WO2005090247A1 - Process for producing glass parent material for hollow fiber, hollow fiber and process for producing the same - Google Patents

Process for producing glass parent material for hollow fiber, hollow fiber and process for producing the same Download PDF

Info

Publication number
WO2005090247A1
WO2005090247A1 PCT/JP2005/003919 JP2005003919W WO2005090247A1 WO 2005090247 A1 WO2005090247 A1 WO 2005090247A1 JP 2005003919 W JP2005003919 W JP 2005003919W WO 2005090247 A1 WO2005090247 A1 WO 2005090247A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
producing
glass preform
holey fiber
porous
Prior art date
Application number
PCT/JP2005/003919
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Otosaka
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2005090247A1 publication Critical patent/WO2005090247A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • E02D29/0258Retaining or protecting walls characterised by constructional features
    • E02D29/0266Retaining or protecting walls characterised by constructional features made up of preformed elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2200/00Geometrical or physical properties
    • E02D2200/16Shapes
    • E02D2200/165Shapes polygonal
    • E02D2200/1664Shapes polygonal made from multiple elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2200/00Geometrical or physical properties
    • E02D2200/16Shapes
    • E02D2200/1685Shapes cylindrical
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/20Miscellaneous comprising details of connection between elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/40Miscellaneous comprising stabilising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method of manufacturing a glass preform for a holey fiber in which the purity of an optical fiber having a plurality of holes over its entire length (hereinafter, simply referred to as a holey fiber) is improved, a holey fiber, and a method of manufacturing the same.
  • a holey fiber in which the purity of an optical fiber having a plurality of holes over its entire length (hereinafter, simply referred to as a holey fiber) is improved, a holey fiber, and a method of manufacturing the same.
  • This application is also related to the following Japanese patent application. For those designated States for which incorporation by reference to the literature is permitted, the contents described in the following application are incorporated into this application by reference and are incorporated as part of the description of this application.
  • Optical fibers that are widely used generally have a solid structure in which a central portion of quartz glass or the like has a high refractive index region called a core.
  • optical fibers having holes inside such as the photonic crystal fiber and holey fiber disclosed in Patent Document 1, are currently receiving attention.
  • a photonic crystal fiber forms a photonic band gap by providing regularly arranged holes in the fiber, and guides light by providing defects in the band.
  • the holey fiber is provided with a hole in the cladding to reduce the effective refractive index of the cladding to give a refractive index difference between the hole and the core. Is used for total reflection.
  • a hole-added type fino having a shape in which a hole is formed around the core of a conventional optical fiber has been proposed. These fibers also have holes in the gap, and their shape, size, arrangement, and the like greatly affect the transmission characteristics.
  • the hole-drilling method involves synthesizing a porous glass base material, making it transparent, and then opening it. This is what you do.
  • Patent Document 1 Japanese Patent Publication No. 2002-506533
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-97034
  • Patent Document 3 JP-A-2002-293562
  • Patent Document 4 JP 2002-145634 A
  • the cavitary method While applying force, the cavitary method has a problem that voids remain in the fiber and the shape of the hole is easily collapsed when drawing. Furthermore, the use of cavities causes a problem that OH-based Z impurities are contaminated on the outer surface of the cavities and it is difficult to reduce the loss immediately.
  • the present invention has been made in view of the above circumstances, and it is possible to manufacture a large-sized and low-impurity glass preform for a holey fiber suitable for the manufacture of a holey fiber at low cost. It is an object of the present invention to provide a method of manufacturing a glass preform for a holey fiber, a holey fiber, and a method of manufacturing the same.
  • the method for producing a glass preform for a holey fiber of the present invention rotates glass fine particles.
  • a porous glass preform is formed by depositing on a starting member rod to be formed, and a plurality of holes are formed in an axial direction from an end of the porous glass preform, and then heated to a temperature at which the porous glass preform becomes transparent. It is characterized by doing.
  • heat treatment may be performed in an atmosphere containing chlorine or fluorine, preferably at 700 to 1200 ° C.
  • a porous glass base material is formed by depositing on the starting member rod, and the porous glass is formed.
  • a plurality of holes may be formed in the axial direction of the end portion of the lath base material and heated to a temperature at which it becomes transparent after dehydration treatment with chlorine and treatment with fluorine.
  • the starting member rod high-purity quartz glass or quartz glass containing a dopant is used, and glass fine particles generated by supplying the dopant material together with the glass material are deposited thereon.
  • the deposition of the glass particles may be caused by the tip force of the starting member rod being also directed in the axial direction, axially along the side surface of the starting member bar, or on the side surface of the starting member bar in a direction perpendicular to the axis of the starting member bar.
  • the force V applied toward the surface may be accumulated in the direction of the deviation.
  • a step of adjusting the density of the porous glass base material to 0.25-0.80 g / cm 3 by heating at 1100-1450 ° C is provided prior to the step of forming a plurality of holes.
  • This density adjustment is preferably performed in an atmosphere containing chlorine or fluorine.
  • the heating time in the step of adjusting the density of the porous glass base material to 0.25 to 0.80 g / cm 3 is such that the porous glass base material is heated to a transparent temperature.
  • the heating time in the process may be shorter.
  • the heating temperature in the step of adjusting the density of the porous glass preform to 0. 25-0. 80g / cm 3 is lower than the heating temperature in the step where the porous glass preform is heated to a temperature of clearing Is also good.
  • the heating time may be shortened and the heating temperature may be lowered as compared with the step of performing transparency.
