JP2013092584A - Imaging lens, imaging apparatus and portable terminal - Google Patents

Imaging lens, imaging apparatus and portable terminal Download PDF

Info

Publication number
JP2013092584A
JP2013092584A JP2011233320A JP2011233320A JP2013092584A JP 2013092584 A JP2013092584 A JP 2013092584A JP 2011233320 A JP2011233320 A JP 2011233320A JP 2011233320 A JP2011233320 A JP 2011233320A JP 2013092584 A JP2013092584 A JP 2013092584A
Authority
JP
Japan
Prior art keywords
lens
imaging
refractive power
object side
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011233320A
Other languages
Japanese (ja)
Inventor
Masae Sato
正江 佐藤
Yasunari Fukuda
泰成 福田
Eigo Sano
永悟 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2011233320A priority Critical patent/JP2013092584A/en
Publication of JP2013092584A publication Critical patent/JP2013092584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small type imaging lens with an image angle of 70 degrees or more, F2.4 level and in a four piece composition, and an imaging apparatus and a portable terminal using the same.SOLUTION: The imaging lens includes: a first lens L1 having positive refractive power with a convex surface facing an object side; a second lens L2 having negative refractive power with a concave surface facing the object side; a third lens L3 having positive refractive power with a convex surface faxing an image side; and a fourth lens L4 having negative refractive power with a biconcave shape, in this order from the object side. The fourth lens L4 has an aspheric surface of a configuration having the negative refractive force become weaker as an object side surface and an image side surface go toward the periphery from the vicinity of an optical axis and an aperture diaphragm S arranged more on the object side than the second lens L2, and satisfies the following conditional expressions. -10<f1/f4<-1(1), -200<f2/f<-1.4(2), and 35<νd4<85(3) where f1: focal distance of the first lens L1, f4: focal distance of the fourth lens L4, f2: focal distance of the second lens L2, f: focal distance of the whole imaging system, and νd4: Abbe number for the fourth lens L4.

Description

本発明は撮像レンズ、特には、CCD型イメージセンサあるいはCMOS型イメージセンサ等の固体撮像素子を用いた小型で高い解像度が得られる撮像レンズ、およびこれを備える撮像装置並びに携帯端末に関する。   The present invention relates to an imaging lens, and more particularly to an imaging lens that uses a solid-state imaging device such as a CCD type image sensor or a CMOS type image sensor to obtain a high resolution, an imaging device including the imaging lens, and a portable terminal.

近年、CCD(Charged Coupled Device)型イメージセンサあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子を用いた撮像装置が搭載された携帯端末の普及の増大に伴い、より高画質の画像が得られるよう、高画素数をもつ撮像素子を使用した撮像装置が搭載されたものが市場に供給されるようになってきた。従来の高画素数をもつ撮像素子は、大型化をともなっていたが、近年、画素の高細化が進み、撮像素子が小型化されるようになってきた。高細化された撮像素子に使用される撮像レンズには、高細化された画素に対応するために高い解像力が要求される。これに対し、レンズの解像力はF値により限界があり、F値の小さい明るいレンズの方が高解像力を得られるため、明るい撮像レンズが要求されている。   In recent years, with the widespread use of mobile terminals equipped with solid-state imaging devices such as CCD (Charged Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors, higher quality images In order to obtain the above, those equipped with an imaging device using an imaging device having a high number of pixels have been supplied to the market. Conventional image pickup devices having a high number of pixels have been accompanied by an increase in size, but in recent years, pixels have become increasingly thinner and image pickup devices have become smaller. An imaging lens used for a highly thinned image sensor is required to have a high resolving power in order to cope with a highly thinned pixel. On the other hand, the resolving power of the lens is limited by the F value, and a bright imaging lens is required because a bright lens having a small F value can obtain a high resolving power.

一方、撮像装置の更なる小型化をするためにも撮像レンズの全長もさらに小さくすることが要求されている。撮像レンズは、パワー(屈折力)配置や、レンズの厚みや空気間隔の工夫で小型化することには限界があり、近年、撮像レンズの焦点距離を短くした広角レンズを用いることで、光学系の全長を小さくする試みがなされようになってきた。このような用途の撮像レンズとしては、3枚構成のレンズに比べ高性能化が可能であると言うことから、4枚構成の撮像レンズが提案されている。   On the other hand, in order to further reduce the size of the imaging apparatus, it is required to further reduce the overall length of the imaging lens. There is a limit to downsizing the imaging lens by power (refractive power) arrangement, lens thickness and air spacing, and in recent years, by using a wide-angle lens with a shorter focal length, the optical system Attempts have been made to reduce the overall length. As an imaging lens for such applications, a four-lens imaging lens has been proposed because it can achieve higher performance than a three-lens lens.

このような4枚構成の撮像レンズとして、物体側より順に正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズで構成された、所謂、テレフォトタイプの撮像レンズが開発されている。テレフォトタイプは、撮像レンズ全長(撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離)の小型化に有利であり、例えば特許文献1〜6に開示されている。   As such a four-lens imaging lens, a first lens having a positive refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, and a negative refractive power in order from the object side. A so-called telephoto type imaging lens composed of a fourth lens has been developed. The telephoto type is advantageous for miniaturization of the entire length of the imaging lens (distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system). Yes.

特開2009-258286号公報JP 2009-258286 JP 特開2009-282223号公報JP 2009-282223 A 特開2009-192820号公報JP 2009-192820 特開2006-293324号公報JP 2006-293324 A 特開2008-129506号公報JP 2008-129506 A 特開2010-49113号公報JP 2010-49113 A

特許文献1〜3には、F2.4より明るい撮像レンズが記載されている。しかしながら、第2レンズが像側に凹面を向けた負メニスカスレンズであるため、第2レンズの負の屈折力を像側面のみで負担しなければならないため、軸外光束でコマ収差が発生し、画面周辺部の良好な性能を確保できない。   Patent Documents 1 to 3 describe an imaging lens brighter than F2.4. However, since the second lens is a negative meniscus lens having a concave surface facing the image side, the negative refractive power of the second lens must be borne only by the image side surface, so coma aberration occurs due to off-axis light flux, It is not possible to ensure good performance at the periphery of the screen.

また、上記特許文献1および2に記載の撮像レンズは、撮影画角が65度程度であり、画角が広いとは言い難い。また、これ以上の広角化を行った場合、諸収差の影響、特にコマ収差の影響が大きくなるので、小型でありながら高解像力を得ることができなくなる。   The imaging lenses described in Patent Documents 1 and 2 have a shooting angle of view of about 65 degrees, and it is difficult to say that the angle of view is wide. Further, when the angle of view is further increased, the influence of various aberrations, particularly the influence of coma aberration, becomes large, so that it is impossible to obtain a high resolution even though it is small.

さらに、上記特許文献3に記載の撮像レンズは、撮影画角が75度程度の広角であるが、第4レンズの周辺部が像面方向に大きく張り出す形状であり、第4レンズと固体撮像素子との間に配置される、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケ−ジのシールガラス等の平行平板や、固体撮像素子の基板等との接触を避けるために、バックフォーカスを長くする構成になっているため、十分な小型化は達成できていない。   Furthermore, the imaging lens described in Patent Document 3 has a wide angle with a shooting field angle of about 75 degrees, but has a shape in which the peripheral portion of the fourth lens projects greatly in the image plane direction. Back focus to avoid contact with parallel flat plates such as optical low-pass filters, infrared cut filters, or solid-state image sensor package seal glass, and solid-state image sensor substrates, etc. Therefore, the size cannot be sufficiently reduced.

一方、特許文献4〜6記載の撮像レンズは、第2レンズが物体側に凹面を向けた負レンズであり、軸外収差の補正は十分なされているが、F2.8程度であるため、画素の高細化が進む携帯端末において、高解像力を得られるF値に対応できていない。また、レンズ全長も大きく、十分な小型化は達成できていない。   On the other hand, the imaging lenses described in Patent Documents 4 to 6 are negative lenses in which the second lens has a concave surface directed toward the object side, and correction of off-axis aberrations is sufficient, but the pixel is about F2.8. In a portable terminal that is becoming increasingly thin, it is not possible to cope with an F value that can achieve high resolution. In addition, the total lens length is large, and sufficient size reduction cannot be achieved.

本発明は、このような問題点に鑑みてなされたものであり、小型でありながらも、撮影画角が70度以上の広角で、F2.4程度の明るさを有し、諸収差が良好に補正された、4枚構成の撮像レンズ、及びそれを用いた撮像装置並びに携帯端末を提供することを目的とする。   The present invention has been made in view of such problems, and has a wide angle of 70 ° or more, a brightness of about F2.4, and various aberrations despite being small in size. It is an object of the present invention to provide a four-lens imaging lens, an imaging device using the same, and a portable terminal.

ここで、小型の撮像レンズの尺度であるが、本発明では下式を満たすレベルの小型化を目指している。この範囲を満たすことで、撮像装置全体の小型軽量化が可能となる。
TL/2Y<0.9 (13)
ただし、
TL:撮像レンズ全系の最も物体側のレンズ面から像側焦点までの光軸上の距離
2Y:撮像面対角線長(固体撮像素子の矩形実効画素領域の対角線長)
ここで、像側焦点とは撮像レンズに光軸と平行な平行光線が入射した場合の像点をいう。
Here, although it is a scale of a small imaging lens, the present invention aims at miniaturization at a level satisfying the following expression. By satisfying this range, the entire imaging apparatus can be reduced in size and weight.
TL / 2Y <0.9 (13)
However,
TL: Distance on the optical axis from the lens surface closest to the object side to the image-side focal point of the entire imaging lens system 2Y: diagonal length of the imaging plane (diagonal length of the rectangular effective pixel area of the solid-state imaging device)
Here, the image-side focal point refers to an image point when a parallel light beam parallel to the optical axis is incident on the imaging lens.

なお、撮像レンズの最も像側の面と像側焦点位置との間に、光学的ローパスフィルタ、赤外線カットフィルタ、または固体撮像素子パッケージのシールガラス等の平行平板が配置される場合には、平行平板部分は空気換算距離としたうえで上記TLの値を計算するものとする。また、より望ましくは下式の範囲が良い。
TL/2Y<0.8 (13)’
When a parallel plate such as an optical low-pass filter, an infrared cut filter, or a seal glass of a solid-state image sensor package is disposed between the image-side surface of the imaging lens and the image-side focal position, the imaging lens is parallel. The flat plate portion is calculated as the TL value after the air conversion distance. More preferably, the range of the following formula is good.
TL / 2Y <0.8 (13) '

請求項1に記載の撮像レンズは、
物体側より順に、
正の屈折力を有し物体側に凸面を向けた第1レンズ、
負の屈折力を有し物体側に凹面を向けた第2レンズ、
正の屈折力を有し像側に凸面を向けた第3レンズ、
負の屈折力を有し両凹形状を有する第4レンズ、からなり、
前記第4レンズは、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、
開口絞りが前記第2レンズより物体側に配置され、
以下の条件式を満足することを特徴とする撮像レンズ。
−10<f1/f4<−0.8 (1)
−200<f2/f<−1.4 (2)
35<νd4<85 (3)
ただし、
f1:前記第1レンズの焦点距離
f4:前記第4レンズの焦点距離
f2:前記第2レンズの焦点距離
f:前記撮像レンズ全系の焦点距離
νd4:前記第4レンズのアッベ数
The imaging lens according to claim 1,
From the object side,
A first lens having positive refractive power and having a convex surface facing the object side;
A second lens having negative refractive power and having a concave surface facing the object side;
A third lens having positive refractive power and having a convex surface facing the image side;
A fourth lens having negative refractive power and a biconcave shape,
The fourth lens has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery,
An aperture stop is disposed closer to the object side than the second lens;
An imaging lens satisfying the following conditional expression:
−10 <f1 / f4 <−0.8 (1)
−200 <f2 / f <−1.4 (2)
35 <νd4 <85 (3)
However,
f1: focal length of the first lens f4: focal length of the fourth lens f2: focal length of the second lens f: focal length νd4 of the entire imaging lens system: Abbe number of the fourth lens

小型で収差が良好に補正された撮像レンズを得るための本発明の構成は、物体側より順に、正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、正の屈折力を有する第3レンズ、負の屈折力を有する第4レンズからなる、いわゆるテレフォトタイプの構成である。このレンズ構成は、撮像レンズ全長の小型化に有利な構成である。   The structure of the present invention for obtaining a small imaging lens with good aberration correction includes, in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a positive refractive power. This is a so-called telephoto type configuration comprising a third lens having a fourth lens and a fourth lens having a negative refractive power. This lens configuration is advantageous in reducing the overall length of the imaging lens.

第1レンズは、物体側に凸面を向けた形状にすることで、光学系の主点位置を物体側に配置できるため、撮像レンズ全長の小型化に有利になる。   Since the first lens has a shape with a convex surface facing the object side, the principal point position of the optical system can be arranged on the object side, which is advantageous in reducing the overall length of the imaging lens.

第2レンズは、物体側に凹面を向けた形状にすることで、撮像レンズ全体において、負の屈折力を比較的物体側に配置できるため、撮像レンズの広角化に有利になる。   By forming the second lens with a concave surface facing the object side, the negative refracting power can be relatively disposed on the object side in the entire imaging lens, which is advantageous for widening the angle of the imaging lens.

第3レンズは、像側に凸面を向けた形状にすることで、面の収斂作用により周辺光束の主光線入射角度を小さくできるため、また、軸外光線の屈折角を小さく抑えながら第4レンズに導くことができ、軸外の収差を良好に抑えることができる。   The third lens has a shape with a convex surface facing the image side, so that the chief ray incident angle of the peripheral light beam can be reduced by the convergence effect of the surface, and the fourth lens while suppressing the refraction angle of off-axis rays. Thus, off-axis aberrations can be satisfactorily suppressed.

第4レンズは、両凹形状にすることで、物体側面および像側面に負の屈折力を分割できるため、第4レンズに強い負の屈折力を配置しても収差の発生を抑えることができ、撮像レンズ全長の小型化に有利になる。さらに、第4レンズは、物体側面および像側面を非球面形状とし、光軸から周辺に行くに従って負の屈折力が弱くなり、像側光束のテレセントリック特性が確保しやすくなる。   By making the fourth lens biconcave, the negative refracting power can be divided into the object side surface and the image side surface, so that the occurrence of aberration can be suppressed even if a strong negative refracting power is arranged on the fourth lens. This is advantageous in reducing the overall length of the imaging lens. Further, the fourth lens has an aspheric object side surface and an image side surface, and its negative refractive power becomes weaker from the optical axis to the periphery, so that the telecentric characteristics of the image side light beam can be easily secured.

さらに、第2レンズより物体側に開口絞りを配置することによって、射出瞳をより遠くに離すことができるため、固体撮像素子の撮像面周辺部に結像する光束の主光線入射角度を小さく抑えることが可能となる。   Furthermore, by arranging the aperture stop on the object side of the second lens, the exit pupil can be further distant from each other, so that the chief ray incident angle of the light beam that forms an image on the periphery of the imaging surface of the solid-state imaging device is kept small. It becomes possible.

条件式(1)は、第1レンズと第4レンズの焦点距離の比率を適切に設定して、広角化による小型化と大口径化を達成するための条件式である。条件式(1)の値が上限を下回ることで,第1レンズの焦点距離が短くなり過ぎるのを抑えることができるので、レトロフォーカスタイプに近い構成になり、入射画角を確保し易くなり、撮像レンズの広角化が可能になる。さらに、球面収差の発生を抑えることができるので、大口径化が可能になる。また、第4レンズの焦点距離が長くなり過ぎるのを抑えることができるので、バックフォーカスが長くなるのを防ぎ、撮像レンズの小型化が可能になる。   Conditional expression (1) is a conditional expression for appropriately reducing the focal length ratio between the first lens and the fourth lens to achieve a reduction in size and an increase in aperture due to a wide angle. Since the value of conditional expression (1) is less than the upper limit, the focal length of the first lens can be prevented from becoming too short, so the configuration is close to a retrofocus type, and it is easy to secure an incident angle of view. The imaging lens can be widened. Furthermore, since the generation of spherical aberration can be suppressed, a large aperture can be achieved. In addition, since it is possible to suppress the focal length of the fourth lens from becoming too long, it is possible to prevent the back focus from becoming long and to reduce the size of the imaging lens.

一方、条件式(1)の値が下限を上回ることで、第1レンズの焦点距離が長くなり過ぎるのを抑え、撮像レンズの主点位置を物体側に配置できるので、撮像レンズの小型化が容易になる。また、第4レンズの焦点距離が短くなり過ぎるのを抑え、歪曲収差の発生を抑えることができる。また、より望ましくは下式の範囲がよい。
−6<f1/f4<−1.0 (1’)
さらに望ましくは下式の範囲かよい。
−3<f1/f4<−1.1 (1“)
On the other hand, when the value of conditional expression (1) exceeds the lower limit, the focal length of the first lens can be prevented from becoming too long, and the principal point position of the imaging lens can be arranged on the object side, so that the imaging lens can be downsized. It becomes easy. In addition, the focal length of the fourth lens can be prevented from becoming too short, and the occurrence of distortion can be suppressed. More preferably, the range of the following formula is good.
−6 <f1 / f4 <−1.0 (1 ′)
More desirably, the range is within the following formula.
-3 <f1 / f4 <-1.1 (1 ")

条件式(2)は、第2レンズの焦点距離を適切に設定して、広角化と高性能化を達成するための条件式である。条件式(2)の値が上限を下回ることで、第2レンズの負の焦点距離が短くなりすぎて、撮像レンズの主点位置が像側に配置されるのを防ぐことができ、良好なテレセントリック特性を得ることができる。さらに、球面収差やコマ収差の発生を抑えることができ、高性能化が図れる。   Conditional expression (2) is a conditional expression for achieving a wide angle and high performance by appropriately setting the focal length of the second lens. When the value of conditional expression (2) is less than the upper limit, the negative focal length of the second lens becomes too short, and the principal point position of the imaging lens can be prevented from being arranged on the image side. Telecentric characteristics can be obtained. Furthermore, the occurrence of spherical aberration and coma can be suppressed, and high performance can be achieved.

一方、条件式(2)の値が下限を上回ることで、第2レンズの焦点距離が長くなりすぎるのを防ぎ、負の屈折力を適度に維持することができ、撮像レンズ全体において、比較的物体側に負の屈折力を配置でき、広角化を達成できる。また、より望ましくは下式の範囲がよい。
−100<f2/f<−1.5 (2‘)
さらに望ましくは下式の範囲がよい。
−50<f2/f<−1.6 (2“)
On the other hand, when the value of conditional expression (2) exceeds the lower limit, the focal length of the second lens can be prevented from becoming too long, and the negative refractive power can be appropriately maintained. A negative refractive power can be arranged on the object side, and a wide angle can be achieved. More preferably, the range of the following formula is good.
−100 <f2 / f <−1.5 (2 ′)
The range of the following formula is more desirable.
-50 <f2 / f <-1.6 (2 ")

条件式(3)は、第4レンズの分散特性を適切に設定し、色収差の補正を適切にするための条件式である。前記第4レンズは、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる非球面形状であるので、条件式を満足することで軸上色収差と倍率色収差をバランスよく補正することが可能になる。より具体的には、条件式(3)の値が上限を下回ることで、さらに軸上色収差が悪化することを抑えることができる。一方、条件式(3)の値が下限を上回ることで、倍率色収差が悪化することを抑えることができる。また、より望ましくは下式の範囲がよい。
35<νd4<75 (3‘)
さらに望ましくは下式の範囲がよい。
35<νd4<65 (3“)
Conditional expression (3) is a conditional expression for appropriately setting the dispersion characteristic of the fourth lens and appropriately correcting chromatic aberration. Since the fourth lens has an aspherical shape in which negative refractive power decreases as it goes from the vicinity of the optical axis to the periphery, it is possible to correct axial chromatic aberration and lateral chromatic aberration in a balanced manner by satisfying the conditional expression. Become. More specifically, when the value of conditional expression (3) is less than the upper limit, it is possible to suppress further deterioration of longitudinal chromatic aberration. On the other hand, when the value of conditional expression (3) exceeds the lower limit, it is possible to suppress deterioration of lateral chromatic aberration. More preferably, the range of the following formula is good.
35 <νd4 <75 (3 ′)
The range of the following formula is more desirable.
35 <νd4 <65 (3 “)

さらに望ましくは、第4レンズの像側面を、光軸との交点以外の位置に変曲点を有する非球面形状にすると、像側光束のテレセントリック特性が確保しやすくなる。ここで、「変曲点」とは有効半径内でのレンズ断面形状の曲線において、非球面頂点の接平面が光軸と垂直な平面となるような非球面上の点のことである。   More desirably, if the image side surface of the fourth lens has an aspherical shape having an inflection point at a position other than the intersection with the optical axis, the telecentric characteristics of the image-side light beam can be easily secured. Here, the “inflection point” is a point on the aspheric surface where the tangent plane of the aspherical vertex is a plane perpendicular to the optical axis in the curve of the lens cross-sectional shape within the effective radius.

請求項2に記載の撮像レンズは、請求項1に記載の発明において、以下の条件式を満足することを特徴とする。
0.1<T12/T23<2.5 (4)
ただし、
T12:前記第1レンズと前記第2レンズの光軸上の空気間隔
T23:前記第2レンズと前記第3レンズの光軸上の空気間隔
The imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, the following conditional expression is satisfied.
0.1 <T12 / T23 <2.5 (4)
However,
T12: Air spacing on the optical axis of the first lens and the second lens T23: Air spacing on the optical axis of the second lens and the third lens

条件式(4)は、第1レンズと第2レンズとの間隔、および、第2レンズと第3レンズとの間隔の比率を定めて、良好に収差補正をするための条件式である。条件式(4)の値が上限を下回ることで、第2レンズの負の屈折力が像側によりすぎるのを抑えることができるので、撮像レンズの広角化が可能になる。さらに、第2レンズと第3レンズを適度に離して配置できるので、通過する軸外光束の光線高の差を持たせることができ、コマ収差の補正が容易になる。   Conditional expression (4) is a conditional expression for satisfactorily correcting aberrations by determining the distance between the first lens and the second lens and the ratio of the distance between the second lens and the third lens. When the value of conditional expression (4) is less than the upper limit, it is possible to suppress the negative refractive power of the second lens from being excessive on the image side, and thus it is possible to widen the imaging lens. Furthermore, since the second lens and the third lens can be arranged at a suitable distance, a difference in the height of the off-axis light beam passing therethrough can be provided, and correction of coma aberration is facilitated.

