WO2014034432A1 - Imaging lens, imaging device, and portable terminal - Google Patents

Imaging lens, imaging device, and portable terminal Download PDF

Info

Publication number
WO2014034432A1
WO2014034432A1 PCT/JP2013/071913 JP2013071913W WO2014034432A1 WO 2014034432 A1 WO2014034432 A1 WO 2014034432A1 JP 2013071913 W JP2013071913 W JP 2013071913W WO 2014034432 A1 WO2014034432 A1 WO 2014034432A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
image
imaging lens
optical axis
Prior art date
Application number
PCT/JP2013/071913
Other languages
French (fr)
Japanese (ja)
Inventor
佐野永悟
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014034432A1 publication Critical patent/WO2014034432A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses

Definitions

  • the present invention relates to a low-profile imaging lens and imaging device using a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, and a portable terminal equipped with the imaging lens.
  • a solid-state imaging device such as a CCD image sensor or a CMOS image sensor
  • the resolving power of the lens is limited by the F value, and a bright imaging lens is required because a bright lens with a small F value can obtain a high resolving power.
  • a bright imaging lens is required because a bright lens with a small F value can obtain a high resolving power.
  • it is required to further reduce the overall length of the imaging lens.
  • a four-lens imaging lens has been proposed because it can be improved in performance as compared with a two-lens or three-lens configuration.
  • a first lens having a positive refractive power in order from the object side a second lens having a negative refractive power and a concave surface facing the object side, and a third lens having a positive refractive power
  • a so-called telephoto type imaging lens is disclosed which is configured by a fourth lens having negative refractive power and aims to reduce the overall length of the imaging lens (see, for example, Patent Documents 1 and 2).
  • the imaging lens described in Patent Document 1 has a small maximum field angle of about 65 °, and it cannot be said that the entire length of the imaging lens is sufficiently small.
  • the F value is as dark as F2.8 and the optical performance is compatible with the recent increase in pixels.
  • the imaging lens described in Patent Document 2 is a wide-angle lens having a maximum field angle of about 75 °.
  • the aperture stop is the first lens. Since it is disposed between the second lens and the second lens, it is difficult to dispose the exit pupil position toward the object side when attempting to further reduce the overall length, and the telecentric characteristics are greatly deteriorated.
  • the present invention has been made in view of the above problems, and is a compact four-lens imaging lens having a wide angle and a bright F value of about F2.4, in which various aberrations are well corrected. It is another object of the present invention to provide an imaging device and a portable terminal using the same.
  • the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
  • L Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device)
  • the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.
  • the imaging lens is parallel.
  • the flat plate portion is calculated as the above L value after the air conversion distance. More preferably, the range of the following formula is good. L / 2Y ⁇ 0.75 (7) '
  • an image pickup apparatus equipped with an image pickup lens that satisfies the above expression (7) aims at a height of 5.0 mm or less, and more preferably a height of 4.5 mm or less.
  • the imaging lens according to claim 1 is an imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device, in order from the object side.
  • Aperture stop A first lens having a positive refractive power;
  • a second lens having negative refractive power and having a concave surface facing the object side in the vicinity of the optical axis;
  • a third lens having positive refractive power and having a convex surface facing the image side in the vicinity of the optical axis;
  • a meniscus fourth lens having a convex surface facing the object side in the vicinity of the optical axis,
  • the image side surface of the fourth lens is aspheric, has an inflection point at a position other than the intersection with the optical axis, and satisfies the following conditional expression.
  • r1 curvature radius (mm) of the side surface of the first lens object
  • r2 radius of curvature (mm) of the side surface of the first lens image
  • d6 Air space (mm) on the optical axis of the third lens
  • the fourth lens f Focal length (mm) of the entire imaging lens system
  • the basic configuration of the present invention for obtaining a compact imaging lens with good aberration correction is, in order from the object side, an aperture stop, a first lens having a positive refractive power, an optical axis having a negative refractive power.
  • the second lens having a relatively high passing light height as a negative lens, it is possible to easily correct the Petzval sum and obtain an imaging lens that secures good imaging performance up to the periphery of the screen.
  • the second lens has a shape that welcomes the light beam emitted from the first lens, It is possible to suppress coma aberration and higher-order spherical aberration that occur in the second lens.
  • the image side surface of the fourth lens arranged closest to the image side aspherical various aberrations at the periphery of the screen can be corrected well. Furthermore, by using an aspherical shape having an inflection point at a position other than the intersection with the optical axis, it becomes easy to ensure the telecentric characteristics of the image-side light beam.
  • the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.
  • the image side surface of the fourth lens which is the most image side surface, can be a surface having a diverging action. Therefore, the back focus can be appropriately maintained even when the imaging lens is reduced in size.
  • Conditional expression (1) is a conditional expression for setting the shape of the first lens appropriately to achieve both the shortening of the total length of the imaging lens and the suppression of coma generated in the first lens.
  • the conditional expression (1) defines a so-called shaping factor representing the shape of the first lens.
  • the first lens In the range of the conditional expression, the first lens has a meniscus shape with a convex surface facing the object side from the plano-convex lens. Set to range.
  • the value of conditional expression (1) is below the upper limit, the first lens has a meniscus shape, so that the principal point position of the entire imaging lens system can be moved closer to the object side. The overall length can be shortened.
  • the value of the conditional expression (1) exceeds the lower limit, the radius of curvature of the side surface of the first lens object does not become too small, and the coma aberration with respect to the ambient light having a large angle of view can be suppressed.
  • conditional expression (2) is a conditional expression for satisfactorily correcting off-axis aberrations while shortening the overall length of the imaging lens.
  • the value of the conditional expression (2) exceeds the lower limit, the first lens to the third lens having relatively strong refractive power and the fourth lens as an aberration correction lens having relatively weak refractive power are on the axis.
  • the air space can be appropriately spaced.
  • a method of designing the incident surface shape of the fourth lens so that the light beam is divided at every predetermined image height and the off-axis aberration can be corrected for each divided light beam emitted from the third lens. There is.
  • the clearance between the lens periphery of the third lens and the fourth lens is too large, it becomes difficult to take an assembly structure that abuts the flanges of the lenses, and the fourth lens is attached to a lens barrel (housing or the like). You have to take a structure that strikes against.
  • the lens interval accuracy is difficult to be obtained, and the air interval between the third lens and the fourth lens varies. As a result, there is a mass production variation of the field curvature. It gets bigger.
  • conditional expression (2) when the value of conditional expression (2) is less than the upper limit, it is possible to adopt a structure in which the third lens and the fourth lens are brought into contact with each other, and mass production variation in field curvature can be suppressed to a small value. It becomes like this. More preferably, the range of the following formula is good. ⁇ 2.5 ⁇ (r1 + r2) / (r1 ⁇ r2) ⁇ ⁇ 1.0 (1) ′ 0.16 ⁇ d6 / f ⁇ 0.35 (2) ′
  • the imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, the following conditional expression is satisfied. 0.7 ⁇ f3 / f ⁇ 2.0 (3) However, f3: Focal length (mm) of the third lens f: Focal length (mm) of the entire imaging lens system
  • Conditional expression (3) is a conditional expression for appropriately setting the focal length of the third lens.
  • the focal length of the third lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed.
  • the value of the upper limit expression (3) is less than the upper limit, the focal length of the third lens can be appropriately maintained, and the overall length of the imaging lens can be shortened. More preferably, the range of the following formula is good. 0.85 ⁇ f3 / f ⁇ 1.90 (3) ′
  • the imaging lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the following conditional expression is satisfied. 0.9 ⁇ f1 / f ⁇ 1.5 (4) However, f1: Focal length (mm) of the first lens f: Focal length of the entire imaging lens system (mm)
  • Conditional expression (4) is a conditional expression for appropriately setting the focal length of the first lens to appropriately shorten the entire imaging lens and correct aberrations.
  • the value of conditional expression (4) is less than the upper limit, the refractive power of the first lens can be maintained moderately, and the composite principal point of the third lens from the first lens is arranged closer to the object side. And the overall length of the imaging lens can be shortened.
  • the value of the conditional expression (4) exceeds the lower limit, the refractive power of the first lens does not increase more than necessary, and high-order spherical aberration and coma generated in the first lens are reduced. Can be suppressed. More preferably, the range of the following formula is good. 0.95 ⁇ f1 / f ⁇ 1.40 (4) ′
  • An imaging lens according to a fourth aspect of the invention is characterized in that, in the invention according to any one of the first to third aspects, the following conditional expression is satisfied.
  • f4 Focal length (mm) of the fourth lens
  • f Focal length (mm) of the entire imaging lens system
  • Conditional expression (5) is a conditional expression for appropriately setting the focal length of the fourth lens.
  • the value of the upper limit formula (5) is less than the upper limit, the refractive power of the fourth lens can be maintained moderately, and the light beam that forms an image on the periphery of the imaging surface of the solid-state imaging device is excessively raised. The telecentric characteristic of the image side light beam can be easily secured.
  • the value of the upper limit expression (5) exceeds the lower limit, the refractive power of the fourth lens does not become excessively strong, shortening the entire lens length, and reducing off-axis aberrations such as field curvature and distortion. Correction can be performed satisfactorily. More preferably, the range of the following formula is good. 2.0 ⁇
  • the imaging lens described in claim 5 is characterized in that, in the invention described in any one of claims 1 to 4, the following conditional expression is satisfied. 0.01 ⁇ d4 / f ⁇ 0.05 (6) However, d4: Air space (mm) on the optical axis of the second lens and the third lens f: Focal length (mm) of the entire imaging lens system
  • conditional expression (6) When the value of conditional expression (6) is below the upper limit, the distance between the second lens and the third lens does not become too large, and as a result, the entire length of the imaging lens can be shortened. On the other hand, when the value of conditional expression (6) exceeds the lower limit, the clearance between the second lens and the third lens can be maintained moderately, and a light shielding member for preventing ghosts and flares is inserted. Space can be secured. More preferably, the range of the following formula is good. 0.01 ⁇ d4 / f ⁇ 0.04 (6) ′
  • An imaging lens according to a sixth aspect of the present invention is the imaging lens according to any one of the first to fifth aspects, wherein the object side surface of the fourth lens has an aspherical shape, and the inflection point is at a position other than the intersection with the optical axis. It is characterized by having.
  • the object side surface of the fourth lens By making the object side surface of the fourth lens an aspherical shape and having an inflection point at a position other than the intersection with the optical axis, a shape such that both surfaces of the fourth lens have an inflection point Therefore, it is possible to obtain a shape that can easily secure the telecentric characteristics. Further, since the both surfaces of the fourth lens have aspherical shapes, it is possible to satisfactorily correct off-axis aberrations.
  • the imaging lens according to claim 7 is the imaging lens according to any one of claims 1 to 6, wherein the image side surface of the first lens has an aspherical shape, and an inflection point is located at a position other than the intersection with the optical axis. It is characterized by having.
  • the zoom lens according to claim 8 is the invention according to any one of claims 1 to 7, further comprising a lens having substantially no power. That is, even when a dummy lens having substantially no power is added to the configuration of claim 1, it is within the scope of application of the present invention.
  • An imaging device includes the imaging lens according to any one of the first to eighth aspects.
  • a mobile terminal includes the imaging device according to the ninth aspect.
  • a four-lens imaging lens having a wide angle and a bright F-number of about F2.4, which is well-compensated with various aberrations, and an imaging device and a portable terminal using the same. can do.
  • FIG. 3 is a diagram schematically showing a cross section along the optical axis of an imaging optical system of the imaging unit 50.
  • FIG. It is the front view (a) of the mobile phone to which the imaging unit is applied, and the rear view (b) of the mobile phone to which the imaging unit is applied.
  • It is a control block diagram of the smart phone of FIG.
  • It is a block diagram of the image processing part concerning this embodiment. It is a figure which shows an example of the image (a) before image processing, and the image (b) after image processing.
  • 3 is a cross-sectional view in the optical axis direction of the imaging lens of Example 1.
  • FIG. 4 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • FIG. 6 is a cross-sectional view in the optical axis direction of the imaging lens of Example 2.
  • FIG. 6 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • 6 is a cross-sectional view in the optical axis direction of the imaging lens of Embodiment 3.
  • FIG. FIG. 6 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • FIG. 6 is a cross-sectional view in the optical axis direction of an imaging lens of Example 4.
  • FIG. FIG. 6 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • 6 is a cross-sectional view in the optical axis direction of the imaging lens of Example 5.
  • FIG. FIG. 6 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • FIG. 1 is a perspective view of the imaging unit 50 according to the present embodiment
  • FIG. 2 is a diagram schematically showing a cross section along the optical axis of the imaging lens of the imaging unit 50.
  • the imaging unit 50 includes a CMOS type imaging device 51 as a solid-state imaging device having a photoelectric conversion unit 51 a and an imaging lens 10 that causes the photoelectric conversion unit 51 a of the imaging device 51 to image a subject image.
  • a substrate 52 that holds the image sensor 51 and transmits / receives an electric signal thereof, and a housing 53 as a lens barrel that has an opening for light incidence from the object side and is made of a light shielding member. It is integrally formed.
  • the imaging element 51 has a photoelectric conversion part 51 a as a light receiving part in which pixels (photoelectric conversion elements) are two-dimensionally arranged at the center of the plane on the light receiving side.
  • a signal processing circuit (not shown) is formed around the periphery.
  • Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like.
  • a number of pads (not shown) are arranged in the vicinity of the outer edge of the plane on the light receiving side of the image sensor 51, and are connected to the substrate 52 via wires (not shown).
  • the image sensor 51 converts the signal charge from the photoelectric conversion unit 51a into an image signal such as a digital YUV signal, and outputs it to a predetermined circuit on the substrate 52 via a wire (not shown).
  • Y is a luminance signal
  • the image sensor is not limited to the above CMOS image sensor, and other devices such as a CCD may be used.
  • the substrate 52 supports the image sensor 51 and the casing 53 on the upper surface thereof. Although not shown, the substrate 52 has a large number of signal transmission pads, and is connected to the image sensor 51 via wiring (not shown).
  • a substrate 52 is connected to an external circuit (for example, a control circuit included in a host device on which an imaging unit is mounted), and receives a voltage and a clock signal for driving the imaging element 51 from the external circuit.
  • an external circuit for example, a control circuit included in a host device on which an imaging unit is mounted
  • the digital YUV signal can be output to an external circuit.
  • the housing 53 is fixedly disposed so as to cover the image sensor 51 on the surface of the substrate 52 on which the image sensor 51 is provided. That is, the casing 53 is wide open so that the part on the image sensor 51 side surrounds the image sensor 51, and the other end (object side end) forms a flange 53a having a small opening. An end on the image sensor 51 side (image side end) is abutted and fixed on the substrate 52.
  • a cover glass CG is fixed between the imaging lens 10 and the imaging element 51 inside the housing 53 in which the flange portion 53a provided with a small opening (an opening for light incidence) is directed toward the object side. Has been placed. Besides this, an IR (infrared) cut filter may be provided.
  • the imaging lens 10 disposed in the housing 53 has, in order from the object side, an aperture stop S, a first lens L1 having a positive refractive power, a negative refractive power, and a concave surface on the object side in the vicinity of the optical axis.
  • a second lens L2 that is directed, a third lens L3 having a positive refractive power and having a convex surface facing the image side in the vicinity of the optical axis, a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis,
  • the image side surface of the fourth lens L4 has an aspherical shape, has an inflection point at a position other than the intersection with the optical axis, and satisfies the following conditional expression.
  • r1 radius of curvature of the first lens object side surface (mm)
  • r2 radius of curvature of the first lens image side surface (mm)
  • d6 Air spacing on the optical axis of the third lens and the fourth lens (mm)
  • f Focal length of the entire imaging lens system (mm)
  • the lenses L1 to L4 have a lens spacing dimension accurately secured by abutting the flanges against each other. Spacers SP are disposed between the lens L4 and the cover glass CG, and between the cover glass CG and the substrate 52.
  • FIG. 3 is a diagram illustrating a state in which the imaging unit 50 is mounted on the smartphone 100 as a mobile terminal.
  • FIG. 4 is a control block diagram of the smartphone 100.
  • FIG. 5 is a block diagram illustrating a configuration of the image processing unit.
  • the object-side end surface of the housing 53 is provided on the back surface of the smartphone 100 (see FIG. 3B), and is disposed at a position corresponding to the back side of the touch panel 70.
  • the imaging unit 50 is connected to the control unit 101 of the smartphone 100 and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
  • the smartphone 100 performs overall control of each unit, and also inputs a control unit (CPU) 101 that executes a program corresponding to each process, and inputs a number and the like with a key.
  • Unit 60 a liquid crystal display unit 70 for displaying captured images in addition to predetermined data, a wireless communication unit 80 for realizing various information communication with an external server, a system program for mobile phone 100, Obtained by a storage unit (ROM) 91 storing various processing programs and necessary data such as a terminal ID, and various processing programs and data executed by the control unit 101, or processing data, or the imaging unit 50
  • a temporary storage unit (RAM) 92 that is used as a work area for temporarily storing imaging data and the like.
  • the CPU of the control unit 101 When the imaging lens 10 has a focusing function, the CPU of the control unit 101 outputs a control signal to cause the imaging lens 10 to perform a focusing operation via the lens driving unit DR. In addition, control such as aperture, pixel shift, and camera shake may be performed. However, a fixed focus lens may be used. Further, the CPU of the control unit 101 outputs a control signal to the solid-state image sensor 51 on which the subject image is formed by the imaging lens 10 and outputs an image signal corresponding to the subject image.
  • the smartphone 100 operates by operating the input key unit 60, and can touch the icon 71 and the like displayed on the touch panel (display unit) 70 to operate the imaging unit 50 to perform imaging.
  • the image signal input from the imaging unit 50 is subjected to image processing to be described later in the control unit 101, stored in the storage unit 92 or displayed on the touch panel 70 by the control system of the smartphone 100, and wirelessly It is transmitted to the outside as video information via the communication unit 80.
  • the control unit 101 stores lens correction data in an EEPROM.
  • the lens correction data refers to a subject image (see FIG. 6A) that has been given a positive distortion by the imaging lens 10 and has a pincushion-shaped distortion, and has a rectangular shape (referred to as distortion correction processing).
  • FIG. 6B shows data necessary for correction. For example, according to a design value, the signal value of a pixel (x, y) at a certain coordinate is changed to a pixel (x ⁇ ⁇ x, y ⁇ ⁇ y) at a different coordinate. Table data for conversion into ().
  • the values of ⁇ x and ⁇ y change according to xy coordinates with the origin (0, 0) being the center of the photoelectric conversion unit 51a of the solid-state imaging device 51.
  • the optical design is devised so that the vertical / horizontal size range of 1/2 of the vertical / horizontal size of the photoelectric conversion unit 51a with the origin at the center (in FIG. 6B). (Corresponding to the range indicated by the alternate long and short dash line) can be left as is without being processed.
  • the pixel value may be converted using a function f (x, y) obtained by simulation or the like without using table data.
  • the image signal output from the imaging lens 10 is input to the control unit 101 via the interface I / F.
  • the input image signal corresponds to a still image that requires a large-scale memory with a large number of pixels but does not require real-time property
  • the input image signal is stored in the temporary memory MY.
  • the CPU reads lens correction data from the EEPROM, and based on the read data, adds distortion correction processing by software to the image signal and performs normal image processing.
  • the input image signal has a relatively small number of pixels (for example, 2M pixels or less) and the required memory is small and corresponds to a moving image that requires real-time performance, it is input to the image processor ISP, Then, based on the lens correction data read from the EEPROM, real-time distortion correction processing by hardware is added to the image signal and normal image processing is performed.
  • the image signal subjected to the image processing is displayed on the touch panel 70 via the LCD interface LCD I / F or is recorded on the memory card MC via the memory interface Mm I / F.
  • FIG. 6A is a diagram illustrating an example of a subject image based on an image signal before distortion correction processing, and the distortion is exaggerated.
  • FIG. 6B is a diagram illustrating an example of a subject image based on the image signal after the distortion correction processing. If a subject image given positive distortion by the imaging lens 10 is displayed as it is without distortion correction processing, the pincushion type may be distorted as shown in FIG. In such a case, by performing a distortion correction process in the control unit 101, a rectangular image having no sense of incongruity as shown in FIG. 6B can be obtained.
  • Imaging lens of the present invention will be shown below. Symbols used in each example are as follows. f: Focal length of the entire imaging lens fB: Back focus F: F number 2Y: Diagonal length of imaging surface of solid-state imaging device ENTP: Entrance pupil position (distance from first surface to entrance pupil position) EXTP: Exit pupil position (distance from imaging surface to exit pupil position) H1: Front principal point position (distance from the first surface to the front principal point position) H2: Rear principal point position (distance from the final surface to the rear principal point position) R: radius of curvature D: axial distance Nd: refractive index ⁇ d of lens material with respect to d-line: Abbe number of lens material
  • the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction.
  • the height in the direction perpendicular to the optical axis is h, and is expressed by the following “Equation 1”.
  • Example 1 shows lens data of Example 1.
  • a power of 10 for example, 2.5 ⁇ 10 ⁇ 02
  • E for example, 2.5E-02
  • FIG. 7 is a sectional view of the lens of Example 1.
  • L1 is a first lens having a positive refractive power
  • L2 is a negative lens having a negative refractive power
  • a second lens having a concave surface facing the object side in the vicinity of the optical axis
  • L3 has a positive refractive power.
  • a third lens having a convex surface facing the image side in the vicinity of the axis
  • a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis.
  • the image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis
  • the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than.
  • S represents an aperture stop
  • I represents an imaging surface.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like.
  • FIG. 8 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • the solid line represents the spherical aberration amount and the coma aberration amount with respect to the d line and the dotted line, respectively.
  • the solid line S represents the sagittal surface and the dotted line M. Represents a meridional plane (hereinafter the same).
  • Example 2 Table 2 shows lens data of the imaging lens of Example 2.
  • FIG. 9 is a sectional view of the lens of Example 2.
  • L1 is a first lens having a positive refractive power
  • L2 is a negative lens having a negative refractive power
  • a second lens having a concave surface facing the object side in the vicinity of the optical axis
  • L3 has a positive refractive power.
  • a third lens having a convex surface facing the image side in the vicinity of the axis
  • a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis.
  • the image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis
  • the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than.
  • S represents an aperture stop
  • I represents an imaging surface.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like.
  • FIG. 10 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • Table 3 shows lens data of the imaging lens of Example 3.
  • FIG. 11 is a sectional view of the lens of Example 3.
  • L1 is a first lens having a positive refractive power
  • L2 is a negative lens having a negative refractive power
  • a second lens having a concave surface facing the object side in the vicinity of the optical axis
  • L3 has a positive refractive power.
  • a third lens having a convex surface facing the image side in the vicinity of the axis
  • a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis.
  • the image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis
  • the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than.
  • S represents an aperture stop
  • I represents an imaging surface.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like.
  • FIG. 12 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • Example 4 shows lens data of the imaging lens of Example 4.
  • FIG. 13 is a sectional view of the lens of Example 4.
  • L1 is a first lens having a positive refractive power
  • L2 is a negative lens having a negative refractive power
  • a second lens having a concave surface facing the object side in the vicinity of the optical axis
  • L3 has a positive refractive power.
  • a third lens having a convex surface facing the image side in the vicinity of the axis
  • a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis.
  • the image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis
  • the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than.
  • S represents an aperture stop
  • I represents an imaging surface.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like.
  • FIG. 14 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • Table 5 shows lens data of the imaging lens of Example 5.
  • FIG. 15 is a sectional view of the lens of Example 5.
  • L1 is a first lens having a positive refractive power
  • L2 is a negative lens having a negative refractive power
  • a second lens having a concave surface facing the object side in the vicinity of the optical axis
  • L3 has a positive refractive power.
  • a third lens having a convex surface facing the image side in the vicinity of the axis
  • a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis.
  • the image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis
  • the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than.
  • S represents an aperture stop
  • I represents an imaging surface.
  • F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like.
  • FIG. 16 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
  • Table 6 shows the values of each example corresponding to each conditional expression.
  • an energy curable resin as the material of the imaging lens, since the optical performance degradation when exposed to high temperatures is small compared to a lens using a thermoplastic resin such as polycarbonate or polyolefin, It is effective for the reflow process, is easier to manufacture than a glass mold lens, is inexpensive, and can achieve both low cost and mass productivity of an imaging apparatus incorporating an imaging lens.
  • the energy curable resin refers to both a thermosetting resin and an ultraviolet curable resin.
  • the imaging lens of the present invention may be formed using the above-described energy curable resin.
  • the principal ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily designed to be sufficiently small in the periphery of the imaging surface.
  • recent techniques have made it possible to reduce shading by reviewing the arrangement of the color filters of the solid-state imaging device and the on-chip microlens array. Specifically, if the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch of the image pickup surface of the image pickup device, the color filter or Since the on-chip microlens array is shifted to the optical axis side of the imaging lens, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, the shading which generate
  • the present embodiment is a design example aiming at further miniaturization with respect to the portion where the requirement is relaxed.
  • the present invention can provide an imaging lens suitable for a small portable terminal.
  • Imaging lens 50 Imaging unit 51 Solid-state image sensor 51a Photoelectric conversion part 52 Board