  • the heating temperature may be substantially the same, and the heating time may be shortened.
  • the heating time may be substantially the same and the heating temperature may be lowered.
  • the heating temperature and Z or the heating time are set so that the bulk density of the porous glass base material increases while the porous glass base material remains opaque.
  • the end of the porous glass base material may be cut off, and the end face may be cut into a plane perpendicular to the central axis before the holes are formed.
  • Transparency of the porous glass base material may be performed in an atmosphere containing a dopant.
  • the inner surface of the hole of the transparent glass base material is mirror-polished.
  • the power hole is formed by adjusting the density of the porous glass base material to a density suitable for drilling, deeper and deeper holes are formed as compared with a method of forming a hole in a hard glass rod. It can be easily opened, and it is possible to easily produce a large-sized glass fiber preform for a hole fiber at low cost. Furthermore, since the high purity treatment is performed after the perforating process is performed at the stage of the porous glass preform, the purity of the glass preform for the holey fiber can be improved.
  • FIG. 1 is a process flow chart for explaining a conventional drilling process.
  • FIG. 2 is a process flow chart for explaining a drilling process according to the present invention.
  • a porous glass preform is produced by depositing glass fine particles generated by a flame hydrolysis decomposition reaction of a glass raw material, and obtained.
  • the porous glass base material is heated at 1100-145 0 ° C during or after dehydration treatment as necessary to shrink the porous glass base material, and its bulk density is suitable for drilling.
  • the porous glass base material is perforated in the axial direction, and then subjected to dehydration / purification treatment and transparency treatment.
  • the method for producing a glass preform for a holey fiber includes: (1) a step of producing a porous glass preform, (2) a density adjusting step, and (3) a hole making. It also has five process capabilities: processing, (4) dehydration, high-purification, and (5) transparency. In addition, (6) a hole polishing step is added as necessary. Thereafter, the holey fiber is manufactured in the (7) drawing step.
  • these steps will be described in order.
  • the manufacturing process of the porous glass base material includes the following steps: the porous glass base material is conventionally known as a gas phase shafting method (VAD method), an external VAD method, Attachment method (OVD method) t These methods are used to produce glass fine particles by flame hydrolysis of a glass material in a Pana flame and then rotate the glass material. It is deposited on the member bar.
  • VAD method is a method in which the tip force of a starting member rod is deposited and grown in the axial direction.
  • the external VAD method glass particles are deposited on the side of the starting member rod while moving the wrench in one direction in parallel with the axial end force of the starting member rod, so that the wrench moves along the side of the starting member rod.
  • the wrench is reciprocated in parallel with the axis of the starting member bar, and the base material is placed on the side of the starting member bar in the direction perpendicular to this axis. Grow.
  • the porous glass base material thus obtained is subjected to a heat treatment in a furnace heated to 1100-1450 ° C in order to adjust the density to a level suitable for cutting before the punching force. It is adjusted to a density of 0.25 one 0. 80gZcm 3. In the density is less than 0. 25gZcm 3, damaged or immediately other during cutting too brittle, too hard exceeds 0. 80gZcm 3, since the machining crack easily enter becomes difficult at the time of cutting, the density Is adjusted to the above range. A particularly preferable range is around 0.4, because dehydration with chlorine can be performed efficiently and processability is good.
  • the glass particles are slightly melted and fused together, so that OH groups and impurities mainly present on the surface of the glass particles can be taken into the glass. There is. To prevent this, OH groups and impurities can be removed by heating in an atmosphere containing chlorine or a fluorinated compound in the density adjusting step.
  • the density adjustment step can be omitted by adjusting the density in the manufacturing process of the porous glass base material and keeping the density within the above range in advance.
  • the porous glass base material adjusted to have a density suitable for processing is subjected to a boring process by mechanical grinding.
  • drilling is used for hard-to-cut materials such as carbide drills and diamond drills, the tool life is long and the blade replacement interval can be lengthened, improving workability and processing accuracy.
  • the processing speed at this time varies depending on the hole diameter ⁇ depth, bulk density, etc., but can be 0.1 mm to several tens of mmZ seconds or more, which is much faster than that of hard transparent glass. Drill at speed.
  • the porous glass base material is made by any of the VAD method, the external VAD method, and the OVD method, its end is not a plane perpendicular to the axis.
  • a metal saw, a thread saw, a saw for woodworking, a rotary cutting whetstone, a wire saw, a band saw, etc., metal, wood, new building materials, glass Etc. can be used.
  • the transparent glass rod may be cut or cut off after removing the porous portion using these cutting means.
  • the perforated porous glass base material is subjected to dehydration and high-purity treatment by heating to 700 to 1200 ° C. in an atmosphere containing a chlorine or fluorine compound as necessary. Thereafter, the temperature is raised to a temperature at which the glass becomes transparent, whereby a transparent glass base material having pores is obtained.
  • the dehydration, high-purification treatment and clarification process can be performed simultaneously in a heating furnace provided with a temperature gradient. Further, by making the atmosphere containing a dopant at the time of transparency, various characteristics such as the refractive index and the photosensitivity of the obtained glass can be changed.
  • the inner surface of the hole of the obtained transparent glass preform may be roughened.
  • the inner surface of the hole is mirror-polished using an abrasive, whereby the scattering of light from the glass base material can be suppressed, and the transmission loss of the hole fiber obtained therefrom can be reduced.
  • a method of polishing IJ using a material that can be used for polishing and polishing ordinary glass, such as silicon carbide or cerium oxide powder may be mentioned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