一方、条件式(4)の値が下限を上回ることで、第1レンズと第2レンズの間に開口絞りを配置することができる。さらに、第1レンズと第2レンズを適度に離して配置できるので、第1レンズと第2レンズを通過する軸上光束の光線高の差を持たせることができ、球面収差の補正が容易になり、大口径化が可能になる。また、より望ましくは下式の範囲がよい。
0.15<T12/T23<2.0 (4‘)
さらに望ましくは下式の範囲がよい。
0.20<T12/T23<1.5 (4“)
On the other hand, when the value of conditional expression (4) exceeds the lower limit, an aperture stop can be disposed between the first lens and the second lens. Furthermore, since the first lens and the second lens can be arranged at a suitable distance, a difference in the height of the axial light flux passing through the first lens and the second lens can be provided, and the correction of the spherical aberration is easy. Therefore, a large aperture can be achieved. More preferably, the range of the following formula is good.
0.15 <T12 / T23 <2.0 (4 ′)
The range of the following formula is more desirable.
0.20 <T12 / T23 <1.5 (4 ")

請求項3に記載の撮像レンズは、請求項1又は2に記載の発明において、以下の条件式を満足することを特徴とする。
0.6<f1/f<5.0 (5)
ただし、
f1:前記第1レンズの焦点距離
f:前記撮像レンズ全系の焦点距離
The imaging lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the following conditional expression is satisfied.
0.6 <f1 / f <5.0 (5)
However,
f1: Focal length of the first lens f: Focal length of the entire imaging lens system

条件式(5)は、第1レンズの焦点距離を適切に設定して、小型化と高性能化を達成するための条件式である。条件式(5)の値が上限を下回ることで、第1レンズの焦点距離が長くなりすぎず、撮像レンズ全系の主点位置が像側によることを抑えられるので、撮像レンズの小型化が可能になる。   Conditional expression (5) is a conditional expression for appropriately setting the focal length of the first lens to achieve miniaturization and high performance. When the value of conditional expression (5) is less than the upper limit, the focal length of the first lens does not become too long, and the principal point position of the entire imaging lens system can be suppressed from being on the image side. It becomes possible.

一方、条件式(5)の値が下限を上回ることで、第1レンズの焦点距離が短くなりすぎず、第1レンズで発生する球面収差やコマ収差の発生を抑えられるので、良好な性能を維持しながら、大口径化と広角化を達成できる。また、より望ましくは下式の範囲がよい。
0.65<f1/f<3.0 (5)
さらに望ましくは下式の範囲がよい。
0.75<f1/f<2.0 (5“)
On the other hand, if the value of conditional expression (5) exceeds the lower limit, the focal length of the first lens is not too short, and the occurrence of spherical aberration and coma generated in the first lens can be suppressed. Large diameter and wide angle can be achieved while maintaining. More preferably, the range of the following formula is good.
0.65 <f1 / f <3.0 (5)
The range of the following formula is more desirable.
0.75 <f1 / f <2.0 (5 ")

さらに、第1レンズは、以下の条件式を満足する形状にすることが望ましい。
−6<(r1+r2)/(r1−r2)≦−1 (14)
ただし、
r1:第1レンズの物体側面の曲率半径
r2:第1レンズの像側面の曲率半径
Furthermore, it is desirable that the first lens has a shape that satisfies the following conditional expression.
−6 <(r1 + r2) / (r1−r2) ≦ −1 (14)
However,
r1: radius of curvature of the object side surface of the first lens r2: radius of curvature of the image side surface of the first lens

条件式(14)は第1レンズの形状を適切に設定し、撮像レンズ全長の短縮化と、第1レンズで発生するコマ収差の抑制を両立するための条件式である。条件式(14)は第1レンズの形状を表す、所謂シェーピングファクターを規定しており、条件式の範囲で第1レンズは、平凸レンズから物体側に凸面を向けたメニスカス形状の範囲に設定される。条件式(14)の値が上限を下回ることで、第1レンズがメニスカス形状となるため、撮像レンズ全系の主点位置をより物体側へ寄せることができるようになるため、撮像レンズ全長の短縮化を行うことができる。一方、条件式(14)の値が下限を上回ることで、第1レンズ物体側面の曲率半径が小さくなりすぎず、画角が大きくついた周辺光に対するコマ収差を小さく抑えることができる。また、より望ましくは下式の範囲がよい。
−5<(r1+r2)/(r1−r2)≦−1 (14‘)
さらに望ましくは下式の範囲がよい。
−4<(r1+r2)/(r1−r2)≦−1 (14“)
Conditional expression (14) is a conditional expression for setting the shape of the first lens appropriately to achieve both shortening of the entire length of the imaging lens and suppression of coma generated in the first lens. Conditional expression (14) defines a so-called shaping factor that represents the shape of the first lens. In the range of the conditional expression, the first lens is set in a meniscus range with the convex surface facing the object side from the plano-convex lens. The When the value of conditional expression (14) is below the upper limit, the first lens has a meniscus shape, so that the principal point position of the entire imaging lens system can be moved closer to the object side. Shortening can be performed. On the other hand, when the value of conditional expression (14) exceeds the lower limit, the radius of curvature of the side surface of the first lens object does not become too small, and coma aberration with respect to ambient light with a large angle of view can be suppressed to a small value. More preferably, the range of the following formula is good.
−5 <(r1 + r2) / (r1−r2) ≦ −1 (14 ′)
The range of the following formula is more desirable.
-4 <(r1 + r2) / (r1-r2) ≤-1 (14 ")

請求項4に記載の撮像レンズは、請求項1〜3のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.3<f3/f<1.5 (6)
ただし、
f3:前記第3レンズの焦点距離
f:前記撮像レンズ全系の焦点距離
The imaging lens of Claim 4 satisfies the following conditional expressions in the invention of any one of Claims 1-3.
0.3 <f3 / f <1.5 (6)
However,
f3: focal length of the third lens f: focal length of the entire imaging lens system

条件式(6)は第3レンズの焦点距離を適切に設定して、小型化と良好な収差補正を両立させるための条件式である。条件式(6)の値が上限を下回ることで、焦点距離が長くなって第3レンズの正の屈折力が弱くなるのを抑えることができるので、正の屈折力を適度に維持することができ、結果として射出瞳位置を固体撮像素子から物体側へ遠ざけることができるため、固体撮像素子の撮像面周辺部に結像する光束の主光線入射角度(主光線と光軸のなす角度で、光軸もしくは光軸と平行な場合はO゜)を小さく抑えることが可能になる。結果として,撮像面周辺部において実質的な開口効率が減少する現象(シェーディング)を抑制することができる。   Conditional expression (6) is a conditional expression for setting the focal length of the third lens appropriately to achieve both miniaturization and good aberration correction. When the value of conditional expression (6) is less than the upper limit, it is possible to prevent the positive refractive power of the third lens from becoming weak due to a long focal distance, so that the positive refractive power can be appropriately maintained. As a result, the exit pupil position can be moved away from the solid-state image sensor to the object side, so that the chief ray incident angle (the angle formed between the principal ray and the optical axis) If the optical axis or the optical axis is parallel, O °) can be kept small. As a result, it is possible to suppress a phenomenon (shading) in which the substantial aperture efficiency decreases in the periphery of the imaging surface.

一方、条件式(6)の値が下限を上回ることで、焦点距離が短くなって第3レンズの正の屈折力が必要以上に強くなるのを抑えることができるので、光学系の主点が物体側に配置されレンズ全長の短縮ができる。また、像面湾曲や歪曲収差等の軸外諸収差の良好な補正が可能になる。また、より望ましくは下式の範囲がよい。
0.3<f3/f<1.3 (6‘)
さらに望ましくは下式の範囲がよい。
0.35<f3/f<1.1 (6”)
On the other hand, since the value of conditional expression (6) exceeds the lower limit, the focal length is shortened and the positive refractive power of the third lens can be suppressed from becoming stronger than necessary. Arranged on the object side, the total lens length can be shortened. Further, it is possible to satisfactorily correct off-axis aberrations such as field curvature and distortion. More preferably, the range of the following formula is good.
0.3 <f3 / f <1.3 (6 ′)
The range of the following formula is more desirable.
0.35 <f3 / f <1.1 (6 ")

さらに、第3レンズは、以下の条件式を満足する形状にすることが望ましい。
1.0≦(r5+r6)/(r5−r6)<6.0 (15)
ただし、
r5:第3レンズの物体側面の曲率半径
r6:第3レンズの像側面の曲率半径
Furthermore, it is desirable that the third lens has a shape that satisfies the following conditional expression.
1.0 ≦ (r5 + r6) / (r5-r6) <6.0 (15)
However,
r5: radius of curvature of the object side surface of the third lens r6: radius of curvature of the image side surface of the third lens

条件式(15)は第3レンズの形状を表す、所謂シェーピングファクターを規定しており、条件式の範囲で第3レンズは、平凸レンズから像側に凸面を向けたメニスカス形状の範囲に設定される。条件式(15)の値が上限を下回ることで、第3レンズがメニスカス形状となるため、物体側面は凹面形状になり、物体側面に入射する光線の角度を小さくできるので、収差の発生を抑えることができる。一方、条件式(15)の値が下限を上回ることで、第3レンズ物体側面の曲率半径が小さくなりすぎるのを抑えられるので、第2レンズとの間隔を狭くしてもレンズ周辺部でぶつからず、レンズ全長を短縮することができる。また、より望ましくは下式の範囲がよい。
1.2<(r5+r6)/(r5−r6)<4.0 (15‘)
さらに望ましくは下式の範囲がよい。
1.4<(r5+r6)/(r5−r6)<3.0 (15“)
Conditional expression (15) defines a so-called shaping factor that represents the shape of the third lens. In the range of the conditional expression, the third lens is set to a meniscus-shaped range with the convex surface facing the image side from the plano-convex lens. The When the value of conditional expression (15) is less than the upper limit, the third lens has a meniscus shape, so that the object side surface has a concave shape, and the angle of light incident on the object side surface can be reduced, thereby suppressing the occurrence of aberrations. be able to. On the other hand, since the value of conditional expression (15) exceeds the lower limit, the curvature radius of the third lens object side surface can be suppressed from becoming too small. Therefore, the total lens length can be shortened. More preferably, the range of the following formula is good.
1.2 <(r5 + r6) / (r5-r6) <4.0 (15 ′)
The range of the following formula is more desirable.
1.4 <(r5 + r6) / (r5-r6) <3.0 (15 ")

請求項5に記載の撮像レンズは、請求項1〜4のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
0.001<T34/f<0.3 (7)
ただし、
T34:前記第3レンズと前記第4レンズの光軸上の空気間隔
The imaging lens of Claim 5 satisfies the following conditional expressions in the invention in any one of Claims 1-4, It is characterized by the above-mentioned.
0.001 <T34 / f <0.3 (7)
However,
T34: Air space on the optical axis of the third lens and the fourth lens

条件式(7)は、第3レンズと第4レンズとの間隔を適切に設定して、小型化と良好な収差補正を両立させるための条件式である。条件式(7)の値が上限を下回ることで、撮像レンズ全長が大きくなるのを抑えることができる。さらに、バックフォーカスが短くなり過ぎて、第4レンズの有効半径が増大するのを抑え、撮像レンズの小型化が可能になる。   Conditional expression (7) is a conditional expression for achieving both miniaturization and good aberration correction by appropriately setting the distance between the third lens and the fourth lens. When the value of conditional expression (7) is less than the upper limit, it is possible to prevent the entire length of the imaging lens from increasing. Furthermore, it is possible to suppress the back focus from becoming too short and increase the effective radius of the fourth lens, and to reduce the size of the imaging lens.

一方、条件式(7)の値が下限を上回ることで、第3レンズと第4レンズとの間隔を適度に維持できるので、第3レンズの像側面の正の屈折力を必要以上に強く設定する必要がなくなり、コマ収差や像面湾曲の補正がしやすくなり、高性能を維持しながら広角化が可能になる。また、より望ましくは下式の範囲がよい。
0.005<T34/f<0.25 (7’)
On the other hand, if the value of conditional expression (7) exceeds the lower limit, the distance between the third lens and the fourth lens can be maintained moderately, so the positive refractive power on the image side surface of the third lens is set stronger than necessary. This makes it easier to correct coma and curvature of field, and enables widening the angle while maintaining high performance. More preferably, the range of the following formula is good.
0.005 <T34 / f <0.25 (7 ')

請求項6に記載の撮像レンズは、請求項1〜5のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
−1.0<(r7+r8)/(r7−r8)<1.0 (8)
ただし、
r7:前記第4レンズの物体側面の曲率半径
r8:前記第4レンズの像側面の曲率半径
The imaging lens of Claim 6 satisfies the following conditional expressions in the invention in any one of Claims 1-5, It is characterized by the above-mentioned.
−1.0 <(r7 + r8) / (r7−r8) <1.0 (8)
However,
r7: radius of curvature of the object side surface of the fourth lens r8: radius of curvature of the image side surface of the fourth lens

条件式(8)は、第4レンズの形状を適切に設定し、光学全長の短縮化を達成するための条件式である。条件式の範囲内で、第4レンズは両凹となる。条件式(8)の値が上限を下回ることで、像側面の負の屈折力が強くなりすぎて、光線が発散しすぎることがなく、全長を短縮しながらもテレセントリック性を改善できる。   Conditional expression (8) is a conditional expression for appropriately setting the shape of the fourth lens and achieving shortening of the optical total length. Within the range of the conditional expression, the fourth lens is biconcave. When the value of conditional expression (8) is less than the upper limit, the negative refractive power of the image side surface becomes too strong and the light rays do not diverge too much, and the telecentricity can be improved while shortening the total length.

一方で、条件式(8)の値が下限を上回ることで、物体側面の負の屈折力が強くなりすぎて、像側面で屈折力が弱くなり過ぎないので、光線の発散を適度に保つことができ、全長を短縮しつつ、撮像レンズのバックフォーカスを十分に確保できる。また、より望ましくは下式の範囲がよい。
−0.5<(r7+r8)/(r7−r8)<1.0 (8‘)
On the other hand, if the value of conditional expression (8) exceeds the lower limit, the negative refracting power on the object side surface becomes too strong, and the refracting power does not become too weak on the image side surface. Thus, the back focus of the imaging lens can be sufficiently secured while shortening the overall length. More preferably, the range of the following formula is good.
−0.5 <(r7 + r8) / (r7−r8) <1.0 (8 ′)

条件式の範囲内で、前記第4レンズは、像側面に強い負の屈折力を有する両凹形状となる。条件式(8‘)を満足することで、像側面での光線の発散が適度に保たれ、バックフォーカスを確保しつつが短くなり過ぎて、第4レンズの有効半径が増大するのを抑え、全長の短縮化が可能になる。さらに望ましくは下式の範囲がよい。
0<(r7+r8)/(r7−r8)<1.0 (8“)
Within the range of the conditional expression, the fourth lens has a biconcave shape having a strong negative refractive power on the image side surface. Satisfying conditional expression (8 ′) suppresses an increase in the effective radius of the fourth lens, because the divergence of light rays on the side surface of the image is maintained moderately and the back focus is secured while being too short. The total length can be shortened. The range of the following formula is more desirable.
0 <(r7 + r8) / (r7-r8) <1.0 (8 ")

請求項7に記載の撮像レンズは、請求項1〜6のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
−5.0<Pair12/P<−0.1 (9)
ただし、
P:前記撮像レンズ全系の屈折力(焦点距離の逆数)
air12:前記第1レンズの像側面と前記第2レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、以下の条件式で求める。
air12=(1−N1)/R2+(N2−1)/R3−{((1−N1)・(N2−1))/(R2・R3)}・D2 (10)
ただし、
N1:前記第1レンズのd線に対する屈折率
N2:前記第2レンズのd線に対する屈折率
R2:前記第1レンズの像側面の曲率半径
R3:前記第2レンズの物体側面の曲率半径
D2:前記第1レンズと前記第2レンズの光軸上の空気間隔
The imaging lens of Claim 7 satisfies the following conditional expressions in the invention in any one of Claims 1-6, It is characterized by the above-mentioned.
-5.0 <P air12 /P<-0.1 (9)
However,
P: refractive power of the entire imaging lens system (reciprocal of focal length)
P air12 : Refractive power of a so-called air lens formed by the image side surface of the first lens and the object side surface of the second lens, which is obtained by the following conditional expression.
P air12 = (1-N1) / R2 + (N2-1) / R3-{((1-N1) · (N2-1)) / (R2 · R3)} · D2 (10)
However,
N1: Refractive index with respect to d line of the first lens N2: Refractive index with respect to d line of the second lens R2: Radius of curvature of the image side surface of the first lens R3: Radius of curvature of the object side surface of the second lens D2: Air spacing on the optical axis of the first lens and the second lens

条件式(9)は、第1レンズと第2レンズで形成される空気レンズの屈折力を適切にすることにより、像面補正及びレンズの加工性を良好にするための条件式である。条件式(9)の値が上限を下回ることで、空気レンズによる負の屈折力を維持できるためペッツバール和が大きくなり過ぎず、像面を平坦にすることができる。   Conditional expression (9) is a conditional expression for improving the image plane correction and lens processability by making the refractive power of the air lens formed by the first lens and the second lens appropriate. When the value of conditional expression (9) is less than the upper limit, the negative refractive power of the air lens can be maintained, so that the Petzval sum does not become too large and the image plane can be flattened.

一方、条件式(9)の値が下限を上回ると、空気レンズによる負の屈折力が強くなり過ぎないので、製造時に第1レンズと第2レンズの相対的な軸ズレが発生した際に、性能劣化の少ない良好な像を得ることができる。また、より望ましくは下式の範囲がよい。
−3.5<Pair12/P<−0.2 (9‘)
さらに望ましくは下式の範囲がよい。
−2.5<Pair12/P<−0.3 (9“)
On the other hand, if the value of conditional expression (9) exceeds the lower limit, the negative refractive power by the air lens does not become too strong, so when a relative axial misalignment between the first lens and the second lens occurs during manufacturing, A good image with little performance deterioration can be obtained. More preferably, the range of the following formula is good.
−3.5 <P air12 /P<−0.2 (9 ′)
The range of the following formula is more desirable.
-2.5 <P air12 /P<-0.3 (9 ")

請求項8に記載の撮像レンズは、請求項1〜7のいずれかに記載の発明において、以下の条件式を満足することを特徴とする。
50<νd1<97 (11)
15<νd2<29 (12)
ただし、
νd1:前記第1レンズのアッベ数
νd2:前記第2レンズのアッベ数
An imaging lens according to an eighth aspect of the invention according to any one of the first to seventh aspects satisfies the following conditional expression.
50 <νd1 <97 (11)
15 <νd2 <29 (12)
However,
νd1: Abbe number of the first lens νd2: Abbe number of the second lens

条件式(11)および(12)は、前記第1レンズと前記第2レンズのアッベ数を適切に設定し、色収差を良好に補正するための条件式である。条件式(11)を満足するような低分散のレンズ材料を第1レンズに用いることで、軸上色収差を十分に補正することができる。又、条件式(12)を満足するような高分散のレンズ材料を第2レンズに用いることで、軸上色収差および倍率色収差をバランスよく補正することができる。   Conditional expressions (11) and (12) are conditional expressions for appropriately setting the Abbe numbers of the first lens and the second lens and correcting chromatic aberration satisfactorily. By using a low-dispersion lens material that satisfies the conditional expression (11) for the first lens, the longitudinal chromatic aberration can be sufficiently corrected. Further, by using a highly dispersed lens material that satisfies the conditional expression (12) for the second lens, it is possible to correct axial chromatic aberration and lateral chromatic aberration in a balanced manner.

請求項9に記載の撮像レンズは、請求項1〜8のいずれかに記載の発明において、前記第1レンズの物体側面より物体側に前記開口絞りを配置することを特徴とする。   An imaging lens according to a ninth aspect is characterized in that, in the invention according to any one of the first to eighth aspects, the aperture stop is disposed closer to the object side than the object side surface of the first lens.

第1レンズの物体側面より物体側に開口絞りを配置すると,射出瞳を更に遠くに離すことができるため、良好なテレセントリック特性の確保に有利である。   Arranging the aperture stop closer to the object side than the object side surface of the first lens is advantageous in ensuring good telecentric characteristics because the exit pupil can be further distant.

請求項10に記載の撮像レンズは、請求項1〜8のいずれかに記載の発明において、前記第1レンズと前記第2レンズの間に前記開口絞りを配置することを特徴とする。   According to a tenth aspect of the present invention, in the invention according to any one of the first to eighth aspects, the aperture stop is disposed between the first lens and the second lens.

第1レンズと第2レンズとの間に開口絞りを配置すると、歪曲収差やコマ収差の補正がし易い構成になり、高性能化に有利である。   If an aperture stop is disposed between the first lens and the second lens, it becomes easy to correct distortion aberration and coma aberration, which is advantageous for high performance.

請求項11に記載の撮像レンズは、請求項1〜10のいずれかに記載の発明において、実質的に屈折力を有しないレンズを有することを特徴とする。つまり、請求項1の構成に、実質的に屈折力を持たないダミーレンズを付与した場合でも本発明の適用範囲内である。   An imaging lens according to an eleventh aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the lens has substantially no refractive power. That is, even when a dummy lens having substantially no refractive power is added to the configuration of claim 1, it is within the scope of application of the present invention.

請求項12に記載の撮像装置は、被写体像を光電変換する固体撮像素子と、請求項1〜11のいずれかに記載の撮像レンズを備えたことを特徴とする。本発明の撮像レンズを用いることで、より小型かつ高性能な撮像装置を得ることができる。   An imaging apparatus according to a twelfth aspect includes a solid-state imaging element that photoelectrically converts a subject image and the imaging lens according to any one of the first to eleventh aspects. By using the imaging lens of the present invention, a smaller and higher performance imaging device can be obtained.

請求項13に記載の携帯端末は、請求項12に記載の撮像装置を備えたことを特徴とする。本発明の撮像装置を用いることで、より小型かつ高性能な携帯端末を得ることができる。   According to a thirteenth aspect of the present invention, there is provided a mobile terminal including the imaging device according to the twelfth aspect. By using the imaging device of the present invention, a smaller and higher performance portable terminal can be obtained.

本発明によれば、小型でありながらも、撮影画角が70度以上の広角で、F2.4程度の明るさを有し、諸収差が良好に補正された、4枚構成の撮像レンズ、及びそれを用いた撮像装置並びに携帯端末を提供することができる。   According to the present invention, a four-lens imaging lens having a wide field of view of 70 degrees or more, a brightness of about F2.4, and various aberrations corrected satisfactorily while being small in size. And an imaging device and a portable terminal using the same can be provided.

