryl group, an acryloxy group, a methacryl group, a methacryloxy group or a styryl group, and R 4 is an alkyl group having 1 to 5 carbon atoms.)
  2.  (B)成分が、下記式(4)で表されるアルコキシシランをさらに含有する、アルコキシシランを重縮合して得られるポリシロキサンである、請求項1に記載の液晶配向処理剤。

        (RSi(OR4-n     (4)

    (Rは、水素原子、又はヘテロ原子、ハロゲン原子、アミノ基、グリシドキシ基、メルカプト基、イソシアネート基、ウレイド基で置換されていてもよい、炭素原子数1~10の炭化水素基である。Rは炭素原子数1~5のアルキル基であり、nは0~3の整数である。)
    (B) The liquid-crystal aligning agent of Claim 1 which is a polysiloxane obtained by polycondensing the alkoxysilane which further contains the alkoxysilane represented by following formula (4).

    (R 5 ) n Si (OR 6 ) 4-n (4)

    (R 5 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a hetero atom, a halogen atom, an amino group, a glycidoxy group, a mercapto group, an isocyanate group or a ureido group. R 6 is an alkyl group having 1 to 5 carbon atoms, and n is an integer of 0 to 3.)
  3.  前記式(4)で表されるアルコキシシランが、テトラメトキシシラン又はテトラエトキシシランである請求項2に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 2, wherein the alkoxysilane represented by the formula (4) is tetramethoxysilane or tetraethoxysilane.
  4.  (B)成分のポリシロキサンの製造に使用される全アルコキシシラン中、式(1)で表されるアルコキシシランが2~20モル%使用され、かつ式(3)で表されるアルコキシシランが5~80モル%使用される請求項1に記載の液晶配向処理剤。 Of all the alkoxysilanes used in the production of the polysiloxane (B), 2 to 20 mol% of the alkoxysilane represented by the formula (1) is used, and 5 alkoxysilanes represented by the formula (3) are used. The liquid crystal aligning agent according to claim 1, which is used at -80 mol%.
  5.  (B)成分のポリシロキサンの製造に使用される全アルコキシシラン中、式(4)で表されるアルコキシシランが10~90モル%使用される請求項2又は3に記載の液晶配向処理剤。 The liquid crystal aligning agent according to claim 2 or 3, wherein 10 to 90 mol% of the alkoxysilane represented by the formula (4) is used in all alkoxysilanes used for producing the polysiloxane of the component (B).
  6.  (A)成分の100質量部に対し、(B)成分が、(B)成分が有するケイ素原子のSiO換算値で、0.5~80質量部含有される請求項1~5のいずれかに記載の液晶配向処理剤。 The component (B) is contained in an amount of 0.5 to 80 parts by mass in terms of SiO 2 of silicon atoms of the component (B) with respect to 100 parts by mass of the component (A). Liquid crystal aligning agent as described in.
  7.  有機溶媒をさらに含有し、該有機溶媒が液晶配向処理剤中、90~99質量%含有される請求項1~6のいずれかに記載の液晶配向処理剤。 7. The liquid crystal aligning agent according to claim 1, further comprising an organic solvent, wherein the organic solvent is contained in an amount of 90 to 99% by mass in the liquid crystal aligning agent.
  8.  請求項1~7のいずれかに記載の液晶配向処理剤を基板上に塗布し、乾燥し、焼成して得られる液晶配向膜。 A liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of claims 1 to 7 on a substrate, drying and firing.
  9.  前記焼成を、温度100~350℃で行い、形成される、請求項8に記載の液晶配向膜。 The liquid crystal alignment film according to claim 8, which is formed by performing the baking at a temperature of 100 to 350 ° C.
  10.  焼成後の塗膜の厚みが、5~300nmである、請求項8又は9に記載の液晶配向膜。 The liquid crystal alignment film according to claim 8 or 9, wherein the thickness of the coating film after baking is 5 to 300 nm.
  11.  請求項8~10のいずれかに記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to any one of claims 8 to 10.
PCT/JP2013/073179 2012-08-30 2013-08-29 Liquid crystal aligning agent and liquid crystal display element using same WO2014034792A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014533086A JP6233310B2 (en) 2012-08-30 2013-08-29 Liquid crystal alignment treatment agent and liquid crystal display element using the same
KR1020157007631A KR102115015B1 (en) 2012-08-30 2013-08-29 Liquid crystal aligning agent and liquid crystal display element using same
CN201380054892.7A CN104737069B (en) 2012-08-30 2013-08-29 Aligning agent for liquid crystal and the liquid crystal display element for using the aligning agent for liquid crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012190328 2012-08-30
JP2012-190328 2012-08-30

Publications (1)

Publication Number Publication Date
WO2014034792A1 true WO2014034792A1 (en) 2014-03-06

Family

ID=50183597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073179 WO2014034792A1 (en) 2012-08-30 2013-08-29 Liquid crystal aligning agent and liquid crystal display element using same

Country Status (5)