A process for producing a glass parent material for hollow fiber, in which a glass parent material for hollow fiber being of large size and low impurity content, suited to production of hollow fiber can be produced at low cost; a hollow fiber; and a process for producing the same. There is provided a process for producing a glass parent material for hollow fiber having multiple hollows made over the entire length in the axial direction thereof, characterized by depositing glass microparticles on a revolving starting member bar to thereby obtain a porous glass parent material, subsequently making multiple hollows in the axial direction from an end of the porous glass parent material, heating the porous glass parent material in an atmosphere containing chlorine or fluorine, and thereafter heating the same at a temperature suitable for transparentization of the porous glass parent material.

Description

明 細 書  Specification
空孔ファイバ用ガラス母材の製造方法、空孔ファイバ及びその製造方法 技術分野  FIELD OF THE INVENTION
[0001] 本発明は、全長にわたって複数の孔があいた光ファイバ(以下、単に空孔ファイバ と称する)の純度を高めた空孔ファイバ用ガラス母材の製造方法、空孔ファイバ及び その製造方法に関する。また本出願は、下記の日本特許出願に関連する。文献の参 照による組み込みが認められる指定国については、下記の出願に記載された内容を 参照により本出願に組み込み、本出願の記載の一部とする。  The present invention relates to a method of manufacturing a glass preform for a holey fiber in which the purity of an optical fiber having a plurality of holes over its entire length (hereinafter, simply referred to as a holey fiber) is improved, a holey fiber, and a method of manufacturing the same. . This application is also related to the following Japanese patent application. For those designated States for which incorporation by reference to the literature is permitted, the contents described in the following application are incorporated into this application by reference and are incorporated as part of the description of this application.
特願 2004— 080456 出願曰 2004年 3月 19曰  Patent application 2004—080456 Application filed March 19, 2004
背景技術  Background art
[0002] 通常、広く使用されている光ファイバは、石英ガラス等の中心部にコアと称される屈 折率の高い領域を持たせた、中実の構造を有している。これに対し、特許文献 1で開 示されているフォトニック結晶ファイバやホーリーファイバといった、内部に空孔を有 する光ファイバが現在注目されている。フォトニック結晶ファイバは、規則正しく配列し た孔をファイバ中に設けることによりフォトニックバンドギャップを形成し、これに欠陥 を付与することで光を導波するものである。  [0002] Optical fibers that are widely used generally have a solid structure in which a central portion of quartz glass or the like has a high refractive index region called a core. On the other hand, optical fibers having holes inside, such as the photonic crystal fiber and holey fiber disclosed in Patent Document 1, are currently receiving attention. A photonic crystal fiber forms a photonic band gap by providing regularly arranged holes in the fiber, and guides light by providing defects in the band.
[0003] ホーリーファイバは、クラッド中に孔を設け、クラッドの実効屈折率を低下させてコア との間に屈折率差を与えるものであり、その導波原理には、従来の光ファイバと同様 に全反射が用いられる。その他、従来の光ファイバのコア周辺に孔を開けた形状を 有する空孔付加型ファイノも提案されて 、る。これらのファイバは 、ずれも空孔を有 しており、その形状、大きさ及び配列等がその伝送特性に大きな影響を与える。  [0003] The holey fiber is provided with a hole in the cladding to reduce the effective refractive index of the cladding to give a refractive index difference between the hole and the core. Is used for total reflection. In addition, a hole-added type fino having a shape in which a hole is formed around the core of a conventional optical fiber has been proposed. These fibers also have holes in the gap, and their shape, size, arrangement, and the like greatly affect the transmission characteristics.
[0004] これらのファイバの製造には、特許文献 2で開示されているようなガラス細管(キヤピ ラリー)を束ねたものを線引きする方法 (キヤビラリ一法、又はスタックアンドドロー法) と、特許文献 3, 4で開示されているようなガラスロッドに孔を開けて線引きする方法( 孔開け法)とがある。なお、フォトニック結晶フアイノ^ホーリーファイバ、空孔付加型フ アイバ等の空孔を有する光ファイバを、以下、空孔ファイバと総称する。  [0004] To manufacture these fibers, a method of drawing a bundle of glass tubules (capillaries) as disclosed in Patent Document 2 (a method using a cable or a stack and draw method) and a method disclosed in Patent Document 2 There is a method of making a hole in a glass rod and drawing (a method of making a hole) as disclosed in 3 and 4. Optical fibers having holes, such as photonic crystal fiber optical fibers and hole-added fibers, are hereinafter generally referred to as hole fibers.
孔開け法は、図 1に示すように、多孔質ガラス母材を合成し、透明化した後に孔開 けカロェを行うものである。 As shown in Fig. 1, the hole-drilling method involves synthesizing a porous glass base material, making it transparent, and then opening it. This is what you do.
[0005] 特許文献 1:特表 2002— 506533号公報  [0005] Patent Document 1: Japanese Patent Publication No. 2002-506533
特許文献 2:特開 2002— 97034号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-97034
特許文献 3:特開 2002— 293562号公報  Patent Document 3: JP-A-2002-293562
特許文献 4:特開 2002— 145634号公報  Patent Document 4: JP 2002-145634 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、キヤビラリ一法には、線引きする際に、空隙がファイバ中に残ったり、 孔の形状が崩れやすい問題がある。さらに、キヤビラリを用いるために、その外表面 で OH基 Z不純物汚染が起こりやすぐ低損失ィ匕が難しいという問題がある。  [0006] While applying force, the cavitary method has a problem that voids remain in the fiber and the shape of the hole is easily collapsed when drawing. Furthermore, the use of cavities causes a problem that OH-based Z impurities are contaminated on the outer surface of the cavities and it is difficult to reduce the loss immediately.
[0007] 他方、孔開け法では、非常に硬 、石英ガラスに細 ヽ深孔を開けること自体が難しく 、超音波振動研削などの特殊な方法を用いねばならない。さらに、多数の孔が開い たファイバを製造するには、加工コストがきわめて高くなり、かつ長い加工時間を要す る。また、石英ガラスは難削材であるため、研削工具を高速回転させる必要があるが 、孔を深く研削するために研削工具の長さを長くすると、高速回転にともない軸振れ が生じ、加工できなくなるという問題がある。  [0007] On the other hand, in the hole making method, it is very difficult to make a very deep hole in the quartz glass, and a special method such as ultrasonic vibration grinding must be used. Furthermore, the production of fibers with a large number of holes requires extremely high processing costs and long processing times. Quartz glass is a difficult-to-cut material, so it is necessary to rotate the grinding tool at high speeds. There is a problem of disappearing.