本実施の形態にかかる撮像ユニット50の斜視図である。It is a perspective view of the imaging unit 50 concerning this Embodiment. 撮像ユニット50の撮像光学系の光軸に沿った断面を模式的に示した図である。3 is a diagram schematically showing a cross section along the optical axis of an imaging optical system of the imaging unit 50. FIG. 撮像ユニットを適用した携帯電話の正面図(a)、及び撮像ユニットを適用した携帯電話の背面図(b)である。It is the front view (a) of the mobile phone to which the imaging unit is applied, and the rear view (b) of the mobile phone to which the imaging unit is applied. 図3のスマートフォンの制御ブロック図である。It is a control block diagram of the smart phone of FIG. 実施例1の撮像レンズの光軸方向断面図である。3 is a cross-sectional view in the optical axis direction of the imaging lens of Example 1. FIG. 実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 4 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例2の撮像レンズの光軸方向断面図である。FIG. 6 is a cross-sectional view in the optical axis direction of the imaging lens of Example 2. 実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 6 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例3の撮像レンズの光軸方向断面図である。6 is a cross-sectional view in the optical axis direction of the imaging lens of Embodiment 3. FIG. 実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 6 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例4の撮像レンズの光軸方向断面図である。6 is a cross-sectional view in the optical axis direction of an imaging lens of Example 4. FIG. 実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 6 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例5の撮像レンズの光軸方向断面図である。6 is a cross-sectional view in the optical axis direction of the imaging lens of Example 5. FIG. 実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 6 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例6の撮像レンズの光軸方向断面図である。7 is a cross-sectional view in the optical axis direction of an imaging lens of Example 6. FIG. 実施例6の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例7の撮像レンズの光軸方向断面図である。10 is a cross-sectional view in the optical axis direction of an imaging lens of Example 7. FIG. 実施例7の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 6 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例8の撮像レンズの光軸方向断面図である。FIG. 10 is a cross-sectional view in the optical axis direction of the imaging lens of Example 8. 実施例8の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 8 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). 実施例9の撮像レンズの光軸方向断面図である。10 is a cross-sectional view in the optical axis direction of an imaging lens of Example 9. FIG. 実施例9の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 9 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例10の撮像レンズの光軸方向断面図である。FIG. 12 is a cross-sectional view in the optical axis direction of the imaging lens of Example 10. 実施例10の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 10 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例11の撮像レンズの光軸方向断面図である。14 is a cross-sectional view in the optical axis direction of the imaging lens of Example 11. FIG. 実施例11の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 11 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例12の撮像レンズの光軸方向断面図である。14 is a cross-sectional view in the optical axis direction of the imaging lens of Example 12. FIG. 実施例12の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 12 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例13の撮像レンズの光軸方向断面図である。FIG. 16 is a cross-sectional view in the optical axis direction of the imaging lens of Example 13. 実施例13の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 13 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例14の撮像レンズの光軸方向断面図である。FIG. 22 is a cross-sectional view in the optical axis direction of the imaging lens of Example 14; 実施例14の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 14 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). 実施例15の撮像レンズの光軸方向断面図である。18 is a cross-sectional view in the optical axis direction of the imaging lens of Example 15. FIG. 実施例15の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 15 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例16の撮像レンズの光軸方向断面図である。18 is a cross-sectional view in the optical axis direction of the imaging lens of Example 16. FIG. 実施例16の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 16 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). 実施例17の撮像レンズの光軸方向断面図である。18 is a cross-sectional view in the optical axis direction of the imaging lens of Example 17. FIG. 実施例17の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 17 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). 実施例18の撮像レンズの光軸方向断面図である。FIG. 22 is a cross-sectional view in the optical axis direction of the imaging lens of Example 18; 実施例18の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 18 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). 実施例19の撮像レンズの光軸方向断面図である。FIG. 25 is a cross-sectional view in the optical axis direction of the imaging lens of Example 19; 実施例18の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 18 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). 実施例20の撮像レンズの光軸方向断面図である。FIG. 22 is a cross-sectional view in the optical axis direction of the imaging lens of Example 20; 実施例20の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。FIG. 10 is an aberration diagram of Example 20 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)).

以下、本発明の実施の形態を、図面を参照して説明する。図1は、本実施の形態にかかる撮像ユニット50の斜視図であり、図2は、撮像ユニット50の撮像光学系の光軸に沿った断面を模式的に示した図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an imaging unit 50 according to the present embodiment, and FIG. 2 is a diagram schematically showing a cross section along the optical axis of the imaging optical system of the imaging unit 50.

図1に示すように、撮像ユニット50は、光電変換部51aを有する固体撮像素子としてのCMOS型撮像素子51と、この撮像素子51の光電変換部51aに被写体像を撮像させる撮像レンズ10と、撮像素子51を保持すると共にその電気信号の送受を行う外部接続用端子(外部接続端子ともいう)54に接続された基板52と、物体側からの光入射用の開口部を有し遮光部材からなる鏡筒としての筐体53とを備え、これらが一体的に形成されている。   As shown in FIG. 1, the imaging unit 50 includes a CMOS type imaging device 51 as a solid-state imaging device having a photoelectric conversion unit 51a, an imaging lens 10 that causes the photoelectric conversion unit 51a of the imaging device 51 to capture a subject image, A substrate 52 connected to an external connection terminal (also referred to as an external connection terminal) 54 that holds the image sensor 51 and transmits / receives an electric signal thereof, and has an opening for light incidence from the object side. And a case 53 as a lens barrel, which are integrally formed.

図2に示すように、撮像素子51は、その受光側の平面の中央部に、画素(光電変換素子)が2次元的に配置された、受光部としての光電変換部51aが形成されており、その周囲には信号処理回路(不図示)が形成されている。かかる信号処理回路は、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用いて画像信号出力を形成する信号処理部等から構成されている。また、撮像素子51の受光側の平面の外縁近傍には、多数のパッド(図示略)が配置されており、ワイヤ(不図示)を介して基板52に接続されている。撮像素子51は、光電変換部51aからの信号電荷をデジタルYUV信号等の画像信号等に変換し、ワイヤWを介して基板52上の所定の回路に出力する。ここで、Yは輝度信号、U(=R−Y)は赤と輝度信号との色差信号、V(=B−Y)は青と輝度信号との色差信号である。なお、撮像素子は上記CMOS型のイメージセンサに限定されるものではなく、CCD等の他のものを使用しても良い。   As shown in FIG. 2, the imaging element 51 has a photoelectric conversion part 51 a as a light receiving part in which pixels (photoelectric conversion elements) are two-dimensionally arranged at the center of the plane on the light receiving side. A signal processing circuit (not shown) is formed around the periphery. Such a signal processing circuit includes a drive circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like. A number of pads (not shown) are arranged in the vicinity of the outer edge of the plane on the light receiving side of the image sensor 51, and are connected to the substrate 52 via wires (not shown). The image sensor 51 converts the signal charge from the photoelectric conversion unit 51 a into an image signal such as a digital YUV signal, and outputs it to a predetermined circuit on the substrate 52 via the wire W. Here, Y is a luminance signal, U (= R−Y) is a color difference signal between red and the luminance signal, and V (= BY) is a color difference signal between blue and the luminance signal. Note that the image sensor is not limited to the above CMOS image sensor, and other devices such as a CCD may be used.

基板52は、その上面上で撮像素子51及び筐体53を支持する支持平板52aと、支持平板52aの下面(撮像素子51と反対側の面)にその一端部が接続されたフレキシブル基板52bとを備えている。   The substrate 52 includes a support flat plate 52a that supports the image sensor 51 and the housing 53 on the upper surface thereof, and a flexible substrate 52b having one end connected to the lower surface of the support flat plate 52a (the surface opposite to the image sensor 51). It has.

図示していないが、支持平板52aは多数の信号伝達用パッドを有しており、不図示の配線を介して撮像素子51と接続されている。   Although not shown, the support flat plate 52a has a large number of signal transmission pads, and is connected to the image sensor 51 via a wiring (not shown).

図1において、フレキシブル基板52bは、上記の如くその一端部が支持平板52aと接続され、その他端部に設けられた外部接続端子54を介して支持平板52aと外部回路(例えば、撮像ユニットを実装した上位装置が有する制御回路)とを接続し、外部回路から撮像素子51を駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路ヘ出力したりすることを可能とする。さらに、フレキシブル基板52bの長手方向の中間部が可撓性又は変形性を備え、その変形により、支持平板52aに対して外部接続端子54の向きや配置に自由度を与えている。   In FIG. 1, as described above, one end of the flexible substrate 52b is connected to the support flat plate 52a, and the support flat plate 52a and an external circuit (for example, an image pickup unit are mounted) via an external connection terminal 54 provided at the other end. Connected to the control circuit of the host device, and can be supplied with a voltage and a clock signal for driving the imaging device 51 from an external circuit, or can output a digital YUV signal to the external circuit. And Furthermore, the intermediate portion in the longitudinal direction of the flexible substrate 52b has flexibility or deformability, and the deformation gives the freedom to the orientation and arrangement of the external connection terminals 54 with respect to the support flat plate 52a.

図2において、筐体53は、基板52の支持平板52aにおける撮像素子51が設けられた面上に、撮像素子51を覆うようにして固定配置されている。即ち、筐体53は、撮像素子51側の部分が撮像素子51を囲むように広く開口されると共に、他端部(物体側端部)が小開口を有するフランジ部53aを形成しており、支持平板52a上に撮像素子51側の端部(像側端部)が当接固定されている。なお、筐体53の撮像素子51側の端部が、撮像素子51上における光電変換部51aの周囲に当接固定されていても良い。   In FIG. 2, the housing 53 is fixedly disposed on the surface of the support plate 52 a of the substrate 52 on which the image sensor 51 is provided so as to cover the image sensor 51. That is, the casing 53 is wide open so that the part on the image sensor 51 side surrounds the image sensor 51, and the other end (object side end) forms a flange 53a having a small opening. An end on the image sensor 51 side (image side end) is abutted and fixed on the support flat plate 52a. Note that the end of the housing 53 on the image sensor 51 side may be fixed in contact with the periphery of the photoelectric conversion unit 51 a on the image sensor 51.

小開口(光入射用の開口部)が設けられたフランジ部53aを物体側に向けて配置された筐体53の内部において、撮像レンズ10と撮像素子51との間に、カバーガラスCGが固定配置されている。尚、これ以外にIR(赤外線)カットフィルタを設けても良い。   A cover glass CG is fixed between the imaging lens 10 and the imaging element 51 inside the housing 53 in which the flange portion 53a provided with a small opening (an opening for light incidence) is directed toward the object side. Has been placed. Besides this, an IR (infrared) cut filter may be provided.

筐体53内に配置された撮像レンズ10は、物体側より順に、正の屈折力を有し物体側に凸面を向けた第1レンズL1、負の屈折力を有し物体側に凹面を向けた第2レンズL2、正の屈折力を有し像側に凸面を向けた第3レンズL3、負の屈折力を有し両凹形状を有する第4レンズL4、からなる。各レンズL1〜4は、隣接するレンズ間に配置されたスペーサSPにより所定間隔で保持されている。第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第2レンズL2より物体側に配置され、以下の条件式を満足する。
−10<f1/f4<−1 (1)
−200<f2/f<−1.4 (2)
35<νd4<85 (3)
ただし、
f1:第1レンズL1の焦点距離
f4:第4レンズL4の焦点距離
f2:第2レンズL2の焦点距離
f:撮像レンズ全系の焦点距離
νd4:第4レンズL4のアッベ数
なお、図1、2では上側を物体側、下側を像側としている。
The imaging lens 10 disposed in the housing 53 has, in order from the object side, a first lens L1 having a positive refractive power and a convex surface facing the object side, and a negative lens having a negative refractive power and a concave surface facing the object side. The second lens L2, the third lens L3 having a positive refractive power and having a convex surface facing the image side, and the fourth lens L4 having a negative refractive power and a biconcave shape. The lenses L1 to L4 are held at predetermined intervals by spacers SP arranged between adjacent lenses. The fourth lens L4 has an aspheric object side surface and an image side surface, has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is more object-oriented than the second lens L2. The following conditional expression is satisfied.
−10 <f1 / f4 <−1 (1)
−200 <f2 / f <−1.4 (2)
35 <νd4 <85 (3)
However,
f1: focal length of the first lens L1 f4: focal length of the fourth lens L4 f2: focal length of the second lens L2 f: focal length νd4 of the entire imaging lens system: Abbe number of the fourth lens L4 FIG. 2, the upper side is the object side and the lower side is the image side.

図示は省略するが、第1レンズL1よりもさらに物体側に、外部からの不要光の入射をできるだけ少なくするための外部遮光マスクが設けられていても良い。又、開口絞りSは、撮像レンズ全系のFナンバーを決定する部材である。第4レンズL4とカバーガラスCGとの間にもスペーサSPが配置されている。   Although illustration is omitted, an external light shielding mask for minimizing the incidence of unnecessary light from outside may be provided on the object side further than the first lens L1. The aperture stop S is a member that determines the F number of the entire imaging lens system. A spacer SP is also disposed between the fourth lens L4 and the cover glass CG.

上述した撮像ユニット50の動作について説明する。図3は、撮像ユニット50を携帯端末としてのスマートフォン100に装備した状態を示す。また、図4はスマートフォン100の制御ブロック図である。   The operation of the imaging unit 50 described above will be described. FIG. 3 shows a state in which the imaging unit 50 is installed in a smartphone 100 as a mobile terminal. FIG. 4 is a control block diagram of the smartphone 100.

撮像ユニット50は、例えば、筐体53の物体側端面がスマートフォン100の背面(図3(b)参照)に設けられ、液晶表示部の下方に相当する位置に配設される。   For example, the object-side end surface of the housing 53 is provided on the back surface of the smartphone 100 (see FIG. 3B), and the imaging unit 50 is disposed at a position corresponding to the lower side of the liquid crystal display unit.

撮像ユニット50の外部接続端子54(図4では矢印)は、スマートフォン100の制御部101と接続され、輝度信号や色差信号等の画像信号を制御部101側に出力する。   The external connection terminal 54 (arrow in FIG. 4) of the imaging unit 50 is connected to the control unit 101 of the smartphone 100, and outputs an image signal such as a luminance signal or a color difference signal to the control unit 101 side.

一方、スマートフォン100は、図4に示すように、各部を統括的に制御すると共に、各処理に応じたプログラムを実行する制御部(CPU)101と、番号等をキーにより指示入力するための入力部60と、所定のデータの他に撮像した映像等を表示する液晶表示部70と、外部サーバとの間の各種情報通信を実現するための無線通信部80と、携帯電話機100のシステムプログラムや各種処理プログラム及び端末ID等の必要な諸データを記憶している記憶部(ROM)91と、制御部101によって実行される各種処理プログラムやデータ、若しくは処理データ、或いは撮像ユニット50により得られた撮像データ等を一時的に格納する作業領域として用いられる及び一時記憶部(RAM)92とを備えている。   On the other hand, as shown in FIG. 4, the smartphone 100 performs overall control of each unit, and also inputs a control unit (CPU) 101 that executes a program corresponding to each process, and inputs a number and the like with a key. Unit 60, a liquid crystal display unit 70 for displaying captured images in addition to predetermined data, a wireless communication unit 80 for realizing various information communication with an external server, a system program for mobile phone 100, Obtained by a storage unit (ROM) 91 storing various processing programs and necessary data such as a terminal ID, and various processing programs and data executed by the control unit 101, or processing data, or the imaging unit 50 And a temporary storage unit (RAM) 92 that is used as a work area for temporarily storing imaging data and the like.

スマートフォン100は、入力キー部60の操作によって動作し、タッチパネル70に表示されたアイコン71等をタッチすることで、撮像ユニット50を動作させて撮像を行うことができる。撮像ユニット50から入力された画像信号は、上記スマートフォン100の制御系により、記憶部92に記憶されたり、或いはタッチパネル70で表示され、さらには、無線通信部80を介して映像情報として外部に送信される。
[実施例]
The smartphone 100 operates by operating the input key unit 60, and can touch the icon 71 and the like displayed on the touch panel 70 to operate the imaging unit 50 to perform imaging. The image signal input from the imaging unit 50 is stored in the storage unit 92 or displayed on the touch panel 70 by the control system of the smartphone 100, and further transmitted to the outside as video information via the wireless communication unit 80. Is done.
[Example]

以下、本発明の撮像レンズの実施例を示す。各実施例に使用する記号は下記の通りである。
f:撮像レンズ全系の焦点距離
fB:バックフォーカス
F:Fナンバー
2ω:撮影画角
2Y:固体撮像素子の撮像面対角線長
ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
H1:前側主点位置(第1面から前側主点位置までの距離)
H2:後側主点位置(最終面から後側主点位置までの距離)
R:曲率半径
D:軸上面間隔
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
Examples of the imaging lens of the present invention will be shown below. Symbols used in each example are as follows.
f: Focal length of the entire imaging lens fB: Back focus F: F number 2ω: Shooting angle of view 2Y: Diagonal length of the imaging surface of the solid-state imaging device
ENTP: Entrance pupil position (distance from first surface to entrance pupil position)
EXTP: Exit pupil position (distance from imaging surface to exit pupil position)
H1: Front principal point position (distance from the first surface to the front principal point position)
H2: Rear principal point position (distance from the final surface to the rear principal point position)
R: radius of curvature D: axial distance Nd: refractive index νd of lens material with respect to d-line: Abbe number of lens material

各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。   In each embodiment, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction. The height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.

ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant

なお、特許請求の範囲及び実施例に記載の近軸曲率半径の意味合いについて、実際のレンズ測定の場面においては、レンズ中央近傍(具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる。(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41〜42を参照のこと)   Regarding the meaning of the paraxial radius of curvature described in the claims and the examples, in the actual lens measurement scene, in the vicinity of the center of the lens (specifically, the central region within 10% of the lens outer diameter) ) Can be regarded as the paraxial curvature radius when fitting the shape measurement value in the least square method. For example, when a secondary aspherical coefficient is used, a radius of curvature that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as the paraxial curvature radius. (For example, refer to P41-42 of “Lens Design Method” written by Yoshiya Matsui (Kyoritsu Publishing Co., Ltd.) as a reference)

(実施例1)
実施例1のレンズデータを表1に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)を、E(たとえば2.5E−02)を用いて表すものとする。
Example 1
Table 1 shows lens data of Example 1. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5E-02).

[表1]
実施例 1

f=3.06mm fB=0.11mm F=2.1 2ω=86°2Y=5.8mm
ENTP=0mm EXTP=-2.47mm H1=-0.57mm H2=-2.95mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.11 0.73
2* 1.500 0.59 1.5447 56 0.75
3* 5.179 0.33 0.81
4* -4.186 0.29 1.6510 21 0.81
5* -6.296 0.32 0.92
6* -3.125 0.66 1.5447 56 1.21
7* -0.883 0.41 1.38
8* -8.744 0.32 1.5447 56 1.97
9* 1.213 0.64 2.41
10 ∞ 0.35 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=0.30147E-01 K=0.13272E+01
A4=-0.83898E-02 A4=-0.52583E-02
A6=0.18863E-01 A6=0.97220E-01
A8=-0.81677E-01 A8=-0.35544E-01
A10=0.14043E+00 A10=-0.61285E-01
A12=-0.19535E+00 A12=0.70343E-01
A14=-0.22057E-01

第3面 第7面
K=-0.14555E+02 K=-0.37223E+01
A4=-0.38994E-01 A4=-0.20371E+00
A6=-0.83415E-01 A6=0.24172E+00
A8=-0.29394E-02 A8=-0.12840E+00
A10=-0.14923E+00 A10=0.27103E-01
A12=-0.88531E-01 A12=0.88721E-02
A14=-0.41419E-02

第4面 第8面
K=0.18655E+02 K=0.32099E+01
A4=-0.17851E+00 A4=-0.87650E-02
A6=-0.39578E-01 A6=-0.13975E-01
A8=-0.35103E-01 A8=0.26627E-02
A10=0.64043E-01 A10=0.37524E-03
A12=0.14813E+00 A12=-0.23856E-04
A14=-0.18705E+00 A14=-0.89056E-05

第5面 第9面
K=0.22455E+02 K=-0.72583E+01
A4=-0.85770E-01 A4=-0.54241E-01
A6=0.66954E-01 A6=0.23451E-01
A8=-0.72231E-01 A8=-0.99389E-02
A10=0.16317E+00 A10=0.25085E-02
A12=-0.15548E-01 A12=-0.34235E-03
A14=-0.70478E-02 A14=0.18872E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 3.67
2 4 -20.27
3 6 2.05
4 8 -1.93
[Table 1]
Example 1

f = 3.06mm fB = 0.11mm F = 2.1 2ω = 86 ° 2Y = 5.8mm
ENTP = 0mm EXTP = -2.47mm H1 = -0.57mm H2 = -2.95mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.11 0.73
2 * 1.500 0.59 1.5447 56 0.75
3 * 5.179 0.33 0.81
4 * -4.186 0.29 1.6510 21 0.81
5 * -6.296 0.32 0.92
6 * -3.125 0.66 1.5447 56 1.21
7 * -0.883 0.41 1.38
8 * -8.744 0.32 1.5447 56 1.97
9 * 1.213 0.64 2.41
10 ∞ 0.35 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = 0.30147E-01 K = 0.3272E + 01
A4 = -0.83898E-02 A4 = -0.52583E-02
A6 = 0.18863E-01 A6 = 0.97220E-01
A8 = -0.81677E-01 A8 = -0.35544E-01
A10 = 0.14043E + 00 A10 = -0.61285E-01
A12 = -0.19535E + 00 A12 = 0.70343E-01
A14 = -0.22057E-01

3rd surface 7th surface
K = -0.14555E + 02 K = -0.37223E + 01
A4 = -0.38994E-01 A4 = -0.20371E + 00
A6 = -0.83415E-01 A6 = 0.24172E + 00
A8 = -0.29394E-02 A8 = -0.12840E + 00
A10 = -0.14923E + 00 A10 = 0.27103E-01
A12 = -0.88531E-01 A12 = 0.88721E-02
A14 = -0.41419E-02

4th side 8th side
K = 0.18655E + 02 K = 0.32099E + 01
A4 = -0.17851E + 00 A4 = -0.87650E-02
A6 = -0.39578E-01 A6 = -0.13975E-01
A8 = -0.35103E-01 A8 = 0.26627E-02
A10 = 0.64043E-01 A10 = 0.37524E-03
A12 = 0.14813E + 00 A12 = -0.23856E-04
A14 = -0.18705E + 00 A14 = -0.89056E-05

5th surface 9th surface
K = 0.22455E + 02 K = -0.72583E + 01
A4 = -0.85770E-01 A4 = -0.54241E-01
A6 = 0.66954E-01 A6 = 0.23451E-01
A8 = -0.72231E-01 A8 = -0.99389E-02
A10 = 0.16317E + 00 A10 = 0.25085E-02
A12 = -0.15548E-01 A12 = -0.34235E-03
A14 = -0.70478E-02 A14 = 0.18872E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 3.67
2 4 -20.27
3 6 2.05
4 8 -1.93

図5は実施例1のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図6は、実施例1の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。尚、以降の収差図において、球面収差図では、実線がd線、点線がg線を表し、非点収差図では、実線Sがサジタル像面、点線Mがメリジオナル像面をあらわすものとする。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第2レンズL1より物体側に配置されている。   5 is a sectional view of the lens of Example 1. FIG. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 6 is an aberration diagram of Example 1 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the following aberration diagrams, in the spherical aberration diagram, the solid line represents the d-line and the dotted line represents the g-line, and in the astigmatism diagram, the solid line S represents the sagittal image plane, and the dotted line M represents the meridional image plane. In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. Two lenses L1 are disposed on the object side.

(実施例2)
実施例2の撮像レンズのレンズデータを、表2に示す。
(Example 2)
Table 2 shows lens data of the imaging lens of Example 2.

[表2]
実施例 2

f=3.78mm fB=0.07mm F=2.4 2ω=78°2Y=6.2mm
ENTP=0mm EXTP=-3.34mm H1=-0.41mm H2=-3.71mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.11 0.79
2* 1.656 0.52 1.5447 56 0.80
3* 6.104 0.46 0.83
4* -8.344 0.23 1.6347 24 0.85
5* -39.968 0.54 0.97
6* -2.555 0.72 1.5447 56 1.21
7* -0.719 0.05 1.44
8* -369.984 0.50 1.5489 50 1.92
9* 0.864 1.16 2.27
10 ∞ 0.50 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=-0.38615E-01 K=0.10572E+01
A4=-0.16380E-01 A4=-0.17795E-01
A6=0.32061E-01 A6=0.11006E+00
A8=-0.15407E+00 A8=-0.48581E-01
A10=0.19403E+00 A10=-0.86865E-01
A12=-0.13145E+00 A12=0.99059E-01
A14=-0.28809E-01

第3面 第7面
K=-0.12663E+02 K=-0.41123E+01
A4=-0.34636E-01 A4=-0.20929E+00
A6=-0.76570E-01 A6=0.27156E+00
A8=0.50155E-01 A8=-0.17056E+00
A10=-0.69382E-01 A10=0.34477E-01
A12=0.38352E-02 A12=0.13503E-01
A14=-0.50239E-02

第4面 第8面
K=-0.34162E+02 K=-0.10000E+02
A4=-0.15159E+00 A4=-0.12640E-01
A6=0.91415E-02 A6=-0.18877E-01
A8=-0.59791E-01 A8=0.35112E-02
A10=0.55533E-01 A10=0.69765E-03
A12=0.24474E+00 A12=-0.36370E-05
A14=-0.18975E+00 A14=-0.27996E-04

第5面 第9面
K=0.50000E+02 K=-0.76680E+01
A4=-0.73359E-01 A4=-0.68937E-01
A6=0.54724E-01 A6=0.28326E-01
A8=-0.10062E+00 A8=-0.12150E-01
A10=0.18834E+00 A10=0.31889E-02
A12=-0.50482E-01 A12=-0.47433E-03
A14=-0.64678E-02 A14=0.30108E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 4.01
2 4 -16.66
3 6 1.61
4 8 -1.57
[Table 2]
Example 2

f = 3.78mm fB = 0.07mm F = 2.4 2ω = 78 ° 2Y = 6.2mm
ENTP = 0mm EXTP = -3.34mm H1 = -0.41mm H2 = -3.71mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.11 0.79
2 * 1.656 0.52 1.5447 56 0.80
3 * 6.104 0.46 0.83
4 * -8.344 0.23 1.6347 24 0.85
5 * -39.968 0.54 0.97
6 * -2.555 0.72 1.5447 56 1.21
7 * -0.719 0.05 1.44
8 * -369.984 0.50 1.5489 50 1.92
9 * 0.864 1.16 2.27
10 ∞ 0.50 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = -0.38615E-01 K = 0.10572E + 01
A4 = -0.16380E-01 A4 = -0.17795E-01
A6 = 0.32061E-01 A6 = 0.11006E + 00
A8 = -0.15407E + 00 A8 = -0.48581E-01
A10 = 0.19403E + 00 A10 = -0.86865E-01
A12 = -0.13145E + 00 A12 = 0.99059E-01
A14 = -0.28809E-01

3rd surface 7th surface
K = -0.12663E + 02 K = -0.41123E + 01
A4 = -0.34636E-01 A4 = -0.20929E + 00
A6 = -0.76570E-01 A6 = 0.27156E + 00
A8 = 0.50155E-01 A8 = -0.17056E + 00
A10 = -0.69382E-01 A10 = 0.34477E-01
A12 = 0.38352E-02 A12 = 0.13503E-01
A14 = -0.50239E-02

4th side 8th side
K = -0.34162E + 02 K = -0.10000E + 02
A4 = -0.15159E + 00 A4 = -0.12640E-01
A6 = 0.91415E-02 A6 = -0.18877E-01
A8 = -0.59791E-01 A8 = 0.35112E-02
A10 = 0.55533E-01 A10 = 0.69765E-03
A12 = 0.24474E + 00 A12 = -0.36370E-05
A14 = -0.18975E + 00 A14 = -0.27996E-04

5th side 9th side
K = 0.50,000E + 02 K = -0.76680E + 01
A4 = -0.73359E-01 A4 = -0.68937E-01
A6 = 0.54724E-01 A6 = 0.28326E-01
A8 = -0.10062E + 00 A8 = -0.12150E-01
A10 = 0.18834E + 00 A10 = 0.31889E-02
A12 = -0.50482E-01 A12 = -0.47433E-03
A14 = -0.64678E-02 A14 = 0.30108E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 4.01
2 4 -16.66
3 6 1.61
4 8 -1.57

図7は実施例2のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図8は、実施例2の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第2レンズL1より物体側に配置されている。   FIG. 7 is a sectional view of the lens of Example 2. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 8 is an aberration diagram of Example 2 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. Two lenses L1 are disposed on the object side.

(実施例3)
実施例3の撮像レンズのレンズデータを、表3に示す。
(Example 3)
Table 3 shows lens data of the imaging lens of Example 3.

[表3]
実施例 3

f=3.84mm fB=0.09mm F=2.4 2ω=76°2Y=6mm
ENTP=0mm EXTP=-3.20mm H1=-0.65mm H2=-3.75mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.13 0.80
2* 1.488 0.62 1.5447 56 0.84
3* 4.861 0.32 0.87
4* -6.700 0.23 1.6347 24 0.87
5* -127.558 0.56 0.94
6* -3.078 0.81 1.5447 56 1.17
7* -0.915 0.22 1.45
8* -400.000 0.43 1.5447 56 2.07
9* 1.138 1.12 2.38
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=-0.13773E+00 K=0.30827E+00
A4=0.86507E-02 A4=-0.13349E-01
A6=0.20416E-01 A6=0.38107E-02
A8=-0.61096E-01 A8=0.14070E-02
A10=0.96096E-01 A10=-0.25548E-01
A12=-0.81283E-01 A12=0.17669E-01
A14=-0.41764E-02

第3面 第7面
K=-0.65991E+01 K=-0.40584E+01
A4=-0.14594E-01 A4=-0.17770E+00
A6=-0.10386E+00 A6=0.15300E+00
A8=0.12528E+00 A8=-0.90314E-01
A10=-0.31111E+00 A10=0.25444E-01
A12=0.15734E+00 A12=0.37283E-02
A14=-0.22399E-02

第4面 第8面
K=0.48750E+02 K=0.55229E-10
A4=-0.10327E+00 A4=-0.92393E-01
A6=-0.24522E-01 A6=0.26945E-01
A8=-0.10408E+00 A8=-0.16748E-02
A10=-0.39045E-01 A10=-0.15538E-03
A12=0.22110E+00 A12=-0.10630E-04
A14=0.37626E-05

第5面 第9面
K=0.00000E+00 K=-0.77711E+01
A4=-0.20742E-01 A4=-0.74947E-01
A6=-0.28921E-01 A6=0.22787E-01
A8=0.67774E-01 A8=-0.54415E-02
A10=-0.74503E-01 A10=0.73767E-03
A12=0.11875E+00 A12=-0.50761E-04
A14=0.13325E-05

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 3.70
2 4 -11.15
3 6 2.11
4 8 -2.08
[Table 3]
Example 3

f = 3.84mm fB = 0.09mm F = 2.4 2ω = 76 ° 2Y = 6mm
ENTP = 0mm EXTP = -3.20mm H1 = -0.65mm H2 = -3.75mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.13 0.80
2 * 1.488 0.62 1.5447 56 0.84
3 * 4.861 0.32 0.87
4 * -6.700 0.23 1.6347 24 0.87
5 * -127.558 0.56 0.94
6 * -3.078 0.81 1.5447 56 1.17
7 * -0.915 0.22 1.45
8 * -400.000 0.43 1.5447 56 2.07
9 * 1.138 1.12 2.38
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = -0.13773E + 00 K = 0.30827E + 00
A4 = 0.86507E-02 A4 = -0.13349E-01
A6 = 0.20416E-01 A6 = 0.38107E-02
A8 = -0.61096E-01 A8 = 0.14070E-02
A10 = 0.96096E-01 A10 = -0.25548E-01
A12 = -0.81283E-01 A12 = 0.17669E-01
A14 = -0.41764E-02

3rd surface 7th surface
K = -0.65991E + 01 K = -0.40584E + 01
A4 = -0.14594E-01 A4 = -0.17770E + 00
A6 = -0.10386E + 00 A6 = 0.15300E + 00
A8 = 0.12528E + 00 A8 = -0.990314E-01
A10 = -0.31111E + 00 A10 = 0.25444E-01
A12 = 0.15734E + 00 A12 = 0.37283E-02
A14 = -0.22399E-02

4th side 8th side
K = 0.48750E + 02 K = 0.55229E-10
A4 = -0.10327E + 00 A4 = -0.92393E-01
A6 = -0.24522E-01 A6 = 0.26945E-01
A8 = -0.10408E + 00 A8 = -0.16748E-02
A10 = -0.39045E-01 A10 = -0.15538E-03
A12 = 0.22110E + 00 A12 = -0.10630E-04
A14 = 0.37626E-05

5th side 9th side
K = 0.00000E + 00 K = -0.777711E + 01
A4 = -0.20742E-01 A4 = -0.74947E-01
A6 = -0.28921E-01 A6 = 0.22787E-01
A8 = 0.67774E-01 A8 = -0.54415E-02
A10 = -0.74503E-01 A10 = 0.73767E-03
A12 = 0.11875E + 00 A12 = -0.50761E-04
A14 = 0.13325E-05

Single lens data

Lens Start surface Focal length (mm)
1 2 3.70
2 4 -11.15
3 6 2.11
4 8 -2.08

図9は実施例3のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図10は、実施例3の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第2レンズL1より物体側に配置されている。   FIG. 9 is a sectional view of the lens of Example 3. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 10 is an aberration diagram of Example 3 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. Two lenses L1 are disposed on the object side.

(実施例4)
実施例4の撮像レンズのレンズデータを、表4に示す。
Example 4
Table 4 shows lens data of the imaging lens of Example 4.

[表4]
実施例 4

f=3.06mm fB=0.10mm F=2.1 2ω=86°2Y=5.8mm
ENTP=0.50mm EXTP=-2.31mm H1=-0.32mm H2=-2.95mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 1.410 0.49 1.5447 56 0.86
2* 4.016 0.10 0.71
3(絞り) ∞ 0.31 0.65
4* -4.078 0.26 1.6510 21 0.74
5* -4.898 0.31 0.89
6* -2.814 0.67 1.5447 56 1.21
7* -0.868 0.38 1.45
8* -6.276 0.31 1.5447 56 2.00
9* 1.318 0.66 2.38
10 ∞ 0.40 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第1面 第6面
K=0.99692E-01 K=0.18574E+01
A4=-0.26783E-02 A4=-0.20977E-01
A6=0.26894E-01 A6=0.10071E+00
A8=-0.83089E-01 A8=-0.31422E-01
A10=0.15472E+00 A10=-0.59314E-01
A12=-0.17570E+00 A12=0.70731E-01
A14=-0.21695E-01

第2面 第7面
K=0.54948E+01 K=-0.36845E+01
A4=-0.16236E-01 A4=-0.21987E+00
A6=-0.71824E-01 A6=0.24034E+00
A8=0.17011E-01 A8=-0.12553E+00
A10=-0.12224E+00 A10=0.28158E-01
A12=-0.45981E-01 A12=0.89338E-02
A14=-0.42701E-02

第4面 第8面
K=0.17958E+02 K=-0.39931E+01
A4=-0.15624E+00 A4=-0.60568E-02
A6=-0.65068E-01 A6=-0.12494E-01
A8=-0.47143E-01 A8=0.25998E-02
A10=0.82095E-01 A10=0.32591E-03
A12=0.18875E+00 A12=-0.32742E-04
A14=-0.11447E+00 A14=-0.74188E-05

第5面 第9面
K=0.13197E+02 K=-0.83586E+01
A4=-0.86630E-01 A4=-0.56349E-01
A6=0.51756E-01 A6=0.24474E-01
A8=-0.95635E-01 A8=-0.10101E-01
A10=0.16034E+00 A10=0.24830E-02
A12=0.85307E-02 A12=-0.33960E-03
A14=0.32451E-01 A14=0.19230E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 1 3.74
2 4 -42.72
3 6 2.05
4 8 -1.97
[Table 4]
Example 4

f = 3.06mm fB = 0.10mm F = 2.1 2ω = 86 ° 2Y = 5.8mm
ENTP = 0.50mm EXTP = -2.31mm H1 = -0.32mm H2 = -2.95mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 1.410 0.49 1.5447 56 0.86
2 * 4.016 0.10 0.71
3 (Aperture) ∞ 0.31 0.65
4 * -4.078 0.26 1.6510 21 0.74
5 * -4.898 0.31 0.89
6 * -2.814 0.67 1.5447 56 1.21
7 * -0.868 0.38 1.45
8 * -6.276 0.31 1.5447 56 2.00
9 * 1.318 0.66 2.38
10 ∞ 0.40 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

1st side 6th side
K = 0.99692E-01 K = 0.18574E + 01
A4 = -0.26783E-02 A4 = -0.20977E-01
A6 = 0.26894E-01 A6 = 0.10071E + 00
A8 = -0.83089E-01 A8 = -0.31422E-01
A10 = 0.15472E + 00 A10 = -0.59314E-01
A12 = -0.17570E + 00 A12 = 0.70731E-01
A14 = -0.21695E-01

2nd surface 7th surface
K = 0.54948E + 01 K = -0.36845E + 01
A4 = -0.16236E-01 A4 = -0.21987E + 00
A6 = -0.71824E-01 A6 = 0.24034E + 00
A8 = 0.17011E-01 A8 = -0.12553E + 00
A10 = -0.12224E + 00 A10 = 0.28158E-01
A12 = -0.45981E-01 A12 = 0.89338E-02
A14 = -0.42701E-02

4th side 8th side
K = 0.17958E + 02 K = -0.39931E + 01
A4 = -0.15624E + 00 A4 = -0.60568E-02
A6 = -0.65068E-01 A6 = -0.12494E-01
A8 = -0.47143E-01 A8 = 0.25998E-02
A10 = 0.82095E-01 A10 = 0.32591E-03
A12 = 0.18875E + 00 A12 = -0.32742E-04
A14 = -0.11447E + 00 A14 = -0.74188E-05

5th side 9th side
K = 0.13197E + 02 K = -0.83586E + 01
A4 = -0.86630E-01 A4 = -0.56349E-01
A6 = 0.51756E-01 A6 = 0.24474E-01
A8 = -0.95635E-01 A8 = -0.10101E-01
A10 = 0.16034E + 00 A10 = 0.24830E-02
A12 = 0.85307E-02 A12 = -0.33960E-03
A14 = 0.32451E-01 A14 = 0.19230E-04

Single lens data

Lens Start surface Focal length (mm)
1 1 3.74
2 4 -42.72
3 6 2.05
4 8 -1.97

図11は実施例4のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図12は、実施例4の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1と第2レンズL1の間に配置されている。   FIG. 11 is a sectional view of the lens of Example 4. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 12 is an aberration diagram of Example 4 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. It is disposed between the first lens L1 and the second lens L1.

(実施例5)
実施例5の撮像レンズのレンズデータを、表5に示す。
(Example 5)
Table 5 shows lens data of the imaging lens of Example 5.

[表5]
実施例 5

f=2.67mm fB=0.14mm F=2.4 2ω=94°2Y=5.8mm
ENTP=0mm EXTP=-2.35mm H1=-0.18mm H2=-2.52mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.06 0.56
2* 1.415 0.35 1.5447 56 0.56
3* 3.746 0.28 0.64
4* -7.258 0.23 1.6347 24 0.70
5* -8.831 0.38 0.81
6* -3.015 0.60 1.5447 56 1.14
7* -0.788 0.32 1.29
8* -20.000 0.35 1.5447 56 1.94
9* 1.058 0.75 2.38
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=0.14348E+00 K=0.12662E+01
A4=-0.32717E-02 A4=-0.26222E-02
A6=0.29191E-01 A6=0.95001E-01
A8=-0.13327E+00 A8=-0.35151E-01
A10=-0.35761E-01 A10=-0.59584E-01
A12=-0.17836E+00 A12=0.70789E-01
A14=-0.23606E-01

第3面 第7面
K=-0.57384E+01 K=-0.33367E+01
A4=-0.23392E-01 A4=-0.20870E+00
A6=-0.48463E-01 A6=0.26111E+00
A8=-0.50428E-01 A8=-0.12434E+00
A10=-0.32318E+00 A10=0.26306E-01
A12=-0.41912E+00 A12=0.79188E-02
A14=-0.44961E-02

第4面 第8面
K=0.49474E+02 K=0.10000E+02
A4=-0.18580E+00 A4=-0.95526E-02
A6=-0.53863E-02 A6=-0.14596E-01
A8=0.75224E-02 A8=0.28209E-02
A10=0.12428E+00 A10=0.38867E-03
A12=0.18933E+00 A12=-0.32980E-04
A14=-0.32429E+00 A14=-0.87067E-05

第5面 第9面
K=0.45142E+02 K=-0.69072E+01
A4=-0.94858E-01 A4=-0.56709E-01
A6=0.79143E-01 A6=0.23824E-01
A8=-0.42475E-01 A8=-0.98111E-02
A10=0.20169E+00 A10=0.24867E-02
A12=0.40499E-01 A12=-0.34367E-03
A14=0.91278E-01 A14=0.19116E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 3.96
2 4 -67.98
3 6 1.79
4 8 -1.83
[Table 5]
Example 5

f = 2.67mm fB = 0.14mm F = 2.4 2ω = 94 ° 2Y = 5.8mm
ENTP = 0mm EXTP = -2.35mm H1 = -0.18mm H2 = -2.52mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.06 0.56
2 * 1.415 0.35 1.5447 56 0.56
3 * 3.746 0.28 0.64
4 * -7.258 0.23 1.6347 24 0.70
5 * -8.831 0.38 0.81
6 * -3.015 0.60 1.5447 56 1.14
7 * -0.788 0.32 1.29
8 * -20.000 0.35 1.5447 56 1.94
9 * 1.058 0.75 2.38
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = 0.14348E + 00 K = 0.12662E + 01
A4 = -0.32717E-02 A4 = -0.26222E-02
A6 = 0.29191E-01 A6 = 0.95001E-01
A8 = -0.13327E + 00 A8 = -0.35151E-01
A10 = -0.35761E-01 A10 = -0.59584E-01
A12 = -0.17836E + 00 A12 = 0.70789E-01
A14 = -0.23606E-01

3rd surface 7th surface
K = -0.57384E + 01 K = -0.33367E + 01
A4 = -0.23392E-01 A4 = -0.20870E + 00
A6 = -0.448463E-01 A6 = 0.26111E + 00
A8 = -0.50428E-01 A8 = -0.12434E + 00
A10 = -0.32318E + 00 A10 = 0.26306E-01
A12 = -0.41912E + 00 A12 = 0.79188E-02
A14 = -0.44961E-02

4th side 8th side
K = 0.49474E + 02 K = 0.10000E + 02
A4 = -0.18580E + 00 A4 = -0.95526E-02
A6 = -0.53863E-02 A6 = -0.14596E-01
A8 = 0.75224E-02 A8 = 0.28209E-02
A10 = 0.122428E + 00 A10 = 0.38867E-03
A12 = 0.18933E + 00 A12 = -0.32980E-04
A14 = -0.32429E + 00 A14 = -0.87067E-05

5th surface 9th surface
K = 0.45142E + 02 K = -0.69072E + 01
A4 = -0.94858E-01 A4 = -0.56709E-01
A6 = 0.79143E-01 A6 = 0.23824E-01
A8 = -0.42475E-01 A8 = -0.98111E-02
A10 = 0.20169E + 00 A10 = 0.24867E-02
A12 = 0.40499E-01 A12 = -0.34367E-03
A14 = 0.91278E-01 A14 = 0.19116E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 3.96
2 4 -67.98
3 6 1.79
4 8 -1.83

図13は実施例5のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図14は、実施例5の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第2レンズL1より物体側に配置されている。   FIG. 13 is a sectional view of the lens of Example 5. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 14 is an aberration diagram of Example 5 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. Two lenses L1 are disposed on the object side.

(実施例6)
実施例6の撮像レンズのレンズデータを、表6に示す。
(Example 6)
Table 6 shows lens data of the imaging lens of Example 6.

[表6]
実施例 6

f=2.85mm fB=0.13mm F=2.4 2ω=90°2Y=5.8mm
ENTP=0mm EXTP=-2.44mm H1=-0.31mm H2=-2.72mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.06 0.59
2* 1.503 0.37 1.5447 56 0.61
3* 5.047 0.33 0.68
4* -6.323 0.27 1.6347 24 0.76
5* -12.402 0.39 0.88
6* -3.337 0.60 1.5447 56 1.19
7* -0.850 0.37 1.34
8* -20.000 0.35 1.5447 56 1.97
9* 1.118 0.78 2.41
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=-0.15370E-01 K=0.85181E+00
A4=-0.11492E-01 A4=0.54124E-03
A6=0.21397E-01 A6=0.95316E-01
A8=-0.12059E+00 A8=-0.38017E-01
A10=0.60804E-01 A10=-0.62814E-01
A12=-0.17836E+00 A12=0.70374E-01
A14=-0.21335E-01

第3面 第7面
K=-0.14652E+02 K=-0.34764E+01
A4=-0.31025E-01 A4=-0.18949E+00
A6=-0.55233E-01 A6=0.25167E+00
A8=-0.41642E-02 A8=-0.12854E+00
A10=-0.17304E+00 A10=0.26181E-01
A12=-0.81275E-01 A12=0.85962E-02
A14=-0.41463E-02

第4面 第8面
K=0.11379E+02 K=0.61855E+00
A4=-0.16313E+00 A4=-0.92964E-02
A6=0.24857E-01 A6=-0.14938E-01
A8=0.16295E-01 A8=0.26285E-02
A10=0.10170E+00 A10=0.39591E-03
A12=0.17228E+00 A12=-0.17987E-04
A14=-0.20959E+00 A14=-0.10182E-04

第5面 第9面
K=0.30621E+02 K=-0.65136E+01
A4=-0.72777E-01 A4=-0.54395E-01
A6=0.81336E-01 A6=0.23402E-01
A8=-0.59775E-01 A8=-0.98289E-02
A10=0.16537E+00 A10=0.24915E-02
A12=-0.18433E-01 A12=-0.34215E-03
A14=0.33570E-02 A14=0.18859E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 3.79
2 4 -20.68
3 6 1.93
4 8 -1.93
[Table 6]
Example 6

f = 2.85mm fB = 0.13mm F = 2.4 2ω = 90 ° 2Y = 5.8mm
ENTP = 0mm EXTP = -2.44mm H1 = -0.31mm H2 = -2.72mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.06 0.59
2 * 1.503 0.37 1.5447 56 0.61
3 * 5.047 0.33 0.68
4 * -6.323 0.27 1.6347 24 0.76
5 * -12.402 0.39 0.88
6 * -3.337 0.60 1.5447 56 1.19
7 * -0.850 0.37 1.34
8 * -20.000 0.35 1.5447 56 1.97
9 * 1.118 0.78 2.41
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = -0.15370E-01 K = 0.85181E + 00
A4 = -0.11492E-01 A4 = 0.54124E-03
A6 = 0.21397E-01 A6 = 0.95316E-01
A8 = -0.12059E + 00 A8 = -0.38017E-01
A10 = 0.60804E-01 A10 = -0.62814E-01
A12 = -0.17836E + 00 A12 = 0.70374E-01
A14 = -0.21335E-01

3rd surface 7th surface
K = -0.14652E + 02 K = -0.34764E + 01
A4 = -0.31025E-01 A4 = -0.18949E + 00
A6 = -0.55233E-01 A6 = 0.25167E + 00
A8 = -0.41642E-02 A8 = -0.12854E + 00
A10 = -0.17304E + 00 A10 = 0.26181E-01
A12 = -0.81275E-01 A12 = 0.85962E-02
A14 = -0.41463E-02

4th side 8th side
K = 0.11379E + 02 K = 0.61855E + 00
A4 = -0.16313E + 00 A4 = -0.92964E-02
A6 = 0.24857E-01 A6 = -0.14938E-01
A8 = 0.16295E-01 A8 = 0.26285E-02
A10 = 0.10170E + 00 A10 = 0.39591E-03
A12 = 0.17228E + 00 A12 = -0.17987E-04
A14 = -0.20959E + 00 A14 = -0.10182E-04

5th side 9th side
K = 0.30621E + 02 K = -0.65136E + 01
A4 = -0.72777E-01 A4 = -0.54395E-01
A6 = 0.81336E-01 A6 = 0.23402E-01
A8 = -0.59775E-01 A8 = -0.98289E-02
A10 = 0.16537E + 00 A10 = 0.24915E-02
A12 = -0.18433E-01 A12 = -0.34215E-03
A14 = 0.33570E-02 A14 = 0.18859E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 3.79
2 4 -20.68
3 6 1.93
4 8 -1.93

図15は実施例6のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図16は、実施例6の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第2レンズL1より物体側に配置されている。   FIG. 15 is a sectional view of the lens of Example 6. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 16 is an aberration diagram of Example 6 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. Two lenses L1 are disposed on the object side.

(実施例7)
実施例7の撮像レンズのレンズデータを、表7に示す。
(Example 7)
Table 7 shows lens data of the imaging lens of Example 7.

[表7]
実施例 7

f=3.86mm fB=0.10mm F=2.4 2ω=76°2Y=6.2mm
ENTP=0mm EXTP=-3.48mm H1=-0.29mm H2=-3.76mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.10 0.80
2* 1.599 0.57 1.5447 56 0.86
3* 9.283 0.45 0.92
4* -1.766 0.23 1.6347 24 0.94
5* -2.550 0.48 0.97
6* -2.240 0.65 1.5447 56 1.17
7* -0.751 0.05 1.39
8* -72.997 0.50 1.5624 44 1.87
9* 1.035 1.38 2.20
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=-0.59949E-01 K=0.62633E+00
A4=-0.10243E-01 A4=-0.38756E-01
A6=0.17847E-01 A6=0.14479E+00
A8=-0.16046E+00 A8=-0.52039E-01
A10=0.24073E+00 A10=-0.97251E-01
A12=-0.20531E+00 A12=0.10059E+00
A14=-0.28105E-01

第3面 第7面
K=-0.24893E+02 K=-0.40221E+01
A4=-0.47590E-01 A4=-0.21770E+00
A6=-0.10240E+00 A6=0.28255E+00
A8=0.41818E-01 A8=-0.16584E+00
A10=-0.12889E+00 A10=0.32402E-01
A12=0.65945E-01 A12=0.12266E-01
A14=-0.47838E-02

第4面 第8面
K=-0.44200E+01 K=-0.10000E+02
A4=-0.14767E+00 A4=0.17542E-02
A6=0.68624E-01 A6=-0.15572E-01
A8=-0.33964E-01 A8=0.38795E-02
A10=0.45578E-01 A10=0.14421E-03
A12=0.16418E+00 A12=-0.86800E-04
A14=-0.10481E+00 A14=0.24730E-05

第5面 第9面
K=-0.40416E+01 K=-0.96676E+01
A4=-0.16354E-01 A4=-0.65060E-01
A6=0.13897E+00 A6=0.27582E-01
A8=-0.11442E+00 A8=-0.10768E-01
A10=0.16257E+00 A10=0.25746E-02
A12=-0.42166E-01 A12=-0.35198E-03
A14=0.69704E-02 A14=0.20871E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 3.46
2 4 -10.22
3 6 1.80
4 8 -1.81
[Table 7]
Example 7

f = 3.86mm fB = 0.10mm F = 2.4 2ω = 76 ° 2Y = 6.2mm
ENTP = 0 mm EXTP = -3.48 mm H1 = -0.29 mm H2 = -3.76 mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.10 0.80
2 * 1.599 0.57 1.5447 56 0.86
3 * 9.283 0.45 0.92
4 * -1.766 0.23 1.6347 24 0.94
5 * -2.550 0.48 0.97
6 * -2.240 0.65 1.5447 56 1.17
7 * -0.751 0.05 1.39
8 * -72.997 0.50 1.5624 44 1.87
9 * 1.035 1.38 2.20
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = -0.59949E-01 K = 0.62633E + 00
A4 = -0.10243E-01 A4 = -0.38756E-01
A6 = 0.17847E-01 A6 = 0.14479E + 00
A8 = -0.16046E + 00 A8 = -0.52039E-01
A10 = 0.24073E + 00 A10 = -0.97251E-01
A12 = -0.20531E + 00 A12 = 0.10059E + 00
A14 = -0.28105E-01

3rd surface 7th surface
K = -0.24893E + 02 K = -0.40221E + 01
A4 = -0.47590E-01 A4 = -0.21770E + 00
A6 = -0.10240E + 00 A6 = 0.28255E + 00
A8 = 0.41818E-01 A8 = -0.16584E + 00
A10 = -0.12889E + 00 A10 = 0.32402E-01
A12 = 0.65945E-01 A12 = 0.12266E-01
A14 = -0.47838E-02

4th side 8th side
K = -0.44200E + 01 K = -0.10000E + 02
A4 = -0.14767E + 00 A4 = 0.17542E-02
A6 = 0.68624E-01 A6 = -0.15572E-01
A8 = -0.33964E-01 A8 = 0.38795E-02
A10 = 0.45578E-01 A10 = 0.14421E-03
A12 = 0.16418E + 00 A12 = -0.86800E-04
A14 = -0.10481E + 00 A14 = 0.24730E-05

5th surface 9th surface
K = -0.40416E + 01 K = -0.96676E + 01
A4 = -0.16354E-01 A4 = -0.65060E-01
A6 = 0.13897E + 00 A6 = 0.27582E-01
A8 = -0.11442E + 00 A8 = -0.10768E-01
A10 = 0.16257E + 00 A10 = 0.25746E-02
A12 = -0.42166E-01 A12 = -0.35198E-03
A14 = 0.69704E-02 A14 = 0.20871E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 3.46
2 4 -10.22
3 6 1.80
4 8 -1.81

図17は実施例7のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図18は、実施例7の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第2レンズL1より物体側に配置されている。   FIG. 17 is a sectional view of the lens of Example 7. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 18 is an aberration diagram of Example 7 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. Two lenses L1 are disposed on the object side.

(実施例8)
実施例8の撮像レンズのレンズデータを、表8に示す。
(Example 8)
Table 8 shows lens data of the imaging lens of Example 8.

[表8]
実施例 8

f=2.68mm fB=0.13mm F=2.4 2ω=94°2Y=5.8mm
ENTP=0mm EXTP=-2.33mm H1=-0.23mm H2=-2.54mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.06 0.56
2* 1.389 0.35 1.5447 56 0.57
3* 3.543 0.28 0.64
4* -7.394 0.21 1.6320 23 0.70
5* -8.481 0.40 0.80
6* -2.968 0.61 1.5447 56 1.14
7* -0.803 0.37 1.31
8* -20.000 0.30 1.5447 56 1.98
9* 1.067 0.72 2.41
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=0.15013E+00 K=0.16905E+01
A4=-0.29642E-02 A4=-0.88427E-02
A6=0.29278E-01 A6=0.96810E-01
A8=-0.13014E+00 A8=-0.35338E-01
A10=-0.17196E-01 A10=-0.58921E-01
A12=-0.17836E+00 A12=0.71341E-01
A14=-0.23925E-01

第3面 第7面
K=-0.47261E+01 K=-0.34218E+01
A4=-0.21699E-01 A4=-0.21826E+00
A6=-0.53721E-01 A6=0.25966E+00
A8=-0.58171E-01 A8=-0.12408E+00
A10=-0.32125E+00 A10=0.26297E-01
A12=-0.45663E+00 A12=0.78947E-02
A14=-0.43985E-02

第4面 第8面
K=0.50000E+02 K=0.63597E+01
A4=-0.19716E+00 A4=-0.11381E-01
A6=-0.23317E-01 A6=-0.14739E-01
A8=-0.76042E-02 A8=0.28427E-02
A10=0.12423E+00 A10=0.37260E-03
A12=0.20547E+00 A12=-0.38292E-04
A14=-0.32951E+00 A14=-0.67301E-05

第5面 第9面
K=0.41560E+02 K=-0.66946E+01
A4=-0.10204E+00 A4=-0.54654E-01
A6=0.72751E-01 A6=0.23162E-01
A8=-0.40773E-01 A8=-0.97879E-02
A10=0.21239E+00 A10=0.24938E-02
A12=0.60078E-01 A12=-0.34408E-03
A14=0.11905E+00 A14=0.19086E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 3.96
2 4 -98.80
3 6 1.84
4 8 -1.85
[Table 8]
Example 8

f = 2.68mm fB = 0.13mm F = 2.4 2ω = 94 ° 2Y = 5.8mm
ENTP = 0mm EXTP = -2.33mm H1 = -0.23mm H2 = -2.54mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.06 0.56
2 * 1.389 0.35 1.5447 56 0.57
3 * 3.543 0.28 0.64
4 * -7.394 0.21 1.6320 23 0.70
5 * -8.481 0.40 0.80
6 * -2.968 0.61 1.5447 56 1.14
7 * -0.803 0.37 1.31
8 * -20.000 0.30 1.5447 56 1.98
9 * 1.067 0.72 2.41
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = 0.15013E + 00 K = 0.69005E + 01
A4 = -0.29642E-02 A4 = -0.88427E-02
A6 = 0.29278E-01 A6 = 0.96810E-01
A8 = -0.13014E + 00 A8 = -0.35338E-01
A10 = -0.17196E-01 A10 = -0.58921E-01
A12 = -0.17836E + 00 A12 = 0.71341E-01
A14 = -0.23925E-01

3rd surface 7th surface
K = -0.47261E + 01 K = -0.34218E + 01
A4 = -0.21699E-01 A4 = -0.21826E + 00
A6 = -0.53721E-01 A6 = 0.25966E + 00
A8 = -0.58171E-01 A8 = -0.12408E + 00
A10 = -0.32125E + 00 A10 = 0.26297E-01
A12 = -0.45663E + 00 A12 = 0.78947E-02
A14 = -0.43985E-02

4th side 8th side
K = 0.50000E + 02 K = 0.63597E + 01
A4 = -0.19716E + 00 A4 = -0.11381E-01
A6 = -0.23317E-01 A6 = -0.14739E-01
A8 = -0.76042E-02 A8 = 0.28427E-02
A10 = 0.12223E + 00 A10 = 0.37260E-03
A12 = 0.20547E + 00 A12 = -0.38292E-04
A14 = -0.32951E + 00 A14 = -0.67301E-05

5th side 9th side
K = 0.41560E + 02 K = -0.666946E + 01
A4 = -0.10204E + 00 A4 = -0.54654E-01
A6 = 0.72751E-01 A6 = 0.23162E-01
A8 = -0.40773E-01 A8 = -0.97879E-02
A10 = 0.21239E + 00 A10 = 0.24938E-02
A12 = 0.60078E-01 A12 = -0.34408E-03
A14 = 0.11905E + 00 A14 = 0.19086E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 3.96
2 4 -98.80
3 6 1.84
4 8 -1.85

図19は実施例8のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図20は、実施例8の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第2レンズL1より物体側に配置されている。   FIG. 19 is a sectional view of the lens of Example 8. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 20 is an aberration diagram of Example 8 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. Two lenses L1 are disposed on the object side.

(実施例9)
実施例9の撮像レンズのレンズデータを、表9に示す。
Example 9
Table 9 shows lens data of the imaging lens of Example 9.

[表9]
実施例 9

f=3.74mm fB=0.06mm F=2.4 2ω=76°2Y=6mm
ENTP=0mm EXTP=-3.44mm H1=-0.27mm H2=-3.69mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.13 0.78
2* 1.586 0.53 1.5447 56 0.80
3* 5.603 0.39 0.86
4* -8.648 0.23 1.6347 24 0.89
5* 76.652 0.53 0.97
6* -2.609 0.72 1.5447 56 1.20
7* -0.712 0.05 1.44
8* -400.000 0.46 1.5447 56 1.91
9* 0.886 1.37 2.21
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=0.11572E-01 K=0.10455E+01
A4=-0.13767E-01 A4=-0.20266E-01
A6=0.33973E-01 A6=0.11402E+00
A8=-0.15110E+00 A8=-0.48914E-01
A10=0.19686E+00 A10=-0.86805E-01
A12=-0.14520E+00 A12=0.99168E-01
A14=-0.29336E-01

第3面 第7面
K=-0.11408E+02 K=-0.41959E+01
A4=-0.35541E-01 A4=-0.21310E+00
A6=-0.83653E-01 A6=0.27535E+00
A8=0.41062E-01 A8=-0.16926E+00
A10=-0.74162E-01 A10=0.34574E-01
A12=0.58004E-02 A12=0.13338E-01
A14=-0.51640E-02

第4面 第8面
K=-0.82900E+01 K=-0.10000E+02
A4=-0.15536E+00 A4=-0.70033E-02
A6=0.22389E-02 A6=-0.18607E-01
A8=-0.64413E-01 A8=0.33867E-02
A10=0.60276E-01 A10=0.62127E-03
A12=0.25267E+00 A12=-0.14689E-04
A14=-0.19672E+00 A14=-0.22929E-04

第5面 第9面
K=0.50000E+02 K=-0.83848E+01
A4=-0.69429E-01 A4=-0.69588E-01
A6=0.60864E-01 A6=0.28184E-01
A8=-0.94340E-01 A8=-0.12047E-01
A10=0.18969E+00 A10=0.31635E-02
A12=-0.49295E-01 A12=-0.48154E-03
A14=-0.52681E-02 A14=0.31990E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 3.88
2 4 -12.23
3 6 1.58
4 8 -1.62
[Table 9]
Example 9

f = 3.74mm fB = 0.06mm F = 2.4 2ω = 76 ° 2Y = 6mm
ENTP = 0mm EXTP = -3.44mm H1 = -0.27mm H2 = -3.69mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.13 0.78
2 * 1.586 0.53 1.5447 56 0.80
3 * 5.603 0.39 0.86
4 * -8.648 0.23 1.6347 24 0.89
5 * 76.652 0.53 0.97
6 * -2.609 0.72 1.5447 56 1.20
7 * -0.712 0.05 1.44
8 * -400.000 0.46 1.5447 56 1.91
9 * 0.886 1.37 2.21
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = 0.11572E-01 K = 0.10455E + 01
A4 = -0.13767E-01 A4 = -0.20266E-01
A6 = 0.33973E-01 A6 = 0.11402E + 00
A8 = -0.15110E + 00 A8 = -0.48914E-01
A10 = 0.19686E + 00 A10 = -0.86805E-01
A12 = -0.14520E + 00 A12 = 0.99168E-01
A14 = -0.29336E-01

3rd surface 7th surface
K = -0.11408E + 02 K = -0.41959E + 01
A4 = -0.35541E-01 A4 = -0.21310E + 00
A6 = -0.83653E-01 A6 = 0.27535E + 00
A8 = 0.41062E-01 A8 = -0.16926E + 00
A10 = -0.74162E-01 A10 = 0.34574E-01
A12 = 0.58004E-02 A12 = 0.13338E-01
A14 = -0.51640E-02

4th side 8th side
K = -0.82900E + 01 K = -0.10000E + 02
A4 = -0.15536E + 00 A4 = -0.70033E-02
A6 = 0.22389E-02 A6 = -0.18607E-01
A8 = -0.64413E-01 A8 = 0.33867E-02
A10 = 0.60276E-01 A10 = 0.602127E-03
A12 = 0.25267E + 00 A12 = -0.14689E-04
A14 = -0.19672E + 00 A14 = -0.22929E-04

5th side 9th side
K = 0.50000E + 02 K = -0.83848E + 01
A4 = -0.69429E-01 A4 = -0.69588E-01
A6 = 0.60864E-01 A6 = 0.28184E-01
A8 = -0.94340E-01 A8 = -0.12047E-01
A10 = 0.18969E + 00 A10 = 0.31635E-02
A12 = -0.49295E-01 A12 = -0.48154E-03
A14 = -0.52681E-02 A14 = 0.31990E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 3.88
2 4 -12.23
3 6 1.58
4 8 -1.62

図21は実施例9のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図22は、実施例9の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第2レンズL1より物体側に配置されている。   FIG. 21 is a sectional view of the lens of Example 9. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 22 is an aberration diagram of Example 9 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. Two lenses L1 are disposed on the object side.

(実施例10)
実施例10の撮像レンズのレンズデータを、表10に示す。
(Example 10)
Table 10 shows lens data of the imaging lens of Example 10.

[表10]
実施例 10

f=3.74mm fB=0.07mm F=2.4 2ω=76°2Y=6mm
ENTP=0.47mm EXTP=-3.09mm H1=-0.23mm H2=-3.68mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 1.592 0.55 1.5447 56 0.90
2* 7.300 0.05 0.75
3(絞り) ∞ 0.44 0.71
4* -2.394 0.23 1.6347 24 0.80
5* -4.034 0.47 0.92
6* -2.672 0.68 1.5447 56 1.19
7* -0.802 0.08 1.43
8* -399.112 0.54 1.5447 56 2.07
9* 1.038 1.25 2.35
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第1面 第6面
K=-0.16546E-01 K=0.11024E+01
A4=-0.10768E-01 A4=-0.26205E-01
A6=0.14588E-01 A6=0.98230E-01
A8=-0.12101E+00 A8=-0.38766E-01
A10=0.16782E+00 A10=-0.67015E-01
A12=-0.14822E+00 A12=0.66590E-01
A14=-0.17424E-01

第2面 第7面
K=-0.27699E+02 K=-0.40898E+01
A4=-0.38562E-01 A4=-0.19048E+00
A6=-0.76661E-01 A6=0.23934E+00
A8=0.20031E-01 A8=-0.13091E+00
A10=-0.10134E+00 A10=0.22294E-01
A12=0.42691E-01 A12=0.86886E-02
A14=-0.29554E-02

第4面 第8面
K=-0.15830E+01 K=0.10000E+02
A4=-0.15893E+00 A4=-0.97367E-03
A6=0.24116E-01 A6=-0.11842E-01
A8=-0.11529E-01 A8=0.33098E-02
A10=0.55473E-01 A10=0.31862E-04
A12=0.20643E+00 A12=-0.81974E-04
A14=-0.15777E+00 A14=0.66559E-05

第5面 第9面
K=0.27793E+01 K=-0.82674E+01
A4=-0.56831E-01 A4=-0.59184E-01
A6=0.72718E-01 A6=0.23979E-01
A8=-0.45919E-01 A8=-0.93016E-02
A10=0.14639E+00 A10=0.21940E-02
A12=-0.44515E-01 A12=-0.29518E-03
A14=0.59961E-02 A14=0.17032E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 1 3.62
2 4 -9.81
3 6 1.87
4 8 -1.90
[Table 10]
Example 10

f = 3.74mm fB = 0.07mm F = 2.4 2ω = 76 ° 2Y = 6mm
ENTP = 0.47mm EXTP = -3.09mm H1 = -0.23mm H2 = -3.68mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 1.592 0.55 1.5447 56 0.90
2 * 7.300 0.05 0.75
3 (Aperture) ∞ 0.44 0.71
4 * -2.394 0.23 1.6347 24 0.80
5 * -4.034 0.47 0.92
6 * -2.672 0.68 1.5447 56 1.19
7 * -0.802 0.08 1.43
8 * -399.112 0.54 1.5447 56 2.07
9 * 1.038 1.25 2.35
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

1st side 6th side
K = -0.16546E-01 K = 0.11024E + 01
A4 = -0.10768E-01 A4 = -0.26205E-01
A6 = 0.14588E-01 A6 = 0.98230E-01
A8 = -0.12101E + 00 A8 = -0.38766E-01
A10 = 0.16782E + 00 A10 = -0.67015E-01
A12 = -0.14822E + 00 A12 = 0.66590E-01
A14 = -0.17424E-01

2nd surface 7th surface
K = -0.27699E + 02 K = -0.40898E + 01
A4 = -0.38562E-01 A4 = -0.19048E + 00
A6 = -0.76661E-01 A6 = 0.23934E + 00
A8 = 0.20031E-01 A8 = -0.13091E + 00
A10 = -0.10134E + 00 A10 = 0.22294E-01
A12 = 0.42691E-01 A12 = 0.86886E-02
A14 = -0.29554E-02

4th side 8th side
K = -0.15830E + 01 K = 0.10000E + 02
A4 = -0.15893E + 00 A4 = -0.97367E-03
A6 = 0.24116E-01 A6 = -0.11842E-01
A8 = -0.11529E-01 A8 = 0.33098E-02
A10 = 0.55473E-01 A10 = 0.31862E-04
A12 = 0.20643E + 00 A12 = -0.81974E-04
A14 = -0.15777E + 00 A14 = 0.66559E-05

5th side 9th side
K = 0.27793E + 01 K = -0.82674E + 01
A4 = -0.56831E-01 A4 = -0.59184E-01
A6 = 0.72718E-01 A6 = 0.23979E-01
A8 = -0.45919E-01 A8 = -0.93016E-02
A10 = 0.14639E + 00 A10 = 0.21940E-02
A12 = -0.44515E-01 A12 = -0.29518E-03
A14 = 0.59961E-02 A14 = 0.17032E-04

Single lens data

Lens Start surface Focal length (mm)
1 1 3.62
2 4 -9.81
3 6 1.87
4 8 -1.90

図23は実施例10のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図24は、実施例10の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1と第2レンズL2の間に配置されている。   FIG. 23 is a sectional view of the lens of Example 10. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 24 is an aberration diagram of Example 10 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. It is disposed between the first lens L1 and the second lens L2.

(実施例11)
実施例11の撮像レンズのレンズデータを、表11に示す。
(Example 11)
Table 11 shows lens data of the imaging lens of Example 11.

[表11]
実施例 11

f=3.56mm fB=0.09mm F=2.4 2ω=78°2Y=6mm
ENTP=0mm EXTP=-3.26mm H1=-0.22mm H2=-3.46mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.06 0.75
2* 1.984 0.55 1.5447 56 0.77
3* 14.154 0.51 0.87
4* -6.863 0.23 1.6347 24 0.97
5* -21.750 0.48 1.07
6* -2.781 0.66 1.5447 56 1.24
7* -0.813 0.22 1.40
8* -935.549 0.45 1.5862 37 1.99
9* 1.120 1.12 2.37
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=-0.29133E+00 K=0.13176E+01
A4=-0.17626E-01 A4=-0.19538E-01
A6=0.33279E-02 A6=0.89230E-01
A8=-0.12130E+00 A8=-0.39503E-01
A10=0.17526E+00 A10=-0.60784E-01
A12=-0.12342E+00 A12=0.72694E-01
A14=-0.21504E-01

第3面 第7面
K=-0.17249E+02 K=-0.37241E+01
A4=-0.57123E-01 A4=-0.19999E+00
A6=-0.62571E-01 A6=0.23588E+00
A8=0.57193E-01 A8=-0.13508E+00
A10=-0.50699E-01 A10=0.27305E-01
A12=-0.17113E-01 A12=0.97445E-02
A14=-0.35590E-02

第4面 第8面
K=0.84903E+01 K=-0.24888E+01
A4=-0.16379E+00 A4=-0.38904E-02
A6=0.33401E-01 A6=-0.10810E-01
A8=-0.22027E-01 A8=0.17636E-02
A10=0.50100E-01 A10=0.19910E-03
A12=0.16089E+00 A12=-0.12422E-04
A14=-0.14706E+00 A14=-0.42476E-05

第5面 第9面
K=-0.40819E+02 K=-0.81146E+01
A4=-0.99704E-01 A4=-0.44956E-01
A6=0.53055E-01 A6=0.16051E-01
A8=-0.80428E-01 A8=-0.60616E-02
A10=0.14804E+00 A10=0.13601E-02
A12=-0.34123E-01 A12=-0.16726E-03
A14=-0.19387E-01 A14=0.85109E-05

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 4.17
2 4 -15.89
3 6 1.89
4 8 -1.91
[Table 11]
Example 11

f = 3.56mm fB = 0.09mm F = 2.4 2ω = 78 ° 2Y = 6mm
ENTP = 0mm EXTP = -3.26mm H1 = -0.22mm H2 = -3.46mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.06 0.75
2 * 1.984 0.55 1.5447 56 0.77
3 * 14.154 0.51 0.87
4 * -6.863 0.23 1.6347 24 0.97
5 * -21.750 0.48 1.07
6 * -2.781 0.66 1.5447 56 1.24
7 * -0.813 0.22 1.40
8 * -935.549 0.45 1.5862 37 1.99
9 * 1.120 1.12 2.37
10 ∞ 0.30 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = -0.29133E + 00 K = 0.13176E + 01
A4 = -0.17626E-01 A4 = -0.19538E-01
A6 = 0.33279E-02 A6 = 0.89230E-01
A8 = -0.12130E + 00 A8 = -0.39503E-01
A10 = 0.17526E + 00 A10 = -0.60784E-01
A12 = -0.12342E + 00 A12 = 0.72694E-01
A14 = -0.21504E-01

3rd surface 7th surface
K = -0.17249E + 02 K = -0.37241E + 01
A4 = -0.57123E-01 A4 = -0.19999E + 00
A6 = -0.62571E-01 A6 = 0.23588E + 00
A8 = 0.57193E-01 A8 = -0.13508E + 00
A10 = -0.50699E-01 A10 = 0.27305E-01
A12 = -0.17113E-01 A12 = 0.97445E-02
A14 = -0.35590E-02

4th side 8th side
K = 0.84903E + 01 K = -0.24888E + 01
A4 = -0.16379E + 00 A4 = -0.38904E-02
A6 = 0.33401E-01 A6 = -0.10810E-01
A8 = -0.22027E-01 A8 = 0.17636E-02
A10 = 0.50100E-01 A10 = 0.19910E-03
A12 = 0.16089E + 00 A12 = -0.12422E-04
A14 = -0.14706E + 00 A14 = -0.42476E-05

5th side 9th side
K = -0.40819E + 02 K = -0.81146E + 01
A4 = -0.99704E-01 A4 = -0.44956E-01
A6 = 0.53055E-01 A6 = 0.16051E-01
A8 = -0.80428E-01 A8 = -0.60616E-02
A10 = 0.14804E + 00 A10 = 0.13601E-02
A12 = -0.34123E-01 A12 = -0.16726E-03
A14 = -0.19387E-01 A14 = 0.85109E-05

Single lens data

Lens Start surface Focal length (mm)
1 2 4.17
2 4 -15.89
3 6 1.89
4 8 -1.91

図25は実施例11のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図26は、実施例11の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1より物体側に配置されている。   FIG. 25 is a sectional view of the lens of Example 11. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 26 is an aberration diagram of Example 11 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. One lens L1 is disposed on the object side.

(実施例12)
実施例12の撮像レンズのレンズデータを、表12に示す。
(Example 12)
Table 12 shows lens data of the imaging lens of Example 12.

[表12]
実施例 12

f=3.20mm fB=0.12mm F=2.2 2ω=84°2Y=5.8mm
ENTP=0mm EXTP=-2.77mm H1=-0.35mm H2=-3.09mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.13 0.73
2* 1.394 0.47 1.5891 61 0.76
3* 3.257 0.36 0.78
4* -5.648 0.21 1.6347 24 0.77
5* -11.656 0.44 0.85
6* -2.552 0.60 1.5447 56 1.25
7* -0.784 0.20 1.37
8* -17.876 0.45 1.5447 56 1.95
9* 1.117 1.02 2.32
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=0.15513E+00 K=0.11210E+01
A4=-0.40487E-02 A4=-0.77046E-02
A6=0.25119E-01 A6=0.11237E+00
A8=-0.73266E-01 A8=-0.41853E-01
A10=0.14276E+00 A10=-0.64116E-01
A12=-0.22744E+00 A12=0.72032E-01
A14=-0.19788E-01

第3面 第7面
K=-0.10238E+01 K=-0.34411E+01
A4=-0.15494E-01 A4=-0.21255E+00
A6=-0.87481E-01 A6=0.24550E+00
A8=0.11841E-01 A8=-0.12552E+00
A10=-0.14371E+00 A10=0.27726E-01
A12=-0.23837E+00 A12=0.87314E-02
A14=-0.41362E-02

第4面 第8面
K=0.44402E+02 K=0.14629E+01
A4=-0.17265E+00 A4=-0.88500E-02
A6=-0.90660E-01 A6=-0.11185E-01
A8=-0.99547E-01 A8=0.27765E-02
A10=0.39095E-01 A10=0.24707E-03
A12=0.22236E+00 A12=-0.54203E-04
A14=-0.23186E-01 A14=-0.32121E-05

第5面 第9面
K=0.49987E+02 K=-0.85978E+01
A4=-0.88605E-01 A4=-0.62564E-01
A6=0.28372E-01 A6=0.25896E-01
A8=-0.88042E-01 A8=-0.10176E-01
A10=0.18618E+00 A10=0.24708E-02
A12=0.42285E-01 A12=-0.34085E-03
A14=0.59687E-01 A14=0.19746E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 3.78
2 4 -17.50
3 6 1.85
4 8 -1.91
[Table 12]
Example 12

f = 3.20mm fB = 0.12mm F = 2.2 2ω = 84 ° 2Y = 5.8mm
ENTP = 0mm EXTP = -2.77mm H1 = -0.35mm H2 = -3.09mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.13 0.73
2 * 1.394 0.47 1.5891 61 0.76
3 * 3.257 0.36 0.78
4 * -5.648 0.21 1.6347 24 0.77
5 * -11.656 0.44 0.85
6 * -2.552 0.60 1.5447 56 1.25
7 * -0.784 0.20 1.37
8 * -17.876 0.45 1.5447 56 1.95
9 * 1.117 1.02 2.32
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = 0.15513E + 00 K = 0.11210E + 01
A4 = -0.40487E-02 A4 = -0.77046E-02
A6 = 0.25119E-01 A6 = 0.11237E + 00
A8 = -0.73266E-01 A8 = -0.41853E-01
A10 = 0.14276E + 00 A10 = -0.64116E-01
A12 = -0.22744E + 00 A12 = 0.72032E-01
A14 = -0.19788E-01

3rd surface 7th surface
K = -0.10238E + 01 K = -0.34411E + 01
A4 = -0.15494E-01 A4 = -0.21255E + 00
A6 = -0.87481E-01 A6 = 0.24550E + 00
A8 = 0.11841E-01 A8 = -0.12552E + 00
A10 = -0.14371E + 00 A10 = 0.27726E-01
A12 = -0.23837E + 00 A12 = 0.87314E-02
A14 = -0.41362E-02

4th side 8th side
K = 0.44402E + 02 K = 0.14629E + 01
A4 = -0.17265E + 00 A4 = -0.88500E-02
A6 = -0.90660E-01 A6 = -0.11185E-01
A8 = -0.99547E-01 A8 = 0.27765E-02
A10 = 0.39095E-01 A10 = 0.24707E-03
A12 = 0.22236E + 00 A12 = -0.54203E-04
A14 = -0.23186E-01 A14 = -0.32121E-05

5th side 9th side
K = 0.49987E + 02 K = -0.85978E + 01
A4 = -0.88605E-01 A4 = -0.62564E-01
A6 = 0.28372E-01 A6 = 0.25896E-01
A8 = -0.88042E-01 A8 = -0.10176E-01
A10 = 0.18618E + 00 A10 = 0.24708E-02
A12 = 0.42285E-01 A12 = -0.34085E-03
A14 = 0.59687E-01 A14 = 0.19746E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 3.78
2 4 -17.50
3 6 1.85
4 8 -1.91

図27は実施例12のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図28は、実施例12の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1より物体側に配置されている。   FIG. 27 is a sectional view of the lens of Example 12. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 28 is an aberration diagram of Example 12 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. One lens L1 is disposed on the object side.

(実施例13)
実施例13の撮像レンズのレンズデータを、表13に示す。
(Example 13)
Table 13 shows lens data of the imaging lens of Example 13.

[表13]
実施例 13

f=3.75mm fB=0.09mm F=2.4 2ω=76°2Y=6mm
ENTP=0mm EXTP=-2.73mm H1=-1.25mm H2=-3.66mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.22 0.78
2* 1.285 0.60 1.4970 82 0.78
3* 4.162 0.35 0.74
4* -6.008 0.23 1.6347 24 0.78
5* -16.637 0.51 0.88
6* -3.040 0.79 1.5447 56 1.14
7* -0.888 0.25 1.46
8* -4.599 0.41 1.5447 56 2.03
9* 1.237 0.92 2.38
10 ∞ 0.25 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=0.29484E-01 K=-0.78103E+00
A4=0.91431E-02 A4=-0.12222E-01
A6=0.49269E-01 A6=0.21749E-01
A8=-0.66730E-01 A8=-0.11855E-01
A10=0.78168E-01 A10=-0.42380E-01
A12=0.32799E-01 A12=0.33038E-01
A14=-0.63781E-02

第3面 第7面
K=0.15331E+02 K=-0.40121E+01
A4=0.72053E-02 A4=-0.17664E+00
A6=-0.26130E-01 A6=0.18299E+00
A8=0.16847E+00 A8=-0.10012E+00
A10=-0.33593E+00 A10=0.24353E-01
A12=0.38601E+00 A12=0.31056E-02
A14=-0.19064E-02

第4面 第8面
K=0.49993E+02 K=-0.10000E+02
A4=-0.39726E-02 A4=-0.70466E-01
A6=-0.29688E-01 A6=0.28758E-01
A8=0.17329E-01 A8=-0.30190E-02
A10=0.68944E-01 A10=-0.12482E-03
A12=0.60907E-01 A12=0.17603E-04
A14=0.12433E-05

第5面 第9面
K=0.00000E+00 K=-0.10000E+02
A4=0.56402E-01 A4=-0.75423E-01
A6=-0.78150E-01 A6=0.25067E-01
A8=0.12778E+00 A8=-0.59760E-02
A10=-0.58150E-01 A10=0.75217E-03
A12=0.63053E-01 A12=-0.43817E-04
A14=0.57626E-06

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 3.50
2 4 -14.94
3 6 2.04
4 8 -1.75
[Table 13]
Example 13

f = 3.75mm fB = 0.09mm F = 2.4 2ω = 76 ° 2Y = 6mm
ENTP = 0mm EXTP = -2.73mm H1 = -1.25mm H2 = -3.66mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.22 0.78
2 * 1.285 0.60 1.4970 82 0.78
3 * 4.162 0.35 0.74
4 * -6.008 0.23 1.6347 24 0.78
5 * -16.637 0.51 0.88
6 * -3.040 0.79 1.5447 56 1.14
7 * -0.888 0.25 1.46
8 * -4.599 0.41 1.5447 56 2.03
9 * 1.237 0.92 2.38
10 ∞ 0.25 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = 0.29484E-01 K = -0.778103E + 00
A4 = 0.91431E-02 A4 = -0.12222E-01
A6 = 0.49269E-01 A6 = 0.21749E-01
A8 = -0.66730E-01 A8 = -0.11855E-01
A10 = 0.78168E-01 A10 = -0.42380E-01
A12 = 0.32799E-01 A12 = 0.33038E-01
A14 = -0.63781E-02

3rd surface 7th surface
K = 0.15331E + 02 K = -0.40121E + 01
A4 = 0.72053E-02 A4 = -0.17664E + 00
A6 = -0.26130E-01 A6 = 0.18299E + 00
A8 = 0.16847E + 00 A8 = -0.10012E + 00
A10 = -0.33593E + 00 A10 = 0.24353E-01
A12 = 0.38601E + 00 A12 = 0.31056E-02
A14 = -0.19064E-02

4th side 8th side
K = 0.49993E + 02 K = -0.10000E + 02
A4 = -0.39726E-02 A4 = -0.70466E-01
A6 = -0.29688E-01 A6 = 0.28758E-01
A8 = 0.17329E-01 A8 = -0.30190E-02
A10 = 0.68944E-01 A10 = -0.12482E-03
A12 = 0.60907E-01 A12 = 0.17603E-04
A14 = 0.12433E-05

5th side 9th side
K = 0.00000E + 00 K = -0.10000E + 02
A4 = 0.56402E-01 A4 = -0.75423E-01
A6 = -0.778150E-01 A6 = 0.25067E-01
A8 = 0.12778E + 00 A8 = -0.59760E-02
A10 = -0.58150E-01 A10 = 0.75217E-03
A12 = 0.63053E-01 A12 = -0.43817E-04
A14 = 0.57626E-06

Single lens data

Lens Start surface Focal length (mm)
1 2 3.50
2 4 -14.94
3 6 2.04
4 8 -1.75

図29は実施例13のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図30は、実施例13の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1の物体側に配置されている。   FIG. 29 is a sectional view of the lens of Example 13. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 30 is an aberration diagram of Example 13 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. It is arranged on the object side of one lens L1.

(実施例14)
実施例14の撮像レンズのレンズデータを、表14に示す。
(Example 14)
Table 14 shows lens data of the imaging lens of Example 14.

[表14]
実施例 14

f=3.76mm fB=0.40mm F=2.4 2ω=76°2Y=6mm
ENTP=0.55mm EXTP=-2.58mm H1=-0.44mm H2=-3.37mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 1.416 0.56 1.5690 71 0.80
2* 3.925 0.10 0.70
3(絞り) ∞ 0.23 0.68
4* -6.461 0.20 1.6347 24 0.74
5* -44.230 0.57 0.84
6* -2.774 0.76 1.5447 56 1.12
7* -0.892 0.21 1.39
8* -2000.0 0.39 1.5447 56 2.05
9* 1.150 0.84 2.30
10 ∞ 0.25 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第1面 第6面
K=-0.25566E-01 K=0.10364E+01
A4=0.56675E-02 A4=-0.14432E-01
A6=0.38771E-01 A6=-0.73508E-02
A8=-0.69636E-01 A8=0.19913E-01
A10=0.70836E-01 A10=-0.37585E-01
A12=-0.39800E-01 A12=0.22811E-01
A14=-0.50129E-02

第2面 第7面
K=0.37310E+01 K=-0.40340E+01
A4=-0.92571E-02 A4=-0.19058E+00
A6=-0.98911E-01 A6=0.16226E+00
A8=0.15909E+00 A8=-0.10287E+00
A10=-0.31790E+00 A10=0.31654E-01
A12=0.13744E+00 A12=0.56232E-02
A14=-0.35184E-02

第4面 第8面
K=0.50000E+02 K=-0.10000E+02
A4=-0.61005E-01 A4=-0.10178E+00
A6=-0.47523E-01 A6=0.31961E-01
A8=-0.51814E-01 A8=-0.23137E-02
A10=0.20797E-01 A10=-0.18122E-03
A12=0.12939E+00 A12=-0.49515E-05
A14=0.43005E-05

第5面 第9面
K=0.00000E+00 K=-0.86941E+01
A4=0.69414E-02 A4=-0.81876E-01
A6=-0.20410E-01 A6=0.24872E-01
A8=0.86559E-01 A8=-0.59560E-02
A10=-0.11271E+00 A10=0.80272E-03
A12=0.17893E+00 A12=-0.54814E-04
A14=0.18445E-05

単レンズデータ

レンズ 始面 焦点距離(mm)
1 1 3.60
2 4 -11.94
3 6 2.11
4 8 -2.11
[Table 14]
Example 14

f = 3.76mm fB = 0.40mm F = 2.4 2ω = 76 ° 2Y = 6mm
ENTP = 0.55mm EXTP = -2.58mm H1 = -0.44mm H2 = -3.37mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 1.416 0.56 1.5690 71 0.80
2 * 3.925 0.10 0.70
3 (Aperture) ∞ 0.23 0.68
4 * -6.461 0.20 1.6347 24 0.74
5 * -44.230 0.57 0.84
6 * -2.774 0.76 1.5447 56 1.12
7 * -0.892 0.21 1.39
8 * -2000.0 0.39 1.5447 56 2.05
9 * 1.150 0.84 2.30
10 ∞ 0.25 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

1st side 6th side
K = -0.25566E-01 K = 0.10364E + 01
A4 = 0.56675E-02 A4 = -0.14432E-01
A6 = 0.38771E-01 A6 = -0.73508E-02
A8 = -0.669636E-01 A8 = 0.19913E-01
A10 = 0.70836E-01 A10 = -0.37585E-01
A12 = -0.39800E-01 A12 = 0.22811E-01
A14 = -0.50129E-02

2nd surface 7th surface
K = 0.37310E + 01 K = -0.40340E + 01
A4 = -0.92571E-02 A4 = -0.19058E + 00
A6 = -0.98911E-01 A6 = 0.16226E + 00
A8 = 0.15909E + 00 A8 = -0.10287E + 00
A10 = -0.31790E + 00 A10 = 0.31654E-01
A12 = 0.13744E + 00 A12 = 0.56232E-02
A14 = -0.35184E-02

4th side 8th side
K = 0.50000E + 02 K = -0.10000E + 02
A4 = -0.61005E-01 A4 = -0.10178E + 00
A6 = -0.47523E-01 A6 = 0.31961E-01
A8 = -0.51814E-01 A8 = -0.23137E-02
A10 = 0.20797E-01 A10 = -0.18122E-03
A12 = 0.12939E + 00 A12 = -0.49515E-05
A14 = 0.43005E-05

5th side 9th side
K = 0.00000E + 00 K = -0.86941E + 01
A4 = 0.69414E-02 A4 = -0.81876E-01
A6 = -0.20410E-01 A6 = 0.24872E-01
A8 = 0.86559E-01 A8 = -0.59560E-02
A10 = -0.11271E + 00 A10 = 0.80272E-03
A12 = 0.17893E + 00 A12 = -0.54814E-04
A14 = 0.18445E-05

Single lens data

Lens Start surface Focal length (mm)
1 1 3.60
2 4 -11.94
3 6 2.11
4 8 -2.11

図31は実施例14のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図32は、実施例14の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1と第2レンズL2の間に配置されている。   FIG. 31 is a sectional view of the lens of Example 14. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 32 is an aberration diagram of Example 14 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. It is disposed between the first lens L1 and the second lens L2.

(実施例15)
実施例15の撮像レンズのレンズデータを、表15に示す。
(Example 15)
Table 15 shows lens data of the imaging lens of Example 15.

[表15]
実施例 15

f=3.51mm fB=0.10mm F=2.4 2ω=80°2Y=6mm
ENTP=0mm EXTP=-3.07mm H1=-0.37mm H2=-3.40mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.14 0.73
2* 1.415 0.41 1.5891 61 0.73
3* 3.135 0.34 0.76
4* -6.913 0.42 1.6347 24 0.78
5* 74.053 0.43 0.94
6* ∞ 0.69 1.5447 56 1.33
7* -0.801 0.13 1.48
8* -4.273 0.30 1.5447 56 1.82
9* 1.025 1.33 2.13
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

非球面係数

第2面 第6面
K=0.12315E+00 K=0.50000E+02
A4=-0.42607E-02 A4=-0.87796E-01
A6=0.11361E-01 A6=0.97312E-01
A8=-0.82737E-01 A8=-0.43882E-01
A10=0.17610E+00 A10=-0.64485E-01
A12=-0.22614E+00 A12=0.72205E-01
A14=-0.18910E-01

第3面 第7面
K=-0.39391E+01 K=-0.46801E+01
A4=-0.24045E-01 A4=-0.15446E+00
A6=-0.74788E-01 A6=0.22907E+00
A8=-0.79797E-02 A8=-0.13398E+00
A10=-0.95377E-01 A10=0.25603E-01
A12=-0.97403E-01 A12=0.88683E-02
A14=-0.33587E-02

第4面 第8面
K=0.49142E+02 K=-0.38751E+01
A4=-0.17968E+00 A4=0.50682E-02
A6=-0.36950E-01 A6=-0.61988E-02
A8=-0.83918E-01 A8=0.28707E-02
A10=0.27813E-01 A10=0.10703E-03
A12=0.22963E+00 A12=-0.98210E-04
A14=-0.11819E+00 A14=0.19974E-05

第5面 第9面
K=-0.50000E+02 K=-0.98427E+01
A4=-0.13592E+00 A4=-0.63450E-01
A6=0.73084E-01 A6=0.28736E-01
A8=-0.98764E-01 A8=-0.10575E-01
A10=0.13711E+00 A10=0.24563E-02
A12=-0.13061E-01 A12=-0.33013E-03
A14=0.41119E-01 A14=0.20407E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 4.02
2 4 -9.94
3 6 1.47
4 8 -1.49
[Table 15]
Example 15

f = 3.51mm fB = 0.10mm F = 2.4 2ω = 80 ° 2Y = 6mm
ENTP = 0mm EXTP = -3.07mm H1 = -0.37mm H2 = -3.40mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.14 0.73
2 * 1.415 0.41 1.5891 61 0.73
3 * 3.135 0.34 0.76
4 * -6.913 0.42 1.6347 24 0.78
5 * 74.053 0.43 0.94
6 * ∞ 0.69 1.5447 56 1.33
7 * -0.801 0.13 1.48
8 * -4.273 0.30 1.5447 56 1.82
9 * 1.025 1.33 2.13
10 ∞ 0.15 1.5163 64 3.00
11 ∞ 3.00

Aspheric coefficient

2nd side 6th side
K = 0.12315E + 00 K = 0.50,000E + 02
A4 = -0.42607E-02 A4 = -0.87796E-01
A6 = 0.11361E-01 A6 = 0.97312E-01
A8 = -0.82737E-01 A8 = -0.43882E-01
A10 = 0.17610E + 00 A10 = -0.64485E-01
A12 = -0.22614E + 00 A12 = 0.72205E-01
A14 = -0.18910E-01

3rd surface 7th surface
K = -0.39391E + 01 K = -0.46801E + 01
A4 = -0.24045E-01 A4 = -0.15446E + 00
A6 = -0.74788E-01 A6 = 0.22907E + 00
A8 = -0.79797E-02 A8 = -0.13398E + 00
A10 = -0.95377E-01 A10 = 0.25603E-01
A12 = -0.97403E-01 A12 = 0.88683E-02
A14 = -0.33587E-02

4th side 8th side
K = 0.49142E + 02 K = -0.38751E + 01
A4 = -0.17968E + 00 A4 = 0.50682E-02
A6 = -0.36950E-01 A6 = -0.61988E-02
A8 = -0.83918E-01 A8 = 0.28707E-02
A10 = 0.27813E-01 A10 = 0.10703E-03
A12 = 0.22963E + 00 A12 = -0.98210E-04
A14 = -0.11819E + 00 A14 = 0.19974E-05

5th side 9th side
K = -0.50000E + 02 K = -0.98427E + 01
A4 = -0.13592E + 00 A4 = -0.63450E-01
A6 = 0.73084E-01 A6 = 0.28736E-01
A8 = -0.98764E-01 A8 = -0.10575E-01
A10 = 0.13711E + 00 A10 = 0.24563E-02
A12 = -0.13061E-01 A12 = -0.33013E-03
A14 = 0.41119E-01 A14 = 0.20407E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 4.02
2 4 -9.94
3 6 1.47
4 8 -1.49

図33は実施例15のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図34は、実施例15の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1より物体側に配置されている。   FIG. 33 is a sectional view of the lens of Example 15. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 34 is an aberration diagram of Example 15 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. One lens L1 is disposed on the object side.

(実施例16)
実施例16の撮像レンズのレンズデータを、表16に示す。
(Example 16)
Table 16 shows lens data of the imaging lens of Example 16.

[表16]
実施例 16

f=2.39mm fB=0.10mm F=2.4 2ω=88°2Y=4.8mm
ENTP=0mm EXTP=-1.85mm H1=-0.55mm H2=-2.29mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.06 0.50
2* 1.046 0.32 1.5447 56 0.53
3* 2.999 0.26 0.56
4* -3.404 0.15 1.6347 24 0.57
5* -8.253 0.32 0.66
6* -2.757 0.53 1.5447 56 1.04
7* -0.773 0.41 1.15
8* -6.706 0.35 1.5447 56 1.67
9* 1.111 0.50 2.02
10 ∞ 0.11 1.5163 64 2.50
11 ∞ 2.50

非球面係数

第2面 第6面
K=0.19441E+00 K=-0.66604E+01
A4=0.29866E-02 A4=0.22176E-01
A6=0.74244E-01 A6=0.17005E+00
A8=-0.23775E+00 A8=-0.10632E+00
A10=0.19427E-01 A10=-0.18216E+00
A12=-0.23132E+01 A12=0.32064E+00
A14=-0.13576E+00

第3面 第7面
K=-0.39652E+01 K=-0.36659E+01
A4=-0.43167E-01 A4=-0.33422E+00
A6=-0.27024E+00 A6=0.52592E+00
A8=-0.15200E+00 A8=-0.28727E+00
A10=-0.12380E+01 A10=0.92534E-01
A12=-0.68070E+01 A12=0.26576E-01
A14=-0.27325E-01

第4面 第8面
K=0.26847E+02 K=0.26083E+01
A4=-0.38433E+00 A4=-0.33465E-01
A6=-0.26864E+00 A6=-0.19756E-01
A8=-0.68342E-01 A8=0.91832E-02
A10=0.10333E+01 A10=0.15174E-02
A12=0.14198E+01 A12=-0.31982E-03
A14=-0.18528E+01 A14=-0.70457E-04

第5面 第9面
K=0.30000E+02 K=-0.71739E+01
A4=-0.16952E+00 A4=-0.89354E-01
A6=0.11937E+00 A6=0.50592E-01
A8=0.29565E-01 A8=-0.25723E-01
A10=0.11424E+01 A10=0.78591E-02
A12=0.13544E+01 A12=-0.14929E-02
A14=0.90897E+00 A14=0.12763E-03

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 2.79
2 4 -9.24
3 6 1.80
4 8 -1.72
[Table 16]
Example 16

f = 2.39mm fB = 0.10mm F = 2.4 2ω = 88 ° 2Y = 4.8mm
ENTP = 0mm EXTP = -1.85mm H1 = -0.55mm H2 = -2.29mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.06 0.50
2 * 1.046 0.32 1.5447 56 0.53
3 * 2.999 0.26 0.56
4 * -3.404 0.15 1.6347 24 0.57
5 * -8.253 0.32 0.66
6 * -2.757 0.53 1.5447 56 1.04
7 * -0.773 0.41 1.15
8 * -6.706 0.35 1.5447 56 1.67
9 * 1.111 0.50 2.02
10 ∞ 0.11 1.5163 64 2.50
11 ∞ 2.50

Aspheric coefficient

2nd side 6th side
K = 0.19441E + 00 K = -0.66604E + 01
A4 = 0.29866E-02 A4 = 0.22176E-01
A6 = 0.74244E-01 A6 = 0.17005E + 00
A8 = -0.23775E + 00 A8 = -0.10632E + 00
A10 = 0.19427E-01 A10 = -0.18216E + 00
A12 = -0.23132E + 01 A12 = 0.32064E + 00
A14 = -0.13576E + 00

3rd surface 7th surface
K = -0.39652E + 01 K = -0.36659E + 01
A4 = -0.43167E-01 A4 = -0.33422E + 00
A6 = -0.27024E + 00 A6 = 0.52592E + 00
A8 = -0.15200E + 00 A8 = -0.28727E + 00
A10 = -0.12380E + 01 A10 = 0.92534E-01
A12 = -0.668070E + 01 A12 = 0.26576E-01
A14 = -0.27325E-01

4th side 8th side
K = 0.26847E + 02 K = 0.26083E + 01
A4 = -0.38433E + 00 A4 = -0.33465E-01
A6 = -0.26864E + 00 A6 = -0.19756E-01
A8 = -0.68342E-01 A8 = 0.91832E-02
A10 = 0.10333E + 01 A10 = 0.15174E-02
A12 = 0.14198E + 01 A12 = -0.31982E-03
A14 = -0.18528E + 01 A14 = -0.70457E-04

5th side 9th side
K = 0.30,000E + 02 K = -0.71739E + 01
A4 = -0.16952E + 00 A4 = -0.89354E-01
A6 = 0.11937E + 00 A6 = 0.50592E-01
A8 = 0.29565E-01 A8 = -0.25723E-01
A10 = 0.11424E + 01 A10 = 0.78591E-02
A12 = 0.13544E + 01 A12 = -0.14929E-02
A14 = 0.90897E + 00 A14 = 0.12763E-03

Single lens data

Lens Start surface Focal length (mm)
1 2 2.79
2 4 -9.24
3 6 1.80
4 8 -1.72

図35は実施例16のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図36は、実施例16の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1より物体側に配置されている。   FIG. 35 is a sectional view of the lens of Example 16. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 36 is an aberration diagram of Example 16 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. One lens L1 is disposed on the object side.

(実施例17)
実施例17の撮像レンズのレンズデータを、表17に示す。
(Example 17)
Table 17 shows lens data of the imaging lens of Example 17.

[表17]
実施例 17

f=2.55mm fB=0.12mm F=2.4 2ω=84°2Y=4.8mm
ENTP=0mm EXTP=-1.79mm H1=-0.86mm H2=-2.43mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.10 0.53
2* 0.988 0.36 1.5250 70 0.56
3* 2.827 0.28 0.57
4* -3.159 0.15 1.6347 24 0.59
5* -6.326 0.36 0.65
6* -2.956 0.44 1.5447 56 1.06
7* -0.872 0.42 1.19
8* -4.093 0.35 1.5447 56 1.59
9* 1.355 0.47 1.92
10 ∞ 0.11 1.5163 64 2.50
11 ∞ 2.50

非球面係数

第2面 第6面
K=0.20249E+00 K=-0.15691E+02
A4=0.55519E-02 A4=0.12215E-01
A6=0.51176E-01 A6=0.13733E+00
A8=-0.26477E+00 A8=-0.15990E+00
A10=0.71746E+00 A10=-0.22397E+00
A12=-0.12118E+01 A12=0.48009E+00
A14=-0.20752E+00

第3面 第7面
K=-0.20389E+01 K=-0.39995E+01
A4=-0.25313E-01 A4=-0.23949E+00
A6=-0.94856E-01 A6=0.55907E+00
A8=-0.52310E+00 A8=-0.39794E+00
A10=-0.21449E+00 A10=0.10321E+00
A12=-0.15706E+01 A12=0.38631E-01
A14=-0.24691E-01

第4面 第8面
K=0.24387E+02 K=0.28499E+01
A4=-0.34329E+00 A4=-0.50638E-01
A6=-0.44254E+00 A6=-0.54852E-02
A8=0.38295E+00 A8=0.12196E-01
A10=0.25698E+01 A10=0.10337E-02
A12=0.54055E+01 A12=-0.68985E-03
A14=-0.27209E+01 A14=-0.45429E-04

第5面 第9面
K=0.30000E+02 K=-0.87363E+01
A4=-0.18885E+00 A4=-0.10697E+00
A6=-0.20656E-01 A6=0.58263E-01
A8=0.29769E-01 A8=-0.29896E-01
A10=0.22362E+01 A10=0.98114E-02
A12=0.20177E+01 A12=-0.22220E-02
A14=0.30519E+00 A14=0.23332E-03

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 2.71
2 4 -10.13
3 6 2.11
4 8 -1.83
[Table 17]
Example 17

f = 2.55mm fB = 0.12mm F = 2.4 2ω = 84 ° 2Y = 4.8mm
ENTP = 0mm EXTP = -1.79mm H1 = 0.86mm H2 = -2.43mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.10 0.53
2 * 0.988 0.36 1.5250 70 0.56
3 * 2.827 0.28 0.57
4 * -3.159 0.15 1.6347 24 0.59
5 * -6.326 0.36 0.65
6 * -2.956 0.44 1.5447 56 1.06
7 * -0.872 0.42 1.19
8 * -4.093 0.35 1.5447 56 1.59
9 * 1.355 0.47 1.92
10 ∞ 0.11 1.5163 64 2.50
11 ∞ 2.50

Aspheric coefficient

2nd side 6th side
K = 0.20249E + 00 K = -0.15691E + 02
A4 = 0.55519E-02 A4 = 0.12215E-01
A6 = 0.51176E-01 A6 = 0.13733E + 00
A8 = -0.26477E + 00 A8 = -0.15990E + 00
A10 = 0.71746E + 00 A10 = -0.22397E + 00
A12 = -0.12118E + 01 A12 = 0.48009E + 00
A14 = -0.20752E + 00

3rd surface 7th surface
K = -0.20389E + 01 K = -0.39995E + 01
A4 = -0.25313E-01 A4 = -0.23949E + 00
A6 = -0.94856E-01 A6 = 0.55907E + 00
A8 = -0.52310E + 00 A8 = -0.39794E + 00
A10 = -0.21449E + 00 A10 = 0.10321E + 00
A12 = -0.15706E + 01 A12 = 0.38631E-01
A14 = -0.24691E-01

4th side 8th side
K = 0.24387E + 02 K = 0.28499E + 01
A4 = -0.34329E + 00 A4 = -0.50638E-01
A6 = -0.44254E + 00 A6 = -0.54852E-02
A8 = 0.38295E + 00 A8 = 0.12196E-01
A10 = 0.25698E + 01 A10 = 0.10337E-02
A12 = 0.54055E + 01 A12 = -0.68985E-03
A14 = -0.27209E + 01 A14 = -0.45429E-04

5th side 9th side
K = 0.30000E + 02 K = -0.887363E + 01
A4 = -0.18885E + 00 A4 = -0.10697E + 00
A6 = -0.20656E-01 A6 = 0.58263E-01
A8 = 0.29769E-01 A8 = -0.29896E-01
A10 = 0.22362E + 01 A10 = 0.98114E-02
A12 = 0.20177E + 01 A12 = -0.22220E-02
A14 = 0.30519E + 00 A14 = 0.33332E-03

Single lens data

Lens Start surface Focal length (mm)
1 2 2.71
2 4 -10.13
3 6 2.11
4 8 -1.83

図37は実施例17のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図38は、実施例17の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1より物体側に配置されている。   FIG. 37 is a sectional view of the lens of Example 17. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 38 is an aberration diagram of Example 17 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. One lens L1 is disposed on the object side.

(実施例18)
実施例18の撮像レンズのレンズデータを、表18に示す。
(Example 18)
Table 18 shows lens data of the imaging lens of Example 18.

[表18]
実施例 18

f=2.55mm fB=0.12mm F=2.4 2ω=84°2Y=4.8mm
ENTP=0mm EXTP=-1.81mm H1=-0.83mm H2=-2.43mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.08 0.53
2* 1.005 0.33 1.5447 56 0.57
3* 2.934 0.25 0.59
4* -3.272 0.16 1.6347 24 0.59
5* -7.434 0.38 0.65
6* -2.604 0.44 1.5447 56 1.04
7* -0.838 0.41 1.15
8* -5.169 0.35 1.5447 56 1.57
9* 1.240 0.49 1.91
10 ∞ 0.11 1.5163 64 2.50
11 ∞ 2.50

非球面係数

第2面 第6面
K=0.17574E+00 K=-0.11074E+02
A4=0.14632E-01 A4=0.19975E-01
A6=-0.89682E-01 A6=0.15534E+00
A8=0.27596E-01 A8=-0.15587E+00
A10=0.11537E+01 A10=-0.23078E+00
A12=-0.58377E+01 A12=0.47334E+00
A14=-0.20299E+00

第3面 第7面
K=-0.65697E+01 K=-0.39350E+01
A4=-0.50725E-01 A4=-0.26389E+00
A6=-0.22999E+00 A6=0.57349E+00
A8=-0.71452E+00 A8=-0.39045E+00
A10=-0.10521E+01 A10=0.10513E+00
A12=-0.28908E+01 A12=0.38586E-01
A14=-0.26867E-01

第4面 第8面
K=0.22148E+02 K=0.51930E+01
A4=-0.31115E+00 A4=-0.59058E-01
A6=-0.49357E+00 A6=-0.10395E-01
A8=0.92771E-01 A8=0.12891E-01
A10=0.17284E+01 A10=0.15369E-02
A12=0.46089E+01 A12=-0.52781E-03
A14=-0.27209E+01 A14=-0.12570E-03

第5面 第9面
K=-0.30000E+02 K=-0.80616E+01
A4=-0.12274E+00 A4=-0.10774E+00
A6=0.17239E-01 A6=0.58656E-01
A8=-0.17457E-01 A8=-0.30491E-01
A10=0.22454E+01 A10=0.98738E-02
A12=0.23445E+01 A12=-0.21573E-02
A14=0.11152E-01 A14=0.22162E-03

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 2.65
2 4 -9.35
3 6 2.08
4 8 -1.80
[Table 18]
Example 18

f = 2.55mm fB = 0.12mm F = 2.4 2ω = 84 ° 2Y = 4.8mm
ENTP = 0mm EXTP = -1.81mm H1 = -0.83mm H2 = -2.43mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.08 0.53
2 * 1.005 0.33 1.5447 56 0.57
3 * 2.934 0.25 0.59
4 * -3.272 0.16 1.6347 24 0.59
5 * -7.434 0.38 0.65
6 * -2.604 0.44 1.5447 56 1.04
7 * -0.838 0.41 1.15
8 * -5.169 0.35 1.5447 56 1.57
9 * 1.240 0.49 1.91
10 ∞ 0.11 1.5163 64 2.50
11 ∞ 2.50

Aspheric coefficient

2nd side 6th side
K = 0.17574E + 00 K = -0.11074E + 02
A4 = 0.14632E-01 A4 = 0.19975E-01
A6 = -0.89682E-01 A6 = 0.15534E + 00
A8 = 0.27596E-01 A8 = -0.15587E + 00
A10 = 0.11537E + 01 A10 = -0.23078E + 00
A12 = -0.58377E + 01 A12 = 0.47334E + 00
A14 = -0.20299E + 00

3rd surface 7th surface
K = -0.65697E + 01 K = -0.39350E + 01
A4 = -0.50725E-01 A4 = -0.26389E + 00
A6 = -0.22999E + 00 A6 = 0.57349E + 00
A8 = -0.71452E + 00 A8 = -0.39045E + 00
A10 = -0.10521E + 01 A10 = 0.10513E + 00
A12 = -0.28908E + 01 A12 = 0.38586E-01
A14 = -0.26867E-01

4th side 8th side
K = 0.22148E + 02 K = 0.51930E + 01
A4 = -0.31115E + 00 A4 = -0.59058E-01
A6 = -0.49357E + 00 A6 = -0.10395E-01
A8 = 0.92771E-01 A8 = 0.12891E-01
A10 = 0.17284E + 01 A10 = 0.15369E-02
A12 = 0.46089E + 01 A12 = -0.52781E-03
A14 = -0.27209E + 01 A14 = -0.12570E-03

5th side 9th side
K = -0.30000E + 02 K = -0.80616E + 01
A4 = -0.12274E + 00 A4 = -0.10774E + 00
A6 = 0.17239E-01 A6 = 0.58656E-01
A8 = -0.17457E-01 A8 = -0.30491E-01
A10 = 0.22454E + 01 A10 = 0.98738E-02
A12 = 0.23445E + 01 A12 = -0.21573E-02
A14 = 0.11152E-01 A14 = 0.22162E-03

Single lens data

Lens Start surface Focal length (mm)
1 2 2.65
2 4 -9.35
3 6 2.08
4 8 -1.80

図39は実施例18のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図40は、実施例18の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1より物体側に配置されている。   FIG. 39 is a sectional view of the lens of Example 18. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. 40 is an aberration diagram of Example 18 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. One lens L1 is disposed on the object side.

(実施例19)
実施例19の撮像レンズのレンズデータを、表19に示す。
(Example 19)
Table 19 shows lens data of the imaging lens of Example 19.

[表19]
実施例 19

f=2.78mm fB=0.11mm F=2.4 2ω=80°2Y=4.8mm
ENTP=0mm EXTP=-2.28mm H1=-0.45mm H2=-2.67mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.03 0.62
2* 1.386 0.57 1.5447 56 0.64
3* ∞ 0.12 0.72
4* -5.516 0.26 1.6347 24 0.73
5* 14.322 0.49 0.78
6* -2.835 0.43 1.5447 56 0.90
7* -0.778 0.07 1.04
8* -500.000 0.54 1.5447 56 1.56
9* 0.974 0.68 1.97
10 ∞ 0.30 1.5163 64 2.50
11 ∞ 2.50

非球面係数

第2面 第6面
K=-0.39397E+00 K=0.38522E+01
A4=-0.13313E-01 A4=-0.36491E-01
A6=0.40182E-01 A6=-0.17691E-01
A8=-0.42969E+00 A8=-0.25460E-01
A10=0.59331E+00 A10=-0.11116E+00
A12=-0.96894E+00 A12=0.19761E+00
A14=-0.19146E+00

第3面 第7面
K=-0.50000E+02 K=-0.40883E+01
A4=-0.22080E+00 A4=-0.31162E+00
A6=-0.36881E+00 A6=0.43524E+00
A8=0.73250E+00 A8=-0.43275E+00
A10=-0.19244E+01 A10=0.21884E+00
A12=0.20186E+01 A12=0.49393E-01
A14=-0.38984E-01

第4面 第8面
K=0.47376E+02 K=-0.17133E+07
A4=-0.22239E+00 A4=-0.13177E+00
A6=0.22316E-01 A6=0.62728E-01
A8=0.10800E+00 A8=-0.49037E-02
A10=0.63320E-01 A10=-0.87303E-03
A12=0.10497E+01 A12=-0.52575E-03
A14=0.15697E-03

第5面 第9面
K=0.00000E+00 K=-0.71362E+01
A4=-0.28280E-01 A4=-0.10981E+00
A6=0.69485E-01 A6=0.57839E-01
A8=0.33803E+00 A8=-0.23851E-01
A10=-0.59392E+00 A10=0.57259E-02
A12=0.62530E+00 A12=-0.79339E-03
A14=0.48958E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 2.54
2 4 -6.24
3 6 1.83
4 8 -1.78
[Table 19]
Example 19

f = 2.78mm fB = 0.11mm F = 2.4 2ω = 80 ° 2Y = 4.8mm
ENTP = 0mm EXTP = -2.28mm H1 = -0.45mm H2 = -2.67mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.03 0.62
2 * 1.386 0.57 1.5447 56 0.64
3 * ∞ 0.12 0.72
4 * -5.516 0.26 1.6347 24 0.73
5 * 14.322 0.49 0.78
6 * -2.835 0.43 1.5447 56 0.90
7 * -0.778 0.07 1.04
8 * -500.000 0.54 1.5447 56 1.56
9 * 0.974 0.68 1.97
10 ∞ 0.30 1.5163 64 2.50
11 ∞ 2.50

Aspheric coefficient

2nd side 6th side
K = -0.39397E + 00 K = 0.38522E + 01
A4 = -0.13313E-01 A4 = -0.36491E-01
A6 = 0.40182E-01 A6 = -0.17691E-01
A8 = -0.42969E + 00 A8 = -0.25460E-01
A10 = 0.59331E + 00 A10 = -0.11116E + 00
A12 = -0.96894E + 00 A12 = 0.19761E + 00
A14 = -0.19146E + 00

3rd surface 7th surface
K = -0.50000E + 02 K = -0.40883E + 01
A4 = -0.22080E + 00 A4 = -0.31162E + 00
A6 = -0.36881E + 00 A6 = 0.43524E + 00
A8 = 0.73250E + 00 A8 = -0.43275E + 00
A10 = -0.19244E + 01 A10 = 0.18884E + 00
A12 = 0.20186E + 01 A12 = 0.49393E-01
A14 = -0.38984E-01

4th side 8th side
K = 0.47376E + 02 K = -0.17133E + 07
A4 = -0.22239E + 00 A4 = -0.13177E + 00
A6 = 0.22316E-01 A6 = 0.62728E-01
A8 = 0.10800E + 00 A8 = -0.49037E-02
A10 = 0.63320E-01 A10 = -0.87303E-03
A12 = 0.10497E + 01 A12 = -0.52575E-03
A14 = 0.15697E-03

5th side 9th side
K = 0.00000E + 00 K = -0.71362E + 01
A4 = -0.28280E-01 A4 = -0.10981E + 00
A6 = 0.69485E-01 A6 = 0.57839E-01
A8 = 0.33803E + 00 A8 = -0.23851E-01
A10 = -0.59392E + 00 A10 = 0.57259E-02
A12 = 0.62530E + 00 A12 = -0.779339E-03
A14 = 0.48958E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 2.54
2 4 -6.24
3 6 1.83
4 8 -1.78

図41は実施例19のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図42は、実施例19の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1より物体側に配置されている。   FIG. 41 is a sectional view of the lens of Example 19. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. FIG. 42 is an aberration diagram of Example 19 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. One lens L1 is disposed on the object side.

(実施例20)
実施例20の撮像レンズのレンズデータを、表20に示す。
(Example 20)
Table 20 shows lens data of the imaging lens of Example 20.

[表20]
実施例 20

f=2.77mm fB=0.11mm F=2.4 2ω=72°2Y=4.8mm
ENTP=0mm EXTP=-2.24mm H1=-0.51mm H2=-2.67mm

面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.04 0.58
2* 1.336 0.89 1.5250 70 0.58
3* 11.976 0.25 0.71
4* -4.794 0.22 1.6347 24 0.73
5* -9.004 0.46 0.80
6* -2.713 0.42 1.5447 56 0.94
7* -0.760 0.05 1.10
8* -833.333 0.39 1.5447 56 1.40
9* 0.898 0.58 1.91
10 ∞ 0.15 1.5163 64 2.50
11 ∞ 2.50

非球面係数

第2面 第6面
K=-0.26554E+00 K=0.28575E+01
A4=-0.48213E-02 A4=-0.23466E+00
A6=0.29221E-01 A6=0.20924E+00
A8=-0.33601E+00 A8=0.14533E-01
A10=0.87231E+00 A10=-0.23013E+00
A12=-0.86333E+00 A12=0.13597E+00
A14=-0.17583E-01

第3面 第7面
K=-0.50000E+02 K=-0.41582E+01
A4=-0.11095E+00 A4=-0.37034E+00
A6=-0.26247E+00 A6=0.53231E+00
A8=0.68642E+00 A8=-0.43430E+00
A10=-0.20472E+01 A10=0.19971E+00
A12=0.20935E+01 A12=0.40280E-01
A14=-0.47995E-01

第4面 第8面
K=0.33422E+02 K=-0.26153E+06
A4=-0.27513E+00 A4=-0.13633E+00
A6=0.41033E-01 A6=0.19749E-01
A8=0.38304E-01 A8=0.37847E-02
A10=-0.49873E-01 A10=0.40256E-02
A12=0.10226E+01 A12=-0.10035E-03
A14=-0.57465E-03

第5面 第9面
K=0.00000E+00 K=-0.57240E+01
A4=-0.17889E+00 A4=-0.13143E+00
A6=0.65597E-01 A6=0.67390E-01
A8=0.40672E+00 A8=-0.26471E-01
A10=-0.50693E+00 A10=0.63600E-02
A12=0.61780E+00 A12=-0.88042E-03
A14=0.46830E-04

単レンズデータ

レンズ 始面 焦点距離(mm)
1 2 2.78
2 4 -16.48
3 6 1.80
4 8 -1.65
[Table 20]
Example 20

f = 2.77mm fB = 0.11mm F = 2.4 2ω = 72 ° 2Y = 4.8mm
ENTP = 0mm EXTP = -2.24mm H1 = -0.51mm H2 = -2.67mm

Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.04 0.58
2 * 1.336 0.89 1.5250 70 0.58
3 * 11.976 0.25 0.71
4 * -4.794 0.22 1.6347 24 0.73
5 * -9.004 0.46 0.80
6 * -2.713 0.42 1.5447 56 0.94
7 * -0.760 0.05 1.10
8 * -833.333 0.39 1.5447 56 1.40
9 * 0.898 0.58 1.91
10 ∞ 0.15 1.5163 64 2.50
11 ∞ 2.50

Aspheric coefficient

2nd side 6th side
K = -0.26554E + 00 K = 0.28575E + 01
A4 = -0.48213E-02 A4 = -0.23466E + 00
A6 = 0.29221E-01 A6 = 0.20924E + 00
A8 = -0.33601E + 00 A8 = 0.14533E-01
A10 = 0.87231E + 00 A10 = -0.23013E + 00
A12 = -0.86333E + 00 A12 = 0.13597E + 00
A14 = -0.17583E-01

3rd surface 7th surface
K = -0.50000E + 02 K = -0.41582E + 01
A4 = -0.11095E + 00 A4 = -0.37034E + 00
A6 = -0.26247E + 00 A6 = 0.53231E + 00
A8 = 0.68642E + 00 A8 = -0.43430E + 00
A10 = -0.220472E + 01 A10 = 0.19971E + 00
A12 = 0.20935E + 01 A12 = 0.40280E-01
A14 = -0.47995E-01

4th side 8th side
K = 0.33422E + 02 K = -0.26153E + 06
A4 = -0.27513E + 00 A4 = -0.13633E + 00
A6 = 0.41033E-01 A6 = 0.19749E-01
A8 = 0.38304E-01 A8 = 0.37847E-02
A10 = -0.49873E-01 A10 = 0.40256E-02
A12 = 0.10226E + 01 A12 = -0.10035E-03
A14 = -0.57465E-03

5th side 9th side
K = 0.00000E + 00 K = -0.57240E + 01
A4 = -0.17889E + 00 A4 = -0.13143E + 00
A6 = 0.65597E-01 A6 = 0.67390E-01
A8 = 0.40672E + 00 A8 = -0.26471E-01
A10 = -0.50693E + 00 A10 = 0.63600E-02
A12 = 0.61780E + 00 A12 = -0.88042E-03
A14 = 0.46830E-04

Single lens data

Lens Start surface Focal length (mm)
1 2 2.78
2 4 -16.48
3 6 1.80
4 8 -1.65

図43は実施例20のレンズの断面図である。図中、L1は正の屈折力を有し物体側に凸面を向けた第1レンズ、L2は負の屈折力を有し物体側に凹面を向けた第2レンズ、L3は正の屈折力を有し像側に凸面を向けた第3レンズ、L4は負の屈折力を有し両凹形状を有する第4レンズ、Sは開口絞り、Iは撮像面を示す。また、Fは光学的ローパスフィルタやIRカットフィルタ、固体撮像素子のシールガラス等を想定した平行平板である。図44は、実施例20の収差図(球面収差(a)、非点収差(b)、歪曲収差(c)、メリディオナルコマ収差(d))である。本実施例において、第4レンズL4は、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、開口絞りSが第1レンズL1より物体側に配置されている。   43 is a sectional view of the lens of Example 20. FIG. In the figure, L1 is a first lens having a positive refractive power and having a convex surface facing the object side, L2 is a second lens having a negative refractive power and having a concave surface facing the object side, and L3 has a positive refractive power. And a fourth lens having a negative refractive power and a biconcave shape, S is an aperture stop, and I is an imaging surface. Further, F is a parallel plate assuming an optical low-pass filter, an IR cut filter, a seal glass of a solid-state image sensor, or the like. 44 is an aberration diagram of Example 20 (spherical aberration (a), astigmatism (b), distortion (c), and meridional coma aberration (d)). In the present embodiment, the fourth lens L4 has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery, and the aperture stop S is the first one. One lens L1 is disposed on the object side.

各条件式に対応する各実施例の値を表21に示す。   Table 21 shows values of the respective examples corresponding to the respective conditional expressions.

また、本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。例えば、実質的に屈折力を持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。   Further, the present invention is not limited to the embodiments described in the specification, and it is understood that other embodiments and modifications are included in the art from the embodiments and ideas described in the present specification. It is obvious to For example, even when a dummy lens having substantially no refractive power is further provided, it is within the scope of application of the present invention.

本発明は、小型の携帯端末に好適な撮像レンズを提供できる。   The present invention can provide an imaging lens suitable for a small portable terminal.

10 撮像レンズ
50 撮像ユニット
51 撮像素子
51a 光電変換部
52 基板
52a 支持平板
52b フレキシブル基板
53 筐体
53a フランジ部
54 外部接続端子
55 絞り部材
60 入力部
70 タッチパネル
80 無線通信部
91 記憶部
92 一時記憶部
100 スマートフォン
101 制御部
I 撮像面
F 平行平板
L1〜L4 レンズ
S 開口絞り
DESCRIPTION OF SYMBOLS 10 Imaging lens 50 Imaging unit 51 Imaging element 51a Photoelectric conversion part 52 Board | substrate 52a Support flat plate 52b Flexible board 53 Case 53a Flange part 54 External connection terminal 55 Diaphragm member 60 Input part 70 Touch panel 80 Wireless communication part 91 Storage part 92 Temporary storage part DESCRIPTION OF SYMBOLS 100 Smartphone 101 Control part I Imaging surface F Parallel flat plate L1-L4 Lens S Aperture stop

Claims (13)

物体側より順に、
正の屈折力を有し物体側に凸面を向けた第1レンズ、
負の屈折力を有し物体側に凹面を向けた第2レンズ、
正の屈折力を有し像側に凸面を向けた第3レンズ、
負の屈折力を有し両凹形状を有する第4レンズ、からなり、
前記第4レンズは、物体側面および像側面が非球面形状とされており、光軸近傍から周辺に向かうに従い負の屈折力が弱くなる形状を有し、
開口絞りが前記第2レンズより物体側に配置され、
以下の条件式を満足することを特徴とする撮像レンズ。
−10<f1/f4<−0.8 (1)
−200<f2/f<−1.4 (2)
35<νd4<85 (3)
ただし、
f1:前記第1レンズの焦点距離
f4:前記第4レンズの焦点距離
f2:前記第2レンズの焦点距離
f:前記撮像レンズ全系の焦点距離
νd4:前記第4レンズのアッベ数
From the object side,
A first lens having positive refractive power and having a convex surface facing the object side;
A second lens having negative refractive power and having a concave surface facing the object side;
A third lens having positive refractive power and having a convex surface facing the image side;
A fourth lens having negative refractive power and a biconcave shape,
The fourth lens has an aspheric object side surface and an image side surface, and has a shape in which the negative refractive power becomes weaker from the vicinity of the optical axis toward the periphery,
An aperture stop is disposed closer to the object side than the second lens;
An imaging lens satisfying the following conditional expression:
−10 <f1 / f4 <−0.8 (1)
−200 <f2 / f <−1.4 (2)
35 <νd4 <85 (3)
However,
f1: focal length of the first lens f4: focal length of the fourth lens f2: focal length of the second lens f: focal length νd4 of the entire imaging lens system: Abbe number of the fourth lens
以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
0.1<T12/T23<2.5 (4)
ただし、
T12:前記第1レンズと前記第2レンズの光軸上の空気間隔
T23:前記第2レンズと前記第3レンズの光軸上の空気間隔
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.1 <T12 / T23 <2.5 (4)
However,
T12: Air spacing on the optical axis of the first lens and the second lens T23: Air spacing on the optical axis of the second lens and the third lens
以下の条件式を満足することを特徴とする請求項1または請求項2のいずれか1項に記載の撮像レンズ。
0.6<f1/f<5.0 (5)
ただし、
f1:前記第1レンズの焦点距離
f:前記撮像レンズ全系の焦点距離
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.6 <f1 / f <5.0 (5)
However,
f1: Focal length of the first lens f: Focal length of the entire imaging lens system
以下の条件式を満足することを特徴とする請求項1乃至請求項3のいずれか1項に記載の撮像レンズ。
0.3<f3/f<1.5 (6)
ただし、
f3:前記第3レンズの焦点距離
f:前記撮像レンズ全系の焦点距離
The imaging lens according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.3 <f3 / f <1.5 (6)
However,
f3: focal length of the third lens f: focal length of the entire imaging lens system
以下の条件式を満足することを特徴とする請求項1乃至請求項4のいずれか1項に記載の撮像レンズ。
0.001<T34/f<0.3 (7)
ただし、
T34:前記第3レンズと前記第4レンズの光軸上の空気間隔
The imaging lens according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
0.001 <T34 / f <0.3 (7)
However,
T34: Air space on the optical axis of the third lens and the fourth lens
以下の条件式を満足することを特徴とする請求項1乃至請求項5のいずれか1項に記載の撮像レンズ。
−1.0<(r7+r8)/(r7−r8)<1.0 (8)
ただし、
r7:前記第4レンズの物体側面の曲率半径
r8:前記第4レンズの像側面の曲率半径
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
−1.0 <(r7 + r8) / (r7−r8) <1.0 (8)
However,
r7: radius of curvature of the object side surface of the fourth lens r8: radius of curvature of the image side surface of the fourth lens
以下の条件式を満足することを特徴とする請求項1乃至請求項6のいずれか1項に記載の撮像レンズ。
−5.0<Pair12/P<−0.1 (9)
ただし、
P:前記撮像レンズ全系の屈折力(焦点距離の逆数)
air12:前記第1レンズの像側面と前記第2レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、以下の条件式で求める。
air12=(1−N1)/R2+(N2−1)/R3−{((1−N1)・(N2−1))/(R2・R3)}・D2 (10)
ただし、
N1:前記第1レンズのd線に対する屈折率
N2:前記第2レンズのd線に対する屈折率
R2:前記第1レンズの像側面の曲率半径
R3:前記第2レンズの物体側面の曲率半径
D2:前記第1レンズと前記第2レンズの光軸上の空気間隔
The imaging lens according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
-5.0 <P air12 /P<-0.1 (9)
However,
P: refractive power of the entire imaging lens system (reciprocal of focal length)
P air12 : Refractive power of a so-called air lens formed by the image side surface of the first lens and the object side surface of the second lens, which is obtained by the following conditional expression.
P air12 = (1-N1) / R2 + (N2-1) / R3-{((1-N1) · (N2-1)) / (R2 · R3)} · D2 (10)
However,
N1: Refractive index with respect to d line of the first lens N2: Refractive index with respect to d line of the second lens R2: Radius of curvature of the image side surface of the first lens R3: Radius of curvature of the object side surface of the second lens D2: Air spacing on the optical axis of the first lens and the second lens
以下の条件式を満足することを特徴とする請求項1乃至請求項7のいずれか1項に記載の撮像レンズ。
50<νd1<97 (11)
15<νd2<29 (12)
ただし、
νd1:前記第1レンズのアッベ数
νd2:前記第2レンズのアッベ数
The imaging lens according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
50 <νd1 <97 (11)
15 <νd2 <29 (12)
However,
νd1: Abbe number of the first lens νd2: Abbe number of the second lens
前記第1レンズの物体側面より物体側に前記開口絞りを配置することを特徴とする請求項1乃至請求項8のいずれか1項に記載の撮像レンズ。   9. The imaging lens according to claim 1, wherein the aperture stop is disposed closer to an object side than an object side surface of the first lens. 前記第1レンズと前記第2レンズの間に前記開口絞りを配置することを特徴とする請求項1乃至請求項8のいずれか1項に記載の撮像レンズ。   The imaging lens according to any one of claims 1 to 8, wherein the aperture stop is disposed between the first lens and the second lens. 実質的に屈折力を有しないレンズを有することを特徴とする請求項1〜10のいずれか1項に記載の撮像レンズ。   The imaging lens according to claim 1, comprising a lens having substantially no refractive power. 被写体像を光電変換する固体撮像素子と、請求項1〜11のいずれか1項に記載の撮像レンズを備えたことを特徴とする撮像装置。   An imaging apparatus comprising: a solid-state imaging device that photoelectrically converts a subject image; and the imaging lens according to claim 1. 請求項12に記載の撮像装置を備えたことを特徴とする携帯端末。   A portable terminal comprising the imaging device according to claim 12.
JP2011233320A 2011-10-24 2011-10-24 Imaging lens, imaging apparatus and portable terminal Pending JP2013092584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233320A JP2013092584A (en) 2011-10-24 2011-10-24 Imaging lens, imaging apparatus and portable terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233320A JP2013092584A (en) 2011-10-24 2011-10-24 Imaging lens, imaging apparatus and portable terminal

Publications (1)

Publication Number Publication Date
JP2013092584A true JP2013092584A (en) 2013-05-16

Family

ID=48615765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233320A Pending JP2013092584A (en) 2011-10-24 2011-10-24 Imaging lens, imaging apparatus and portable terminal

Country Status (1)

Country Link
JP (1) JP2013092584A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142557A (en) * 2013-10-09 2014-11-12 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device
CN104730696A (en) * 2014-09-03 2015-06-24 瑞声声学科技(深圳)有限公司 Camera lens
CN105487205A (en) * 2014-09-18 2016-04-13 先进光电科技股份有限公司 Four-piece type imaging lens group
CN105892015A (en) * 2016-02-24 2016-08-24 瑞声科技(新加坡)有限公司 Camera lens
CN106033142A (en) * 2015-03-12 2016-10-19 佳能企业股份有限公司 Optical lens
CN106154516A (en) * 2016-03-18 2016-11-23 玉晶光电(厦门)有限公司 Optical imaging lens
JP2017116875A (en) * 2015-12-25 2017-06-29 カンタツ株式会社 Image capturing lens
CN108020910A (en) * 2017-12-19 2018-05-11 福建福光股份有限公司 A kind of low full group mobile industrial camera lens that distorts of f35mm high-resolution
US10139594B2 (en) 2016-09-30 2018-11-27 Largan Precision Co., Ltd. Optical imaging lens system, image capturing unit and electronic device
US10288842B2 (en) 2015-03-10 2019-05-14 Ability Enterprise Co., Ltd. Optical lens
CN110716282A (en) * 2018-07-13 2020-01-21 南昌欧菲精密光学制品有限公司 Imaging optical system, image capturing device and electronic device
JP2021033286A (en) * 2019-08-16 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
WO2021168883A1 (en) * 2020-02-24 2021-09-02 诚瑞光学(常州)股份有限公司 Camera optical lens

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142557A (en) * 2013-10-09 2014-11-12 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device
CN104730696A (en) * 2014-09-03 2015-06-24 瑞声声学科技(深圳)有限公司 Camera lens
CN105487205A (en) * 2014-09-18 2016-04-13 先进光电科技股份有限公司 Four-piece type imaging lens group
US10288842B2 (en) 2015-03-10 2019-05-14 Ability Enterprise Co., Ltd. Optical lens
CN106033142A (en) * 2015-03-12 2016-10-19 佳能企业股份有限公司 Optical lens
JP2017116875A (en) * 2015-12-25 2017-06-29 カンタツ株式会社 Image capturing lens
US10209485B2 (en) 2015-12-25 2019-02-19 Kantatsu Co., Ltd. Imaging lens
JP2017151237A (en) * 2016-02-24 2017-08-31 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging lens
CN105892015A (en) * 2016-02-24 2016-08-24 瑞声科技(新加坡)有限公司 Camera lens
CN106154516A (en) * 2016-03-18 2016-11-23 玉晶光电(厦门)有限公司 Optical imaging lens
CN106154516B (en) * 2016-03-18 2019-02-22 玉晶光电(厦门)有限公司 Optical imaging lens
US10139594B2 (en) 2016-09-30 2018-11-27 Largan Precision Co., Ltd. Optical imaging lens system, image capturing unit and electronic device
CN108020910A (en) * 2017-12-19 2018-05-11 福建福光股份有限公司 A kind of low full group mobile industrial camera lens that distorts of f35mm high-resolution
CN110716282A (en) * 2018-07-13 2020-01-21 南昌欧菲精密光学制品有限公司 Imaging optical system, image capturing device and electronic device
CN110716282B (en) * 2018-07-13 2022-05-13 江西晶超光学有限公司 Imaging optical system, image capturing device and electronic device
JP2021033286A (en) * 2019-08-16 2021-03-01 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
WO2021168883A1 (en) * 2020-02-24 2021-09-02 诚瑞光学(常州)股份有限公司 Camera optical lens

Similar Documents

Publication Publication Date Title
JP6175903B2 (en) Imaging lens, imaging device, and portable terminal
JP5304117B2 (en) Imaging lens, imaging device, and portable terminal
JP5839038B2 (en) Imaging lens and imaging apparatus
JP6300183B2 (en) Imaging lens, imaging device, and portable terminal
JP5382527B2 (en) Imaging lens, imaging device, and portable terminal
JP2013092584A (en) Imaging lens, imaging apparatus and portable terminal
JP4924141B2 (en) Imaging lens, imaging device, and portable terminal
JP6222564B2 (en) Imaging lens, lens unit, imaging device, digital still camera, and portable terminal
WO2013039035A1 (en) Image pick-up lens, image pick-up device, portable terminal and digital instrument
JP4894222B2 (en) Imaging lens, imaging unit, and portable terminal
WO2013137312A1 (en) Image pickup lens, image pickup device, and portable terminal
JP6451639B2 (en) Imaging device and portable terminal
JP2014115431A (en) Imaging lens, imaging apparatus, and portable terminal
JP2014029547A (en) Imaging lens, imaging apparatus, and mobile terminal
JP2009258286A (en) Imaging lens, imaging unit, and mobile terminal
JP2009282223A (en) Imaging lens, imaging unit and personal digital assistant
JP2014160158A (en) Imaging lens, imaging apparatus, and portable terminal
JPWO2015005417A1 (en) Imaging lens, imaging device, and portable terminal
WO2013008862A1 (en) Imaging lens and imaging device
JP2011095301A (en) Imaging lens, imaging apparatus and portable terminal
WO2011092983A1 (en) Image-capturing lens
JP2015084066A (en) Image capturing lens, image capturing device, and portable terminal
JP2013246217A (en) Imaging lens, imaging apparatus, and portable terminal
JP2012252193A (en) Imaging lens for imaging apparatus, imaging apparatus and portable terminal
WO2012114970A1 (en) Imaging lens, imaging device, and portable terminal

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130415