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

Provided is an imaging lens having a four-lens construction which is compact and yet has a wide angle and a bright F-number of approximately 2.4, and which provides good correction of aberrations; also provided are an imaging device and a portable terminal equipped with this lens. This imaging lens, which is for forming the image of a photographic subject in a photoelectric conversion unit of a solid-state imaging element, comprises, in order from the object side: an aperture diaphragm; a first lens having positive refractive power; a second lens having negative refractive power and having a concave surface facing the object side in the vicinity of the light axis; a third lens having positive refractive power and having a convex surface facing the image side in the vicinity of the light axis; and a meniscus-shaped fourth lens having a convex surface facing the object side in the vicinity of the light axis. The image-side surface of the fourth lens has an aspheric shape and has an inflection point other than a point of intersection with the light axis. In addition, the imaging lens satisfies the following conditional expressions (1) and (2), where r1 is the radius of curvature (mm) of the object-side surface of the first lens, r2 is the radius of curvature (mm) of the image-side surface of the first lens, d6 is the air space (mm) between the third lens and the fourth lens on the light axis, and f is the focal distance (mm) of the entire imaging lens system. -3.0 < (r1+r2)/(r1-r2) ≤ -1.0 (1) 0.16 < d6/f < 0.40 (2)

Description

撮像レンズ、撮像装置及び携帯端末Imaging lens, imaging device, and portable terminal
 本発明は、CCD型イメージセンサあるいはCMOS型イメージセンサ等の固体撮像素子を用いた低背の撮像レンズ、撮像装置、およびこれを備える携帯端末に関する。 The present invention relates to a low-profile imaging lens and imaging device using a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, and a portable terminal equipped with the imaging lens.
 近年、CCD(Charged Coupled Device)型イメージセンサあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置が搭載された携帯端末の普及の増大に伴い、より高画質の画像が得られるよう、高画素数をもつ撮像素子を使用した撮像装置が搭載されたものが市場に供給されるようになってきた。従来の高画素数をもつ撮像素子は、大型化をともなっていたが、近年、画素の高細化が進み、撮像素子が小型化されるようになってきた。高細化された撮像素子に使用される撮像レンズには、高細化された画素に対応するために高い解像力が要求される。ここで、レンズの解像力はF値により限界があり、F値の小さい明るいレンズの方が高解像力を得られるため、明るい撮像レンズが要求されている。一方、撮像装置の更なる小型化をするためにも撮像レンズの全長もさらに小さくすることが要求されている。撮像レンズは、パワー配置や、ンズの厚みや空気間隔の工夫で小型化することには限界があり、近年、撮像レンズの焦点距離を短くした広角レンズを用いることで、光学系の全長を小さくする試みがされようになってきた。このような用途の撮像レンズとしては、2枚あるいは3枚構成のレンズに比べ高性能化が可能であると言うことで、4枚構成の撮像レンズが提案されている。 In recent years, with the spread of mobile terminals equipped with solid-state imaging devices such as CCD (Charged Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, higher quality images In order to obtain the above, those equipped with an imaging device using an imaging device having a high number of pixels have been supplied to the market. Conventional image pickup devices having a high number of pixels have been accompanied by an increase in size, but in recent years, pixels have become increasingly thinner and image pickup devices have become smaller. An imaging lens used for a highly thinned image sensor is required to have a high resolving power in order to cope with a highly thinned pixel. Here, the resolving power of the lens is limited by the F value, and a bright imaging lens is required because a bright lens with a small F value can obtain a high resolving power. On the other hand, in order to further reduce the size of the imaging apparatus, it is required to further reduce the overall length of the imaging lens. There is a limit to downsizing the imaging lens by power arrangement, device thickness and air spacing, and in recent years, wide-angle lenses with a shorter focal length are used to reduce the overall length of the optical system. Attempts have been made to do this. As an imaging lens for such a use, a four-lens imaging lens has been proposed because it can be improved in performance as compared with a two-lens or three-lens configuration.
 この4枚構成の撮像レンズとして、物体側から順に正の屈折力を有する第1レンズ、負の屈折力を有し物体側に凹面を向けた第2レンズ、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズで構成し撮像レンズ全長の小型化を目指した、所謂、テレフォトタイプの撮像レンズが開示されている(例えば特許文献1、2参照)。 As this four-lens imaging lens, a first lens having a positive refractive power in order from the object side, a second lens having a negative refractive power and a concave surface facing the object side, and a third lens having a positive refractive power A so-called telephoto type imaging lens is disclosed which is configured by a fourth lens having negative refractive power and aims to reduce the overall length of the imaging lens (see, for example, Patent Documents 1 and 2).
特開2008-185807号公報JP 2008-185807 A 特開2010-26387号公報JP 2010-26387 A
 しかしながら、特許文献1に記載の撮像レンズは、最大画角が65°程度と小さく撮像レンズ全長も十分に小型化されているとは言えない。また、F値もF2.8程度と暗く光学性能も近年の高画素化に対応できているとは言い難い。 However, the imaging lens described in Patent Document 1 has a small maximum field angle of about 65 °, and it cannot be said that the entire length of the imaging lens is sufficiently small. In addition, it is difficult to say that the F value is as dark as F2.8 and the optical performance is compatible with the recent increase in pixels.
 また、特許文献2に記載の撮像レンズは、最大画角は75°程度の広角なレンズであるが、撮像レンズ全長は十分に小型化されているとは言えず、更に開口絞りが第1レンズと第2レンズの間に配置されているために、これ以上全長を小さくしようとした場合、射出瞳位置を物体側へ配置することが困難で、テレセントリック特性の大きな悪化を招くこととなる。 The imaging lens described in Patent Document 2 is a wide-angle lens having a maximum field angle of about 75 °. However, it cannot be said that the overall length of the imaging lens is sufficiently small, and the aperture stop is the first lens. Since it is disposed between the second lens and the second lens, it is difficult to dispose the exit pupil position toward the object side when attempting to further reduce the overall length, and the telecentric characteristics are greatly deteriorated.
 本発明は、このような問題点に鑑みてなされたものであり、小型でありながらも、諸収差が良好に補正された、広角でF値がF2.4程度と明るい4枚構成の撮像レンズおよびそれを用いた撮像装置並びに携帯端末を提供することを目的とする。 The present invention has been made in view of the above problems, and is a compact four-lens imaging lens having a wide angle and a bright F value of about F2.4, in which various aberrations are well corrected. It is another object of the present invention to provide an imaging device and a portable terminal using the same.
 ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。
 L/2Y<0.80   (7)
ただし、
L:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:固体撮像素子の撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)
 ここで、像側焦点とは撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。
Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
L / 2Y <0.80 (7)
However,
L: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: diagonal length of the imaging surface of the solid-state imaging device (diagonal length of the rectangular effective pixel region of the solid-state imaging device)
Here, the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.
 なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記Lの値を計算するものとする。また、より望ましくは下式の範囲が良い。
 L/2Y<0.75   (7)’
When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package is disposed between the image-side surface of the imaging lens and the image-side focal position, the imaging lens is parallel. The flat plate portion is calculated as the above L value after the air conversion distance. More preferably, the range of the following formula is good.
L / 2Y <0.75 (7) '
 また、近年急速にスマートフォンやタブレット端末が普及してきており、それに搭載される撮像装置にもより一層の小型化の要求が高まってきている。そこで、上記(7)式を満足した撮像レンズを搭載した撮像装置としては、高さ5.0mm以下、より望ましくは高さ4.5mm以下を目指している。 In recent years, smartphones and tablet terminals are rapidly spreading, and there is an increasing demand for further downsizing of image pickup apparatuses mounted on the smartphones and tablet terminals. Therefore, an image pickup apparatus equipped with an image pickup lens that satisfies the above expression (7) aims at a height of 5.0 mm or less, and more preferably a height of 4.5 mm or less.
 請求項1に記載の撮像レンズは、固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、物体側より順に、
 開口絞り、
 正の屈折力を有する第1レンズ、
 負の屈折力を有し、光軸近傍で物体側に凹面を向けた第2レンズ、
 正の屈折力を有し、光軸近傍で像側に凸面を向けた第3レンズ、
 光軸近傍で物体側に凸面を向けたメニスカス形状の第4レンズ、からなり、
 第4レンズの像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有し、以下の条件式を満足することを特徴とする。
 -3.0<(r1+r2)/(r1-r2)≦-1.0   (1)
 0.16<d6/f<0.40   (2)
ただし、
r1:前記第1レンズ物体側面の曲率半径(mm)
r2:前記第1レンズ像側面の曲率半径(mm)
d6:前記第3レンズと前記第4レンズの光軸上の空気間隔(mm)
f:前記撮像レンズ全系の焦点距離(mm)
The imaging lens according to claim 1 is an imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device, in order from the object side.
Aperture stop,
A first lens having a positive refractive power;
A second lens having negative refractive power and having a concave surface facing the object side in the vicinity of the optical axis;
A third lens having positive refractive power and having a convex surface facing the image side in the vicinity of the optical axis;
A meniscus fourth lens having a convex surface facing the object side in the vicinity of the optical axis,
The image side surface of the fourth lens is aspheric, has an inflection point at a position other than the intersection with the optical axis, and satisfies the following conditional expression.
−3.0 <(r1 + r2) / (r1−r2) ≦ −1.0 (1)
0.16 <d6 / f <0.40 (2)
However,
r1: curvature radius (mm) of the side surface of the first lens object
r2: radius of curvature (mm) of the side surface of the first lens image
d6: Air space (mm) on the optical axis of the third lens and the fourth lens
f: Focal length (mm) of the entire imaging lens system
 小型で収差の良好に補正された撮像レンズを得るための、本発明の基本構成は、物体側より順に、開口絞り、正の屈折力を有する第1レンズ、負の屈折力を有し光軸近傍で物体側に凹面を向けた第2レンズ、正の屈折力を有し光軸近傍で像側に凸面を向けた第3レンズ、光軸近傍で物体側に凸面を向けたメニスカス形状の第4レンズ、からなる。比較的屈折力の強い第1レンズから第3レンズまでを一つの正レンズ群とすることで、撮像レンズ系全体の合成主点位置をより物体側へ寄せることができ、撮像レンズ全長の小型化に有利な構成となる。 The basic configuration of the present invention for obtaining a compact imaging lens with good aberration correction is, in order from the object side, an aperture stop, a first lens having a positive refractive power, an optical axis having a negative refractive power. A second lens having a concave surface facing the object side in the vicinity, a third lens having a positive refractive power and a convex surface facing the image side near the optical axis, and a meniscus second lens having a convex surface facing the object side near the optical axis 4 lenses. By making the first lens to the third lens with relatively strong refractive power into one positive lens group, the combined principal point of the entire imaging lens system can be moved closer to the object side, and the overall length of the imaging lens can be reduced. This is an advantageous configuration.
 さらに、比較的通過光線高さの高い前記第2レンズを負レンズとすることで、ペッツバール和の補正を容易とし、画面周辺部まで良好な結像性能を確保した撮像レンズを得ることが可能となる。また、前記第2レンズを光軸近傍で物体側に凹面を向けた形状とすることで、入射画角が広角になっても、前記第1レンズ出射後の光線を迎えに行く形状となり、前記第2レンズで発生するコマ収差や高次の球面収差などを小さく抑えることができる。 Furthermore, by using the second lens having a relatively high passing light height as a negative lens, it is possible to easily correct the Petzval sum and obtain an imaging lens that secures good imaging performance up to the periphery of the screen. Become. In addition, by forming the second lens in a shape with a concave surface facing the object side in the vicinity of the optical axis, even when the incident field angle becomes a wide angle, the second lens has a shape that welcomes the light beam emitted from the first lens, It is possible to suppress coma aberration and higher-order spherical aberration that occur in the second lens.
 また、最も像側に配置された前記第4レンズの像側面を非球面とすることで、画面周辺部での諸収差を良好に補正することができる。さらに、光軸との交点以外の位置に変曲点を有する非球面形状とすることで、像側光束のテレセントリック特性が確保しやすくなる。ここで、「変曲点」とは有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面が光軸と垂直な平面となるような非球面上の点のことである。 Also, by making the image side surface of the fourth lens arranged closest to the image side aspherical, various aberrations at the periphery of the screen can be corrected well. Furthermore, by using an aspherical shape having an inflection point at a position other than the intersection with the optical axis, it becomes easy to ensure the telecentric characteristics of the image-side light beam. Here, the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.
 さらに、前記第4レンズを光軸近傍で物体側に凸面を向けたメニスカス形状とすることで、最も像側の面である前記第4レンズの像側面を、発散作用を持つ面とすることができるので、撮像レンズが小型になっても適度にバックフォーカスを維持することができる。 Furthermore, by making the fourth lens a meniscus shape with a convex surface facing the object side in the vicinity of the optical axis, the image side surface of the fourth lens, which is the most image side surface, can be a surface having a diverging action. Therefore, the back focus can be appropriately maintained even when the imaging lens is reduced in size.
 条件式(1)は前記第1レンズの形状を適切に設定し、撮像レンズ全長の短縮化と、第1レンズで発生するコマ収差の抑制を両立するための条件式である。具体的に、条件式(1)は第1レンズの形状を表す、所謂シェーピングファクターを規定しており、条件式の範囲で第1レンズは、平凸レンズから物体側に凸面を向けたメニスカス形状の範囲に設定される。条件式(1)の値がその上限を下回ることで、前記第1レンズがメニスカス形状となるため、撮像レンズ全系の主点位置をより物体側へ寄せることができるようになるから、撮像レンズ全長の短縮化を行うことができる。一方、条件式(1)の値がその下限を上回ることで、前記第1レンズ物体側面の曲率半径が小さくなりすぎず、画角が大きくついた周辺光に対するコマ収差を小さく抑えることができる。 Conditional expression (1) is a conditional expression for setting the shape of the first lens appropriately to achieve both the shortening of the total length of the imaging lens and the suppression of coma generated in the first lens. Specifically, the conditional expression (1) defines a so-called shaping factor representing the shape of the first lens. In the range of the conditional expression, the first lens has a meniscus shape with a convex surface facing the object side from the plano-convex lens. Set to range. When the value of conditional expression (1) is below the upper limit, the first lens has a meniscus shape, so that the principal point position of the entire imaging lens system can be moved closer to the object side. The overall length can be shortened. On the other hand, when the value of the conditional expression (1) exceeds the lower limit, the radius of curvature of the side surface of the first lens object does not become too small, and the coma aberration with respect to the ambient light having a large angle of view can be suppressed.