[0008] 本発明は、上記事情に鑑みなされたものであり、空孔ファイバの製造に好適な、大 型で不純物の少な ヽ空孔ファイバ用ガラス母材を、低コストでの製造を可能とする空 孔ファイバ用ガラス母材の製造方法、空孔ファイバ及びその製造方法を提供すること を目的としている。  [0008] The present invention has been made in view of the above circumstances, and it is possible to manufacture a large-sized and low-impurity glass preform for a holey fiber suitable for the manufacture of a holey fiber at low cost. It is an object of the present invention to provide a method of manufacturing a glass preform for a holey fiber, a holey fiber, and a method of manufacturing the same.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の空孔ファイバ用ガラス母材の製造方法は、軸方向に、全長にわたって複 数の孔がぁ 、た光ファイバ用ガラス母材の製造方法にぉ 、て、ガラス微粒子を回転 する出発部材棒に堆積させて多孔質ガラス母材を形成し、該多孔質ガラス母材の端 部から軸方向へ複数の孔を開けた後、多孔質ガラス母材が透明化する温度に加熱 することを特徴としている。この場合、該多孔質ガラス母材に複数の孔を開けた後に、 塩素又はフッ素含有雰囲気下で加熱処理、好ましくは 700— 1200°Cで加熱処理を してもよい。また、出発部材棒に堆積させて多孔質ガラス母材を形成し、該多孔質ガ ラス母材の端部力 軸方向へ複数の孔を開け、塩素による脱水処理、フッ素による処 理後に透明化する温度に加熱してもよい。 [0009] In the method for producing a glass preform for a holey fiber of the present invention, the method for producing a glass preform for an optical fiber having a plurality of holes extending in the axial direction over the entire length thereof rotates glass fine particles. A porous glass preform is formed by depositing on a starting member rod to be formed, and a plurality of holes are formed in an axial direction from an end of the porous glass preform, and then heated to a temperature at which the porous glass preform becomes transparent. It is characterized by doing. In this case, after a plurality of holes are formed in the porous glass base material, heat treatment may be performed in an atmosphere containing chlorine or fluorine, preferably at 700 to 1200 ° C. In addition, a porous glass base material is formed by depositing on the starting member rod, and the porous glass is formed. A plurality of holes may be formed in the axial direction of the end portion of the lath base material and heated to a temperature at which it becomes transparent after dehydration treatment with chlorine and treatment with fluorine.
[0010] 出発部材棒には、高純度石英ガラスやドーパントを含む石英ガラスが用いられ、こ れにガラス原料とともにドーパント原料を供給して生成したガラス微粒子が堆積される 。ガラス微粒子の堆積は、出発部材棒の先端力も軸方向に向力つて、又は出発部材 棒の側面に沿って軸方向に、あるいは出発部材棒の側面に該出発部材棒の軸と垂 直方向に向かって行われる力 V、ずれの方向に向かって堆積するものであってもよ い。  [0010] For the starting member rod, high-purity quartz glass or quartz glass containing a dopant is used, and glass fine particles generated by supplying the dopant material together with the glass material are deposited thereon. The deposition of the glass particles may be caused by the tip force of the starting member rod being also directed in the axial direction, axially along the side surface of the starting member bar, or on the side surface of the starting member bar in a direction perpendicular to the axis of the starting member bar. The force V applied toward the surface may be accumulated in the direction of the deviation.
[0011] また、複数の孔を開ける工程に先立って、 1100— 1450°Cで加熱処理し、多孔質 ガラス母材の密度を 0. 25-0. 80g/cm3に調整する工程を設けるとよい。この密度 の調整は、塩素又はフッ素含有雰囲気下で行うのが好ましい。 [0011] Further, prior to the step of forming a plurality of holes, a step of adjusting the density of the porous glass base material to 0.25-0.80 g / cm 3 by heating at 1100-1450 ° C is provided. Good. This density adjustment is preferably performed in an atmosphere containing chlorine or fluorine.
[0012] この場合、多孔質ガラス母材の密度を 0. 25-0. 80g/cm3〖こ調整する工程にお ける加熱時間は、前記多孔質ガラス母材が透明化する温度に加熱する工程におけ る加熱時間よりも短くてよい。或いは、多孔質ガラス母材の密度を 0. 25-0. 80g/ cm3に調整する工程における加熱温度は、多孔質ガラス母材が透明化する温度に 加熱する工程における加熱温度よりも低くてもよい。この密度を調整する工程におい ては、透明化を行う工程と比べて、加熱時間を短くし、かつ加熱温度を低くしてもよい 。または、加熱温度を略同一とし、加熱時間を短くしてもよい。または、加熱時間を略 同一とし、加熱温度を低くしてもよい。なお、これらの密度を調整する工程においては 、多孔質ガラス母材が不透明な状態のままで、多孔質ガラス母材の嵩密度が大きく なるように、加熱温度および Zまたは加熱時間が設定されてもょ 、。 [0012] In this case, the heating time in the step of adjusting the density of the porous glass base material to 0.25 to 0.80 g / cm 3 is such that the porous glass base material is heated to a transparent temperature. The heating time in the process may be shorter. Alternatively, the heating temperature in the step of adjusting the density of the porous glass preform to 0. 25-0. 80g / cm 3 is lower than the heating temperature in the step where the porous glass preform is heated to a temperature of clearing Is also good. In the step of adjusting the density, the heating time may be shortened and the heating temperature may be lowered as compared with the step of performing transparency. Alternatively, the heating temperature may be substantially the same, and the heating time may be shortened. Alternatively, the heating time may be substantially the same and the heating temperature may be lowered. In the step of adjusting these densities, the heating temperature and Z or the heating time are set so that the bulk density of the porous glass base material increases while the porous glass base material remains opaque. Yeah.
[0013] さらに、複数の孔を開ける工程に先立って、多孔質ガラス母材の端部を切除し、該 端面を中心軸に垂直な平面にカ卩ェしてから孔を開けるとよい。  [0013] Further, prior to the step of forming a plurality of holes, the end of the porous glass base material may be cut off, and the end face may be cut into a plane perpendicular to the central axis before the holes are formed.
[0014] 多孔質ガラス母材の透明化は、ドーパントを含む雰囲気下で行うようにしてもょ 、。  [0014] Transparency of the porous glass base material may be performed in an atmosphere containing a dopant.
その他、透明化されたガラス母材の孔の内面を、鏡面研磨するのが好ましい。このよ うにして製造された空孔ファイバ用ガラス母材を、加熱し線引きすることで空孔フアイ バが得られる。  In addition, it is preferable that the inner surface of the hole of the transparent glass base material is mirror-polished. By heating and drawing the glass preform for hole fiber manufactured in this way, a hole fiber is obtained.