Country Link
JP (1) JP6233310B2 (en)
KR (1) KR102115015B1 (en)
CN (1) CN104737069B (en)
TW (1) TWI637026B (en)
WO (1) WO2014034792A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210364A (en) * 2014-04-25 2015-11-24 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2016145951A (en) * 2014-08-29 2016-08-12 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20170131548A (en) * 2015-03-30 2017-11-29 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2018505447A (en) * 2015-06-18 2018-02-22 深▲セン▼市華星光電技術有限公司 Liquid crystal vertical alignment film, liquid crystal display element, and method for preparing liquid crystal display element
WO2018051956A1 (en) * 2016-09-13 2018-03-22 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018225811A1 (en) * 2017-06-08 2018-12-13 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026272A1 (en) * 2015-08-11 2017-02-16 Dic株式会社 Liquid crystal display element
JP7096533B2 (en) * 2017-02-28 2022-07-06 日産化学株式会社 Compounds, liquid crystal compositions and liquid crystal display elements
CN109293919B (en) * 2017-07-24 2020-08-04 京东方科技集团股份有限公司 Liquid crystal alignment film, preparation method thereof, substrate and display device
TWI760357B (en) * 2017-08-24 2022-04-11 奇美實業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN110109293A (en) * 2019-04-04 2019-08-09 深圳市华星光电技术有限公司 The manufacturing method of the inorganic orientation film of liquid crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217866A (en) * 2009-02-19 2010-09-30 Jsr Corp Liquid crystal aligning agent, liquid crystal display device, and method for manufacturing the same
WO2012165354A1 (en) * 2011-05-27 2012-12-06 日産化学工業株式会社 Silicon-based liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757514B2 (en) 1996-02-16 2006-03-22 日産化学工業株式会社 Method for forming liquid crystal vertical alignment film
JP4504626B2 (en) 2003-03-31 2010-07-14 シャープ株式会社 Liquid crystal display device and manufacturing method thereof
JP4513950B2 (en) 2004-03-05 2010-07-28 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN101178541B (en) * 2006-10-31 2012-04-25 三洋化成工业株式会社 Photosensitive resin composition
JP2011095967A (en) 2009-10-29 2011-05-12 Yamaha Corp Bus sharing system
KR101708962B1 (en) * 2009-12-02 2017-02-21 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal aligning agent and liquid crystal display element using same
JP5936000B2 (en) * 2010-04-22 2016-06-15 日産化学工業株式会社 Manufacturing method of liquid crystal display element
ES2524422T3 (en) * 2010-12-14 2014-12-09 Syngenta Participations Ag Strigolactam derivatives and their use as plant growth regulators

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217866A (en) * 2009-02-19 2010-09-30 Jsr Corp Liquid crystal aligning agent, liquid crystal display device, and method for manufacturing the same
WO2012165354A1 (en) * 2011-05-27 2012-12-06 日産化学工業株式会社 Silicon-based liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210364A (en) * 2014-04-25 2015-11-24 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2016145951A (en) * 2014-08-29 2016-08-12 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20170131548A (en) * 2015-03-30 2017-11-29 닛산 가가쿠 고교 가부시키 가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN107615147A (en) * 2015-03-30 2018-01-19 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
KR102591734B1 (en) 2015-03-30 2023-10-19 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2018505447A (en) * 2015-06-18 2018-02-22 深▲セン▼市華星光電技術有限公司 Liquid crystal vertical alignment film, liquid crystal display element, and method for preparing liquid crystal display element
WO2018051956A1 (en) * 2016-09-13 2018-03-22 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018225811A1 (en) * 2017-06-08 2018-12-13 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JPWO2018225811A1 (en) * 2017-06-08 2020-04-09 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
JP7211361B2 (en) 2017-06-08 2023-01-24 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Also Published As

Publication number Publication date
CN104737069B (en) 2018-08-10
CN104737069A (en) 2015-06-24
JPWO2014034792A1 (en) 2016-08-08
JP6233310B2 (en) 2017-11-22
TW201431952A (en) 2014-08-16
KR102115015B1 (en) 2020-05-25
KR20150052120A (en) 2015-05-13
TWI637026B (en) 2018-10-01

Similar Documents

Publication Publication Date Title
JP6233310B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP5967391B2 (en) Polymerizable compound, liquid crystal display element, and method for producing liquid crystal display element
JP6172463B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP5257548B2 (en) Liquid crystal display element and liquid crystal aligning agent
JP6387957B2 (en) Liquid crystal aligning agent containing crosslinkable compound having photoreactive group
JP5930237B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2009093709A1 (en) Liquid-crystal alignment material, liquid-crystal alignment film, and liquid-crystal display element
JP5716674B2 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
WO2014171493A1 (en) Liquid crystal display element, liquid crystal alignment film and liquid crystal aligning agent
WO2012091088A1 (en) Coating solution for forming polyimide film, liquid crystal alignment agent, polyimide film, liquid crystal alignment film, and liquid crystal display element
JPWO2014133042A1 (en) Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2013111836A1 (en) Method for preparing polyimide varnish, and liquid crystal aligning agent
JP6217937B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2008053848A1 (en) Liquid crystal alignment treatment agent and liquid crystal display element using the same
JP6575510B2 (en) Liquid crystal display element, liquid crystal alignment film, and liquid crystal alignment treatment agent
JP5950137B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6319581B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014092170A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7472799B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2020162508A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157007631

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13833955

Country of ref document: EP

Kind code of ref document: A1