 一方、条件式(2)は撮像レンズ全長を短くしつつも、軸外の諸収差を良好に補正するための条件式である。条件式(2)の値が下限を上回ることで、比較的屈折力の強い前記第1レンズから前記第3レンズと、比較的屈折力の弱い収差補正レンズとしての前記第4レンズの軸上の空気間隔を適度に空けることができる。光学設計の一態様として、所定の像高ごとに光束を分割し、第3レンズから出射された分割光束ごとに、その軸外収差を補正できるように第4レンズの入射面形状を設計する手法がある。しかるに、条件式(2)の値が下限を上回るように第3レンズと第4レンズの間隔を空けることで、第4レンズの非球面形状を細かく調整する余裕が生まれ、この第4レンズの非球面形状の作用によって、任意の像高における軸外収差を良好に補正することができるのである。一方、条件式(2)の値が上限を下回ることで、前記第3レンズと前記第4レンズの空気間隔が必要以上に空くことがなくなるため、結果として撮像レンズ全長の短縮化が可能となる。 On the other hand, conditional expression (2) is a conditional expression for satisfactorily correcting off-axis aberrations while shortening the overall length of the imaging lens. When the value of the conditional expression (2) exceeds the lower limit, the first lens to the third lens having relatively strong refractive power and the fourth lens as an aberration correction lens having relatively weak refractive power are on the axis. The air space can be appropriately spaced. As an aspect of optical design, a method of designing the incident surface shape of the fourth lens so that the light beam is divided at every predetermined image height and the off-axis aberration can be corrected for each divided light beam emitted from the third lens. There is. However, by allowing the third lens and the fourth lens to be spaced so that the value of conditional expression (2) exceeds the lower limit, there is room for fine adjustment of the aspherical shape of the fourth lens. Due to the action of the spherical shape, off-axis aberrations at an arbitrary image height can be corrected satisfactorily. On the other hand, when the value of conditional expression (2) is less than the upper limit, the air gap between the third lens and the fourth lens is not unnecessarily increased, and as a result, the overall length of the imaging lens can be shortened. .
 また、前記第3レンズと前記第4レンズのレンズ周辺部のクリアランスが空きすぎていると、レンズのフランジ同士を突き当てる組み付け構造がとりにくくなり、前記第4レンズをレンズバレル(筐体等)に対して突き当てる構造をとらざるを得なくなる。そうなると、レンズのフランジ同士を突き当てる場合と比較し、レンズ間隔精度が出しにくくなり、前記第3レンズと前記第4レンズの空気間隔がばらつく要因となるため、結果として像面湾曲の量産バラツキが大きくなってしまう。したがって、条件式(2)の値が上限を下回ることで、前記第3レンズと前記第4レンズをレンズ同士で突き当てる構造をとることができ、像面湾曲の量産バラツキを小さく抑えることができるようになる。また、より望ましくは下式の範囲がよい。
 -2.5<(r1+r2)/(r1-r2)≦-1.0   (1)’
 0.16<d6/f<0.35   (2)’
Also, if the clearance between the lens periphery of the third lens and the fourth lens is too large, it becomes difficult to take an assembly structure that abuts the flanges of the lenses, and the fourth lens is attached to a lens barrel (housing or the like). You have to take a structure that strikes against. In this case, compared to the case where the flanges of the lenses are abutted against each other, the lens interval accuracy is difficult to be obtained, and the air interval between the third lens and the fourth lens varies. As a result, there is a mass production variation of the field curvature. It gets bigger. Therefore, when the value of conditional expression (2) is less than the upper limit, it is possible to adopt a structure in which the third lens and the fourth lens are brought into contact with each other, and mass production variation in field curvature can be suppressed to a small value. It becomes like this. More preferably, the range of the following formula is good.
−2.5 <(r1 + r2) / (r1−r2) ≦ −1.0 (1) ′
0.16 <d6 / f <0.35 (2) ′
 請求項2に記載の撮像レンズは、請求項1に記載の発明において、以下の条件式を満足することを特徴とする。
 0.7<f3/f<2.0   (3)
ただし、
f3:前記第3レンズの焦点距離(mm)
f:前記撮像レンズ全系の焦点距離(mm)
The imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, the following conditional expression is satisfied.
0.7 <f3 / f <2.0 (3)
However,
f3: Focal length (mm) of the third lens
f: Focal length (mm) of the entire imaging lens system
 条件式(3)は前記第3レンズの焦点距離を適切に設定するための条件式である。上限式(3)の値が下限を上回ることで、前記第3レンズの焦点距離が小さくなりすぎず、高次の球面収差やコマ収差の発生を抑えることができる。一方、上限式(3)の値が上限を下回ることで、前記第3レンズの焦点距離を適度に維持することができ、撮像レンズ全長の短縮化を達成することができる。また、より望ましくは下式の範囲がよい。
 0.85<f3/f<1.90   (3)’
Conditional expression (3) is a conditional expression for appropriately setting the focal length of the third lens. When the value of the upper limit expression (3) exceeds the lower limit, the focal length of the third lens does not become too small, and generation of higher-order spherical aberration and coma aberration can be suppressed. On the other hand, when the value of the upper limit expression (3) is less than the upper limit, the focal length of the third lens can be appropriately maintained, and the overall length of the imaging lens can be shortened. More preferably, the range of the following formula is good.
0.85 <f3 / f <1.90 (3) ′
 請求項3に記載の撮像レンズは、請求項1又は2に記載の発明において、以下の条件式を満足することを特徴とする。
 0.9<f1/f<1.5   (4)
ただし、
f1:前記第1レンズの焦点距離(mm)
f:撮像レンズ全系の焦点距離(mm)
The imaging lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the following conditional expression is satisfied.
0.9 <f1 / f <1.5 (4)
However,
f1: Focal length (mm) of the first lens
f: Focal length of the entire imaging lens system (mm)
 条件式(4)は、前記第1レンズの焦点距離を適切に設定し撮像レンズ全長の短縮化と収差補正を適切に達成するための条件式である。条件式(4)の値が上限を下回ることで、前記第1レンズの屈折力を適度に維持することができ、前記第1レンズから前記第3レンズの合成主点をより物体側へ配置することができ、撮像レンズ全長を短くすることができる。一方、条件式(4)の値が下限を上回ることで、前記第1レンズの屈折力が必要以上に大きくなりすぎず、前記第1レンズで発生する、高次の球面収差やコマ収差を小さく抑えることができる。また、より望ましくは下式の範囲がよい。
 0.95<f1/f<1.40   (4)’
Conditional expression (4) is a conditional expression for appropriately setting the focal length of the first lens to appropriately shorten the entire imaging lens and correct aberrations. When the value of conditional expression (4) is less than the upper limit, the refractive power of the first lens can be maintained moderately, and the composite principal point of the third lens from the first lens is arranged closer to the object side. And the overall length of the imaging lens can be shortened. On the other hand, when the value of the conditional expression (4) exceeds the lower limit, the refractive power of the first lens does not increase more than necessary, and high-order spherical aberration and coma generated in the first lens are reduced. Can be suppressed. More preferably, the range of the following formula is good.
0.95 <f1 / f <1.40 (4) ′
 請求項4に記載の撮像レンズは、請求項1~3のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
 1.5<|f4|/f<100   (5)
ただし、
f4:前記第4レンズの焦点距離(mm)
f:前記撮像レンズ全系の焦点距離(mm)
An imaging lens according to a fourth aspect of the invention is characterized in that, in the invention according to any one of the first to third aspects, the following conditional expression is satisfied.
1.5 <| f4 | / f <100 (5)
However,
f4: Focal length (mm) of the fourth lens
f: Focal length (mm) of the entire imaging lens system
 条件式(5)は前記第4レンズの焦点距離を適切に設定するための条件式である。上限式(5)の値が上限を下回ることで、前記第4レンズの屈折力を適度に維持することができ、固体撮像素子の撮像面周辺部に結像する光束が過度に跳ね上げられることがなくなり、像側光束のテレセントリック特性の確保を容易にすることができる。一方、上限式(5)の値が下限を上回ることで、前記第4レンズの屈折力が強くなりすぎることがなくなり、レンズ全長の短縮化及び像面湾曲や歪曲収差等の軸外諸収差の補正を良好に行うことができる。また、より望ましくは下式の範囲がよい。
 2.0<|f4|/f<90          (5)’
Conditional expression (5) is a conditional expression for appropriately setting the focal length of the fourth lens. When the value of the upper limit formula (5) is less than the upper limit, the refractive power of the fourth lens can be maintained moderately, and the light beam that forms an image on the periphery of the imaging surface of the solid-state imaging device is excessively raised. The telecentric characteristic of the image side light beam can be easily secured. On the other hand, when the value of the upper limit expression (5) exceeds the lower limit, the refractive power of the fourth lens does not become excessively strong, shortening the entire lens length, and reducing off-axis aberrations such as field curvature and distortion. Correction can be performed satisfactorily. More preferably, the range of the following formula is good.
2.0 <| f4 | / f <90 (5) ′
 請求項5に記載の撮像レンズは、請求項1~4のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
 0.01<d4/f<0.05   (6)
ただし、
d4:前記第2レンズと前記第3レンズの光軸上の空気間隔(mm)
f:前記撮像レンズ全系の焦点距離(mm)
The imaging lens described in claim 5 is characterized in that, in the invention described in any one of claims 1 to 4, the following conditional expression is satisfied.
0.01 <d4 / f <0.05 (6)
However,
d4: Air space (mm) on the optical axis of the second lens and the third lens
f: Focal length (mm) of the entire imaging lens system
 条件式(6)の値が上限を下回ることで、前記第2レンズと前記第3レンズの間隔が大きくなりすぎることがなく、結果として撮像レンズ全長の短縮化を行うことができる。一方、条件式(6)の値が下限を上回ることで、前記第2レンズと前記第3レンズのクリアランスを適度に維持することができ、ゴーストやフレアなどを防止するための遮光部材を挿入するためのスペースを確保することができる。また、より望ましくは下式の範囲がよい。
 0.01<d4/f<0.04   (6)’
When the value of conditional expression (6) is below the upper limit, the distance between the second lens and the third lens does not become too large, and as a result, the entire length of the imaging lens can be shortened. On the other hand, when the value of conditional expression (6) exceeds the lower limit, the clearance between the second lens and the third lens can be maintained moderately, and a light shielding member for preventing ghosts and flares is inserted. Space can be secured. More preferably, the range of the following formula is good.
0.01 <d4 / f <0.04 (6) ′
 請求項6に記載の撮像レンズは、請求項1~5のいずれかに記載の発明において、前記第4レンズの物体側面は非球面形状であり、光軸との交点以外の位置に変曲点を有することを特徴とする。 An imaging lens according to a sixth aspect of the present invention is the imaging lens according to any one of the first to fifth aspects, wherein the object side surface of the fourth lens has an aspherical shape, and the inflection point is at a position other than the intersection with the optical axis. It is characterized by having.
 前記第4レンズの物体側面を、非球面形状を有し光軸との交点以外の位置に変曲点を有する形状とすることで、前記第4レンズ両面が変曲点を持つような形状とすることができるので、よりテレセントリック特性を確保しやすい形状とすることができる。また、前記第4レンズ両面に非球面形状を有することで、軸外収差の補正を良好に行うことができる。 By making the object side surface of the fourth lens an aspherical shape and having an inflection point at a position other than the intersection with the optical axis, a shape such that both surfaces of the fourth lens have an inflection point Therefore, it is possible to obtain a shape that can easily secure the telecentric characteristics. Further, since the both surfaces of the fourth lens have aspherical shapes, it is possible to satisfactorily correct off-axis aberrations.
 請求項7に記載の撮像レンズは、請求項1~6のいずれかに記載の発明において、前記第1レンズの像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有することを特徴とする。 The imaging lens according to claim 7 is the imaging lens according to any one of claims 1 to 6, wherein the image side surface of the first lens has an aspherical shape, and an inflection point is located at a position other than the intersection with the optical axis. It is characterized by having.
 軸上光線高の高い前記第1レンズの像側面に変曲点を有することで、前記第1レンズで発生する高次の球面収差を小さく抑えつつも、軸外収差の補正を良好に行うことができるようになる。 By having an inflection point on the image side surface of the first lens having a high axial ray height, it is possible to satisfactorily correct off-axis aberrations while suppressing high-order spherical aberration occurring in the first lens. Will be able to.
 請求項8に記載のズームレンズは、請求項1から7のいずれかに記載の発明において、実質的にパワーを持たないレンズをさらに有することを特徴とする。つまり、請求項1の構成に、実質的にパワーを持たないダミーレンズを付与した場合でも本発明の適用範囲内である。 The zoom lens according to claim 8 is the invention according to any one of claims 1 to 7, further comprising a lens having substantially no power. That is, even when a dummy lens having substantially no power is added to the configuration of claim 1, it is within the scope of application of the present invention.
 請求項9に記載の撮像装置は、請求項1~8のいずれかに記載の撮像レンズを備えたことを特徴とする。 An imaging device according to a ninth aspect includes the imaging lens according to any one of the first to eighth aspects.
 請求項10に記載の携帯端末は、請求項9に記載の撮像装置を備えたことを特徴とする。 A mobile terminal according to a tenth aspect includes the imaging device according to the ninth aspect.
 本発明によれば、小型でありながらも、諸収差が良好に補正された、広角でF値がF2.4程度と明るい4枚構成の撮像レンズおよびそれを用いた撮像装置並びに携帯端末を提供することができる。 According to the present invention, there are provided a four-lens imaging lens having a wide angle and a bright F-number of about F2.4, which is well-compensated with various aberrations, and an imaging device and a portable terminal using the same. can do.
本実施形態にかかる撮像ユニット50の斜視図である。It is a perspective view of the imaging unit 50 concerning this embodiment. 撮像ユニット50の撮像光学系の光軸に沿った断面を模式的に示した図である。3 is a diagram schematically showing a cross section along the optical axis of an imaging optical system of the imaging unit 50. FIG. 撮像ユニットを適用した携帯電話の正面図(a)、及び撮像ユニットを適用した携帯電話の背面図(b)である。It is the front view (a) of the mobile phone to which the imaging unit is applied, and the rear view (b) of the mobile phone to which the imaging unit is applied. 図3のスマートフォンの制御ブロック図である。It is a control block diagram of the smart phone of FIG. 本実施形態にかかる画像処理部のブロック図である。It is a block diagram of the image processing part concerning this embodiment. 画像処理前の画像(a)および画像処理後の画像(b)の一例を示す図である。It is a figure which shows an example of the image (a) before image processing, and the image (b) after image processing. 実施例1の撮像レンズの光軸方向断面図である。3 is a cross-sectional view in the optical axis direction of the imaging lens of Example 1. FIG. 実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 4 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). 実施例2の撮像レンズの光軸方向断面図である。FIG. 6 is a cross-sectional view in the optical axis direction of the imaging lens of Example 2. 実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 6 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). 実施例3の撮像レンズの光軸方向断面図である。6 is a cross-sectional view in the optical axis direction of the imaging lens of Embodiment 3. FIG. 実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 6 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). 実施例4の撮像レンズの光軸方向断面図である。6 is a cross-sectional view in the optical axis direction of an imaging lens of Example 4. FIG. 実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 6 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). 実施例5の撮像レンズの光軸方向断面図である。6 is a cross-sectional view in the optical axis direction of the imaging lens of Example 5. FIG. 実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。FIG. 6 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
 以下、本発明の実施形態を、図面を参照して説明する。図1は、本実施形態にかかる撮像ユニット50の斜視図であり、図2は、撮像ユニット50の撮像レンズの光軸に沿った断面を模式的に示した図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of the imaging unit 50 according to the present embodiment, and FIG. 2 is a diagram schematically showing a cross section along the optical axis of the imaging lens of the imaging unit 50.
 図1、2に示すように、撮像ユニット50は、光電変換部51aを有する固体撮像素子としてのCMOS型撮像素子51と、この撮像素子51の光電変換部51aに被写体像を撮像させる撮像レンズ10と、撮像素子51を保持すると共にその電気信号の送受を行う基板52と、物体側からの光入射用の開口部を有し遮光部材からなる鏡筒としての筐体53とを備え、これらが一体的に形成されている。 As shown in FIGS. 1 and 2, the imaging unit 50 includes a CMOS type imaging device 51 as a solid-state imaging device having a photoelectric conversion unit 51 a and an imaging lens 10 that causes the photoelectric conversion unit 51 a of the imaging device 51 to image a subject image. A substrate 52 that holds the image sensor 51 and transmits / receives an electric signal thereof, and a housing 53 as a lens barrel that has an opening for light incidence from the object side and is made of a light shielding member. It is integrally formed.
 図2に示すように、撮像素子51は、その受光側の平面の中央部に、画素(光電変換素子)が2次元的に配置された、受光部としての光電変換部51aが形成されており、その周囲には信号処理回路(不図示)が形成されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。また、撮像素子51の受光側の平面の外縁近傍には、多数のパッド(図示略)が配置されており、ワイヤ(不図示)を介して基板52に接続されている。撮像素子51は、光電変換部51aからの信号電荷をデジタルYUV信号等の画像信号等に変換し、ワイヤ(不図示)を介して基板52上の所定の回路に出力する。ここで、Yは輝度信号、U(=R-Y)は赤と輝度信号との色差信号、V(=B-Y)は青と輝度信号との色差信号である。なお、撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。 As shown in FIG. 2, the imaging element 51 has a photoelectric conversion part 51 a as a light receiving part in which pixels (photoelectric conversion elements) are two-dimensionally arranged at the center of the plane on the light receiving side. A signal processing circuit (not shown) is formed around the periphery. Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like. A number of pads (not shown) are arranged in the vicinity of the outer edge of the plane on the light receiving side of the image sensor 51, and are connected to the substrate 52 via wires (not shown). The image sensor 51 converts the signal charge from the photoelectric conversion unit 51a into an image signal such as a digital YUV signal, and outputs it to a predetermined circuit on the substrate 52 via a wire (not shown). Here, Y is a luminance signal, U (= RY) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the image sensor is not limited to the above CMOS image sensor, and other devices such as a CCD may be used.
 基板52は、その上面で撮像素子51及び筐体53を支持している。図示していないが、基板52は多数の信号伝達用パッドを有しており、不図示の配線を介して撮像素子51と接続されている。 The substrate 52 supports the image sensor 51 and the casing 53 on the upper surface thereof. Although not shown, the substrate 52 has a large number of signal transmission pads, and is connected to the image sensor 51 via wiring (not shown).
 図2において、基板52は、外部回路(例えば、撮像ユニットを実装した上位装置が有する制御回路)とを接続し、外部回路から撮像素子51を駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路ヘ出力したりすることを可能とする。 In FIG. 2, a substrate 52 is connected to an external circuit (for example, a control circuit included in a host device on which an imaging unit is mounted), and receives a voltage and a clock signal for driving the imaging element 51 from the external circuit. In addition, the digital YUV signal can be output to an external circuit.
 図2において、筐体53は、基板52の基板52における撮像素子51が設けられた面上に、撮像素子51を覆うようにして固定配置されている。即ち、筐体53は、撮像素子51側の部分が撮像素子51を囲むように広く開口されると共に、他端部(物体側端部)が小開口を有するフランジ部53aを形成しており、基板52上に撮像素子51側の端部(像側端部)が当接固定されている。 In FIG. 2, the housing 53 is fixedly disposed so as to cover the image sensor 51 on the surface of the substrate 52 on which the image sensor 51 is provided. That is, the casing 53 is wide open so that the part on the image sensor 51 side surrounds the image sensor 51, and the other end (object side end) forms a flange 53a having a small opening. An end on the image sensor 51 side (image side end) is abutted and fixed on the substrate 52.
 小開口(光入射用の開口部)が設けられたフランジ部53aを物体側に向けて配置された筐体53の内部において、撮像レンズ10と撮像素子51との間に、カバーガラスCGが固定配置されている。尚、これ以外にIR(赤外線)カットフィルタを設けても良い。 A cover glass CG is fixed between the imaging lens 10 and the imaging element 51 inside the housing 53 in which the flange portion 53a provided with a small opening (an opening for light incidence) is directed toward the object side. Has been placed. Besides this, an IR (infrared) cut filter may be provided.
 筐体53内に配置された撮像レンズ10は、物体側より順に、開口絞りS、正の屈折力を有する第1レンズL1、負の屈折力を有し、光軸近傍で物体側に凹面を向けた第2レンズL2、正の屈折力を有し、光軸近傍で像側に凸面を向けた第3レンズL3、光軸近傍で物体側に凸面を向けたメニスカス形状の第4レンズL4、からなり、第4レンズL4の像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有し、以下の条件式を満足する。
 -3.0<(r1+r2)/(r1-r2)≦-1.0   (1)
 0.16<d6/f<0.40   (2)
ただし、
r1:第1レンズ物体側面の曲率半径(mm)
r2:第1レンズ像側面の曲率半径(mm)
d6:第3レンズと第4レンズの光軸上の空気間隔(mm)
f:撮像レンズ全系の焦点距離(mm)
The imaging lens 10 disposed in the housing 53 has, in order from the object side, an aperture stop S, a first lens L1 having a positive refractive power, a negative refractive power, and a concave surface on the object side in the vicinity of the optical axis. A second lens L2 that is directed, a third lens L3 having a positive refractive power and having a convex surface facing the image side in the vicinity of the optical axis, a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis, The image side surface of the fourth lens L4 has an aspherical shape, has an inflection point at a position other than the intersection with the optical axis, and satisfies the following conditional expression.
−3.0 <(r1 + r2) / (r1−r2) ≦ −1.0 (1)
0.16 <d6 / f <0.40 (2)
However,
r1: radius of curvature of the first lens object side surface (mm)
r2: radius of curvature of the first lens image side surface (mm)
d6: Air spacing on the optical axis of the third lens and the fourth lens (mm)
f: Focal length of the entire imaging lens system (mm)
 各レンズL1~L4は互いにフランジを突き当てることで、レンズ間隔寸法を精度良く確保している。レンズL4とカバーガラスCGおよびカバーガラスCGと基板52との間には、スペーサSPが配置されている。 The lenses L1 to L4 have a lens spacing dimension accurately secured by abutting the flanges against each other. Spacers SP are disposed between the lens L4 and the cover glass CG, and between the cover glass CG and the substrate 52.
 上述した撮像ユニット50の動作について説明する。図3は、撮像ユニット50を携帯端末としてのスマートフォン100に装備した状態を示す図である。また、図4はスマートフォン100の制御ブロック図である。図5は、画像処理部の構成を示すブロック図である。 The operation of the imaging unit 50 described above will be described. FIG. 3 is a diagram illustrating a state in which the imaging unit 50 is mounted on the smartphone 100 as a mobile terminal. FIG. 4 is a control block diagram of the smartphone 100. FIG. 5 is a block diagram illustrating a configuration of the image processing unit.
 撮像ユニット50は、例えば、筐体53の物体側端面がスマートフォン100の背面(図3(b)参照)に設けられ、タッチパネル70の裏側に相当する位置に配設される。 In the imaging unit 50, for example, the object-side end surface of the housing 53 is provided on the back surface of the smartphone 100 (see FIG. 3B), and is disposed at a position corresponding to the back side of the touch panel 70.
 撮像ユニット50は、スマートフォン100の制御部101と接続され、輝度信号や色差信号等の画像信号を制御部101側に出力する。 The imaging unit 50 is connected to the control unit 101 of the smartphone 100 and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.
 一方、スマートフォン100は、図4に示すように、各部を統括的に制御すると共に、各処理に応じたプログラムを実行する制御部(CPU)101と、番号等をキーにより指示入力するための入力部60と、所定のデータの他に撮像した映像等を表示する液晶表示部70と、外部サーバとの間の各種情報通信を実現するための無線通信部80と、携帯電話機100のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)91と、制御部101によって実行される各種処理プログラムやデータ、若しくは処理データ、或いは撮像ユニット50により得られた撮像データ等を一時的に格納する作業領域として用いられる及び一時記憶部(RAM)92とを備えている。 On the other hand, as shown in FIG. 4, the smartphone 100 performs overall control of each unit, and also inputs a control unit (CPU) 101 that executes a program corresponding to each process, and inputs a number and the like with a key. Unit 60, a liquid crystal display unit 70 for displaying captured images in addition to predetermined data, a wireless communication unit 80 for realizing various information communication with an external server, a system program for mobile phone 100, Obtained by a storage unit (ROM) 91 storing various processing programs and necessary data such as a terminal ID, and various processing programs and data executed by the control unit 101, or processing data, or the imaging unit 50 And a temporary storage unit (RAM) 92 that is used as a work area for temporarily storing imaging data and the like.
 制御部101のCPUは、撮像レンズ10がフォーカシング機能を有する場合、レンズ駆動部DRを介して、撮像レンズ10にフォーカシング動作を行わせるべく、制御信号を出力する。その他、絞り、画素ずらし、手ブレなどの制御を行わせても良い。但し、固定焦点レンズを用いても良い。又、制御部101のCPUは、撮像レンズ10により被写体像を結像された固体撮像素子51に制御信号を出力して、被写体像に対応した画像信号を出力させるようになっている。 When the imaging lens 10 has a focusing function, the CPU of the control unit 101 outputs a control signal to cause the imaging lens 10 to perform a focusing operation via the lens driving unit DR. In addition, control such as aperture, pixel shift, and camera shake may be performed. However, a fixed focus lens may be used. Further, the CPU of the control unit 101 outputs a control signal to the solid-state image sensor 51 on which the subject image is formed by the imaging lens 10 and outputs an image signal corresponding to the subject image.
 スマートフォン100は、入力キー部60の操作によって動作し、タッチパネル(表示部)70に表示されたアイコン71等をタッチすることで、撮像ユニット50を動作させて撮像を行うことができる。撮像ユニット50から入力された画像信号は、制御部101で後述する画像処理を施され、上記スマートフォン100の制御系により、記憶部92に記憶されたり、或いはタッチパネル70で表示され、さらには、無線通信部80を介して映像情報として外部に送信される。 The smartphone 100 operates by operating the input key unit 60, and can touch the icon 71 and the like displayed on the touch panel (display unit) 70 to operate the imaging unit 50 to perform imaging. The image signal input from the imaging unit 50 is subjected to image processing to be described later in the control unit 101, stored in the storage unit 92 or displayed on the touch panel 70 by the control system of the smartphone 100, and wirelessly It is transmitted to the outside as video information via the communication unit 80.
 ところで、画像処理により撮像レンズにおいて生じた歪曲収差等の補正を行うと、より高画質な画像を得られる場合がある。このような画像処理について説明する。図5において、制御部101は、EEPROMにレンズ補正データを格納している。レンズ補正データとは、撮像レンズ10により正の歪曲収差を与えられて、糸巻き型に歪みをもった被写体像(図6(a)参照)を、画像処理(歪み補正処理という)により矩形状(図6(b)参照)に補正するために必要なデータであり、例えば設計値に従い、或る座標の画素(x、y)の信号値を、異なる座標の画素(x±Δx、y±Δy)へと変換するためのテーブルデータ等を含むものである。Δx、Δyの値は、固体撮像素子51の光電変換部51aの中心を原点(0,0)とするxy座標に応じて変化する。但し、画像処理部の負荷を軽くするために、光学設計を工夫することで、原点を中心として光電変換部51aの縦横サイズに対して1/2の縦横サイズの範囲(図6(b)の一点鎖線で示す範囲に相当)については、処理せずそのままの値とすることも可能である。尚、テーブルデータを用いず、シミュレーション等で求めた関数f(x、y)にて画素値を変換するようにしても良い。 Incidentally, there is a case where a higher quality image can be obtained by correcting distortion or the like generated in the imaging lens by image processing. Such image processing will be described. In FIG. 5, the control unit 101 stores lens correction data in an EEPROM. The lens correction data refers to a subject image (see FIG. 6A) that has been given a positive distortion by the imaging lens 10 and has a pincushion-shaped distortion, and has a rectangular shape (referred to as distortion correction processing). FIG. 6B shows data necessary for correction. For example, according to a design value, the signal value of a pixel (x, y) at a certain coordinate is changed to a pixel (x ± Δx, y ± Δy) at a different coordinate. Table data for conversion into (). The values of Δx and Δy change according to xy coordinates with the origin (0, 0) being the center of the photoelectric conversion unit 51a of the solid-state imaging device 51. However, in order to lighten the load on the image processing unit, the optical design is devised so that the vertical / horizontal size range of 1/2 of the vertical / horizontal size of the photoelectric conversion unit 51a with the origin at the center (in FIG. 6B). (Corresponding to the range indicated by the alternate long and short dash line) can be left as is without being processed. It should be noted that the pixel value may be converted using a function f (x, y) obtained by simulation or the like without using table data.
 画像処理について具体的に説明する。図5において、撮像レンズ10から出力された画像信号は、インタフェースI/Fを介して制御部101に入力される。ここで、入力された画像信号が、画素数が多く大規模なメモリが必要であるがリアルタイム性が要求されない静止画像に対応するものである場合、一時メモリMYに格納され、ここで制御部101のCPUが、EEPROMからレンズ補正データを読み出して、それに基づき画像信号にソフトウェアによる歪み補正処理を加えると共に通常の画像処理を行う。一方、入力された画像信号が比較的画素数が少なく(例えば2M画素以下)必要メモリ量が小さく、リアルタイム性が必要な動画像に対応するものである場合、画像処理プロセッサISPに入力され、ここでEEPROMから読み出されたレンズ補正データに基づき画像信号にハードウェアによるリアルタイム歪み補正処理を加えると共に通常の画像処理を行う。画像処理された画像信号は、LCDインタフェースLCD I/Fを介して、タッチパネル70上に表示され、或いは、メモリインタフェースMm I/Fを介してメモリカードMCに記録されるようになっている。 The image processing will be specifically described. In FIG. 5, the image signal output from the imaging lens 10 is input to the control unit 101 via the interface I / F. Here, if the input image signal corresponds to a still image that requires a large-scale memory with a large number of pixels but does not require real-time property, the input image signal is stored in the temporary memory MY. The CPU reads lens correction data from the EEPROM, and based on the read data, adds distortion correction processing by software to the image signal and performs normal image processing. On the other hand, if the input image signal has a relatively small number of pixels (for example, 2M pixels or less) and the required memory is small and corresponds to a moving image that requires real-time performance, it is input to the image processor ISP, Then, based on the lens correction data read from the EEPROM, real-time distortion correction processing by hardware is added to the image signal and normal image processing is performed. The image signal subjected to the image processing is displayed on the touch panel 70 via the LCD interface LCD I / F or is recorded on the memory card MC via the memory interface Mm I / F.
 図6(a)は、歪み補正処理前の画像信号に基づく被写体像の例を示す図であるが、歪みを誇張して示している。図6(b)は、歪み補正処理後の画像信号に基づく被写体像の例を示す図である。撮像レンズ10により正の歪曲収差を与えられた被写体像を、歪み補正処理せずそのまま表示すると、図6(a)に示すように糸巻き型に歪みをもつ場合がある。そのような場合、制御部101内で歪み補正処理を行うことで、図6(b)に示すように違和感のない矩形状の画像を得ることができるのである。 FIG. 6A is a diagram illustrating an example of a subject image based on an image signal before distortion correction processing, and the distortion is exaggerated. FIG. 6B is a diagram illustrating an example of a subject image based on the image signal after the distortion correction processing. If a subject image given positive distortion by the imaging lens 10 is displayed as it is without distortion correction processing, the pincushion type may be distorted as shown in FIG. In such a case, by performing a distortion correction process in the control unit 101, a rectangular image having no sense of incongruity as shown in FIG. 6B can be obtained.
[実施例] [Example]
 以下、本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。
f:撮像レンズ全系の焦点距離
fB:バックフォーカス
F:Fナンバー
2Y:固体撮像素子の撮像面対角線長
ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
H1:前側主点位置(第1面から前側主点位置までの距離)
H2:後側主点位置(最終面から後側主点位置までの距離)
R:曲率半径
D:軸上面間隔
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
Examples of the imaging lens of the present invention will be shown below. Symbols used in each example are as follows.
f: Focal length of the entire imaging lens fB: Back focus F: F number 2Y: Diagonal length of imaging surface of solid-state imaging device
ENTP: Entrance pupil position (distance from first surface to entrance pupil position)
EXTP: Exit pupil position (distance from imaging surface to exit pupil position)
H1: Front principal point position (distance from the first surface to the front principal point position)
H2: Rear principal point position (distance from the final surface to the rear principal point position)
R: radius of curvature D: axial distance Nd: refractive index νd of lens material with respect to d-line: Abbe number of lens material
 各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。 In each embodiment, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction. The height in the direction perpendicular to the optical axis is h, and is expressed by the following “Equation 1”.
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
Figure JPOXMLDOC01-appb-M000001
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
 なお、特許請求の範囲及び実施例に記載の近軸曲率半径の意味合いについて、実際のレンズ測定の場面においては、レンズ中央近傍(具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる。(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41~42を参照のこと) Regarding the meaning of the paraxial radius of curvature described in the claims and the examples, in the actual lens measurement scene, in the vicinity of the center of the lens (specifically, the central region within 10% of the lens outer diameter) ) Can be regarded as the paraxial curvature radius when fitting the shape measurement value in the least square method. For example, when a secondary aspherical coefficient is used, a radius of curvature that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as the paraxial curvature radius. (For example, refer to pages 41 to 42 of “Lens Design Method” by Yoshiya Matsui (Kyoritsu Publishing Co., Ltd.) for reference)
(実施例1)
 実施例1のレンズデータを表1に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)を、E(たとえば2.5E-02)を用いて表すものとする。
(Example 1)
Table 1 shows lens data of Example 1. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5E-02).
[表1]
    実施例  1

    f=2.68mm    fB=0.1mm    F=2.44      2Y=4.82mm
    ENTP=0mm    EXTP=-1.98mm    H1=-0.78mm    H2=-2.58mm 

    面番号      R(mm)   D(mm)   Nd         νd    有効半径(mm) 
     1(絞り)    ∞     -0.06                        0.54
     2*         1.173   0.37    1.54470     56.2    0.57
     3*         5.281   0.19                        0.62
     4*        -2.770   0.31    1.63470     23.9    0.63
     5*         14.081  0.10                        0.73
     6*         4.034   0.31    1.54470     56.2    0.91
     7*        -3.519   0.79                        1.00
     8*         1.237   0.41    1.54470     56.2    1.53
     9*         0.847   0.58                        2.00
    10          ∞      0.11    1.51630     64.1    2.41
    11          ∞                                 2.46

    非球面係数 
 
        第2面                       第6面   
        K=  -0.32260E-01            K=  -0.30000E+02
        A4= -0.10943E-01            A4= -0.94330E-01
        A6= -0.55905E-01            A6= 0.19849E+00
        A8= -0.76908E+00            A8= -0.12102E+00
        A10= 0.33292E+01            A10= -0.11429E+00
        A12= -0.79586E+01           A12= 0.35548E+00
                                    A14= -0.23379E+00
 
        第3面                       第7面   
        K=  0.17877E+02             K=  -0.30000E+02
        A4= -0.20107E+00            A4= -0.12505E+00
        A6= -0.35276E+00            A6= 0.42388E+00
        A8= -0.59395E+00            A8= -0.35224E+00
        A10= 0.10136E+00            A10= 0.14692E+00
        A12= -0.13183E+01           A12= 0.43143E-01
                                    A14= -0.68753E-01

        第4面                      第8面  
        K=  -0.75385E+01            K=  -0.62205E+01
        A4= -0.37021E+00            A4= -0.29602E+00
        A6= -0.10623E+00            A6= 0.29662E-01
        A8= 0.52934E+00             A8= 0.19785E-01
        A10= -0.10211E+01           A10= 0.15346E-02
        A12= 0.38313E+01            A12= -0.67884E-03
        A14= -0.19388E+01           A14= -0.28253E-03
 
        第5面                      第9面  
        K=  -0.30000E+02            K=  -0.61745E+01
        A4= -0.27938E+00            A3= 0.29828E+00
        A6= 0.46788E+00             A4= -0.54593E+00
        A8= -0.39429E+00            A5= 0.16872E+00
        A10= 0.90513E+00            A6= 0.72857E-01
        A12= 0.10800E+01            A8= -0.38785E-01
        A14= -0.14319E+01           A10= 0.85130E-02
                                    A12= -0.10218E-02
                                    A14= 0.55203E-04
 
    単レンズデータ  
 
    レンズ  始面    焦点距離(mm) 
    1       2       2.68
    2       4      -3.62
    3       6       3.50
    4       8      -7.89
 
[Table 1]
Example 1

f = 2.68mm fB = 0.1mm F = 2.44 2Y = 4.82mm
ENTP = 0mm EXTP = -1.98mm H1 = -0.78mm H2 = -2.58mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.06 0.54
2 * 1.173 0.37 1.54470 56.2 0.57
3 * 5.281 0.19 0.62
4 * -2.770 0.31 1.63470 23.9 0.63
5 * 14.081 0.10 0.73
6 * 4.034 0.31 1.54470 56.2 0.91
7 * -3.519 0.79 1.00
8 * 1.237 0.41 1.54470 56.2 1.53
9 * 0.847 0.58 2.00
10 ∞ 0.11 1.51630 64.1 2.41
11 ∞ 2.46