発明の効果 [0015] 本発明によれば、多孔質ガラス母材の密度を削孔に適した密度に調整して力 孔 開けを行うので、硬 、ガラスロッドに孔を開ける方法に比べて深 、孔を容易に開ける ことができ、低コストで大型の空孔ファイバ用ガラス母材を容易に製造することができ る。さらに、多孔質ガラス母材の段階で孔開け加工を施した後、高純度化処理を施す ため、空孔ファイバ用ガラス母材の純度を向上することができる。 The invention's effect According to the present invention, since the power hole is formed by adjusting the density of the porous glass base material to a density suitable for drilling, deeper and deeper holes are formed as compared with a method of forming a hole in a hard glass rod. It can be easily opened, and it is possible to easily produce a large-sized glass fiber preform for a hole fiber at low cost. Furthermore, since the high purity treatment is performed after the perforating process is performed at the stage of the porous glass preform, the purity of the glass preform for the holey fiber can be improved.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]従来の孔開け加工を説明する工程フロー図である。 FIG. 1 is a process flow chart for explaining a conventional drilling process.
[図 2]本発明の孔開け加工を説明する工程フロー図である。  FIG. 2 is a process flow chart for explaining a drilling process according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、発明の実施形態を通じて本発明を説明するが、以下の実施形態は請求の範 囲に係る発明を限定するものではなぐまた実施形態の中で説明されている特徴の 組み合わせの全てが発明の解決手段に必須であるとは限らな!/、。  Hereinafter, the present invention will be described through embodiments of the present invention. However, the following embodiments do not limit the invention according to the scope of the claims, and all combinations of features described in the embodiments are described. Is not necessarily essential to the solution of the invention! / ,.
[0018] 本発明の空孔ファイバ用ガラス母材の製造方法は、例えば、ガラス原料の火炎加 水分解反応で生成したガラス微粒子を堆積させて多孔質ガラス母材を製造し、得ら れた多孔質ガラス母材を必要に応じて脱水処理時、又は脱水処理後に 1100— 145 0°Cで加熱して多孔質ガラス母材を収縮させ、その嵩密度が削孔に適した 0. 25— 0 . 80g/cm3となるように調整した後に、多孔質ガラス母材をその軸方向に孔開けカロ ェした後、脱水 ·高純度化処理及び透明化処理を行うものである。 In the method for producing a glass preform for a holey fiber of the present invention, for example, a porous glass preform is produced by depositing glass fine particles generated by a flame hydrolysis decomposition reaction of a glass raw material, and obtained. The porous glass base material is heated at 1100-145 0 ° C during or after dehydration treatment as necessary to shrink the porous glass base material, and its bulk density is suitable for drilling. After adjusting the pressure to 0.80 g / cm 3 , the porous glass base material is perforated in the axial direction, and then subjected to dehydration / purification treatment and transparency treatment.
[0019] 本発明において、空孔ファイバ用ガラス母材の製造方法は、図 2に示すように、 (1) 多孔質ガラス母材の製造工程、(2)密度調整工程、(3)孔開け加工工程、(4)脱水' 高純度化工程、(5)透明化工程、の 5つの工程力もなつている。なお、必要に応じて( 6)孔研磨工程が加えられる。その後、(7)線引き工程で空孔ファイバが製造される。 以下、これらの工程について順に説明する。  In the present invention, as shown in FIG. 2, the method for producing a glass preform for a holey fiber includes: (1) a step of producing a porous glass preform, (2) a density adjusting step, and (3) a hole making. It also has five process capabilities: processing, (4) dehydration, high-purification, and (5) transparency. In addition, (6) a hole polishing step is added as necessary. Thereafter, the holey fiber is manufactured in the (7) drawing step. Hereinafter, these steps will be described in order.
[0020] 先ず、(1)多孔質ガラス母材の製造工程は、多孔質ガラス母材を従来カゝら知られて Vヽる気相軸付け法 (VAD法)、外付け VAD法、外付け法 (OVD法) t ヽつた方法を 用いて製造するものであり、これらの方法は、いずれもガラス原料をパーナ火炎中で 火炎加水分解させることでガラス微粒子を合成し、これを回転する出発部材棒上に 堆積させるものである。 [0021] VAD法は、出発部材棒の先端力 その軸方向に向けて堆積'成長させる方法であ る。外付け VAD法は、パーナを出発部材棒の軸端部力もこれと平行に一方向に移 動させつつ、出発部材棒の側面にガラス微粒子を堆積させることにより、出発部材棒 の側面に沿って母材を成長させる。 OVD法では、出発部材棒の側面に向けてガラス 微粒子を堆積させつつ、パーナを出発部材棒の軸と平行に往復移動させて、出発 部材棒の側面にこの軸と垂直方向に向けて母材を成長させる。 [0020] First, (1) the manufacturing process of the porous glass base material includes the following steps: the porous glass base material is conventionally known as a gas phase shafting method (VAD method), an external VAD method, Attachment method (OVD method) t These methods are used to produce glass fine particles by flame hydrolysis of a glass material in a Pana flame and then rotate the glass material. It is deposited on the member bar. [0021] The VAD method is a method in which the tip force of a starting member rod is deposited and grown in the axial direction. In the external VAD method, glass particles are deposited on the side of the starting member rod while moving the wrench in one direction in parallel with the axial end force of the starting member rod, so that the wrench moves along the side of the starting member rod. Grow the base material. In the OVD method, while depositing glass particles toward the side of the starting member bar, the wrench is reciprocated in parallel with the axis of the starting member bar, and the base material is placed on the side of the starting member bar in the direction perpendicular to this axis. Grow.
[0022] 堆積に際して、ガラス原料と共にドーパント原料を供給することで、あるいは出発部 材棒に高純度石英ガラスやドーパントを含む石英ガラスを用いることにより、ガラスの 屈折率や光感受性などの様々な特性を変化させることができる。  [0022] At the time of deposition, by supplying a dopant material together with a glass material, or by using a high-purity quartz glass or a quartz glass containing a dopant for a starting member rod, various properties such as a refractive index and photosensitivity of the glass are obtained. Can be changed.
[0023] このようにして得られた多孔質ガラス母材は、孔開け力卩ェに先立ち、切削加工に適 した密度に調整するため、 1100— 1450°Cに加熱された炉内で熱処理され、 0. 25 一 0. 80gZcm3の密度に調整される。なお、密度が 0. 25gZcm3未満では、脆過ぎ て切削加工時に破損しやすぐ他方、 0. 80gZcm3を超えると硬くなり過ぎて、切削 加工時にクラックが入りやすく加工が困難となるため、密度は上記範囲に調整される 。特に好ましい範囲は、 0. 4近傍であり、塩素による脱水を効率よく行うことができ、 なおかつ加工'性も良 ヽためである。 [0023] The porous glass base material thus obtained is subjected to a heat treatment in a furnace heated to 1100-1450 ° C in order to adjust the density to a level suitable for cutting before the punching force. It is adjusted to a density of 0.25 one 0. 80gZcm 3. In the density is less than 0. 25gZcm 3, damaged or immediately other during cutting too brittle, too hard exceeds 0. 80gZcm 3, since the machining crack easily enter becomes difficult at the time of cutting, the density Is adjusted to the above range. A particularly preferable range is around 0.4, because dehydration with chlorine can be performed efficiently and processability is good.
[0024] 多孔質ガラス母材の密度調整の際、ガラス微粒子が僅かに溶融して互いに溶着す るため、主にガラス微粒子の表面に存在する OH基や不純物がガラス内部に取り込 まれる可能性がある。これを防ぐには、密度調整工程において塩素又はフッ素化合 物を含む雰囲気中で加熱することにより、 OH基や不純物を取り除くことができる。な お、多孔質ガラス母材の製造工程で密度を調整し、予め上記範囲内に納めておくこ とで、密度調整工程を省略することもできる。 [0024] When adjusting the density of the porous glass base material, the glass particles are slightly melted and fused together, so that OH groups and impurities mainly present on the surface of the glass particles can be taken into the glass. There is. To prevent this, OH groups and impurities can be removed by heating in an atmosphere containing chlorine or a fluorinated compound in the density adjusting step. The density adjustment step can be omitted by adjusting the density in the manufacturing process of the porous glass base material and keeping the density within the above range in advance.
[0025] 次に、加工に適した密度に調整された多孔質ガラス母材は、機械研削により孔開け 加工が行われる。孔開け加工は、超硬ドリルやダイヤモンドドリルなどの難削材用の ものを用いると、工具寿命が長いため刃の交換間隔を長くすることができ、作業性や 加工精度が向上する。このときの加工速度は、孔径ゃ深さ、嵩密度などによっても異 なるが、 0. 1mm—数十 mmZ秒以上とすることができ、硬い透明ガラスの孔開けカロ ェに比べて遥かに速い速度で孔開けできる。 [0026] 多孔質ガラス母材が VAD法、外付け VAD法、 OVD法のいずれの方法で作られ たものであっても、その端部は、軸と垂直な平面になっていない。そのため、多孔質 ガラス母材の端部を軸と垂直に切断して、予め端部に平面を設けておくことで、その 後の孔開け加工が容易となる。これにより、孔の深さを揃えることができ、孔の位置精 度が向上すると共に歩留まりが向上する。 Next, the porous glass base material adjusted to have a density suitable for processing is subjected to a boring process by mechanical grinding. When drilling is used for hard-to-cut materials such as carbide drills and diamond drills, the tool life is long and the blade replacement interval can be lengthened, improving workability and processing accuracy. The processing speed at this time varies depending on the hole diameter ゃ depth, bulk density, etc., but can be 0.1 mm to several tens of mmZ seconds or more, which is much faster than that of hard transparent glass. Drill at speed. [0026] Even if the porous glass base material is made by any of the VAD method, the external VAD method, and the OVD method, its end is not a plane perpendicular to the axis. For this reason, by cutting the end of the porous glass base material perpendicular to the axis and providing a flat surface in advance at the end, it becomes easy to make a hole thereafter. As a result, the depths of the holes can be made uniform, thereby improving the position accuracy of the holes and improving the yield.
[0027] 端部の切断は、中心に透明ガラスロッドを有していない場合は、金鋸や糸鋸、木工 用の鋸、回転切断砥石、ワイヤーソー、バンドソー等、金属や木材、新建材、ガラス 等を切断できるものを用いることができる。中心に透明ガラスロッドがある場合には、 多孔質部分をこれらの切断手段を用いて除去した後に、透明ガラスロッドを切断又は 切除すればよい。  [0027] When the end is cut without a transparent glass rod in the center, a metal saw, a thread saw, a saw for woodworking, a rotary cutting whetstone, a wire saw, a band saw, etc., metal, wood, new building materials, glass Etc. can be used. In the case where a transparent glass rod is provided at the center, the transparent glass rod may be cut or cut off after removing the porous portion using these cutting means.
[0028] 孔開け加工を施した多孔質ガラス母材は、必要に応じて塩素又はフッ素化合物を 含有する雰囲気で 700— 1200°Cに加熱することで、脱水 ·高純度化処理がなされる 。この後、透明化する温度まで昇温することにより、空孔を有する透明なガラス母材と なる。  The perforated porous glass base material is subjected to dehydration and high-purity treatment by heating to 700 to 1200 ° C. in an atmosphere containing a chlorine or fluorine compound as necessary. Thereafter, the temperature is raised to a temperature at which the glass becomes transparent, whereby a transparent glass base material having pores is obtained.
脱水,高純度化処理と透明化工程は、温度勾配を設けた加熱炉中で同時に行うこ ともできる。また、透明化の際にドーパントを含む雰囲気とすることで、得られるガラス の屈折率や光感受性などの様々な特性を変化させることができる。  The dehydration, high-purification treatment and clarification process can be performed simultaneously in a heating furnace provided with a temperature gradient. Further, by making the atmosphere containing a dopant at the time of transparency, various characteristics such as the refractive index and the photosensitivity of the obtained glass can be changed.
[0029] 孔開け加工前の多孔質ガラス母材の密度ゃ孔開けの加工方法によっては、得られ る透明ガラス母材の孔の内面に荒れが生じる場合がある。このような場合、研磨剤を 用いて孔の内面を鏡面研磨することで、ガラス母材の光の散乱を抑制し、これから得 られる空孔ファイバの伝送損失を小さくすることができる。孔の内面を鏡面研磨する には、例えば、炭化珪素や酸ィ匕セリウムの粉末といった、通常のガラスの研肖 研磨 に用いることができるものを使用して、研肖 IJ ·研磨する方法が挙げられる。 [0029] Depending on the density of the porous glass preform before the perforation processing / the perforation processing method, the inner surface of the hole of the obtained transparent glass preform may be roughened. In such a case, the inner surface of the hole is mirror-polished using an abrasive, whereby the scattering of light from the glass base material can be suppressed, and the transmission loss of the hole fiber obtained therefrom can be reduced. In order to mirror-polish the inner surface of the hole, for example, a method of polishing IJ using a material that can be used for polishing and polishing ordinary glass, such as silicon carbide or cerium oxide powder, may be mentioned. Can be
産業上の利用可能性  Industrial applicability
[0030] 本発明の空孔ファイバ用ガラス母材を用いることにより、純度の高い空孔ファイバが 低コストで得られる。 By using the glass preform for hole fiber of the present invention, a hole fiber with high purity can be obtained at low cost.

Claims

請求の範囲  The scope of the claims
[I] 軸方向に、全長にわたって複数の孔があいた光ファイバ用ガラス母材の製造方法に おいて、ガラス微粒子を回転する出発部材棒に堆積させて多孔質ガラス母材を形成 し、該多孔質ガラス母材の端部力 軸方向へ複数の孔を開けた後、多孔質ガラス母 材が透明化する温度に加熱することを特徴とする空孔ファイバ用ガラス母材の製造 方法。  [I] In a method for manufacturing a glass preform for an optical fiber having a plurality of holes in the axial direction over its entire length, glass fine particles are deposited on a rotating starting member rod to form a porous glass preform. A method for producing a glass preform for a holey fiber, comprising: forming a plurality of holes in an axial direction, and heating the porous glass preform to a temperature at which the porous glass preform becomes transparent.
[2] 前記複数の孔を開ける工程の後に、塩素又はフッ素含有雰囲気下で加熱処理する 空孔ファイバ用ガラス母材の製造方法。  [2] A method for producing a glass preform for a holey fiber, wherein a heat treatment is performed in an atmosphere containing chlorine or fluorine after the step of forming a plurality of holes.
[3] 前記多孔質ガラス母材の透明化に先立ち、塩素又はフッ素含有雰囲気下 700— 12[3] Prior to making the porous glass base material transparent, 700- 12 under an atmosphere containing chlorine or fluorine.
00°Cで加熱処理する請求項 1又は 2に記載の空孔ファイバ用ガラス母材の製造方法 The method for producing a glass preform for a holey fiber according to claim 1 or 2, wherein the heat treatment is performed at 00 ° C.
[4] 前記出発部材棒が、高純度石英ガラスである請求項 1又は 3に記載の空孔ファイバ 用ガラス母材の製造方法。 4. The method according to claim 1, wherein the starting member rod is a high-purity quartz glass.
[5] 前記出発部材棒が、ドーパントを含む石英ガラスである請求項 1又は 3に記載の空孔 ファイバ用ガラス母材の製造方法。 5. The method according to claim 1, wherein the starting member rod is a quartz glass containing a dopant.
[6] ガラス原料とともにドーパント原料を供給して前記ガラス微粒子を生成する請求項 1 乃至 5のいずれかに記載の空孔ファイバ用ガラス母材の製造方法。 6. The method for producing a glass preform for a holey fiber according to claim 1, wherein the glass fine particles are generated by supplying a dopant raw material together with a glass raw material.
[7] 前記ガラス微粒子の堆積が、前記出発部材棒の先端から前記軸方向に向かってな される請求項 1乃至 6のいずれかに記載の空孔ファイバ用ガラス母材の製造方法。 7. The method for producing a glass preform for a holey fiber according to claim 1, wherein the deposition of the glass fine particles is performed from the tip of the starting member rod toward the axial direction.
[8] 前記ガラス微粒子の堆積が、前記出発部材棒の側面に沿って前記軸方向になされ る請求項 1乃至 6のいずれかに記載の空孔ファイバ用ガラス母材の製造方法。 8. The method according to claim 1, wherein the deposition of the glass particles is performed in the axial direction along a side surface of the starting member rod.
[9] 前記ガラス微粒子の堆積が、前記出発部材棒の側面に、該出発部材棒の軸と垂直 方向に向力つてなされる請求項 1乃至 6のいずれかに記載の空孔ファイバ用ガラス母 材の製造方法。 [9] The glass mother for a holey fiber according to any one of claims 1 to 6, wherein the deposition of the glass particles is performed on a side surface of the starting member rod in a direction perpendicular to an axis of the starting member rod. The method of manufacturing the material.
[10] 前記複数の孔を開ける工程に先立って、 1100— 1450°Cで加熱処理することにより 、前記多孔質ガラス母材の密度を 0. 25-0. 80gZcm3に調整する工程を有する請 求項 1乃至 9のいずれかに記載の空孔ファイバ用ガラス母材の製造方法。 [10] Prior to the step of forming the plurality of holes, a heat treatment at 1100-1450 ° C. is performed to adjust the density of the porous glass base material to 0.25-0.80 gZcm 3 . 10. The method for producing a glass preform for a holey fiber according to claim 1.
[II] 前記多孔質ガラス母材の密度を 0. 25-0. 80gZcm3に調整する工程における加 熱時間は、前記多孔質ガラス母材が透明化する温度に加熱する工程における加熱 時間よりも短い請求項 10に記載の空孔ファイバ用ガラス母材の製造方法。 [II] pressure in the porous 0. The density of the glass preform 25-0. 80gZcm 3 step of adjusting the 11. The method for producing a glass preform for a holey fiber according to claim 10, wherein the heating time is shorter than the heating time in the step of heating to a temperature at which the porous glass preform becomes transparent.
[12] 前記多孔質ガラス母材の密度を 0. 25-0. 80gZcm3に調整する工程における加 熱温度は、前記多孔質ガラス母材が透明化する温度に加熱する工程における加熱 温度よりも低い請求項 10に記載の空孔ファイバ用ガラス母材の製造方法。 [12] The heating temperature in the step of adjusting the density of the porous glass base material to 0.25 to 0.80 gZcm 3 is higher than the heating temperature in the step of heating to a temperature at which the porous glass base material becomes transparent. 11. The method for producing a glass preform for a holey fiber according to claim 10, which is low.
[13] 密度を調整する工程が、塩素又はフッ素含有雰囲気下で行われる請求項 10に記載 の空孔ファイバ用ガラス母材の製造方法。 13. The method for producing a glass preform for a holey fiber according to claim 10, wherein the step of adjusting the density is performed in an atmosphere containing chlorine or fluorine.
[14] 前記複数の孔を開ける工程に先立って、前記多孔質ガラス母材の端部を切除し、該 端面を中心軸に垂直な平面とする請求項 1乃至 13のいずれかに記載の空孔フアイ バ用ガラス母材の製造方法。 14. The empty space according to claim 1, wherein prior to the step of forming the plurality of holes, an end of the porous glass base material is cut off, and the end surface is a plane perpendicular to a central axis. Manufacturing method of glass base material for hole fiber.
[15] 前記多孔質ガラス母材の透明化が、ドーパントを含む雰囲気下で行われる請求項 1 乃至 14のいずれかに記載の空孔ファイバ用ガラス母材の製造方法。 15. The method for producing a glass preform for a holey fiber according to claim 1, wherein the transparentization of the porous glass preform is performed in an atmosphere containing a dopant.
[16] 透明化された前記ガラス母材の孔の内面を、鏡面研磨する請求項 1乃至 15のいず れかに記載の空孔ファイバ用ガラス母材の製造方法。 16. The method for producing a glass preform for a holey fiber according to any one of claims 1 to 15, wherein an inner surface of the hole of the glass preform that has been made transparent is mirror-polished.
[17] 請求項 1乃至 16のいずれかに記載の製造方法を用いて製造された空孔ファイバ用 ガラス母材を、加熱し線引きする空孔ファイバの製造方法。 [17] A method for manufacturing a holey fiber, comprising heating and drawing a glass preform for a holey fiber manufactured using the method according to any one of claims 1 to 16.
[18] 請求項 17に記載の製造方法を用いて製造してなる空孔ファイバ。 [18] A holey fiber manufactured using the manufacturing method according to claim 17.
PCT/JP2005/003919 2004-03-19 2005-03-07 Process for producing glass parent material for hollow fiber, hollow fiber and process for producing the same WO2005090247A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004080456A JP4252005B2 (en) 2004-03-19 2004-03-19 Method for manufacturing glass base material for hole fiber, hole fiber and method for manufacturing the same
JP2004-080456 2004-03-19

Publications (1)

Publication Number Publication Date
WO2005090247A1 true WO2005090247A1 (en) 2005-09-29

Family

ID=34993594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003919 WO2005090247A1 (en) 2004-03-19 2005-03-07 Process for producing glass parent material for hollow fiber, hollow fiber and process for producing the same

Country Status (4)

Country Link
JP (1) JP4252005B2 (en)
KR (1) KR101164672B1 (en)
TW (1) TW200533618A (en)
WO (1) WO2005090247A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082628A (en) * 2016-06-22 2016-11-09 燕山大学 A kind of preparation method of the polarization maintaining optical fibre that adulterates

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5203262B2 (en) * 2009-03-17 2013-06-05 日本電信電話株式会社 Optical fiber manufacturing method
JP5384679B2 (en) 2012-01-19 2014-01-08 湖北工業株式会社 Method for manufacturing optical fiber preform and optical fiber preform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145634A (en) * 2000-08-30 2002-05-22 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber and optical fiber
JP2003206149A (en) * 2002-01-09 2003-07-22 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002145634A (en) * 2000-08-30 2002-05-22 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber and optical fiber
JP2003206149A (en) * 2002-01-09 2003-07-22 Nippon Telegr & Teleph Corp <Ntt> Method for manufacturing optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106082628A (en) * 2016-06-22 2016-11-09 燕山大学 A kind of preparation method of the polarization maintaining optical fibre that adulterates

Also Published As

Publication number Publication date
KR101164672B1 (en) 2012-07-11
JP4252005B2 (en) 2009-04-08
TW200533618A (en) 2005-10-16
JP2005263576A (en) 2005-09-29
KR20050093709A (en) 2005-09-23

Similar Documents

Publication Publication Date Title
EP0138512B1 (en) Method of forming laminated single polarization fiber
FI77217C (en) Process for producing a polarization preserving optical fiber
US4362545A (en) Support member for an optical waveguide preform
JPWO2004101456A1 (en) Optical fiber and manufacturing method thereof
WO2005090247A1 (en) Process for producing glass parent material for hollow fiber, hollow fiber and process for producing the same
EP0043708A2 (en) Method of forming an optical waveguide preform
JP2000047039A (en) Optical fiber preform ingot and its production
DK3016915T3 (en) Plasma evaporation method of removing the substrate tube
JP2005520771A (en) Method for producing optical fiber and optical fiber produced by said method
JP4463605B2 (en) Optical fiber preform and manufacturing method thereof
JP5226623B2 (en) Optical fiber preform manufacturing method
JPH07109135A (en) Large-sized quartz glass pipe, large-sized quartz glass preform and their preparation
WO2006041998A9 (en) Methods for manufacturing low water peak optical waveguide incorporating a porous core mandrel
JP5735468B2 (en) Optical fiber, method for manufacturing the same, and method for manufacturing optical fiber preform
US4289522A (en) Support member for an optical waveguide preform
US11634351B2 (en) Method for sintering of optical fibre preform
JP2013063890A (en) Method of producing optical fiber preform and method of producing optical fiber using the same
JPS63147840A (en) Production of quartz glass material
JPS6168336A (en) Production of parent material for single polarization optical fiber
RU2385297C1 (en) Method of making pipes from quartz glass
JP3966544B2 (en) Manufacturing method of doped quartz tube, doped quartz tube and quartz preform glass base material for optical fiber manufactured using the doped quartz tube
JP4413738B2 (en) Quartz glass tube for manufacturing optical fiber, quartz glass tube for manufacturing optical fiber, preform for manufacturing optical fiber, and method for manufacturing optical fiber
JP2645717B2 (en) Manufacturing method of base material for optical fiber
JP2004338970A (en) Manufacturing method of glass preform
JP2004012761A (en) Optical fiber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase