WO2014034774A1 - Optical fiber, method for manufacturing optical fiber, and method for manufacturing optical fiber preform - Google Patents

Optical fiber, method for manufacturing optical fiber, and method for manufacturing optical fiber preform Download PDF

Info

Publication number
WO2014034774A1
WO2014034774A1 PCT/JP2013/073131 JP2013073131W WO2014034774A1 WO 2014034774 A1 WO2014034774 A1 WO 2014034774A1 JP 2013073131 W JP2013073131 W JP 2013073131W WO 2014034774 A1 WO2014034774 A1 WO 2014034774A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
dopant
region
core
refractive index
Prior art date
Application number
PCT/JP2013/073131
Other languages
French (fr)
Japanese (ja)
Inventor
朝陽 王
石田 格
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2014034774A1 publication Critical patent/WO2014034774A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02366Single ring of structures, e.g. "air clad"
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/23Double or multiple optical cladding profiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an optical fiber, an optical fiber manufacturing method, and an optical fiber preform manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2012-192596 for which it applied on August 31, 2012, and uses the content here.
  • An optical fiber with holes is an optical fiber having a plurality of continuous holes in the waveguide direction, and it is known that the holes can provide optical characteristics that cannot be realized with conventional optical fibers.
  • a holey optical fiber is also called a holey fiber (HF).
  • HF holey fiber
  • Known types of waveguide structures of holey fibers include photonic crystal fibers (Photonic Crystal Fiber, PCF) and hole assist fibers (Hole-Assisted Fiber, HAF).
  • An optical fiber with holes is obtained by drawing an optical fiber preform (preform with holes) provided with holes.
  • the preform with holes is obtained, for example, by a drilling method such as a drilling method in which a hole is drilled by drilling an optical fiber preform (see, for example, Patent Documents 1 to 3).
  • the optical fiber with holes affects the loss due to the roughness of the inner surface of the holes and the degree of cleaning in the holes, the smoothing process, dehydration process, and etching process in the holes are performed at the stage of the holed preform. Then, in order to prevent water and impurities from being mixed into the pores until the drawing process, the pore ends are sealed.
  • Drawing of the optical fiber with holes is performed while pressurizing the inside of the holes and controlling the pressure from one end of the preform with holes. Thereby, the optical fiber with a hole which has a desired hole diameter is obtained (for example, refer patent document 1).
  • a through hole is formed along the axial direction of the optical fiber preform by rotating a drill tool that is a drilling tool by drilling with a drill.
  • a drilling device used for drilling is roughly constituted by a spindle of a rotating body, a drill tool used for drilling, and a gripping part that grips an optical fiber preform.
  • the drill tool also includes a hollow pipe and a grindstone provided at the tip of the hollow pipe to which cylindrical diamond abrasive grains are attached.
  • the outer diameter of the grindstone is determined according to the outer diameter of the optical fiber preform, the designed outer diameter of the hole of the fiber formed from the optical fiber preform, and the outer diameter of the optical fiber. 15 mm.
  • the current drilling apparatus has a limit of a processing length of about 200 mm in the case of drilling with a diameter of 2 mm and a length of about 400 mm in the case of drilling with a diameter of 4 mm (Patent Documents 2 and 3).
  • the reason why the hole length is limited is that the smaller the hole diameter, the more rigid the drill tool used for drilling, for example, a pipe-shaped drill tool with diamond particles embedded at the tip. If the processing length is long, the straightness of the hole is lost, and the design of the hole position in the cross section of the optical fiber is shifted, so that the processing accuracy cannot be maintained.
  • Patent Document 3 in order to reduce the cost of an optical fiber with a hole, first, a single short optical fiber preform is drilled by a drill method, and then the number of drilled preforms is several. Next, each glass substrate is stretched and cut, and then quartz glass is deposited on the outside of each stretched and cut hole base material by a jacket method, OVD method, or the like to produce several preforms with holes. Finally, a method is described in which a dummy quartz tube is welded to each of the preforms with holes, and spinning is performed while pressurizing the inside of the holes.
  • the positional deviation of the through hole does not become zero in the longitudinal direction of the optical fiber preform.
  • the hole position is far from the desired position on the end face of processing of the optical fiber preform forming the through hole, and the desired optical characteristics are obtained. It cannot be obtained, and the production yield in the drilling process is deteriorated.
  • the present invention has been made in view of the above circumstances, and an optical fiber, a method of manufacturing an optical fiber, and an optical fiber, in which a positional deviation of the holes is suppressed in a cross section perpendicular to the longitudinal direction of the optical fiber with holes. It aims at providing the manufacturing method of a base material.
  • an optical fiber includes a core, a clad portion surrounding a periphery of the core and having a dopant added region to which a dopant is added, and the core in the clad portion. And a plurality of holes provided concentrically around the core.
  • the diameter of the hole is defined as d 1
  • the pure silica glass in the inner part near the core in the boundary part between the hole and the dopant addition region The relative refractive index difference of the dopant-added region with respect to is defined as ⁇ r in, and the ratio of the dopant-added region to pure quartz glass in the outer portion far from the core in the boundary between the vacancies and the dopant-added region
  • the refractive index difference is defined as ⁇ r out and ( ⁇ r out ⁇ r in ) / d 1 is defined as the gradient k of the refractive index profile in the dopant addition region
  • the vacancies are inclined in the dopant addition region.
  • the rate k is provided in a region within a predetermined range.
  • the gradient k is ⁇ 0.05% / ⁇ m or more and 0.05% / ⁇ m or less.
  • the optical fiber manufacturing method includes a core, a clad portion surrounding the core and having a dopant-added region to which a dopant is added, and parallel to the core in the clad portion and An optical fiber including a plurality of holes provided on a concentric circle with a core as a center is manufactured.
  • the diameter of the hole is defined as d 1
  • the ratio of the dopant-added region to the pure silica glass in the inner portion close to the core in the boundary portion between the hole and the dopant-added region.
  • a refractive index difference is defined as ⁇ r in, and a relative refractive index difference of the dopant added region with respect to pure quartz glass in an outer portion far from the core in a boundary portion between the hole and the dopant added region is ⁇ r out .
  • ⁇ r out a relative refractive index difference of the dopant added region with respect to pure quartz glass in an outer portion far from the core in a boundary portion between the hole and the dopant added region
  • ⁇ r out a relative refractive index difference of the dopant added region with respect to pure quartz glass in an outer portion far from the core in a boundary portion between the hole and the dopant added region
  • ⁇ r out a relative refractive index difference of the dopant added region with respect to pure quartz glass in an outer portion far from the core in a boundary portion between the hole and the dopant added region
  • d 1 the gradient k of the refractive index profile in the dopant addition region
  • the vacancies in the dopant addition region have the gradient
  • a material is manufactured (optical fiber preform manufacturing process), and a plurality of holes are formed on the concentric circle centered on the core in the dopant addition region (hole forming process), and an inner surface of the hole is formed. Smoothing (hole smoothing step), producing an optical fiber preform with holes, and drawing the optical fiber preform with holes while drawing the inside of the holes (drawing step).
  • the diameter of the hole formed in the dopant added region of the cladding part is defined as d 1, and among the boundary part between the hole and the dopant added region , in the inner portion closer to the core, the relative refractive index difference of the dopant doped region for pure silica glass is defined as [Delta] r in, among the boundary portion between the air hole and the dopant doped region, farther outer portion from said core Is defined as ⁇ r out, and ( ⁇ r out ⁇ r in ) / d 1 is defined as the gradient K of the refractive index profile in the dopant added region,
  • the holes are formed in a region where the gradient K is within a predetermined range in the dopant addition region.
  • the gradient k is ⁇ 0.05% / ⁇ m or more and 0.05% / ⁇ m or less, and the gradient K is ⁇ 0.07% / mm or more and 0. 0.07% / mm or less is preferable.
  • the method for manufacturing an optical fiber preform according to the third aspect of the present invention includes a core, a clad portion that surrounds the core and includes a dopant-added region to which a dopant is added, and is parallel to the core in the clad portion.
  • an optical fiber preform including a plurality of holes provided on the concentric circle centered on the core and provided in the dopant addition region is manufactured.
  • a method of manufacturing an optical fiber preform including an optical fiber preform including a core and a cladding portion surrounding the core and having a dopant added region to which a dopant is added (optical fiber).
  • the diameter of the hole formed in the dopant added region of the cladding part is defined as d 1, and among the boundary part between the hole and the dopant added region , in the inner portion closer to the core, the relative refractive index difference of the dopant doped region for pure silica glass is defined as [Delta] r in, among the boundary portion between the air hole and the dopant doped region, farther outer portion from said core Is defined as ⁇ r out, and ( ⁇ r out ⁇ r in ) / d 1 is defined as the gradient K of the refractive index profile in the dopant added region,
  • the holes are formed in a region where the gradient K is within a predetermined range in the dopant addition region.
  • the inclination rate K is preferably ⁇ 0.07% / mm or more and 0.07% / mm or less.
  • the first aspect, the second aspect, and the third aspect of the present invention it is possible to provide an optical fiber in which the positional deviation of the holes is suppressed.
  • FIG. 7 is a schematic diagram showing another example of drilling with a drill in a region where the refractive index profile of the optical fiber preform is changed and the refractive index profile of the optical fiber preform is changed.
  • FIG. 7 is a schematic diagram showing another example of drilling with a drill in a region where the refractive index profile of the optical fiber preform is changed and the refractive index profile of the optical fiber preform is changed.
  • FIG. 7 is a schematic diagram showing another example of drilling with a drill in a region where the refractive index profile of the optical fiber preform is changed and the refractive index profile of the optical fiber preform is changed. It is a schematic sectional drawing which shows the optical fiber preform
  • FIG. 5 is a schematic diagram showing an example of a case where drilling is performed with a drill in a region where the refractive index profile of the optical fiber preform changes in an area where the refractive index profile of the optical fiber preform changes in an embodiment of the present invention.
  • the schematic diagram which shows the refractive index profile of the optical fiber preform in one Embodiment of this invention, and shows the other example at the time of drilling by a drill in the area
  • DELTA positional offset amount
  • DELTA positional offset amount
  • the inventors have different refractive index profiles in the cross section perpendicular to the longitudinal direction of the optical fiber preform, so that the hole positions drilled are in the longitudinal direction of the optical fiber preform. It has been found that the refractive index profile tends to shift in an inclined region. That is, it has been found that there is a limit to improving the positional deviation of the holes only by optimizing the processing conditions.
  • the relationship between the refractive index profile of the optical fiber preform and the processing gap of the holes in the optical fiber preform will be described.
  • a region 2a in which the refractive index profile changes region where the refractive index profile is not flat
  • the relative refractive index difference ⁇ of the cladding portion 2 with respect to pure silica glass increases from the center side of the optical fiber preform toward the outside (in the radial direction).
  • the positions of the holes in the longitudinal direction of the optical fiber preform are changed from a low refractive index side to a high refractive index side, that is, light.
  • the optical fiber preform tends to be shifted outward from the center side of the optical fiber preform.
  • n 2 refractive index of the additive-free pure quartz glass
  • n 1 refractive index of the portion of the cladding portion 2 where the dopant is added
  • a region (region where the refractive index profile is not flat) 12 a where the refractive index profile is changed is formed in the cladding portion 12 surrounding the core 11. Exists.
  • the relative refractive index difference ⁇ of the cladding portion 12 with respect to pure silica glass decreases from the center side of the optical fiber preform toward the outside (in the radial direction). .
  • the positions of the holes are changed from the low refractive index side to the high refractive index side in the longitudinal direction of the optical fiber preform, that is, the light.
  • the reason that the region 2a in which the refractive index profile changes is present in the cladding portion 2 is to manufacture the optical fiber preform.
  • the addition of fluorine or chlorine to the clad part 2 slightly lowered the refractive index of the clad part 2.
  • the optical fiber preform having the refractive index profile as shown in FIG. 1 or FIG. 2 in contrast to the optical fiber preform having the refractive index profile as shown in FIG. 1 or FIG. 2, in the optical fiber preform having the refractive index profile as shown in FIG.
  • the refractive index profile is flat.
  • the present inventors form holes in the clad portion 22 having a flat refractive index profile by drilling with a drill, the positions of the holes are perpendicular to the longitudinal direction of the optical fiber preform. I found out that
  • an optical fiber preform having six holes using an embodiment of the present invention, a manufacturing method of an optical fiber, and an optical fiber manufactured by this manufacturing method will be specifically described.
  • an optical fiber preform and optical fiber having six holes are illustrated, but the present invention is not limited to this, and the number of holes and the arrangement of holes may be different.
  • An optical fiber preform 30 having a core 31 at the center as shown in FIG. 4 and a clad portion 32 around the core 31 is produced.
  • the core 31 is made of quartz glass to which a dopant such as germanium (Ge) is added.
  • the clad portion 32 is made of quartz glass having a dopant added region to which a dopant such as fluorine (F) or chlorine (Cl) is added.
  • n 1 the refractive index of the core 31, and the refractive index of the cladding portion 32 and n 2, satisfy the relationship of n 2 ⁇ n 1.
  • the optical fiber preform 30 has a refractive index profile as shown in FIG. 5 or 6, for example, and the refractive index profile is flat or slightly changed in the dopant addition region of the cladding portion 32 surrounding the core 31.
  • the region 32a is present (the refractive index profile is not flat).
  • the optical fiber preform 30 has a refractive index profile as shown in FIG. 5
  • the relative refractive index difference ⁇ of the dopant added region of the cladding portion 32 with respect to pure silica glass in the region 32 a is the optical fiber preform 30. Slightly increases from the center side toward the outside (in the radial direction).
  • the optical fiber preform 30 has a refractive index profile as shown in FIG. 6, in the region 32a, the relative refractive index difference ⁇ of the dopant added region of the cladding portion 32 with respect to pure silica glass is the optical fiber preform. It slightly decreases from the center side of the material 30 toward the outside (in the radial direction).
  • a general optical fiber preform production method such as a VAD (Vapor Phase Axial Deposition) method or a CVD (Chemical Vapor Deposition) method can be applied.
  • VAD Vapor Phase Axial Deposition
  • CVD Chemical Vapor Deposition
  • a drill tool for forming the hole 33 in the region 32a in which the refractive index profile is flat or slightly changed in the dopant addition region of the cladding part 32 is prepared, and used as a drill chuck of a drilling device (not shown). Chuck.
  • FIG. 8 is a schematic perspective view showing an example of a drill tool.
  • the drill tool 40 is schematically configured from a pipe 41 and a cutting portion 42 provided at the tip of the pipe 41 and having a through hole.
  • the pipe 41 has a cylindrical shape, and the outer diameter of the pipe 41 is slightly smaller than the diameter of the hole formed in the optical fiber preform 30. Further, the through hole of the pipe 41 and the through hole of the cutting part 42 are connected to each other. Therefore, the drill tool 40 is formed with a through hole 43 including the through hole of the pipe 41 and the through hole of the cutting part 42.
  • FIG. 9 is a schematic perspective view showing a state when the drill tool 40 is chucked by the drill chuck 50.
  • the drill chuck 50 is generally configured from a through hole 51 for inserting the drill tool 40, a flange 52, and a shank 53 fixed to the flange 52.
  • the shank 53 is configured such that the size of the through hole 51 can be changed on the distal end side of the shank 53 (drill chuck 50) by a tightening mechanism (not shown). Therefore, by reducing the size of the through hole 51 by the tightening mechanism, the drill tool 40 inserted through the through hole 51 is chucked on the tip side of the shank 53.
  • FIG. 10 is a schematic perspective view showing drilling with a drill tool.
  • the drill chuck 50 is advanced toward the clad portion 32 while rotating the drill chuck 50 by a rotating device (rotating means, not shown).
  • the drill tool 40 advances along the longitudinal direction of the clad part 32 (optical fiber preform 30) while the drill tool 40 rotates, and the hole 33 from the one end side of the optical fiber preform 30 to the clad part 32 is pushed.
  • the formation of is started.
  • liquid is introduced from the rear end side of the through hole 43 of the drill tool 40 (the side opposite to the end portion where the cutting portion 42 is provided).
  • a water-soluble cutting fluid is used as this liquid.
  • the liquid introduced into the through hole 43 passes through the through hole 43 and flows out from the tip of the cutting part 42.
  • the holes 33 of the cladding part 32 do not penetrate, so the liquid flowing out from the tip of the cutting part 42 loses its place, and the cutting part 42
  • the air flows backward from the inner wall surface of the cladding portion 32 and is discharged from the surface of the hole 33 where the drill tool 40 is inserted (that is, one end side of the optical fiber preform 30). Therefore, until the air holes 33 penetrate the clad portion 32, the temperature of the clad portion 32 is prevented from excessively rising due to the friction between the cutting portion 42 and the clad portion 32. Further, glass waste generated by the perforation is discharged from the portion where the drill tool 40 is inserted into the clad portion 32 together with the liquid.
  • the drill tool 40 performs the drilling process on the clad part 32 to form the holes 33 penetrating the clad part 32 (optical fiber preform 30) in the longitudinal direction.
  • the core 31 is formed in a region 32 a where the refractive index profile in the dopant addition region of the cladding portion 32 is flat or slightly changed.
  • Six holes 33 are formed at substantially equal intervals on a concentric circle centered at.
  • the refractive index in the dopant addition region of the cladding portion 32 is as follows. Holes 33 are formed in the region 32a where the profile is flat or slightly changed. In this case, the diameter of the hole formed in the dopant addition region of the cladding portion 32 is d 1 , and the dopant addition to the pure quartz glass in the inner portion near the core 31 in the boundary portion between the hole 33 and the dopant addition region.
  • the relative refractive index difference of the region is ⁇ r in
  • the relative refractive index difference of the dopant added region with respect to pure quartz glass in the outer portion far from the core 31 in the boundary portion between the hole 33 and the dopant added region is ⁇ r out
  • ( ⁇ r out ⁇ r in ) / d 1 is defined as a gradient K of the refractive index profile in the dopant addition region, a region in which the gradient K is within a predetermined range in the dopant addition region (the refractive index profile is flat or slightly changed).
  • a hole 33 is formed in the region 32a).
  • the inclination rate K is preferably ⁇ 0.07% / mm or more and 0.07% / mm or less, and more preferably ⁇ 0.03% / mm or more and 0.03% / mm or less. If the holes 33 are formed in a region where the gradient K in the dopant addition region of the cladding portion 32 is within a predetermined range, preferably in a region where the gradient K is within the above range, an optical fiber mother is formed by drilling with a drill. The holes 33 can be formed perpendicular to the longitudinal direction of the material 30 (the amount of positional deviation between the one end surface and the other end surface of the optical fiber preform 30 is small). That is, as shown in FIG.
  • the relative refractive index difference ⁇ of the dopant-added region of the cladding portion 32 with respect to the core 31 increases from the center side of the optical fiber preform 30 toward the outside (in the radial direction).
  • the relative refractive index difference ⁇ of the dopant-added region of the cladding portion 32 with respect to pure quartz glass is the optical fiber preform 30.
  • the vacancy 33 is formed in a region where the gradient K in the dopant addition region of the cladding portion 32 is within a predetermined range. If formed, the holes 33 can be formed perpendicular to the longitudinal direction of the optical fiber preform 30 by drilling with a drill.
  • a holey optical fiber 60 as shown in FIG. 11 is obtained by drawing the holey optical fiber preform 30A manufactured by the above method.
  • the method of drawing the holey optical fiber preform 30A is not particularly limited, and a known method is used. Moreover, it is preferable to coat
  • the holey optical fiber 60 has a core 61 at the center, a clad portion 62 around the core 61, and roughly includes six holes 63 provided in parallel with the core 61 in the clad portion 62. It is configured.
  • the six holes 63 are arranged at equal intervals on a concentric circle with the core 61 as the center.
  • the cladding 62 has a dopant-added region to which a dopant is added. In the region where the refractive index profile is flat or slightly changed in the dopant-added region of the cladding 62, the cladding 62 extends in the longitudinal direction of the optical fiber 60.
  • the air holes 63 are provided so as to be arranged at substantially equal intervals on the concentric circles with the core 61 as the center.
  • the refractive index profile of the holey optical fiber preform 30A is maintained. Therefore, assuming that the refractive index of the core 61 is n 11 and the refractive index of the cladding 62 is n 12 , n 12 ⁇ satisfy the relationship of n 11.
  • the clad portion 62 has a dopant addition region to which a dopant is added, a hole 63 is provided in the dopant addition region, the diameter of the hole 63 is d 1 , and the hole 63.
  • ⁇ r in is the relative refractive index difference of the dopant addition region with respect to pure quartz glass in the inner portion near the core 61 among the boundary portion between the hole 63 and the dopant addition region.
  • the holes 63 are regions where the gradient k is in a predetermined range in the dopant addition region (the refractive index profile is flat or slightly changed). Area).
  • the inclination rate k is preferably ⁇ 0.05% / ⁇ m or more and 0.05% / ⁇ m or less, and more preferably ⁇ 0.04% / ⁇ m or more and 0.04% / ⁇ m or less. If the hole 63 is provided in a region where the gradient k in the dopant addition region of the cladding 62 is within a predetermined range, preferably in a region where the gradient K is in the above range, the amount of positional deviation of the hole 63
  • the holey optical fiber 60 having a small wavelength shift amount (position displacement of the hole 63 between the one end face and the other end face of the holey optical fiber 60) and excellent wavelength dispersion characteristics can be obtained.
  • Example 1 An optical fiber preform having a core at the center and a cladding around the core was produced.
  • the optical fiber preform had an outer diameter of 100 mm and a length of 1000 mm.
  • the core was comprised from the quartz glass to which germanium (Ge) was added, and the clad part was comprised from the quartz glass which has the dopant addition area
  • six holes were formed at substantially equal intervals on a concentric circle centered on the core by drilling with a drill in the dopant addition region.
  • the outer diameter of the tip of the drill tool is set to 3.0 mm
  • the drilling length is set to 1000 mm
  • a through hole having a diameter of 3.0 mm is formed along the longitudinal direction of the optical fiber preform, and a hole is provided.
  • An optical fiber preform was obtained.
  • the diameter of the hole formed in the dopant-added region of the clad part is d 1
  • the relative refractive index difference of the dopant-added region with respect to pure quartz glass in the inner part near the core in the boundary part between the hole and the dopant-added region is ⁇ r in
  • the relative refractive index difference of the dopant addition region with respect to pure quartz glass in the outer portion far from the core in the boundary between the hole and the dopant addition region is expressed as ⁇ r out , ( ⁇ r out ⁇ r in ) / d 1
  • the gradient K was defined as the gradient K of the refractive index profile in the dopant addition region.
  • the hole diameter d 1 was set to 3.0 mm
  • the relative refractive index difference ⁇ r in was ⁇ 0.0295%
  • the relative refractive index difference ⁇ r out was ⁇ 0.0066%.
  • the gradient K of the refractive index profile of the obtained optical fiber preform with holes was 0.008% / mm.
  • Example 1 In the same manner as in Example 1, a holey optical fiber preform was obtained. In the same manner as in Example 1, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was calculated. Here, the hole diameter d 1 was 3.0 mm, the relative refractive index difference ⁇ r in was ⁇ 0.2825%, and the relative refractive index difference ⁇ r out was 0.0485%. As a result, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was 0.11% / mm.
  • Example 2 In the same manner as in Example 1, a holey optical fiber preform was obtained. In the same manner as in Example 1, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was calculated. Here, the hole diameter d 1 was 3.0 mm, the relative refractive index difference ⁇ r in was ⁇ 0.5043%, and the relative refractive index difference ⁇ r out was 0.0572%. As a result, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was 0.187% / mm.
  • Example 3 In the same manner as in Example 1, a holey optical fiber preform was obtained. In the same manner as in Example 1, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was calculated. Here, the hole diameter d 1 was set to 3.0 mm, the relative refractive index difference ⁇ r in was ⁇ 0.2810%, and the relative refractive index difference ⁇ r out was ⁇ 0.5229%. As a result, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was -0.081% / mm.
  • Example 4 In the same manner as in Example 1, a holey optical fiber preform was obtained. In the same manner as in Example 1, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was calculated. Here, the hole diameter d 1 was 3.0 mm, the relative refractive index difference ⁇ r in was 0.0398%, and the relative refractive index difference ⁇ r out was ⁇ 0.4182%. As a result, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was ⁇ 0.153% / mm.
  • the allowable range of the positional deviation amount ⁇ R of the holes is defined as in the following formula (1).
  • ⁇ R ⁇ ⁇ r / d ⁇ D (1)
  • D represents the diameter of the holey optical fiber preform
  • d represents the diameter of the holey optical fiber obtained by drawing the holey optical fiber preform.
  • the diameter d of the optical fiber with holes is set to 125 ⁇ m, like the outer diameter of a general optical fiber.
  • ⁇ r represents an allowable range of the positional deviation amount with respect to the design position of the hole position of the optical fiber formed from the preform.
  • Example 1 the gradient K of the refractive index profile of the holey optical fiber preform was 0.008% / mm. Also, the hole positional deviation amount ⁇ R in the holey optical fiber preform was 0.13 mm, which was within the allowable range of the hole positional deviation amount ⁇ R. In Comparative Example 1, the gradient K of the refractive index profile of the holey optical fiber preform was 0.11% / mm. Also, the hole positional deviation amount ⁇ R in the holey optical fiber preform was 0.45 mm, which exceeded the allowable range of the hole positional deviation amount ⁇ R. In Comparative Example 2, the gradient K of the refractive index profile of the holey optical fiber preform was 0.187% / mm.
  • the hole position deviation amount ⁇ R in the holey optical fiber preform was 0.99 mm, which exceeded the allowable range of the hole position deviation amount ⁇ R.
  • the gradient K of the refractive index profile of the holey optical fiber preform was ⁇ 0.081% / mm.
  • the hole positional deviation amount ⁇ R in the optical fiber preform with holes was ⁇ 0.38 mm, which exceeded the allowable range of the positional deviation amount ⁇ R of the holes.
  • the gradient K of the refractive index profile of the holey optical fiber preform was ⁇ 0.153% / mm.
  • the hole positional deviation amount ⁇ R in the holey optical fiber preform was ⁇ 0.63 mm, which exceeded the allowable range of the hole positional deviation amount ⁇ R. In this way, it was confirmed that the gradient K of the refractive index profile and the positional deviation amount ⁇ R of the holes in the optical fiber preform with holes are closely related.
  • the amount of positional deviation ⁇ R of holes in the optical fiber preform with holes shown in Table 1 and the gradient K of the refractive index profile of the optical fiber preform with holes are plotted, and a graph as shown in FIG.
  • the permissible range of the hole misalignment amount ⁇ R in the holey optical fiber preform includes the hole misalignment amount ⁇ r in the holey optical fiber, and the hole misalignment optical fiber preform and the holey optical fiber. It is calculated by a proportional expression (the following expression (3)).
  • ⁇ R ( ⁇ r / d) ⁇ D (3)
  • D represents the diameter of an optical fiber base material with a hole
  • the allowable range of ⁇ R is ⁇ It becomes 0.32 mm or more and 0.32 mm or less.
  • the allowable range of the gradient K of the refractive index profile of the holey optical fiber preform is ⁇ 0.07% / mm or more and 0.07% / mm or less.
  • Example 2 By drawing the optical fiber preform with holes obtained in Example 1, a core is provided in the center part, a cladding part is provided around the core part, and the refractive index profile is flat in the dopant addition region of the cladding part. Alternatively, in a slightly changing region, there are six holes provided so as to be arranged along the longitudinal direction of the optical fiber and at almost equal intervals on a concentric circle centered on the core. A holey optical fiber was obtained.
  • the diameter of the holes is d 1
  • the relative refractive index difference of the dopant-added region with respect to pure silica glass in the inner portion near the core in the boundary between the holes and the dopant-added region the [Delta] r in, among the boundary portions between the holes and the dopant doped region, the far outer portion from the core, when the relative refractive index difference of the dopant doped region for pure silica glass is defined as ⁇ r out, ( ⁇ r out - ⁇ r in ) / D 1
  • the gradient k of the refractive index profile in the dopant addition region represented by 1 was calculated.
  • the hole diameter d 1 was 6.0 ⁇ m
  • the relative refractive index difference ⁇ r in was ⁇ 0.0017%
  • the relative refractive index difference ⁇ r out was 0.0112%.
  • the gradient k of the refractive index profile of the obtained optical fiber preform with holes was 0.002% / ⁇ m.
  • the distances from the center of the holey optical fiber 110 (center of the core 114) to the center of the six holes 113 are defined as rs1, rs2, rs3, rs4, rs5, and rs6, respectively.
  • the distances rs1 to rs6 were measured.
  • the average value of these distances rs1 to rs6 was defined as the hole position rs in the machining start end face 111.
  • the distance from the center of the holey optical fiber 110 (center of the core 114) to the center of the six holes 113 on the processing end face 112 is defined as re1, re2, re3, re4, re5, and re6, respectively.
  • the distances re1 to re6 were measured.
  • the average value of these distances re1 to re6 was defined as the hole position re in the processing end face 112.
  • the hole positional deviation amount ⁇ r in the holey optical fiber 110 was defined as
  • the hole misregistration amount ⁇ r in Example 2 and Comparative Examples 5 to 8 was measured. The results are shown in Table 2.
  • ⁇ r (allowable range of positional deviation with respect to the design position of the hole position of the optical fiber (optical fiber with holes) formed from the preform) is ⁇ 0.4 ⁇ m or more and 0.4 ⁇ m. It was as follows. If the hole misalignment amount ⁇ r of the holey optical fiber in Example 2 and Comparative Examples 5 to 8 is within the allowable range described later, it is determined as “OK”, and if it is out of the above allowable range, “NG” is determined. Was determined. The results are shown in Table 2.
  • Example 2 the gradient k of the refractive index profile of the optical fiber with holes was 0.002% / ⁇ m.
  • the hole positional deviation amount ⁇ r in the holey optical fiber was 0.16 ⁇ m, which was within the allowable range of the hole positional deviation amount ⁇ r.
  • the gradient k of the refractive index profile of the optical fiber with holes was 0.085% / ⁇ m.
  • the hole positional deviation amount ⁇ r in the optical fiber with holes was 0.56 ⁇ m, which exceeded the allowable range of the positional deviation amount ⁇ r of the holes.
  • the gradient k of the refractive index profile of the holey optical fiber was 0.133% / ⁇ m.
  • the hole position deviation amount ⁇ r in the holey optical fiber was 1.24 ⁇ m, which exceeded the allowable range of the hole position deviation amount ⁇ r.
  • the gradient k of the refractive index profile of the holey optical fiber was ⁇ 0.072% / ⁇ m.
  • the hole positional deviation amount ⁇ r in the holey optical fiber was ⁇ 0.48 ⁇ m, which exceeded the allowable range of the hole positional deviation amount ⁇ r.
  • the gradient k of the refractive index profile of the holey optical fiber was ⁇ 0.108% / ⁇ m.
  • the hole positional deviation amount ⁇ r in the optical fiber with holes was ⁇ 0.78 ⁇ m, which exceeded the allowable range of the positional deviation amount ⁇ r of the holes.
  • the amount of positional deviation ⁇ r of holes in the optical fiber with holes shown in Table 2 and the gradient k of the refractive index profile of the optical fiber with holes are plotted, and a graph as shown in FIG. 15 is created.
  • the following approximate expression (4) showing the relationship between the positional deviation amount ⁇ r of the hole in the optical fiber with holes and the gradient k of the refractive index profile of the optical fiber with holes was obtained.
  • ⁇ r 7.9k (4)
  • the allowable range of ⁇ r is set to ⁇ 0.4 ⁇ m or more and 0.4 ⁇ m or less as will be described later, the allowable range of the gradient rate k of the refractive index profile of the optical fiber with holes is ⁇ 0.
  • the range of chromatic dispersion characteristics is specified. Specifically, there is a standard in which the zero dispersion wavelength is in the range of 1300 to 1324 nm and the zero dispersion Slope is 0.092 ps / nm 2 / km. .
  • the wavelength dispersion characteristics of the holey optical fiber of Example 2 prepared by drawing the holey optical fiber preform of Example 1 were measured. The results are shown in Table 3. Further, as Comparative Example 9, a holey optical fiber preform with a hole misalignment amount ⁇ R of 0.33 mm was prepared, and the holey optical fiber preform was drawn to obtain a hole misalignment amount ⁇ r.
  • the processing bending can be suppressed, and the zero dispersion wavelength and the zero dispersion Slope on the processing end face side are both within the above-mentioned standard.
  • the zero dispersion wavelength on the processing end face side was shifted to the longer wavelength side than the above standard.
  • the zero dispersion Slope on the processing end face side exceeded the standard value.
  • the wavelength dispersion characteristic of the holey optical fiber is the international standard ITU- It was found that TG657 was not satisfied.
  • the amount of positional deviation of the holes in the optical fiber with a hole is in the range of ⁇ 0.4 ⁇ m to 0.4 ⁇ m and the wavelength dispersion characteristic of the optical fiber with a hole satisfies the international standard ITU-T G657. .
  • Optical fiber preform 21, 31, 61... Core, 22, 32, 62... Cladding portion, 30... Optical fiber preform, 30 A. Optical fiber preform with holes, 33, 63. , 60... Optical fiber with holes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

This optical fiber is provided with a core (31), a cladding part (32) surrounding the periphery of the core and having a dopant-added region (32a) to which a dopant is added, and a plurality of vacancies (33) provided in the cladding part parallel to the core and concentrically with the core. When the diameter of the vacancies is defined as d1, the relative refractive index differences of the dopant-added region with respect to pure quartz glass in an inside portion close to the core and an outside portion distant from the core at a boundary between the vacancies and the dopant-added region are defined as Δrin and Δrout, respectively, and (Δrout - Δrin)/d1 is defined as the percent of slope k of a refractive index profile in the dopant-added region, the vacancies are provided in a region of the dopant-added region where the percent of slope k is -0.05%/µm to 0.05%/µm. This optical fiber makes it possible to suppress positional misalignment of the vacancies.

Description

光ファイバ、光ファイバの製造方法、及び光ファイバ母材の製造方法Optical fiber, optical fiber manufacturing method, and optical fiber preform manufacturing method
 本発明は、光ファイバ、光ファイバの製造方法、及び光ファイバ母材の製造方法に関する。
 本願は、2012年8月31日に出願された特願2012-192596号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical fiber, an optical fiber manufacturing method, and an optical fiber preform manufacturing method.
This application claims priority based on Japanese Patent Application No. 2012-192596 for which it applied on August 31, 2012, and uses the content here.
 空孔付き光ファイバは、導波方向に対して連続した空孔を複数有する光ファイバであり、その空孔により、従来の光ファイバでは実現できない光学特性が得られることが知られている。このような空孔付き光ファイバは、ホーリーファイバ(Holey Fiber、HF)とも呼ばれている。ホーリーファイバの導波構造の種類として、フォトニック結晶ファイバ(Photonic Crystal Fiber、PCF)や空孔アシストファイバ(Hole-Assisted Fiber、HAF)が知られている。 An optical fiber with holes is an optical fiber having a plurality of continuous holes in the waveguide direction, and it is known that the holes can provide optical characteristics that cannot be realized with conventional optical fibers. Such a holey optical fiber is also called a holey fiber (HF). Known types of waveguide structures of holey fibers include photonic crystal fibers (Photonic Crystal Fiber, PCF) and hole assist fibers (Hole-Assisted Fiber, HAF).
 空孔付き光ファイバは、空孔が設けられた光ファイバ母材(空孔付きプリフォーム)を線引きすることによって得られる。
 空孔付きプリフォームは、例えば、光ファイバ母材に対して、ドリルによる穿孔加工を行うことによって孔開するドリル法などの孔開方法によって得られる(例えば、特許文献1~3参照)。
 さらに、空孔付き光ファイバは、空孔内面の粗さや空孔中の洗浄度合いが損失に影響するため、空孔付きプリフォームの段階で、空孔内の平滑化処理、脱水処理、エッチング処理などが行われ、その後、線引き工程まで空孔内への水および不純物混入を防止するために、空孔末端が封止される。空孔付き光ファイバの線引きは、空孔付きプリフォームの一端から、空孔内を加圧し、その圧力を制御しながら行われる。これにより、所望の空孔径を有する空孔付き光ファイバが得られる(例えば、特許文献1参照)。
An optical fiber with holes is obtained by drawing an optical fiber preform (preform with holes) provided with holes.
The preform with holes is obtained, for example, by a drilling method such as a drilling method in which a hole is drilled by drilling an optical fiber preform (see, for example, Patent Documents 1 to 3).
Furthermore, since the optical fiber with holes affects the loss due to the roughness of the inner surface of the holes and the degree of cleaning in the holes, the smoothing process, dehydration process, and etching process in the holes are performed at the stage of the holed preform. Then, in order to prevent water and impurities from being mixed into the pores until the drawing process, the pore ends are sealed. Drawing of the optical fiber with holes is performed while pressurizing the inside of the holes and controlling the pressure from one end of the preform with holes. Thereby, the optical fiber with a hole which has a desired hole diameter is obtained (for example, refer patent document 1).
日本国特開2002-293562号公報Japanese Unexamined Patent Publication No. 2002-293562 日本国特開2003-206149号公報Japanese Unexamined Patent Publication No. 2003-206149 日本国特開2010-173917号公報Japanese Unexamined Patent Publication No. 2010-173917
 空孔付きプリフォームにおいて、長手方向と垂直な断面内における空孔の位置は、プリフォームから形成された光ファイバの光学特性に大きく影響することが知られている。したがって、所望の光学特性を有する空孔付き光ファイバを製造するためには、光ファイバ母材の断面において、予め定められた適正な位置であって、光ファイバ母材の長手方向に対して鉛直に、貫通孔を形成する必要がある。
 光ファイバ母材に対する貫通孔の形成工程においては、ドリルによる穿孔加工により、穿孔工具であるドリルツールを回転させながら、光ファイバ母材の軸方向に沿って、貫通孔を形成する。
 穿孔加工に用いられる穿孔装置は、回転体のスピンドルと、穿孔加工に用いられるドリルツールと、光ファイバ母材を把持する把持部とから概略構成されている。また、ドリルツールは、中空のパイプと、中空のパイプの先端部に設けられ、円筒状のダイヤモンド砥粒が付着している砥石部とを備えている。砥石部の外径は、光ファイバ母材の外径、光ファイバ母材から形成されたファイバの空孔の設計外径および光ファイバの外径に応じて決定されるが、約1.5~15mmである。
In a preform with holes, it is known that the position of holes in a cross section perpendicular to the longitudinal direction greatly affects the optical characteristics of an optical fiber formed from the preform. Therefore, in order to manufacture a holey optical fiber having desired optical characteristics, the cross section of the optical fiber preform is at a predetermined appropriate position and perpendicular to the longitudinal direction of the optical fiber preform. In addition, it is necessary to form a through hole.
In the step of forming a through hole in the optical fiber preform, a through hole is formed along the axial direction of the optical fiber preform by rotating a drill tool that is a drilling tool by drilling with a drill.
A drilling device used for drilling is roughly constituted by a spindle of a rotating body, a drill tool used for drilling, and a gripping part that grips an optical fiber preform. The drill tool also includes a hollow pipe and a grindstone provided at the tip of the hollow pipe to which cylindrical diamond abrasive grains are attached. The outer diameter of the grindstone is determined according to the outer diameter of the optical fiber preform, the designed outer diameter of the hole of the fiber formed from the optical fiber preform, and the outer diameter of the optical fiber. 15 mm.
 空孔付き光ファイバの生産性の向上およびコストの低減を図るためには、より長い空孔付きプリフォームを作製する必要があり、光ファイバ材の長さとドリルツールの長さも長くしなければならない。しかしながら、石英は脆性材料のため、硬いが非常に脆く、壊れやすい材料であるので、石英の加工長に制限がある。例えば、現状の穿孔装置では、直径2mmの孔開けの場合、長さ200mm程度、直径4mmの孔開けの場合、長さ400mm程度の加工長が限界であった(特許文献2、3)。空孔の加工長に限界が生じる理由は、空孔の直径が小さくなる程、孔開けに使用するドリルツール、例えば、先端にダイヤモンド粒子が埋め込まれた、パイプ状のドリルツールの剛性に限界があり、加工長が長くなると、空孔の直進性が失われ、そして、光ファイバ断面における空孔位置の設計からズレが生じてしまい、加工精度が保てなくなるからである。 In order to improve the productivity and cost reduction of holey optical fibers, it is necessary to make longer holey preforms, and the length of the optical fiber material and the length of the drill tool must also be increased. . However, since quartz is a brittle material, it is hard but very brittle, and is a fragile material, so there is a limit to the processing length of quartz. For example, the current drilling apparatus has a limit of a processing length of about 200 mm in the case of drilling with a diameter of 2 mm and a length of about 400 mm in the case of drilling with a diameter of 4 mm (Patent Documents 2 and 3). The reason why the hole length is limited is that the smaller the hole diameter, the more rigid the drill tool used for drilling, for example, a pipe-shaped drill tool with diamond particles embedded at the tip. If the processing length is long, the straightness of the hole is lost, and the design of the hole position in the cross section of the optical fiber is shifted, so that the processing accuracy cannot be maintained.
 また、特許文献3には、空孔付き光ファイバの低コスト化を図るため、ドリル法により、最初に1本の短い光ファイバ母材に孔開し、次に、孔開した母材を数本に延伸・切断し、次に、それぞれの延伸・切断した孔開母材の外側に、ジャケット法やOVD法等により、石英ガラスを堆積して、数本の空孔付きプリフォームを作製し、最後に、それぞれの空孔付きプリフォームにダミー石英管を溶接し、空孔内を加圧しながら紡糸する方法が記載されている。
 しかしながら、この方法では、孔開加工後に、孔開母材の延伸・切断工程、および、それぞれの空孔付きプリフォームとダミー石英管との溶接工程が必要となり、1本の長尺母材で、孔開・紡糸の製造方法より低コスト化を図るのは難しいと思われる。
Further, in Patent Document 3, in order to reduce the cost of an optical fiber with a hole, first, a single short optical fiber preform is drilled by a drill method, and then the number of drilled preforms is several. Next, each glass substrate is stretched and cut, and then quartz glass is deposited on the outside of each stretched and cut hole base material by a jacket method, OVD method, or the like to produce several preforms with holes. Finally, a method is described in which a dummy quartz tube is welded to each of the preforms with holes, and spinning is performed while pressurizing the inside of the holes.
However, in this method, after the hole opening process, a step of stretching and cutting the hole base material and a step of welding the respective preforms with holes and the dummy quartz tube are required. It seems that it is difficult to lower the cost than the manufacturing method of hole opening and spinning.
 このような光ファイバ母材における空孔の加工ズレを低減するためには、加工条件を最適化する必要がある。しかしながら、加工条件を最適化するだけでは、光ファイバ母材の長手方向において、貫通孔の位置ズレがゼロにならない。例えば、光ファイバ母材の長手方向において、貫通孔の位置ズレが起きると、貫通孔を形成する光ファイバ母材の加工終了端面で、空孔位置が所望の位置からかけ離れ、所望の光学特性が得られなくなってしまい、穿孔工程における製造歩留まりが悪くなってしまう。 In order to reduce the processing gap of holes in such an optical fiber preform, it is necessary to optimize the processing conditions. However, only by optimizing the processing conditions, the positional deviation of the through hole does not become zero in the longitudinal direction of the optical fiber preform. For example, when a positional deviation of the through hole occurs in the longitudinal direction of the optical fiber preform, the hole position is far from the desired position on the end face of processing of the optical fiber preform forming the through hole, and the desired optical characteristics are obtained. It cannot be obtained, and the production yield in the drilling process is deteriorated.
 本発明は、上記事情に鑑みてなされたものであって、空孔付き光ファイバの長手方向に垂直な断面において、空孔の位置ズレを抑制した光ファイバ、光ファイバの製造方法、及び光ファイバ母材の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an optical fiber, a method of manufacturing an optical fiber, and an optical fiber, in which a positional deviation of the holes is suppressed in a cross section perpendicular to the longitudinal direction of the optical fiber with holes. It aims at providing the manufacturing method of a base material.
 上記課題を解決するため、本発明の第一態様の光ファイバは、コアと、前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部と、前記クラッド部内にて、前記コアと平行にかつ前記コアを中心とする同心円上に設けられた複数の空孔とを備える。本発明の第一態様の光ファイバにおいては、前記空孔の直径をdと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアに近い内側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔrinと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアから遠い外側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔroutと定義し、(Δrout-Δrin)/dを前記ドーパント添加領域における屈折率プロファイルの傾斜率kと定義したとき、前記空孔は前記ドーパント添加領域における、前記傾斜率kが所定の範囲内の領域に設けられている。 In order to solve the above problems, an optical fiber according to a first aspect of the present invention includes a core, a clad portion surrounding a periphery of the core and having a dopant added region to which a dopant is added, and the core in the clad portion. And a plurality of holes provided concentrically around the core. In the optical fiber of the first aspect of the present invention, the diameter of the hole is defined as d 1, and the pure silica glass in the inner part near the core in the boundary part between the hole and the dopant addition region The relative refractive index difference of the dopant-added region with respect to is defined as Δr in, and the ratio of the dopant-added region to pure quartz glass in the outer portion far from the core in the boundary between the vacancies and the dopant-added region When the refractive index difference is defined as Δr out and (Δr out −Δr in ) / d 1 is defined as the gradient k of the refractive index profile in the dopant addition region, the vacancies are inclined in the dopant addition region. The rate k is provided in a region within a predetermined range.
 本発明の第一態様の光ファイバにおいては、前記傾斜率kは-0.05%/μm以上0.05%/μm以下であることが好ましい。 In the optical fiber according to the first aspect of the present invention, it is preferable that the gradient k is −0.05% / μm or more and 0.05% / μm or less.
 本発明の第二態様の光ファイバの製造方法は、コアと、前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部と、前記クラッド部内にて前記コアと平行にかつ前記コアを中心とする同心円上に設けられた複数の空孔とを備える光ファイバを製造する。この光ファイバは、前記空孔の直径をdと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアに近い内側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔrinと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアから遠い外側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔroutと定義し、(Δrout-Δrin)/dを前記ドーパント添加領域における屈折率プロファイルの傾斜率kと定義したとき、前記空孔は前記ドーパント添加領域における、前記傾斜率kが所定の範囲内の領域に設けられている。このような光ファイバを製造する本発明の第二態様の光ファイバの製造方法は、コアと、前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部とを含む光ファイバ母材を製造し(光ファイバ母材の製造工程)、前記ドーパント添加領域に、前記コアを中心とする同心円上に複数の空孔を形成し(空孔形成工程)、前記空孔の内表面を平滑化し(空孔平滑化工程)、空孔付き光ファイバ母材を製造し、前記空孔内を加圧しながら、前記空孔付き光ファイバ母材を線引きする線引きする(線引き工程)。前記複数の空孔の形成(空孔形成工程)において、前記クラッド部のドーパント添加領域に形成する空孔の直径をdと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアに近い内側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔrinと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアから遠い外側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔroutと定義し、(Δrout-Δrin)/dを前記ドーパント添加領域における屈折率プロファイルの傾斜率Kと定義したとき、前記ドーパント添加領域における、前記傾斜率Kが所定の範囲内の領域に、前記空孔を形成する。 The optical fiber manufacturing method according to the second aspect of the present invention includes a core, a clad portion surrounding the core and having a dopant-added region to which a dopant is added, and parallel to the core in the clad portion and An optical fiber including a plurality of holes provided on a concentric circle with a core as a center is manufactured. In this optical fiber, the diameter of the hole is defined as d 1, and the ratio of the dopant-added region to the pure silica glass in the inner portion close to the core in the boundary portion between the hole and the dopant-added region. A refractive index difference is defined as Δr in, and a relative refractive index difference of the dopant added region with respect to pure quartz glass in an outer portion far from the core in a boundary portion between the hole and the dopant added region is Δr out . When (Δr out −Δr in ) / d 1 is defined as the gradient k of the refractive index profile in the dopant addition region, the vacancies in the dopant addition region have the gradient k within a predetermined range. It is provided in the area. An optical fiber manufacturing method according to the second aspect of the present invention for manufacturing such an optical fiber includes an optical fiber mother including a core and a cladding portion surrounding the core and having a dopant added region to which a dopant is added. A material is manufactured (optical fiber preform manufacturing process), and a plurality of holes are formed on the concentric circle centered on the core in the dopant addition region (hole forming process), and an inner surface of the hole is formed. Smoothing (hole smoothing step), producing an optical fiber preform with holes, and drawing the optical fiber preform with holes while drawing the inside of the holes (drawing step). In the formation of the plurality of holes (hole forming step), the diameter of the hole formed in the dopant added region of the cladding part is defined as d 1, and among the boundary part between the hole and the dopant added region , in the inner portion closer to the core, the relative refractive index difference of the dopant doped region for pure silica glass is defined as [Delta] r in, among the boundary portion between the air hole and the dopant doped region, farther outer portion from said core Is defined as Δr out, and (Δr out −Δr in ) / d 1 is defined as the gradient K of the refractive index profile in the dopant added region, The holes are formed in a region where the gradient K is within a predetermined range in the dopant addition region.
 本発明の第二態様の光ファイバの製造方法においては、前記傾斜率kは-0.05%/μm以上0.05%/μm以下、前記傾斜率Kは-0.07%/mm以上0.07%/mm以下であることが好ましい。 In the optical fiber manufacturing method according to the second aspect of the present invention, the gradient k is −0.05% / μm or more and 0.05% / μm or less, and the gradient K is −0.07% / mm or more and 0. 0.07% / mm or less is preferable.
 本発明の第三態様の光ファイバ母材の製造方法は、コアと、前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部と、前記クラッド部内にて前記コアと平行にかつ前記コアを中心とする同心円上に設けられて前記ドーパント添加領域に設けられた複数の空孔とを備える光ファイバ母材を製造する。本発明の第三態様の光ファイバ母材の製造方法は、コアと、前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部を含む光ファイバ母材を製造し(光ファイバ母材の製造工程)、前記ドーパント添加領域に、前記コアを中心とする同心円上に複数の空孔を形成し(空孔形成工程)、前記空孔の内表面を平滑化する(空孔平滑化工程)。前記複数の空孔の形成(空孔形成工程)において、前記クラッド部のドーパント添加領域に形成する空孔の直径をdと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアに近い内側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔrinと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアから遠い外側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔroutと定義し、(Δrout-Δrin)/dを前記ドーパント添加領域における屈折率プロファイルの傾斜率Kと定義したとき、前記ドーパント添加領域における、前記傾斜率Kが所定の範囲内の領域に、前記空孔を形成する。 The method for manufacturing an optical fiber preform according to the third aspect of the present invention includes a core, a clad portion that surrounds the core and includes a dopant-added region to which a dopant is added, and is parallel to the core in the clad portion. In addition, an optical fiber preform including a plurality of holes provided on the concentric circle centered on the core and provided in the dopant addition region is manufactured. According to a third aspect of the present invention, there is provided a method of manufacturing an optical fiber preform including an optical fiber preform including a core and a cladding portion surrounding the core and having a dopant added region to which a dopant is added (optical fiber). Manufacturing process of base material), forming a plurality of holes on a concentric circle centered on the core in the dopant addition region (hole forming process), and smoothing the inner surface of the holes (hole smoothing) Process). In the formation of the plurality of holes (hole forming step), the diameter of the hole formed in the dopant added region of the cladding part is defined as d 1, and among the boundary part between the hole and the dopant added region , in the inner portion closer to the core, the relative refractive index difference of the dopant doped region for pure silica glass is defined as [Delta] r in, among the boundary portion between the air hole and the dopant doped region, farther outer portion from said core Is defined as Δr out, and (Δr out −Δr in ) / d 1 is defined as the gradient K of the refractive index profile in the dopant added region, The holes are formed in a region where the gradient K is within a predetermined range in the dopant addition region.
 本発明の第三態様の光ファイバ母材の製造方法においては、前記傾斜率Kは-0.07%/mm以上0.07%/mm以下であることが好ましい。 In the method for manufacturing an optical fiber preform according to the third aspect of the present invention, the inclination rate K is preferably −0.07% / mm or more and 0.07% / mm or less.
 本発明の第1態様、第2態様、及び第3態様によれば、空孔の位置ズレを抑制した光ファイバを提供することができる。 According to the first aspect, the second aspect, and the third aspect of the present invention, it is possible to provide an optical fiber in which the positional deviation of the holes is suppressed.
光ファイバ母材の屈折率プロファイルを示し、この光ファイバ母材の屈折率プロファイルが変化している領域において、ドリルによる穿孔加工を行った場合の一例を示す模式図である。It is a schematic diagram showing an example of a case where drilling is performed with a drill in a region where the refractive index profile of the optical fiber preform is changed and the refractive index profile of the optical fiber preform is changed. 光ファイバ母材の屈折率プロファイルを示し、この光ファイバ母材の屈折率プロファイルが変化している領域において、ドリルによる穿孔加工を行う場合の他の例を示す模式図である。FIG. 7 is a schematic diagram showing another example of drilling with a drill in a region where the refractive index profile of the optical fiber preform is changed and the refractive index profile of the optical fiber preform is changed. 光ファイバ母材の屈折率プロファイルを示し、この光ファイバ母材の屈折率プロファイルが変化している領域において、ドリルによる穿孔加工を行う場合の他の例を示す模式図である。FIG. 7 is a schematic diagram showing another example of drilling with a drill in a region where the refractive index profile of the optical fiber preform is changed and the refractive index profile of the optical fiber preform is changed. 本発明の一実施形態における光ファイバ母材を示す概略断面図である。It is a schematic sectional drawing which shows the optical fiber preform | base_material in one Embodiment of this invention. 本発明の一実施形態における光ファイバ母材の屈折率プロファイルを示し、この光ファイバ母材の屈折率プロファイルが変化している領域において、ドリルによる穿孔加工を行う場合の一例を示す模式図である。FIG. 5 is a schematic diagram showing an example of a case where drilling is performed with a drill in a region where the refractive index profile of the optical fiber preform changes in an area where the refractive index profile of the optical fiber preform changes in an embodiment of the present invention. . 本発明の一実施形態における光ファイバ母材の屈折率プロファイルを示し、この光ファイバ母材の屈折率プロファイルが変化している領域において、ドリルによる穿孔加工を行う場合の他の例を示す模式図である。The schematic diagram which shows the refractive index profile of the optical fiber preform in one Embodiment of this invention, and shows the other example at the time of drilling by a drill in the area | region where the refractive index profile of this optical fiber preform is changing It is. 本発明の一実施形態における空孔付き光ファイバ母材を示す概略断面図である。It is a schematic sectional drawing which shows the optical fiber preform with a hole in one Embodiment of this invention. ドリルツールの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a drill tool. ドリルツールを、ドリルチャックによりチャッキングしたときの様子を示す概略斜視図である。It is a schematic perspective view which shows a mode when a drill tool is chucked with a drill chuck. ドリルツールによる穿孔加工を示す概略斜視図である。It is a schematic perspective view which shows the drilling process by a drill tool. 本発明の一実施形態における空孔付き光ファイバを示す概略断面図である。It is a schematic sectional drawing which shows the optical fiber with a hole in one Embodiment of this invention. 空孔付き光ファイバ母材の空孔位置の計測方法を示す模式図であって空孔付き光ファイバ母材の斜視図である。It is a schematic diagram which shows the measuring method of the hole position of an optical fiber preform with a hole, Comprising: It is a perspective view of an optical fiber preform with a hole. 空孔付き光ファイバ母材の空孔位置の計測方法を示す模式図であって、空孔付き光ファイバ母材の加工開始端面を示す側面図である。It is a schematic diagram which shows the measuring method of the hole position of an optical fiber preform with a hole, Comprising: It is a side view which shows the process start end surface of an optical fiber preform with a hole. 空孔付き光ファイバ母材の空孔位置の計測方法を示す模式図であって、空孔付き光ファイバ母材の加工終了端面を示す側面図である。It is a schematic diagram which shows the measuring method of the hole position of an optical fiber preform with a hole, Comprising: It is a side view which shows the process completion | finish end surface of an optical fiber preform with a hole. 空孔付き光ファイバ母材の空孔の位置ズレ量ΔRと、空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kとの関係を示すグラフである。It is a graph which shows the relationship between the positional offset amount (DELTA) R of the hole of the optical fiber preform with a hole, and the gradient K of the refractive index profile of an optical fiber preform with a hole. 空孔付き光ファイバの空孔位置の計測方法を示す模式図であって、空孔付き光ファイバの斜視図である。It is a schematic diagram which shows the measuring method of the hole position of an optical fiber with a hole, Comprising: It is a perspective view of an optical fiber with a hole. 空孔付き光ファイバの空孔位置の計測方法を示す模式図であって、空孔付き光ファイバの加工開始端面を示す側面図である。It is a schematic diagram which shows the measuring method of the hole position of an optical fiber with a hole, Comprising: It is a side view which shows the process start end surface of an optical fiber with a hole. 空孔付き光ファイバの空孔位置の計測方法を示す模式図であって、空孔付き光ファイバの加工終了端面を示す側面図である。It is a schematic diagram which shows the measuring method of the hole position of an optical fiber with a hole, Comprising: It is a side view which shows the process end end surface of an optical fiber with a hole. 空孔付き光ファイバの空孔の位置ズレ量Δrと、空孔付き光ファイバの屈折率プロファイルの傾斜率kとの関係を示すグラフである。It is a graph which shows the relationship between the positional offset amount (DELTA) r of the hole of an optical fiber with a hole, and the gradient k of the refractive index profile of an optical fiber with a hole. 空孔付き光ファイバ母材における屈折率プロファイルの傾斜率Kと、空孔付き光ファイバの屈折率プロファイルの傾斜率kとの関係を示すグラフである。It is a graph which shows the relationship between the inclination rate K of the refractive index profile in an optical fiber preform with a hole, and the inclination rate k of the refractive index profile of an optical fiber with a hole.
 本発明の光ファイバ、光ファイバの製造方法、及び光ファイバ母材の製造方法の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明しており、特に指定のない限り、本発明を限定してない。
DESCRIPTION OF EMBODIMENTS Embodiments of an optical fiber, an optical fiber manufacturing method, and an optical fiber preform manufacturing method of the present invention will be described.
Note that this embodiment is specifically described in order to better understand the gist of the invention, and the present invention is not limited unless otherwise specified.
 本発明者等は、鋭意検討を重ねた結果、光ファイバ母材の長手方向に垂直な断面における屈折率プロファイルが異なることによって、穿孔加工した空孔位置が、光ファイバ母材の長手方向において、屈折率プロファイルが傾斜している領域にてずれる傾向があることを見出した。すなわち、加工条件を最適化するだけでは、空孔の位置ズレを改善するには限界があることを見出した。 As a result of intensive studies, the inventors have different refractive index profiles in the cross section perpendicular to the longitudinal direction of the optical fiber preform, so that the hole positions drilled are in the longitudinal direction of the optical fiber preform. It has been found that the refractive index profile tends to shift in an inclined region. That is, it has been found that there is a limit to improving the positional deviation of the holes only by optimizing the processing conditions.
 ここで、光ファイバ母材の屈折率プロファイルと、光ファイバ母材における空孔の加工ズレとの関係を説明する。
 例えば、図1に示すような屈折率プロファイルを有する光ファイバ母材では、コア1の周囲を囲むクラッド部2に、屈折率プロファイルが変化している領域(屈折率プロファイルが平坦でない領域)2aが存在する。この領域2aでは、図1に示すように、純粋石英ガラスに対するクラッド部2の比屈折率差Δは、光ファイバ母材の中心側から外側に向かって(径方向に向かって)増加している。この領域2aに対して、ドリルによる穿孔加工により空孔を形成すると、空孔の位置が光ファイバ母材の長手方向において、屈折率が低い部分側から屈折率が高い部分側に、すなわち、光ファイバ母材の径方向において、光ファイバ母材の中心側よりも外側にずれる傾向にある。
 ここで、無添加の純粋石英ガラスの屈折率をnと定義し、クラッド部2のある部分において、ドーパントが添加された領域(ドーパント添加領域)の部分の屈折率をnと定義したとき、比屈折率差Δは、下記の式によって定義される。
Here, the relationship between the refractive index profile of the optical fiber preform and the processing gap of the holes in the optical fiber preform will be described.
For example, in an optical fiber preform having a refractive index profile as shown in FIG. 1, a region 2a in which the refractive index profile changes (region where the refractive index profile is not flat) 2a is formed in the cladding portion 2 surrounding the core 1. Exists. In this region 2a, as shown in FIG. 1, the relative refractive index difference Δ of the cladding portion 2 with respect to pure silica glass increases from the center side of the optical fiber preform toward the outside (in the radial direction). . When holes are formed in this region 2a by drilling with a drill, the positions of the holes in the longitudinal direction of the optical fiber preform are changed from a low refractive index side to a high refractive index side, that is, light. In the radial direction of the fiber preform, the optical fiber preform tends to be shifted outward from the center side of the optical fiber preform.
Here, when the refractive index of the additive-free pure quartz glass is defined as n 2 and the refractive index of the portion of the cladding portion 2 where the dopant is added (dopant added region) is defined as n 1 The relative refractive index difference Δ is defined by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、図2に示すような屈折率プロファイルを有する光ファイバ母材では、コア11の周囲を囲むクラッド部12に、屈折率プロファイルが変化している領域(屈折率プロファイルが平坦でない領域)12aが存在する。この領域12aでは、図2に示すように、純粋石英ガラスに対するクラッド部12の比屈折率差Δは、光ファイバ母材の中心側から外側に向かって(径方向に向かって)減少している。この領域12aに対して、ドリルによる穿孔加工により空孔を形成すると、空孔の位置が光ファイバ母材の長手方向において、屈折率が低い部分側から屈折率が高い部分側に、すなわち、光ファイバ母材の径方向において、光ファイバ母材の外側よりも中心側にずれる傾向にある。
 なお、図1または図2に示すような屈折率プロファイルを有する光ファイバ母材において、クラッド部2に、屈折率プロファイルが変化している領域2aが存在する理由は、光ファイバ母材を製造する際に、クラッド部2にフッ素または塩素を添加したことによって、クラッド部2の屈折率が僅かに低下したからである。
Further, in the optical fiber preform having the refractive index profile as shown in FIG. 2, a region (region where the refractive index profile is not flat) 12 a where the refractive index profile is changed is formed in the cladding portion 12 surrounding the core 11. Exists. In this region 12a, as shown in FIG. 2, the relative refractive index difference Δ of the cladding portion 12 with respect to pure silica glass decreases from the center side of the optical fiber preform toward the outside (in the radial direction). . When holes are formed in the region 12a by drilling with a drill, the positions of the holes are changed from the low refractive index side to the high refractive index side in the longitudinal direction of the optical fiber preform, that is, the light. In the radial direction of the fiber preform, it tends to shift to the center side from the outside of the optical fiber preform.
In the optical fiber preform having the refractive index profile as shown in FIG. 1 or FIG. 2, the reason that the region 2a in which the refractive index profile changes is present in the cladding portion 2 is to manufacture the optical fiber preform. At this time, the addition of fluorine or chlorine to the clad part 2 slightly lowered the refractive index of the clad part 2.
 図1や図2に示すような屈折率プロファイルを有する光ファイバ母材に対して、図3に示すような屈折率プロファイルを有する光ファイバ母材では、コア21の周囲を囲むクラッド部22は、屈折率プロファイルが平坦になっている。本発明者等は、このように屈折率プロファイルが平坦なクラッド部22に対して、ドリルによる穿孔加工により空孔を形成すると、空孔の位置が光ファイバ母材の長手方向に対して鉛直になることを見出した。 In contrast to the optical fiber preform having the refractive index profile as shown in FIG. 1 or FIG. 2, in the optical fiber preform having the refractive index profile as shown in FIG. The refractive index profile is flat. When the present inventors form holes in the clad portion 22 having a flat refractive index profile by drilling with a drill, the positions of the holes are perpendicular to the longitudinal direction of the optical fiber preform. I found out that
 以下、本発明の実施形態を利用した6個の空孔を有する光ファイバ母材の製造方法、光ファイバの製造方法、および、この製造方法によって製造された光ファイバを具体的に説明する。なお、ここでは、6個の空孔を有する光ファイバ母材および光ファイバを例示するが、本発明はこれに限定されず、空孔の数、空孔の配列は異なっていてもよい。 Hereinafter, a manufacturing method of an optical fiber preform having six holes using an embodiment of the present invention, a manufacturing method of an optical fiber, and an optical fiber manufactured by this manufacturing method will be specifically described. Here, an optical fiber preform and optical fiber having six holes are illustrated, but the present invention is not limited to this, and the number of holes and the arrangement of holes may be different.
[光ファイバ母材の製造方法]
 図4に示すような中心部分にコア31を有し、コア31の周囲にクラッド部32を有する光ファイバ母材30を作製する。
 コア31は、ゲルマニウム(Ge)などのドーパントが添加された石英ガラスから構成されている。また、クラッド部32は、フッ素(F)、塩素(Cl)などのドーパントが添加されたドーパント添加領域を有する石英ガラスから構成されている。
 光ファイバ母材30では、コア31の屈折率をn、クラッド部32の屈折率をnとすると、n<nの関係を満たしている。
 また、光ファイバ母材30は、例えば、図5または6に示すような屈折率プロファイルを有し、コア31の周囲を囲むクラッド部32のドーパント添加領域に、屈折率プロファイルが平坦あるいは僅かに変化している(屈折率プロファイルが平坦でない)領域32aが存在する。
[Method of manufacturing optical fiber preform]
An optical fiber preform 30 having a core 31 at the center as shown in FIG. 4 and a clad portion 32 around the core 31 is produced.
The core 31 is made of quartz glass to which a dopant such as germanium (Ge) is added. The clad portion 32 is made of quartz glass having a dopant added region to which a dopant such as fluorine (F) or chlorine (Cl) is added.
In the optical fiber preform 30, n 1 the refractive index of the core 31, and the refractive index of the cladding portion 32 and n 2, satisfy the relationship of n 2 <n 1.
Further, the optical fiber preform 30 has a refractive index profile as shown in FIG. 5 or 6, for example, and the refractive index profile is flat or slightly changed in the dopant addition region of the cladding portion 32 surrounding the core 31. The region 32a is present (the refractive index profile is not flat).
 光ファイバ母材30が、図5に示すような屈折率プロファイルを有する場合、上記の領域32aでは、純粋石英ガラスに対するクラッド部32のドーパント添加領域の比屈折率差Δは、光ファイバ母材30の中心側から外側に向かって(径方向に向かって)僅かに増加している。
 また、光ファイバ母材30が、図6に示すような屈折率プロファイルを有する場合、上記の領域32aでは、純粋石英ガラスに対するクラッド部32のドーパント添加領域の比屈折率差Δは、光ファイバ母材30の中心側から外側に向かって(径方向に向かって)僅かに減少している。
When the optical fiber preform 30 has a refractive index profile as shown in FIG. 5, the relative refractive index difference Δ of the dopant added region of the cladding portion 32 with respect to pure silica glass in the region 32 a is the optical fiber preform 30. Slightly increases from the center side toward the outside (in the radial direction).
Further, when the optical fiber preform 30 has a refractive index profile as shown in FIG. 6, in the region 32a, the relative refractive index difference Δ of the dopant added region of the cladding portion 32 with respect to pure silica glass is the optical fiber preform. It slightly decreases from the center side of the material 30 toward the outside (in the radial direction).
 このような構造を有する光ファイバ母材30の作製には、VAD(Vapor phase Axial Deposition)法やCVD(chemical vapor deposition)法などの一般的な光ファイバ母材の製造方法を適用することができる。 For the production of the optical fiber preform 30 having such a structure, a general optical fiber preform production method such as a VAD (Vapor Phase Axial Deposition) method or a CVD (Chemical Vapor Deposition) method can be applied. .
 次に、クラッド部32のドーパント添加領域における、屈折率プロファイルが平坦あるいは僅かに変化している領域32aに、ドリルによる穿孔加工により、コア31を中心とする同心円上に、等間隔に6個の空孔33を形成し、図7に示すような、空孔付き光ファイバ母材30Aを得る。
 図8~図10を参照して、ドリルによる穿孔加工により、光ファイバ母材30に空孔33を形成する方法を具体的に説明する。
 まず、クラッド部32のドーパント添加領域における、屈折率プロファイルが平坦あるいは僅かに変化している領域32aに空孔33を形成するためのドリルツールを準備し、穿孔装置(図示略)のドリルチャックにチャッキングする。
Next, in a region 32a where the refractive index profile in the dopant addition region of the cladding portion 32 is flat or slightly changed, six holes are formed at equal intervals on a concentric circle centered on the core 31 by drilling with a drill. Holes 33 are formed to obtain holey optical fiber preform 30A as shown in FIG.
A method for forming the holes 33 in the optical fiber preform 30 by drilling with a drill will be specifically described with reference to FIGS.
First, a drill tool for forming the hole 33 in the region 32a in which the refractive index profile is flat or slightly changed in the dopant addition region of the cladding part 32 is prepared, and used as a drill chuck of a drilling device (not shown). Chuck.
 図8は、ドリルツールの一例を示す概略斜視図である。
 ドリルツール40は、パイプ41と、パイプ41の先端に設けられ、貫通孔を有する切削部42とから概略構成されている。
 パイプ41は、円筒状の形状をしており、パイプ41の外径は、光ファイバ母材30に形成する空孔の直径よりも僅かに小さくなっている。
 また、パイプ41の貫通孔と切削部42の貫通孔は繋がっており、そのためドリルツール40には、パイプ41の貫通孔と切削部42の貫通孔からなる貫通孔43が形成されている。
FIG. 8 is a schematic perspective view showing an example of a drill tool.
The drill tool 40 is schematically configured from a pipe 41 and a cutting portion 42 provided at the tip of the pipe 41 and having a through hole.
The pipe 41 has a cylindrical shape, and the outer diameter of the pipe 41 is slightly smaller than the diameter of the hole formed in the optical fiber preform 30.
Further, the through hole of the pipe 41 and the through hole of the cutting part 42 are connected to each other. Therefore, the drill tool 40 is formed with a through hole 43 including the through hole of the pipe 41 and the through hole of the cutting part 42.
 図9は、ドリルツール40を、ドリルチャック50によりチャッキングしたときの様子を示す概略斜視図である。
 ドリルチャック50は、ドリルツール40を挿通するための貫通孔51と、フランジ52と、フランジ52に固定されたシャンク53とから概略構成されている。
 シャンク53は、締め付け機構(図示略)により、シャンク53(ドリルチャック50)の先端側において、貫通孔51の大きさを変化させることができるように構成されている。したがって、締め付け機構により、貫通孔51の大きさを小さくすることにより、シャンク53の先端側において、貫通孔51に挿通されているドリルツール40がチャッキングされる。
FIG. 9 is a schematic perspective view showing a state when the drill tool 40 is chucked by the drill chuck 50.
The drill chuck 50 is generally configured from a through hole 51 for inserting the drill tool 40, a flange 52, and a shank 53 fixed to the flange 52.
The shank 53 is configured such that the size of the through hole 51 can be changed on the distal end side of the shank 53 (drill chuck 50) by a tightening mechanism (not shown). Therefore, by reducing the size of the through hole 51 by the tightening mechanism, the drill tool 40 inserted through the through hole 51 is chucked on the tip side of the shank 53.
 次いで、ドリルツール40により、クラッド部32のドーパント添加領域における、屈折率プロファイルが平坦あるいは僅かに変化している領域32aにおいて、光ファイバ母材30の長手方向に沿在するとともに、コア31を中心とする同心円上に、ほぼ等間隔に配置されるように6個の空孔33を形成する。
 図10は、ドリルツールによる穿孔加工を示す概略斜視図である。
 この穿孔加工においては、回転装置(回転手段、図示略)により、ドリルチャック50を回転させながらドリルチャック50をクラッド部32に向けて進める。これにより、ドリルツール40が回転しながらクラッド部32(光ファイバ母材30)の長手方向に沿ってドリルツール40が押し進み、光ファイバ母材30の一端側からクラッド部32への空孔33の形成が開始される。このとき、ドリルツール40の貫通孔43の後端側(切削部42が設けられている端部とは反対側)から液体を導入する。この液体としては、例えば、水溶性切削液が用いられる。
Next, in the region 32a in which the refractive index profile is flat or slightly changed in the dopant addition region of the clad portion 32 by the drill tool 40, the core 31 is centered along the longitudinal direction of the optical fiber preform 30. Six holes 33 are formed on the concentric circles so as to be arranged at almost equal intervals.
FIG. 10 is a schematic perspective view showing drilling with a drill tool.
In this drilling process, the drill chuck 50 is advanced toward the clad portion 32 while rotating the drill chuck 50 by a rotating device (rotating means, not shown). Thereby, the drill tool 40 advances along the longitudinal direction of the clad part 32 (optical fiber preform 30) while the drill tool 40 rotates, and the hole 33 from the one end side of the optical fiber preform 30 to the clad part 32 is pushed. The formation of is started. At this time, liquid is introduced from the rear end side of the through hole 43 of the drill tool 40 (the side opposite to the end portion where the cutting portion 42 is provided). As this liquid, for example, a water-soluble cutting fluid is used.
 貫通孔43内に導入された液体は、貫通孔43を通り、切削部42の先端から流出する。切削部42がクラッド部32の途中まで進んでいる状態では、クラッド部32の空孔33が貫通していないため、切削部42の先端から流出する液体は、行き場を失って、切削部42とクラッド部32の内壁面との間を逆流して、空孔33におけるドリルツール40が挿入されている面(すなわち、光ファイバ母材30の一端側)から排出される。したがって、空孔33がクラッド部32を貫通するまでは、切削部42とクラッド部32との摩擦により、クラッド部32の温度が過度に上昇することが、この液体の流れにより防止される。さらに、穿孔により生じるガラス屑は、液体と共にドリルツール40がクラッド部32に挿入されている部分から排出される。 The liquid introduced into the through hole 43 passes through the through hole 43 and flows out from the tip of the cutting part 42. In the state where the cutting part 42 has advanced to the middle of the cladding part 32, the holes 33 of the cladding part 32 do not penetrate, so the liquid flowing out from the tip of the cutting part 42 loses its place, and the cutting part 42 The air flows backward from the inner wall surface of the cladding portion 32 and is discharged from the surface of the hole 33 where the drill tool 40 is inserted (that is, one end side of the optical fiber preform 30). Therefore, until the air holes 33 penetrate the clad portion 32, the temperature of the clad portion 32 is prevented from excessively rising due to the friction between the cutting portion 42 and the clad portion 32. Further, glass waste generated by the perforation is discharged from the portion where the drill tool 40 is inserted into the clad portion 32 together with the liquid.
 このようにドリルツール40により、クラッド部32に対する穿孔加工を行い、クラッド部32(光ファイバ母材30)を長手方向に貫通する空孔33を形成する。
 同様にして、図7に示すように他の複数の空孔33も形成することにより、クラッド部32のドーパント添加領域における、屈折率プロファイルが平坦あるいは僅かに変化している領域32aに、コア31を中心とする同心円上にほぼ等間隔に、6個の空孔33を形成する。
As described above, the drill tool 40 performs the drilling process on the clad part 32 to form the holes 33 penetrating the clad part 32 (optical fiber preform 30) in the longitudinal direction.
Similarly, by forming another plurality of holes 33 as shown in FIG. 7, the core 31 is formed in a region 32 a where the refractive index profile in the dopant addition region of the cladding portion 32 is flat or slightly changed. Six holes 33 are formed at substantially equal intervals on a concentric circle centered at.
 本実施形態では、光ファイバ母材30が、例えば、図5または図6に示すような屈折率プロファイルを有している場合、以下のようにして、クラッド部32のドーパント添加領域における、屈折率プロファイルが平坦あるいは僅かに変化している領域32aに空孔33を形成する。
 この場合において、クラッド部32のドーパント添加領域に形成する空孔の直径をd、空孔33とドーパント添加領域との境界部のうち、コア31に近い内側部分における、純粋石英ガラスに対するドーパント添加領域の比屈折率差をΔrin、空孔33とドーパント添加領域との境界部のうち、コア31から遠い外側部分における、純粋石英ガラスに対するドーパント添加領域の比屈折率差をΔrout、(Δrout-Δrin)/dをドーパント添加領域における屈折率プロファイルの傾斜率Kと定義したとき、ドーパント添加領域における、傾斜率Kが所定の範囲内の領域(屈折率プロファイルが平坦あるいは僅かに変化している領域32a)に、空孔33を形成する。
In the present embodiment, when the optical fiber preform 30 has a refractive index profile as shown in FIG. 5 or FIG. 6, for example, the refractive index in the dopant addition region of the cladding portion 32 is as follows. Holes 33 are formed in the region 32a where the profile is flat or slightly changed.
In this case, the diameter of the hole formed in the dopant addition region of the cladding portion 32 is d 1 , and the dopant addition to the pure quartz glass in the inner portion near the core 31 in the boundary portion between the hole 33 and the dopant addition region. The relative refractive index difference of the region is Δr in , and the relative refractive index difference of the dopant added region with respect to pure quartz glass in the outer portion far from the core 31 in the boundary portion between the hole 33 and the dopant added region is Δr out , (Δr out −Δr in ) / d 1 is defined as a gradient K of the refractive index profile in the dopant addition region, a region in which the gradient K is within a predetermined range in the dopant addition region (the refractive index profile is flat or slightly changed). A hole 33 is formed in the region 32a).
 傾斜率Kは-0.07%/mm以上0.07%/mm以下であることが好ましく、-0.03%/mm以上0.03%/mm以下であることがより好ましい。
 クラッド部32のドーパント添加領域における傾斜率Kが所定の範囲内の領域、好ましくは傾斜率Kが上記の範囲内である領域に空孔33を形成すれば、ドリルによる穿孔加工により、光ファイバ母材30の長手方向に対して鉛直に(光ファイバ母材30の一端面と他端面における位置ズレ量が少なく)、空孔33を形成することができる。すなわち、図5に示すように、上記の領域32aにおいて、コア31に対するクラッド部32のドーパント添加領域の比屈折率差Δが、光ファイバ母材30の中心側から外側に向かって(径方向に向かって)僅かに増加している場合、あるいは、図6に示すように、上記の領域32aにおいて、純粋石英ガラスに対するクラッド部32のドーパント添加領域の比屈折率差Δが、光ファイバ母材30の中心側から外側に向かって(径方向に向かって)僅かに減少している場合であっても、クラッド部32のドーパント添加領域における傾斜率Kが所定の範囲内の領域に空孔33を形成すれば、ドリルによる穿孔加工により、光ファイバ母材30の長手方向に対して鉛直に、空孔33を形成することができる。
The inclination rate K is preferably −0.07% / mm or more and 0.07% / mm or less, and more preferably −0.03% / mm or more and 0.03% / mm or less.
If the holes 33 are formed in a region where the gradient K in the dopant addition region of the cladding portion 32 is within a predetermined range, preferably in a region where the gradient K is within the above range, an optical fiber mother is formed by drilling with a drill. The holes 33 can be formed perpendicular to the longitudinal direction of the material 30 (the amount of positional deviation between the one end surface and the other end surface of the optical fiber preform 30 is small). That is, as shown in FIG. 5, in the region 32a, the relative refractive index difference Δ of the dopant-added region of the cladding portion 32 with respect to the core 31 increases from the center side of the optical fiber preform 30 toward the outside (in the radial direction). 6) or as shown in FIG. 6, in the region 32a, the relative refractive index difference Δ of the dopant-added region of the cladding portion 32 with respect to pure quartz glass is the optical fiber preform 30. Even in the case where it slightly decreases from the center side toward the outside (in the radial direction), the vacancy 33 is formed in a region where the gradient K in the dopant addition region of the cladding portion 32 is within a predetermined range. If formed, the holes 33 can be formed perpendicular to the longitudinal direction of the optical fiber preform 30 by drilling with a drill.
 次に、空孔33の内表面に対して、公知の方法により、研磨やエッチング加工を施すことにより、空孔33の内表面を平滑化し、図7に示すような、空孔付き光ファイバ母材30Aを得る。 Next, by polishing or etching the inner surface of the hole 33 by a known method, the inner surface of the hole 33 is smoothed, and an optical fiber mother with a hole as shown in FIG. A material 30A is obtained.
[光ファイバおよびその光ファイバの製造方法]
 次に、上記の方法で製造された空孔付き光ファイバ母材30Aを線引きすることにより、図11に示すような空孔付き光ファイバ60が得られる。
 空孔付き光ファイバ母材30Aを線引きする方法としては、特に限定されず、公知の方法が用いられる。
 また、線引き後の空孔付き光ファイバ60は、公知の手法により、各種樹脂で被覆することが好ましい。
[Optical fiber and manufacturing method thereof]
Next, a holey optical fiber 60 as shown in FIG. 11 is obtained by drawing the holey optical fiber preform 30A manufactured by the above method.
The method of drawing the holey optical fiber preform 30A is not particularly limited, and a known method is used.
Moreover, it is preferable to coat | cover the optical fiber 60 with a hole after drawing with various resin by a well-known method.
 空孔付き光ファイバ60は、中心部分にコア61を有し、その周囲にクラッド部62を有し、クラッド部62内に、コア61と平行に設けられた6個の空孔63とから概略構成されている。
 6個の空孔63は、コア61を中心とする同心円上に、等間隔に配置されている。
 また、クラッド部62は、ドーパントが添加されたドーパント添加領域を有し、クラッド部62のドーパント添加領域における、屈折率プロファイルが平坦あるいは僅かに変化している領域において、光ファイバ60の長手方向に沿在するとともに、コア61を中心とする同心円上に、ほぼ等間隔に配置されるように、空孔63が設けられている。
The holey optical fiber 60 has a core 61 at the center, a clad portion 62 around the core 61, and roughly includes six holes 63 provided in parallel with the core 61 in the clad portion 62. It is configured.
The six holes 63 are arranged at equal intervals on a concentric circle with the core 61 as the center.
The cladding 62 has a dopant-added region to which a dopant is added. In the region where the refractive index profile is flat or slightly changed in the dopant-added region of the cladding 62, the cladding 62 extends in the longitudinal direction of the optical fiber 60. The air holes 63 are provided so as to be arranged at substantially equal intervals on the concentric circles with the core 61 as the center.
 空孔付き光ファイバ60では、空孔付き光ファイバ母材30Aの屈折率プロファイルが維持されるので、コア61の屈折率をn11、クラッド部62の屈折率をn12とすると、n12<n11の関係を満たしている。 In the holey optical fiber 60, the refractive index profile of the holey optical fiber preform 30A is maintained. Therefore, assuming that the refractive index of the core 61 is n 11 and the refractive index of the cladding 62 is n 12 , n 12 < satisfy the relationship of n 11.
 また、空孔付き光ファイバ60は、クラッド部62が、ドーパントが添加されたドーパント添加領域を有し、空孔63がドーパント添加領域に設けられ、空孔63の直径をd、空孔63とドーパント添加領域との境界部のうち、コア61に近い内側部分における、純粋石英ガラスに対するドーパント添加領域の比屈折率差をΔrin、空孔63とドーパント添加領域との境界部のうち、コア61から遠い外側部分における、純粋石英ガラスに対するドーパント添加領域の比屈折率差をΔrout、(Δrout-Δrin)/dをドーパント添加領域における屈折率プロファイルの傾斜率kと定義したとき、空孔63はドーパント添加領域における、傾斜率kが所定の範囲内の領域(屈折率プロファイルが平坦あるいは僅かに変化している領域)に設けられている。 Further, in the holey optical fiber 60, the clad portion 62 has a dopant addition region to which a dopant is added, a hole 63 is provided in the dopant addition region, the diameter of the hole 63 is d 1 , and the hole 63. Δr in is the relative refractive index difference of the dopant addition region with respect to pure quartz glass in the inner portion near the core 61 among the boundary portion between the hole 63 and the dopant addition region. When the relative refractive index difference of the dopant addition region with respect to pure silica glass in the outer portion far from 61 is defined as Δr out and (Δr out −Δr in ) / d 1 is defined as the gradient k of the refractive index profile in the dopant addition region, The holes 63 are regions where the gradient k is in a predetermined range in the dopant addition region (the refractive index profile is flat or slightly changed). Area).
 傾斜率kは-0.05%/μm以上0.05%/μm以下であることが好ましく、-0.04%/μm以上0.04%/μm以下であることがより好ましい。
 クラッド部62のドーパント添加領域における傾斜率kが所定の範囲内の領域、好ましくは傾斜率Kが上記の範囲内である領域に空孔63が設けられていれば、空孔63の位置ズレ量(空孔付き光ファイバ60の一端面と他端面における空孔63の位置ズレ量)が少なく、波長分散特性に優れた空孔付き光ファイバ60が得られる。
The inclination rate k is preferably −0.05% / μm or more and 0.05% / μm or less, and more preferably −0.04% / μm or more and 0.04% / μm or less.
If the hole 63 is provided in a region where the gradient k in the dopant addition region of the cladding 62 is within a predetermined range, preferably in a region where the gradient K is in the above range, the amount of positional deviation of the hole 63 The holey optical fiber 60 having a small wavelength shift amount (position displacement of the hole 63 between the one end face and the other end face of the holey optical fiber 60) and excellent wavelength dispersion characteristics can be obtained.
 以上、本発明の好ましい実施形態を説明し、上記で説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、特許請求の範囲によって制限されている。 Although preferred embodiments of the present invention have been described and described above, it should be understood that these are exemplary of the present invention and should not be considered as limiting. Additions, omissions, substitutions, and other changes can be made without departing from the scope of the invention. Accordingly, the invention is not to be seen as limited by the foregoing description, but is limited by the scope of the claims.
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1]
 中心部分にコアを有し、その周囲にクラッド部を有する光ファイバ母材を作製した。
 光ファイバ母材の外径は100mm、長さは1000mmであった。
 また、コアは、ゲルマニウム(Ge)が添加された石英ガラスから構成され、クラッド部は、フッ素(F)が添加されたドーパント添加領域を有する石英ガラスから構成されていた。
 次に、ドーパント添加領域に、ドリルによる穿孔加工により、コアを中心とする同心円上に、ほぼ等間隔に6個の空孔を形成した。このとき、ドリルツールの先端の外径を3.0mmとし、穿孔加工による加工長を1000mmとし、光ファイバ母材の長手方向に沿って、直径3.0mmの貫通孔を形成し、空孔付き光ファイバ母材を得た。
 クラッド部のドーパント添加領域に形成する空孔の直径をd、空孔とドーパント添加領域との境界部のうち、コアに近い内側部分における、純粋石英ガラスに対するドーパント添加領域の比屈折率差をΔrin、空孔とドーパント添加領域との境界部のうち、コアから遠い外側部分における、純粋石英ガラスに対するドーパント添加領域の比屈折率差をΔrout、(Δrout-Δrin)/dをドーパント添加領域における屈折率プロファイルの傾斜率Kと定義し、傾斜率Kを算出した。
 ここでは、空孔の直径dを3.0mm、比屈折率差Δrinを-0.0295%、比屈折率差Δroutを-0.0066%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kは0.008%/mmであった。
[Example 1]
An optical fiber preform having a core at the center and a cladding around the core was produced.
The optical fiber preform had an outer diameter of 100 mm and a length of 1000 mm.
Moreover, the core was comprised from the quartz glass to which germanium (Ge) was added, and the clad part was comprised from the quartz glass which has the dopant addition area | region to which the fluorine (F) was added.
Next, six holes were formed at substantially equal intervals on a concentric circle centered on the core by drilling with a drill in the dopant addition region. At this time, the outer diameter of the tip of the drill tool is set to 3.0 mm, the drilling length is set to 1000 mm, a through hole having a diameter of 3.0 mm is formed along the longitudinal direction of the optical fiber preform, and a hole is provided. An optical fiber preform was obtained.
The diameter of the hole formed in the dopant-added region of the clad part is d 1 , and the relative refractive index difference of the dopant-added region with respect to pure quartz glass in the inner part near the core in the boundary part between the hole and the dopant-added region is Δr in , the relative refractive index difference of the dopant addition region with respect to pure quartz glass in the outer portion far from the core in the boundary between the hole and the dopant addition region is expressed as Δr out , (Δr out −Δr in ) / d 1 The gradient K was defined as the gradient K of the refractive index profile in the dopant addition region.
Here, the hole diameter d 1 was set to 3.0 mm, the relative refractive index difference Δr in was −0.0295%, and the relative refractive index difference Δr out was −0.0066%. As a result, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was 0.008% / mm.
[比較例1]
 実施例1と同様にして、空孔付き光ファイバ母材を得た。
 実施例1と同様にして、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kを算出した。ここでは、空孔の直径dを3.0mm、比屈折率差Δrinを-0.2825%、比屈折率差Δroutを0.0485%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kは0.11%/mmであった。
[Comparative Example 1]
In the same manner as in Example 1, a holey optical fiber preform was obtained.
In the same manner as in Example 1, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was calculated. Here, the hole diameter d 1 was 3.0 mm, the relative refractive index difference Δr in was −0.2825%, and the relative refractive index difference Δr out was 0.0485%. As a result, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was 0.11% / mm.
[比較例2]
 実施例1と同様にして、空孔付き光ファイバ母材を得た。
 実施例1と同様にして、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kを算出した。ここでは、空孔の直径dを3.0mm、比屈折率差Δrinを-0.5043%、比屈折率差Δroutを0.0572%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kは0.187%/mmであった。
[Comparative Example 2]
In the same manner as in Example 1, a holey optical fiber preform was obtained.
In the same manner as in Example 1, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was calculated. Here, the hole diameter d 1 was 3.0 mm, the relative refractive index difference Δr in was −0.5043%, and the relative refractive index difference Δr out was 0.0572%. As a result, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was 0.187% / mm.
[比較例3]
 実施例1と同様にして、空孔付き光ファイバ母材を得た。
 実施例1と同様にして、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kを算出した。ここでは、空孔の直径dを3.0mm、比屈折率差Δrinを-0.2810%、比屈折率差Δroutを-0.5229%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kは-0.081%/mmであった。
[Comparative Example 3]
In the same manner as in Example 1, a holey optical fiber preform was obtained.
In the same manner as in Example 1, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was calculated. Here, the hole diameter d 1 was set to 3.0 mm, the relative refractive index difference Δr in was −0.2810%, and the relative refractive index difference Δr out was −0.5229%. As a result, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was -0.081% / mm.
[比較例4]
 実施例1と同様にして、空孔付き光ファイバ母材を得た。
 実施例1と同様にして、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kを算出した。ここでは、空孔の直径dを3.0mm、比屈折率差Δrinを0.0398%、比屈折率差Δroutを-0.4182%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kは-0.153%/mmであった。
[Comparative Example 4]
In the same manner as in Example 1, a holey optical fiber preform was obtained.
In the same manner as in Example 1, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was calculated. Here, the hole diameter d 1 was 3.0 mm, the relative refractive index difference Δr in was 0.0398%, and the relative refractive index difference Δr out was −0.4182%. As a result, the gradient K of the refractive index profile of the obtained optical fiber preform with holes was −0.153% / mm.
[評価]
 実施例1と比較例1~4について、以下の方法により、空孔の位置ズレ量の評価を行った。
[空孔付き光ファイバ母材の空孔位置の計測による空孔の位置ズレ量の評価]
 実施例1と比較例1~4で得られた空孔付き光ファイバ母材について、図12A~図12Cに示すように、空孔付き光ファイバ母材100の加工開始端面101と加工終了端面102において、空孔103の位置を計測した。
 ここで、加工開始端面101において、空孔付き光ファイバ母材100の中心(コア104の中心)から、6つの空孔103の中心までの距離をそれぞれRs1、Rs2、Rs3、Rs4、Rs5、Rs6と定義し、距離Rs1~Rs6を計測した。そして、これらの距離Rs1~Rs6の平均値を加工開始端面101における空孔位置Rsと定義した。
 同様に、加工終了端面102において、空孔付き光ファイバ母材100の中心(コア104の中心)から、6つの空孔103の中心までの距離をそれぞれRe1、Re2、Re3、Re4、Re5、Re6と定義し、距離Re1~Re6を計測した。そして、これらの距離Re1~Re6の平均値を加工終了端面102における空孔位置Reと定義した。
 そして、空孔付き光ファイバ母材100における空孔の位置ズレ量ΔRを|Rs-Re|と定義した。即ち、位置ズレ量ΔRを「Rs-Re」の絶対値と定義した。実施例1と比較例1~4における空孔の位置ズレ量ΔRを測定した。結果を表1に示す。
[Evaluation]
With respect to Example 1 and Comparative Examples 1 to 4, the positional displacement amount of the holes was evaluated by the following method.
[Evaluation of hole misalignment by measuring hole position of holey optical fiber preform]
With respect to the holey optical fiber preforms obtained in Example 1 and Comparative Examples 1 to 4, as shown in FIGS. 12A to 12C, the machining start end face 101 and the machining end end face 102 of the holey optical fiber preform 100 are obtained. , The position of the hole 103 was measured.
Here, in the processing start end face 101, the distances from the center of the holey optical fiber preform 100 (center of the core 104) to the center of the six holes 103 are Rs1, Rs2, Rs3, Rs4, Rs5, and Rs6, respectively. And distances Rs1 to Rs6 were measured. The average value of these distances Rs1 to Rs6 was defined as the hole position Rs in the machining start end face 101.
Similarly, the distance from the center of the holey optical fiber preform 100 (the center of the core 104) to the center of the six holes 103 is set to Re1, Re2, Re3, Re4, Re5, Re6 on the processing end face 102, respectively. And distances Re1 to Re6 were measured. The average value of these distances Re1 to Re6 was defined as the hole position Re in the processing end face 102.
Then, the hole misalignment amount ΔR in the holey optical fiber preform 100 was defined as | Rs−Re |. That is, the positional deviation amount ΔR is defined as the absolute value of “Rs−Re”. The positional deviation amount ΔR of the holes in Example 1 and Comparative Examples 1 to 4 was measured. The results are shown in Table 1.
 ここで、空孔の位置ズレ量ΔRの許容範囲は、下記式(1)のように定義される。
 ΔR≦Δr/d×D (1)
 上記式(1)において、Dは空孔付き光ファイバ母材の直径、dは空孔付き光ファイバ母材を線引きして得られた空孔付き光ファイバの直径を表す。ここでは、空孔付き光ファイバの直径dを、一般的な光ファイバの外径と同様に125μmとした。
 また、上記式(1)において、Δrは、プリフォームから形成された光ファイバの空孔位置の設計位置に対する位置ズレ量の許容範囲を表し、ここでは、後述するように、-0.4μm以上0.4μm以下とした。Δrが0.4μmを超えるか、あるいは、-0.4μm未満では、空孔付き光ファイバの波長分散特性および遮断波長特性などの光学特性が設計より外れる。
 実施例1と比較例1~4における空孔付き光ファイバ母材における空孔の位置ズレ量ΔRが、後述する許容範囲内であれば「OK」と判定し、上記の許容範囲外であれば「NG」と判定した。結果を表1に示す。
Here, the allowable range of the positional deviation amount ΔR of the holes is defined as in the following formula (1).
ΔR ≦ Δr / d × D (1)
In the above formula (1), D represents the diameter of the holey optical fiber preform, and d represents the diameter of the holey optical fiber obtained by drawing the holey optical fiber preform. Here, the diameter d of the optical fiber with holes is set to 125 μm, like the outer diameter of a general optical fiber.
In the above equation (1), Δr represents an allowable range of the positional deviation amount with respect to the design position of the hole position of the optical fiber formed from the preform. Here, as described later, −0.4 μm or more 0.4 μm or less. If Δr exceeds 0.4 μm or less than −0.4 μm, the optical characteristics such as the wavelength dispersion characteristic and the cutoff wavelength characteristic of the holey optical fiber deviate from the design.
If the hole misalignment amount ΔR in the holey optical fiber preform in Example 1 and Comparative Examples 1 to 4 is within the allowable range described later, it is determined as “OK”, and if it is outside the above allowable range. It was determined as “NG”. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1では、空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kが0.008%/mmであった。また、空孔付き光ファイバ母材における空孔の位置ズレ量ΔRが0.13mmであり、空孔の位置ズレ量ΔRの許容範囲内であった。
 比較例1では、空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kが0.11%/mmであった。また、空孔付き光ファイバ母材における空孔の位置ズレ量ΔRが0.45mmであり、空孔の位置ズレ量ΔRの許容範囲を超えていた。
 比較例2では、空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kが0.187%/mmであった。また、空孔付き光ファイバ母材における空孔の位置ズレ量ΔRが0.99mmであり、空孔の位置ズレ量ΔRの許容範囲を超えていた。
 比較例3では、空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kが-0.081%/mmであった。また、空孔付き光ファイバ母材における空孔の位置ズレ量ΔRが-0.38mmであり、空孔の位置ズレ量ΔRの許容範囲を超えていた。
 比較例4では、空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kが-0.153%/mmであった。また、空孔付き光ファイバ母材における空孔の位置ズレ量ΔRが-0.63mmであり、空孔の位置ズレ量ΔRの許容範囲を超えていた。
 このように、屈折率プロファイルの傾斜率Kと、空孔付き光ファイバ母材における空孔の位置ズレ量ΔRとが密接に関係していることが確認された。
In Example 1, the gradient K of the refractive index profile of the holey optical fiber preform was 0.008% / mm. Also, the hole positional deviation amount ΔR in the holey optical fiber preform was 0.13 mm, which was within the allowable range of the hole positional deviation amount ΔR.
In Comparative Example 1, the gradient K of the refractive index profile of the holey optical fiber preform was 0.11% / mm. Also, the hole positional deviation amount ΔR in the holey optical fiber preform was 0.45 mm, which exceeded the allowable range of the hole positional deviation amount ΔR.
In Comparative Example 2, the gradient K of the refractive index profile of the holey optical fiber preform was 0.187% / mm. Further, the hole position deviation amount ΔR in the holey optical fiber preform was 0.99 mm, which exceeded the allowable range of the hole position deviation amount ΔR.
In Comparative Example 3, the gradient K of the refractive index profile of the holey optical fiber preform was −0.081% / mm. Further, the hole positional deviation amount ΔR in the optical fiber preform with holes was −0.38 mm, which exceeded the allowable range of the positional deviation amount ΔR of the holes.
In Comparative Example 4, the gradient K of the refractive index profile of the holey optical fiber preform was −0.153% / mm. Further, the hole positional deviation amount ΔR in the holey optical fiber preform was −0.63 mm, which exceeded the allowable range of the hole positional deviation amount ΔR.
In this way, it was confirmed that the gradient K of the refractive index profile and the positional deviation amount ΔR of the holes in the optical fiber preform with holes are closely related.
 また、表1に示した空孔付き光ファイバ母材における空孔の位置ズレ量ΔRと空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kとをプロットし、図13に示すようなグラフを作成し、空孔付き光ファイバ母材における空孔の位置ズレ量ΔRと空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kとの関係を示す下記の近似式(2)を得た。
 ΔR=4.7K (2)
 空孔付き光ファイバ母材における空孔の位置ズレ量ΔRの許容範囲は、空孔付き光ファイバにおける空孔の位置ズレ量Δr、および、空孔付き光ファイバ母材と空孔付き光ファイバの比例式(下記式(3))により算出される。
 ΔR=(Δr/d)×D (3)
 但し、上記の式(3)において、Dは空孔付き光ファイバ母材の直径、dは空孔付き光ファイバの直径(=125μm)を表す。
 空孔付き光ファイバ母材の直径Dを100mmとし、Δrの許容範囲を後述するように-0.4μm以上0.4μm以下とした場合、上記の式(3)から、ΔRの許容範囲が-0.32mm以上0.32mm以下となる。また、上記の式(2)から、空孔付き光ファイバ母材の屈折率プロファイルの傾斜率Kの許容範囲は-0.07%/mm以上0.07%/mm以下となる。すなわち、光ファイバ母材のドーパント添加領域における、屈折率プロファイルの傾斜率Kが-0.07%/mm以上0.07%/mm以下である領域に空孔を形成することにより、空孔の位置ズレ量ΔRが許容範囲内となることが確認された。
Also, the amount of positional deviation ΔR of holes in the optical fiber preform with holes shown in Table 1 and the gradient K of the refractive index profile of the optical fiber preform with holes are plotted, and a graph as shown in FIG. The following approximate expression (2) showing the relationship between the positional deviation amount ΔR of the hole in the holey optical fiber preform and the gradient K of the refractive index profile of the holey optical fiber preform was obtained. .
ΔR = 4.7K (2)
The permissible range of the hole misalignment amount ΔR in the holey optical fiber preform includes the hole misalignment amount Δr in the holey optical fiber, and the hole misalignment optical fiber preform and the holey optical fiber. It is calculated by a proportional expression (the following expression (3)).
ΔR = (Δr / d) × D (3)
However, in said Formula (3), D represents the diameter of an optical fiber base material with a hole, and d represents the diameter (= 125 micrometers) of an optical fiber with a hole.
When the diameter D of the optical fiber preform with holes is 100 mm and the allowable range of Δr is −0.4 μm or more and 0.4 μm or less as will be described later, the allowable range of ΔR is − It becomes 0.32 mm or more and 0.32 mm or less. Further, from the above equation (2), the allowable range of the gradient K of the refractive index profile of the holey optical fiber preform is −0.07% / mm or more and 0.07% / mm or less. That is, by forming vacancies in the region where the gradient K of the refractive index profile is −0.07% / mm or more and 0.07% / mm or less in the dopant addition region of the optical fiber preform, It was confirmed that the positional deviation amount ΔR was within the allowable range.
[実施例2]
 実施例1で得られた空孔付き光ファイバ母材を線引きすることにより、中心部分にコアを有し、その周囲にクラッド部を有し、クラッド部のドーパント添加領域における、屈折率プロファイルが平坦あるいは僅かに変化している領域において、光ファイバの長手方向に沿在するとともに、コアを中心とする同心円上に、ほぼ等間隔に配置されるように、6個の空孔が設けられた空孔付き光ファイバを得た。
 得られた空孔付き光ファイバにおいて、空孔の直径をd、空孔とドーパント添加領域との境界部のうち、コアに近い内側部分における、純粋石英ガラスに対するドーパント添加領域の比屈折率差をΔrin、空孔とドーパント添加領域との境界部のうち、コアから遠い外側部分における、純粋石英ガラスに対するドーパント添加領域の比屈折率差をΔroutと定義したとき、(Δrout-Δrin)/dで表されるドーパント添加領域における屈折率プロファイルの傾斜率kを算出した。
 ここでは、空孔の直径dを6.0μm、比屈折率差Δrinを-0.0017%、比屈折率差Δroutを0.0112%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率kは0.002%/μmであった。
[Example 2]
By drawing the optical fiber preform with holes obtained in Example 1, a core is provided in the center part, a cladding part is provided around the core part, and the refractive index profile is flat in the dopant addition region of the cladding part. Alternatively, in a slightly changing region, there are six holes provided so as to be arranged along the longitudinal direction of the optical fiber and at almost equal intervals on a concentric circle centered on the core. A holey optical fiber was obtained.
In the obtained optical fiber with holes, the diameter of the holes is d 1 , and the relative refractive index difference of the dopant-added region with respect to pure silica glass in the inner portion near the core in the boundary between the holes and the dopant-added region the [Delta] r in, among the boundary portions between the holes and the dopant doped region, the far outer portion from the core, when the relative refractive index difference of the dopant doped region for pure silica glass is defined as Δr out, (Δr out -Δr in ) / D 1 The gradient k of the refractive index profile in the dopant addition region represented by 1 was calculated.
Here, the hole diameter d 1 was 6.0 μm, the relative refractive index difference Δr in was −0.0017%, and the relative refractive index difference Δr out was 0.0112%. As a result, the gradient k of the refractive index profile of the obtained optical fiber preform with holes was 0.002% / μm.
[比較例5]
 実施例2と同様にして、比較例1で得られた空孔付き光ファイバ母材を線引きすることにより、クラッド部のドーパント添加領域において、光ファイバの長手方向に沿在するとともに、コアを中心とする同心円上に、ほぼ等間隔に配置されるように、6個の空孔が設けられた空孔付き光ファイバを得た。
 実施例2と同様にして、得られた空孔付き光ファイバについて、屈折率プロファイルの傾斜率kを算出した。ここでは、空孔の直径dを3.5μm、比屈折率差Δrinを-0.2176%、比屈折率差Δroutを0.0803%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率kは0.085%/μmであった。
[Comparative Example 5]
In the same manner as in Example 2, by drawing the holey optical fiber preform obtained in Comparative Example 1, in the dopant addition region of the cladding part, the core is located in the longitudinal direction of the optical fiber and the core is centered. As a result, an optical fiber with a hole in which six holes are provided so as to be arranged at substantially equal intervals on the concentric circle is obtained.
In the same manner as in Example 2, the gradient k of the refractive index profile was calculated for the obtained optical fiber with holes. Here, the hole diameter d 1 was 3.5 μm, the relative refractive index difference Δr in was −0.2176%, and the relative refractive index difference Δr out was 0.0803%. As a result, the gradient k of the refractive index profile of the obtained optical fiber preform with holes was 0.085% / μm.
[比較例6]
 実施例2と同様にして、比較例2で得られた空孔付き光ファイバ母材を線引きすることにより、クラッド部のドーパント添加領域において、光ファイバの長手方向に沿在するとともに、コアを中心とする同心円上に、ほぼ等間隔に配置されるように、6個の空孔が設けられた空孔付き光ファイバを得た。
 実施例2と同様にして、得られた空孔付き光ファイバについて、屈折率プロファイルの傾斜率kを算出した。ここでは、空孔の直径dを4.1μm、比屈折率差Δrinを-0.4776%、比屈折率差Δroutを0.0681%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率kは0.133%/μmであった。
[Comparative Example 6]
In the same manner as in Example 2, by drawing the holey optical fiber preform obtained in Comparative Example 2, the dopant-added region of the cladding part is located along the longitudinal direction of the optical fiber and is centered on the core. As a result, an optical fiber with a hole in which six holes are provided so as to be arranged at substantially equal intervals on the concentric circle is obtained.
In the same manner as in Example 2, the gradient k of the refractive index profile was calculated for the obtained optical fiber with holes. Here, the hole diameter d 1 was 4.1 μm, the relative refractive index difference Δr in was −0.4776%, and the relative refractive index difference Δr out was 0.0681%. As a result, the gradient k of the refractive index profile of the obtained optical fiber preform with holes was 0.133% / μm.
[比較例7]
 実施例2と同様にして、比較例3で得られた空孔付き光ファイバ母材を線引きすることにより、クラッド部のドーパント添加領域において、光ファイバの長手方向に沿在するとともに、コアを中心とする同心円上に、ほぼ等間隔に配置されるように、6個の空孔が設けられた空孔付き光ファイバを得た。
 実施例2と同様にして、得られた空孔付き光ファイバについて、屈折率プロファイルの傾斜率kを算出した。ここでは、空孔の直径dを4.3μm、比屈折率差Δrinを-0.1770%、比屈折率差Δroutを-0.4861%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率kは-0.072%/μmであった。
[Comparative Example 7]
In the same manner as in Example 2, by drawing the holey optical fiber preform obtained in Comparative Example 3, the dopant-added region of the cladding part is located along the longitudinal direction of the optical fiber and is centered on the core. As a result, an optical fiber with a hole in which six holes are provided so as to be arranged at substantially equal intervals on the concentric circle is obtained.
In the same manner as in Example 2, the gradient k of the refractive index profile was calculated for the obtained optical fiber with holes. Here, the hole diameter d 1 was 4.3 μm, the relative refractive index difference Δr in was −0.1770%, and the relative refractive index difference Δr out was −0.4861%. As a result, the gradient k of the refractive index profile of the obtained optical fiber preform with holes was −0.072% / μm.
[比較例8]
 実施例2と同様にして、比較例4で得られた空孔付き光ファイバ母材を線引きすることにより、クラッド部のドーパント添加領域において、光ファイバの長手方向に沿在するとともに、コアを中心とする同心円上に、ほぼ等間隔に配置されるように、6個の空孔が設けられた空孔付き光ファイバを得た。
 実施例2と同様にして、得られた空孔付き光ファイバについて、屈折率プロファイルの傾斜率kを算出した。ここでは、空孔の直径dを3.9μm、比屈折率差Δrinを0.0592%、比屈折率差Δroutを-0.3620%とした。その結果、得られた空孔付き光ファイバ母材の屈折率プロファイルの傾斜率kは-0.108%/μmであった。
[Comparative Example 8]
In the same manner as in Example 2, by drawing the holey optical fiber preform obtained in Comparative Example 4, in the dopant addition region of the cladding part, the core is located in the longitudinal direction of the optical fiber and the core is centered. As a result, an optical fiber with a hole in which six holes are provided so as to be arranged at substantially equal intervals on the concentric circle is obtained.
In the same manner as in Example 2, the gradient k of the refractive index profile was calculated for the obtained optical fiber with holes. Here, the hole diameter d 1 was 3.9 μm, the relative refractive index difference Δr in was 0.0592%, and the relative refractive index difference Δr out was −0.3620%. As a result, the gradient k of the refractive index profile of the obtained optical fiber preform with holes was −0.108% / μm.
[評価]
 実施例2と比較例5~8について、以下の方法により、空孔の位置ズレ量の評価を行った。
[空孔付き光ファイバの空孔位置の計測による空孔の位置ズレ量の評価]
 実施例2と比較例5~8で得られた空孔付き光ファイバについて、図14A~図14Cに示すように、空孔付き光ファイバ110の加工開始端面111と加工終了端面112において、光学顕微鏡により、空孔113の位置を計測した。
 ここで、加工開始端面111において、空孔付き光ファイバ110の中心(コア114の中心)から、6つの空孔113の中心までの距離をそれぞれrs1、rs2、rs3、rs4、rs5、rs6と定義し、距離rs1~rs6を計測した。そして、これらの距離rs1~rs6の平均値を加工開始端面111における空孔位置rsと定義した。
 同様に、加工終了端面112において、空孔付き光ファイバ110の中心(コア114の中心)から、6つの空孔113の中心までの距離をそれぞれre1、re2、re3、re4、re5、re6と定義し、距離re1~re6を計測した。そして、これらの距離re1~re6の平均値を加工終了端面112における空孔位置reと定義した。
 そして、空孔付き光ファイバ110における空孔の位置ズレ量Δrを|rs-re|と定義した。即ち、位置ズレ量Δrを「rs-re」の絶対値と定義した。実施例2と比較例5~8における空孔の位置ズレ量Δrを測定した。結果を表2に示す。
[Evaluation]
With respect to Example 2 and Comparative Examples 5 to 8, the positional deviation amount of the holes was evaluated by the following method.
[Evaluation of hole misalignment by measuring hole position of holey optical fiber]
With respect to the optical fibers with holes obtained in Example 2 and Comparative Examples 5 to 8, as shown in FIGS. 14A to 14C, an optical microscope is formed on the processing start end face 111 and the processing end end face 112 of the optical fiber with holes 110. Thus, the position of the hole 113 was measured.
Here, on the processing start end face 111, the distances from the center of the holey optical fiber 110 (center of the core 114) to the center of the six holes 113 are defined as rs1, rs2, rs3, rs4, rs5, and rs6, respectively. The distances rs1 to rs6 were measured. The average value of these distances rs1 to rs6 was defined as the hole position rs in the machining start end face 111.
Similarly, the distance from the center of the holey optical fiber 110 (center of the core 114) to the center of the six holes 113 on the processing end face 112 is defined as re1, re2, re3, re4, re5, and re6, respectively. The distances re1 to re6 were measured. The average value of these distances re1 to re6 was defined as the hole position re in the processing end face 112.
The hole positional deviation amount Δr in the holey optical fiber 110 was defined as | rs−re |. That is, the positional deviation amount Δr is defined as the absolute value of “rs−re”. The hole misregistration amount Δr in Example 2 and Comparative Examples 5 to 8 was measured. The results are shown in Table 2.
 ここで、後述するように、Δr(プリフォームから形成された光ファイバ(空孔付き光ファイバ)の空孔位置の設計位置に対する位置ズレ量の許容範囲)を、-0.4μm以上0.4μm以下とした。
 実施例2と比較例5~8における空孔付き光ファイバの空孔の位置ズレ量Δrが、後述する許容範囲内であれば「OK」と判定し、上記の許容範囲外であれば「NG」と判定した。結果を表2に示す。
Here, as will be described later, Δr (allowable range of positional deviation with respect to the design position of the hole position of the optical fiber (optical fiber with holes) formed from the preform) is −0.4 μm or more and 0.4 μm. It was as follows.
If the hole misalignment amount Δr of the holey optical fiber in Example 2 and Comparative Examples 5 to 8 is within the allowable range described later, it is determined as “OK”, and if it is out of the above allowable range, “NG” is determined. Was determined. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例2では、空孔付き光ファイバの屈折率プロファイルの傾斜率kが0.002%/μmであった。また、空孔付き光ファイバにおける空孔の位置ズレ量Δrが0.16μmであり、空孔の位置ズレ量Δrの許容範囲内であった。
 比較例5では、空孔付き光ファイバの屈折率プロファイルの傾斜率kが0.085%/μmであった。また、空孔付き光ファイバにおける空孔の位置ズレ量Δrが0.56μmであり、空孔の位置ズレ量Δrの許容範囲を超えていた。
 比較例6では、空孔付き光ファイバの屈折率プロファイルの傾斜率kが0.133%/μmであった。また、空孔付き光ファイバにおける空孔の位置ズレ量Δrが1.24μmであり、空孔の位置ズレ量Δrの許容範囲を超えていた。
 比較例7では、空孔付き光ファイバの屈折率プロファイルの傾斜率kが-0.072%/μmであった。また、空孔付き光ファイバにおける空孔の位置ズレ量Δrが-0.48μmであり、空孔の位置ズレ量Δrの許容範囲を超えていた。
 比較例8では、空孔付き光ファイバの屈折率プロファイルの傾斜率kが-0.108%/μmであった。また、空孔付き光ファイバにおける空孔の位置ズレ量Δrが-0.78μmであり、空孔の位置ズレ量Δrの許容範囲を超えていた。
In Example 2, the gradient k of the refractive index profile of the optical fiber with holes was 0.002% / μm. In addition, the hole positional deviation amount Δr in the holey optical fiber was 0.16 μm, which was within the allowable range of the hole positional deviation amount Δr.
In Comparative Example 5, the gradient k of the refractive index profile of the optical fiber with holes was 0.085% / μm. Further, the hole positional deviation amount Δr in the optical fiber with holes was 0.56 μm, which exceeded the allowable range of the positional deviation amount Δr of the holes.
In Comparative Example 6, the gradient k of the refractive index profile of the holey optical fiber was 0.133% / μm. In addition, the hole position deviation amount Δr in the holey optical fiber was 1.24 μm, which exceeded the allowable range of the hole position deviation amount Δr.
In Comparative Example 7, the gradient k of the refractive index profile of the holey optical fiber was −0.072% / μm. Further, the hole positional deviation amount Δr in the holey optical fiber was −0.48 μm, which exceeded the allowable range of the hole positional deviation amount Δr.
In Comparative Example 8, the gradient k of the refractive index profile of the holey optical fiber was −0.108% / μm. Further, the hole positional deviation amount Δr in the optical fiber with holes was −0.78 μm, which exceeded the allowable range of the positional deviation amount Δr of the holes.
 また、表2に示した空孔付き光ファイバにおける空孔の位置ズレ量Δrと空孔付き光ファイバの屈折率プロファイルの傾斜率kとをプロットし、図15に示すようなグラフを作成し、空孔付き光ファイバにおける空孔の位置ズレ量Δrと空孔付き光ファイバの屈折率プロファイルの傾斜率kとの関係を示す下記の近似式(4)を得た。
 Δr=7.9k (4)
 Δrの許容範囲を後述するように-0.4μm以上0.4μm以下とした場合、上記の式(4)から、空孔付き光ファイバの屈折率プロファイルの傾斜率kの許容範囲は-0.05%/μm以上0.05%/μm以下となる。すなわち、光ファイバのドーパント添加領域における、屈折率プロファイルの傾斜率kが-0.05%/μm以上0.05%/μm以下である領域に空孔が形成されていれば、空孔の位置ズレ量Δrが許容範囲内となることが確認された。
Further, the amount of positional deviation Δr of holes in the optical fiber with holes shown in Table 2 and the gradient k of the refractive index profile of the optical fiber with holes are plotted, and a graph as shown in FIG. 15 is created. The following approximate expression (4) showing the relationship between the positional deviation amount Δr of the hole in the optical fiber with holes and the gradient k of the refractive index profile of the optical fiber with holes was obtained.
Δr = 7.9k (4)
When the allowable range of Δr is set to −0.4 μm or more and 0.4 μm or less as will be described later, the allowable range of the gradient rate k of the refractive index profile of the optical fiber with holes is −0. It becomes 05% / μm or more and 0.05% / μm or less. That is, if a hole is formed in a region where the gradient k of the refractive index profile is −0.05% / μm or more and 0.05% / μm or less in the dopant-added region of the optical fiber, the position of the hole It was confirmed that the deviation amount Δr was within the allowable range.
 また、図16に示すように、実施例1における傾斜率Kと実施例2における傾斜率kの関係、比較例2における傾斜率Kと比較例6における傾斜率kの関係、および、比較例4における傾斜率Kと比較例8における傾斜率kの関係をプロットしたところ、空孔付き光ファイバ母材における屈折率プロファイルの傾斜率Kと、空孔付き光ファイバの屈折率プロファイルの傾斜率kとの間には、高い相関があることが分かった。 Further, as shown in FIG. 16, the relationship between the gradient K in Example 1 and the gradient k in Example 2, the relationship between the gradient K in Comparative Example 2 and the gradient k in Comparative Example 6, and Comparative Example 4 When the relationship between the slope K in the optical fiber preform and the slope k in Comparative Example 8 is plotted, the slope K of the refractive index profile in the holey optical fiber preform and the slope k of the refractive index profile in the holey optical fiber are plotted. It was found that there is a high correlation between the two.
[空孔付き光ファイバにおける空孔の位置ズレ量Δrの許容範囲について]
 高屈折率コアの周囲のクラッド部に空孔を配置した空孔付き光ファイバの場合、空孔位置の変化によって、導波路分散に影響し、その結果、波長分散特性が変化する。空孔付き光ファイバは、波長分散特性が変化すると、通信波長において幾らかの波長分散を有するようになり、その結果、信号波形が劣化する。実施例2のような空孔付き光ファイバは、空孔を設けたことにより曲げ損失低減を実現した低曲げ損失型光ファイバに分類される。
 このような低曲げ損失型光ファイバには、国際規格ITU-T G657が適用される。
 この規格のなかで、波長分散特性の範囲が明記されており、具体的には、零分散波長が1300~1324nmの範囲、かつ、零分散Slopeが0.092ps/nm/kmという規格がある。
 また、実施例1の空孔付き光ファイバ母材を線引きして作製した、実施例2の空孔付き光ファイバの波長分散特性を測定した。結果を表3に示す。
 また、比較例9として、空孔の位置ズレ量ΔRが0.33mmの空孔付き光ファイバ母材を作製し、その空孔付き光ファイバ母材を線引きして、空孔の位置ズレ量Δrが0.41μmの空孔付き光ファイバを作製した。この比較例9の空孔付き光ファイバの波長分散特性を測定した。結果を表3に示す。
 さらに、比較例10として、空孔の位置ズレ量ΔRが-0.33mmの空孔付き光ファイバ母材を作製し、その空孔付き光ファイバ母材を線引きして、空孔の位置ズレ量Δrが-0.41μmの空孔付き光ファイバを作製した。この比較例10の空孔付き光ファイバの波長分散特性を測定した。結果を表3に示す。
[Allowable range of hole misalignment amount Δr in holey optical fiber]
In the case of a holey optical fiber in which holes are arranged in the cladding part around the high refractive index core, the change in the hole position affects the waveguide dispersion, and as a result, the wavelength dispersion characteristics change. When the chromatic dispersion characteristics change, the holey optical fiber has some chromatic dispersion at the communication wavelength, and as a result, the signal waveform deteriorates. The holey optical fiber as in Example 2 is classified as a low bending loss optical fiber that realizes a reduction in bending loss by providing holes.
The international standard ITU-T G657 is applied to such a low bending loss optical fiber.
Within this standard, the range of chromatic dispersion characteristics is specified. Specifically, there is a standard in which the zero dispersion wavelength is in the range of 1300 to 1324 nm and the zero dispersion Slope is 0.092 ps / nm 2 / km. .
In addition, the wavelength dispersion characteristics of the holey optical fiber of Example 2 prepared by drawing the holey optical fiber preform of Example 1 were measured. The results are shown in Table 3.
Further, as Comparative Example 9, a holey optical fiber preform with a hole misalignment amount ΔR of 0.33 mm was prepared, and the holey optical fiber preform was drawn to obtain a hole misalignment amount Δr. Produced a holey optical fiber with a diameter of 0.41 μm. The wavelength dispersion characteristics of the holey optical fiber of Comparative Example 9 were measured. The results are shown in Table 3.
Further, as Comparative Example 10, a holey optical fiber preform with a hole misregistration amount ΔR of −0.33 mm was prepared, and the holey optical fiber preform was drawn to obtain a hole misalignment amount. A holey optical fiber with Δr of −0.41 μm was produced. The wavelength dispersion characteristics of the holey optical fiber of Comparative Example 10 were measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3の結果から、実施例においては、加工曲がりを抑制できており、加工終了端面側における零分散波長および零分散Slopeはいずれも、上記の規格内であった。
 これに対して、比較例9の空孔付き光ファイバでは、加工終了端面側における零分散波長が上記の規格よりも長波長側にシフトしていた。
 また、比較例10の空孔付き光ファイバでは、加工終了端面側における零分散Slopeが上記の規格値を超えていた。
 このように、空孔付き光ファイバにおける空孔の位置ズレ量Δrが上記の-0.4μm以上0.4μm以下の範囲内にない場合、空孔付き光ファイバの波長分散特性が国際規格ITU-T G657を満たさないことが分かった。
 すなわち、空孔付き光ファイバのドーパント添加領域における、屈折率プロファイルの傾斜率kが-0.05%/μm以上0.05%/μm以下の領域に空孔が設けられていれば、空孔付き光ファイバにおける空孔の位置ズレ量が上記の-0.4μm以上0.4μm以下の範囲内となり、空孔付き光ファイバの波長分散特性が国際規格ITU-T G657を満たすことが確認された。
From the results shown in Table 3, in the examples, the processing bending can be suppressed, and the zero dispersion wavelength and the zero dispersion Slope on the processing end face side are both within the above-mentioned standard.
On the other hand, in the optical fiber with holes of Comparative Example 9, the zero dispersion wavelength on the processing end face side was shifted to the longer wavelength side than the above standard.
In addition, in the optical fiber with holes of Comparative Example 10, the zero dispersion Slope on the processing end face side exceeded the standard value.
Thus, when the hole misalignment amount Δr in the holey optical fiber is not in the range of −0.4 μm or more and 0.4 μm or less, the wavelength dispersion characteristic of the holey optical fiber is the international standard ITU- It was found that TG657 was not satisfied.
That is, if holes are provided in a region where the refractive index profile gradient k is −0.05% / μm or more and 0.05% / μm or less in the dopant-added region of the optical fiber with holes, It was confirmed that the amount of positional deviation of the holes in the optical fiber with a hole is in the range of −0.4 μm to 0.4 μm and the wavelength dispersion characteristic of the optical fiber with a hole satisfies the international standard ITU-T G657. .
 21,31,61・・・コア、22,32,62・・・クラッド部、30・・・光ファイバ母材、30A・・・空孔付き光ファイバ母材、33,63・・・空孔、60・・・空孔付き光ファイバ。 21, 31, 61... Core, 22, 32, 62... Cladding portion, 30... Optical fiber preform, 30 A. Optical fiber preform with holes, 33, 63. , 60... Optical fiber with holes.

Claims (6)

  1.  光ファイバであって、
     コアと、
     前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部と、
     前記クラッド部内にて、前記コアと平行にかつ前記コアを中心とする同心円上に設けられた複数の空孔と、を備え、
     前記空孔の直径をdと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアに近い内側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔrinと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアから遠い外側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔroutと定義し、(Δrout-Δrin)/dを前記ドーパント添加領域における屈折率プロファイルの傾斜率kと定義したとき、前記空孔は前記ドーパント添加領域における、前記傾斜率kが所定の範囲内の領域に設けられた光ファイバ。
    An optical fiber,
    The core,
    A cladding portion surrounding the core and having a dopant-added region doped with a dopant;
    A plurality of holes provided on the concentric circle centering on the core in the clad part, in parallel with the core;
    The diameter of the hole is defined as d 1, and the relative refractive index difference of the dopant-added region with respect to pure quartz glass in the inner portion near the core in the boundary between the hole and the dopant-added region is Δr In, the relative refractive index difference of the dopant addition region with respect to pure quartz glass in the outer portion far from the core in the boundary portion between the vacancies and the dopant addition region is defined as Δr out , (Δr When out −Δr in ) / d 1 is defined as the gradient k of the refractive index profile in the dopant addition region, the vacancies are provided in the dopant addition region in the region where the gradient k is within a predetermined range. Optical fiber.
  2.  前記傾斜率kは-0.05%/μm以上0.05%/μm以下である請求項1に記載の光ファイバ。 2. The optical fiber according to claim 1, wherein the gradient k is −0.05% / μm or more and 0.05% / μm or less.
  3.  光ファイバの製造方法であって、
     コアと、前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部と、前記クラッド部内にて前記コアと平行にかつ前記コアを中心とする同心円上に設けられた複数の空孔と、を備え、前記空孔の直径をdと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアに近い内側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔrinと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアから遠い外側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔroutと定義し、(Δrout-Δrin)/dを前記ドーパント添加領域における屈折率プロファイルの傾斜率kと定義したとき、前記空孔は前記ドーパント添加領域における、前記傾斜率kが所定の範囲内の領域に設けられた光ファイバを製造する製造方法であって、
     コアと、前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部とを含む光ファイバ母材を製造し、
     前記ドーパント添加領域に、前記コアを中心とする同心円上に複数の空孔を形成し、
     前記空孔の内表面を平滑化し、空孔付き光ファイバ母材を製造し、
     前記空孔内を加圧しながら、前記空孔付き光ファイバ母材を線引きする線引きし、
     前記複数の空孔の形成において、前記クラッド部のドーパント添加領域に形成する空孔の直径をdと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアに近い内側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔrinと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアから遠い外側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔroutと定義し、(Δrout-Δrin)/dを前記ドーパント添加領域における屈折率プロファイルの傾斜率Kと定義したとき、前記ドーパント添加領域における、前記傾斜率Kが所定の範囲内の領域に、前記空孔を形成する光ファイバの製造方法。
    An optical fiber manufacturing method comprising:
    A core, a clad portion surrounding the core and having a dopant-added region to which a dopant is added, and a plurality of voids provided in a concentric circle parallel to the core and centered on the core in the clad portion A diameter of the hole is defined as d 1, and the dopant-added region with respect to the pure silica glass in an inner portion near the core in a boundary portion between the hole and the dopant-added region is provided. The relative refractive index difference is defined as Δr in, and the relative refractive index difference of the dopant added region with respect to pure quartz glass in the outer portion far from the core in the boundary between the vacancies and the dopant added region is Δr out. When (Δr out −Δr in ) / d 1 is defined as the gradient k of the refractive index profile in the dopant addition region, Is a manufacturing method for manufacturing an optical fiber provided in a region in which the gradient k is within a predetermined range in the dopant addition region,
    Producing an optical fiber preform including a core and a clad portion surrounding the core and having a dopant-added region to which a dopant is added,
    In the dopant addition region, a plurality of holes are formed on a concentric circle centered on the core,
    Smoothing the inner surface of the hole, producing a holey optical fiber preform,
    Drawing the optical fiber preform with the hole while drawing the inside of the hole,
    In the formation of the plurality of holes, wherein the diameter of pores formed in the dopant doped region of the cladding portion is defined as d 1, of the boundary between the holes and the dopant doped region, inside closer to the core The relative refractive index difference of the dopant added region with respect to the pure silica glass in the portion is defined as Δr in , and the boundary portion between the hole and the dopant added region in the outer portion far from the core with respect to the pure silica glass When the relative refractive index difference of the dopant added region is defined as Δr out and (Δr out −Δr in ) / d 1 is defined as the gradient K of the refractive index profile in the dopant added region, in the dopant added region, An optical fiber manufacturing method in which the holes are formed in a region where the inclination rate K is within a predetermined range.
  4.  前記傾斜率kは-0.05%/μm以上0.05%/μm以下、前記傾斜率Kは-0.07%/mm以上0.07%/mm以下である請求項3に記載の光ファイバの製造方法。 4. The light according to claim 3, wherein the gradient k is −0.05% / μm or more and 0.05% / μm or less, and the gradient K is −0.07% / mm or more and 0.07% / mm or less. Fiber manufacturing method.
  5.  光ファイバ母材の製造方法であって、
     コアと、前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部と、前記クラッド部内にて前記コアと平行にかつ前記コアを中心とする同心円上に設けられて前記ドーパント添加領域に設けられた複数の空孔と、を備えた光ファイバ母材を製造する製造方法であって、
     コアと、前記コアの周囲を囲むとともにドーパントが添加されたドーパント添加領域を有するクラッド部を含む光ファイバ母材を製造し、
     前記ドーパント添加領域に、前記コアを中心とする同心円上に複数の空孔を形成し、
     前記空孔の内表面を平滑化し、
     前記複数の空孔の形成において、前記クラッド部のドーパント添加領域に形成する空孔の直径をdと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアに近い内側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔrinと定義し、前記空孔と前記ドーパント添加領域との境界部のうち、前記コアから遠い外側部分における、純粋石英ガラスに対する前記ドーパント添加領域の比屈折率差をΔroutと定義し、(Δrout-Δrin)/dを前記ドーパント添加領域における屈折率プロファイルの傾斜率Kと定義したとき、前記ドーパント添加領域における、前記傾斜率Kが所定の範囲内の領域に、前記空孔を形成する光ファイバ母材の製造方法。
    An optical fiber preform manufacturing method comprising:
    A core, a clad portion surrounding the core and having a dopant-added region to which a dopant is added; and the dopant addition provided in a concentric circle parallel to the core and centered on the core in the clad portion A manufacturing method of manufacturing an optical fiber preform including a plurality of holes provided in a region,
    Producing an optical fiber preform including a core and a cladding portion surrounding the core and having a dopant-added region to which a dopant is added,
    In the dopant addition region, a plurality of holes are formed on a concentric circle centered on the core,
    Smoothing the inner surface of the pores;
    In the formation of the plurality of holes, wherein the diameter of pores formed in the dopant doped region of the cladding portion is defined as d 1, of the boundary between the holes and the dopant doped region, inside closer to the core The relative refractive index difference of the dopant added region with respect to the pure silica glass in the portion is defined as Δr in , and the boundary portion between the hole and the dopant added region in the outer portion far from the core with respect to the pure silica glass When the relative refractive index difference of the dopant added region is defined as Δr out and (Δr out −Δr in ) / d 1 is defined as the gradient K of the refractive index profile in the dopant added region, in the dopant added region, An optical fiber preform manufacturing method in which the holes are formed in a region where the inclination rate K is within a predetermined range.
  6.  前記傾斜率Kは-0.07%/mm以上0.07%/mm以下である請求項5に記載の光ファイバ母材の製造方法。 6. The method of manufacturing an optical fiber preform according to claim 5, wherein the inclination rate K is −0.07% / mm or more and 0.07% / mm or less.
PCT/JP2013/073131 2012-08-31 2013-08-29 Optical fiber, method for manufacturing optical fiber, and method for manufacturing optical fiber preform WO2014034774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-192596 2012-08-31
JP2012192596A JP5735468B2 (en) 2012-08-31 2012-08-31 Optical fiber, method for manufacturing the same, and method for manufacturing optical fiber preform

Publications (1)

Publication Number Publication Date
WO2014034774A1 true WO2014034774A1 (en) 2014-03-06

Family

ID=50183579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073131 WO2014034774A1 (en) 2012-08-31 2013-08-29 Optical fiber, method for manufacturing optical fiber, and method for manufacturing optical fiber preform

Country Status (2)

Country Link
JP (1) JP5735468B2 (en)
WO (1) WO2014034774A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157073A1 (en) * 2014-04-08 2015-10-15 Corning Incorporated Method for making soot preforms and glass optical fibers
CN110221382A (en) * 2019-06-12 2019-09-10 烽火通信科技股份有限公司 A kind of single mode optical fiber of ultralow attenuation large effective area

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293562A (en) * 2001-03-29 2002-10-09 Sumitomo Electric Ind Ltd Method for producing optical fiber
JP2012037782A (en) * 2010-08-09 2012-02-23 Furukawa Electric Co Ltd:The Hole-assisted optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293562A (en) * 2001-03-29 2002-10-09 Sumitomo Electric Ind Ltd Method for producing optical fiber
JP2012037782A (en) * 2010-08-09 2012-02-23 Furukawa Electric Co Ltd:The Hole-assisted optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157073A1 (en) * 2014-04-08 2015-10-15 Corning Incorporated Method for making soot preforms and glass optical fibers
CN110221382A (en) * 2019-06-12 2019-09-10 烽火通信科技股份有限公司 A kind of single mode optical fiber of ultralow attenuation large effective area
CN110221382B (en) * 2019-06-12 2020-07-07 烽火通信科技股份有限公司 Single-mode fiber with ultralow attenuation and large effective area

Also Published As

Publication number Publication date
JP5735468B2 (en) 2015-06-17
JP2014048544A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
CN100368329C (en) Optical fiber preform producing method, optical fiber producing method, and optical fiber
EP0522229B1 (en) Method of making a polarization-retaining, single-mode, optical fiber
JP4383377B2 (en) Fabrication method of microstructured optical fiber
EP3133426B1 (en) Optical fiber article for handling h igher power and method of fabricating or using it
EP0138512A1 (en) Method of forming laminated single polarization fiber
JP7119531B2 (en) optical fiber
JP4870114B2 (en) Method for increasing D / d of core rod with low clad to core ratio D / d of optical fiber preform
US20190270662A1 (en) Method of manufacturing optical fiber preform and optical fiber preform
WO2003075058A1 (en) Polarized wave holding optical fiber, and method of producing the same
WO2014034774A1 (en) Optical fiber, method for manufacturing optical fiber, and method for manufacturing optical fiber preform
US10118854B2 (en) Tubular semifinished product for producing an optical fiber
US8689587B2 (en) Polarization controlling optical fiber preform and preform fabrication methods
JP2014139114A (en) Optical fiber preform, production method of optical fiber preform, and production method of optical fiber
JP5513357B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method using the same
WO2014034810A1 (en) Optical fiber and optical fiber producing method
JP5113415B2 (en) Manufacturing method of quartz glass tube
RU2301782C1 (en) Method of manufacture of the single-mode fiber light guide keeping the polarization of its light emission
WO2005090247A1 (en) Process for producing glass parent material for hollow fiber, hollow fiber and process for producing the same
JP6068880B2 (en) Optical fiber and manufacturing method thereof
WO2023135944A1 (en) Method for producing multicore optical fiber, and multicore optical fiber
CN118339119A (en) Method for manufacturing multi-core optical fiber and multi-core optical fiber
JP2013063890A (en) Method of producing optical fiber preform and method of producing optical fiber using the same
JP2000233937A (en) Production of optical fiber
JP2006160561A (en) Method for manufacturing optical fiber preform and optical fiber preform
WO2022050190A1 (en) Production method for optical fiber base material, and optical fiber base material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833827

Country of ref document: EP

Kind code of ref document: A1