Aspheric coefficient

2nd side 6th side
K = -0.32260E-01 K = -0.30000E + 02
A4 = -0.10943E-01 A4 = -0.94330E-01
A6 = -0.55905E-01 A6 = 0.19849E + 00
A8 = -0.76908E + 00 A8 = -0.12102E + 00
A10 = 0.33292E + 01 A10 = -0.11429E + 00
A12 = -0.79586E + 01 A12 = 0.35548E + 00
A14 = -0.23379E + 00

3rd surface 7th surface
K = 0.17877E + 02 K = -0.30000E + 02
A4 = -0.20107E + 00 A4 = -0.12505E + 00
A6 = -0.35276E + 00 A6 = 0.42388E + 00
A8 = -0.59395E + 00 A8 = -0.35224E + 00
A10 = 0.10136E + 00 A10 = 0.14692E + 00
A12 = -0.13183E + 01 A12 = 0.43143E-01
A14 = -0.68753E-01

4th side 8th side
K = -0.75385E + 01 K = -0.62205E + 01
A4 = -0.37021E + 00 A4 = -0.29602E + 00
A6 = -0.10623E + 00 A6 = 0.29662E-01
A8 = 0.52934E + 00 A8 = 0.19785E-01
A10 = -0.10211E + 01 A10 = 0.15346E-02
A12 = 0.38313E + 01 A12 = -0.67884E-03
A14 = -0.19388E + 01 A14 = -0.28253E-03

5th side 9th side
K = -0.30000E + 02 K = -0.61745E + 01
A4 = -0.27938E + 00 A3 = 0.29828E + 00
A6 = 0.46788E + 00 A4 = -0.54593E + 00
A8 = -0.39429E + 00 A5 = 0.16872E + 00
A10 = 0.90513E + 00 A6 = 0.72857E-01
A12 = 0.10800E + 01 A8 = -0.38785E-01
A14 = -0.14319E + 01 A10 = 0.85130E-02
A12 = -0.10218E-02
A14 = 0.55203E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 2.68
2 4 -3.62
3 6 3.50
4 8 -7.89
 図7は実施例1のレンズの断面図である。図中L1は正の屈折力を有する第1レンズ、L2は負の屈折力を有し、光軸近傍で物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し、光軸近傍で像側に凸面を向けた第3レンズ、L4は光軸近傍で物体側に凸面を向けたメニスカス形状の第4レンズである。第4レンズL4の像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有し、また第4レンズL4の物体側面は非球面形状であり、光軸との交点以外の位置に変曲点を有する。Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図8は実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。ここで、球面収差図、メリディオナルコマ収差図において、実線はd線、点線はg線に対する球面収差量、コマ収差量をそれぞれ表し、非点収差図において、実線Sはサジタル面、点線Mはメリディオナル面を表す(以下、同じ)。 FIG. 7 is a sectional view of the lens of Example 1. In the figure, L1 is a first lens having a positive refractive power, L2 is a negative lens having a negative refractive power, a second lens having a concave surface facing the object side in the vicinity of the optical axis, and L3 has a positive refractive power. A third lens having a convex surface facing the image side in the vicinity of the axis, and a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis. The image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis, and the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than. S represents an aperture stop, and I represents an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 8 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). Here, in the spherical aberration diagram and the meridional coma aberration diagram, the solid line represents the spherical aberration amount and the coma aberration amount with respect to the d line and the dotted line, respectively. In the astigmatism diagram, the solid line S represents the sagittal surface and the dotted line M. Represents a meridional plane (hereinafter the same).
(実施例2)
 実施例2の撮像レンズのレンズデータを、表2に示す。
(Example 2)
Table 2 shows lens data of the imaging lens of Example 2.
[表2]
    実施例  2 
 
    f=2.71mm    fB=0.33mm    F=2.44      2Y=4.82mm 
    ENTP=0mm    EXTP=-2.07mm    H1=-0.35mm    H2=-2.38mm 
 
    面番号      R(mm)   D(mm)   Nd        νd     有効半径(mm) 
     1(絞り)    ∞     -0.09                        0.54
     2*         1.093   0.35    1.54470     56.2    0.56
     3*         3.043   0.28                        0.59
     4*        -1.796   0.21    1.63470     23.9    0.60
     5*       -14.566   0.08                        0.70
     6*         3.687   0.33    1.54470     56.2    0.91
     7*        -3.157   0.71                        1.01
     8*         0.812   0.29    1.54470     56.2    1.68
     9*         0.679   0.60                        1.91
    10          ∞      0.11    1.51630     64.1    2.30
    11          ∞                                  2.34

    非球面係数 
 
        第2面                  第6面  
        K=  0.19469E+00         K=  -0.30000E+02
        A4= -0.37815E-02        A4= -0.27598E+00
        A6= 0.81180E-01         A6= 0.31063E+00
        A8= -0.82911E+00        A8= -0.11022E+00
        A10= 0.32268E+01        A10= -0.76243E-01
        A12= -0.64859E+01       A12= 0.42599E+00
                                A14= -0.33043E+00
 
        第3面                  第7面  
        K=  0.13194E+02         K=  -0.40495E+01
        A4= -0.11934E+00        A4= -0.10885E+00
        A6= -0.32453E+00        A6= 0.32911E+00
        A8= -0.41641E+00        A8= -0.36495E+00
        A10= -0.49470E-01       A10= 0.24750E+00
        A12= -0.45790E+01       A12= 0.64256E-01
                                A14= -0.10826E+00

        第4面                   第8面  
        K=  -0.16354E+00         K=  -0.22119E+01
        A4= -0.40309E+00         A4= -0.33922E+00
        A6= -0.36026E+00         A6= 0.44247E-01
        A8= 0.13704E+01          A8= 0.16934E-01
        A10= -0.10476E+01        A10= -0.44928E-03
        A12= -0.54097E+00        A12= -0.12063E-02
        A14= 0.14530E+01         A14= 0.12810E-03

        第5面                   第9面 
        K=  0.30000E+02          K=  -0.10251E+01
        A4= -0.56313E+00         A4= -0.66934E+00
        A6= 0.63613E+00          A6= 0.40529E+00
        A8= -0.25297E+00         A8= -0.18386E+00
        A10= 0.11268E+01         A10= 0.53358E-01
        A12= 0.98343E+00         A12= -0.88122E-02
        A14= -0.17629E+00        A14= 0.63136E-03

    単レンズデータ  
 
    レンズ  始面    焦点距離(mm) 
    1       2       2.95  
    2       4      -3.25  
    3       6       3.18  
    4       8      -31.57 
[Table 2]
Example 2

f = 2.71mm fB = 0.33mm F = 2.44 2Y = 4.82mm
ENTP = 0mm EXTP = -2.07mm H1 = -0.35mm H2 = -2.38mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.09 0.54
2 * 1.093 0.35 1.54470 56.2 0.56
3 * 3.043 0.28 0.59
4 * -1.796 0.21 1.63470 23.9 0.60
5 * -14.566 0.08 0.70
6 * 3.687 0.33 1.54470 56.2 0.91
7 * -3.157 0.71 1.01
8 * 0.812 0.29 1.54470 56.2 1.68
9 * 0.679 0.60 1.91
10 ∞ 0.11 1.51630 64.1 2.30
11 ∞ 2.34

Aspheric coefficient

2nd side 6th side
K = 0.19469E + 00 K = -0.30000E + 02
A4 = -0.37815E-02 A4 = -0.27598E + 00
A6 = 0.81180E-01 A6 = 0.31063E + 00
A8 = -0.82911E + 00 A8 = -0.11022E + 00
A10 = 0.32268E + 01 A10 = -0.76243E-01
A12 = -0.64859E + 01 A12 = 0.42599E + 00
A14 = -0.33043E + 00

3rd surface 7th surface
K = 0.13194E + 02 K = -0.40495E + 01
A4 = -0.11934E + 00 A4 = -0.10885E + 00
A6 = -0.32453E + 00 A6 = 0.32911E + 00
A8 = -0.41641E + 00 A8 = -0.36495E + 00
A10 = -0.49470E-01 A10 = 0.24750E + 00
A12 = -0.45790E + 01 A12 = 0.64256E-01
A14 = -0.10826E + 00

4th side 8th side
K = -0.16354E + 00 K = -0.22119E + 01
A4 = -0.40309E + 00 A4 = -0.33922E + 00
A6 = -0.36026E + 00 A6 = 0.44247E-01
A8 = 0.13704E + 01 A8 = 0.16934E-01
A10 = -0.10476E + 01 A10 = -0.44928E-03
A12 = -0.54097E + 00 A12 = -0.12063E-02
A14 = 0.14530E + 01 A14 = 0.12810E-03

5th side 9th side
K = 0.30000E + 02 K = -0.10251E + 01
A4 = -0.56313E + 00 A4 = -0.66934E + 00
A6 = 0.63613E + 00 A6 = 0.40529E + 00
A8 = -0.25297E + 00 A8 = -0.18386E + 00
A10 = 0.11268E + 01 A10 = 0.53358E-01
A12 = 0.98343E + 00 A12 = -0.88122E-02
A14 = -0.17629E + 00 A14 = 0.63136E-03

Single lens data

Lens Start surface Focal length (mm)
1 2 2.95
2 4 -3.25
3 6 3.18
4 8 -31.57
 図9は実施例2のレンズの断面図である。図中L1は正の屈折力を有する第1レンズ、L2は負の屈折力を有し、光軸近傍で物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し、光軸近傍で像側に凸面を向けた第3レンズ、L4は光軸近傍で物体側に凸面を向けたメニスカス形状の第4レンズである。第4レンズL4の像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有し、また第4レンズL4の物体側面は非球面形状であり、光軸との交点以外の位置に変曲点を有する。Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図10は実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。 FIG. 9 is a sectional view of the lens of Example 2. In the figure, L1 is a first lens having a positive refractive power, L2 is a negative lens having a negative refractive power, a second lens having a concave surface facing the object side in the vicinity of the optical axis, and L3 has a positive refractive power. A third lens having a convex surface facing the image side in the vicinity of the axis, and a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis. The image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis, and the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than. S represents an aperture stop, and I represents an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 10 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
(実施例3)
 実施例3の撮像レンズのレンズデータを、表3に示す。
(Example 3)
Table 3 shows lens data of the imaging lens of Example 3.
[表3]
    実施例  3 

    f=2.89mm    fB=0.29mm    F=2.24      2Y=4.82mm 
    ENTP=0mm    EXTP=-2.09mm    H1=-0.61mm    H2=-2.59mm 

    面番号      R(mm)   D(mm)   Nd        νd     有効半径(mm) 
     1(絞り)    ∞     -0.11                        0.64 
     2*         1.231   0.57    1.52500     70.4    0.67 
     3*         3.545   0.25                        0.71 
     4*        -9.817   0.24    1.63470     23.9    0.72 
     5*         7.371   0.18                        0.81 
     6*        73.061   0.39    1.54470     56.2    0.95 
     7*        -2.803   0.55                        1.10 
     8*         1.050   0.40    1.54470     56.2    1.61 
     9*         0.812   0.56                        1.93 
    10          ∞      0.11    1.51630     64.1    2.32 
    11          ∞                                  2.36 

    非球面係数 

        第2面                  第6面 
        K=  0.22770E+00         K=  0.30000E+02 
        A4= -0.30683E-01        A4= -0.11716E+00 
        A6= 0.16497E+00         A6= 0.76455E-01 
        A8= -0.82880E+00        A8= -0.16922E+00 
        A10= 0.17153E+01        A10= 0.57579E-01 
        A12= -0.14506E+01       A12= 0.27344E+00 
                                A14= -0.20181E+00 

        第3面                  第7面 
        K=  0.18987E+02         K=  0.22237E+01 
        A4= -0.13208E+00        A4= -0.22379E+00 
        A6= -0.11646E+00        A6= 0.38445E+00 
        A8= -0.32218E+00        A8= -0.39404E+00 
        A10= -0.23454E-02       A10= 0.22491E+00 
        A12= -0.28209E+00       A12= 0.57336E-01 
                                A14= -0.73123E-01 
 
        第4面                  第8面 
        K=  -0.20370E+02        K=  -0.30039E+01 
        A4= -0.40087E+00        A4= -0.38893E+00 
        A6= 0.52889E-01         A6= 0.77453E-01 
        A8= -0.20146E+00        A8= 0.17949E-01 
        A10= -0.83791E+00       A10= -0.19452E-02 
        A12= 0.36254E+01        A12= -0.14384E-02 
        A14= -0.25070E+01       A14= 0.18622E-03 
 
        第5面                  第9面  
        K=  0.30000E+02         K=  -0.93055E+00 
        A4= -0.30567E+00        A4= -0.60506E+00 
        A6= 0.20964E+00         A6= 0.36186E+00 
        A8= -0.29681E+00        A8= -0.16701E+00 
        A10= 0.59757E+00        A10= 0.48707E-01 
        A12= 0.56408E-01        A12= -0.80380E-02 
        A14= 0.75483E-01        A14= 0.57326E-03 

    単レンズデータ 
    レンズ  始面    焦点距離(mm) 
    1       2       3.31 
    2       4      -6.60 
    3       6       4.96 
    4       8     -16.00 
[Table 3]
Example 3

f = 2.89mm fB = 0.29mm F = 2.24 2Y = 4.82mm
ENTP = 0mm EXTP = -2.09mm H1 = -0.61mm H2 = -2.59mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.11 0.64
2 * 1.231 0.57 1.52500 70.4 0.67
3 * 3.545 0.25 0.71
4 * -9.817 0.24 1.63470 23.9 0.72
5 * 7.371 0.18 0.81
6 * 73.061 0.39 1.54470 56.2 0.95
7 * -2.803 0.55 1.10
8 * 1.050 0.40 1.54470 56.2 1.61
9 * 0.812 0.56 1.93
10 ∞ 0.11 1.51630 64.1 2.32
11 ∞ 2.36

Aspheric coefficient

2nd side 6th side
K = 0.22770E + 00 K = 0.30000E + 02
A4 = -0.30683E-01 A4 = -0.11716E + 00
A6 = 0.16497E + 00 A6 = 0.76455E-01
A8 = -0.82880E + 00 A8 = -0.16922E + 00
A10 = 0.17153E + 01 A10 = 0.57579E-01
A12 = -0.14506E + 01 A12 = 0.27344E + 00
A14 = -0.20181E + 00

3rd surface 7th surface
K = 0.18987E + 02 K = 0.22237E + 01
A4 = -0.13208E + 00 A4 = -0.22379E + 00
A6 = -0.11646E + 00 A6 = 0.38445E + 00
A8 = -0.32218E + 00 A8 = -0.39404E + 00
A10 = -0.23454E-02 A10 = 0.22491E + 00
A12 = -0.28209E + 00 A12 = 0.57336E-01
A14 = -0.73123E-01

4th side 8th side
K = -0.20370E + 02 K = -0.30039E + 01
A4 = -0.40087E + 00 A4 = -0.38893E + 00
A6 = 0.52889E-01 A6 = 0.77453E-01
A8 = -0.20146E + 00 A8 = 0.17949E-01
A10 = -0.83791E + 00 A10 = -0.19452E-02
A12 = 0.36254E + 01 A12 = -0.14384E-02
A14 = -0.25070E + 01 A14 = 0.18622E-03

5th side 9th side
K = 0.30000E + 02 K = -0.93055E + 00
A4 = -0.30567E + 00 A4 = -0.60506E + 00
A6 = 0.20964E + 00 A6 = 0.36186E + 00
A8 = -0.29681E + 00 A8 = -0.16701E + 00
A10 = 0.59757E + 00 A10 = 0.48707E-01
A12 = 0.56408E-01 A12 = -0.80380E-02
A14 = 0.75483E-01 A14 = 0.57326E-03

Single lens data
Lens Start surface Focal length (mm)
1 2 3.31
2 4 -6.60
3 6 4.96
4 8 -16.00
 図11は実施例3のレンズの断面図である。図中L1は正の屈折力を有する第1レンズ、L2は負の屈折力を有し、光軸近傍で物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し、光軸近傍で像側に凸面を向けた第3レンズ、L4は光軸近傍で物体側に凸面を向けたメニスカス形状の第4レンズである。第4レンズL4の像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有し、また第4レンズL4の物体側面は非球面形状であり、光軸との交点以外の位置に変曲点を有する。Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図12は実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。 FIG. 11 is a sectional view of the lens of Example 3. In the figure, L1 is a first lens having a positive refractive power, L2 is a negative lens having a negative refractive power, a second lens having a concave surface facing the object side in the vicinity of the optical axis, and L3 has a positive refractive power. A third lens having a convex surface facing the image side in the vicinity of the axis, and a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis. The image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis, and the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than. S represents an aperture stop, and I represents an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 12 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
(実施例4)
 実施例4の撮像レンズのレンズデータを、表4に示す。
Example 4
Table 4 shows lens data of the imaging lens of Example 4.
[表4]
    実施例  4 

    f=2.67mm    fB=0.23mm    F=2.44      2Y=4.82mm 
    ENTP=0mm    EXTP=-2.19mm    H1=-0.28mm    H2=-2.44mm 

    面番号      R(mm)   D(mm)   Nd        νd     有効半径(mm) 
     1(絞り)    ∞     -0.03                        0.54 
     2*         1.308   0.53    1.54470     56.2    0.60 
     3*         3.299   0.23                        0.68 
     4*        -6.843   0.26    1.65060     21.0    0.70 
     5*         2.728   0.05                        0.80 
     6*         1.767   0.36    1.54470     56.2    0.98 
     7*        -5.882   0.66                        1.11 
     8*         1.081   0.45    1.54470     56.2    1.61 
     9*         0.930   0.57                        2.00 
    10          ∞      0.11    1.51630     64.1    2.32 
    11          ∞                                  2.36 
 
    非球面係数 

        第2面                      第6面 
        K=  -0.76965E-01            K=  -0.13621E+02 
        A4= -0.17890E-01            A4= -0.21309E+00 
        A6= 0.46209E-01             A6= 0.22009E+00 
        A8= -0.61041E+00            A8= -0.22116E-01 
        A10= 0.19927E+01            A10= -0.14351E+00 
        A12= -0.28559E+01           A12= 0.12662E+00 
                                    A14= -0.47390E-01 

        第3面                      第7面 
        K=  0.17977E+02             K=  -0.12906E+02 
        A4= -0.22185E+00            A4= -0.80077E-01 
        A6= -0.13427E+00            A6= 0.31581E+00 
        A8= -0.50726E+00            A8= -0.31952E+00 
        A10= -0.53822E+00           A10= 0.10681E+00 
        A12= 0.70153E+00            A12= 0.39119E-01 
                                    A14= -0.33612E-01 
 
        第4面                      第8面 
        K=  0.30000E+02             K=  -0.13511E+01 
        A4= -0.46696E+00            A4= -0.36271E+00 
        A6= 0.17037E+00             A6= 0.46424E-01 
        A8= -0.92602E-01            A8= 0.18237E-01 
        A10= -0.41822E+00           A10= -0.49141E-03 
        A12= 0.23932E+01            A12= -0.98590E-03 
        A14= -0.76425E+00           A14= 0.16133E-04 
 
        第5面                      第9面 
        K=  -0.30000E+02            K=  -0.27010E+01 
        A4= -0.61130E+00            A3= 0.19639E+00 
        A6= 0.64274E+00             A4= -0.49849E+00 
        A8= -0.38561E+00            A5= 0.17678E+00 
        A10= 0.40586E+00            A6= 0.51772E-01 
        A12= 0.71706E+00            A8= -0.30269E-01 
        A14= -0.49762E+00           A10= 0.62150E-02 
                                    A12= -0.66034E-03 
                                    A14= 0.31666E-04 
 
    単レンズデータ 

    レンズ  始面    焦点距離(mm) 
    1       2       3.64 
    2       4      -2.97 
    3       6       2.54 
    4       8       235.54 
 
[Table 4]
Example 4

f = 2.67mm fB = 0.23mm F = 2.44 2Y = 4.82mm
ENTP = 0mm EXTP = -2.19mm H1 = -0.28mm H2 = -2.44mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.03 0.54
2 * 1.308 0.53 1.54470 56.2 0.60
3 * 3.299 0.23 0.68
4 * -6.843 0.26 1.65060 21.0 0.70
5 * 2.728 0.05 0.80
6 * 1.767 0.36 1.54470 56.2 0.98
7 * -5.882 0.66 1.11
8 * 1.081 0.45 1.54470 56.2 1.61
9 * 0.930 0.57 2.00
10 ∞ 0.11 1.51630 64.1 2.32
11 ∞ 2.36

Aspheric coefficient

2nd side 6th side
K = -0.76965E-01 K = -0.13621E + 02
A4 = -0.17890E-01 A4 = -0.21309E + 00
A6 = 0.46209E-01 A6 = 0.22009E + 00
A8 = -0.61041E + 00 A8 = -0.22116E-01
A10 = 0.19927E + 01 A10 = -0.14351E + 00
A12 = -0.28559E + 01 A12 = 0.12662E + 00
A14 = -0.47390E-01

3rd surface 7th surface
K = 0.17977E + 02 K = -0.12906E + 02
A4 = -0.22185E + 00 A4 = -0.80077E-01
A6 = -0.13427E + 00 A6 = 0.31581E + 00
A8 = -0.50726E + 00 A8 = -0.31952E + 00
A10 = -0.53822E + 00 A10 = 0.10681E + 00
A12 = 0.70153E + 00 A12 = 0.39119E-01
A14 = -0.33612E-01

4th side 8th side
K = 0.30000E + 02 K = -0.13511E + 01
A4 = -0.46696E + 00 A4 = -0.36271E + 00
A6 = 0.17037E + 00 A6 = 0.46424E-01
A8 = -0.92602E-01 A8 = 0.18237E-01
A10 = -0.41822E + 00 A10 = -0.49141E-03
A12 = 0.23932E + 01 A12 = -0.98590E-03
A14 = -0.76425E + 00 A14 = 0.16133E-04

5th side 9th side
K = -0.30000E + 02 K = -0.27010E + 01
A4 = -0.61130E + 00 A3 = 0.19639E + 00
A6 = 0.64274E + 00 A4 = -0.49849E + 00
A8 = -0.38561E + 00 A5 = 0.17678E + 00
A10 = 0.40586E + 00 A6 = 0.51772E-01
A12 = 0.71706E + 00 A8 = -0.30269E-01
A14 = -0.49762E + 00 A10 = 0.62150E-02
A12 = -0.66034E-03
A14 = 0.31666E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 3.64
2 4 -2.97
3 6 2.54
4 8 235.54
 図13は実施例4のレンズの断面図である。図中L1は正の屈折力を有する第1レンズ、L2は負の屈折力を有し、光軸近傍で物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し、光軸近傍で像側に凸面を向けた第3レンズ、L4は光軸近傍で物体側に凸面を向けたメニスカス形状の第4レンズである。第4レンズL4の像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有し、また第4レンズL4の物体側面は非球面形状であり、光軸との交点以外の位置に変曲点を有する。Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図14は実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。 FIG. 13 is a sectional view of the lens of Example 4. In the figure, L1 is a first lens having a positive refractive power, L2 is a negative lens having a negative refractive power, a second lens having a concave surface facing the object side in the vicinity of the optical axis, and L3 has a positive refractive power. A third lens having a convex surface facing the image side in the vicinity of the axis, and a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis. The image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis, and the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than. S represents an aperture stop, and I represents an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 14 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
(実施例5)
 実施例5の撮像レンズのレンズデータを、表5に示す。
(Example 5)
Table 5 shows lens data of the imaging lens of Example 5.
[表5]
    実施例  5 
  
    f=2.72mm    fB=0.11mm    F=2.44      2Y=4.82mm 
    ENTP=0mm    EXTP=-2.16mm    H1=-0.53mm    H2=-2.61mm 
 
    面番号      R(mm)   D(mm)   Nd        νd     有効半径(mm) 
     1(絞り)    ∞     -0.03                        0.54 
     2*         1.513   0.60    1.54470     56.2    0.58 
     3*         ∞      0.24                        0.69 
     4*        -1.748   0.27    1.63470     23.9    0.70 
     5*        -6.900   0.05                        0.83 
     6*        -7.235   0.33    1.54470     56.2    0.90 
     7*        -1.384   0.89                        0.94 
     8*         1.678   0.40    1.54470     56.2    1.60 
     9*         1.007   0.53                        2.06 
    10          ∞      0.11    1.51630     64.1    2.40 
    11          ∞                                  2.44 

    非球面係数 

        第2面                      第6面 
        K=  -0.28005E+00            K=  0.30000E+02 
        A4= -0.40599E-01            A4= -0.11383E+00 
        A6= 0.11594E+00             A6= 0.25673E+00 
        A8= -0.10613E+01            A8= -0.58410E-01 
        A10= 0.27742E+01            A10= -0.45093E-01 
        A12= -0.36667E+01           A12= 0.34583E+00 
                                    A14= -0.30098E+00 
 
        第3面                      第7面 
        K=  0.00000E+00             K=  -0.71167E+01 
        A4= -0.23427E+00            A4= -0.28764E+00 
        A6= -0.24923E+00            A6= 0.44677E+00 
        A8= -0.19330E+00            A8= -0.20819E+00 
        A10= -0.22575E+00           A10= 0.31596E+00 
        A12= 0.40552E+00            A12= 0.94944E-01 
                                    A14= -0.24522E+00 
 
        第4面                      第8面 
        K=  0.12436E+01             K=  -0.10210E+02 
        A4= -0.40887E+00            A4= -0.26322E+00 
        A6= -0.20848E-01            A6= 0.38413E-01 
        A8= 0.29046E+00             A8= 0.15857E-01 
        A10= -0.42154E+00           A10= -0.82770E-03 
        A12= 0.31170E+01            A12= -0.89805E-03 
        A14= -0.29765E+01           A14= 0.60839E-04 
 
        第5面                      第9面 
        K=  0.18868E+02             K=  -0.87307E+01 
        A4= -0.32113E+00            A3= 0.34973E+00 
        A6= 0.46170E+00             A4= -0.57115E+00 
        A8= -0.48006E+00            A5= 0.18009E+00 
        A10= 0.34621E+00            A6= 0.67567E-01 
        A12= 0.53190E+00            A8= -0.38080E-01 
        A14= -0.52201E+00           A10= 0.86184E-02 
                                    A12= -0.10416E-02 
                                    A14= 0.54055E-04 

    単レンズデータ 

    レンズ  始面    焦点距離(mm) 
    1       2       2.78 
    2       4      -3.77 
    3       6       3.08 
    4       8      -5.86 
[Table 5]
Example 5

f = 2.72mm fB = 0.11mm F = 2.44 2Y = 4.82mm
ENTP = 0mm EXTP = -2.16mm H1 = -0.53mm H2 = -2.61mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.03 0.54
2 * 1.513 0.60 1.54470 56.2 0.58
3 * ∞ 0.24 0.69
4 * -1.748 0.27 1.63470 23.9 0.70
5 * -6.900 0.05 0.83
6 * -7.235 0.33 1.54470 56.2 0.90
7 * -1.384 0.89 0.94
8 * 1.678 0.40 1.54470 56.2 1.60
9 * 1.007 0.53 2.06
10 ∞ 0.11 1.51630 64.1 2.40
11 ∞ 2.44

Aspheric coefficient

2nd side 6th side
K = -0.28005E + 00 K = 0.30000E + 02
A4 = -0.40599E-01 A4 = -0.11383E + 00
A6 = 0.11594E + 00 A6 = 0.25673E + 00
A8 = -0.10613E + 01 A8 = -0.58410E-01
A10 = 0.27742E + 01 A10 = -0.45093E-01
A12 = -0.36667E + 01 A12 = 0.34583E + 00
A14 = -0.30098E + 00

3rd surface 7th surface
K = 0.00000E + 00 K = -0.71167E + 01
A4 = -0.23427E + 00 A4 = -0.28764E + 00
A6 = -0.24923E + 00 A6 = 0.44677E + 00
A8 = -0.19330E + 00 A8 = -0.20819E + 00
A10 = -0.22575E + 00 A10 = 0.31596E + 00
A12 = 0.40552E + 00 A12 = 0.94944E-01
A14 = -0.24522E + 00

4th side 8th side
K = 0.12436E + 01 K = -0.10210E + 02
A4 = -0.40887E + 00 A4 = -0.26322E + 00
A6 = -0.20848E-01 A6 = 0.38413E-01
A8 = 0.29046E + 00 A8 = 0.15857E-01
A10 = -0.42154E + 00 A10 = -0.82770E-03
A12 = 0.31170E + 01 A12 = -0.89805E-03
A14 = -0.29765E + 01 A14 = 0.60839E-04

5th side 9th side
K = 0.18868E + 02 K = -0.87307E + 01
A4 = -0.32113E + 00 A3 = 0.34973E + 00
A6 = 0.46170E + 00 A4 = -0.57115E + 00
A8 = -0.48006E + 00 A5 = 0.18009E + 00
A10 = 0.34621E + 00 A6 = 0.67567E-01
A12 = 0.53190E + 00 A8 = -0.38080E-01
A14 = -0.52201E + 00 A10 = 0.86184E-02
A12 = -0.10416E-02
A14 = 0.54055E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 2.78
2 4 -3.77
3 6 3.08
4 8 -5.86
 図15は実施例5のレンズの断面図である。図中L1は正の屈折力を有する第1レンズ、L2は負の屈折力を有し、光軸近傍で物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し、光軸近傍で像側に凸面を向けた第3レンズ、L4は光軸近傍で物体側に凸面を向けたメニスカス形状の第4レンズである。第4レンズL4の像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有し、また第4レンズL4の物体側面は非球面形状であり、光軸との交点以外の位置に変曲点を有する。Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図16は実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差図(d))である。 FIG. 15 is a sectional view of the lens of Example 5. In the figure, L1 is a first lens having a positive refractive power, L2 is a negative lens having a negative refractive power, a second lens having a concave surface facing the object side in the vicinity of the optical axis, and L3 has a positive refractive power. A third lens having a convex surface facing the image side in the vicinity of the axis, and a meniscus fourth lens L4 having a convex surface facing the object side in the vicinity of the optical axis. The image side surface of the fourth lens L4 has an aspheric shape and has an inflection point at a position other than the intersection with the optical axis, and the object side surface of the fourth lens L4 has an aspheric shape and has an intersection with the optical axis. It has an inflection point at a position other than. S represents an aperture stop, and I represents an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 16 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).
 各条件式に対応する各実施例の値を表6に示す。 Table 6 shows the values of each example corresponding to each conditional expression.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 近年、撮像装置を低コストに且つ大量に実装する方法として、予め半田がポッティングされた基板に対し、ICチップその他の電子部品と光学素子とを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品と光学素子とを基板に同時実装するという技術が提案されている。 In recent years, as a method for mounting image pickup devices at low cost and in large quantities, a reflow process (heating process) is performed on a substrate on which solder is previously potted while an IC chip and other electronic components and optical elements are placed on the substrate. A technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting the substrate.
 このようなリフロー処理を用いて実装を行うためには、電子部品と共に光学素子を約200~260度に加熱する必要があるが、このような高温下では熱可塑性樹脂を用いたレンズでは熱変形し或いは変色して、その光学性能が低下してしまうという問題点がある。このような問題を解決するための方法のひとつとして、耐熱性能に優れたガラスモールドレンズを使用し、小型化と高温環境での光学性能を両立する技術が提案されているが、熱可塑性樹脂を用いたレンズよりもコストが高いため、撮像装置の低コスト化の要求に応えられないという問題があった。 In order to perform mounting using such a reflow process, it is necessary to heat the optical element to about 200 to 260 degrees together with the electronic components. At such a high temperature, a lens using a thermoplastic resin is thermally deformed. However, there is a problem that the optical performance deteriorates due to discoloration. As one of the methods for solving such a problem, a technology has been proposed that uses a glass mold lens having excellent heat resistance and achieves both miniaturization and optical performance in a high temperature environment. Since the cost is higher than the lens used, there is a problem that it is difficult to meet the demand for cost reduction of the imaging device.
 そこで、撮像レンズの材料にエネルギー硬化性樹脂を使用することで、ポリカーボネイト系やポリオレフィン系のような熱可塑性樹脂を用いたレンズに比べ、高温に曝されたときの光学性能の低下が小さいため、リフロー処理に有効であり、かつガラスモールドレンズよりも製造しやすく安価となり、撮像レンズを組み込んだ撮像装置の低コストと量産性を両立できる。なお、エネルギー硬化性樹脂とは、熱硬化性樹脂および紫外線硬化性樹脂のいずれをも指すものとする。 Therefore, by using an energy curable resin as the material of the imaging lens, since the optical performance degradation when exposed to high temperatures is small compared to a lens using a thermoplastic resin such as polycarbonate or polyolefin, It is effective for the reflow process, is easier to manufacture than a glass mold lens, is inexpensive, and can achieve both low cost and mass productivity of an imaging apparatus incorporating an imaging lens. The energy curable resin refers to both a thermosetting resin and an ultraviolet curable resin.
 本発明の撮像レンズを前述のエネルギー硬化性樹脂も用いて形成しても良い。 The imaging lens of the present invention may be formed using the above-described energy curable resin.
 なお、本実施例は、固体撮像素子の撮像面に入射する光束の主光線入射角については、撮像面周辺部において必ずしも十分小さい設計になっていない。しかし、最近の技術では、固体撮像素子の色フィルタやオンチップマイクロレンズアレイの配列の見直しによって、シェーディングを軽減することができるようになってきた。具体的には撮像素子の撮像面の画素ピッチに対し、色フィルタやオンチップマイクロレンズアレイの配列のピッチをわずかに小さく設定すれば、撮像面の周辺部にいくほど各画素に対し色フィルタやオンチップマイクロレンズアレイが撮像レンズ光軸側へシフトするため、斜入射の光束を効率的に各画素の受光部に導くことができる。これにより固体撮像素子で発生するシェーディングを小さく抑えることができる。本実施例は、前記要求が緩和された分について、より小型化を目指した設計例となっている。 In the present embodiment, the principal ray incident angle of the light beam incident on the imaging surface of the solid-state imaging device is not necessarily designed to be sufficiently small in the periphery of the imaging surface. However, recent techniques have made it possible to reduce shading by reviewing the arrangement of the color filters of the solid-state imaging device and the on-chip microlens array. Specifically, if the pitch of the arrangement of the color filters and the on-chip microlens array is set slightly smaller than the pixel pitch of the image pickup surface of the image pickup device, the color filter or Since the on-chip microlens array is shifted to the optical axis side of the imaging lens, the obliquely incident light beam can be efficiently guided to the light receiving portion of each pixel. Thereby, the shading which generate | occur | produces with a solid-state image sensor can be restrained small. The present embodiment is a design example aiming at further miniaturization with respect to the portion where the requirement is relaxed.
 また、本実施例において、倍率色収差や歪曲収差について十分補正された設計となっていないものもある。しかし、近年ではカメラ本体や固体撮像素子内にカメラ用画像処理プロセッサISP(イメージ・シグナル・プロセッサ)を搭載したものが普及してきており、倍率色収差や歪曲収差を画像処理によって補正することができるようになってきている。本実施例は、倍率色収差や歪曲収差を緩和した代わりに、より小型化を目指した設計例となっている。 Further, in this embodiment, there is a design that is not sufficiently corrected for lateral chromatic aberration and distortion. In recent years, however, cameras with a camera image processor ISP (image signal processor) installed in the camera body or solid-state imaging device have become widespread, and it is possible to correct lateral chromatic aberration and distortion by image processing. It is becoming. The present embodiment is a design example aiming at further miniaturization instead of relaxing the lateral chromatic aberration and distortion.
 本発明は、明細書に記載の実施形態や実施例に限定されるものではなく、他の変形例や実施例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。 The present invention is not limited to the embodiments and examples described in the specification, and includes other modifications and examples from the embodiments, examples, and technical ideas described in the present specification. It will be apparent to those skilled in the art.
 本発明は、小型の携帯端末に好適な撮像レンズを提供できる。 The present invention can provide an imaging lens suitable for a small portable terminal.
 10 撮像レンズ
 50 撮像ユニット
 51 固体撮像素子
 51a 光電変換部
 52 基板
 53 筐体
 53a フランジ部
 54 外部接続端子
 55 絞り部材
 60 入力部
 70 タッチパネル
 80 無線通信部
 91 記憶部
 92 一時記憶部
100 スマートフォン
101 制御部
102 補正チップ
I 撮像面
F 平行平板
L1~L4 レンズ
S 開口絞り
DESCRIPTION OF SYMBOLS 10 Imaging lens 50 Imaging unit 51 Solid-state image sensor 51a Photoelectric conversion part 52 Board | substrate 53 Housing | casing 53a Flange part 54 External connection terminal 55 Diaphragm member 60 Input part 70 Touch panel 80 Wireless communication part 91 Storage part 92 Temporary storage part 100 Smartphone 101 Control part 102 Correction chip I Imaging surface F Parallel flat plates L1 to L4 Lens S Aperture stop

Claims (10)

  1.  固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズであって、物体側より順に、
     開口絞り、
     正の屈折力を有する第1レンズ、
     負の屈折力を有し、光軸近傍で物体側に凹面を向けた第2レンズ、
     正の屈折力を有し、光軸近傍で像側に凸面を向けた第3レンズ、
     光軸近傍で物体側に凸面を向けたメニスカス形状の第4レンズ、からなり、
     第4レンズの像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有し、以下の条件式を満足することを特徴とする撮像レンズ。
     -3.0<(r1+r2)/(r1-r2)≦-1.0   (1)
     0.16<d6/f<0.40   (2)
    ただし、
    r1:前記第1レンズ物体側面の曲率半径(mm)
    r2:前記第1レンズ像側面の曲率半径(mm)
    d6:前記第3レンズと前記第4レンズの光軸上の空気間隔(mm)
    f:前記撮像レンズ全系の焦点距離(mm)
    An imaging lens for forming a subject image on a photoelectric conversion unit of a solid-state imaging device, in order from the object side,
    Aperture stop,
    A first lens having a positive refractive power;
    A second lens having negative refractive power and having a concave surface facing the object side in the vicinity of the optical axis;
    A third lens having positive refractive power and having a convex surface facing the image side in the vicinity of the optical axis;
    A meniscus fourth lens having a convex surface facing the object side in the vicinity of the optical axis,
    An imaging lens, wherein the image side surface of the fourth lens has an aspherical shape, has an inflection point at a position other than the intersection with the optical axis, and satisfies the following conditional expression.
    −3.0 <(r1 + r2) / (r1−r2) ≦ −1.0 (1)
    0.16 <d6 / f <0.40 (2)
    However,
    r1: curvature radius (mm) of the side surface of the first lens object
    r2: radius of curvature (mm) of the side surface of the first lens image
    d6: Air space (mm) on the optical axis of the third lens and the fourth lens
    f: Focal length (mm) of the entire imaging lens system
  2.  以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
     0.7<f3/f<2.0   (3)
    ただし、
    f3:前記第3レンズの焦点距離(mm)
    f:前記撮像レンズ全系の焦点距離(mm)
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    0.7 <f3 / f <2.0 (3)
    However,
    f3: Focal length (mm) of the third lens
    f: Focal length (mm) of the entire imaging lens system
  3.  以下の条件式を満足することを特徴とする請求項1又は2に記載の撮像レンズ。
     0.9<f1/f<1.5   (4)
    ただし、
    f1:前記第1レンズの焦点距離(mm)
    f:撮像レンズ全系の焦点距離(mm)
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    0.9 <f1 / f <1.5 (4)
    However,
    f1: Focal length (mm) of the first lens
    f: Focal length of the entire imaging lens system (mm)
  4.  以下の条件式を満足することを特徴とする請求項1~3のいずれか1項に記載の撮像レンズ。
     1.5<|f4|/f<100   (5)
    ただし、
    f4:前記第4レンズの焦点距離(mm)
    f:前記撮像レンズ全系の焦点距離(mm)
    The imaging lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
    1.5 <| f4 | / f <100 (5)
    However,
    f4: Focal length (mm) of the fourth lens
    f: Focal length (mm) of the entire imaging lens system
  5.  以下の条件式を満足することを特徴とする請求項1~4のいずれか1項に記載の撮像レンズ。
     0.01<d4/f<0.05   (6)
    ただし、
    d4:前記第2レンズと前記第3レンズの光軸上の空気間隔(mm)
    f:前記撮像レンズ全系の焦点距離(mm)
    5. The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    0.01 <d4 / f <0.05 (6)
    However,
    d4: Air space (mm) on the optical axis of the second lens and the third lens
    f: Focal length (mm) of the entire imaging lens system
  6.  前記第4レンズの物体側面は非球面形状であり、光軸との交点以外の位置に変曲点を有することを特徴とする請求項1~5のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 5, wherein the object side surface of the fourth lens has an aspherical shape and has an inflection point at a position other than an intersection with the optical axis.
  7.  前記第1レンズの像側面は非球面形状であり、光軸との交点以外の位置に変曲点を有することを特徴とする請求項1~6のいずれか1項に記載の撮像レンズ。 The imaging lens according to any one of claims 1 to 6, wherein an image side surface of the first lens has an aspherical shape and has an inflection point at a position other than an intersection with the optical axis.
  8.  実質的にパワーを持たないレンズをさらに有することを特徴とする請求項1~7のいずれかに1項に記載のズームレンズ。 The zoom lens according to any one of claims 1 to 7, further comprising a lens having substantially no power.
  9.  請求項1~8のいずれかに1項に記載の撮像レンズを備えたことを特徴とする撮像装置。 An image pickup apparatus comprising the image pickup lens according to any one of claims 1 to 8.
  10.  請求項9に記載の撮像装置を備えたことを特徴とする携帯端末。 A portable terminal comprising the imaging device according to claim 9.
PCT/JP2013/071913 2012-08-31 2013-08-14 Imaging lens, imaging device, and portable terminal WO2014034432A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012190860 2012-08-31
JP2012-190860 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034432A1 true WO2014034432A1 (en) 2014-03-06

Family

ID=50183247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071913 WO2014034432A1 (en) 2012-08-31 2013-08-14 Imaging lens, imaging device, and portable terminal

Country Status (1)

Country Link
WO (1) WO2014034432A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098226A1 (en) * 2013-12-26 2015-07-02 ソニー株式会社 Imaging device and imaging lens
TWI557428B (en) * 2015-01-21 2016-11-11 先進光電科技股份有限公司 Optical image capturing system
US9995908B2 (en) 2016-10-03 2018-06-12 Largan Precision Co., Ltd. Optical imaging lens system, image capturing unit and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137812A (en) * 1988-11-18 1990-05-28 Olympus Optical Co Ltd Photographic lens
JP2006293324A (en) * 2005-03-17 2006-10-26 Konica Minolta Opto Inc Image pickup lens and apparatus, and mobile terminal provided with image pickup apparatus
JP2008185807A (en) * 2007-01-30 2008-08-14 Fujinon Corp Imaging lens
JP2010026387A (en) * 2008-07-23 2010-02-04 Sony Corp Imaging lens and image capturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137812A (en) * 1988-11-18 1990-05-28 Olympus Optical Co Ltd Photographic lens
JP2006293324A (en) * 2005-03-17 2006-10-26 Konica Minolta Opto Inc Image pickup lens and apparatus, and mobile terminal provided with image pickup apparatus
JP2008185807A (en) * 2007-01-30 2008-08-14 Fujinon Corp Imaging lens
JP2010026387A (en) * 2008-07-23 2010-02-04 Sony Corp Imaging lens and image capturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098226A1 (en) * 2013-12-26 2015-07-02 ソニー株式会社 Imaging device and imaging lens
JPWO2015098226A1 (en) * 2013-12-26 2017-03-23 ソニー株式会社 Imaging device and imaging lens
US10915997B2 (en) 2013-12-26 2021-02-09 Sony Corporation Imaging device and imaging lens
TWI557428B (en) * 2015-01-21 2016-11-11 先進光電科技股份有限公司 Optical image capturing system
US9995908B2 (en) 2016-10-03 2018-06-12 Largan Precision Co., Ltd. Optical imaging lens system, image capturing unit and electronic device

Similar Documents

Publication Publication Date Title
JP6175903B2 (en) Imaging lens, imaging device, and portable terminal
JP6300183B2 (en) Imaging lens, imaging device, and portable terminal
JP5348563B2 (en) Imaging lens, imaging device, and portable terminal
JP5382527B2 (en) Imaging lens, imaging device, and portable terminal
JP4924141B2 (en) Imaging lens, imaging device, and portable terminal
WO2013039035A1 (en) Image pick-up lens, image pick-up device, portable terminal and digital instrument
JP5304117B2 (en) Imaging lens, imaging device, and portable terminal
JP6222564B2 (en) Imaging lens, lens unit, imaging device, digital still camera, and portable terminal
JP5839038B2 (en) Imaging lens and imaging apparatus
JP4910723B2 (en) Imaging lens, imaging device, and portable terminal
WO2013137312A1 (en) Image pickup lens, image pickup device, and portable terminal
JP6394598B2 (en) Imaging lens, imaging device, and portable terminal
JP4894222B2 (en) Imaging lens, imaging unit, and portable terminal
JP5585586B2 (en) Imaging lens and imaging apparatus
JP6451639B2 (en) Imaging device and portable terminal
JP2014115431A (en) Imaging lens, imaging apparatus, and portable terminal
JP2009282223A (en) Imaging lens, imaging unit and personal digital assistant
JP2013092584A (en) Imaging lens, imaging apparatus and portable terminal
JP2014160158A (en) Imaging lens, imaging apparatus, and portable terminal
JP2015087495A (en) Imaging lens, imaging apparatus and portable terminal
JP2014153574A (en) Imaging lens, and imaging device and portable terminal
JP2013246217A (en) Imaging lens, imaging apparatus, and portable terminal
JP2015001644A (en) Image capturing lens and image capturing device
WO2013187405A1 (en) Imaging lens, imaging device, and mobile terminal
WO2014034432A1 (en) Imaging lens, imaging device, and portable terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP