WO2014034374A1 - Magnetic cooling/heating device - Google Patents

Magnetic cooling/heating device Download PDF

Info

Publication number
WO2014034374A1
WO2014034374A1 PCT/JP2013/070915 JP2013070915W WO2014034374A1 WO 2014034374 A1 WO2014034374 A1 WO 2014034374A1 JP 2013070915 W JP2013070915 W JP 2013070915W WO 2014034374 A1 WO2014034374 A1 WO 2014034374A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic body
magnetocaloric
operating temperature
temperature range
Prior art date
Application number
PCT/JP2013/070915
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 秀和
田崎 豊
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014532896A priority Critical patent/JP5807723B2/en
Publication of WO2014034374A1 publication Critical patent/WO2014034374A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a magnetic air conditioner, and more particularly, a magnetism that individually applies magnetism to a plurality of magnetic bodies to develop a magnetocaloric effect and transports heat of the plurality of magnetic bodies using heat conduction of a solid substance.
  • the present invention relates to an air conditioner.
  • MCE magnetocaloric effect
  • MCM magnetocaloric material
  • a refrigeration technique that transports heat using a magnetic material that exhibits this magnetocaloric effect is a magnetic refrigeration technique.
  • a positive magnetic material that increases in temperature when magnetism is applied and decreases in temperature when magnetism is removed and a negative magnetic material that decreases in temperature when magnetism is applied and increases in temperature when magnetism is removed Place them alternately.
  • One magnetic body block is formed by a pair of positive and negative magnetic bodies.
  • a plurality of magnetic blocks are arranged in a ring shape to form a magnetic unit.
  • a heat conduction part inserted and removed between the positive and negative magnetic bodies arranged in the magnetic unit is arranged between the positive and negative magnetic bodies.
  • a permanent magnet is arranged on a hub-like rotator that is concentric with the magnetic unit and has substantially the same inner diameter and outer diameter to form a magnetic circuit.
  • positioned is arrange
  • magnetism is simultaneously applied to and removed from the positive and negative magnetic bodies.
  • the heat conducting portion is inserted and removed between the positive and negative magnetic bodies at a constant timing. The heat generated by the magnetic body due to the magnetocaloric effect is transported in one direction in which the magnetic body is disposed via the heat conducting portion.
  • Patent Document 1 uses a magnetic material whose operating temperature decreases in the direction from the high temperature side heat exchange means to the low temperature side heat exchange means.
  • Cited Document 2 a plurality of magnetic bodies having different operating temperature ranges are used, and the operating temperature ranges of adjacent magnetic bodies are overlapped.
  • the magnetocaloric effect is efficiently expressed after all the magnetic bodies are in their respective operating temperature ranges, that is, after the steady state is reached. Can move heat.
  • each magnetic body is at the temperature of its environment at the time of startup. For this reason, the magnetocaloric effect is not sufficiently exerted until the respective magnetic bodies reach their respective operating temperatures from the time of startup to the steady state. For this reason, the conventional apparatus has a problem that the transient characteristics from the start-up state to the steady state are poor and it takes time to reach the steady state.
  • an object of the present invention is to provide a magnetic air conditioner having improved transient characteristics from the start of use to the steady state.
  • a magnetic air conditioner includes a plurality of magnetic bodies that are arranged in rows at intervals and change in temperature by the application and removal of magnetism, and each of the plurality of magnetic bodies is magnetic.
  • a magnetic application unit for applying and removing.
  • One end portion of the plurality of magnetic body rows has a low temperature side heat exchange section arranged at a distance from the magnetic body, and the other end portion of the plurality of magnetic body rows is arranged at a distance from the magnetic body.
  • the high temperature side heat exchange part is provided.
  • a heat conducting section that performs heat transfer and heat insulation between them.
  • Each of the plurality of magnetic bodies has a magnetocaloric material having a different operating temperature range, and at least one of the plurality of magnetic bodies has a working temperature range as one magnetic body. It has at least two different magnetocaloric materials, and one of the magnetocaloric materials is a magnetocaloric material including an operating temperature as an operating temperature range.
  • At least one magnetic body among a plurality of magnetic bodies arranged in a row has at least two magnetocaloric materials having different operating temperature ranges.
  • one of the magnetocaloric materials was a magnetocaloric material including the starting temperature as the operating temperature range.
  • a magnetic body having at least two magnetocaloric materials can change its temperature by applying and removing magnetism from the starting temperature state outside the operating temperature range of its own magnetocaloric material. Therefore, since the temperature of the magnetic material changes from the time of startup, the transient characteristics from the time of startup to the steady state can be improved, and the steady state can be achieved in a shorter time than the prior art.
  • FIG. 6 is a graph for explaining a combination ratio (mass%) of magnetocaloric materials constituting each magnetic body 10A-10F in the magnetic air conditioner of Embodiment 1. It is explanatory drawing for demonstrating the movement of the heat
  • FIG. 14 It is explanatory drawing for demonstrating the combination ratio of the magnetocaloric material in the magnetic body used for the logical calculation in FIG.
  • FIG. 15 is an exploded cross-sectional view of the magnetic air conditioner shown in FIG. 14.
  • FIG. It is a schematic diagram for demonstrating a heat
  • FIG. It is explanatory drawing for demonstrating the form 1 of a thermal switch part. It is explanatory drawing for demonstrating the form 2 of a thermal switch part. It is explanatory drawing for demonstrating the form 3 of a thermal switch part. It is explanatory drawing for demonstrating the form 4 of a thermal switch part. It is explanatory drawing for demonstrating the form 5 of a thermal switch part. It is explanatory drawing for demonstrating the form 6 of a thermal switch part.
  • FIG. 1 is an explanatory diagram for explaining the operating principle of the magnetic air conditioner.
  • the illustrated magnetic air conditioner shows a basic form of the magnetic air conditioner.
  • the magnetic air conditioner has a plurality of magnetic bodies 10A-10F that exhibit a magnetocaloric effect.
  • the plurality of magnetic bodies 10A-10F are arranged in a row at intervals.
  • a positive magnetic body is used as a magnetic body having the same type of magnetocaloric effect.
  • each magnetic body has a magnetocaloric material in which the temperature change range (operating temperature range) varies depending on the application and removal of magnetism (details will be described later).
  • the magnetic body block 100A is formed with the magnetic bodies 10A and 10B, the magnetic body block 100B is formed with the magnetic bodies 10C and 10D, and the magnetic body block 100C is formed with the magnetic bodies 10E and 10F. Further, the magnetic body unit 200 is formed by the magnetic body blocks 100A-100C.
  • the magnetic circuits 20A, 20B, magnetic circuits 20C, 20D, and magnetic circuits 20E, 20F reciprocate between the magnetic bodies 10A-10F. That is, from the state of FIG. 1A, the magnetic circuits 20A and 20B move from the magnetic bodies 10A to 10B, the magnetic circuits 20C and 20D move from the magnetic bodies 10C to 10D, and the magnetic circuits 20E and 20F move from the magnetic bodies 10E to 10F all at once. Thus, the state shown in FIG. 1B is obtained. Next, from the state of FIG.
  • the magnetic circuits 20A and 20B are changed from the magnetic bodies 10B to 10A
  • the magnetic circuits 20C and 20D are changed from the magnetic bodies 10D to 10C
  • the magnetic circuits 20E and 20F are changed from the magnetic bodies 10F to 10E all at once.
  • the plurality of magnetic bodies 10A-10F positive magnetic bodies that generate heat when applying magnetism in the magnetic circuits 20A, 20B-magnetic circuits 20E, 20F and absorb heat when the magnetism is removed are used.
  • a positive magnetic body and a negative magnetic body have opposite magneto-caloric effects, and the types of magneto-caloric effects are different.
  • a positive magnetic material that is less expensive than a negative magnetic material is used.
  • the negative magnetic material must be manufactured from a rare magnetocaloric material, which increases the cost, and the magnitude of the magnetocaloric effect of the negative magnetic material is greater than the magnitude of the magnetocaloric effect of the positive magnetic material. This is because it is small (a specific magnetocaloric material used for the magnetic material will be described later).
  • the magnetic circuits 20A, 20B-20E, and 20F are provided with permanent magnets (not shown).
  • the magnetic circuits 20A and 20B, the magnetic circuits 20C and 20D, and the magnetic circuits 20E and 20F are integrated to reciprocate in the horizontal direction in the figure, thereby applying magnetism to the magnetic bodies 10A to 10F individually.
  • the heat conducting units 30A-30G conduct the heat generated by the magnetic bodies 10A-10F due to the magnetocaloric effect from the low temperature side heat exchange unit 40A to the high temperature side heat exchange unit 40B.
  • the heat conducting unit 30A is inserted and removed between the low temperature side heat exchanging unit 40A and the adjacent magnetic body 10A to mechanically connect the two.
  • the heat conducting unit 30B is inserted and removed between the magnetic bodies 10A and 10B to mechanically connect both.
  • the heat conducting portions 30C, 30D, 30E, and 30F are provided between the magnetic bodies 10B and 10C, between the magnetic bodies 10C and 10D, between the magnetic bodies 10D and 10E, and between the magnetic bodies 10E and 10F. The two are mechanically connected with each other.
  • the heat conducting unit 30G is inserted and removed between the magnetic body 10F and the high temperature side heat exchanging unit 40B to mechanically connect the two.
  • the heat conducting portions 30B, 30D, and 30F are inserted and removed between the magnetic bodies 10A and 10B, between the magnetic bodies 10C and 10D, and between the magnetic bodies 10E and 10F at the same timing. Connecting. Further, the heat conducting portions 30A, 30C, 30E, 30G are also at the same timing, between the low temperature side heat exchanging portion 40A and the magnetic body 10A, between the magnetic bodies 10B and 10C, between the magnetic bodies 10D and 10E, It is inserted and removed between the magnetic body 10F and the high temperature side heat exchanging section 40B to mechanically connect them.
  • the heat conducting portions 30B, 30D, and 30F and the heat conducting portions 30A, 30C, 30E, and 30G are alternately inserted and removed repeatedly.
  • the magnetic circuits 20A and 20B are the magnetic body 10A of the magnetic body block 100A
  • the magnetic circuits 20C and 20D are the magnetic body 10C of the magnetic body block 100B
  • the magnetic circuits 20E and 20F are the magnetic body block 100C. It is located on each of the magnetic bodies 10E. At this time, magnetism is applied to the magnetic bodies 10A, 10C, and 10E, and no magnetism is applied to the magnetic bodies 10B, 10D, and 10F, and the magnetism is removed. At this time, the magnetic bodies 10A, 10C, and 10E generate heat, and the magnetic bodies 10B, 10D, and 10F absorb heat.
  • the heat conducting portion 30B is inserted between the magnetic bodies 10A and 10B, the heat conducting portion 30D is inserted between the magnetic bodies 10C and 10D, and the heat conducting portion 30F is inserted between the magnetic bodies 10E and 10F. Is done. For this reason, heat conduction is performed between adjacent magnetic bodies in each magnetic body block. That is, the heat generated by the magnetic bodies 10A, 10C, and 10E due to the magnetocaloric effect is transferred to the magnetic bodies 10B, 10D, and 10F, respectively.
  • the heat conducting portions 30A and 30G are not inserted between the low temperature side heat exchanging portion 40A and the magnetic body 10A and between the high temperature side heat exchanging portion 40B and the magnetic body 10F. Further, the heat conducting portions 30C and 30E that conduct heat between the magnetic blocks are not inserted between the magnetic bodies 10B and 10C and between the magnetic bodies 10D and 10E.
  • the magnetic circuits 20A and 20B are the magnetic body 10B of the magnetic block 100A
  • the magnetic circuits 20C and 20D are the magnetic body 10D of the magnetic block 100B
  • the magnetic circuits 20E and 20F are the magnetic bodies. It is located on the magnetic body 10F of the block 100C.
  • magnetism is applied to the magnetic bodies 10B, 10D, and 10F
  • no magnetism is applied to the magnetic bodies 10A, 10C, and 10E
  • the magnetism is removed.
  • the magnetic bodies 10B, 10D, and 10F generate heat
  • the magnetic bodies 10A, 10C, and 10E absorb heat.
  • the heat conducting unit 30A is between the low temperature side heat exchanging unit 40A and the magnetic body 10A
  • the heat conducting unit 30C is between the magnetic bodies 10B and 10C
  • the heat conducting unit 30E is between the magnetic bodies 10D and 10E.
  • the heat conducting unit 30G is inserted between the magnetic body 10F and the high temperature side heat exchanging unit 40B.
  • the magnetic bodies 10A, 10C, and 10E absorb heat by the magnetocaloric effect, and the magnetic bodies 10B, 10D, and 10F generate heat by the magnetocaloric effect. For this reason, heat moves from the low temperature side heat exchange section 40A to the magnetic body 10A, from the magnetic body 10B to the magnetic body 10C, from the magnetic body 10D to the magnetic body 10E, and from the magnetic body 10F to the high temperature side heat exchange section 40B.
  • the heat conducting portions 30B, 30D, and 30F that conduct heat in the magnetic block are between the magnetic bodies 10A and 10B, between the magnetic bodies 10C and 10D, and between the magnetic bodies 10E and 10F. Is not inserted.
  • each magnetic body block 100A-100C By reciprocating the magnetic circuit provided corresponding to each magnetic body block 100A-100C in the left-right direction in the figure, the magnetic bodies located at both ends of each magnetic body block 100A-100C are alternately arranged. Repeat the application and removal of magnetism. Further, in conjunction with the movement of the magnetic circuit, insertion / removal of the heat conducting portions 30A-30G between the low temperature side heat exchanging portion 40A, the magnetic bodies 10A-10F, and the high temperature side heat exchanging portion 40B is repeated. Thereby, the heat obtained by the magnetocaloric effect moves from the low temperature side heat exchange unit 40A to the high temperature side heat exchange unit 40B.
  • FIG. 2 is a graph showing the temperature change of the magnetic air conditioner. As shown in this graph, immediately after the magnetic air conditioner is started (initial state), there is almost no temperature gradient with respect to the position of each magnetic body, and the room temperature is from the low temperature side heat exchange unit 40A to the high temperature side heat exchange unit 40B. (Here 20 ° C.).
  • a magnetic material that changes in temperature due to such magnetic movement has a temperature range in which the temperature changes when the magnetism is moved (this is called the operating temperature range).
  • FIG. 3 is a graph for explaining the operating temperature range of the magnetic material (magnetorotherm material).
  • the horizontal axis is the operating temperature
  • the vertical axis is the temperature change range ( ⁇ T). ⁇ T varies depending on the strength of the magnetic field.
  • each magnetocaloric material af has a peak in the changing temperature range ( ⁇ T on the vertical axis), and the temperature at this peak (horizontal axis) is the operating temperature at which the temperature changes most easily. .
  • the operating temperature of the portion showing this peak is a temperature corresponding to the Curie point of the magnetocaloric material.
  • the operating temperature range of each magnetocaloric material is determined around the temperature of the Curie point. That is, the temperature hardly changes when the temperature is away from the temperature at the peak position of ⁇ T.
  • the temperature change ranges are respectively adjacent magnetocaloric materials.
  • the overlapping portion is only the base portion away from the temperature of the peak (vertex) of ⁇ T. It can be seen that ⁇ T is low (vertical axis) is low at the base. Therefore, there is little change in temperature at the base, that is, where the magnetocaloric materials af are overlapped.
  • the temperature range that can actually be used is a temperature range that shows a temperature change amount of about half or more of ⁇ T. For this reason, for example, if ⁇ T is 5 ° C., a positive magnetocaloric material having a Curie point of 22.5 ° C. (temperature rises by application of magnetism), and a material having a temperature change ( ⁇ T) of 5 ° C., its operating temperature The range will be about 20-25 ° C. However, even at the base portion of 20 ° C. or lower and 25 ° C. or higher, the temperature change occurs due to the application and removal of the magnetic field. Similarly, other magnetocaloric materials have their operating temperature range and temperature change ( ⁇ T) determined by the Curie point temperature and the material type.
  • Comparative Example 1 uses only one magnetocaloric material in which a plurality of magnetic bodies operate in respective operating temperature ranges in a magnetic air conditioner configured similarly to FIG. That is, as described in Patent Documents 1 and 2, each magnetic body uses only one magnetocaloric material whose operating temperature decreases in order from the high temperature side heat exchange means to the low temperature side heat exchange means. -ing
  • FIG. 4 is a graph for explaining the ratio (mass%) of the magnetocaloric material in each of the magnetic bodies 10A-10F shown in FIG. 1 as the magnetic cooling / heating apparatus of Comparative Example 1.
  • one magnetic body is made of one magnetocaloric material.
  • the operating temperature range of one magnetocaloric material is assumed to have a characteristic that the temperature increases by 5 ° C. when magnetism is applied and decreases by 5 ° C. when the magnetism is removed. (That is, ⁇ T is 5 ° C.).
  • the operating temperature range of one magnetic body is the same as the operating temperature range of one magnetocaloric material as it is.
  • the above-mentioned base portion cannot be ignored, and it is assumed that the base portion has a base of 1 ° C. before and after the operating temperature range of the magnetic body as described below. In this skirt portion, the temperature of the magnetic material cannot exceed the skirt temperature range even if the magnetic field is applied and removed.
  • each magnetic body is composed of one magnetocaloric material whose temperature changes in a temperature range of about 5 ° C. And the operating temperature range of each magnetic body is independent. Further, there is an overlap of 1 ° C. in the operating temperature range with the adjacent magnetic body.
  • the magnetocaloric material a having an operating temperature range of 5 ° C. to 10 ° C. (the range of 4 ° C. to 11 ° C. can be changed in consideration of the base portion) is 100% by mass.
  • the magnetic body 10B has an operating temperature range of 10 ° C. to 15 ° C. (the range of 9 ° C. to 16 ° C. can be changed in consideration of the base portion) of the magnetocaloric material b of 100% by mass
  • the magnetic body 10C has an operating temperature range of 15 ° C. To 20 ° C. (the range of 14 ° C. to 21 ° C.
  • the magnetic body 10D has an operating temperature range of 20 ° C. to 25 ° C. (considering the bottom part)
  • the magnetocaloric material d of which the range of 19 ° C. to 26 ° C. can be changed is 100% by mass
  • the magnetic body 10E has an operating temperature range of 25 ° C. to 30 ° C.
  • the magnetocaloric material f is 100% by mass
  • the magnetic body 10F has an operating temperature range of 30 ° C. to 35 ° C. (the range of 29 ° C. to 36 ° C. can be changed considering the bottom). Is 100% by mass A.
  • FIGS. 5 and 6 are explanatory diagrams for explaining heat transfer in the magnetic air conditioner of the comparative example.
  • the numbers in parentheses shown below the reference numerals of the respective magnetic bodies indicate the operating temperature ranges of the respective magnetic bodies.
  • each magnetic body (more precisely, the magnetocaloric material constituting the magnetic body) is a positive magnetic body that generates heat when applying magnetism and absorbs heat when removed.
  • the magnetism is removed from the magnetic material located on the left side of each of the magnetic material blocks 100A-100C, and the magnetic material located on the right side is removed. Apply magnetism to the body.
  • the adjacent magnetic bodies of the adjacent magnetic body blocks 100A-100C between the magnetic body positioned at one end of the magnetic body unit 200 and the low-temperature side heat exchange unit 40A, and at the other end of the magnetic body unit 200.
  • the heat conducting part is inserted so as to enable heat conduction between the magnetic body located at the high temperature side and the high temperature side heat exchanging part 40B.
  • the temperature of the magnetic body 10C from which the magnetism has been removed is lowered to 15 ° C., and magnetism is applied.
  • the temperature of the magnetic body 10D rises to 25 ° C.
  • the magnetic bodies 10A, 10B, 10E, and 10F that do not include the normal temperature in the operating temperature range hardly change in temperature even when magnetism is applied or removed.
  • the temperature of the magnetic body 10B adjacent to the magnetic body 10C decreases to 17.5 ° C. and is adjacent to the magnetic body 10D by inserting the heat conducting portion.
  • the temperature of the magnetic body 10E is increased to 22.5 ° C.
  • heat has not yet moved to the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B.
  • the magnetic circuit is moved toward the left magnetic body in each block 100A-100C.
  • the heat conduction part is inserted so that heat conduction between adjacent magnetic bodies in each of the magnetic body blocks 100A-100C is possible.
  • the magnetic body 10C In the state of (3) in FIG. 5, the magnetic body 10C generates heat when magnetism is applied, and the temperature rises to 21 ° C. due to heat conduction with the magnetic body D inserted therein. .
  • the magnetic body 10D from which the magnetism has been removed absorbs heat, and because of heat conduction with the magnetic body C, the temperature drops to 19 ° C.
  • the magnetic body 10B remains at 17.5 ° C.
  • the magnetic body 10E remains at 22.5 ° C. Further, even in this state, the temperature of the magnetic bodies 10A and 10F is close to room temperature and is outside the operating temperature range, so that the temperature hardly changes when the magnetic circuit moves.
  • the magnetic bodies 10A and 10B are 18.75 ° C.
  • the magnetic bodies 10C and 10D are both 20 ° C.
  • the magnetic bodies 10E and 10F are both 21.25 ° C.
  • each magnetic body is combined with a magnetocaloric material in another operating temperature range in addition to the magnetocaloric material in its own operating temperature range.
  • the magnetocaloric material having the operating temperature including the startup temperature is put in all the magnetic bodies. It is assumed that the magnetocaloric material used for each magnetic body has a characteristic that the temperature increases by 5 ° C. when magnetism is applied in the operating temperature range and decreases by 5 ° C. when the magnetism is removed ( ⁇ T is 5 ° C.).
  • FIG. 7 is a graph for explaining a combination ratio (mass%) of magnetocaloric materials constituting each of the magnetic bodies 10A-10F in the magnetic cooling / heating apparatus of the first embodiment.
  • the magnetic body 10A has 50 mass% of the magnetocaloric material a responsible for the operating temperature range 5-10 ° C. of the magnetic body 10A, and 30 mass of the magnetocaloric material b responsible for the operating temperature range 10-15 ° C. of the adjacent magnetic body 10B. %, And the magnetocaloric material c that bears the operating temperature range of 15-20 ° C. at the start-up temperature is combined so as to be 20% by mass.
  • the startup temperature is assumed to be 20 ° C, which is normal temperature.
  • the magnetic body 10D in addition to the magnetic body 10C corresponds to the magnetic body in the operating temperature range including the startup temperature.
  • the magnetic body 10A is located on the low temperature side with respect to the starting temperature of 20 ° C., the magnetic body 10C (operating temperature range 15 ⁇ (20 ° C.) magnetocaloric material c is combined into one magnetic body.
  • magnetocaloric material c responsible for the operating temperature range 15-20 ° C. including the startup temperature to the magnetic body 10A having its own operating temperature range of 5-10 ° C.
  • magnetism can be applied immediately after startup, Due to the removal, the magnetocaloric material c functions to cause a temperature change.
  • the magnetic body 10A also includes a magnetocaloric material b that bears the operating temperature range of 10-15 ° C. of the adjacent magnetic body 10B.
  • a magnetocaloric material b that bears the operating temperature range of 10-15 ° C. of the adjacent magnetic body 10B.
  • a magnetocaloric material b having an operating temperature range of 10 to 15 ° C. is inserted.
  • the ratio of combining the magnetocaloric materials maximizes the magnetocaloric material a in the operating temperature range of the magnetic body 10A itself, for example. This is also for efficient operation when the steady state is reached. Therefore, it is preferable that the magnetocaloric material a in the operating temperature range of the magnetic body 10A itself be at least 50% by mass with respect to the total amount (100% by mass).
  • the mass of all the magnetic materials is preferable to be the same. This eliminates (or reduces) the difference in heat capacity between the magnetic bodies, thereby eliminating (reducing) the variation in heat transfer.
  • the ratio of combining the magnetic calorific material may be set as appropriate in consideration of the usage status of the air conditioner. For example, in the case of an apparatus that has few activations and stops and operates once in a steady state after being activated, it is preferable to increase the amount of magnetocaloric material a, for example, about 70 to 95% by mass. If the magnetocaloric material a of 70 mass% or more is put, it can be used as a magnetic air conditioner most efficiently in a steady state. However, if the magnetocaloric material a exceeds 95% by mass, it is not preferable because the effect of shortening the time from the initial state to the steady state cannot be obtained.
  • Such a start-up and a stop are few, and after starting once, as a device which operates long time in a steady state, for example, what is used to cool an object that always generates heat is assumed. More specifically, for example, it is used for cooling a secondary battery or a fuel cell of an electric vehicle (particularly during charging / discharging in a secondary battery and during power generation in a fuel cell). They start to generate heat immediately after startup and always generate heat during operation. For this reason, in order to cool such batteries, a fast cooling function from the beginning of startup and a stable cooling function for a long time during operation are required.
  • the proportion of the magnetocaloric material a is relatively reduced to increase the magnetocaloric material in other operating ranges (but not less than 50% by mass as described above).
  • the time from the initial startup to the steady state can be further shortened.
  • the device that repeatedly starts and stops include a refrigerator and a freezer. Since the refrigerator and the freezer cool the inside surrounded by the heat insulating material, once the inside of the refrigerator is cooled to a stable temperature, it is not necessary to cool for a while after that. Therefore, the magnetic refrigeration apparatus stops.
  • this magnetic body 10A two magnetocaloric materials b and c in other operating temperature ranges are put (three in combination with the own magnetocaloric material). Therefore, the ratio of these two magnetocaloric materials b and c may be determined according to which operating temperature range is cooled faster.
  • the amount of magnetocaloric material c is increased.
  • the magnetocaloric material b may be omitted.
  • the magnetocaloric material b is increased more than c. In this case, however, the magnetocaloric material c must be included.
  • the magnetocaloric material c in the operating temperature range of the startup temperature is inserted in order to cause this to occur quickly. is there. Therefore, if the magnetocaloric material c at this temperature is not added, the temperature change due to the movement of magnetism in the initial stage of the start will not occur in the first place.
  • the temperature change from the initial state has already occurred. Even so, as a whole, the time from the initial state to the steady state can be shortened.
  • the magnetic calorific material of the magnetic body that bears the starting temperature and the magnetic body adjacent to the starting temperature side Combine magnetocaloric materials in the temperature range.
  • the magnetic body 10B is combined with 70% by mass of the magnetocaloric material b responsible for its own temperature range and 30% by mass of the magnetocaloric material c at the start-up temperature to form one magnetic body.
  • the magnetocaloric material c is combined.
  • the magnetocaloric material c for that purpose is 100% by mass.
  • the magnetic body 10D is a magnetic body that bears the starting temperature (that is, room temperature) in the steady state, the magnetocaloric material d for that purpose is 100% by mass.
  • the magnetic body 10E is similar to the magnetic body 10B, but is located on the high temperature side of the magnetic body that bears the startup temperature, so that the magnetocaloric material e that bears its own temperature range is 70 mass%, 30% by mass of the magnetocaloric material d is combined.
  • the magnetic substance F located on the highest temperature side is 50% by mass of the magnetocaloric material f that bears its own temperature range, 30% by mass of the magnetocaloric material e of the magnetic substance adjacent to the low temperature side, and the magnetism at the starting temperature. 20 mass% of the calorie material d is combined. The reason is the same as that of the magnetic body 10A, but since it is on the high temperature side, the magnetocaloric material d of the magnetic body D located on the high temperature side is combined as the starting temperature.
  • each magnetic body configured as described above changes in temperature due to the movement of magnetism is 5 ° C. to 20 ° C. for the magnetic body 10A, 10 ° C. to 20 ° C. for the magnetic body 10B, and 15 ° C. for the magnetic body 10C. 20 ° C.
  • the magnetic body 10D is 20 ° C. to 25 ° C.
  • the magnetic body 10E is 20 ° C. to 30 ° C.
  • the magnetic body 10F is 20 ° C. to 35 ° C.
  • FIG. 8 and 9 are explanatory views for explaining heat transfer in the magnetic air conditioner according to the first embodiment.
  • the numbers in parentheses shown below the reference numerals of the respective magnetic bodies indicate the operating temperature ranges of the respective magnetic bodies (however, in FIGS. 8 and 9, the portions other than FIG. 8 (1) are not shown). Is the same).
  • the magnetocaloric material constituting each magnetic body is a positive magnetic body that generates heat when applying magnetism and absorbs heat when removed.
  • the magnetism is removed from the magnetic material located on the left side of each of the magnetic material blocks 100A-100C, and the magnetic material located on the right side is removed. Apply magnetism to the body.
  • the adjacent magnetic bodies of the adjacent magnetic body blocks 100A-100C between the magnetic body positioned at one end of the magnetic body unit 200 and the low-temperature side heat exchange unit 40A, and at the other end of the magnetic body unit 200.
  • the heat conducting part is inserted so as to enable heat conduction between the magnetic body located at the high temperature side and the high temperature side heat exchanging part 40B.
  • the magnetic body 10 ⁇ / b> C having an operating temperature of room temperature (20 ° C.) has its magnetism removed and the temperature is reduced to 15 ° C.
  • the magnetic body 10 ⁇ / b> D to which magnetism is applied has a temperature of 25 Raise to °C.
  • the temperature of the magnetic body 10A becomes 18 ° C. by removing the magnetism. Since the magnetic body 10B is a positive magnetic body and its temperature change range is 10-20 ° C., even if magnetism is applied here, the temperature hardly increases and remains at 20 ° C.
  • the magnetic body 10E is also a positive magnetic body, and its temperature change range is 20-30 ° C. Therefore, even if the magnetism is removed, the temperature does not decrease and remains at 20 ° C.
  • the temperature of the magnetic body 10F rises to 22 ° C. by applying magnetism.
  • the temperatures of the magnetic bodies 10A and 10F change from the first stage unlike the comparative example.
  • the magnetic materials 10A and 10F contain the magnetocaloric material c or d whose normal temperature is the operating temperature range.
  • the temperature change is smaller than that of the magnetic body 10C made of only the magnetocaloric material c and the magnetic body 10D made of only the magnetocaloric material d.
  • the magnetocaloric material c or d having an operating temperature range of normal temperature has a smaller amount of mixing than the magnetic bodies 10C and 10D, and therefore the temperature change of each magnetic body is reduced.
  • the magnetic bodies 10A and 10F have a change of about 2 ° C. even if the current temperature is room temperature.
  • the temperature of the low-temperature side heat exchanging portion 40A adjacent to the magnetic body 10A is decreased and the magnetic body 10A is heated as a result. Stolen and both are at 19 ° C.
  • the magnetic body 10C adjacent to the magnetic body 10B is 17.5 ° C.
  • the magnetic body 10E adjacent to the magnetic body 10D is 22.5 ° C.
  • the magnetic body 10F and the high temperature side heat exchange part 40B become 21 degreeC. That is, the temperature change occurs in both the low temperature side heat exchange section 40A and the high temperature side heat exchange section 40B from the stage of the first heat cycle.
  • the magnetic circuit is moved toward the left magnetic body in each block 100A-100C.
  • the heat conduction part is inserted so that heat conduction between adjacent magnetic bodies in each of the magnetic body blocks 100A-100C is possible. Due to this movement of magnetism, magnetism is applied to the magnetic body 10A, and the temperature rises to 20.2 ° C.
  • the magnetic body 10B drops to 14 ° C. because the magnetism is removed.
  • the magnetic body 10C is heated to 21 ° C. by applying magnetism.
  • the magnetic body 10D is demagnetized and the temperature drops to 19 ° C.
  • the magnetic body 10E is heated to 26 ° C. by applying magnetism.
  • the magnetic body 10F is demagnetized and the temperature drops to 19.8 ° C.
  • the magnetic bodies 10B and 10E even if the magnetic bodies 10B and 10E are at a normal temperature, the magnetic bodies 10B and 10E contain the magnetocaloric materials c and d that have the normal temperature as the operating temperature range, so that the temperature changes. Since the mixing ratio of the magnetocaloric materials c and d in these magnetic bodies 10B and 10E is smaller than that of the magnetic bodies 10C and 10D, it is assumed that the change is about 3.5 ° C.
  • the magnetic bodies 10A and 10B are both 17.1 ° C.
  • the magnetic bodies 10E and 10F are both 22.9 ° C. Accordingly, even at this stage, the magnetic bodies 10A and 10B have a lower temperature than the comparative example, and the magnetic bodies 10E and 10F have a higher temperature.
  • the temperature change of all the magnetic bodies starts by the magnetic movement (magnetization and removal) from the stage immediately after the start-up. Accordingly, the time from the initial state at normal temperature (20 ° C. in this case) to the steady state is faster than the comparative example.
  • LaFeSiH As a magnetocaloric material corresponding to each operating temperature range, for example, known LaFeSiH can be used.
  • LaFeSiH changes its Curie point with changes in the amount of hydrogen in its composition (see, for example, Reference 1 “Large magnetoelectric effects and thermal transport properties of La (FeSi) 13 and the hydrhydres”. Compounds 408-412 (2006) p.307-312).
  • the value of the above-mentioned peak of ⁇ T also applies to a magnetocaloric material (Japanese Patent Laid-Open No. 2003-96547) expressed by 0.05 ⁇ x ⁇ 0.2; 0.3 ⁇ z ⁇ 3; A magnetocaloric material with various temperatures can be obtained.
  • any other magnetocaloric material having a desired operating temperature range can be used without particular limitation.
  • FIG. 10 is an explanatory diagram for explaining the arrangement of each magnetocaloric material when three magnetocaloric materials are combined.
  • Each surface shown in FIG. 10 is a cross section of one magnetic body, and this cross section is a cross section along the direction in which the magnetic bodies are arranged in a line.
  • the magnetic body described here corresponds to the magnetic body 10A shown in FIG. That is, in the case of having a magnetocaloric material a responsible for an operating temperature range of 5-10 ° C., a magnetocaloric material b responsible for an operating temperature range of 10-15 ° C., and a magnetocaloric material c responsible for an operating temperature range of 15-20 ° C. It is.
  • the magnetic body shown in FIG. 10 (a) has a magnetocaloric material c that bears the operating temperature range of 15-20 ° C. at the start-up temperature in the center, and the magnetocaloric capacity that bears the operating temperature range of 5-10 ° C. of the magnetic body itself.
  • the material a is arranged on the outermost side, and the magnetocaloric material b that bears the operating temperature range of 10-15 ° C. is arranged between them.
  • the magnetocaloric materials a, b and c are cut out in a stripe shape and combined.
  • the magnetic substance shown in FIG. 10 (b) is obtained by arranging four basic arrangements in combination with a stripe arrangement as a basic arrangement as in (a). Therefore, in this case, the cross section along the direction in which the magnetic bodies are arranged in a line is divided into four parts, and each divided part has the same arrangement as FIG.
  • the magnetic body shown in FIG. 10C is a combination of the magnetocaloric materials a, b, and c cut into a rectangular shape and a frame shape.
  • the magnetocaloric material c is arranged in the center as a rectangular shape
  • the magnetocaloric material a is formed in a frame shape, arranged on the outermost side
  • the magnetocaloric material b is formed in a frame shape
  • the magnetocaloric materials a and c Arranged in between.
  • the magnetocaloric materials a, b, and c are formed into respective shapes, and then fitted and joined.
  • FIG. 10 (d) a combination of a rectangular shape and a frame shape is used as a basic arrangement in the same manner as in (c), and four of these are combined. Therefore, in this case, the cross section along the direction in which the magnetic bodies are arranged in a line is divided into four parts, and each divided part is arranged in the same manner as in FIG.
  • the magnetocaloric material that is within the operating temperature range of the startup temperature (room temperature) and the magnetocaloric material that is within the operating temperature range of the magnetic material itself are on the inner side.
  • the magnetocaloric material in the operating temperature range of the starting temperature (room temperature) in this way, the heat generated at the start spreads all over the magnetic body and the transient characteristics are improved.
  • the outermost magnetocaloric material transmits the temperature from the adjacent magnetic body. For this reason, at the time of start-up, both heat from the adjacent magnetic body (heat via the heat transfer member) and heat of the magnetocaloric material in the operating temperature range including the start-up temperature disposed in the center are transmitted. And more likely to reach steady state temperature.
  • the magnetic body 10A shown in FIG. 7 is described as an example, but the same applies to other magnetic bodies.
  • the magnetocaloric material d which becomes the operating temperature range of the starting temperature (room temperature) is on the inner side, and the outer side is the magnetocaloric material f which is the operating temperature range of the magnetic body 10F itself.
  • a magnetocaloric material e is disposed between them.
  • the magnetocaloric material c which is the operating temperature range of the starting temperature (room temperature) is on the inside, and the magnetocaloric material which is the operating temperature range of the magnetic body 10B itself on the outside. b will be arranged.
  • the magnetocaloric material d that becomes the operating temperature range of the starting temperature (room temperature) is on the inside, and the magnetocaloric material that becomes the operating temperature range of the magnetic body 10E on the outside. e will be placed.
  • the arrangement of the magnetocaloric material may be formed so as to form a single magnetic body by pulverizing a plurality of magnetocaloric materials, in addition to such a combination of patterns.
  • the size of the magnetocaloric material that has been pulverized and made fine is set to a size that shows the characteristics of the magnetocaloric material itself.
  • the logical calculation of this temperature change uses the model of the magnetic air conditioner shown in FIG. 1 and changes the combination ratio of the magnetocaloric materials to change the temperature from the start-up temperature (20 ° C.) to the steady-state temperature in several heat cycles. Calculated to reach.
  • the combination of the magnetocaloric materials is such that the starting temperature (20 ° C. in this case) is set to the operating temperature range for the magnetic body 10A on the lowest temperature side and the magnetic body 10F on the highest temperature side in their own operating temperature range.
  • the calorimetric materials were combined in the following proportions.
  • the other magnetic bodies 10B, 10C, 10D, and 10E are composed only of magnetocaloric materials within their own operating temperature range. Other conditions were assumed as follows.
  • the heat transfer coefficient is infinite with the heat conduction part inserted (heat is transmitted immediately). Zero heat transfer coefficient with the heat conduction part removed. Zero heat capacity of magnetic body and heat conduction part. Each magnetocaloric material constituting each magnetic body undergoes a maximum temperature change (here, 5 ° C.) by applying and removing magnetism.
  • FIG. 11 is a graph summarizing the results of logical calculation of temperature changes when using a magnetic material in which a plurality of magnetocaloric materials are combined.
  • the vertical axis represents temperature (median 20 ° C.), and the horizontal axis represents the number of thermal cycles. It is.
  • the thermal cycle was a single round trip of the magnetic circuit from right to left and from left to right. That is, in FIG. 8, when the position of the magnetic circuit is the start state (1), the magnetic circuit is moved to (2), (2 ′), (3), (3 ′), and this is performed once. The thermal cycle is set (the next cycle returns to (2) and is repeated).
  • FIG. 12 is an explanatory diagram for explaining the combination ratio of magnetocaloric materials in the magnetic material used in this logical calculation (“%” in the figure is mass%). That is, the combination ratio is as follows.
  • the square marks indicate that the magnetocaloric materials a and f are 100% by mass (this is a comparative example).
  • the diamond marks are 95% by mass of magnetocaloric materials a and f, and 5% by mass of magnetocaloric materials c and d including 20 ° C. in the operating temperature range.
  • Triangle marks are 90% by mass of magnetocaloric materials a and f, and 10% by mass of magnetocaloric materials c and d including 20 ° C. in the operating temperature range.
  • Circles represent magnetocaloric materials a and f of 80% by mass and magnetocaloric materials c and d containing 20 ° C. in the operating temperature range of 20% by mass.
  • the rated operation is performed until the temperature of the low-temperature side heat exchanging unit 40A of the magnetic air conditioner model reaches 10 ° C. and the temperature of the high-temperature side heat exchanging unit 40B reaches 30 ° C.
  • the transient characteristics were obtained.
  • the magnetocaloric material of the square mark is 99 times (in the following description, the magnetocaloric material including the starting temperature as the operating temperature range is referred to as the magnetocaloric material at the starting temperature).
  • the amount of magnetocaloric material at the starting temperature is less than that of the comparative example by combining the magnetic body 10A adjacent to the low temperature side heat exchange section 40A and the magnetic body 10F adjacent to the high temperature side heat exchange section 40B. It can be seen that the steady state is reached by the number of magnetic movements (application, removal). This indicates that the transient characteristics from the starting time to the steady state are improved. Therefore, the steady state is reached faster as the number of magnetic movements (application / removal) is smaller.
  • a steady state is reached approximately 31% faster by combining a magnetocaloric material with a starting mass of 20% by mass. It can also be seen that a steady state is reached faster than with only the magnetocaloric material of its own (comparison example with squares) just by combining the magnetocaloric material of the 5 mass% start-up temperature. Therefore, it can be seen from this calculation result that the combination ratio of the magnetocaloric materials at the starting temperature is preferably 5% by mass or more and less than 50% by mass. Moreover, when it is going to be in a steady state faster, it is preferable to set it as 20 to 50 mass%.
  • Embodiment 1 (Modification of Embodiment 1) In Embodiment 1 described above, the combination ratio of the magnetocaloric materials of each magnetic material is adjusted so that the mass of each magnetic material is 100% by mass in total.
  • the present invention is not limited to such an embodiment. For example, when all the magnetocaloric materials in the operating temperature range of each magnetic body are set to the same amount and this is 100% by mass, the startup temperature range is further set to the operating temperature range. A magnetocaloric material may be added.
  • FIG. 13 is a graph for explaining a combination ratio (mass%) of magnetocaloric materials constituting each magnetic body in the magnetic air conditioner according to the modification of the first embodiment.
  • the magnetocaloric material a that bears the operating temperature range of 5-10 ° C. of the magnetic body 10A is 100 mass%. That is, the magnetocaloric material in the operating temperature range of the magnetic body 10A itself is the same amount as the magnetocaloric material in the operating temperature range of the other magnetic bodies.
  • the magnetic body 10B is combined by adding 30% by mass of the magnetocaloric material b responsible for the operating temperature range of 10-15 ° C. and 20% by mass of the magnetocaloric material c responsible for the operating temperature range of the starting temperature of 15-20 ° C. .
  • the magnetic body 10B is combined by adding 100% by mass of the magnetocaloric material b responsible for its own temperature range and 30% by mass of the magnetocaloric material c at the starting temperature.
  • Each of the magnetic bodies 10C and 10D has 100% of the magnetocaloric materials c and d in its operating temperature range.
  • the magnetic body 10E is combined such that the magnetocaloric material e responsible for its own temperature range is added by 100% by mass and the magnetocaloric material d at the starting temperature is added by 30% by mass.
  • the magnetic body F is combined such that 100 mass% of the magnetocaloric material f that bears its own temperature range, 30 mass% of the magnetocaloric material e, and 20 mass% of the magnetocaloric material d are added.
  • the magnetocaloric material responsible for its operating temperature range is first made the same, and the magnetocaloric material responsible for the starting temperature is added, the mass differs between the magnetic bodies.
  • the magnetocaloric materials in the operating temperature range of each magnetic body are all the same amount, and the magnetic body on the lower temperature side and the higher temperature side than the startup temperature range has a startup temperature range.
  • the magnetocaloric material responsible for the operating temperature range is added.
  • the magnetic air-conditioning / heating device having the basic form to which the present invention is applied and the principle of its operation.
  • a mode is described in which a magnetic block is formed by two magnetic bodies, and three magnetic blocks are arranged to form a magnetic unit.
  • the present invention is not limited to these forms, and is also applicable to those in which more magnetic bodies are arranged to form a magnetic body block, and more magnetic bodies are arranged to form a magnetic body unit. can do.
  • At least the lowest temperature side and the higher temperature side magnetic body include the starting temperature within the operating temperature range.
  • more magnetic bodies are arranged than the case where six magnetic bodies as described here are arranged.
  • the magnetic material at the lowest temperature and the highest temperature but also the magnetic material arranged between the magnetic material at the lowest temperature and the highest temperature and the magnetic material at the startup temperature, It is preferable to combine the bodies.
  • Comparative Example 2 a case is assumed where one magnetocaloric material having a wide operating temperature range is used for one magnetic body.
  • the operating temperature range of the magnetic body 10A is set to 5-20 ° C. by combining three magnetocaloric materials.
  • Comparative Example 2 it is assumed that instead of this, a magnetocaloric material having a wide operating temperature range of 5 to 20 ° C. is used as one magnetocaloric material.
  • the magnetic body 10A includes the starting temperature (room temperature in the case of room temperature) as the operating temperature range, and the temperature changes from the starting time.
  • room temperature room temperature in the case of room temperature
  • a magnetocaloric material having such a wide operating temperature range has a small magnetic entropy change ( ⁇ Sm) and a magnetic entropy change of about half or less (for example, Reference 2: “Giant”).
  • ⁇ Sm magnetic entropy change
  • Reference 2 “Giant”.
  • enhancement of magnetocaloric effect in metallic glass matrix composite "WANG YongTian et al., Science in China Series G: Physics Mechanics and Astronomy Volume51, Number4 (2008), and the p.337-348 especially lower left graph in Figure4 in this reference 2. Table 1).
  • a magnetocaloric material In the first place, a magnetocaloric material generates heat or absorbs heat due to a change in entropy accompanying a change in magnetic field. Therefore, this magnetic entropy change ( ⁇ Sm (J ⁇ kg ⁇ 1 ⁇ K ⁇ 1 )) determines the amount of temperature change ( ⁇ T) that changes due to the application and removal of magnetism. For this reason, if this magnetic entropy change ( ⁇ Sm (J ⁇ kg ⁇ 1 ⁇ K ⁇ 1 )) becomes small, the temperature change range ( ⁇ T) also becomes small.
  • the magnetic air conditioner is a device that makes a magnetic calorific material contact a heat source (low temperature source or high temperature source) and moves the heat. Then, when it is assumed that one magnetocaloric material having a wide operating temperature range is brought into contact with the heat source and heat transfer is performed, the temperature change amount ( ⁇ T) is small even if the operating temperature range can be widened. For this reason, the amount of heat transfer is small, and it takes time for the magnetic air conditioner to reach a steady state.
  • the magnetic entropy change ( ⁇ Sm) of each magnetocaloric material itself can be increased.
  • the changing temperature ( ⁇ T) of the magnetocaloric material can also be increased. For this reason, in this embodiment, compared with the comparative example 2, heat can be moved enough and it can be rapidly made into the temperature of a steady state.
  • each magnetic body is composed of one magnetocaloric material having a large temperature change range ( ⁇ T) as in Patent Document 2 which is a conventional technique, and the operating temperature range of adjacent magnetic bodies is also included. Assuming that the temperature range that overlaps with is large.
  • the temperature at startup can be included in all the magnetic materials.
  • the temperature change of each magnetic material is 10 ° C., so that heat can be transported from 287 K (14 ° C.) to 305 K (32 ° C.) with three magnetic materials as a whole. It has become.
  • the room temperature is 20 ° C. (about 293 K)
  • the room temperature is included in the temperature change range of each magnetic material, and it takes time to reach a steady state.
  • each magnetic body is combined with a magnetocaloric material having a different operating temperature range, no matter how wide the temperature change of the entire cooling / heating apparatus is, all the magnetic bodies are kept at the starting temperature. And can be quickly brought to a steady state temperature.
  • FIG. 14 is a top view showing a schematic configuration of the magnetic air conditioner according to the second embodiment, and shows a state seen through from above so that the positional relationship of the magnetic body, the permanent magnet forming the magnetic circuit, and the heat transfer unit can be understood.
  • FIG. 15A to 15B are top views of the magnetic body / heat transfer portion arrangement plate and the magnet arrangement plate constituting the magnetic air conditioner shown in FIG. 16 is an exploded cross-sectional view of the magnetic air conditioner shown in FIG. 14 (A is a cross-sectional view of the magnet arrangement plate 800 portion, and B is a cross-sectional view of the magnetic body / heat transfer portion arrangement plate 700 portion).
  • FIG. 14 is a cross-sectional view of the magnet arrangement plate 800 portion, and B is a cross-sectional view of the magnetic body / heat transfer portion arrangement plate 700 portion.
  • FIG. 17 is a schematic diagram for explaining how heat moves when the magnet / heat transfer section arrangement plate of the magnetic cooling / heating apparatus is rotated.
  • FIG. 18 is an explanatory diagram for explaining the operation of the magnetic air conditioner according to the second embodiment. In FIG. 18, the description of the drive unit shown in FIG. 16 is omitted for easy understanding of the invention.
  • This magnetic air conditioner uses the same principle as the magnetic refrigeration shown in FIG. In order to perform magnetic refrigeration using this principle, it is configured as follows.
  • the magnetic air conditioner 500 includes a hollow disc-shaped magnetic body / heat transfer portion arrangement plate 700 (in particular, see FIG. 15A) having an open center portion, and a center portion.
  • a hollow disk-shaped magnet arrangement plate 800 (see FIG. 15B in particular).
  • the magnetic body / heat transfer section arrangement plate 700 has a low temperature side heat exchange section 40A disposed at the center thereof and a high temperature side heat exchange section 40B disposed at the outer periphery thereof.
  • the magnet arrangement plate 800 has two discs, an upper disc 800A and a lower disc 800B, which are arranged with a gap (see particularly FIG. 16).
  • the magnetic body / heat transfer portion arrangement plate 700 and the magnet arrangement plate 800 are arranged concentrically (see particularly FIGS. 14, 16, and 17).
  • the magnetic body / heat transfer portion arrangement plate 700 is inserted between the upper disc 800A and the lower disc 800B of the magnet arrangement plate 800 (see particularly FIGS. 16 and 17).
  • the low temperature side heat exchanging unit 40A is arranged at the center of the magnetic body / heat transfer unit arrangement plate 700 and the magnet arrangement plate 800.
  • the high temperature side heat exchanging part 40B is arranged on the outer periphery of the magnetic body / heat transfer part arrangement plate 700 and the magnet arrangement plate 800 (see particularly FIGS. 14, 16, and 17).
  • the low temperature side heat exchange section 40A is disposed at the center thereof, and the outer peripheral portion thereof.
  • the high temperature side heat exchange part 40B is arrange
  • the high temperature side heat exchange unit 40B is arranged at the center, and the low temperature side heat exchange unit 40A is arranged at the outer periphery thereof.
  • the arrangement of the low temperature side heat exchanging part 40A and the high temperature side heat exchanging part 40B differs depending on which of the positive and negative magnetic substances is used for the magnetic substance / heat transfer part arrangement plate 700.
  • the magnetic body / heat transfer portion arrangement plate 700 is a hollow disc having an opening at the center thereof, and the opening diameter at the center is larger than the diameter of the columnar low temperature side heat exchange portion 40A. Slightly larger.
  • the diameter of the magnetic body / heat transfer part arrangement plate 700 is the same as the inner circumference of the cylindrical high temperature side heat exchange part 40B.
  • the magnetic body / heat transfer portion arrangement plate 700 is fixed to the high temperature side heat exchange portion 40B. Not shown between the magnetic body / heat transfer section arrangement plate 700 and the high temperature side heat exchange section 40B so that heat does not move between the magnetic body / heat transfer section arrangement plate 700 and the high temperature side heat exchange section 40B. It is preferable to interpose a heat insulating material.
  • a plurality of magnetic bodies are annularly and radially formed on one side of the magnetic body / heat transfer portion arrangement plate 700 (opposing surface of the disc 800A).
  • twelve magnetic units 200A, 200B, 200C,..., 200G are arranged adjacent to the region on the magnetic body / heat transfer portion arrangement plate 700 divided at a central angle of 30 ° in the circumferential direction. ..., 200L is formed.
  • the heat transfer part is arrange
  • Each magnetic body unit 200A, 200B, 200C,..., 200G,..., 200L has six magnetic bodies arranged from the center of the magnetic body / heat transfer section arrangement plate 700 toward the outer periphery. That is, six magnetic bodies are arranged in a row from the central portion toward the outer peripheral portion.
  • the magnetic body unit 200A arranges magnetic bodies 10Aa, 10Ab, 10Ac, 10Ad, 10Ae, and 10Af
  • the magnetic body unit 200B arranges magnetic bodies 10Ba, 10Bb, 10Bc, 10Bd, 10Be, and 10Bf, respectively.
  • the six magnetic bodies constituting each magnetic unit are all positive magnetic bodies whose temperature rises when magnetism is applied. It is composed of a magnetocaloric material suitable for each operating temperature range.
  • each magnetic body unit two magnetic bodies form a set to form a magnetic body block.
  • the magnetic bodies 10Aa and 10Ab form the magnetic body block 100Aa
  • the magnetic bodies 10Ac and 10Ad form the magnetic body block 100Ab
  • the magnetic bodies 10Ae and 10Af form the magnetic body block 100Ac.
  • the magnetic bodies 10Ba and 10Bb form the magnetic body block 100Ba
  • the magnetic bodies 10Bc and 10Bd form the magnetic body block 100Bb
  • the magnetic bodies 10Be and 10Bf form the magnetic body block 100Bc.
  • each of the magnetic body units 200A, 200B, 200C,..., 200G, ..., 200L has three magnetic body blocks 100Aa-100Ab-100Ac, 100Ba- 100Bb-100Bc,...
  • Each of the magnetic blocks 100Aa, 100Ab, 100Ac, 100Ba, 100Bb, 100Bc,... Has two magnetic bodies, 10Aa-10Ab, 10Ac-10Ad, 10Ae-10Af, 10Ba-10Bb, 10Bc-10Bd, 10Be-10Bf ... is formed.
  • the magnetic body unit 200A is formed of six magnetic bodies 10Aa, 10Ab, 10Ac, 10Ad, 10Ae, and 10Af. . These magnetic bodies have three magnetic body blocks 100Aa, 100Ab, and 100Ac. These magnetic blocks are formed of a set of two magnetic bodies 10Aa-10Ab, 10Ac-10Ad, and 10Ae-10Af.
  • the magnetic body units 200B to 200L are formed in the same manner as the magnetic body unit 200A. For this reason, the magnetic body / heat transfer portion arrangement plate 700 of Embodiment 2 has a configuration equivalent to that obtained by arranging the magnetic body units 200 shown in FIG. 1A in 12 rows in parallel.
  • the magnetic body 10Aa used in the second embodiment may be directly formed on the magnetic body / heat transfer portion arrangement plate 700.
  • the heat transfer portion arrangement plate 700 is preferably made of a material having a large thermal resistance. This is because if the thermal resistance is small, the heat generated by the magnetic bodies 10Aa,... Will be dissipated through the magnetic body / heat transfer portion arrangement plate 700. Further, in order to increase the thermal resistance, the magnetic bodies 10Aa,... Are not directly formed on the magnetic body / heat transfer portion arrangement plate 700, but the magnetic bodies 10Aa,. A heat insulating film or a heat insulating layer may be provided between the two.
  • the magnetic bodies 10Aa,... May be integrally formed on the magnetic body / heat transfer portion arrangement plate 700 as a magnetic unit 200A,... Via a heat insulating film or a heat insulating layer.
  • the magnetic material blocks 100Aa,... May be divided and formed via a heat insulating film or a heat insulating layer, and arranged on the magnetic material / heat transfer portion arrangement plate 700.
  • the magnetic bodies 10Aa,... are the same as those in the first embodiment as already described in the second embodiment.
  • La x Ca 1-x MnO 3 , La (Fe 1-x Si x ) 13 H y and the like can be used for the material composition.
  • the shape of the magnetic bodies 10Aa,... Is as shown in FIG. 14, FIG. 15A, FIG.
  • a shape such as a spherical shape, an ellipsoidal shape, a cubic shape, a cylindrical shape, or an elliptical columnar shape may be employed.
  • the magnetic body / heat transfer portion arrangement plate 700 includes the magnetic body unit 200A in which the magnetic bodies 10Aa... Of the same material are arranged in a plurality of rows in the radial direction.
  • a plurality of the magnetic body units 200A are arranged in an annular shape adjacent to each other at intervals in the circumferential direction intersecting with the arrangement direction of the magnetic bodies 10Aa,.
  • the magnetic unit 200A includes magnetic body blocks 100Aa,... In which magnetic bodies 10Aa,... Of the same material are arranged in a radial direction at intervals in a plurality of rows, and the magnetic body blocks 100Aa are arranged as magnetic bodies 10Aa,. They are formed in a plurality of rows with intervals in the direction.
  • the magnetic body unit 200A of the magnetic body / heat transfer section arrangement plate 700 between all the magnetic bodies 10Aa, between the magnetic bodies 10Aa and the low temperature side heat exchange section 40A, between the magnetic body 10Af and the high temperature side heat exchange.
  • a heat transfer portion is disposed between the portions 40B.
  • This heat exchange unit has the same configuration as that described in the first or second embodiment. That is, the heat transfer units 30Ba, 30Ab, 30Bc, 30Ad, 30Be, 30Af, and 30Bg are arranged in the direction from the low temperature side heat exchange unit 40A to the high temperature side heat exchange unit 40B. The same applies to the magnetic body unit 200B.
  • Heat transfer is performed between all the magnetic bodies 10Aa, between the magnetic bodies 10Aa and the low-temperature side heat exchange unit 40A, and between the magnetic body 10Af and the high-temperature side heat exchange unit 40B.
  • the parts 30Aa, 30Bb, 30Ac, 30Bd, 30Ae, 30Bf, and 30Ag are arranged (see FIG. 15A).
  • the heat transfer units 30Ab, 30Ad, and 30Af are simultaneously in a heat transfer state (ON), and at that time, the heat transfer units 30Ba, 30Bc, 30Be, and 30Bg are in a heat insulation state (OFF). Conversely, the heat transfer units 30Ab, 30Ad, and 30Af are simultaneously insulative (off), and at that time, the heat transfer units 30Ba, 30Bc, 30Be, and 30Bg are in the heat transfer state (on).
  • the heat transfer units 30Bb, 30Bd, and 30Bf are simultaneously in a heat transfer state (ON), and at that time, the heat transfer units 30Aa, 30Ac, 30Ae, and 30Ag are in a heat insulation state (OFF).
  • the heat transfer units 30Bb, 30Bd, and 30Bf are simultaneously insulative (off), and at that time, the heat transfer units 30Aa, 30Bc, 30Ae, and 30Ag are in the heat transfer state (on). That is, in the figure, when the heat transfer part of the subscript A of 30 is simultaneously turned on, the heat transfer part of the subscript B is simultaneously turned off or vice versa.
  • the heat transfer unit that is in the heat transfer state (ON) in the illustrated operation state is indicated by a symbol.
  • the heat transfer units are all the same.
  • the structure is between all the magnetic bodies, between the heat exchange part and the magnetic body.
  • the low temperature side heat exchanging portion 40A has the magnetic body units 200A, 200B, 200C formed on the magnetic body / heat transfer portion arrangement plate 700. ,..., 200G,..., 200L are adjacent to the magnetic bodies 10Aa, 10Ba,. Further, the high temperature side heat exchanging portion 40B is formed of the magnetic body 10Af located at the other end of the magnetic body units 200A, 200B, 200C,..., 200L formed on the magnetic body / heat transfer portion arrangement plate 700, 10Bf,... Also in all the magnetic units, heat transfer portions 30Ba, 30Ab... Or 30Aa, 30Bb,.
  • the magnet arrangement plate 800 is a hollow disc having an opening at the center thereof, and the opening diameter of the center is slightly larger than the diameter of the columnar low temperature side heat exchange portion 40A. is there. Moreover, the diameter of the magnet arrangement
  • positioning board 800 is made a little smaller than the dimension of the inner periphery of the cylindrical high temperature side heat exchange part 40B. This is because the magnet arrangement plate 800 can rotate between the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B. As shown in FIGS. 16 and 17, the magnet arrangement plate 800 includes two upper and lower disks 800 ⁇ / b> A that are magnetically connected with a gap therebetween to sandwich the magnetic body / heat transfer portion arrangement plate 700. It is composed of 800B.
  • the upper and lower two disks 800A and 800B can be separately rotated around the low-temperature side heat exchange unit 40A, and the bearings provided in the low-temperature side heat exchange unit 40A and the upper and lower two discs It is supported by bearings provided at the outer peripheral ends of the disks 800A and 800B.
  • the upper disk 800A is rotatably supported by bearings 520Aa and 520Ab
  • the lower disk 800B is rotatably supported by bearings 520Ba and 520Bb. Therefore, the upper disk 800A can rotate separately from the lower disk 800B.
  • the support board 530 is arrange
  • the support board 530 fixes servo motors 540A and 540B for separately rotating the upper and lower disks 800A and 800B.
  • the servo motor 540A is fixed to a portion facing the upper disc 800A of the support plate 530, and the servo motor 540B is fixed to a portion facing the lower disc 800B of the support plate 530.
  • Gears 550A and 550B are attached to the respective rotation shafts of the servo motors 540A and 540B.
  • a ring gear 560A that meshes with the gear 550A is attached to the outer periphery of the upper disk 800A.
  • a ring gear 560B that meshes with the gear 550B is attached to the outer periphery of the lower disc 800B.
  • the servo motors 540A and 540B, the gears 550A and 550B, and the ring gears 560A and 560B constitute a drive unit.
  • the servo motors 540A and 540B are rotated synchronously. Therefore, the magnet arrangement plate 800 is arranged such that the magnetic body / heat transfer unit arrangement plate 700 is sandwiched between the upper and lower disks 800A and 800B with the low temperature side heat exchange unit 40A as the center, and the low temperature side heat exchange unit 40A. It rotates with the high temperature side heat exchange part 40B.
  • a plurality of permanent magnets are arranged radially and radially on one side of the upper disk 800A forming the magnet arrangement plate 800 (the lower side of the disk 800A shown in FIGS. 16 and 17). It is.
  • the permanent magnets are magnetic body blocks 100Aa, 100Ab, 100Ac, 100Ba, 100Bb of the magnetic body units 200A, 200B, 200C, ..., 200G, ..., 200L of the magnetic body / heat transfer portion arrangement plate 700 shown in Fig. 15A. , 100Bc,... Are arranged so that one permanent magnet faces each other.
  • the permanent magnet Each time the magnet arrangement plate 800 rotates 30 ° and moves to the adjacent magnetic body unit, the permanent magnet is moved to the adjacent magnetic body unit 200A, 200B, 200C,..., 200G,. 100Ab, 100Ac, 100Ba, 100Bb, 100Bc,... Reciprocate in the radial direction. Therefore, the permanent magnet individually applies magnetism to the magnetic bodies 200A, 200B, 200C,..., 200G,.
  • permanent magnets 20Aa, 20Ac, and 20Ae at the corresponding positions of the magnetic body unit 200A in the upper disk 800A of the magnet arrangement plate 800 are
  • the magnetic body / heat transfer portion arrangement plate 700 is in a position facing the magnetic bodies 10Aa, 10Ac, and 10Ae of the magnetic body unit 200A.
  • the permanent magnets 20Ba, 20Bc, and 20Be at the corresponding positions of the magnetic body unit 200B are respectively at positions facing the magnetic bodies 10Bb, 10Bd, and 10Bf of the magnetic body unit 200B.
  • the permanent magnets 20Aa, 20Ac, 20Ae at the corresponding positions of the magnetic body unit 200A are opposed to the magnetic bodies 10Ba, 10Bc, 10Be of the magnetic body unit 200B, respectively. It becomes the position to do.
  • the permanent magnets at the corresponding positions of the magnetic body unit 200L are positions facing the magnetic bodies 10Ab, 10Ad, and 10Af of the magnetic body unit 200A. That is, each time the magnet arrangement plate 800 rotates 30 ° clockwise, the permanent magnets reciprocate for each magnetic body block in each of the magnetic body units 200A, 200B, 200C, ..., 200G, ..., 200L.
  • the positional relationship between the permanent magnet and the magnetic body is the same positional relationship as the positional relationship in FIG. 1A and the positional relationship in FIG. 1B are repeated each time the magnet arrangement plate 800 rotates 30 °.
  • the permanent magnets 20Aa, 20Ac, and 20Ae are formed of magnetic bodies 10Aa, 10Ac, which are positioned at one ends of the respective magnetic body blocks 100Aa, 100Ab, and 100Ac of one adjacent magnetic body unit 200A. Magnetism is simultaneously applied to 10Ae.
  • the heat transfer portions 30Ab, 30Ad, and 30Af of the magnetic body unit 200A are in a heat transfer state
  • the heat transfer portions 30Ba, 30Bc, 30Be, and 30Bg are in a heat insulating state.
  • the permanent magnets 20Ba, 20Bc, and 20Be are magnetic bodies 10Bb and 10Bd located at the other ends of the respective magnetic body blocks 100Ba, 100Bb, and 100Bc of the other adjacent magnetic body unit 200B. 10Bf is simultaneously magnetized. At this time, the heat transfer portions 30Ba, 30Bc, 30Be, and 30Bg of the magnetic body unit 200B are in a heat transfer state, and the heat transfer portions 30Ab, 30Ad, and 30Af are in a heat insulation state.
  • the positional relationship between the permanent magnet and the magnetic body between two adjacent magnetic body units is the same as in the case of the magnetic body units 200A and 200B.
  • the positional relationship between the permanent magnet and the magnetic body as described above between two adjacent magnetic body units is referred to as state 1.
  • the permanent magnets 20Aa, 20Ac, 20Ae are magnetized at one end of each of the magnetic body blocks 100Ba, 100Bb, 100Bc of the other adjacent magnetic body unit 200B. Magnetism is simultaneously applied to the bodies 10Ba, 10Bc, and 10Be. This state is equivalent to the movement of the permanent magnets 20Ba, 20Bc, 20Be shown in FIG. 17B to the left magnetic bodies 10Ba, 10Bc, 10Be.
  • the permanent magnet present at the corresponding position of the magnetic body unit 200L is simultaneously magnetized to the magnetic bodies 10Ab, 10Ad, 10Af located at the other ends of the respective magnetic body blocks 100Aa, 100Ab, 100Ac of one adjacent magnetic body unit 200A. Apply. This state is equivalent to the movement of the permanent magnets 20Aa, 20Ac, 20Ae shown in FIG. 17A to the right magnetic bodies 10Ab, 10Ad, 10Af. Also in the other magnetic body units 200C-200L, the positional relationship between the permanent magnet and the magnetic body between two adjacent magnetic body units changes in the same manner as in the case of the magnetic body units 200A and 200B. The positional relationship between the permanent magnet and the magnetic body as described above between two adjacent magnetic body units is referred to as state 2.
  • Magnetic protrusions are formed on one side of the lower disk 800B forming the magnet arrangement plate 800 (the upper side of the disk 800B shown in FIGS. 16 and 17).
  • the magnetic protrusions are arranged in correspondence with the arrangement of the permanent magnets arranged on one side of the upper disk 800A.
  • a magnetic projection 20Ab is arranged corresponding to the permanent magnet 20Aa
  • a magnetic projection 20Ad is arranged corresponding to the permanent magnet 20Ac
  • a magnetic projection 20Af is arranged corresponding to the permanent magnet 20Ae. ing.
  • a magnetic protrusion 20Bb is disposed corresponding to the permanent magnet 20Ba
  • a magnetic protrusion 20Bd is disposed corresponding to the permanent magnet 20Bc
  • a magnetic protrusion 20Bf is disposed corresponding to the permanent magnet 20Be.
  • the magnet arrangement plate 800 is composed of two magnetically connected flat plates that sandwich the magnetic material / heat transfer portion arrangement plate 700 with a gap.
  • the permanent magnets disposed on the upper disk 800A and the magnetic protrusions disposed on the lower disk 800B form a magnetic circuit between the upper disk 800A and the lower disk 800B. This magnetic circuit constitutes a magnetic application unit.
  • a permanent magnet is used as means for generating magnetism in the magnetic application unit.
  • a superconducting magnet or an electromagnet can be used.
  • the magnetic circuit is composed of an electromagnet, the magnitude of the magnetism applied to the magnetic body can be changed within a certain range, so that the magnetism applying unit can have versatility.
  • both disks are rotated as a unit. However, both disks may be provided separately as long as they are magnetically connected. Since the upper disc 800A and the lower disc 800B are magnetically connected and the permanent magnet and the magnetic projection are provided opposite to each other, the magnetic flux from the permanent magnet can be effectively utilized, and the permanent magnet can be downsized. Weight reduction is possible.
  • the magnet arrangement plate 800 is preferably made of a low heat transfer material having a large thermal resistance so as not to let the heat generated by the magnetic bodies 10Aa,... And the heat transferred by the heat transfer units 30Aa,.
  • the permanent magnet 20Aa is located on the magnetic body 10Aa
  • the permanent magnet 20Ac is located on the magnetic body 10Ac
  • the permanent magnet 20Ae is located on the magnetic body 10Ae (FIG. 17A, (See FIG. 18A).
  • magnetism is applied to the magnetic bodies 10Aa, 10Ac, and 10Ae
  • no magnetism is applied to the magnetic bodies 10Ab, 10Ad, and 10Af
  • the magnetism is removed.
  • the magnetic bodies 10Aa, 10Ac, and 10Ae generate heat
  • the magnetic bodies 10Ab, 10Ad, and 10Af absorb heat.
  • the heat transfer section 30Ab is in a heat transfer state between the magnetic bodies 10Aa and 10Ab
  • the heat transfer section 30Ad is in the magnetic bodies 10Ac and 10Ad
  • the heat transfer section 30Af is in the heat transfer state between the magnetic bodies 10Ae and 10Af.
  • heat transfer between adjacent magnetic bodies in each magnetic body block is performed. That is, the heat generated by the magnetic bodies 10Aa, 10Ac, and 10Ae due to the magnetocaloric effect is transferred to the magnetic bodies 10Ab, 10Ad, and 10Af, respectively.
  • heat is not transferred between the low temperature side heat exchange unit 40A and the magnetic body 10Aa and between the high temperature side heat exchange unit 40B and the magnetic body 10Af. Also, heat transfer between the magnetic blocks is not performed.
  • the corresponding position of the magnetic body unit 200B is such that the permanent magnet 20Ba is located on the magnetic body 10Bb, the permanent magnet 20Bc is located on the magnetic body 10Bd, and the permanent magnet 20Be is located on the magnetic body 10Af (see FIGS. 17B and 18A).
  • magnetism is applied to the magnetic bodies 10Bb, 10Bd, and 10Bf, and no magnetism is applied to the magnetic bodies 10Ba, 10Bc, and 10Be, and the magnetism is removed.
  • the magnetic bodies 10Bb, 10Bd, and 10Bf generate heat, and the magnetic bodies 10Ba, 10Bc, and 10Be absorb heat.
  • the heat transfer section 30Ba is between the low temperature side heat exchange section 40A and the magnetic body 10Ba
  • the heat transfer section 30Bc is between the magnetic bodies 10Bb and 10Bc
  • the heat transfer section 30Be is between the magnetic bodies 10Bd and 10Be.
  • the heat transfer unit 30Bg is in a heat transfer state between the magnetic body 10Bf and the high temperature side heat exchange unit 40B. Therefore, heat transfer is performed between the adjacent magnetic bodies 10Bb-10Bc, 10Bd-10Be in the adjacent magnetic body blocks 100Ba, 100Bb, 100Bc.
  • heat is generated between the magnetic body 10Ba located at one end of the magnetic body unit 200B and the low temperature side heat exchange unit 40A and between the magnetic body 10Bf located at the other end of the magnetic body unit 200B and the high temperature side heat exchange unit 40B.
  • the plurality of magnetism applying units arranged on the magnet arrangement plate 800 are moved relative to the magnet arrangement plate 800 and the magnetic body / heat transfer unit arrangement plate 700 by the relative movement between the magnet arrangement plate 800 and the magnetic body / heat transfer unit arrangement plate 700.
  • the magnetocaloric effect is developed by moving close to and away from the plurality of magnetic bodies arranged in the plate.
  • the plurality of heat transfer units arranged on the magnetic body / heat transfer unit arrangement plate 700 “switch the heat transfer state and the heat insulation state in accordance with the movement of the magnet arrangement plate 800.
  • the above state 1 is as shown in FIG. 18A.
  • heat is transferred between adjacent magnetic bodies in each magnetic block, and between the adjacent magnetic bodies of the adjacent magnetic blocks at the corresponding position of the magnetic unit 200B.
  • heat is transferred between the magnetic body positioned at one end of the magnetic unit 200B and the low-temperature side heat exchange unit 40A and between the magnetic body positioned at the other end of the magnetic unit 200B and the high-temperature side heat exchange unit 40B.
  • the heat transfer section 30 is at the corresponding position of the magnetic body unit 200A.
  • the positional relationship between the magnetic body and the magnetic body is equivalent to that shown in FIG. 17B.
  • the positional relationship between the heat transfer section 30 and the magnetic body is equivalent to that shown in FIG. 17A.
  • the positional relationship between the permanent magnet and the magnetic body in the state 2 is obtained by reversing the positional relationship between the permanent magnet and the magnetic body in the state 1 between adjacent magnetic units.
  • the heat transfer portion of the magnet arrangement plate 800 transfers heat between adjacent magnetic bodies in each magnetic block of one adjacent magnetic body unit and the other magnetic body. Between adjacent magnetic bodies of adjacent magnetic body blocks of the body unit, between the magnetic body located at one end of the other magnetic body unit and the low temperature side heat exchange section, and at the other end of the other magnetic body unit Heat is transferred between the magnetic body located at the high temperature side and the high temperature side heat exchange part.
  • state 2 heat is transferred between adjacent magnetic bodies in each magnetic block of the other adjacent magnetic body unit, and adjacent magnetic bodies of adjacent magnetic body blocks of one magnetic body unit are transferred. And between the magnetic body located at one end of the one magnetic body unit and the low-temperature side heat exchange section and between the magnetic body located at the other end of the one magnetic body unit and the high-temperature side heat exchange section. Heat to and from.
  • the drive unit shown in FIGS. 16 and 17 has a magnetic body / heat transfer portion arrangement plate 700 for relatively moving the magnetic body / heat transfer portion arrangement plate 700 and the magnet arrangement plate 800 in the arrangement direction of the magnetic body unit.
  • a magnetic body / heat transfer portion arrangement plate 700 for relatively moving the magnetic body / heat transfer portion arrangement plate 700 and the magnet arrangement plate 800 in the arrangement direction of the magnetic body unit.
  • either one of the magnet arrangement plates 800 is rotated.
  • Any type of electric motor can be used as the drive unit as long as it can rotate the magnetic body / heat transfer unit arrangement plate 700 and the magnet arrangement plate 800.
  • the magnet arrangement plate 800 is rotated with its central portion as the rotation axis.
  • the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B are provided with a mechanism capable of exchanging heat with an external environment such as indoor air.
  • a mechanism may be adopted in which a refrigerant is supplied from the outside and heat exchange with the external environment can be performed via the refrigerant.
  • the magnetic air conditioner 500 according to the present embodiment configured as described above performs magnetic refrigeration as follows.
  • the steady state is reached quickly from the startup time. Can do. That is, the steady state is reached while the number of rotations of the magnet arrangement plate 800 is small compared to a magnetic air conditioner having the same configuration using a conventional magnetic body.
  • the temperature of the low temperature side heat exchange unit 40A can be lowered and the temperature of the high temperature side heat exchange unit 40B can be increased, and the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B can be increased. A temperature difference can be produced between them.
  • the number of magnetic blocks arranged in series is increased and connected to the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B.
  • the temperature difference between the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B can be increased.
  • a magnetocaloric material whose starting temperature is within the operating temperature range is combined with at least the lowest temperature side and the higher temperature side magnetic body.
  • the magnetic air conditioner according to the second embodiment is applied to an air conditioner that performs indoor air conditioning, a refrigerator, an air conditioner that performs air conditioning in a vehicle interior, in addition to a vehicle refrigeration apparatus (particularly a fuel cell or secondary battery cooling apparatus). be able to.
  • the magnet arrangement plate 800 In the second embodiment, an example in which permanent magnets and magnetic protrusions are arranged on the magnet arrangement plate 800 is illustrated.
  • positioning board 800 can be reduced in size and weight.
  • the magnetic body / heat transfer portion arrangement plate 700 and the magnet arrangement plate 800 are illustrated in a disk shape, and both plates are relatively rotated.
  • positioning board 800 may be made into flat form, and both plates may be reciprocated relatively linearly.
  • magnetic refrigeration can be performed only by relatively moving the magnetic body / heat transfer portion arrangement plate 700 and the magnet arrangement plate 800 in the arrangement direction of the magnetic body unit.
  • the configuration of the magnetic air conditioner can be simplified, and downsizing, weight reduction, and cost reduction can be realized.
  • the heat conducting portion a member that can switch between conduction and interruption of heat without moving itself is used.
  • a heat conduction part that switches between conduction and interruption of heat without such movement is referred to as a heat switch part.
  • the thermal switch section includes, for example, materials and devices whose thermal conductivity changes greatly by applying electricity and a magnetic field, and those which change the thermal conductivity by taking in and out liquid metal due to the electric wetting effect.
  • the magnetic body described as Embodiment 1 is used as the magnetic body.
  • FIG. 19 is an explanatory diagram for explaining the first form of the thermal switch section.
  • the thermal switch unit 30A is disposed between the low temperature side heat exchange unit 40A and the magnetic body 10A
  • the thermal switch unit 30B is disposed between the magnetic body 10A and the magnetic body 10B.
  • the heat switch units 30A and 30B are configured to switch between transmission and interruption of heat in the same manner as the heat conduction unit in the first and second embodiments (here, the same reference numerals as those of the heat conduction unit described above are also used for the heat switch unit). Attached).
  • thermal switch part 30A and 30B demonstrated here are arrange
  • thermal switch portions 30A and 30B are arranged on both opposing surfaces of the magnetic body 10A.
  • the thermal switch parts 30A and 30B are integrated on both opposing surfaces of the magnetic body 10A by bonding or adhesion.
  • the low temperature side heat exchange part 40A and the magnetic body 10B exist on both sides of the magnetic body 10A.
  • the heat conducting unit 30A is bonded or bonded to the low temperature side heat exchanging unit 40A and the magnetic body 10A
  • the thermal switch unit 30B is bonded or bonded to the magnetic body 10A and the magnetic body 10B. Therefore, the low temperature side heat exchange unit 40A, the thermal switch unit 30A, the magnetic body 10A, the thermal switch unit 30B, and the magnetic body 10B are integrated.
  • the thermal switch sections 30A and 30B include an insulator and a transition body that undergoes a phase transition to metal by applying and removing magnetism.
  • the transition body includes at least one or more types of charge alignment insulators. Therefore, when magnetism is applied to the transition body, the phase transition to the metal occurs and the thermal conductivity becomes relatively large. Further, when magnetism is removed from the transition body, the phase transition to an insulator causes a relatively small thermal conductivity.
  • the thermal switch part 30A since magnetism is not applied to the thermal switch part 30A, the thermal switch part 30A has a property as an insulator, and it becomes difficult for conduction electrons to flow, and the low temperature side heat exchange part 40A and the magnetic substance 10A Heat is not conducted between the two.
  • the thermal switch unit 30B since magnetism is applied to the thermal switch unit 30B by the permanent magnets 21BH and 26BH, the thermal switch unit 30B has a property as a metal, and conduction electrons easily flow, and the magnetic body 10A and the magnetic body 10B. Heat is conducted between them.
  • phonons and conduction electrons are responsible for heat conduction of solids. That is, here, the flow of conduction electrons is controlled by magnetism.
  • charge alignment insulators where electrons are repelled and localized due to the presence of a large amount of electrons and a strong correlation between the electrons. ing.
  • an external field that directly affects the properties (degrees of freedom) of electrons other than charges, such as the spin and orbit of electrons causes a phase change from an insulator called a charge alignment insulator to a metal.
  • magnetism acts on electron spin, it moves a large amount of localized electrons like an avalanche, causing the insulator to phase change to metal.
  • the electrical resistivity was 500 ⁇ m at a temperature of 10 K ( ⁇ 236 ° C.) 2.4 Tesla, but it was an insulator, but the electrical resistance was 9 Tesla. It was shown that the rate decreased by about 4 digits to 0.2 ⁇ m.
  • the thermal switch unit of the present embodiment actively utilizes this phenomenon to configure a magnetic air conditioning apparatus.
  • Gd 0.55 Sr 0.45 MnO and Pr 0.5 Ca 0.5 MnO 3 are used as the charge alignment insulator that is metallized when magnetism is applied.
  • the thermal switch portion when the thermal switch portion is formed of a transition body including a charge alignment insulator, the magnitude of thermal conductivity can be greatly changed by applying and removing magnetism, and the thermal switch section can function as a thermal switch.
  • the thermal switch portions 30A and 30B whose thermal conductivity changes due to the application and removal of magnetism are used, the heat conduction with the adjacent magnetic body can be interrupted only by the application and removal of magnetism. Therefore, it is not necessary to move the heat switch part (heat conduction part) itself, and to insert / remove between the heat exchanger and the magnetic body, and between the magnetic bodies. Reliability is also improved.
  • FIG. 20 is an explanatory diagram for explaining a form 2 of the thermal switch section.
  • the thermal switch unit 130 is configured by the electrodes 31A and 31B attached to the magnetic bodies 10A and 10B and the metal / insulating phase transition body 32 attached between the electrodes 31A and 31B.
  • One surface of the electrode 31A is attached to one surface of the magnetic body 10A by bonding or adhesion.
  • One surface of the electrode 31B is attached to one surface of the magnetic body 10B by bonding or adhesion.
  • both surfaces of the metal / insulating phase transition body 32 are attached to the other surfaces of the electrode 31A and the electrode 31B by bonding or adhesion. Therefore, the magnetic body 10A, the thermal switch unit 130, and the magnetic body 10B are integrated.
  • the other magnetic body and the thermal switch part constituting the air conditioning apparatus are also integrated by bonding or bonding as described above.
  • the heat switch unit disposed between the magnetic body and the heat exchanger is also integrated by bonding or bonding as described above (hereinafter, the same applies to other forms).
  • the electrodes 31A and 31B are made of metal (such as a simple metal or an alloy) such as aluminum or copper having good conductivity. Since heat is conducted between the magnetic bodies 10A and 10B via the electrodes 31A and 31B, the electrodes 31A and 31B are preferably made of a metal having a higher thermal conductivity.
  • the adhesive for adhering the electrodes 31A and 31B to the magnetic bodies 10A and 10B and the metal / insulating phase transition body 32 one having a high thermal conductivity is used.
  • an adhesive having improved thermal conductivity in which metal powder is mixed with the adhesive to such an extent that adhesion is not hindered is used.
  • An insulator exhibiting a phase transition between a metal and an insulator is an inorganic oxide mott insulator or an organic mott insulator.
  • the inorganic oxide Mott insulator includes at least a transition metal element.
  • Mott insulators LaTiO 3 , SrRuO 4 , and BEDT-TTF (TCNQ) are known.
  • the metal / insulating phase transition body 32 includes an inorganic oxide mott insulator containing at least a transition metal element, an organic mott insulator, a ZnO single crystal thin film electric double layer FET, a TMTSF / TCNQ stacked FET element, etc. A material whose thermal conductivity changes greatly by application removal is used.
  • the thermal switch unit 130 is a thermal switch that controls the movement of heat by applying and removing voltage.
  • thermal switch sections 30A-30G can be controlled by applying and removing voltage, heat can be transported without sliding the thermal switch section between the magnetic bodies. For this reason, it is not necessary to give the thermal switch part sliding durability, and the reliability of the thermal switch part is improved. Moreover, the mechanical loss by friction can be eliminated and the loss for driving a thermal switch part can be reduced.
  • the thermal switch unit can transport heat only in the direction of alignment with the magnetic material, and the thermal conductivity of the thermal switch unit can be larger than that of the sliding type, so that thermal loss is small when transporting heat. it can.
  • the thermal switch unit can connect between the magnetic bodies using all contact surfaces in accordance with the application and removal of voltage, the heat transport capability and the heat transport efficiency can be improved.
  • the thermal conduction of the thermal switch unit 130 can be interrupted by applying and removing a voltage to the electrodes 31A and 31B.
  • a voltage can be easily applied to the metal / insulating phase transition body 32.
  • an inorganic oxide Mott insulator, an organic Mott insulator, a ZnO single crystal thin film electric double layer FET, or a TMTSF / TCNQ stacked FET element containing at least a transition metal element is used as the metal / insulating phase transition body 32, Responsiveness of change in conductivity is improved.
  • FIG. 21 is an explanatory view for explaining a third form of the thermal switch section.
  • the thermal switch unit 130 according to the thermal switch unit form 3 further includes auxiliary electrodes 33A and 33B in addition to the thermal switch unit 130 (FIG. 20) described in the thermal switch unit form 2.
  • auxiliary electrodes 33A and 33B in addition to the thermal switch unit 130 (FIG. 20) described in the thermal switch unit form 2.
  • Other configurations and operations are the same as those in the second form of the thermal switch section.
  • Auxiliary electrodes 33A and 33B are attached to the metal / insulating phase transition body 32 by bonding or adhesion.
  • the auxiliary electrodes 33A and 33B need not take thermal conductivity into consideration.
  • the adhesive for adhering the auxiliary electrodes 33A and 33B to the metal / insulating phase transition body 32 need not take thermal conductivity into consideration. This is because thermoelectrons do not pass through the auxiliary electrodes 33A and 33B and the adhesive.
  • the auxiliary electrodes 33A and 33B apply a voltage in the orthogonal direction to the electrodes 31A and 31B.
  • a DC voltage is applied between the auxiliary electrodes 33A and 33B, the distribution of electrons in the metal / insulating phase transition body 32 is biased toward the auxiliary electrodes 33A and 33B.
  • the resistance of the thermoelectrons moving between the magnetic bodies 10A and 10B is reduced, and the thermoelectrons easily move. That is, by providing the auxiliary electrodes 33A and 33B, the thermal conductivity of the metal / insulating phase transition body 32 can be further increased.
  • FIG. 22 is an explanatory diagram for explaining a fourth mode of the thermal switch section.
  • the thermal switch unit 130 does not include the electrodes 31A and 31B between the metal / insulating phase transition body 32 and the magnetic bodies 10A and 10B, and the inside of the metal / insulating phase transition body 32. Is provided so that a voltage can be applied from a direction orthogonal to the moving direction of the thermoelectrons moving. Other configurations and operations are the same as those in the second form of the thermal switch section.
  • the metal / insulating phase transition body 32 is directly attached to the magnetic bodies 10A and 10B.
  • the metal / insulating phase transition body 32 and the magnetic bodies 10A and 10B are attached by bonding or an adhesive.
  • the adhesive used at this time has a high thermal conductivity.
  • the electrodes 31A and 31B are attached to the metal / insulating phase transition body 32 by bonding or adhesion.
  • the electrodes 31A and 31B do not have to consider thermal conductivity.
  • the adhesive for adhering the electrodes 31A and 31B to the metal / insulating phase transition body 32 need not take thermal conductivity into consideration. This is because thermoelectrons do not pass through the electrodes 31A and 31B and the adhesive.
  • the electrodes 31A and 31B apply a voltage in a direction orthogonal to the moving direction of the thermoelectrons moving in the metal / insulating phase transition body 32.
  • a DC voltage is applied between the electrodes 31A and 31B, the distribution of electrons in the metal / insulating phase transition body 32 is shifted in the direction of the electrodes 31A and 31B. For this reason, the resistance of the thermoelectrons moving between the magnetic bodies 10A and 10B is reduced, and the thermoelectrons easily move.
  • the thermal conductivity of the thermal switch unit 30 according to the present embodiment is larger than in the case of the thermal switch units 2 and 3.
  • FIG. 23 is an explanatory diagram for explaining the fifth mode of the thermal switch section.
  • the thermal switch section 130 is configured such that the metal / insulating phase transition body (32) is directly attached to the magnetic bodies 10A and 10B so that a DC voltage can be applied to the magnetic bodies 10A and 10B. .
  • the metal / insulating phase transition body and the magnetic bodies 10A and 10B are attached by bonding or an adhesive. An adhesive having a high thermal conductivity is used. Other configurations and operations are the same as those in the second form of the thermal switch section.
  • the structure is simplified, and the number of parts can be reduced and the manufacturing process can be simplified.
  • the thermal conductivity of the thermal switch unit 30 is larger than that of the thermal switch unit forms 2 and 3.
  • FIG. 24 is an explanatory diagram for explaining a thermal switch section 6.
  • an insulator 34 is added to the thermal switch section 130. Specifically, as shown in FIG. 24, an insulator 34 that prevents the movement of thermoelectrons is provided between the electrode 31 ⁇ / b> A and the metal / insulating phase transition body 32. In FIG. 24, the insulator 34 is added to the configuration of FIG. 20, but the insulator 34 may be added to the configurations of FIGS. Other configurations and operations are the same as those in the second form of the thermal switch section.
  • the insulator 34 is provided to prevent the movement of electrons other than thermal electrons.
  • a DC voltage is applied between the electrodes 31A and 31B, a current flows between the electrodes 31A and 31B, but in addition to the thermoelectrons that are originally desired to move, electrons that are not involved in heat transport are excessively moved. there is a possibility.
  • the insulator 34 In order to prevent the excessive movement of electrons not involved in the heat transport, by attaching the insulator 34 to the metal / insulating phase transition body 32, it is possible to prevent a decrease in the thermal conductivity of the metal / insulating phase transition body 32.
  • FIG. 25 is an explanatory diagram for explaining the form 7 of the thermal switch section.
  • a polarizing body 35 is added to the thermal switch part 130 of FIG. 22 according to the thermal switch part form 4. Specifically, a polarizing body 35 that promotes the movement of thermoelectrons is disposed between the electrode 31 ⁇ / b> A and the metal / insulating phase transition body 32.
  • the polarizing body 35 is formed from at least one of a dielectric and an ionic liquid. Other configurations and operations are the same as those of the thermal switch unit 4.
  • the polarizing body 35 takes out electrons moving in the metal / insulating phase transition body 32 and injects electrons into the metal / insulating phase transition body 32. For this reason, the distribution state of the electrons in the metal / insulating phase transition body 32 changes, and thermal electrons easily flow. By disposing the polarization body 35, the thermal conductivity of the metal / insulating phase transition body 32 can be further increased.
  • thermal conduction with the adjacent magnetic material is intermittently applied only by applying or removing voltage. Can be made. Therefore, it is not necessary to move the heat switch part itself and insert / remove between the heat exchanger and the magnetic body, and between the magnetic bodies, so that the durability of the heat switch part is improved and at the same time the reliability is improved. .
  • FIG. 26 is a cross-sectional view of the thermal switch portion for explaining the configuration of the thermal switch portion in Embodiment 8 of the thermal switch portion.
  • FIG. 27 is a plan view of the thermal switch part for explaining the configuration of the thermal switch part in the eighth form of the thermal switch part (a view of arrow A in FIG. 26).
  • the thermal switch part of the present embodiment utilizes an electric wetting (electrowetting) effect.
  • the thermal switch unit 230 provided between the magnetic body 10 and the adjacent magnetic body 10 ' will be described as an example.
  • the magnetic body 10 and the magnetic body 10 'adjacent thereto described here correspond to the magnetic body 10A in FIG. 1 as 10B, 10C and 10D, 10E and 10F. Moreover, it corresponds similarly to the low temperature side heat exchange part 40A and the magnetic body 10A, the magnetic body 10F, and the high temperature side heat exchange part 40B. However, in that case, one of the magnetic bodies 10 or 10 'becomes the low temperature side heat exchange part 40A or the high temperature side heat exchange part 40B.
  • the thermal switch unit 230 includes a first electrode structure 11 in contact with the magnetic body 10, a second electrode structure 21 in contact with the magnetic body 10 ′, and a gap between the first electrode structure 11 and the second electrode structure 21. 20 and the liquid metal 18 withdrawn into and out of the gap 20.
  • a liquid reservoir 17 that stores the liquid metal 18 is provided at one end of the gap 20. In the gap 20, the end opposite to the one end where the liquid reservoir 17 is provided is an open end.
  • the first electrode structure 11 and the second electrode structure 21 have the same structure and have a symmetrical structure with the gap 20 as the center line.
  • the first electrode structure 11 includes a first electrode 12, a dielectric 13, a second electrode 14, and a liquid repellent coating layer 15 in order from the magnetic body 10 side.
  • the second electrode structure 21 includes the first electrode 12, the dielectric 13, the second electrode 14, and the liquid repellent coating layer 15 in this order from the magnetic body 10 'side. That is, when the gap 20 is taken as the center, both the first electrode structure 11 and the second electrode structure 21 are in order from the gap 20 side, the liquid repellent coating layer 15, the second electrode 14, the dielectric 13, and the first electrode 12. It is arranged to become.
  • a lower substrate 16 is provided below the entire magnetic material.
  • the lower substrate 16 has a liquid reservoir 17 communicating with the gap 20.
  • the second electrode 14 extends into the liquid reservoir 17 and can be electrically connected to the liquid metal 18.
  • the first electrode 12 is insulated from the liquid reservoir 17. That is, the first electrode 12 is insulated from the liquid metal 18.
  • the first electrode 12 and the second electrode 14 have a capacitor structure with the dielectric 13 between them, and this acts as a capacitor of the liquid metal 18 and the first electrode 12 (details). Later).
  • the upper substrate 100 on which wirings led from the first and second electrodes 12 and 14 are formed is provided above the first electrode structure 11 and the second electrode structure 21.
  • the upper substrate 100 is separated and insulated by the extension of the gap 20 on the first electrode structure 11 side and the second electrode structure 21 side, and the gap is the same as the first electrode structure 11 and the second electrode structure 21.
  • 20 is the same structure symmetrical.
  • the first wiring 111 from the first electrode 12 and the second wiring 112 from the second electrode 14 are insulated by an insulating layer 113.
  • the first and second wirings 111 and 112 are connected to a control device (not shown) of the magnetic air conditioner in order to control the thermal switch unit 230.
  • the control device switches between the heat transfer state and the heat insulation state by the heat switch unit 230 in synchronization with the magnetic movement.
  • the first electrode 12 and the second electrode 14 are not particularly limited as long as they are conductive, such as copper and aluminum.
  • the shapes of the first electrode 12 and the second electrode 14 are the same, and are electrode plates that match the size of the gap 20 (excluding the gap interval).
  • the dielectric 13 is not particularly limited as long as it is between the first electrode 12 and the second electrode 14 and is a dielectric 13 such as a silicon oxide film or a silicon nitride film.
  • the shape of the dielectric 13 is the same size as the first electrode 12 and the second electrode 14, and the first electrode 12 and the second electrode 14 are not short-circuited.
  • the liquid repellent coating layer 15 has liquid repellency with respect to the liquid metal 18.
  • the liquid repellent coating layer 15 is preferably conductive.
  • Examples of the material used for the liquid repellent coating layer 15 include a conductive oxide film, a conductive glass material, a conductive ceramic material, and graphene.
  • the liquid repellent coating layer 15 is liquid repellent with respect to the liquid metal 18, the liquid metal 18 can be easily accommodated in the liquid reservoir 17 when no electricity is applied. become. Further, by having conductivity, electricity that has flowed to the second electrode 14 can be directly flowed to the liquid metal 18, which is efficient. Further, when the liquid metal 18 is filled in the gap 20 between the first electrode structure 11 and the second electrode structure 21 by supplying electricity to the second electrode 14, the liquid reservoir 17 can be emptied. The amount of metal 18 used can be reduced.
  • the liquid repellent coating layer 15 only has liquid repellency and is conductive. It may be non-sexual. Further, an insulating liquid repellent member such as an extremely thin silicon oxide film or silicon nitride film may be formed on the surface of the second electrode 14 on the gap 20 side. If it is an extremely thin silicon oxide film or silicon nitride film, electricity can be passed through the liquid metal 18 by the tunnel effect when electricity is passed through the second electrode 14 even if they are present.
  • the shape of the liquid repellent coating layer 15 constituted by such a member is large enough to cover the second electrode 14.
  • a member that is conductive for the second electrode 14 and has a liquid repellent surface may be used. That is, the second electrode 14 itself is formed of a conductive oxide film, a conductive glass material, a conductive ceramic material, graphene, or the like. In this case, it is not necessary to provide a liquid repellent coating layer on the gap side surface of the second electrode 14.
  • the lower substrate 16 only needs to be insulated from at least the first and second electrodes 12 and 14.
  • an epoxy substrate, a phenol substrate, an ABS resin substrate, or the like is used as a material having insulation properties as a whole.
  • a liquid reservoir 17 is provided on these substrates.
  • the inner wall surface of the liquid reservoir is made lyophilic so that the liquid metal 18 can be easily stored in the liquid reservoir 17.
  • a metal film 19 for example, a metal film of copper, nickel, aluminum, etc.
  • a silicon substrate can be used as the lower substrate 16, for example.
  • a silicon substrate first, after the liquid reservoir 17 is formed, an insulating layer (not shown) is formed on the entire surface including the wall surface inside the liquid reservoir 17 with a silicon oxide film, a silicon nitride film, or the like. Then, a metal film 19 (for example, a metal film such as copper, nickel, aluminum or the like, or polysilicon provided with conductivity in the case of a silicon substrate) may be formed in order to make the liquid reservoir 17 lyophilic. It is preferable to do.
  • the metal film 19 formed in the liquid reservoir 17 may be electrically connected to the second electrode 14.
  • the metal film 19 in the liquid reservoir 17 may be omitted.
  • the metal film 19 in the liquid reservoir 17 makes the liquid metal 18 easily stored in the liquid reservoir 17 when the liquid metal 18 is lowered by making the inner wall surface of the liquid reservoir 17 lyophilic. belongs to. For this reason, the metal film 19 may be omitted if the liquid reservoir 17 is sufficiently large and the liquid metal 18 can be smoothly stored even if the inner wall surface of the liquid reservoir 17 is not lyophilic.
  • the liquid reservoir 17 of the lower substrate 16 is provided with an air hole 25 that does not leak the liquid metal 18 (the function of the air hole 25 will be described later).
  • the upper substrate 100 has the same configuration on the first electrode structure 11 side and the second electrode structure 21 side, and is electrically connected to the first wiring 111 electrically connected to the first electrode 12 and the second electrode 14. And a second wiring 112 connected to each other and an insulating layer 113 for insulating and separating them. Further, as already described, the first electrode structure 11 side and the second electrode structure 21 side are insulated and separated by the gap 20, so that the upper substrate 100 is naturally separated from the first electrode structure 11 side by the first electrode structure 11 side. The two electrode structures 21 are provided so as to be separated and have the same configuration. In addition, a liquid repellent coating layer 15 is formed on the portion of each second wiring 112 facing the gap 20.
  • the gap 20 portion is formed so that the liquid repellent coating layer 15 surrounds the gap 20 as shown in FIG. 27 so that the liquid metal does not leak from the side surface portion 15a of the gap 20. It has become.
  • the side surface portion 15a of the gap 20 has a structure (not shown) that covers the side surface portion of the gap (or the entire side surface including the side surface of the magnetic body) outside the liquid repellent coating layer 15. May be.
  • Such a structure is preferably a non-magnetic, non-conductive member such as resin or ceramic.
  • a portion of the upper substrate 100 facing the wiring (a portion surrounded by a circle in FIG. 26) is an open end so that the pressure in the gap 20 does not increase or decrease due to the movement of the liquid metal 18. Yes. For this reason, the liquid metal 18 can move in the gap 20 smoothly.
  • the wirings 111 and 112 used for the upper substrate 100 are made of copper, aluminum or the like, like the first and second electrodes 12 and 14.
  • the insulating layer 113 is preferably an insulator (insulating material) having a dielectric constant lower than that of the dielectric 13 at least.
  • the wirings 111 and 112 are wirings for applying a voltage to the first and second electrodes 12 and 14. For this reason, the same voltage as that of the first and second electrodes 12 and 14 is applied to the portion where the wiring is opposed (portion near the open end in FIG. 26). Then, if a material having a high dielectric constant is used for the insulating layer 113 of the upper substrate 100, a capacitor structure is formed between the liquid metal 18 and the wiring 112 even in this portion. Then, when the liquid metal 18 rises, there is a possibility that the liquid metal 18 may come from the enclosed portion to the upper side and be discharged at that momentum.
  • the liquid metal 18 enters the gap 20 where the wirings 112 face each other by using an insulating material having a low dielectric constant.
  • a so-called Low-k material used in a semiconductor device can be used.
  • any material having a lower dielectric constant than the dielectric 13 used between the first and second electrodes 12 and 14 may be used.
  • These Low-k materials may be used.
  • These Low-k materials are known to have a relative dielectric constant of 3.0 or less with respect to a relative dielectric constant of 4.2 to 4.0 of SiO 2 .
  • the portion near the open end where the insulating layer 113 that is an insulator is disposed has a thickness at which the wirings 112 and 113 are insulated. For example, if there is a thickness about the thickness of the dielectric 13 from the upper end of the gap, When the metal 18 rises, it is not discharged from the upper end.
  • the liquid metal 18 (sometimes referred to as a conductive fluid) is a liquid metal at least in a temperature range in which the magnetic air conditioner is used.
  • galinstan which is a eutectic alloy of gallium, indium and tin can be used.
  • Galinstan is a metal that is liquid at room temperature and has a different melting point depending on the composition of gallium, indium, and tin.
  • a galinstan of 68.5% gallium, 21.5% indium and 10% tin has a melting point: ⁇ 19 ° C., a boiling point: 1300 ° C.
  • liquid metals 18 may be used, and those having a high heat transfer coefficient are preferable.
  • the function of the heat switch unit 230 is to transfer and block heat (heat insulation) between magnetic bodies and the like. Since it has such a function, it may be called a thermal switch.
  • this thermal switch function is performed by the liquid metal 18 that moves back and forth between the gap 20 and the liquid reservoir 17.
  • Electrowetting is used to move the liquid metal 18 back and forth between the gap 20 and the liquid reservoir 17.
  • the movement of the liquid metal 18 by electrowetting is known per se and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-103363. Therefore, the principle necessary for understanding this embodiment will be described here.
  • FIG. 28 is an explanatory diagram for explaining the principle of electrowetting.
  • Electrowetting is performed by placing a liquid metal 18 (shown here as a droplet) on the surface of a dielectric 301 provided on the electrode plate 300 and applying a voltage between the electrode plate 300 and the liquid metal 18. This is a technique for controlling wettability with the liquid metal 18 on the dielectric surface.
  • a capacitor is formed between the electrode plate 300 and the liquid metal 18 via a dielectric 301.
  • the electrostatic energy of the capacitor changes (increases), and the corresponding surface energy of the liquid metal 18 decreases.
  • the surface tension of the liquid metal 18 is reduced.
  • the contact angle ⁇ refers to an angle between the surface of the dielectric 301 on which the liquid metal 18 is placed and the surface of the liquid metal.
  • the contact angle ⁇ varies in the range of 0 ° to 180 ° depending on the surface tension of the liquid metal 18.
  • FIG. 29 is an explanatory diagram for explaining the movement of the liquid metal in the gap, and is an enlarged view of the liquid metal portion in the gap.
  • the surface on which the liquid metal 18 moves is the liquid repellent coating layer 15 provided to face the gap 20 between the magnetic bodies 10 and 10 '.
  • the liquid repellent coating layer 15 has liquid repellency with respect to the liquid metal 18 as already described. Therefore, if no voltage is applied between the first and second electrodes 12 and 14, the liquid metal 18 has a contact angle of 90 ° or more on the surface of the liquid repellent coating layer 15 as shown in FIG. 29A. It becomes liquid repellency (also called lyophobic).
  • the contact angle with the liquid contact surface (the surface of the liquid repellent coating layer 15) is 90 ° or more, so that the center of the liquid surface of the liquid metal 18 is convex as shown in FIG. 29A.
  • the contact portion of the liquid metal 18 with the surface of the liquid repellent coating layer 15 is lowered. For this reason, the force that the liquid metal 18 travels along the surface of the liquid repellent coating layer 15 does not work, and the liquid metal 18 does not rise due to capillary action.
  • This state is the state shown in FIG. 26 for the heat transfer section 30 as a whole, and the liquid metal 18 is in the liquid reservoir 17 and the gap 20 is filled with air. Therefore, the gap 20 filled with air provides a heat insulating state between the magnetic bodies 10 and 10 '.
  • the dielectric 13 between the first electrode 12 and the second electrode 14 is polarized and statically applied. Electric energy changes (increases).
  • the second electrode 14 and the liquid metal 18 are electrically connected, the liquid metal 18 and the first electrode 12 have a capacitor structure with the dielectric 13 interposed therebetween.
  • This structure is the same structure as the capacitor structure of the electrode plate 300 in FIG. 28 and the liquid metal 18 through the dielectric 301, explaining the principle of electrowetting.
  • FIG. 30 is a cross-sectional view of the same portion as FIG. 26, showing a state in which the liquid metal 18 has gone up through the gap 20, that is, a heat transfer state.
  • the liquid metal 18 reaches the position of the upper substrate 100 that is the top of the gap 20. As already described, there is no dielectric between the first wiring 111 and the second wiring 112 of the upper substrate 100 (or the dielectric constant is low) in the gap portion of the upper substrate 100. For this reason, since the electrostatic energy in this portion hardly changes, the wettability of the raised liquid metal 18 does not improve, so the liquid metal 18 does not rise any further.
  • the heat transfer state in which the liquid metal 18 is filled in the gap 20 provided in the thermal switch unit 230 by electrowetting and the heat insulation state in which the liquid metal 18 is excluded from the gap 20. Can be electrically controlled.
  • each part constituting the thermal switch part 230 is such that when the gallinstan is used as the liquid metal 18, the gap 20 is preferably 10 ⁇ m to 50 ⁇ m.
  • the reason why the lower limit is set to 10 is to provide sufficient heat insulation when the liquid metal 18 is lowered and air enters the gap 20 by opening the gap 20 of this level.
  • the upper limit of 50 ⁇ m is for maintaining the heat transfer performance when the liquid metal 18 rises and fills the gap 20.
  • the air hole 25 is provided at the lower end of the liquid reservoir 17.
  • the size of the air hole 25 is set such that the liquid metal 18 does not leak and the inflow and outflow of air occur.
  • the position of the air hole 25 may be other than the lower end of the liquid reservoir 17 and may be arranged so that the liquid metal 18 can easily go out from the liquid reservoir 17 into the gap 20.
  • the first and second electrode structures 11 and 21 that face each other with the gap 20 are provided with the first electrode 12 and the second electrode 14 in parallel with the dielectric 13 interposed therebetween, respectively.
  • the capacitor that is constituted by the first electrode 12, the liquid metal 18, and the dielectric 13 between them is acting on the electrowetting.
  • the second electrode 14 may be omitted as long as a voltage can be applied to the liquid metal 18.
  • an electrode electrically connected to the liquid metal is provided through the lower substrate. In this case, since the second electrode does not exist in the gap, the opposing surface of the gap becomes a dielectric and has liquid repellency with respect to the liquid metal.
  • the electrode structure is increased or decreased because the liquid metal 18 serving as the counter electrode of the first electrode 12 moves as the capacitor structure. For this reason, the electrostatic energy in the dielectric material that causes the electrowetting action also increases or decreases. Therefore, even if the same voltage is applied, the force for moving the liquid metal is changed by the electrowetting action depending on the rising amount of the liquid metal, and the rising speed of the liquid metal may change (the second electrode is omitted). Even in this case, although the moving speed of the liquid metal may be slightly unstable, it is possible to switch between heat transfer and heat insulation without generating friction as in the case of providing the second electrode).
  • the size of the capacitor by the first electrode 12 and the second electrode 14 is determined by the movement of the liquid metal 18. It does not change. Therefore, even when the same voltage is applied, the transfer speed of the liquid metal is not changed by the movement of the liquid metal, and the heat transfer and the heat insulation can be switched stably.
  • FIG. 31 is a plan view for explaining the configuration of the thermal switch part in the ninth form of the thermal switch part, as seen from the direction corresponding to the arrow A in FIG.
  • the thermal switch of this embodiment also uses the electric wetting (electrowetting) effect. Therefore, this is a modification of the thermal switch section 8.
  • the blades 31 are arranged on the wall surfaces of the first electrode structure 11 side and the second electrode structure 21 side in the gap 20 of the thermal switch section 230, that is, on the surface of the liquid repellent coating layer 15. Is.
  • the blade 31 extends vertically from the liquid reservoir 17 of the lower substrate 16 in the direction of the upper substrate 100, and the blade 31 on the first electrode structure 11 side and the blade 31 on the second electrode structure 21 side do not contact each other. It has become.
  • the blade 31 itself may be formed, for example, so that the material of the liquid repellent coating layer 15 has the structure of the blade 31 as it is.
  • the contact surface area between the liquid metal 18 and the wall surface of the first electrode structure 11 and the wall surface of the second electrode structure 21 is increased, and the heat transfer efficiency is improved.
  • the gap d B is formed between the blade 31 of the first electrode structure 11 side and the blade 31 of the second electrode structure 21 side, the liquid metal to the blade wall even gap d B between the blade 31 The surface tension of 18 works and the liquid metal 18 is more likely to rise (when voltage is applied).
  • the gap d B also previously described between the blade 31, it is preferably about 10 [mu] m ⁇ 50 [mu] m.
  • the magnetic cooling / heating device can be reduced in size by using a heat switch that can transfer and block heat without moving itself as the heat conducting unit. it can.
  • a heat switch that can transfer and block heat without moving itself as the heat conducting unit. it can.
  • downsizing is required, and in order to reduce the size, it is necessary to increase the frequency of the magnetic air conditioner.
  • the frequency In order to increase the frequency, it is necessary to conduct heat conduction between magnetic bodies at high speed (for example, about 0.1 second).
  • the thermal switch unit of the second embodiment the frequency can be increased by shortening the cycle of turning on and off the voltage.
  • thermal switch unit can also be used as a heat transfer member in the first embodiment.
  • At least one magnetic body arranged in a row has at least two magnetocaloric materials having different operating temperature ranges, one of which is Magneto-caloric material including start-up temperature as operating temperature range. For this reason, this magnetic material contains a magnetocaloric material whose starting temperature is within the operating temperature range, so that the temperature changes from the starting time, and the transient characteristics from the starting time to the steady state are improved. A steady state can be achieved in a short time.
  • each magnetocaloric material when combining a plurality of magnetocaloric materials is arranged in the center with the magnetocaloric material including the starting temperature as the operating temperature range in the cross section along the direction in which the magnetic bodies are arranged in a line.
  • a magnetocaloric material that bears the operating temperature range of the magnetic material itself is disposed outside thereof.
  • each magnetocaloric material when combining a plurality of magnetocaloric materials is arranged in the center with the magnetocaloric material including the starting temperature as the operating temperature range in the cross section along the direction in which the magnetic bodies are arranged in a line.
  • a plurality of the basic arrangements are combined with the basic arrangement of a configuration in which a magnetocaloric material bearing the operating temperature range of the magnetic material itself is arranged on the outside. Thereby, the heat transfer between magnetic bodies can be made efficient.
  • a magnetic body having at least two magnetocaloric materials having different operating temperature ranges in one magnetic body is a magnetic body adjacent to the low temperature side heat exchange section and / or the high temperature side heat exchange section.
  • the magnetic body adjacent to the low temperature side heat exchange section or the high temperature side heat exchange section is further combined with a magnetocaloric material in the operating temperature range of the magnetic body other than itself.
  • the plurality of magnetic bodies have the same volume, it is possible to eliminate (or reduce) the difference in the heat capacities of each and suppress the variation in heat transfer. And when setting it as the same volume, when the magnetocaloric material which bears the operating temperature range of each magnetic body itself is 100 mass%, the magnetocaloric energy including the starting temperature as the operating temperature range with respect to 100 mass%.
  • the combination ratio of the materials is set to 5% by mass or more and less than 50% by mass. As a result, the steady state can be achieved faster and a stable cooling operation can be performed even after the steady state is reached.
  • the magnetic body including the startup temperature as the operating temperature range may be arranged at a biased position, not in the central portion of the row in which a plurality of magnetic bodies are arranged.
  • the magnetic body 10F a magnetic body including the startup temperature as the operating temperature range is disposed (or conversely, the magnetic body 10A may be set as the startup temperature).
  • the magnetic body 10A adjacent to the low temperature side heat exchanging portion is combined with the magnetocaloric material at the start-up temperature, that is, the magnetic calorific material of the magnetic body 10F in this case (in the opposite case, the magnetic calorific value of the magnetic body 10A).
  • the magnetocaloric material at the start-up temperature that is, the magnetic calorific material of the magnetic body 10F in this case (in the opposite case, the magnetic calorific value of the magnetic body 10A).
  • a magnetocaloric material in the operating temperature range of the adjacent magnetic material may be further combined.
  • the magnetic body combined with the magnetocaloric material at the starting temperature is not limited to the magnetic body adjacent to the low temperature side heat exchange section or the high temperature side heat exchange section.
  • the magnetocaloric material at the start-up temperature may be combined only with the magnetic body in the middle of the magnetic body adjacent to the low temperature side heat exchange section or the high temperature side heat exchange section and the magnetic body in the center. Even in this way, at least one of the magnetic materials whose operating temperature range is out of the starting temperature will cause a temperature change from the starting time, so that the steady state can be reached quickly by just that much. It becomes like this.
  • the normal temperature (20 ° C.) is assumed as the temperature at the start-up, but the case where the temperature at the start-up is not necessarily the normal temperature is applicable.

Abstract

[Problem] To provide a magnetic cooling/heating device with an improved transient characteristic in the period between startup and achievement of steady state. [Solution] A magnetic cooling/heating device having multiple magnetic bodies (10A-10F) arranged in a line with intervals therebetween. The multiple magnetic bodies have one or more magnetocaloric materials that undergo a temperature change within respectively different operating temperature ranges when magnetism is applied or removed, and at least one of the multiple magnetic bodies has within the one magnetic body at least two magnetocaloric materials having different operating temperature ranges, with one of these materials being a magnetocaloric material (c) for which the operating temperature range includes the startup temperature.

Description

磁気冷暖房装置Magnetic air conditioner
 本発明は、磁気冷暖房装置に係り、特に、複数の磁性体に個別に磁気を印加して磁気熱量効果を発現させ、複数の磁性体の熱を固体物質の熱伝導を利用して輸送する磁気冷暖房装置に関する。 The present invention relates to a magnetic air conditioner, and more particularly, a magnetism that individually applies magnetism to a plurality of magnetic bodies to develop a magnetocaloric effect and transports heat of the plurality of magnetic bodies using heat conduction of a solid substance. The present invention relates to an air conditioner.
 従来用いられている室温域の冷凍装置、たとえば、冷蔵庫、冷凍庫、エアコンなどの冷凍装置の大半は、フロンガスや代替フロンガスなどの気体冷媒の熱伝導を利用している。最近では、フロンガスの排出に伴うオゾン層破壊の問題が露呈し、さらに、代替フロンガスの排出に伴う地球温暖化への影響も懸念されている。このため、フロンガスや代替フロンガスなどの気体冷媒を用いた冷凍装置に代わる、クリーンでかつ熱輸送能力の高い、革新的な冷凍装置の開発が強く望まれている。 Most of the refrigeration devices conventionally used at room temperature, for example, refrigerators, freezers, air conditioners, etc., use the heat conduction of gaseous refrigerants such as chlorofluorocarbon gas and chlorofluorocarbon alternative gas. Recently, the problem of ozone depletion due to the emission of chlorofluorocarbons has been exposed, and there is also concern about the impact on global warming caused by the emission of alternative chlorofluorocarbons. For this reason, there is a strong demand for the development of an innovative refrigeration apparatus that is clean and has a high heat transport capability, replacing the refrigeration apparatus that uses a gaseous refrigerant such as chlorofluorocarbon gas or alternative chlorofluorocarbon gas.
 このような背景から、最近になって注目されるようになった冷凍技術が磁気冷凍技術である。磁性体の中には、その磁性体に印加する磁界の大きさが変化すると、その変化に応じて自身の温度が変化する、いわゆる磁気熱量効果(MCE:Magnetocaloric Effect)を発現するものがある。このような磁気熱量効果により温度変化する磁性体は磁気熱量材料(MCM:Magnetocaloric Effect Materials)と称されている(磁気熱量効果材料と称されることもある)。そして、この磁気熱量効果を発現する磁性体を利用して熱を輸送する冷凍技術が磁気冷凍技術である。 From this background, the refrigeration technology that has recently attracted attention is the magnetic refrigeration technology. Some magnetic bodies exhibit a so-called magnetocaloric effect (MCE) in which the temperature of the magnetic body changes according to the change of the magnitude of the magnetic field applied to the magnetic body. Such a magnetic substance that changes in temperature due to the magnetocaloric effect is called a magnetocaloric material (MCM) (sometimes called a magnetocaloric effect material). A refrigeration technique that transports heat using a magnetic material that exhibits this magnetocaloric effect is a magnetic refrigeration technique.
 磁気冷凍技術を応用したものとしては、たとえば、下記特許文献1に記載されているような、固体物質の熱伝導を利用して熱を輸送する磁気冷凍装置がある。この磁気冷凍装置は以下のような構成によって熱を伝導させる。 As an example of applying the magnetic refrigeration technology, there is a magnetic refrigeration apparatus that transports heat by utilizing the heat conduction of a solid substance as described in Patent Document 1 below. This magnetic refrigeration apparatus conducts heat by the following configuration.
 磁気を印加すると温度が上昇し、磁気を除去すると温度が下降する正の磁性体と、磁気を印加すると温度が下降し、磁気を除去すると温度が上昇する負の磁性体とを、所定の間隔で交互に配置する。正負一対の磁性体で1つの磁性体ブロックを形成する。この磁性体ブロックを環状に複数個配置して磁性体ユニットを形成する。磁性体ユニットに配置された正負の磁性体の間で挿脱される熱伝導部を正負の磁性体の間に配置する。この磁性体ユニットと同心で内径と外径が略等しいハブ状の回転体に永久磁石を配置して磁気回路を形成する。そして、永久磁石が配置されている回転体を磁性体ユニットと対向するように配置して磁性体ユニットに対し相対的に回転させる。この回転体の回転によって正負の磁性体に同時に磁気が印加されまた除去される。この回転体の回転に伴って熱伝導部を一定のタイミングで正負の磁性体の間に挿脱させる。磁気熱量効果により磁性体が発生する熱を、熱伝導部を介して磁性体が配置される一方向に輸送する。 A positive magnetic material that increases in temperature when magnetism is applied and decreases in temperature when magnetism is removed and a negative magnetic material that decreases in temperature when magnetism is applied and increases in temperature when magnetism is removed Place them alternately. One magnetic body block is formed by a pair of positive and negative magnetic bodies. A plurality of magnetic blocks are arranged in a ring shape to form a magnetic unit. A heat conduction part inserted and removed between the positive and negative magnetic bodies arranged in the magnetic unit is arranged between the positive and negative magnetic bodies. A permanent magnet is arranged on a hub-like rotator that is concentric with the magnetic unit and has substantially the same inner diameter and outer diameter to form a magnetic circuit. And the rotary body in which the permanent magnet is arrange | positioned is arrange | positioned so as to oppose a magnetic body unit, and it rotates relatively with respect to a magnetic body unit. By the rotation of the rotating body, magnetism is simultaneously applied to and removed from the positive and negative magnetic bodies. Along with the rotation of the rotating body, the heat conducting portion is inserted and removed between the positive and negative magnetic bodies at a constant timing. The heat generated by the magnetic body due to the magnetocaloric effect is transported in one direction in which the magnetic body is disposed via the heat conducting portion.
 このような磁気冷凍装置において、引用文献1の技術では、高温側熱交換手段から低温側熱交換手段に向かう方向に順に作動温度が低くなる磁性体を用いている。 In such a magnetic refrigeration apparatus, the technique disclosed in Patent Document 1 uses a magnetic material whose operating temperature decreases in the direction from the high temperature side heat exchange means to the low temperature side heat exchange means.
 また、たとえば引用文献2の技術では、それぞれ作動温度範囲の異なる複数の磁性体を用いて、隣接する磁性体同士の作動温度範囲を重複するようにしている。 Also, for example, in the technique of Cited Document 2, a plurality of magnetic bodies having different operating temperature ranges are used, and the operating temperature ranges of adjacent magnetic bodies are overlapped.
特開2007-147209号公報(段落0072)JP 2007-147209 A (paragraph 0072) 米国特許第6588215号(第11欄第30行~第12欄第37行、FIG.11および12)US Pat. No. 6,588,215 (column 11, line 30 to column 12, line 37, FIGS. 11 and 12)
 このような作動温度範囲の異なる磁気熱量材料を用いた磁性体を配置すると、すべての磁性体がそれぞれの作動温度範囲となったのち、すなわち定常状態となったのちは効率よく磁気熱量効果を発現させて熱を移動できる。しかし、起動時においては、各磁性体は起動時におけるその環境の温度となっている。このため、起動時から定常状態となるまでは、各磁性体がそれぞれの作動温度になるまで磁気熱量効果が十分に発揮されない。このため従来の装置では、起動時の状態から定常状態に至るまでの過渡特性が悪く、定常状態になるまで時間がかかるという問題があった。 When magnetic bodies using magnetocaloric materials with different operating temperature ranges are arranged, the magnetocaloric effect is efficiently expressed after all the magnetic bodies are in their respective operating temperature ranges, that is, after the steady state is reached. Can move heat. However, at the time of startup, each magnetic body is at the temperature of its environment at the time of startup. For this reason, the magnetocaloric effect is not sufficiently exerted until the respective magnetic bodies reach their respective operating temperatures from the time of startup to the steady state. For this reason, the conventional apparatus has a problem that the transient characteristics from the start-up state to the steady state are poor and it takes time to reach the steady state.
 そこで本発明の目的は、使用開始の起動時から定常状態となるまでの過渡特性を向上させた磁気冷暖房装置を提供することである。 Therefore, an object of the present invention is to provide a magnetic air conditioner having improved transient characteristics from the start of use to the steady state.
 上記目的を達成するための本発明に係る磁気冷暖房装置は、間隔を設けて列状に配置され、磁気の印加および除去により温度変化する複数の磁性体と、これら複数の磁性体のそれぞれに磁気を印加および除去する磁気印加部を有する。複数の磁性体の列の一端部には磁性体から間隔をあけて配置された低温側熱交換部を有し、複数の磁性体の列の他端部には磁性体から間隔をあけて配置された高温側熱交換部を有する。さらに磁性体同士の間、磁性体と低温側熱交換部の間、および磁性体と高温側熱交換部の間のそれぞれに配置されて、これらの間の熱の伝達および断熱を行う熱伝導部を有する。そして、複数の磁性体は、それぞれが作動温度範囲の異なる磁気熱量材料を有するものであり、これら複数の磁性体のうち少なくとも一つの磁性体は、一つの磁性体としてその中に作動温度範囲の異なる少なくとも2つの磁気熱量材料を有していてこのうち一つの磁気熱量材料は作動温度範囲として起動時温度を含む磁気熱量材料であることを特徴とする。 In order to achieve the above object, a magnetic air conditioner according to the present invention includes a plurality of magnetic bodies that are arranged in rows at intervals and change in temperature by the application and removal of magnetism, and each of the plurality of magnetic bodies is magnetic. A magnetic application unit for applying and removing. One end portion of the plurality of magnetic body rows has a low temperature side heat exchange section arranged at a distance from the magnetic body, and the other end portion of the plurality of magnetic body rows is arranged at a distance from the magnetic body. The high temperature side heat exchange part is provided. Furthermore, between the magnetic bodies, between the magnetic body and the low temperature side heat exchanging section, and between the magnetic body and the high temperature side heat exchanging section, a heat conducting section that performs heat transfer and heat insulation between them. Have Each of the plurality of magnetic bodies has a magnetocaloric material having a different operating temperature range, and at least one of the plurality of magnetic bodies has a working temperature range as one magnetic body. It has at least two different magnetocaloric materials, and one of the magnetocaloric materials is a magnetocaloric material including an operating temperature as an operating temperature range.
 以上のように構成された本発明に係る磁気冷暖房装置によれば、列状に並んだ複数の磁性体のうち少なくとも一つの磁性体に、作動温度範囲の異なる少なくとも2つの磁気熱量材料を有するようにして、このうち一つの磁気熱量材料が作動温度範囲として起動時温度を含む磁気熱量材料とした。これにより少なくとも2つの磁気熱量材料を持つ磁性体は、自身の磁気熱量材料の作動温度範囲から外れている起動時の温度状態の時点から、磁気の印加、除去によって温度変化を起こすことができる。したがって、起動時から磁性体の温度が変わって行くので、起動時から定常状態になるまでの過渡特性が向上して、従来よりも短い時間で定常状態にすることができる。 According to the magnetic cooling / heating apparatus according to the present invention configured as described above, at least one magnetic body among a plurality of magnetic bodies arranged in a row has at least two magnetocaloric materials having different operating temperature ranges. Thus, one of the magnetocaloric materials was a magnetocaloric material including the starting temperature as the operating temperature range. As a result, a magnetic body having at least two magnetocaloric materials can change its temperature by applying and removing magnetism from the starting temperature state outside the operating temperature range of its own magnetocaloric material. Therefore, since the temperature of the magnetic material changes from the time of startup, the transient characteristics from the time of startup to the steady state can be improved, and the steady state can be achieved in a shorter time than the prior art.
磁気冷暖房装置の動作原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of operation of a magnetic air conditioning apparatus. 磁気冷暖房装置の温度変化を示すグラフである。It is a graph which shows the temperature change of a magnetic air conditioning apparatus. 磁性体に使用される磁気熱量材料の作動温度範囲を説明するためのグラフである。It is a graph for demonstrating the operating temperature range of the magnetocaloric material used for a magnetic body. 比較例1の磁気冷暖房装置として、図1に示した各磁性体10A-10Fにおける磁気熱量材料の割合(質量%)を説明するためのグラフである。10 is a graph for explaining a ratio (mass%) of a magnetocaloric material in each of the magnetic bodies 10A to 10F shown in FIG. 1 as a magnetic air conditioner of Comparative Example 1. 比較例1の磁気冷暖房装置における熱の移動を説明するための説明図である。It is explanatory drawing for demonstrating the movement of the heat | fever in the magnetic air conditioning apparatus of the comparative example 1. 比較例1の磁気冷暖房装置における熱の移動を説明するための説明図である。It is explanatory drawing for demonstrating the movement of the heat | fever in the magnetic air conditioning apparatus of the comparative example 1. 実施形態1の磁気冷暖房装置において、各磁性体10A-10Fをそれぞれ構成する磁気熱量材料の組み合わせ割合(質量%)を説明するためのグラフである。6 is a graph for explaining a combination ratio (mass%) of magnetocaloric materials constituting each magnetic body 10A-10F in the magnetic air conditioner of Embodiment 1. 実施形態1の磁気冷暖房装置における熱の移動を説明するための説明図である。It is explanatory drawing for demonstrating the movement of the heat | fever in the magnetic air conditioning apparatus of Embodiment 1. FIG. 実施形態1の磁気冷暖房装置における熱の移動を説明するための説明図である。It is explanatory drawing for demonstrating the movement of the heat | fever in the magnetic air conditioning apparatus of Embodiment 1. FIG. 3つの磁気熱量材料を組み合わせたときの各磁気熱量材料の配置を説明するための説明図である。It is explanatory drawing for demonstrating arrangement | positioning of each magnetocaloric material when combining three magnetocaloric materials. 複数の磁気熱量材料を組み合わせた磁性体を用いた場合の温度変化を論理計算した結果をまとめたグラフである。It is the graph which put together the result of having performed the logic calculation of the temperature change at the time of using the magnetic body which combined the several magnetocaloric material. 図11における論理計算に用いた磁性体中の磁気熱量材料の組み合わせ割合を説明するための説明図であるIt is explanatory drawing for demonstrating the combination ratio of the magnetocaloric material in the magnetic body used for the logical calculation in FIG. 実施形態1の変形例における磁気冷暖房装置において、各磁性体をそれぞれ構成する磁気熱量材料の組み合わせ割合(質量%)を説明するためのグラフである。In the magnetic air-conditioning apparatus in the modification of Embodiment 1, it is a graph for demonstrating the combination ratio (mass%) of the magnetocaloric material which each comprises each magnetic body. 実施形態2の磁気冷暖房装置の概略構成を示す上面図である。It is a top view which shows schematic structure of the magnetic air conditioning apparatus of Embodiment 2. FIG. 図14に示した磁気冷暖房装置を構成する、磁性体・熱伝達部配置板の上面図である。It is a top view of the magnetic body and the heat transfer part arrangement | positioning board which comprises the magnetic air conditioning apparatus shown in FIG. 図14に示した磁気冷暖房装置を構成する、磁石配置板の上面図である。It is a top view of the magnet arrangement | positioning board which comprises the magnetic air conditioning apparatus shown in FIG. 図14に示した磁気冷暖房装置の分解断面図である。FIG. 15 is an exploded cross-sectional view of the magnetic air conditioner shown in FIG. 14. 磁気冷暖房装置の磁石/熱伝達部配置板を回転させたときに熱が移動して行く様子を説明するための模式図である。It is a schematic diagram for demonstrating a heat | fever moving, when rotating the magnet / heat-transfer part arrangement | positioning board of a magnetic air conditioning apparatus. 本実施形態2に係る磁気冷暖房装置の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the magnetic air conditioning apparatus which concerns on this Embodiment 2. FIG. 熱スイッチ部の形態1を説明するための説明図である。It is explanatory drawing for demonstrating the form 1 of a thermal switch part. 熱スイッチ部の形態2を説明するための説明図である。It is explanatory drawing for demonstrating the form 2 of a thermal switch part. 熱スイッチ部の形態3を説明するための説明図である。It is explanatory drawing for demonstrating the form 3 of a thermal switch part. 熱スイッチ部の形態4を説明するための説明図である。It is explanatory drawing for demonstrating the form 4 of a thermal switch part. 熱スイッチ部の形態5を説明するための説明図である。It is explanatory drawing for demonstrating the form 5 of a thermal switch part. 熱スイッチ部の形態6を説明するための説明図である。It is explanatory drawing for demonstrating the form 6 of a thermal switch part. 熱スイッチ部の形態7を説明するための説明図である。It is explanatory drawing for demonstrating the form 7 of a thermal switch part. 熱スイッチ部の形態8における熱スイッチ部の構成を説明するための熱スイッチ部部分の断面図である。It is sectional drawing of the thermal switch part part for demonstrating the structure of the thermal switch part in the form 8 of a thermal switch part. 熱スイッチ部の形態8における熱スイッチ部の構成を説明するための熱スイッチ部部分の平面図(図26の矢視Aの図)である。It is a top view (figure of the arrow A of FIG. 26) of the thermal switch part part for demonstrating the structure of the thermal switch part in the form 8 of a thermal switch part. エレクトロウェッティングの原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of electrowetting. 隙間における液体金属の移動を説明するための説明図で、隙間における液体金属部分の拡大図である。It is explanatory drawing for demonstrating the movement of the liquid metal in a clearance gap, and is an enlarged view of the liquid metal part in a clearance gap. 図26と同じ部分の断面図であり、液体金属が隙間を上がってきた熱伝達状態を示している。It is sectional drawing of the same part as FIG. 26, and has shown the heat transfer state which the liquid metal went up the clearance gap. 熱スイッチ部の形態9における熱スイッチ部の構成を説明するための平面図であって、図26中の矢視Aに相当する方向から見た図である。It is a top view for demonstrating the structure of the thermal switch part in the form 9 of a thermal switch part, Comprising: It is the figure seen from the direction corresponded to the arrow A in FIG.
 以下、添付した図面を参照して、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 [磁気冷凍装置の動作原理]
 まず、磁気冷暖房装置の動作原理を説明する。図1は、磁気冷暖房装置の動作原理を説明するための説明図である。
[Operation principle of magnetic refrigeration equipment]
First, the operation principle of the magnetic air conditioner will be described. FIG. 1 is an explanatory diagram for explaining the operating principle of the magnetic air conditioner.
 図示する磁気冷暖房装置は磁気冷暖房装置の基本的な形態を示している。磁気冷暖房装置は磁気熱量効果を発現する複数の磁性体10A-10Fを有する。複数の磁性体10A-10Fは間隔を設けて列状に並べられている。磁性体10A-10Fには、発現される磁気熱量効果の種類が同じ磁性体として、正の磁性体を用いている。ただし本実施形態では、それぞれの磁性体が磁気の印加、除去によって温度変化する範囲(作動温度範囲)が異なる磁気熱量材料を有している(詳細後述)。 The illustrated magnetic air conditioner shows a basic form of the magnetic air conditioner. The magnetic air conditioner has a plurality of magnetic bodies 10A-10F that exhibit a magnetocaloric effect. The plurality of magnetic bodies 10A-10F are arranged in a row at intervals. In the magnetic bodies 10A to 10F, a positive magnetic body is used as a magnetic body having the same type of magnetocaloric effect. However, in this embodiment, each magnetic body has a magnetocaloric material in which the temperature change range (operating temperature range) varies depending on the application and removal of magnetism (details will be described later).
 このような磁性体10A、10Bで磁性体ブロック100Aを形成し、磁性体10C、10Dで磁性体ブロック100Bを形成し、磁性体10E、10Fで磁性体ブロック100Cを形成する。また、磁性体ブロック100A-100Cで磁性体ユニット200を形成する。 The magnetic body block 100A is formed with the magnetic bodies 10A and 10B, the magnetic body block 100B is formed with the magnetic bodies 10C and 10D, and the magnetic body block 100C is formed with the magnetic bodies 10E and 10F. Further, the magnetic body unit 200 is formed by the magnetic body blocks 100A-100C.
 磁気回路20A、20B、磁気回路20C、20D、磁気回路20E、20Fは、磁性体10A-10Fとの間で往復移動する。つまり、図1Aの状態から、磁気回路20A、20Bが磁性体10Aから10Bに、磁気回路20C、20Dが磁性体10Cから10Dに、磁気回路20E、20Fが磁性体10Eから10Fに、一斉に移動して、図1Bの状態になる。次に、図1Bの状態から、磁気回路20A、20Bが磁性体10Bから10Aに、磁気回路20C、20Dが磁性体10Dから10Cに、磁気回路20E、20Fが磁性体10Fから10Eに、一斉に移動して、磁気回路と磁性体の位置関係が図1の状態に戻る。したがって、磁気回路が往復移動すると、図1Aと図1Bの状態が交互に繰り返される。 The magnetic circuits 20A, 20B, magnetic circuits 20C, 20D, and magnetic circuits 20E, 20F reciprocate between the magnetic bodies 10A-10F. That is, from the state of FIG. 1A, the magnetic circuits 20A and 20B move from the magnetic bodies 10A to 10B, the magnetic circuits 20C and 20D move from the magnetic bodies 10C to 10D, and the magnetic circuits 20E and 20F move from the magnetic bodies 10E to 10F all at once. Thus, the state shown in FIG. 1B is obtained. Next, from the state of FIG. 1B, the magnetic circuits 20A and 20B are changed from the magnetic bodies 10B to 10A, the magnetic circuits 20C and 20D are changed from the magnetic bodies 10D to 10C, and the magnetic circuits 20E and 20F are changed from the magnetic bodies 10F to 10E all at once. By moving, the positional relationship between the magnetic circuit and the magnetic body returns to the state shown in FIG. Therefore, when the magnetic circuit reciprocates, the states of FIGS. 1A and 1B are alternately repeated.
 ここで、複数の磁性体10A-10Fには、磁気回路20A、20B-磁気回路20E、20Fで磁気を印加すると発熱し、この磁気を除去すると吸熱する正の磁性体を用いるか、磁気回路20A-20Fで磁気を印加すると吸熱し除去すると発熱する負の磁性体のいずれか一方のみを用いる。正の磁性体と負の磁性体とでは、発現される磁気熱量効果が正反対であり、磁気熱量効果の種類が異なる。本実施形態1では(図1の場合)、負の磁性体に比較して安価な正の磁性体を用いている。これは、負の磁性体は希少な磁気熱量材料から製造しなければならないのでコスト高になるし、負の磁性体の磁気熱量効果の大きさが正の磁性体の磁気熱量効果の大きさよりも小さいからである(なお磁性体に用いる具体的な磁気熱量材料については後述する)。 Here, as the plurality of magnetic bodies 10A-10F, positive magnetic bodies that generate heat when applying magnetism in the magnetic circuits 20A, 20B- magnetic circuits 20E, 20F and absorb heat when the magnetism is removed are used. Use only one of the negative magnetic materials that absorbs heat when heat is applied at -20F and generates heat when removed. A positive magnetic body and a negative magnetic body have opposite magneto-caloric effects, and the types of magneto-caloric effects are different. In the first embodiment (in the case of FIG. 1), a positive magnetic material that is less expensive than a negative magnetic material is used. This is because the negative magnetic material must be manufactured from a rare magnetocaloric material, which increases the cost, and the magnitude of the magnetocaloric effect of the negative magnetic material is greater than the magnitude of the magnetocaloric effect of the positive magnetic material. This is because it is small (a specific magnetocaloric material used for the magnetic material will be described later).
 磁気回路20A、20B-20E、20Fには永久磁石(図示せず)が備えられている。磁気回路20A、20B、磁気回路20C、20D、磁気回路20E、20Fそれぞれが一体となって、図示左右方向に往復移動することで、磁性体10A-10Fに個別に磁気を印加する。 The magnetic circuits 20A, 20B-20E, and 20F are provided with permanent magnets (not shown). The magnetic circuits 20A and 20B, the magnetic circuits 20C and 20D, and the magnetic circuits 20E and 20F are integrated to reciprocate in the horizontal direction in the figure, thereby applying magnetism to the magnetic bodies 10A to 10F individually.
 熱伝導部30A-30Gは、磁性体10A-10Fが磁気熱量効果により発生した熱を低温側熱交換部40Aから高温側熱交換部40Bに向けて伝導する。熱伝導部30Aは、低温側熱交換部40Aとこれと隣り合う磁性体10Aとの間で挿脱されて両者を機械的に接続する。熱伝導部30Bは、磁性体10Aと10Bとの間で挿脱されて両者を機械的に接続する。同様に、熱伝導部30C、30D、30E、30Fは、磁性体10Bと10Cとの間、磁性体10Cと10Dとの間、磁性体10Dと10Eとの間、磁性体10Eと10Fとの間で挿脱されて両者を機械的に接続する。熱伝導部30Gは、磁性体10Fと高温側熱交換部40Bとの間で挿脱されて両者を機械的に接続する。熱伝導部30B、30D、30Fは、同じタイミングで、磁性体10Aと10Bとの間、磁性体10Cと10Dとの間、磁性体10Eと10Fとの間で挿脱されて両者を機械的に接続する。また、熱伝導部30A、30C、30E、30Gも、同じタイミングで、低温側熱交換部40Aと磁性体10Aとの間、磁性体10Bと10Cとの間、磁性体10Dと10Eとの間、磁性体10Fと高温側熱交換部40Bとの間で挿脱されて両者を機械的に接続する。熱伝導部30B、30D、30Fと熱伝導部30A、30C、30E、30Gは交互に挿脱が繰り返される。 The heat conducting units 30A-30G conduct the heat generated by the magnetic bodies 10A-10F due to the magnetocaloric effect from the low temperature side heat exchange unit 40A to the high temperature side heat exchange unit 40B. The heat conducting unit 30A is inserted and removed between the low temperature side heat exchanging unit 40A and the adjacent magnetic body 10A to mechanically connect the two. The heat conducting unit 30B is inserted and removed between the magnetic bodies 10A and 10B to mechanically connect both. Similarly, the heat conducting portions 30C, 30D, 30E, and 30F are provided between the magnetic bodies 10B and 10C, between the magnetic bodies 10C and 10D, between the magnetic bodies 10D and 10E, and between the magnetic bodies 10E and 10F. The two are mechanically connected with each other. The heat conducting unit 30G is inserted and removed between the magnetic body 10F and the high temperature side heat exchanging unit 40B to mechanically connect the two. The heat conducting portions 30B, 30D, and 30F are inserted and removed between the magnetic bodies 10A and 10B, between the magnetic bodies 10C and 10D, and between the magnetic bodies 10E and 10F at the same timing. Connecting. Further, the heat conducting portions 30A, 30C, 30E, 30G are also at the same timing, between the low temperature side heat exchanging portion 40A and the magnetic body 10A, between the magnetic bodies 10B and 10C, between the magnetic bodies 10D and 10E, It is inserted and removed between the magnetic body 10F and the high temperature side heat exchanging section 40B to mechanically connect them. The heat conducting portions 30B, 30D, and 30F and the heat conducting portions 30A, 30C, 30E, and 30G are alternately inserted and removed repeatedly.
 図1Aに示すように、磁気回路20A、20Bが磁性体ブロック100Aの磁性体10Aに、磁気回路20C、20Dが磁性体ブロック100Bの磁性体10Cに、磁気回路20E、20Fが磁性体ブロック100Cの磁性体10Eに、それぞれ位置する。このときには、磁性体10A、10C、10Eに対して磁気が印加され、磁性体10B、10D、10Fには磁気が印加されておらず磁気が除去されている。このとき、磁性体10A、10C、10Eは発熱し、磁性体10B、10D、10Fは吸熱する。そして同時に、熱伝導部30Bが磁性体10Aと10Bとの間に、熱伝導部30Dが磁性体10Cと10Dとの間に、熱伝導部30Fが磁性体10Eと10Fとの間に、それぞれ挿入される。このため、各磁性体ブロック内の隣り合う磁性体との間の熱伝導が行われる。すなわち、磁性体10A、10C、10Eが磁気熱量効果により発生した熱を磁性体10B、10D、10Fにそれぞれ移動する。また、このときには、熱伝導部30Aと30Gは低温側熱交換部40Aと磁性体10Aとの間および高温側熱交換部40Bと磁性体10Fとの間には挿入されない。また、磁性体ブロック間の熱伝導を行う熱伝導部30C、30Eも磁性体10B、10Cとの間および磁性体10D、10Eとの間には挿入されない。 As shown in FIG. 1A, the magnetic circuits 20A and 20B are the magnetic body 10A of the magnetic body block 100A, the magnetic circuits 20C and 20D are the magnetic body 10C of the magnetic body block 100B, and the magnetic circuits 20E and 20F are the magnetic body block 100C. It is located on each of the magnetic bodies 10E. At this time, magnetism is applied to the magnetic bodies 10A, 10C, and 10E, and no magnetism is applied to the magnetic bodies 10B, 10D, and 10F, and the magnetism is removed. At this time, the magnetic bodies 10A, 10C, and 10E generate heat, and the magnetic bodies 10B, 10D, and 10F absorb heat. At the same time, the heat conducting portion 30B is inserted between the magnetic bodies 10A and 10B, the heat conducting portion 30D is inserted between the magnetic bodies 10C and 10D, and the heat conducting portion 30F is inserted between the magnetic bodies 10E and 10F. Is done. For this reason, heat conduction is performed between adjacent magnetic bodies in each magnetic body block. That is, the heat generated by the magnetic bodies 10A, 10C, and 10E due to the magnetocaloric effect is transferred to the magnetic bodies 10B, 10D, and 10F, respectively. At this time, the heat conducting portions 30A and 30G are not inserted between the low temperature side heat exchanging portion 40A and the magnetic body 10A and between the high temperature side heat exchanging portion 40B and the magnetic body 10F. Further, the heat conducting portions 30C and 30E that conduct heat between the magnetic blocks are not inserted between the magnetic bodies 10B and 10C and between the magnetic bodies 10D and 10E.
 次に、図1Bに示すように、磁気回路20A、20Bが磁性体ブロック100Aの磁性体10Bに、磁気回路20C、20Dが磁性体ブロック100Bの磁性体10Dに、磁気回路20E、20Fが磁性体ブロック100Cの磁性体10Fに、それぞれ位置する。このときには、磁性体10B、10D、10Fに対して磁気が印加され、磁性体10A、10C、10Eには磁気が印加されておらず磁気が除去されている。このとき、磁性体10B、10D、10Fは発熱し、磁性体10A、10C、10Eは吸熱する。また、熱伝導部30Aが低温側熱交換部40Aと磁性体10Aとの間に、熱伝導部30Cが磁性体10Bと10Cとの間に、熱伝導部30Eが磁性体10Dと10Eとの間に、熱伝導部30Gが磁性体10Fと高温側熱交換部40Bとの間に、それぞれ挿入される。これにより、低温側熱交換部40A、高温側熱交換部40Bと磁性体ユニット200の両端に位置する磁性体10A、10Fとの間、および、隣り合う磁性体ブロックの隣り合う磁性体との間の熱伝導が行われる。すなわち、磁性体10A、10C、10Eが磁気熱量効果により吸熱され、磁性体10B、10D、10Fが磁気熱量効果により発熱する。このため、低温側熱交換部40Aから磁性体10Aに、磁性体10Bから磁性体10Cに、磁性体10Dから磁性体10Eに、磁性体10Fから高温側熱交換部40Bに熱が移動する。また、このときには、磁性体ブロック内の熱伝導を行う熱伝導部30B、30D、30Fは磁性体10A、10Bとの間、磁性体10C、10Dとの間、磁性体10E、10Fとの間には挿入されない。 Next, as shown in FIG. 1B, the magnetic circuits 20A and 20B are the magnetic body 10B of the magnetic block 100A, the magnetic circuits 20C and 20D are the magnetic body 10D of the magnetic block 100B, and the magnetic circuits 20E and 20F are the magnetic bodies. It is located on the magnetic body 10F of the block 100C. At this time, magnetism is applied to the magnetic bodies 10B, 10D, and 10F, and no magnetism is applied to the magnetic bodies 10A, 10C, and 10E, and the magnetism is removed. At this time, the magnetic bodies 10B, 10D, and 10F generate heat, and the magnetic bodies 10A, 10C, and 10E absorb heat. Further, the heat conducting unit 30A is between the low temperature side heat exchanging unit 40A and the magnetic body 10A, the heat conducting unit 30C is between the magnetic bodies 10B and 10C, and the heat conducting unit 30E is between the magnetic bodies 10D and 10E. In addition, the heat conducting unit 30G is inserted between the magnetic body 10F and the high temperature side heat exchanging unit 40B. Thereby, between low temperature side heat exchange part 40A, high temperature side heat exchange part 40B, and magnetic bodies 10A and 10F located in the both ends of magnetic body unit 200, and between adjacent magnetic bodies of adjacent magnetic body blocks Heat conduction is performed. That is, the magnetic bodies 10A, 10C, and 10E absorb heat by the magnetocaloric effect, and the magnetic bodies 10B, 10D, and 10F generate heat by the magnetocaloric effect. For this reason, heat moves from the low temperature side heat exchange section 40A to the magnetic body 10A, from the magnetic body 10B to the magnetic body 10C, from the magnetic body 10D to the magnetic body 10E, and from the magnetic body 10F to the high temperature side heat exchange section 40B. At this time, the heat conducting portions 30B, 30D, and 30F that conduct heat in the magnetic block are between the magnetic bodies 10A and 10B, between the magnetic bodies 10C and 10D, and between the magnetic bodies 10E and 10F. Is not inserted.
 以上のように、各磁性体ブロック100A-100Cに対応させて設けた磁気回路を図示左右方向に連動して往復移動させることによって、各磁性体ブロック100A-100Cの両端に位置する磁性体は交互に磁気の印加と除去を繰り返す。さらに、磁気回路の移動に連動させて、熱伝導部30A-30Gの低温側熱交換部40A、磁性体10A-10F、高温側熱交換部40Bそれぞれの間への挿脱を繰り返す。このことによって、磁気熱量効果により得られた熱が低温側熱交換部40Aから高温側熱交換部40Bに移動する。 As described above, by reciprocating the magnetic circuit provided corresponding to each magnetic body block 100A-100C in the left-right direction in the figure, the magnetic bodies located at both ends of each magnetic body block 100A-100C are alternately arranged. Repeat the application and removal of magnetism. Further, in conjunction with the movement of the magnetic circuit, insertion / removal of the heat conducting portions 30A-30G between the low temperature side heat exchanging portion 40A, the magnetic bodies 10A-10F, and the high temperature side heat exchanging portion 40B is repeated. Thereby, the heat obtained by the magnetocaloric effect moves from the low temperature side heat exchange unit 40A to the high temperature side heat exchange unit 40B.
 図2は、磁気冷暖房装置の温度変化を示すグラフである。このグラフに示すように、磁気冷暖房装置が起動した直後(初期状態)では、各磁性体の位置に対して温度の傾きがほとんどなく、低温側熱交換部40Aから高温側熱交換部40Bまで室温(ここでは20℃)と同じである。 FIG. 2 is a graph showing the temperature change of the magnetic air conditioner. As shown in this graph, immediately after the magnetic air conditioner is started (initial state), there is almost no temperature gradient with respect to the position of each magnetic body, and the room temperature is from the low temperature side heat exchange unit 40A to the high temperature side heat exchange unit 40B. (Here 20 ° C.).
 そして、少し時間が経過した状態(温度変化途中)において、低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差は小さいものの、温度差が現れてくる。さらに時間が経過するに従って低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差が次第に大きくなって行く。最終的には、定常状態の直線で示すように、低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差が最大になる。 In a state where a little time has passed (while the temperature is changing), a temperature difference appears although the temperature difference between the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B is small. Further, as time elapses, the temperature difference between the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B gradually increases. Eventually, as shown by the straight line in the steady state, the temperature difference between the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B is maximized.
 この定常状態において、低温側熱交換部40Aから高温側熱交換部40Bへ熱を移動させて、低温側熱交換部40A側に接触させた物体や低温側熱交換部40Aがある空間などを冷やすことができる。これにより磁気冷凍装置となる。逆に高温側熱交換部40Bから低温側熱交換部40Aからへ熱を移動させて、高温側熱交換部40Bに接触させた物体や高温側熱交換部40Bがある空間などを温めることができる。これにより磁気暖房装置となる。また、低温側から高温側へ、逆に高温側から低温側へ熱を移動させることで、冷凍(冷房)と暖房を一つの装置で行うこともできる。この場合、一つの装置で磁気冷暖房装置となる。 In this steady state, heat is transferred from the low temperature side heat exchanging part 40A to the high temperature side heat exchanging part 40B to cool the object or the space where the low temperature side heat exchanging part 40A is in contact with the low temperature side heat exchanging part 40A. be able to. Thereby, it becomes a magnetic refrigeration apparatus. Conversely, heat can be transferred from the high temperature side heat exchange unit 40B to the low temperature side heat exchange unit 40A to warm the object in contact with the high temperature side heat exchange unit 40B or the space where the high temperature side heat exchange unit 40B is located. . Thereby, it becomes a magnetic heating device. Moreover, refrigeration (cooling) and heating can also be performed by one apparatus by transferring heat from the low temperature side to the high temperature side, and conversely from the high temperature side to the low temperature side. In this case, one apparatus becomes a magnetic air conditioner.
 このような磁気の移動(印加、除去)により温度変化する磁性体は、磁気を移動させた時に温度変化する温度範囲(これを作動温度範囲という)が決まっている。 A magnetic material that changes in temperature due to such magnetic movement (application, removal) has a temperature range in which the temperature changes when the magnetism is moved (this is called the operating temperature range).
 図3は、磁性体(磁気熱量材料)の作動温度範囲を説明するためのグラフである。このグラフにおいて、横軸は作動温度であり、縦軸は温度変化範囲(ΔT)である。ΔTは、磁場の強さにも依存して変化するものである。 FIG. 3 is a graph for explaining the operating temperature range of the magnetic material (magnetorotherm material). In this graph, the horizontal axis is the operating temperature, and the vertical axis is the temperature change range (ΔT). ΔT varies depending on the strength of the magnetic field.
 図示するように、各磁気熱量材料a-fには、変化する温度範囲(縦軸のΔT)にピークがあり、このピークの時の温度(横軸)がもっとも温度変化しやすい作動温度となる。このピークを示す部分の作動温度は磁気熱量材料のキュリー点に対応した温度である。そして、グラフからわかるように、各磁気熱量材料は、キュリー点の温度を中心にして作動温度範囲が決まっている。つまりΔTのピーク位置の温度から離れると、ほとんど温度変化しないのである。 As shown in the figure, each magnetocaloric material af has a peak in the changing temperature range (ΔT on the vertical axis), and the temperature at this peak (horizontal axis) is the operating temperature at which the temperature changes most easily. . The operating temperature of the portion showing this peak is a temperature corresponding to the Curie point of the magnetocaloric material. As can be seen from the graph, the operating temperature range of each magnetocaloric material is determined around the temperature of the Curie point. That is, the temperature hardly changes when the temperature is away from the temperature at the peak position of ΔT.
 ここで、これら磁気熱量材料a-fを図示するようにa-fの順に並べた場合、その温度変化範囲(磁気熱量材料a-fのそれぞれの山形のグラフ)は、それぞれ隣接する磁気熱量材料に対して若干重なりがある。しかし、重なりのある部分はΔTのピーク(頂点)の温度から離れた裾野の部分のみである。この裾野の部分ではΔTが低い(縦軸)が低いことがわかる。したがって、この裾野の部分、すなわち磁気熱量材料a-fのそれぞれが重なり合っている部分での温度変化は少ない。 Here, when these magnetocaloric materials af are arranged in the order of af as shown in the figure, the temperature change ranges (respective mountain-shaped graphs of the magnetocaloric materials af) are respectively adjacent magnetocaloric materials. There is a slight overlap. However, the overlapping portion is only the base portion away from the temperature of the peak (vertex) of ΔT. It can be seen that ΔT is low (vertical axis) is low at the base. Therefore, there is little change in temperature at the base, that is, where the magnetocaloric materials af are overlapped.
 実際に使用できる温度範囲は、ΔTの半分程度以上の温度変化量を示す温度範囲である。このため、たとえばΔTが5℃で、キュリー点が22.5℃の正の磁気熱量材料(磁気印加で温度上昇する)で温度変化量(ΔT)が5℃を有する材料ならば、その作動温度範囲は約20~25℃となる。ただし、20℃以下、25℃以上の裾野の部分でも、磁場の印加、除去により温度変化は小さいながらも起る。ほかの磁気熱量材料も同様に、キュリー点温度、材料種によってその作動温度範囲および温度変化量(ΔT)が決まってくる。 The temperature range that can actually be used is a temperature range that shows a temperature change amount of about half or more of ΔT. For this reason, for example, if ΔT is 5 ° C., a positive magnetocaloric material having a Curie point of 22.5 ° C. (temperature rises by application of magnetism), and a material having a temperature change (ΔT) of 5 ° C., its operating temperature The range will be about 20-25 ° C. However, even at the base portion of 20 ° C. or lower and 25 ° C. or higher, the temperature change occurs due to the application and removal of the magnetic field. Similarly, other magnetocaloric materials have their operating temperature range and temperature change (ΔT) determined by the Curie point temperature and the material type.
 (比較例1)
 ここで本実施形態を理解しやすくするために、磁気冷暖房装置の基本形を比較例1として説明する。比較例1は、図1と同様に構成された磁気冷暖房装置において、複数の磁性体がそれぞれの作動温度範囲で作動する一つの磁気熱量材料のみを用いている。すなわち、特許文献1および2に記載されているように、一つひとつの磁性体は、高温側熱交換手段から低温側熱交換手段に向かう方向に順に作動温度が低くなる一つの磁気熱量材料のみを用いているのである。
(Comparative Example 1)
Here, in order to make this embodiment easy to understand, a basic form of a magnetic cooling and heating apparatus will be described as Comparative Example 1. Comparative Example 1 uses only one magnetocaloric material in which a plurality of magnetic bodies operate in respective operating temperature ranges in a magnetic air conditioner configured similarly to FIG. That is, as described in Patent Documents 1 and 2, each magnetic body uses only one magnetocaloric material whose operating temperature decreases in order from the high temperature side heat exchange means to the low temperature side heat exchange means. -ing
 図4は、比較例1の磁気冷暖房装置として、図1に示した各磁性体10A-10Fにおける磁気熱量材料の割合(質量%)を説明するためのグラフである。 FIG. 4 is a graph for explaining the ratio (mass%) of the magnetocaloric material in each of the magnetic bodies 10A-10F shown in FIG. 1 as the magnetic cooling / heating apparatus of Comparative Example 1.
 この比較例1では一つの磁性体が一つの磁気熱量材料からなる。そして一つの磁気熱量材料の作動温度範囲は、磁気を印加されると5℃温度が上昇し、磁気が除去されると上昇した分の温度5℃分が下降する特性を持っていると想定する(つまりΔTが5℃である)。このため比較例においては、一つ磁性体の作動温度範囲はそのまま一つの磁気熱量材料の作動温度範囲と同じということになる。また、上記の裾野の部分も無視することができず、以下に述べるように、磁性体の作動温度範囲の前後に1℃の裾野をもつと仮定する。この裾野の部分では、磁場印加、除去を行っても磁性体の温度は、裾野の温度域を超えることはできない。 In this comparative example 1, one magnetic body is made of one magnetocaloric material. The operating temperature range of one magnetocaloric material is assumed to have a characteristic that the temperature increases by 5 ° C. when magnetism is applied and decreases by 5 ° C. when the magnetism is removed. (That is, ΔT is 5 ° C.). For this reason, in the comparative example, the operating temperature range of one magnetic body is the same as the operating temperature range of one magnetocaloric material as it is. Further, the above-mentioned base portion cannot be ignored, and it is assumed that the base portion has a base of 1 ° C. before and after the operating temperature range of the magnetic body as described below. In this skirt portion, the temperature of the magnetic material cannot exceed the skirt temperature range even if the magnetic field is applied and removed.
 図示するように、比較例において各磁性体は、それぞれ約5℃の温度範囲で温度変化する一つの磁気熱量材料によって構成されている。そして、各磁性体の作動温度範囲は独立している。また、隣接する磁性体とはその作動温度範囲に1℃の重なりがある。 As shown in the drawing, in the comparative example, each magnetic body is composed of one magnetocaloric material whose temperature changes in a temperature range of about 5 ° C. And the operating temperature range of each magnetic body is independent. Further, there is an overlap of 1 ° C. in the operating temperature range with the adjacent magnetic body.
 したがって、磁性体10Aは作動温度範囲5℃から10℃(裾野の部分を考慮すると4℃から11℃の範囲を変化しうる)の磁気熱量材料aが100質量%である。磁性体10Bは作動温度範囲10℃から15℃(裾野の部分を考慮すると9℃から16℃の範囲を変化しうる)の磁気熱量材料bが100質量%、磁性体10Cは作動温度範囲15℃から20℃(裾野の部分を考慮すると14℃から21℃の範囲を変化しうる)の磁気熱量材料cが100質量%、磁性体10Dは作動温度範囲20℃から25℃(裾野の部分を考慮すると19℃から26℃の範囲を変化しうる)の磁気熱量材料dが100質量%、磁性体10Eは作動温度範囲25℃から30℃(裾野の部分を考慮すると24℃から31℃の範囲を変化しうる)の磁気熱量材料eが100質量%、磁性体10Fは作動温度範囲30℃から35℃(裾野の部分を考慮すると29℃から36℃の範囲を変化しうる)の磁気熱量材料fが100質量%である。 Therefore, in the magnetic body 10A, the magnetocaloric material a having an operating temperature range of 5 ° C. to 10 ° C. (the range of 4 ° C. to 11 ° C. can be changed in consideration of the base portion) is 100% by mass. The magnetic body 10B has an operating temperature range of 10 ° C. to 15 ° C. (the range of 9 ° C. to 16 ° C. can be changed in consideration of the base portion) of the magnetocaloric material b of 100% by mass, and the magnetic body 10C has an operating temperature range of 15 ° C. To 20 ° C. (the range of 14 ° C. to 21 ° C. can be changed when considering the bottom part) is 100% by mass, and the magnetic body 10D has an operating temperature range of 20 ° C. to 25 ° C. (considering the bottom part) Then, the magnetocaloric material d of which the range of 19 ° C. to 26 ° C. can be changed is 100% by mass, and the magnetic body 10E has an operating temperature range of 25 ° C. to 30 ° C. The magnetocaloric material f is 100% by mass, and the magnetic body 10F has an operating temperature range of 30 ° C. to 35 ° C. (the range of 29 ° C. to 36 ° C. can be changed considering the bottom). Is 100% by mass A.
 図5および6は、比較例の磁気冷暖房装置における熱の移動を説明するための説明図である。図5(1)において各磁性体の符号下に記したかっこ内の数字は各磁性体の作動温度範囲を示している。 FIGS. 5 and 6 are explanatory diagrams for explaining heat transfer in the magnetic air conditioner of the comparative example. In FIG. 5 (1), the numbers in parentheses shown below the reference numerals of the respective magnetic bodies indicate the operating temperature ranges of the respective magnetic bodies.
 なお、ここでも各磁性体(正確には磁性体を構成する磁気熱量材料)は磁気を印加すると発熱し除去すると吸熱する正の磁性体である。 In this case as well, each magnetic body (more precisely, the magnetocaloric material constituting the magnetic body) is a positive magnetic body that generates heat when applying magnetism and absorbs heat when removed.
 まず、図5の(1)に示すように、起動直後の初期状態ではすべての磁性体が室温の20℃になっている。 First, as shown in FIG. 5 (1), in the initial state immediately after startup, all the magnetic materials are at 20 ° C. at room temperature.
 次に、図5の(1)の状態から図5の(2)に示すように、各磁性体ブロック100A-100Cのそれぞれの左側に位置する磁性体から磁気を除去し、右側に位置する磁性体に磁気を印加する。これと同時に、隣り合う磁性体ブロック100A-100Cの隣り合う磁性体との間、磁性体ユニット200の一端に位置する磁性体と低温側熱交換部40Aとの間および磁性体ユニット200の他端に位置する磁性体と高温側熱交換部40Bとの間の熱伝導が可能となるように熱伝導部を挿入する。 Next, as shown in FIG. 5 (2) from the state of FIG. 5 (1), the magnetism is removed from the magnetic material located on the left side of each of the magnetic material blocks 100A-100C, and the magnetic material located on the right side is removed. Apply magnetism to the body. At the same time, between the adjacent magnetic bodies of the adjacent magnetic body blocks 100A-100C, between the magnetic body positioned at one end of the magnetic body unit 200 and the low-temperature side heat exchange unit 40A, and at the other end of the magnetic body unit 200. The heat conducting part is inserted so as to enable heat conduction between the magnetic body located at the high temperature side and the high temperature side heat exchanging part 40B.
 図5の(2)の状態では、作動温度に常温(20℃)を含む磁性体10Cおよび10Dにおいては、磁気が除去された磁性体10Cの温度が15℃に低下し、磁気が印加された磁性体10Dの温度が25℃に上昇する。しかし、常温を作動温度範囲に含まない磁性体10A、10B、10E、10Fは、磁気の印加、除去が行われても、ほとんど温度変化しない。 In the state of (2) in FIG. 5, in the magnetic bodies 10C and 10D including the normal temperature (20 ° C.) in the operating temperature, the temperature of the magnetic body 10C from which the magnetism has been removed is lowered to 15 ° C., and magnetism is applied. The temperature of the magnetic body 10D rises to 25 ° C. However, the magnetic bodies 10A, 10B, 10E, and 10F that do not include the normal temperature in the operating temperature range hardly change in temperature even when magnetism is applied or removed.
 その後、熱伝導部が挿入されることで、図5の(2)’に示すように、磁性体10Cに隣接する磁性体10Bは温度が低下し17.5℃になり、磁性体10Dに隣接する磁性体10Eは温度が上昇し22.5℃になる。しかし、この状態では未だ、低温側熱交換部40Aおよび高温側熱交換部40Bにまで熱は移動していない。 Thereafter, as shown in (2) ′ of FIG. 5, the temperature of the magnetic body 10B adjacent to the magnetic body 10C decreases to 17.5 ° C. and is adjacent to the magnetic body 10D by inserting the heat conducting portion. The temperature of the magnetic body 10E is increased to 22.5 ° C. However, in this state, heat has not yet moved to the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B.
 続いて、図5の(3)に示すように、磁気回路を各ブロック100A-100C内で左側の磁性体の方に移動させる。これと同時に、各磁性体ブロック100A-100C内の隣り合う磁性体との間の熱伝導が可能となるように熱伝導部を挿入する。 Subsequently, as shown in (3) of FIG. 5, the magnetic circuit is moved toward the left magnetic body in each block 100A-100C. At the same time, the heat conduction part is inserted so that heat conduction between adjacent magnetic bodies in each of the magnetic body blocks 100A-100C is possible.
 この図5の(3)の状態では、磁性体10Cは磁気が印加されることで発熱するとともに、熱伝導部が挿入されて磁性体Dとの熱伝導があるため温度が21℃に上昇する。磁気が除去された磁性体10Dは吸熱するとともに、磁性体Cとの熱伝導があるため温度が19℃に低下する。磁性体10Bは17.5℃のままである。また磁性体10Eも22.5℃のままである。さらにこの状態でも磁性体10A、10Fは、それらの温度が室温に近く、作動温度範囲外であるため磁気回路の移動ではほとんど温度変化しない。 In the state of (3) in FIG. 5, the magnetic body 10C generates heat when magnetism is applied, and the temperature rises to 21 ° C. due to heat conduction with the magnetic body D inserted therein. . The magnetic body 10D from which the magnetism has been removed absorbs heat, and because of heat conduction with the magnetic body C, the temperature drops to 19 ° C. The magnetic body 10B remains at 17.5 ° C. Also, the magnetic body 10E remains at 22.5 ° C. Further, even in this state, the temperature of the magnetic bodies 10A and 10F is close to room temperature and is outside the operating temperature range, so that the temperature hardly changes when the magnetic circuit moves.
 この状態で時間が経過すると、図5の(3)’に示すように、各磁性体ブロック100A-100C内で熱伝導部を介して温度の高い方から温度の低い方に熱が移動する。このため、磁性体10A、10Bはともに18.75℃、磁性体10C、10Dはともに20℃、磁性体10E、10Fはともに21.25℃となる。 When time elapses in this state, as shown in (3) 'of FIG. 5, heat moves from the higher temperature side to the lower temperature side through the heat conducting portion in each magnetic body block 100A-100C. Therefore, the magnetic bodies 10A and 10B are 18.75 ° C., the magnetic bodies 10C and 10D are both 20 ° C., and the magnetic bodies 10E and 10F are both 21.25 ° C.
 そして、再び、磁気回路を各磁性体ブロック100A-100C内の右側から左側へ移動させて、以後これを繰り返す。そして、磁性体自体の温度が作動温度範囲に至った磁性体は磁気回路の移動に伴い温度変化するようになる。最終的には、図6に示すように、低温側熱交換部40Aが5℃、高温側熱交換部40Bが35度の温度差がついて一定になる。そして、各磁性体も、それぞれの温度が作動温度範囲となるので、磁気回路の移動に伴い図6(1)-(2)に示した温度変化を繰り返すようになる。これが定常状態である。 Then, again, the magnetic circuit is moved from the right side to the left side in each magnetic body block 100A-100C, and this is repeated thereafter. Then, the temperature of the magnetic body itself that has reached the operating temperature range changes with the movement of the magnetic circuit. Finally, as shown in FIG. 6, the low temperature side heat exchange section 40A becomes constant with a temperature difference of 5 ° C. and the high temperature side heat exchange section 40B with a temperature difference of 35 degrees. Since each magnetic body has an operating temperature range, the temperature change shown in FIGS. 6 (1)-(2) is repeated as the magnetic circuit moves. This is a steady state.
 このように比較例1の構成では、常温(ここでは20℃)の初期状態から定常状態に至るまでの間、各磁性体の温度がそれぞれの磁性体の作動温度範囲になるまで、磁気の印加除去による温度変化が起きない状態が存在するのである。このため定常状態に至るまで多くの時間を要する結果となる。 As described above, in the configuration of Comparative Example 1, magnetism is applied until the temperature of each magnetic material is within the operating temperature range of each magnetic material from the initial state at normal temperature (20 ° C. here) to the steady state. There is a state in which the temperature change due to the removal does not occur. Therefore, it takes a long time to reach a steady state.
 [実施形態1]
 本発明を適用した実施形態1は、各磁性体を、自身の作動温度範囲の磁気熱量材料のほかに、他の作動温度範囲の磁気熱量材料を組み合わせたものである。特に、初期状態である起動時の温度から定常状態に至ることを考慮して、起動時温度を含む作動温度の磁気熱量材料を、すべての磁性体に入れている。なお、各磁性体に用いる磁気熱量材料は、作動温度範囲において磁気を印加されると5℃温度が上昇し、磁気が除去されると5℃温度が下降する特性を持っていると想定する(ΔTが5℃)。
[Embodiment 1]
In the first embodiment to which the present invention is applied, each magnetic body is combined with a magnetocaloric material in another operating temperature range in addition to the magnetocaloric material in its own operating temperature range. In particular, in consideration of the transition from the initial temperature to the steady state, the magnetocaloric material having the operating temperature including the startup temperature is put in all the magnetic bodies. It is assumed that the magnetocaloric material used for each magnetic body has a characteristic that the temperature increases by 5 ° C. when magnetism is applied in the operating temperature range and decreases by 5 ° C. when the magnetism is removed ( ΔT is 5 ° C.).
 図7は、実施形態1の磁気冷暖房装置において、各磁性体10A-10Fをそれぞれ構成する磁気熱量材料の組み合わせ割合(質量%)を説明するためのグラフである。 FIG. 7 is a graph for explaining a combination ratio (mass%) of magnetocaloric materials constituting each of the magnetic bodies 10A-10F in the magnetic cooling / heating apparatus of the first embodiment.
 磁性体10Aは、この磁性体10Aの作動温度範囲5-10℃を担う磁気熱量材料aを50質量%、隣接する磁性体10Bの作動温度範囲10-15℃を担う磁気熱量材料bを30質量%、起動時温度の作動温度範囲15-20℃を担う磁気熱量材料cを20質量%となるように組み合わせている。 The magnetic body 10A has 50 mass% of the magnetocaloric material a responsible for the operating temperature range 5-10 ° C. of the magnetic body 10A, and 30 mass of the magnetocaloric material b responsible for the operating temperature range 10-15 ° C. of the adjacent magnetic body 10B. %, And the magnetocaloric material c that bears the operating temperature range of 15-20 ° C. at the start-up temperature is combined so as to be 20% by mass.
 ここで起動時温度は常温の20℃を想定している。このため、起動時温度を含む作動温度範囲の磁性体は、磁性体10Cのほかに磁性体10Dも該当する。しかし、磁性体10Aは、起動時温度20℃に対して低温側に位置するため、起動時温度を含む作動温度範囲の磁性体のうち、低温側に位置する磁性体10C(作動温度範囲15-20℃)の磁気熱量材料cを組み合わせて、一つの磁性体としているのである。 Here, the startup temperature is assumed to be 20 ° C, which is normal temperature. For this reason, the magnetic body 10D in addition to the magnetic body 10C corresponds to the magnetic body in the operating temperature range including the startup temperature. However, since the magnetic body 10A is located on the low temperature side with respect to the starting temperature of 20 ° C., the magnetic body 10C (operating temperature range 15− (20 ° C.) magnetocaloric material c is combined into one magnetic body.
 このように自身の作動温度範囲5-10℃である磁性体10Aに起動時温度を含む作動温度範囲15-20℃を担う磁気熱量材料cを入れておくことで、起動直後から磁気の印加、除去により磁気熱量材料cが機能して温度変化が起こるようになる。 In this way, by applying the magnetocaloric material c responsible for the operating temperature range 15-20 ° C. including the startup temperature to the magnetic body 10A having its own operating temperature range of 5-10 ° C., magnetism can be applied immediately after startup, Due to the removal, the magnetocaloric material c functions to cause a temperature change.
 また、磁性体10Aには、隣接する磁性体10Bの作動温度範囲10-15℃を担う磁気熱量材料bも入れている。初期状態から温度が下がって温度変化途中の状態においては、起動時温度から外れ、かつ自身の作動温度範囲5-10℃には至らない状態がある。このような途中の温度となったときに、磁気の印加、除去により温度変化させるために作動温度範囲10-15℃を担う磁気熱量材料bを入れているのである。 The magnetic body 10A also includes a magnetocaloric material b that bears the operating temperature range of 10-15 ° C. of the adjacent magnetic body 10B. In a state where the temperature is lowered from the initial state and the temperature is changing, there is a state in which the temperature deviates from the starting temperature and does not reach its own operating temperature range of 5-10 ° C. In order to change the temperature by applying and removing magnetism when the temperature reaches such a midway temperature, a magnetocaloric material b having an operating temperature range of 10 to 15 ° C. is inserted.
 磁気熱量材料を組み合わせる割合は、たとえば、磁性体10A自身の作動温度範囲の磁気熱量材料aをもっとも多くする。これは、やはり定常状態に至ったときに効率よく動作させるためである。したがって、磁性体10A自身の作動温度範囲の磁気熱量材料aは、少なくとも全量(100質量%)に対して50質量%以上とすることが好ましい。 The ratio of combining the magnetocaloric materials maximizes the magnetocaloric material a in the operating temperature range of the magnetic body 10A itself, for example. This is also for efficient operation when the steady state is reached. Therefore, it is preferable that the magnetocaloric material a in the operating temperature range of the magnetic body 10A itself be at least 50% by mass with respect to the total amount (100% by mass).
 また、すべての磁性体の質量は同じになるよう調整することが好ましい。これにより各磁性体間で熱容量の違いをなくして(また少なくして)熱伝達のばらつきをなくする(少なくする)ことができる。 Also, it is preferable to adjust the mass of all the magnetic materials to be the same. This eliminates (or reduces) the difference in heat capacity between the magnetic bodies, thereby eliminating (reducing) the variation in heat transfer.
 磁気熱量材料を組み合わせる割合は、冷暖房装置の使用状況を考慮して適宜設定すれば良い。たとえば起動、停止が少なく、いったん起動した後は、定常状態で長く稼働する装置の場合は、磁気熱量材料aをより多く、たとえば70-95質量%程度とすることが好ましい。70質量%以上の磁気熱量材料aを入れておけば、定常状態においてもっとも効率よく磁気冷暖房装置として使用することができる。ただし、磁気熱量材料aが95質量%を超えてしてしまうと、初期状態から定常状態に至るまでの時間を短くするという作用が得られないため好ましくない。 ¡The ratio of combining the magnetic calorific material may be set as appropriate in consideration of the usage status of the air conditioner. For example, in the case of an apparatus that has few activations and stops and operates once in a steady state after being activated, it is preferable to increase the amount of magnetocaloric material a, for example, about 70 to 95% by mass. If the magnetocaloric material a of 70 mass% or more is put, it can be used as a magnetic air conditioner most efficiently in a steady state. However, if the magnetocaloric material a exceeds 95% by mass, it is not preferable because the effect of shortening the time from the initial state to the steady state cannot be obtained.
 このような起動、停止が少なく、いったん起動した後は、定常状態で長く稼働する装置としては、たとえば、常に発熱する物体を冷やすために用いるものが想定される。より具体的には、たとえば電気自動車の二次電池や燃料電池の冷却などに用いる場合である(特に、二次電池においては充放電時、燃料電池においては発電時)。それらは起動直後から発熱し始めて、稼働中は常に発熱している。このため、このような電池類を冷やすためには、起動初期からの一速い冷却機能とともに、稼働中における長い間の安定した冷却機能が求められる。 Such a start-up and a stop are few, and after starting once, as a device which operates long time in a steady state, for example, what is used to cool an object that always generates heat is assumed. More specifically, for example, it is used for cooling a secondary battery or a fuel cell of an electric vehicle (particularly during charging / discharging in a secondary battery and during power generation in a fuel cell). They start to generate heat immediately after startup and always generate heat during operation. For this reason, in order to cool such batteries, a fast cooling function from the beginning of startup and a stable cooling function for a long time during operation are required.
 一方、起動停止を繰り返すような装置の場合には、初期状態(起動時の温度状態)から一速く定常状態へ移ることが求められる。そのような装置では、磁気熱量材料aの割合を比較的少なくして、他の作動範囲の磁気熱量材料を多くする(ただし上記のように50質量%未満とならないこと)。これにより、起動初期から定常状態に至るまでの時間をいっそう早くすることができる。起動停止を繰り返すような装置としては、たとえば冷蔵庫や冷凍庫がある。冷蔵庫や冷凍庫は断熱材によって囲まれた内部を冷やすものであるため、庫内がいったん冷えて安定温度になると、その後しばらくの間、冷却する必要がない。したがって磁気冷凍装置は停止する。そして、庫内温度が上昇するとまた冷却する必要があるため冷凍装置を起動する。このため、冷蔵庫や冷凍庫に用いる冷凍装置は、起動、停止が繰り返されることになるので、長期の安定的な冷却機能よりも、起動から定常状態に至るまでの時間をより早くすることが求められるのである。 On the other hand, in the case of a device that repeatedly starts and stops, it is required to quickly move from the initial state (temperature state at the time of startup) to the steady state. In such an apparatus, the proportion of the magnetocaloric material a is relatively reduced to increase the magnetocaloric material in other operating ranges (but not less than 50% by mass as described above). As a result, the time from the initial startup to the steady state can be further shortened. Examples of the device that repeatedly starts and stops include a refrigerator and a freezer. Since the refrigerator and the freezer cool the inside surrounded by the heat insulating material, once the inside of the refrigerator is cooled to a stable temperature, it is not necessary to cool for a while after that. Therefore, the magnetic refrigeration apparatus stops. And if the internal temperature rises, since it needs to cool again, a freezing apparatus is started. For this reason, since the refrigeration apparatus used for the refrigerator and the freezer is repeatedly started and stopped, it is required to make the time from the start to the steady state faster than the long-term stable cooling function. It is.
 また、この磁性体10Aでは、他の作動温度範囲の磁気熱量材料bおよびcの2つを入れている(自身の磁気熱量材料と合わせて3つ)。そこで、これら2つの磁気熱量材料bおよびcの割合は、どの作動温度範囲をより速く冷やすかに応じて決定すると良い。 Also, in this magnetic body 10A, two magnetocaloric materials b and c in other operating temperature ranges are put (three in combination with the own magnetocaloric material). Therefore, the ratio of these two magnetocaloric materials b and c may be determined according to which operating temperature range is cooled faster.
 たとえば、起動のもっとも初期段階をより速く冷やして効果を上げるためには、磁気熱量材料cをより多くする。または磁気熱量材料bを入れないこととしても良い。 For example, in order to cool the earliest stage of startup faster and increase the effect, the amount of magnetocaloric material c is increased. Alternatively, the magnetocaloric material b may be omitted.
 逆に、温度変化途中を速く抜けて定常状態としたければ磁気熱量材料bをcよりも多くする。ただし、この場合は磁気熱量材料cも必ず入れる必要がある。これは、すでに説明したとおり、起動初期においてはその時の温度から磁気の移動では温度変化しないため、これをいち早く起こすために、起動時温度の作動温度範囲の磁気熱量材料cを入れているものである。したがって、この温度の磁気熱量材料cを入れないと、そもそも起動初期における磁気の移動による温度変化が生じないことになるので、必ず入れる必要があるのである。一方、前者のように、途中の温度範囲の磁気熱量材料を入れなくても、すでに初期状態からの温度変化が起きているので、それ以後定常状態となるまでの途中での温度変化が少し遅くなっても、全体としては初期状態から定常状態に至るまでの時間は短縮することができる。 On the other hand, if the temperature is changed quickly and the steady state is obtained, the magnetocaloric material b is increased more than c. In this case, however, the magnetocaloric material c must be included. As already explained, since the temperature does not change due to the movement of magnetism from the temperature at the beginning of the startup as described above, the magnetocaloric material c in the operating temperature range of the startup temperature is inserted in order to cause this to occur quickly. is there. Therefore, if the magnetocaloric material c at this temperature is not added, the temperature change due to the movement of magnetism in the initial stage of the start will not occur in the first place. On the other hand, as in the former case, even if no magnetocaloric material in the middle temperature range is added, the temperature change from the initial state has already occurred. Even so, as a whole, the time from the initial state to the steady state can be shortened.
 次に、磁性体10Bについても、磁性体10A同様に、自身の温度範囲を担う磁気熱量材料に加えて、起動時温度を担う磁性体の磁気熱量材料および起動時温度側に隣接する磁性体の温度範囲の磁気熱量材料を組み合わせる。ここでは、磁性体10Bは自身の温度範囲を担う磁気熱量材料bを70質量%、起動時温度の磁気熱量材料cを30質量%組み合わせて一つの磁性体としている。なお、この例では磁性体10Bに対して起動時温度側に隣接する磁性体は、起動時温度を担う磁性体しかないので、磁気熱量材料cのみを組み合わせることになる。 Next, for the magnetic body 10B as well as the magnetic body 10A, in addition to the magnetocaloric material that bears its own temperature range, the magnetic calorific material of the magnetic body that bears the starting temperature and the magnetic body adjacent to the starting temperature side Combine magnetocaloric materials in the temperature range. Here, the magnetic body 10B is combined with 70% by mass of the magnetocaloric material b responsible for its own temperature range and 30% by mass of the magnetocaloric material c at the start-up temperature to form one magnetic body. In this example, since the magnetic body adjacent to the magnetic body 10B on the startup temperature side is only the magnetic body that bears the startup temperature, only the magnetocaloric material c is combined.
 次に、磁性体10Cは、定常状態において起動時温度(つまり室温)を担う磁性体であるので、そのための磁気熱量材料cが100質量%である。磁性体10Dも同様に、定常状態において起動時温度(つまり室温)を担う磁性体であるので、そのための磁気熱量材料dが100質量%である。 Next, since the magnetic body 10C is a magnetic body that bears the starting temperature (that is, room temperature) in a steady state, the magnetocaloric material c for that purpose is 100% by mass. Similarly, since the magnetic body 10D is a magnetic body that bears the starting temperature (that is, room temperature) in the steady state, the magnetocaloric material d for that purpose is 100% by mass.
 次に、磁性体10Eは、磁性体10Bと同様であるが起動時温度を担う磁性体の高温側に位置するので、自身の温度範囲を担う磁気熱量材料eを70質量%、起動時温度の磁気熱量材料dを30質量%組み合わせている。 Next, the magnetic body 10E is similar to the magnetic body 10B, but is located on the high temperature side of the magnetic body that bears the startup temperature, so that the magnetocaloric material e that bears its own temperature range is 70 mass%, 30% by mass of the magnetocaloric material d is combined.
 そして、もっとも高温側に位置する磁性体Fは、自身の温度範囲を担う磁気熱量材料fを50質量%、低温側に隣接する磁性体の磁気熱量材料eを30質量%、起動時温度の磁気熱量材料dを20質量%組み合わせている。その理由は磁性体10Aと同様であるが、高温側であるので、起動時温度として高温側に位置する磁性体Dの磁気熱量材料dを組み合わせているものである。 And the magnetic substance F located on the highest temperature side is 50% by mass of the magnetocaloric material f that bears its own temperature range, 30% by mass of the magnetocaloric material e of the magnetic substance adjacent to the low temperature side, and the magnetism at the starting temperature. 20 mass% of the calorie material d is combined. The reason is the same as that of the magnetic body 10A, but since it is on the high temperature side, the magnetocaloric material d of the magnetic body D located on the high temperature side is combined as the starting temperature.
 このように構成された各磁性体が、磁気の移動により温度変化する作動温度範囲は、磁性体10Aは5℃から20℃、磁性体10Bは10℃から20℃、磁性体10Cは15℃から20℃、磁性体10Dは20℃から25℃、磁性体10Eは20℃から30℃、磁性体10Fは20℃から35℃となる。 The operating temperature range in which each magnetic body configured as described above changes in temperature due to the movement of magnetism is 5 ° C. to 20 ° C. for the magnetic body 10A, 10 ° C. to 20 ° C. for the magnetic body 10B, and 15 ° C. for the magnetic body 10C. 20 ° C., the magnetic body 10D is 20 ° C. to 25 ° C., the magnetic body 10E is 20 ° C. to 30 ° C., and the magnetic body 10F is 20 ° C. to 35 ° C.
 図8および9は、本実施形態1の磁気冷暖房装置における熱の移動を説明するための説明図である。図8(1)において各磁性体の符号下に記したかっこ内の数字は各磁性体の作動温度範囲を示している(ただし、図8および9中、図8(1)以外については図示省略しているが同じである)。ここでも、各磁性体を構成する磁気熱量材料は磁気を印加すると発熱し除去すると吸熱する正の磁性体である。 8 and 9 are explanatory views for explaining heat transfer in the magnetic air conditioner according to the first embodiment. In FIG. 8 (1), the numbers in parentheses shown below the reference numerals of the respective magnetic bodies indicate the operating temperature ranges of the respective magnetic bodies (however, in FIGS. 8 and 9, the portions other than FIG. 8 (1) are not shown). Is the same). Here again, the magnetocaloric material constituting each magnetic body is a positive magnetic body that generates heat when applying magnetism and absorbs heat when removed.
 まず、図8の(1)に示すように、初期の状態ではすべての磁性体が室温の20℃になっている。 First, as shown in (1) of FIG. 8, in the initial state, all the magnetic materials are at room temperature of 20 ° C.
 次に、図8の(1)の状態から図8の(2)に示すように、各磁性体ブロック100A-100Cのそれぞれの左側に位置する磁性体から磁気を除去し、右側に位置する磁性体に磁気を印加する。これと同時に、隣り合う磁性体ブロック100A-100Cの隣り合う磁性体との間、磁性体ユニット200の一端に位置する磁性体と低温側熱交換部40Aとの間および磁性体ユニット200の他端に位置する磁性体と高温側熱交換部40Bとの間の熱伝導が可能となるように熱伝導部を挿入する。 Next, as shown in FIG. 8 (2) from the state of FIG. 8 (1), the magnetism is removed from the magnetic material located on the left side of each of the magnetic material blocks 100A-100C, and the magnetic material located on the right side is removed. Apply magnetism to the body. At the same time, between the adjacent magnetic bodies of the adjacent magnetic body blocks 100A-100C, between the magnetic body positioned at one end of the magnetic body unit 200 and the low-temperature side heat exchange unit 40A, and at the other end of the magnetic body unit 200. The heat conducting part is inserted so as to enable heat conduction between the magnetic body located at the high temperature side and the high temperature side heat exchanging part 40B.
 図8の(2)の状態では、作動温度に常温(20℃)を含む磁性体10Cは、磁気が除去されて温度が15℃に低下し、磁気が印加された磁性体10Dは温度が25℃に上昇する。 In the state of (2) in FIG. 8, the magnetic body 10 </ b> C having an operating temperature of room temperature (20 ° C.) has its magnetism removed and the temperature is reduced to 15 ° C., and the magnetic body 10 </ b> D to which magnetism is applied has a temperature of 25 Raise to ℃.
 そして、磁性体10Aは磁気が除去されたことで温度が18℃になる。磁性体10Bは正の磁性体であり、その温度変化範囲が10-20℃であるので、ここで磁気が印加されても温度の上昇はほとんどなく20℃のままである。磁性体10Eも正の磁性体であり、その温度変化範囲が20-30℃であるため磁気が除去されても温度は低下せず、20℃のままである。そして磁性体10Fは、磁気の印加により温度が上昇して22℃となる。 And, the temperature of the magnetic body 10A becomes 18 ° C. by removing the magnetism. Since the magnetic body 10B is a positive magnetic body and its temperature change range is 10-20 ° C., even if magnetism is applied here, the temperature hardly increases and remains at 20 ° C. The magnetic body 10E is also a positive magnetic body, and its temperature change range is 20-30 ° C. Therefore, even if the magnetism is removed, the temperature does not decrease and remains at 20 ° C. The temperature of the magnetic body 10F rises to 22 ° C. by applying magnetism.
 このように本実施形態1では、磁性体10A、10Fは比較例と異なり、最初の段階から温度変化している。これは、すでに説明したように、磁性体10A、10Fのいずれにも、常温を作動温度範囲とする磁気熱量材料cまたはdが含まれているからである。ただし、磁気熱量材料cのみの磁性体10Cや磁気熱量材料dのみの磁性体10Dよりも温度変化は少ない。これは、常温を作動温度範囲とする磁気熱量材料cまたはdは混合量が磁性体10C、10Dよりも少ないため、各磁性体全体として温度変化が少なくなるためである。ここでは、磁性体10A、10Fは現在温度が常温であっても約2℃程度の変化はあると想定している。 As described above, in Embodiment 1, the temperatures of the magnetic bodies 10A and 10F change from the first stage unlike the comparative example. This is because, as already described, the magnetic materials 10A and 10F contain the magnetocaloric material c or d whose normal temperature is the operating temperature range. However, the temperature change is smaller than that of the magnetic body 10C made of only the magnetocaloric material c and the magnetic body 10D made of only the magnetocaloric material d. This is because the magnetocaloric material c or d having an operating temperature range of normal temperature has a smaller amount of mixing than the magnetic bodies 10C and 10D, and therefore the temperature change of each magnetic body is reduced. Here, it is assumed that the magnetic bodies 10A and 10F have a change of about 2 ° C. even if the current temperature is room temperature.
 なお、この段階で温度変化範囲から外れるために温度変化しないと説明した磁性体10B、10Eであっても、実際には磁気の移動によりわずかな温度変化が生じるが、ここでは原理説明であるため、そのようなわずかな変化は省略した。 Even in the magnetic bodies 10B and 10E described as not changing in temperature because they are out of the temperature change range at this stage, a slight temperature change actually occurs due to the movement of magnetism. Such slight changes were omitted.
 その後、熱伝導部が挿入されることで、図8の(2)’に示すように、磁性体10Aに隣接する低温側熱交換部40Aは温度が低下し、それに伴い磁性体10Aは熱が奪われて、両方とも19℃になる。同様に、磁性体10Bと隣接する磁性体10Cは17.5℃、磁性体10Dと隣接する磁性体10Eは22.5℃になる。そして、磁性体10Fと高温側熱交換部40Bは21℃なる。つまり、最初の熱サイクルの段階から、低温側熱交換部40Aも高温側熱交換部40Bも温度変化が起こるのである。 Thereafter, as shown in (2) ′ of FIG. 8, the temperature of the low-temperature side heat exchanging portion 40A adjacent to the magnetic body 10A is decreased and the magnetic body 10A is heated as a result. Stolen and both are at 19 ° C. Similarly, the magnetic body 10C adjacent to the magnetic body 10B is 17.5 ° C., and the magnetic body 10E adjacent to the magnetic body 10D is 22.5 ° C. And the magnetic body 10F and the high temperature side heat exchange part 40B become 21 degreeC. That is, the temperature change occurs in both the low temperature side heat exchange section 40A and the high temperature side heat exchange section 40B from the stage of the first heat cycle.
 続いて、図8の(3)に示すように、磁気回路を各ブロック100A-100C内で左側の磁性体の方に移動させる。これと同時に、各磁性体ブロック100A-100C内の隣り合う磁性体との間の熱伝導が可能となるように熱伝導部を挿入する。この磁気の移動により、磁性体10Aは磁気が印加されることになって、温度が20.2℃まで上昇する。磁性体10Bは磁気が除去されるので14℃まで低下する。磁性体10Cは磁気が印加されて温度が上がり21℃になる。磁性体10Dは磁気が除去されて温度が下がり19℃になる。磁性体10Eは磁気が印加されて温度が上がり26℃になる。磁性体10Fは磁気が除去されて温度が下がり19.8℃になる。 Subsequently, as shown in (3) of FIG. 8, the magnetic circuit is moved toward the left magnetic body in each block 100A-100C. At the same time, the heat conduction part is inserted so that heat conduction between adjacent magnetic bodies in each of the magnetic body blocks 100A-100C is possible. Due to this movement of magnetism, magnetism is applied to the magnetic body 10A, and the temperature rises to 20.2 ° C. The magnetic body 10B drops to 14 ° C. because the magnetism is removed. The magnetic body 10C is heated to 21 ° C. by applying magnetism. The magnetic body 10D is demagnetized and the temperature drops to 19 ° C. The magnetic body 10E is heated to 26 ° C. by applying magnetism. The magnetic body 10F is demagnetized and the temperature drops to 19.8 ° C.
 ここでも磁性体10B、10Eは現在温度が常温であっても、常温を作動温度範囲とする磁気熱量材料c、dを含んでいるため、温度変化が生じる。これら磁性体10B、10Eにおける磁気熱量材料c、dの混合割合は磁性体10C、10Dより少ないため、約3.5℃程度の変化になると想定している。 Also here, even if the magnetic bodies 10B and 10E are at a normal temperature, the magnetic bodies 10B and 10E contain the magnetocaloric materials c and d that have the normal temperature as the operating temperature range, so that the temperature changes. Since the mixing ratio of the magnetocaloric materials c and d in these magnetic bodies 10B and 10E is smaller than that of the magnetic bodies 10C and 10D, it is assumed that the change is about 3.5 ° C.
 そしてこの状態で時間が経過すると、図8の(3)’に示すように、温度の高い方から温度の低い方に熱が移動する。このため、磁性体10A、10Bはともに17.1℃、磁性体10E、10Fはともに22.9℃となる。したがって、この段階でも、比較例と比べて磁性体10A,10Bはより低い温度となり、磁性体10E,10Fはより高い温度となる。 And when time passes in this state, as shown to (3) 'of FIG. 8, heat moves to the one where temperature is low from the one where temperature is high. Therefore, the magnetic bodies 10A and 10B are both 17.1 ° C., and the magnetic bodies 10E and 10F are both 22.9 ° C. Accordingly, even at this stage, the magnetic bodies 10A and 10B have a lower temperature than the comparative example, and the magnetic bodies 10E and 10F have a higher temperature.
 そして、再び、磁気回路を各磁性体ブロック100A-100C内の右側から左側へ移動させて、以後これを繰り返す。そして、磁性体自体の温度が作動温度範囲に至った磁性体は磁気回路の移動に伴い温度変化するようになる。最終的には、図9に示すように、低温側熱交換部40Aが5℃、高温側熱交換部40Bが35度の温度差がついて一定になる。そして、各磁性体も、それぞれの温度が作動温度範囲となるので、磁気回路の移動に伴い図9(1)-(2)に示した温度変化を繰り返すようになる。これが定常状態である。 Then, again, the magnetic circuit is moved from the right side to the left side in each magnetic body block 100A-100C, and this is repeated thereafter. Then, the temperature of the magnetic body itself that has reached the operating temperature range changes with the movement of the magnetic circuit. Finally, as shown in FIG. 9, the low temperature side heat exchanging part 40A becomes constant with a temperature difference of 5 ° C. and the high temperature side heat exchanging part 40B with a temperature difference of 35 degrees. Since each magnetic body has an operating temperature range, the temperature change shown in FIGS. 9 (1)-(2) is repeated as the magnetic circuit moves. This is a steady state.
 このように本実施形態1では、起動直後の段階から、すべての磁性体が磁気の移動(磁気の印加、除去)によって温度変化が始まる。したがって、常温(ここでは20℃)の初期状態から定常状態に至るまでの時間が比較例よりも速くなるのである。 As described above, in the first embodiment, the temperature change of all the magnetic bodies starts by the magnetic movement (magnetization and removal) from the stage immediately after the start-up. Accordingly, the time from the initial state at normal temperature (20 ° C. in this case) to the steady state is faster than the comparative example.
 次に、各作動温度範囲に対応した磁気熱量材料について説明する。 Next, the magnetocaloric material corresponding to each operating temperature range will be described.
 各作動温度範囲に対応した磁気熱量材料としては、たとえば、公知のLaFeSiHを用いることができる。LaFeSiHは、その組成中の水素の量の変化で、キュリー点が変化する(たとえば参考文献1“Large magnetocaloric effects and thermal transport properties of La(FeSi)13 and their hydrides” K. Fukamichiら Journal of Alloys and Compounds 408-412 (2006) p.307-312)。また、同様に、一般式:La(Fe1-xx13z(Mは、Si、Alからなるグループ中から選択された1種または2種以上の元素であり、xおよびzの値は、それぞれ、0.05≦x≦0.2;0.3≦z≦3;で規定される)であらわされる磁気熱量材料(特開2003-96547号公報)でも、前述したΔTのピーク温度を様々に変えた磁気熱量材料とすることができる。 As a magnetocaloric material corresponding to each operating temperature range, for example, known LaFeSiH can be used. LaFeSiH changes its Curie point with changes in the amount of hydrogen in its composition (see, for example, Reference 1 “Large magnetoelectric effects and thermal transport properties of La (FeSi) 13 and the hydrhydres”. Compounds 408-412 (2006) p.307-312). Similarly, the general formula: La (Fe 1-x M x ) 13 H z (M is one or more elements selected from the group consisting of Si and Al, The value of the above-mentioned peak of ΔT also applies to a magnetocaloric material (Japanese Patent Laid-Open No. 2003-96547) expressed by 0.05 ≦ x ≦ 0.2; 0.3 ≦ z ≦ 3; A magnetocaloric material with various temperatures can be obtained.
 本実施形態1では、そのほかにも所望の作動温度範囲となる磁気熱量材料であれば特に限定することなく用いることができる。 In the first embodiment, any other magnetocaloric material having a desired operating temperature range can be used without particular limitation.
 次に、一つの磁性体において複数の磁気熱量材料を組み合わせる際の各磁気熱量材料の配置を説明する。 Next, the arrangement of each magnetocaloric material when combining a plurality of magnetocaloric materials in one magnetic body will be described.
 本実施形態1では、複数の磁気熱量材料を様々な形に切り出してから接合している。図10は、3つの磁気熱量材料を組み合わせたときの各磁気熱量材料の配置を説明するための説明図である。図10に示した各面は一つの磁性体の断面であり、この断面は磁性体を列状に並べた方向に沿う断面である。 In Embodiment 1, a plurality of magnetocaloric materials are cut into various shapes and then joined. FIG. 10 is an explanatory diagram for explaining the arrangement of each magnetocaloric material when three magnetocaloric materials are combined. Each surface shown in FIG. 10 is a cross section of one magnetic body, and this cross section is a cross section along the direction in which the magnetic bodies are arranged in a line.
 ここで説明する磁性体は、図7に示した磁性体10Aに相当する。すなわち作動温度範囲5-10℃を担う磁気熱量材料a、作動温度範囲10-15℃を担う磁気熱量材料b、および起動時温度の作動温度範囲15-20℃を担う磁気熱量材料cを有する場合である。 The magnetic body described here corresponds to the magnetic body 10A shown in FIG. That is, in the case of having a magnetocaloric material a responsible for an operating temperature range of 5-10 ° C., a magnetocaloric material b responsible for an operating temperature range of 10-15 ° C., and a magnetocaloric material c responsible for an operating temperature range of 15-20 ° C. It is.
 図10(a)に示す磁性体は、起動時温度の作動温度範囲15-20℃を担う磁気熱量材料cを中央に配置し、この磁性体自身の作動温度範囲5-10℃を担う磁気熱量材料aをもっとも外側に配置し、これらの間に作動温度範囲10-15℃を担う磁気熱量材料bを配置している。磁気熱量材料a、b、cはそれぞれをストライプ状に切り出して、結合したものである。 The magnetic body shown in FIG. 10 (a) has a magnetocaloric material c that bears the operating temperature range of 15-20 ° C. at the start-up temperature in the center, and the magnetocaloric capacity that bears the operating temperature range of 5-10 ° C. of the magnetic body itself. The material a is arranged on the outermost side, and the magnetocaloric material b that bears the operating temperature range of 10-15 ° C. is arranged between them. The magnetocaloric materials a, b and c are cut out in a stripe shape and combined.
 また、図10(b)に示す磁性体は、(a)同様にストライプ状の配置を基本配置として、この基本配置を4つ組み合わせて配置したものである。したがってこの場合は磁性体を列状に並べた方向に沿う断面を4つに分割して、各分割された部分ごとに図10(a)と同じ配置になっている。 Further, the magnetic substance shown in FIG. 10 (b) is obtained by arranging four basic arrangements in combination with a stripe arrangement as a basic arrangement as in (a). Therefore, in this case, the cross section along the direction in which the magnetic bodies are arranged in a line is divided into four parts, and each divided part has the same arrangement as FIG.
 また、図10(c)に示す磁性体は、磁気熱量材料a、b、cを矩形状と枠体形状に切り出して組み合わせたものである。ここでは磁気熱量材料cが矩形状として中央に配置し、磁気熱量材料aを枠体形状にして、もっとも外側に配置し、磁気熱量材料bを枠体形状にしてこれら磁気熱量材料aとcの間に配置している。磁気熱量材料a、b、cはそれぞれの形状に形成後、嵌め合わせて結合したものである。 Further, the magnetic body shown in FIG. 10C is a combination of the magnetocaloric materials a, b, and c cut into a rectangular shape and a frame shape. Here, the magnetocaloric material c is arranged in the center as a rectangular shape, the magnetocaloric material a is formed in a frame shape, arranged on the outermost side, the magnetocaloric material b is formed in a frame shape, and the magnetocaloric materials a and c. Arranged in between. The magnetocaloric materials a, b, and c are formed into respective shapes, and then fitted and joined.
 また、図10(d)に示すように、(c)同様に矩形状と枠体形状の組み合わせたものを基本配置として、これを4つ組み合わせたものである。したがってこの場合は磁性体を列状に並べた方向に沿う断面を4つに分割して、各分割された部分ごとに図10(c)と同じに配置なっている。 Further, as shown in FIG. 10 (d), a combination of a rectangular shape and a frame shape is used as a basic arrangement in the same manner as in (c), and four of these are combined. Therefore, in this case, the cross section along the direction in which the magnetic bodies are arranged in a line is divided into four parts, and each divided part is arranged in the same manner as in FIG.
 これらの配置は、いずれの場合、内側に起動時温度(室温)の作動温度範囲となる磁気熱量材料、そしてもっとも外側に磁性体自身の作動温度範囲となる磁気熱量材料が来るようになる。このように起動時温度(室温)の作動温度範囲となる磁気熱量材料を内側に配置することで、起動時に発生する熱が一つの磁性体内全体に万便に行き渡り、過渡特性がよくなる。また、列状に並べている磁性体においては、もっとも外側の磁気熱量材料は隣接する磁性体からの温度が伝達される。このため起動時においては、隣接する磁性体からの熱(熱伝達部材を介した熱)と中央に配置した起動時温度を含む作動温度範囲の磁気熱量材料の熱の両方の熱が伝わるようになって、いっそう定常状態温度になりやすくなる。 In any of these arrangements, the magnetocaloric material that is within the operating temperature range of the startup temperature (room temperature) and the magnetocaloric material that is within the operating temperature range of the magnetic material itself are on the inner side. By disposing the magnetocaloric material in the operating temperature range of the starting temperature (room temperature) in this way, the heat generated at the start spreads all over the magnetic body and the transient characteristics are improved. In the magnetic bodies arranged in a line, the outermost magnetocaloric material transmits the temperature from the adjacent magnetic body. For this reason, at the time of start-up, both heat from the adjacent magnetic body (heat via the heat transfer member) and heat of the magnetocaloric material in the operating temperature range including the start-up temperature disposed in the center are transmitted. And more likely to reach steady state temperature.
 そして、定常状態となったのちは、もっとも外側にその磁性体自身の作動温度範囲を担う磁気熱量材料があるため、その磁気熱量材料の温度変化がすぐに隣接する磁気熱量材料に伝達されるようになり、定常状態における効率も良いものとなる。 After the steady state is reached, there is a magnetocaloric material that bears the operating temperature range of the magnetic body on the outermost side, so that the temperature change of the magnetocaloric material is immediately transmitted to the adjacent magnetocaloric material. Thus, the efficiency in the steady state is also improved.
 また、このような配置にすること(パターン形状の組み合わせ)で、一つの磁性体内において作動温度範囲の異なる磁気熱量材料同士の接触面積を大きくとることができる。 In addition, with such an arrangement (a combination of pattern shapes), it is possible to increase the contact area between magnetocaloric materials having different operating temperature ranges in one magnetic body.
 なお、図10では図7に示した磁性体10Aを例に説明したが、他の磁性体についても同様である。3つ磁気熱量材料を持つ磁性体10Fでは、起動時温度(室温)の作動温度範囲となる磁気熱量材料dを内側に、もっとも外側に磁性体10F自身の作動温度範囲となる磁気熱量材料f、これらの間に磁気熱量材料eを配置することになる。 In FIG. 10, the magnetic body 10A shown in FIG. 7 is described as an example, but the same applies to other magnetic bodies. In the magnetic body 10F having three magnetocaloric materials, the magnetocaloric material d which becomes the operating temperature range of the starting temperature (room temperature) is on the inner side, and the outer side is the magnetocaloric material f which is the operating temperature range of the magnetic body 10F itself. A magnetocaloric material e is disposed between them.
 また、2つの磁気熱量材料を組み合わせた磁性体10Bでは、起動時温度(室温)の作動温度範囲となる磁気熱量材料cを内側に、外側に磁性体10B自身の作動温度範囲となる磁気熱量材料bを配置することになる。同様に2つの磁気熱量材料を組み合わせた磁性体10Eでは、起動時温度(室温)の作動温度範囲となる磁気熱量材料dを内側に、外側に磁性体10E自身の作動温度範囲となる磁気熱量材料eを配置することになる。 Further, in the magnetic body 10B in which the two magnetocaloric materials are combined, the magnetocaloric material c which is the operating temperature range of the starting temperature (room temperature) is on the inside, and the magnetocaloric material which is the operating temperature range of the magnetic body 10B itself on the outside. b will be arranged. Similarly, in the magnetic body 10E in which two magnetocaloric materials are combined, the magnetocaloric material d that becomes the operating temperature range of the starting temperature (room temperature) is on the inside, and the magnetocaloric material that becomes the operating temperature range of the magnetic body 10E on the outside. e will be placed.
 なお、磁気熱量材料の配置は、このようなパターンによる組み合わせのほか、複数の磁気熱量材料をそれぞれ粉砕して、一つの磁性体の形状となるように形成しても良い。ただし、この場合、粉砕して細かくなった磁気熱量材料の大きさは、あくまでもそれら磁気熱量材料そのものの特性を示す程度の大きさとする。 In addition, the arrangement of the magnetocaloric material may be formed so as to form a single magnetic body by pulverizing a plurality of magnetocaloric materials, in addition to such a combination of patterns. However, in this case, the size of the magnetocaloric material that has been pulverized and made fine is set to a size that shows the characteristics of the magnetocaloric material itself.
 次に、複数の磁気熱量材料を混合した磁性体を用いた場合の温度変化を論理計算した結果を説明する。 Next, the result of logical calculation of temperature change when using a magnetic material in which a plurality of magnetocaloric materials are mixed will be described.
 この温度変化の論理計算は、図1に示した磁気冷暖房装置のモデルを用い、磁気熱量材料を組み合わせる割合を変えて、起動時温度(20℃)から何回の熱サイクルで定常状態の温度に達するかを算出した。磁気熱量材料の組み合わせは、もっとも低温側の磁性体10Aともっとも高温側の磁性体10Fについて、それら自身の作動温度範囲の磁気熱量材料に起動温度(ここでは20℃)を作動温度範囲とする磁気熱量材料を下記の割合で組み合わせた。他の磁性体10B、10C、10D、10Eは、それら自身の作動温度範囲の磁気熱量材料のみにより構成されているものとした。その他の条件は次のように仮定した。熱伝導部が入った状態で熱伝達率が無限大(即座に熱が伝わる)。熱伝導部が抜かれた状態で熱伝達率ゼロ。磁性体および熱伝導部の熱容量ゼロ。磁気の印加、除去により各磁性体を構成するそれぞれの磁気熱量材料が最大温度変化(ここでは5℃)する。 The logical calculation of this temperature change uses the model of the magnetic air conditioner shown in FIG. 1 and changes the combination ratio of the magnetocaloric materials to change the temperature from the start-up temperature (20 ° C.) to the steady-state temperature in several heat cycles. Calculated to reach. The combination of the magnetocaloric materials is such that the starting temperature (20 ° C. in this case) is set to the operating temperature range for the magnetic body 10A on the lowest temperature side and the magnetic body 10F on the highest temperature side in their own operating temperature range. The calorimetric materials were combined in the following proportions. The other magnetic bodies 10B, 10C, 10D, and 10E are composed only of magnetocaloric materials within their own operating temperature range. Other conditions were assumed as follows. The heat transfer coefficient is infinite with the heat conduction part inserted (heat is transmitted immediately). Zero heat transfer coefficient with the heat conduction part removed. Zero heat capacity of magnetic body and heat conduction part. Each magnetocaloric material constituting each magnetic body undergoes a maximum temperature change (here, 5 ° C.) by applying and removing magnetism.
 図11は、複数の磁気熱量材料を組み合わせた磁性体を用いた場合の温度変化を論理計算した結果をまとめたグラフであり、縦軸が温度(中央値20℃)、横軸が熱サイクル回数である。熱サイクルは磁気回路を右から左、左から右に往復させたものを1回とした。つまり図8において磁気回路の位置が(1)の状態をスタートとした場合、磁気回路を(2)、(2’)、(3)、(3’)と移動させて、これを1回の熱サイクルとしている(次のサイクルは(2)へ戻って繰り返すことになる)。 FIG. 11 is a graph summarizing the results of logical calculation of temperature changes when using a magnetic material in which a plurality of magnetocaloric materials are combined. The vertical axis represents temperature (median 20 ° C.), and the horizontal axis represents the number of thermal cycles. It is. The thermal cycle was a single round trip of the magnetic circuit from right to left and from left to right. That is, in FIG. 8, when the position of the magnetic circuit is the start state (1), the magnetic circuit is moved to (2), (2 ′), (3), (3 ′), and this is performed once. The thermal cycle is set (the next cycle returns to (2) and is repeated).
 図12は、この論理計算に用いた磁性体中の磁気熱量材料の組み合わせ割合を説明するための説明図である(図中「%」は質量%である)。すなわち組み合わせ割合は次のとおりである。四角印は磁気熱量材料aおよびfが100質量%(これを比較例とする)。ひし形印は磁気熱量材料aおよびfが95質量%、作動温度範囲に20℃を含む磁気熱量材料cおよびdを5質量%。三角印は磁気熱量材料aおよびfが90質量%、作動温度範囲に20℃を含む磁気熱量材料cおよびdを10質量%。丸印は磁気熱量材料aおよびfが80質量%、作動温度範囲に20℃を含む磁気熱量材料cおよびdを20質量%。 FIG. 12 is an explanatory diagram for explaining the combination ratio of magnetocaloric materials in the magnetic material used in this logical calculation (“%” in the figure is mass%). That is, the combination ratio is as follows. The square marks indicate that the magnetocaloric materials a and f are 100% by mass (this is a comparative example). The diamond marks are 95% by mass of magnetocaloric materials a and f, and 5% by mass of magnetocaloric materials c and d including 20 ° C. in the operating temperature range. Triangle marks are 90% by mass of magnetocaloric materials a and f, and 10% by mass of magnetocaloric materials c and d including 20 ° C. in the operating temperature range. Circles represent magnetocaloric materials a and f of 80% by mass and magnetocaloric materials c and d containing 20 ° C. in the operating temperature range of 20% by mass.
 この論理計算として、定常状態の温度範囲に達した時点として磁気冷暖房装置モデルの低温側熱交換部40Aの温度が10℃、高温側熱交換部40Bの温度が30℃に達するまでの定格運転に至る過渡特性を求めた。 As this logical calculation, the rated operation is performed until the temperature of the low-temperature side heat exchanging unit 40A of the magnetic air conditioner model reaches 10 ° C. and the temperature of the high-temperature side heat exchanging unit 40B reaches 30 ° C. The transient characteristics were obtained.
 図11を参照して、論理計算の結果、丸印の作動温度範囲に起動温度20℃を含む磁気熱量材料cおよびdが20質量%組み合わされている場合が、熱サイクル回数がもっとも少なく68回で定常状態の温度範囲に達している。三角印の磁気熱量材料cおよびdが10質量%組み合わされている場合が78回、ひし形印の磁気熱量材料cおよびdが5質量%組み合わされている場合が86回である。そして、四角印の自身の磁気熱量材料のみの場合(比較例)が99回である(以下の説明において、作動温度範囲として起動時温度を含む磁気熱量材料を起動時温度の磁気熱量材料という)。 Referring to FIG. 11, as a result of logical calculation, the case where 20 mass% of magnetocaloric materials c and d including a starting temperature of 20 ° C. are combined in the operating temperature range indicated by the circle is the smallest number of thermal cycles of 68 times. The steady-state temperature range has been reached. 78 times when the magnetocaloric materials c and d of the triangle mark are combined by 10% by mass, and 86 times when the magnetocaloric materials c and d of the rhombus are combined by 5% by mass. And the case of only the magnetocaloric material of the square mark (comparative example) is 99 times (in the following description, the magnetocaloric material including the starting temperature as the operating temperature range is referred to as the magnetocaloric material at the starting temperature). .
 この計算結果から、起動時温度の磁気熱量材料を、低温側熱交換部40Aに隣接する磁性体10Aと、高温側熱交換部40Bに隣接する磁性体10Fに組み合わせることで、比較例よりも少ない磁気の移動(印加、除去)の回数で定常状態に達することがわかる。これはすなわち起動時から定常状態までの過渡特性が向上したことを示している。したがって、磁気の移動(印加、除去)の回数が少ない分速く定常状態に達するのである。 From this calculation result, the amount of magnetocaloric material at the starting temperature is less than that of the comparative example by combining the magnetic body 10A adjacent to the low temperature side heat exchange section 40A and the magnetic body 10F adjacent to the high temperature side heat exchange section 40B. It can be seen that the steady state is reached by the number of magnetic movements (application, removal). This indicates that the transient characteristics from the starting time to the steady state are improved. Therefore, the steady state is reached faster as the number of magnetic movements (application / removal) is smaller.
 特に、20質量%起動時温度の磁気熱量材料を組み合わせることで約31%速く定常状態に達することがわかる。また、5質量%起動時温度の磁気熱量材料を組み合わせるだけでも、自身の磁気熱量材料だけ(四角印の比較例)の場合より速く定常状態に達することがわかる。したがって、この計算結果から起動時温度の磁気熱量材料の組み合わせ割合は、5質量%以上50質量%未満であることが好ましいことがわかる。また、より速く定常状態にしようとする場合は20質量%以上50質量%未満とすることが好ましいものである。 In particular, it can be seen that a steady state is reached approximately 31% faster by combining a magnetocaloric material with a starting mass of 20% by mass. It can also be seen that a steady state is reached faster than with only the magnetocaloric material of its own (comparison example with squares) just by combining the magnetocaloric material of the 5 mass% start-up temperature. Therefore, it can be seen from this calculation result that the combination ratio of the magnetocaloric materials at the starting temperature is preferably 5% by mass or more and less than 50% by mass. Moreover, when it is going to be in a steady state faster, it is preferable to set it as 20 to 50 mass%.
 (実施形態1の変形例)
 上記実施形態1では、各磁性体の磁気熱量材料の組み合わせ比率は、それぞれの磁性体の質量が全部で100質量%となるように調整したものである。本発明はこのような実施形態に限らず、たとえば各磁性体自身の作動温度範囲の磁気熱量材料をすべて同じ量とし、これを100質量%としたときに、さらに起動時温度範囲を作動温度範囲とする磁気熱量材料を加えるようにしても良い。
(Modification of Embodiment 1)
In Embodiment 1 described above, the combination ratio of the magnetocaloric materials of each magnetic material is adjusted so that the mass of each magnetic material is 100% by mass in total. The present invention is not limited to such an embodiment. For example, when all the magnetocaloric materials in the operating temperature range of each magnetic body are set to the same amount and this is 100% by mass, the startup temperature range is further set to the operating temperature range. A magnetocaloric material may be added.
 図13は、本実施形態1の変形例における磁気冷暖房装置において、各磁性体をそれぞれ構成する磁気熱量材料の組み合わせ割合(質量%)を説明するためのグラフである。 FIG. 13 is a graph for explaining a combination ratio (mass%) of magnetocaloric materials constituting each magnetic body in the magnetic air conditioner according to the modification of the first embodiment.
 磁性体10Aは、この磁性体10Aの作動温度範囲5-10℃を担う磁気熱量材料aを100質量%としている。すなわち、磁性体10A自身の作動温度範囲の磁気熱量材料は他の磁性体の作動温度範囲の磁気熱量材料と同じ量である。そして磁性体10Bの作動温度範囲10-15℃を担う磁気熱量材料bを30質量%、起動時温度の作動温度範囲15-20℃を担う磁気熱量材料cを20質量%それぞれ加えて組み合わせている。 In the magnetic body 10A, the magnetocaloric material a that bears the operating temperature range of 5-10 ° C. of the magnetic body 10A is 100 mass%. That is, the magnetocaloric material in the operating temperature range of the magnetic body 10A itself is the same amount as the magnetocaloric material in the operating temperature range of the other magnetic bodies. The magnetic body 10B is combined by adding 30% by mass of the magnetocaloric material b responsible for the operating temperature range of 10-15 ° C. and 20% by mass of the magnetocaloric material c responsible for the operating temperature range of the starting temperature of 15-20 ° C. .
 磁性体10Bについても同様に、自身の温度範囲を担う磁気熱量材料bが100質量%、起動時温度の磁気熱量材料cを30質量%加えて組み合わせている。 Similarly, the magnetic body 10B is combined by adding 100% by mass of the magnetocaloric material b responsible for its own temperature range and 30% by mass of the magnetocaloric material c at the starting temperature.
 磁性体10C、10Dはそれぞれ、自身の作動温度範囲の磁気熱量材料c、dがそれぞれ100%である。 Each of the magnetic bodies 10C and 10D has 100% of the magnetocaloric materials c and d in its operating temperature range.
 磁性体10Eは、自身の温度範囲を担う磁気熱量材料eが100質量%、起動時温度の磁気熱量材料dを30質量%加算するように組み合わせている。磁性体Fは、自身の温度範囲を担う磁気熱量材料fを100質量%、磁気熱量材料eを30質量%、磁気熱量材料dを20質量%加算するように組み合わせている。 The magnetic body 10E is combined such that the magnetocaloric material e responsible for its own temperature range is added by 100% by mass and the magnetocaloric material d at the starting temperature is added by 30% by mass. The magnetic body F is combined such that 100 mass% of the magnetocaloric material f that bears its own temperature range, 30 mass% of the magnetocaloric material e, and 20 mass% of the magnetocaloric material d are added.
 なお、ここでは、自身の作動温度範囲を担う磁気熱量材料をまず同じにして、起動温度を担う磁気熱量材料を加算しているため、各磁性体間でその質量が異なる。しかし、すべての磁性体の体積は同じになるように調整することが好ましい。これにより各磁性体間で熱容量の違いによる熱伝達の違いをなくすことができる。 Here, since the magnetocaloric material responsible for its operating temperature range is first made the same, and the magnetocaloric material responsible for the starting temperature is added, the mass differs between the magnetic bodies. However, it is preferable to adjust the volume of all the magnetic materials to be the same. Thereby, the difference in heat transfer due to the difference in heat capacity between the magnetic bodies can be eliminated.
 このようにこの変形例では、各磁性体自身の作動温度範囲の磁気熱量材料は、すべて同じ量とし、さらに起動時温度範囲よりも低温側および高温側となる磁性体には、起動時温度の作動温度範囲を担う磁気熱量材料を加算している。このようにすることで上述した実施形態1と同様の効果が得られ、初期段階から一速く定常状態にすることができる。 As described above, in this modification, the magnetocaloric materials in the operating temperature range of each magnetic body are all the same amount, and the magnetic body on the lower temperature side and the higher temperature side than the startup temperature range has a startup temperature range. The magnetocaloric material responsible for the operating temperature range is added. By doing in this way, the effect similar to Embodiment 1 mentioned above is acquired, and it can be set to a steady state quickly from an initial stage.
 以上が、本発明を適用した基本的な形態からなる磁気冷暖房装置とその動作の原理である。上記では、2つの磁性体で磁性体ブロックを形成し、この磁性体ブロックをさらに3つ配列して磁性体ユニットを形成する形態について述べた。しかし、本発明は、これらの形態には限られず、さらに多くの磁性体を配列して磁性体ブロックを形成し、さらに多くの磁性体ブロックを配列して磁性体ユニットを形成するものにも適用することができる。 The above is the magnetic air-conditioning / heating device having the basic form to which the present invention is applied and the principle of its operation. In the above description, a mode is described in which a magnetic block is formed by two magnetic bodies, and three magnetic blocks are arranged to form a magnetic unit. However, the present invention is not limited to these forms, and is also applicable to those in which more magnetic bodies are arranged to form a magnetic body block, and more magnetic bodies are arranged to form a magnetic body unit. can do.
 また、以上説明したように、本実施形態1では、複数列状に配置された磁性体のうち、少なくとももっとも低温側および高温側の磁性体に、起動時温度を作動温度範囲に含む磁気熱量材料を組み合わせて一つの磁性体としている。これにより、各磁性体の温度を起動後、一速く定常状態の温度にすることができる。また冷凍能力の大きな磁気冷暖房装置の場合は、ここで説明したような6つの磁性体を配置した場合よりもさらに多くの磁性体を配列されといい。その場合は、もっとも低温側および高温側の磁性体だけでなく、もっとも低温側および高温側の磁性体と起動時温度の磁性体との間に配置される磁性体においても、起動時温度の磁性体を組み合わせることが好ましい。 Further, as described above, in the first embodiment, among the magnetic bodies arranged in a plurality of rows, at least the lowest temperature side and the higher temperature side magnetic body include the starting temperature within the operating temperature range. Are combined into a single magnetic body. Thereby, after starting the temperature of each magnetic body, it can be rapidly made into the temperature of a steady state. In the case of a magnetic air conditioner with a large refrigerating capacity, it can be said that more magnetic bodies are arranged than the case where six magnetic bodies as described here are arranged. In this case, not only the magnetic material at the lowest temperature and the highest temperature, but also the magnetic material arranged between the magnetic material at the lowest temperature and the highest temperature and the magnetic material at the startup temperature, It is preferable to combine the bodies.
 (比較例2)
 ここで比較例2として、一つの磁性体に、作動温度範囲の広い磁気熱量材料を一つ用いた場合を想定する。
(Comparative Example 2)
Here, as Comparative Example 2, a case is assumed where one magnetocaloric material having a wide operating temperature range is used for one magnetic body.
 たとえば上記の磁性体10Aの作動温度範囲は、3つの磁気熱量材料を組み合わせることで5-20℃にしている。比較例2では、これに代えて一つの磁気熱量材料として作動温度範囲が5-20℃と広い磁気熱量材料を用いることを想定する。 For example, the operating temperature range of the magnetic body 10A is set to 5-20 ° C. by combining three magnetocaloric materials. In Comparative Example 2, it is assumed that instead of this, a magnetocaloric material having a wide operating temperature range of 5 to 20 ° C. is used as one magnetocaloric material.
 このような広い磁気熱量材料を用いた場合でも、磁性体10Aは、作動温度範囲として起動時温度(室温の場合は室温)を含むようになり、起動時から温度変化するようになる。しかし、このように広い作動温度範囲の磁気熱量材料はその磁気エントロピー変化(ΔSm)が小さく、磁気エントロピー変化が半分程度、またはそれ以下になることが知られている(たとえば参考文献2:“Giant enhancement of magnetocaloric effect in metallic glass matrix composite” WANG YongTianら、Science in China Series G: Physics Mechanics and Astronomy Volume51, Number4 (2008), p.337-348。特にこの参考文献2中のFigure4内の左下グラフとTable1参照)。 Even when such a large magnetocaloric material is used, the magnetic body 10A includes the starting temperature (room temperature in the case of room temperature) as the operating temperature range, and the temperature changes from the starting time. However, it is known that a magnetocaloric material having such a wide operating temperature range has a small magnetic entropy change (ΔSm) and a magnetic entropy change of about half or less (for example, Reference 2: “Giant”). enhancement of magnetocaloric effect in metallic glass matrix composite "WANG YongTian et al., Science in China Series G: Physics Mechanics and Astronomy Volume51, Number4 (2008), and the p.337-348 especially lower left graph in Figure4 in this reference 2. Table 1).
 そもそも磁気熱量材料は、磁場の変化に伴うエントロピーの変化によって発熱または吸熱するものである。したがって、この磁気エントロピー変化(ΔSm(J・kg-1・K-1))は、磁気の印加、除去によって変化する温度変化量(ΔT)を決めるものとなっている。このため、この磁気エントロピー変化(ΔSm(J・kg-1・K-1))が小さくなると、温度変化範囲(ΔT)も小さくなってしまうのである。 In the first place, a magnetocaloric material generates heat or absorbs heat due to a change in entropy accompanying a change in magnetic field. Therefore, this magnetic entropy change (ΔSm (J · kg −1 · K −1 )) determines the amount of temperature change (ΔT) that changes due to the application and removal of magnetism. For this reason, if this magnetic entropy change (ΔSm (J · kg −1 · K −1 )) becomes small, the temperature change range (ΔT) also becomes small.
 磁気冷暖房装置は、磁気熱量材料を熱源(低温源または高温源)に接触させて、それらの熱を移動させるものである。そうすると作動温度範囲の広い一つの磁気熱量材料を熱源に接触させて熱移動すること想定した場合、作動温度範囲は広くできても温度の変化量(ΔT)が小さいものとなる。このため、熱の移動量が小さく、磁気冷暖房装置が定常状態に至る時間がかかってしまう。 The magnetic air conditioner is a device that makes a magnetic calorific material contact a heat source (low temperature source or high temperature source) and moves the heat. Then, when it is assumed that one magnetocaloric material having a wide operating temperature range is brought into contact with the heat source and heat transfer is performed, the temperature change amount (ΔT) is small even if the operating temperature range can be widened. For this reason, the amount of heat transfer is small, and it takes time for the magnetic air conditioner to reach a steady state.
 この点、本実施形態では、一つの磁性体を作動温度範囲の異なる複数の磁気熱量材料によって構成することで、一つひとつの磁気熱量材料自体の磁気エントロピー変化(ΔSm)は大きくとることができ、各磁気熱量材料の変化する温度(ΔT)も大きくすることができる。このため本実施形態では、比較例2と比べて、十分に熱を移動させることができ、速やかに定常状態の温度にできる。 In this regard, in this embodiment, by configuring a single magnetic body with a plurality of magnetocaloric materials having different operating temperature ranges, the magnetic entropy change (ΔSm) of each magnetocaloric material itself can be increased. The changing temperature (ΔT) of the magnetocaloric material can also be increased. For this reason, in this embodiment, compared with the comparative example 2, heat can be moved enough and it can be rapidly made into the temperature of a steady state.
 (比較例3)
 ここでさらに、比較例3として従来技術である特許文献2のように、一つひとつの磁性体を温度変化範囲(ΔT)の大きな磁気熱量材料一つにより構成し、なおかつ隣接する磁性体の作動温度範囲と重複する温度幅を大きくとる場合を想定する。
(Comparative Example 3)
Further, as in Comparative Example 3, each magnetic body is composed of one magnetocaloric material having a large temperature change range (ΔT) as in Patent Document 2 which is a conventional technique, and the operating temperature range of adjacent magnetic bodies is also included. Assuming that the temperature range that overlaps with is large.
 このようにした場合、冷暖房装置全体としての温度変化、すなわち、熱を輸送できる温度範囲が狭いものであれば、すべての磁性体に起動時温度を含ませることができる。たとえば特許文献2の例では、個々の磁性体の温度変化は10℃で、全体としては3個の磁性体で287K(14℃)から305K(32℃)まで熱を輸送することができるようになっている。そして、室温を20℃(約293K)とすれば、各磁性体の温度変化範囲に室温が含まれることになり定常状態に至る時間がかかる。 In this case, if the temperature change of the entire cooling / heating apparatus, that is, the temperature range in which heat can be transported is narrow, the temperature at startup can be included in all the magnetic materials. For example, in the example of Patent Document 2, the temperature change of each magnetic material is 10 ° C., so that heat can be transported from 287 K (14 ° C.) to 305 K (32 ° C.) with three magnetic materials as a whole. It has become. If the room temperature is 20 ° C. (about 293 K), the room temperature is included in the temperature change range of each magnetic material, and it takes time to reach a steady state.
 しかし、これを本実施形態のように冷暖房装置全体として5℃(約278K)~35℃(約308K)の温度変化範囲にしようとするとより多くの磁性体が必要になる。このため、磁気冷暖房装置全体として広い温度変化範囲を得ようとすると多くの磁性体が必要となって、装置全体が大型化してしまう。また、多くの磁性体を用いると、低温側や高温側では、作動温度範囲に起動時温度を含まない磁性体を用いなければならなくなってしまうことになる。 However, if this is set to a temperature change range of 5 ° C. (about 278 K) to 35 ° C. (about 308 K) as the whole cooling and heating apparatus as in this embodiment, more magnetic materials are required. For this reason, if it is going to obtain the wide temperature change range as the whole magnetic air conditioning apparatus, many magnetic bodies will be needed and the whole apparatus will enlarge. In addition, when many magnetic materials are used, it is necessary to use a magnetic material that does not include the startup temperature in the operating temperature range on the low temperature side or the high temperature side.
 この点、本実施形態では、一つひとつの磁性体に作動温度範囲の異なる磁気熱量材料を組み合わせているため、冷暖房装置全体としてどれだけ広い温度変化になろうとも、すべての磁性体を起動時の温度から作動させることができ、速やかに定常状態の温度にできる。 In this regard, in this embodiment, since each magnetic body is combined with a magnetocaloric material having a different operating temperature range, no matter how wide the temperature change of the entire cooling / heating apparatus is, all the magnetic bodies are kept at the starting temperature. And can be quickly brought to a steady state temperature.
 [実施形態2]
 次に、上記のような原理を利用して、さらに複数の磁性体を用いた他の形態の磁気冷暖房装置を実施形態2として説明する。
[Embodiment 2]
Next, another embodiment of a magnetic air conditioner using a plurality of magnetic bodies will be described as a second embodiment using the above principle.
 図14は、実施形態2の磁気冷暖房装置の概略構成を示す上面図であり、磁性体、磁気回路を形成する永久磁石および熱伝達部の位置関係が理解できるように上面から透視した状態を示した図である。図15A-図15Bは、図14に示した磁気冷暖房装置を構成する、磁性体・熱伝達部配置板、磁石配置板の上面図である。図16は、図14に示した磁気冷暖房装置の分解断面図である(Aは磁石配置板800部分の断面図、Bは磁性体・熱伝達部配置板700部分の断面図)。図17は、この磁気冷暖房装置の磁石/熱伝達部配置板を回転させたときに熱が移動して行く様子を説明するための模式図である。図18は、本実施形態2に係る磁気冷暖房装置の動作を説明するための説明図である。なお、図18においては発明の理解を容易にするために図16に示した駆動部の記載を省略した。 FIG. 14 is a top view showing a schematic configuration of the magnetic air conditioner according to the second embodiment, and shows a state seen through from above so that the positional relationship of the magnetic body, the permanent magnet forming the magnetic circuit, and the heat transfer unit can be understood. It is a figure. 15A to 15B are top views of the magnetic body / heat transfer portion arrangement plate and the magnet arrangement plate constituting the magnetic air conditioner shown in FIG. 16 is an exploded cross-sectional view of the magnetic air conditioner shown in FIG. 14 (A is a cross-sectional view of the magnet arrangement plate 800 portion, and B is a cross-sectional view of the magnetic body / heat transfer portion arrangement plate 700 portion). FIG. 17 is a schematic diagram for explaining how heat moves when the magnet / heat transfer section arrangement plate of the magnetic cooling / heating apparatus is rotated. FIG. 18 is an explanatory diagram for explaining the operation of the magnetic air conditioner according to the second embodiment. In FIG. 18, the description of the drive unit shown in FIG. 16 is omitted for easy understanding of the invention.
 この磁気冷暖房装置は、図1に示した磁気冷凍と同一の原理を用いる。この原理を用いて磁気冷凍が行えるように、次のように構成してある。 This magnetic air conditioner uses the same principle as the magnetic refrigeration shown in FIG. In order to perform magnetic refrigeration using this principle, it is configured as follows.
 図14から図18に示すように、本実施形態2に係る磁気冷暖房装置500は、中心部が開口した中空円板状の磁性体・熱伝達部配置板700(特に図15A参照)、中心部が開口した中空円板状の磁石配置板800(特に図15B参照)を有する。磁性体・熱伝達部配置板700は、その中心部に低温側熱交換部40Aが配置され、その外周部に高温側熱交換部40Bが配置されている。磁石配置板800は、隙間を設けて配置した、上側の円板800Aと下側の円板800Bの2つの円板を有する(特に図16参照)。 As shown in FIGS. 14 to 18, the magnetic air conditioner 500 according to the second embodiment includes a hollow disc-shaped magnetic body / heat transfer portion arrangement plate 700 (in particular, see FIG. 15A) having an open center portion, and a center portion. Has a hollow disk-shaped magnet arrangement plate 800 (see FIG. 15B in particular). The magnetic body / heat transfer section arrangement plate 700 has a low temperature side heat exchange section 40A disposed at the center thereof and a high temperature side heat exchange section 40B disposed at the outer periphery thereof. The magnet arrangement plate 800 has two discs, an upper disc 800A and a lower disc 800B, which are arranged with a gap (see particularly FIG. 16).
 磁気冷暖房装置500は、磁性体・熱伝達部配置板700、磁石配置板800を同心状に配置している(特に図14、図16、図17参照)。磁性体・熱伝達部配置板700は、磁石配置板800の上側の円板800Aと下側の円板800Bとの間に挿入される(特に図16、図17参照)。低温側熱交換部40Aは、磁性体・熱伝達部配置板700と磁石配置板800の中心部に配置される。高温側熱交換部40Bは、磁性体・熱伝達部配置板700と磁石配置板800の外周部に配置される(特に図14、図16、図17参照)。 In the magnetic cooling / heating device 500, the magnetic body / heat transfer portion arrangement plate 700 and the magnet arrangement plate 800 are arranged concentrically (see particularly FIGS. 14, 16, and 17). The magnetic body / heat transfer portion arrangement plate 700 is inserted between the upper disc 800A and the lower disc 800B of the magnet arrangement plate 800 (see particularly FIGS. 16 and 17). The low temperature side heat exchanging unit 40A is arranged at the center of the magnetic body / heat transfer unit arrangement plate 700 and the magnet arrangement plate 800. The high temperature side heat exchanging part 40B is arranged on the outer periphery of the magnetic body / heat transfer part arrangement plate 700 and the magnet arrangement plate 800 (see particularly FIGS. 14, 16, and 17).
 なお、本実施形態2では、磁性体・熱伝達部配置板700に正の磁性体を配置することを想定しているので、その中心部に低温側熱交換部40Aを配置し、その外周部に高温側熱交換部40Bを配置している。磁性体・熱伝達部配置板700に負の磁性体を配置した場合には、中心部に高温側熱交換部40Bを配置し、その外周部に低温側熱交換部40Aを配置する。低温側熱交換部40Aと高温側熱交換部40Bの配置は、磁性体・熱伝達部配置板700に正負いずれの磁性体を用いるかによって異なる。 In the second embodiment, since it is assumed that a positive magnetic body is disposed on the magnetic body / heat transfer section disposition plate 700, the low temperature side heat exchange section 40A is disposed at the center thereof, and the outer peripheral portion thereof. The high temperature side heat exchange part 40B is arrange | positioned. When a negative magnetic material is arranged on the magnetic material / heat transfer part arrangement plate 700, the high temperature side heat exchange unit 40B is arranged at the center, and the low temperature side heat exchange unit 40A is arranged at the outer periphery thereof. The arrangement of the low temperature side heat exchanging part 40A and the high temperature side heat exchanging part 40B differs depending on which of the positive and negative magnetic substances is used for the magnetic substance / heat transfer part arrangement plate 700.
 図15Aに示すように、磁性体・熱伝達部配置板700は、その中心部が開口した中空円板であり、その中心部の開口径は円柱状の低温側熱交換部40Aの直径よりも若干大きくしてある。また、磁性体・熱伝達部配置板700の直径は円筒状の高温側熱交換部40Bの内周の寸法と同一にしてある。 As shown in FIG. 15A, the magnetic body / heat transfer portion arrangement plate 700 is a hollow disc having an opening at the center thereof, and the opening diameter at the center is larger than the diameter of the columnar low temperature side heat exchange portion 40A. Slightly larger. In addition, the diameter of the magnetic body / heat transfer part arrangement plate 700 is the same as the inner circumference of the cylindrical high temperature side heat exchange part 40B.
 また、図16および図17に示すように、磁性体・熱伝達部配置板700は高温側熱交換部40Bに固定してある。磁性体・熱伝達部配置板700と高温側熱交換部40Bとの間には、磁性体・熱伝達部配置板700と高温側熱交換部40B相互間で熱が移動しないように、図示しない断熱材を介在させることが好ましい。 Also, as shown in FIGS. 16 and 17, the magnetic body / heat transfer portion arrangement plate 700 is fixed to the high temperature side heat exchange portion 40B. Not shown between the magnetic body / heat transfer section arrangement plate 700 and the high temperature side heat exchange section 40B so that heat does not move between the magnetic body / heat transfer section arrangement plate 700 and the high temperature side heat exchange section 40B. It is preferable to interpose a heat insulating material.
 磁性体・熱伝達部配置板700の片面(円板800Aの対向面)には、図15A、図16Bに示すように、環状かつ放射状に複数の磁性体を互いに間隔を設けて形成してある。本実施形態2では、中心角を30°として分割した磁性体・熱伝達部配置板700上の領域に、周方向に隣り合わせて、12個の磁性体ユニット200A、200B、200C、…、200G、…、200Lを形成している。そして、すべての磁性体同士の間、磁性体と低温側熱交換部の間、磁性体と高温側熱交換部の間に、熱伝達部を配置している(後述)。 As shown in FIGS. 15A and 16B, a plurality of magnetic bodies are annularly and radially formed on one side of the magnetic body / heat transfer portion arrangement plate 700 (opposing surface of the disc 800A). . In the second embodiment, twelve magnetic units 200A, 200B, 200C,..., 200G are arranged adjacent to the region on the magnetic body / heat transfer portion arrangement plate 700 divided at a central angle of 30 ° in the circumferential direction. ..., 200L is formed. And the heat transfer part is arrange | positioned between all the magnetic bodies, between a magnetic body and the low temperature side heat exchange part, and between the magnetic body and the high temperature side heat exchange part (after-mentioned).
 それぞれの磁性体ユニット200A、200B、200C、…、200G、…、200Lは、磁性体・熱伝達部配置板700の中心部から外周部に向けて6つの磁性体を配置している。つまり、6つの磁性体が中心部から外周部に向けて列状に配置されていることになる。たとえば、磁性体ユニット200Aは、磁性体10Aa、10Ab、10Ac、10Ad、10Ae、10Afを、磁性体ユニット200Bは、磁性体10Ba、10Bb、10Bc、10Bd、10Be、10Bfをそれぞれ配置する。 Each magnetic body unit 200A, 200B, 200C,..., 200G,..., 200L has six magnetic bodies arranged from the center of the magnetic body / heat transfer section arrangement plate 700 toward the outer periphery. That is, six magnetic bodies are arranged in a row from the central portion toward the outer peripheral portion. For example, the magnetic body unit 200A arranges magnetic bodies 10Aa, 10Ab, 10Ac, 10Ad, 10Ae, and 10Af, and the magnetic body unit 200B arranges magnetic bodies 10Ba, 10Bb, 10Bc, 10Bd, 10Be, and 10Bf, respectively.
 そして、各磁性体ユニットを構成するこれら6つの磁性体は、すべて磁気を印加すると温度が上昇する正の磁性体を用いている。それぞれの作動温度範囲に適した磁気熱量材料により構成してある。 The six magnetic bodies constituting each magnetic unit are all positive magnetic bodies whose temperature rises when magnetism is applied. It is composed of a magnetocaloric material suitable for each operating temperature range.
 各磁性体ユニットでは、2つの磁性体が1組になって磁性体ブロックを形成する。たとえば、磁性体ユニット200Aでは、磁性体10Aa、10Abで磁性体ブロック100Aaを、磁性体10Ac、10Adで磁性体ブロック100Abを、磁性体10Ae、10Afで磁性体ブロック100Acを形成する。また、磁性体ユニット200Bでは、磁性体10Ba、10Bbで磁性体ブロック100Baを、磁性体10Bc、10Bdで磁性体ブロック100Bbを、磁性体10Be、10Bfで磁性体ブロック100Bcを形成する。 In each magnetic body unit, two magnetic bodies form a set to form a magnetic body block. For example, in the magnetic unit 200A, the magnetic bodies 10Aa and 10Ab form the magnetic body block 100Aa, the magnetic bodies 10Ac and 10Ad form the magnetic body block 100Ab, and the magnetic bodies 10Ae and 10Af form the magnetic body block 100Ac. In the magnetic unit 200B, the magnetic bodies 10Ba and 10Bb form the magnetic body block 100Ba, the magnetic bodies 10Bc and 10Bd form the magnetic body block 100Bb, and the magnetic bodies 10Be and 10Bf form the magnetic body block 100Bc.
 したがって、本実施形態2の磁性体・熱伝達部配置板700は、磁性体ユニット200A、200B、200C、…、200G、…、200Lのそれぞれが3つの磁性体ブロック100Aa-100Ab-100Ac、100Ba-100Bb-100Bc、…で形成される。また、磁性体ブロック100Aa、100Ab、100Ac、100Ba、100Bb、100Bc、…のそれぞれは2つの磁性体、10Aa-10Ab、10Ac-10Ad、10Ae-10Af、10Ba-10Bb、10Bc-10Bd、10Be-10Bf、…で形成される。 Therefore, in the magnetic body / heat transfer portion arrangement plate 700 of the second embodiment, each of the magnetic body units 200A, 200B, 200C,..., 200G, ..., 200L has three magnetic body blocks 100Aa-100Ab-100Ac, 100Ba- 100Bb-100Bc,... Each of the magnetic blocks 100Aa, 100Ab, 100Ac, 100Ba, 100Bb, 100Bc,... Has two magnetic bodies, 10Aa-10Ab, 10Ac-10Ad, 10Ae-10Af, 10Ba-10Bb, 10Bc-10Bd, 10Be-10Bf ... is formed.
 本実施形態2の磁性体・熱伝達部配置板700の1つの磁性体ユニット200Aに注目すると、磁性体ユニット200Aは、6つの磁性体10Aa、10Ab、10Ac、10Ad、10Ae、10Afから形成される。これらの磁性体は3つの磁性体ブロック100Aa、100Ab、100Acを有する。これらの磁性体ブロックは2つの磁性体10Aa-10Ab、10Ac-10Ad、10Ae-10Afの組から形成される。磁性体ユニット200Bから200Lも磁性体ユニット200Aと同じように形成される。このため、本実施形態2の磁性体・熱伝達部配置板700は、図1Aに示した磁性体ユニット200を12列並列に並べたものと等価な構成となる。 When attention is paid to one magnetic body unit 200A of the magnetic body / heat transfer portion arrangement plate 700 of Embodiment 2, the magnetic body unit 200A is formed of six magnetic bodies 10Aa, 10Ab, 10Ac, 10Ad, 10Ae, and 10Af. . These magnetic bodies have three magnetic body blocks 100Aa, 100Ab, and 100Ac. These magnetic blocks are formed of a set of two magnetic bodies 10Aa-10Ab, 10Ac-10Ad, and 10Ae-10Af. The magnetic body units 200B to 200L are formed in the same manner as the magnetic body unit 200A. For this reason, the magnetic body / heat transfer portion arrangement plate 700 of Embodiment 2 has a configuration equivalent to that obtained by arranging the magnetic body units 200 shown in FIG. 1A in 12 rows in parallel.
 本実施形態2で用いる磁性体10Aa、…は、磁性体・熱伝達部配置板700上に直接形成しても良いが、磁気熱量効果を有効に利用できるようにするためには、磁性体・熱伝達部配置板700は熱抵抗の大きな材料で構成することが望ましい。熱抵抗が小さいと、磁性体10Aa、…で発生した熱が磁性体・熱伝達部配置板700を伝って放熱されてしまうからである。また、熱抵抗を大きくするために、磁性体10Aa、…は、磁性体・熱伝達部配置板700上に直接形成するのではなく、磁性体10Aa、…と磁性体・熱伝達部配置板700との間に熱絶縁性フィルムや熱絶縁層を設けても良い。 The magnetic body 10Aa used in the second embodiment may be directly formed on the magnetic body / heat transfer portion arrangement plate 700. However, in order to effectively use the magnetocaloric effect, the magnetic body 10Aa,. The heat transfer portion arrangement plate 700 is preferably made of a material having a large thermal resistance. This is because if the thermal resistance is small, the heat generated by the magnetic bodies 10Aa,... Will be dissipated through the magnetic body / heat transfer portion arrangement plate 700. Further, in order to increase the thermal resistance, the magnetic bodies 10Aa,... Are not directly formed on the magnetic body / heat transfer portion arrangement plate 700, but the magnetic bodies 10Aa,. A heat insulating film or a heat insulating layer may be provided between the two.
 また、磁性体10Aa、…は、熱絶縁性フィルムや熱絶縁層を介して磁性体ユニット200A、…として磁性体・熱伝達部配置板700上で一体的に形成しても良い。また、熱絶縁性フィルムや熱絶縁層を介して磁性体ブロック100Aa、…ごとに分割して形成し、これを磁性体・熱伝達部配置板700上で配列するようにしても良い。 Further, the magnetic bodies 10Aa,... May be integrally formed on the magnetic body / heat transfer portion arrangement plate 700 as a magnetic unit 200A,... Via a heat insulating film or a heat insulating layer. Further, the magnetic material blocks 100Aa,... May be divided and formed via a heat insulating film or a heat insulating layer, and arranged on the magnetic material / heat transfer portion arrangement plate 700.
 磁性体10Aa、…は、本実施形態2ではすでに説明したように、実施形態1と同様である。その材料組成なども同様にLaxCa1-xMnO3、La(Fe1-xSix13yなどを用いることができる。 The magnetic bodies 10Aa,... Are the same as those in the first embodiment as already described in the second embodiment. Similarly, La x Ca 1-x MnO 3 , La (Fe 1-x Si x ) 13 H y and the like can be used for the material composition.
 本実施形態2では、磁性体10Aa、…の形状を、図14、図15A、図18に示したような、扇を径方向に一定の幅で切り取ったような形状としたが、これ以外の形状、たとえば、球状、楕円体状、立方体状、円柱状、楕円柱状などの形状を採用しても良い。 In the second embodiment, the shape of the magnetic bodies 10Aa,... Is as shown in FIG. 14, FIG. 15A, FIG. A shape such as a spherical shape, an ellipsoidal shape, a cubic shape, a cylindrical shape, or an elliptical columnar shape may be employed.
 以上のように、磁性体・熱伝達部配置板700は、同一材料の磁性体10Aa…を複数列状に間隔を設けて径方向に配置した磁性体ユニット200Aを有する。磁性体・熱伝達部配置板700は、磁性体ユニット200Aをさらに磁性体10Aa、…の配置方向と交差する円周方向に間隔を設けて複数隣り合わせて環状に配置している。 As described above, the magnetic body / heat transfer portion arrangement plate 700 includes the magnetic body unit 200A in which the magnetic bodies 10Aa... Of the same material are arranged in a plurality of rows in the radial direction. In the magnetic body / heat transfer portion arrangement plate 700, a plurality of the magnetic body units 200A are arranged in an annular shape adjacent to each other at intervals in the circumferential direction intersecting with the arrangement direction of the magnetic bodies 10Aa,.
 磁性体ユニット200Aは、同一材料の磁性体10Aa…を複数列状に間隔を設けて径方向に配置した磁性体ブロック100Aa、…を有し、磁性体ブロック100Aa…を磁性体10Aa、…の配置方向に間隔を設けて複数列状に配置して形成する。 The magnetic unit 200A includes magnetic body blocks 100Aa,... In which magnetic bodies 10Aa,... Of the same material are arranged in a radial direction at intervals in a plurality of rows, and the magnetic body blocks 100Aa are arranged as magnetic bodies 10Aa,. They are formed in a plurality of rows with intervals in the direction.
 そして、磁性体・熱伝達部配置板700の磁性体ユニット200Aでは、すべての磁性体10Aa…同士の間、および磁性体10Aaと低温側熱交換部40Aの間、磁性体10Afと高温側熱交換部40Bの間に、熱伝達部が配置されている。この熱交換部は、実施形態1または2で説明したものと同様の構成となっている。すなわち、低温側熱交換部40A側から高温側熱交換部40B方向に、熱伝達部30Ba、30Ab、30Bc、30Ad、30Be、30Af、30Bgと配置されている。磁性体ユニット200Bにおいても同様であり、すべての磁性体10Aa…同士の間、および磁性体10Aaと低温側熱交換部40Aの間、磁性体10Afと高温側熱交換部40Bの間に、熱伝達部30Aa、30Bb、30Ac、30Bd、30Ae、30Bf、30Agと配置されている(図15A参照)。 In the magnetic body unit 200A of the magnetic body / heat transfer section arrangement plate 700, between all the magnetic bodies 10Aa, between the magnetic bodies 10Aa and the low temperature side heat exchange section 40A, between the magnetic body 10Af and the high temperature side heat exchange. A heat transfer portion is disposed between the portions 40B. This heat exchange unit has the same configuration as that described in the first or second embodiment. That is, the heat transfer units 30Ba, 30Ab, 30Bc, 30Ad, 30Be, 30Af, and 30Bg are arranged in the direction from the low temperature side heat exchange unit 40A to the high temperature side heat exchange unit 40B. The same applies to the magnetic body unit 200B. Heat transfer is performed between all the magnetic bodies 10Aa, between the magnetic bodies 10Aa and the low-temperature side heat exchange unit 40A, and between the magnetic body 10Af and the high-temperature side heat exchange unit 40B. The parts 30Aa, 30Bb, 30Ac, 30Bd, 30Ae, 30Bf, and 30Ag are arranged (see FIG. 15A).
 ここで、磁性体ユニット200Aでは、熱伝達部30Ab、30Ad、30Afが同時に熱伝達状態(オン)になり、そのとき熱伝達部30Ba、30Bc、30Be、30Bgは断熱状態(オフ)となる。逆に熱伝達部30Ab、30Ad、30Afが同時に断熱状態(オフ)になり、そのとき熱伝達部30Ba、30Bc、30Be、30Bgは熱伝達状態(オン)となる。磁性体ユニット200Bにおいても同様であり、熱伝達部30Bb、30Bd、30Bfが同時に熱伝達状態(オン)になり、そのとき熱伝達部30Aa、30Ac、30Ae、30Agは断熱状態(オフ)となる。逆に熱伝達部30Bb、30Bd、30Bfが同時に断熱状態(オフ)になり、そのとき熱伝達部30Aa、30Bc、30Ae、30Agは熱伝達状態(オン)となる。つまり、図において30の添え字Aの熱伝達部が同時にオンのとき、添え字Bの熱伝達部が同時にオフ、またはその逆になる。 Here, in the magnetic unit 200A, the heat transfer units 30Ab, 30Ad, and 30Af are simultaneously in a heat transfer state (ON), and at that time, the heat transfer units 30Ba, 30Bc, 30Be, and 30Bg are in a heat insulation state (OFF). Conversely, the heat transfer units 30Ab, 30Ad, and 30Af are simultaneously insulative (off), and at that time, the heat transfer units 30Ba, 30Bc, 30Be, and 30Bg are in the heat transfer state (on). The same applies to the magnetic unit 200B, and the heat transfer units 30Bb, 30Bd, and 30Bf are simultaneously in a heat transfer state (ON), and at that time, the heat transfer units 30Aa, 30Ac, 30Ae, and 30Ag are in a heat insulation state (OFF). Conversely, the heat transfer units 30Bb, 30Bd, and 30Bf are simultaneously insulative (off), and at that time, the heat transfer units 30Aa, 30Bc, 30Ae, and 30Ag are in the heat transfer state (on). That is, in the figure, when the heat transfer part of the subscript A of 30 is simultaneously turned on, the heat transfer part of the subscript B is simultaneously turned off or vice versa.
 なお、図14においては、動作説明にも供するため、図示した動作状態のとき熱伝達状態(オン)となった熱伝達部を符号で示したが、すでに説明したとおり、熱伝達部はすべて同じ構造で、すべての磁性体間、熱交換部と磁性体間にある。 In FIG. 14, in order to provide an explanation of the operation, the heat transfer unit that is in the heat transfer state (ON) in the illustrated operation state is indicated by a symbol. However, as already described, the heat transfer units are all the same. The structure is between all the magnetic bodies, between the heat exchange part and the magnetic body.
 磁性体・熱伝達部配置板700は以上のように構成してあるので、低温側熱交換部40Aは、磁性体・熱伝達部配置板700に形成されている磁性体ユニット200A、200B、200C、…、200G、…、200Lの一端に位置する磁性体10Aa、10Ba、…と間隔を設けて隣り合う。また、高温側熱交換部40Bは、磁性体・熱伝達部配置板700に形成されている磁性体ユニット200A、200B、200C、…、200G、…、200Lの他端に位置する磁性体10Af、10Bf、…と間隔を設けて隣り合う。また、すべての磁気ユニットにおいても、熱伝達部30Ba、30Ab…または30Aa、30Bb、…が設けられている。 Since the magnetic body / heat transfer portion arrangement plate 700 is configured as described above, the low temperature side heat exchanging portion 40A has the magnetic body units 200A, 200B, 200C formed on the magnetic body / heat transfer portion arrangement plate 700. ,..., 200G,..., 200L are adjacent to the magnetic bodies 10Aa, 10Ba,. Further, the high temperature side heat exchanging portion 40B is formed of the magnetic body 10Af located at the other end of the magnetic body units 200A, 200B, 200C,..., 200L formed on the magnetic body / heat transfer portion arrangement plate 700, 10Bf,... Also in all the magnetic units, heat transfer portions 30Ba, 30Ab... Or 30Aa, 30Bb,.
 磁石配置板800は、図15Bに示すように、その中心部が開口した中空円板であり、その中心部の開口径は、円柱状の低温側熱交換部40Aの直径よりも若干大きくしてある。また、磁石配置板800の直径は、円筒状の高温側熱交換部40Bの内周の寸法よりも若干小さくしてある。磁石配置板800が低温側熱交換部40Aと高温側熱交換部40Bとの間で回転できるようにするためである。磁石配置板800は、図16および図17に示すように、隙間を設けて磁性体・熱伝達部配置板700を挟む磁気的に接続された、上側および下側の2枚の円板800A、800Bで構成される。 As shown in FIG. 15B, the magnet arrangement plate 800 is a hollow disc having an opening at the center thereof, and the opening diameter of the center is slightly larger than the diameter of the columnar low temperature side heat exchange portion 40A. is there. Moreover, the diameter of the magnet arrangement | positioning board 800 is made a little smaller than the dimension of the inner periphery of the cylindrical high temperature side heat exchange part 40B. This is because the magnet arrangement plate 800 can rotate between the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B. As shown in FIGS. 16 and 17, the magnet arrangement plate 800 includes two upper and lower disks 800 </ b> A that are magnetically connected with a gap therebetween to sandwich the magnetic body / heat transfer portion arrangement plate 700. It is composed of 800B.
 上側および下側の2枚の円板800A、800Bは、低温側熱交換部40Aを中心に別々に回転できるように、低温側熱交換部40Aに備える軸受けと、上側および下側の2枚の円板800A、800Bの外周端に備える軸受けで支持してある。図16に示すように、上側の円板800Aは軸受け520Aa、520Abによって回転自在に支持され、下側の円板800Bは軸受け520Ba、520Bbによって回転自在に支持される。したがって、上側の円板800Aは下側の円板800Bと別々に回転できる。 The upper and lower two disks 800A and 800B can be separately rotated around the low-temperature side heat exchange unit 40A, and the bearings provided in the low-temperature side heat exchange unit 40A and the upper and lower two discs It is supported by bearings provided at the outer peripheral ends of the disks 800A and 800B. As shown in FIG. 16, the upper disk 800A is rotatably supported by bearings 520Aa and 520Ab, and the lower disk 800B is rotatably supported by bearings 520Ba and 520Bb. Therefore, the upper disk 800A can rotate separately from the lower disk 800B.
 磁石配置板800を取り囲むように支持盤530が配置される。支持盤530は、上側および下側の2枚の円板800A、800Bを別々に回転させるためのサーボモータ540A、540Bを固定する。支持盤530の上側の円板800Aに対向する部分にサーボモータ540Aを、支持盤530の下側の円板800Bに対向する部分にサーボモータ540Bをそれぞれ固定する。サーボモータ540A、540Bのそれぞれの回転軸にはギア550A、550Bが取り付けてある。上側の円板800Aの外周部には、ギア550Aと噛み合うリングギア560Aが取り付けてある。また、下側の円板800Bの外周部には、ギア550Bと噛み合うリングギア560Bが取り付けてある。なお、サーボモータ540A、540B、ギア550A、550Bおよびリングギア560A、560Bによって駆動部を構成する。 The support board 530 is arrange | positioned so that the magnet arrangement | positioning board 800 may be surrounded. The support board 530 fixes servo motors 540A and 540B for separately rotating the upper and lower disks 800A and 800B. The servo motor 540A is fixed to a portion facing the upper disc 800A of the support plate 530, and the servo motor 540B is fixed to a portion facing the lower disc 800B of the support plate 530. Gears 550A and 550B are attached to the respective rotation shafts of the servo motors 540A and 540B. A ring gear 560A that meshes with the gear 550A is attached to the outer periphery of the upper disk 800A. A ring gear 560B that meshes with the gear 550B is attached to the outer periphery of the lower disc 800B. The servo motors 540A and 540B, the gears 550A and 550B, and the ring gears 560A and 560B constitute a drive unit.
 サーボモータ540Aが回転すると、ギア550Aと噛み合うリングギア560Aが自転して上側の円板800Aが回転する。また、サーボモータ540Bが回転すると、ギア550Bと噛み合うリングギア560Bが自転して下側の円板800Bが回転する。サーボモータ540A、540Bを同期して回転させると、上側および下側の2枚の円板800A、800Bが一体となって回転する。 When the servo motor 540A rotates, the ring gear 560A meshing with the gear 550A rotates and the upper disk 800A rotates. When the servo motor 540B rotates, the ring gear 560B meshing with the gear 550B rotates to rotate the lower disk 800B. When the servo motors 540A and 540B are rotated in synchronization, the upper and lower disks 800A and 800B rotate together.
 本実施形態2では、サーボモータ540A、540Bを同期して回転させる。したがって、磁石配置板800は低温側熱交換部40Aを中心に、上側および下側の2枚の円板800A、800Bで磁性体・熱伝達部配置板700挟むようにして、低温側熱交換部40Aと高温側熱交換部40Bとの間で回転する。 In the second embodiment, the servo motors 540A and 540B are rotated synchronously. Therefore, the magnet arrangement plate 800 is arranged such that the magnetic body / heat transfer unit arrangement plate 700 is sandwiched between the upper and lower disks 800A and 800B with the low temperature side heat exchange unit 40A as the center, and the low temperature side heat exchange unit 40A. It rotates with the high temperature side heat exchange part 40B.
 磁石配置板800を形成する上側の円板800Aの片面(図16および図17に示す円板800Aの図示下側)には図15Bに示すように、環状かつ放射状に複数の永久磁石を配置してある。永久磁石は、図15Aに示した磁性体・熱伝達部配置板700の磁性体ユニット200A、200B、200C、…、200G、…、200Lのそれぞれの磁性体ブロック100Aa、100Ab、100Ac、100Ba、100Bb、100Bc、…に対して永久磁石が1つずつ対峙されるように配置している。永久磁石は、磁石配置板800が30°回転して、隣の磁性体ユニットに移行する度に、隣り合う磁性体ユニット200A、200B、200C、…、200G、…、200Lの磁性体ブロック100Aa、100Ab、100Ac、100Ba、100Bb、100Bc、…において径方向に往復移動する。したがって、永久磁石は、磁性体ユニット200A、200B、200C、…、200G、…、200Lの磁性体に対し個別に磁気を印加する。 As shown in FIG. 15B, a plurality of permanent magnets are arranged radially and radially on one side of the upper disk 800A forming the magnet arrangement plate 800 (the lower side of the disk 800A shown in FIGS. 16 and 17). It is. The permanent magnets are magnetic body blocks 100Aa, 100Ab, 100Ac, 100Ba, 100Bb of the magnetic body units 200A, 200B, 200C, ..., 200G, ..., 200L of the magnetic body / heat transfer portion arrangement plate 700 shown in Fig. 15A. , 100Bc,... Are arranged so that one permanent magnet faces each other. Each time the magnet arrangement plate 800 rotates 30 ° and moves to the adjacent magnetic body unit, the permanent magnet is moved to the adjacent magnetic body unit 200A, 200B, 200C,..., 200G,. 100Ab, 100Ac, 100Ba, 100Bb, 100Bc,... Reciprocate in the radial direction. Therefore, the permanent magnet individually applies magnetism to the magnetic bodies 200A, 200B, 200C,..., 200G,.
 たとえば、図14、図15A、図15B、図17に示すように、図面上、磁石配置板800の上側の円板800Aにおいて、磁性体ユニット200Aの対応位置にある永久磁石20Aa、20Ac、20Aeは、磁性体・熱伝達部配置板700の磁性体ユニット200Aの磁性体10Aa、10Ac、10Aeとそれぞれ対峙する位置にある。また、磁性体ユニット200Bの対応位置にある永久磁石20Ba、20Bc、20Beは、磁性体ユニット200Bの磁性体10Bb、10Bd、10Bfとそれぞれ対峙する位置にある。この状態で、磁石配置板800が30°時計方向に回転すると、磁性体ユニット200Aの対応位置にある永久磁石20Aa、20Ac、20Aeは、磁性体ユニット200Bの磁性体10Ba、10Bc、10Beとそれぞれ対峙する位置となる。また、磁性体ユニット200Lの対応位置にある永久磁石は、磁性体ユニット200Aの磁性体10Ab、10Ad、10Afとそれぞれ対峙する位置となる。つまり、磁石配置板800が30°時計方向に回転する度に、各磁性体ユニット200A、200B、200C、…、200G、…、200Lにおいて、磁性体ブロックごとに永久磁石が往復移動する。この永久磁石と磁性体との位置関係は、磁石配置板800が30°回転する度に図1Aの位置関係と図1Bの位置関係を繰り返すのと同一の位置関係である。 For example, as shown in FIGS. 14, 15A, 15B, and 17, permanent magnets 20Aa, 20Ac, and 20Ae at the corresponding positions of the magnetic body unit 200A in the upper disk 800A of the magnet arrangement plate 800 are The magnetic body / heat transfer portion arrangement plate 700 is in a position facing the magnetic bodies 10Aa, 10Ac, and 10Ae of the magnetic body unit 200A. Further, the permanent magnets 20Ba, 20Bc, and 20Be at the corresponding positions of the magnetic body unit 200B are respectively at positions facing the magnetic bodies 10Bb, 10Bd, and 10Bf of the magnetic body unit 200B. In this state, when the magnet arrangement plate 800 is rotated 30 ° clockwise, the permanent magnets 20Aa, 20Ac, 20Ae at the corresponding positions of the magnetic body unit 200A are opposed to the magnetic bodies 10Ba, 10Bc, 10Be of the magnetic body unit 200B, respectively. It becomes the position to do. In addition, the permanent magnets at the corresponding positions of the magnetic body unit 200L are positions facing the magnetic bodies 10Ab, 10Ad, and 10Af of the magnetic body unit 200A. That is, each time the magnet arrangement plate 800 rotates 30 ° clockwise, the permanent magnets reciprocate for each magnetic body block in each of the magnetic body units 200A, 200B, 200C, ..., 200G, ..., 200L. The positional relationship between the permanent magnet and the magnetic body is the same positional relationship as the positional relationship in FIG. 1A and the positional relationship in FIG. 1B are repeated each time the magnet arrangement plate 800 rotates 30 °.
 したがって、磁石配置板800を磁性体ユニット200A、200B、200C、…、200G、…、200Lの並び方向に移動させると、永久磁石と磁性体との位置関係は次のように移行する。 Therefore, when the magnet arrangement plate 800 is moved in the direction in which the magnetic body units 200A, 200B, 200C,..., 200G, ..., 200L are moved, the positional relationship between the permanent magnet and the magnetic body shifts as follows.
 まず、図15B、図17Aに示すように、永久磁石20Aa、20Ac、20Aeは、隣り合う一方の磁性体ユニット200Aの各磁性体ブロック100Aa、100Ab、100Acの一端に位置する磁性体10Aa、10Ac、10Aeに同時に磁気を印加する。このとき磁性体ユニット200Aの熱伝達部30Ab、30Ad、30Afは熱伝達状態、熱伝達部30Ba、30Bc、30Be、30Bgは断熱状態となる。 First, as shown in FIG. 15B and FIG. 17A, the permanent magnets 20Aa, 20Ac, and 20Ae are formed of magnetic bodies 10Aa, 10Ac, which are positioned at one ends of the respective magnetic body blocks 100Aa, 100Ab, and 100Ac of one adjacent magnetic body unit 200A. Magnetism is simultaneously applied to 10Ae. At this time, the heat transfer portions 30Ab, 30Ad, and 30Af of the magnetic body unit 200A are in a heat transfer state, and the heat transfer portions 30Ba, 30Bc, 30Be, and 30Bg are in a heat insulating state.
 また、図15B、図17Bに示すように、永久磁石20Ba、20Bc、20Beは、隣り合う他方の磁性体ユニット200Bの各磁性体ブロック100Ba、100Bb、100Bcの他端に位置する磁性体10Bb、10Bd、10Bfに同時に磁気を印加する。このとき磁性体ユニット200Bの熱伝達部30Ba、30Bc、30Be、30Bgは熱伝達状態、熱伝達部30Ab、30Ad、30Afは断熱状態となる。 As shown in FIGS. 15B and 17B, the permanent magnets 20Ba, 20Bc, and 20Be are magnetic bodies 10Bb and 10Bd located at the other ends of the respective magnetic body blocks 100Ba, 100Bb, and 100Bc of the other adjacent magnetic body unit 200B. 10Bf is simultaneously magnetized. At this time, the heat transfer portions 30Ba, 30Bc, 30Be, and 30Bg of the magnetic body unit 200B are in a heat transfer state, and the heat transfer portions 30Ab, 30Ad, and 30Af are in a heat insulation state.
 他の磁性体ユニット200C-200Lにおいても、隣り合う2つの磁性体ユニット間の永久磁石と磁性体との位置関係は磁性体ユニット200A、200Bの場合と同一である。隣り合う2つの磁性体ユニット間の以上のような永久磁石と磁性体との位置関係を状態1という。 Also in the other magnetic body units 200C-200L, the positional relationship between the permanent magnet and the magnetic body between two adjacent magnetic body units is the same as in the case of the magnetic body units 200A and 200B. The positional relationship between the permanent magnet and the magnetic body as described above between two adjacent magnetic body units is referred to as state 1.
 次に、磁石配置板800を30°時計方向に回転させると、永久磁石20Aa、20Ac、20Aeは、隣り合う他方の磁性体ユニット200Bの各磁性体ブロック100Ba、100Bb、100Bcの一端に位置する磁性体10Ba、10Bc、10Beに同時に磁気を印加する。この状態は、図17Bに示す永久磁石20Ba、20Bc、20Beが、左側の磁性体10Ba、10Bc、10Beに移動することに等しい。一方、磁性体ユニット200Lの対応位置に存在する永久磁石は、隣り合う一方の磁性体ユニット200Aの各磁性体ブロック100Aa、100Ab、100Acの他端に位置する磁性体10Ab、10Ad、10Afに同時に磁気を印加する。この状態は、図17Aに示す永久磁石20Aa、20Ac、20Aeが、右側の磁性体10Ab、10Ad、10Afに移動することに等しい。他の磁性体ユニット200C-200Lにおいても、隣り合う2つの磁性体ユニット間の永久磁石と磁性体との位置関係は磁性体ユニット200A、200Bの場合と同じように遷移する。隣り合う2つの磁性体ユニット間の以上のような永久磁石と磁性体との位置関係を状態2という。 Next, when the magnet arrangement plate 800 is rotated clockwise by 30 °, the permanent magnets 20Aa, 20Ac, 20Ae are magnetized at one end of each of the magnetic body blocks 100Ba, 100Bb, 100Bc of the other adjacent magnetic body unit 200B. Magnetism is simultaneously applied to the bodies 10Ba, 10Bc, and 10Be. This state is equivalent to the movement of the permanent magnets 20Ba, 20Bc, 20Be shown in FIG. 17B to the left magnetic bodies 10Ba, 10Bc, 10Be. On the other hand, the permanent magnet present at the corresponding position of the magnetic body unit 200L is simultaneously magnetized to the magnetic bodies 10Ab, 10Ad, 10Af located at the other ends of the respective magnetic body blocks 100Aa, 100Ab, 100Ac of one adjacent magnetic body unit 200A. Apply. This state is equivalent to the movement of the permanent magnets 20Aa, 20Ac, 20Ae shown in FIG. 17A to the right magnetic bodies 10Ab, 10Ad, 10Af. Also in the other magnetic body units 200C-200L, the positional relationship between the permanent magnet and the magnetic body between two adjacent magnetic body units changes in the same manner as in the case of the magnetic body units 200A and 200B. The positional relationship between the permanent magnet and the magnetic body as described above between two adjacent magnetic body units is referred to as state 2.
 このように、磁石配置板800が30°回転する度に、すべての磁性体ユニット200A、200B、200C、…、200G、…、200Lにおいて、上記の状態1と状態2が繰り返される。つまり、それぞれの磁性体ユニット200A、200B、200C、…、200G、…、200Lにおいて、図1Aと図1Bの状態が繰り返されることになる。 Thus, every time the magnet arrangement plate 800 rotates 30 °, the above-described state 1 and state 2 are repeated in all the magnetic body units 200A, 200B, 200C,..., 200G,. That is, in each magnetic body unit 200A, 200B, 200C, ..., 200G, ..., 200L, the states of FIGS. 1A and 1B are repeated.
 磁石配置板800を形成する下側の円板800Bの片面(図16および図17に示す円板800Bの図示上側)には磁気突起が形成される。磁気突起は上側の円板800Aの片面に配置している永久磁石の配置と対応させて配置する。たとえば、図16および図17に示すように、永久磁石20Aaに対応させて磁気突起20Abが、永久磁石20Acに対応させて磁気突起20Adが、永久磁石20Aeに対応させて磁気突起20Afがそれぞれ配置されている。また、永久磁石20Baに対応させて磁気突起20Bbが、永久磁石20Bcに対応させて磁気突起20Bdが、永久磁石20Beに対応させて磁気突起20Bfがそれぞれ配置されている。それぞれの永久磁石からの磁力線を対峙する磁気突起で受け止めて、永久磁石と磁気突起との間の磁気抵抗を極力小さくするためと、永久磁石からの磁力線が磁性体を漏れなく通過できるようにするためである。 Magnetic protrusions are formed on one side of the lower disk 800B forming the magnet arrangement plate 800 (the upper side of the disk 800B shown in FIGS. 16 and 17). The magnetic protrusions are arranged in correspondence with the arrangement of the permanent magnets arranged on one side of the upper disk 800A. For example, as shown in FIGS. 16 and 17, a magnetic projection 20Ab is arranged corresponding to the permanent magnet 20Aa, a magnetic projection 20Ad is arranged corresponding to the permanent magnet 20Ac, and a magnetic projection 20Af is arranged corresponding to the permanent magnet 20Ae. ing. Further, a magnetic protrusion 20Bb is disposed corresponding to the permanent magnet 20Ba, a magnetic protrusion 20Bd is disposed corresponding to the permanent magnet 20Bc, and a magnetic protrusion 20Bf is disposed corresponding to the permanent magnet 20Be. Receiving the magnetic lines of force from each permanent magnet with magnetic protrusions that confront each other to minimize the magnetic resistance between the permanent magnets and the magnetic protrusions, and to allow the magnetic lines of force from the permanent magnet to pass through the magnetic material without leakage. Because.
 磁石配置板800は隙間を設けて磁性体・熱伝達部配置板700を挟む磁気的に接続された2枚の平板で構成される。上側の円板800Aに配置されている永久磁石と下側の円板800Bに配置されている磁気突起は、上側の円板800Aと下側の円板800Bとの間で磁気回路を形成する。この磁気回路は磁気印加部を構成する。 The magnet arrangement plate 800 is composed of two magnetically connected flat plates that sandwich the magnetic material / heat transfer portion arrangement plate 700 with a gap. The permanent magnets disposed on the upper disk 800A and the magnetic protrusions disposed on the lower disk 800B form a magnetic circuit between the upper disk 800A and the lower disk 800B. This magnetic circuit constitutes a magnetic application unit.
 本実施形態2では、磁気印加部に磁気を発生させる手段として永久磁石を用いた。しかし、永久磁石の使用に代えて、超伝導磁石や電磁石を使用することもできる。磁気回路を電磁石によって構成すると、磁性体に印加する磁気の大きさをある範囲で変更することができるので、磁気印加部に汎用性を持たせることができる。しかし、省エネルギーや実用性の観点からは、永久磁石の使用が望ましい。 In the second embodiment, a permanent magnet is used as means for generating magnetism in the magnetic application unit. However, instead of using a permanent magnet, a superconducting magnet or an electromagnet can be used. When the magnetic circuit is composed of an electromagnet, the magnitude of the magnetism applied to the magnetic body can be changed within a certain range, so that the magnetism applying unit can have versatility. However, it is desirable to use a permanent magnet from the viewpoint of energy saving and practicality.
 なお、本実施形態2では、上側の円板800Aに永久磁石を配置し、下側の円板800Bに磁気突起を配置しているが、これとは逆に、上側の円板800Aに磁気突起を配置し、下側の円板800Bに永久磁石を配置させることも可能である。また、本実施形態2では、両円板を一体として回転させているが、両円板は磁気的に接続されていれば別々に設けても良い。上側の円板800Aと下側の円板800Bが磁気的に接続され、永久磁石と磁気突起が対峙して設けてあるので、永久磁石からの磁束を有効に活用でき、永久磁石の小型化、軽量化が可能である。 In the second embodiment, permanent magnets are arranged on the upper disc 800A and magnetic projections are arranged on the lower disc 800B. Conversely, magnetic projections are arranged on the upper disc 800A. It is also possible to arrange a permanent magnet on the lower disk 800B. In the second embodiment, both disks are rotated as a unit. However, both disks may be provided separately as long as they are magnetically connected. Since the upper disc 800A and the lower disc 800B are magnetically connected and the permanent magnet and the magnetic projection are provided opposite to each other, the magnetic flux from the permanent magnet can be effectively utilized, and the permanent magnet can be downsized. Weight reduction is possible.
 なお、磁石配置板800は、磁性体10Aa、…で発生した熱および熱伝達部30Aa、…で伝達する熱を逃がさないようにするために、熱抵抗の大きな低熱伝達材料を用いることが好ましい。 The magnet arrangement plate 800 is preferably made of a low heat transfer material having a large thermal resistance so as not to let the heat generated by the magnetic bodies 10Aa,... And the heat transferred by the heat transfer units 30Aa,.
 以上のような構成を有する磁石配置板800が磁性体・熱伝達部配置板700に対して回転すると、熱伝達部30Ab、…は次のようにして熱を伝達させる。 When the magnet arrangement plate 800 having the above-described configuration rotates with respect to the magnetic body / heat transfer portion arrangement plate 700, the heat transfer portions 30Ab,... Transmit heat as follows.
 まず、永久磁石と磁性体との位置関係が、図14および図18に示す状態1にあるとき、磁性体ユニット200Aの対応位置では、熱伝達部30と磁性体との位置関係は図18Aに示すようになっている。 First, when the positional relationship between the permanent magnet and the magnetic material is in the state 1 shown in FIGS. 14 and 18, the positional relationship between the heat transfer unit 30 and the magnetic material is shown in FIG. 18A at the corresponding position of the magnetic material unit 200A. As shown.
 すなわち、状態1の場合、磁性体ユニット200Aの対応位置では、永久磁石20Aaが磁性体10Aaに、永久磁石20Acが磁性体10Acに、永久磁石20Aeが磁性体10Aeに、それぞれ位置する(図17A、図18A参照)。このときには、磁性体10Aa、10Ac、10Aeに対して磁気が印加され、磁性体10Ab、10Ad、10Afには磁気が印加されておらず磁気が除去されている。このとき、磁性体10Aa、10Ac、10Aeは発熱し、磁性体10Ab、10Ad、10Afは吸熱する。そして同時に、熱伝達部30Abが磁性体10Aaと10Abとの間、熱伝達部30Adが磁性体10Acと10Adとの間、熱伝達部30Afが磁性体10Aeと10Afとの間で熱伝達状態となる。このため、各磁性体ブロック内の隣り合う磁性体との間の熱伝達が行われる。すなわち、磁性体10Aa、10Ac、10Aeが磁気熱量効果により発生した熱を磁性体10Ab、10Ad、10Afにそれぞれ移動する。また、このときには、低温側熱交換部40Aと磁性体10Aaとの間および高温側熱交換部40Bと磁性体10Afとの間の熱の伝達は行わない。また、磁性体ブロック間の熱の伝達も行わない。 That is, in the state 1, at the corresponding position of the magnetic body unit 200A, the permanent magnet 20Aa is located on the magnetic body 10Aa, the permanent magnet 20Ac is located on the magnetic body 10Ac, and the permanent magnet 20Ae is located on the magnetic body 10Ae (FIG. 17A, (See FIG. 18A). At this time, magnetism is applied to the magnetic bodies 10Aa, 10Ac, and 10Ae, and no magnetism is applied to the magnetic bodies 10Ab, 10Ad, and 10Af, and the magnetism is removed. At this time, the magnetic bodies 10Aa, 10Ac, and 10Ae generate heat, and the magnetic bodies 10Ab, 10Ad, and 10Af absorb heat. At the same time, the heat transfer section 30Ab is in a heat transfer state between the magnetic bodies 10Aa and 10Ab, the heat transfer section 30Ad is in the magnetic bodies 10Ac and 10Ad, and the heat transfer section 30Af is in the heat transfer state between the magnetic bodies 10Ae and 10Af. . For this reason, heat transfer between adjacent magnetic bodies in each magnetic body block is performed. That is, the heat generated by the magnetic bodies 10Aa, 10Ac, and 10Ae due to the magnetocaloric effect is transferred to the magnetic bodies 10Ab, 10Ad, and 10Af, respectively. At this time, heat is not transferred between the low temperature side heat exchange unit 40A and the magnetic body 10Aa and between the high temperature side heat exchange unit 40B and the magnetic body 10Af. Also, heat transfer between the magnetic blocks is not performed.
 また、磁性体ユニット200Bの対応位置では、熱伝達部30と磁性体との位置関係は図17Bに示すようになっている。 Also, at the corresponding position of the magnetic body unit 200B, the positional relationship between the heat transfer section 30 and the magnetic body is as shown in FIG. 17B.
 すなわち、磁性体ユニット200Bの対応位置は、永久磁石20Baが磁性体10Bbに、永久磁石20Bcが磁性体10Bdに、永久磁石20Beが磁性体10Afに、それぞれ位置する(図17B、図18A参照)。このときには、磁性体10Bb、10Bd、10Bfに対して磁気が印加され、磁性体10Ba、10Bc、10Beには磁気が印加されておらず磁気が除去されている。このとき、磁性体10Bb、10Bd、10Bfは発熱し、磁性体10Ba、10Bc、10Beは吸熱する。そして同時に、熱伝達部30Baが低温側熱交換部40Aと磁性体10Baとの間に、熱伝達部30Bcが磁性体10Bbと10Bcとの間、熱伝達部30Beが磁性体10Bdと10Beとの間、熱伝達部30Bgが磁性体10Bfと高温側熱交換部40Bとの間で、それぞれ熱伝達状態になる。このため、隣り合う磁性体ブロック100Ba、100Bb、100Bcの隣り合う磁性体10Bb-10Bc、10Bd-10Be間の熱伝達が行われる。また、磁性体ユニット200Bの一端に位置する磁性体10Baと低温側熱交換部40Aとの間および磁性体ユニット200Bの他端に位置する磁性体10Bfと高温側熱交換部40Bとの間で熱伝達が行われる。すなわち、10Ba、10Bc、10Beが磁気熱量効果により吸熱され、磁性体10Bb、10Bd、10Bfは磁気熱量効果により発熱する。このため、低温側熱交換部40Aから磁性体10Baに、磁性体10Bbから磁性体10Bcに、磁性体10Bdから磁性体10Beに、磁性体10Bfから高温側熱交換部40Bに熱が移動する。 That is, the corresponding position of the magnetic body unit 200B is such that the permanent magnet 20Ba is located on the magnetic body 10Bb, the permanent magnet 20Bc is located on the magnetic body 10Bd, and the permanent magnet 20Be is located on the magnetic body 10Af (see FIGS. 17B and 18A). At this time, magnetism is applied to the magnetic bodies 10Bb, 10Bd, and 10Bf, and no magnetism is applied to the magnetic bodies 10Ba, 10Bc, and 10Be, and the magnetism is removed. At this time, the magnetic bodies 10Bb, 10Bd, and 10Bf generate heat, and the magnetic bodies 10Ba, 10Bc, and 10Be absorb heat. At the same time, the heat transfer section 30Ba is between the low temperature side heat exchange section 40A and the magnetic body 10Ba, the heat transfer section 30Bc is between the magnetic bodies 10Bb and 10Bc, and the heat transfer section 30Be is between the magnetic bodies 10Bd and 10Be. The heat transfer unit 30Bg is in a heat transfer state between the magnetic body 10Bf and the high temperature side heat exchange unit 40B. Therefore, heat transfer is performed between the adjacent magnetic bodies 10Bb-10Bc, 10Bd-10Be in the adjacent magnetic body blocks 100Ba, 100Bb, 100Bc. Further, heat is generated between the magnetic body 10Ba located at one end of the magnetic body unit 200B and the low temperature side heat exchange unit 40A and between the magnetic body 10Bf located at the other end of the magnetic body unit 200B and the high temperature side heat exchange unit 40B. Transmission takes place. That is, 10Ba, 10Bc, 10Be are absorbed by the magnetocaloric effect, and the magnetic bodies 10Bb, 10Bd, 10Bf generate heat by the magnetocaloric effect. For this reason, heat moves from the low temperature side heat exchange part 40A to the magnetic body 10Ba, from the magnetic body 10Bb to the magnetic body 10Bc, from the magnetic body 10Bd to the magnetic body 10Be, and from the magnetic body 10Bf to the high temperature side heat exchange part 40B.
 以上のように、磁石配置板800に配置されている複数の磁気印加部は、磁石配置板800と磁性体・熱伝達部配置板700との相対移動によって、磁性体・熱伝達部配置板700に配置されている複数の磁性体に近接離反して磁気熱量効果を発現させる。また、磁性体・熱伝達部配置板700に配置されている複数の熱伝達部は、磁石配置板800の「移動に合わせて熱伝達状態と断熱状態を切り替えている。 As described above, the plurality of magnetism applying units arranged on the magnet arrangement plate 800 are moved relative to the magnet arrangement plate 800 and the magnetic body / heat transfer unit arrangement plate 700 by the relative movement between the magnet arrangement plate 800 and the magnetic body / heat transfer unit arrangement plate 700. The magnetocaloric effect is developed by moving close to and away from the plurality of magnetic bodies arranged in the plate. In addition, the plurality of heat transfer units arranged on the magnetic body / heat transfer unit arrangement plate 700 “switch the heat transfer state and the heat insulation state in accordance with the movement of the magnet arrangement plate 800.
 上記の状態1は図18Aに示すとおりである。磁性体ユニット200Aの対応位置では、各磁性体ブロック内の隣り合う磁性体との間で熱を伝達させ、磁性体ユニット200Bの対応位置では、隣り合う磁性体ブロックの隣り合う磁性体との間ならびに磁性体ユニット200Bの一端に位置する磁性体と低温側熱交換部40Aとの間および磁性体ユニット200Bの他端に位置する磁性体と高温側熱交換部40Bとの間で熱を伝達させる。 The above state 1 is as shown in FIG. 18A. At the corresponding position of the magnetic unit 200A, heat is transferred between adjacent magnetic bodies in each magnetic block, and between the adjacent magnetic bodies of the adjacent magnetic blocks at the corresponding position of the magnetic unit 200B. In addition, heat is transferred between the magnetic body positioned at one end of the magnetic unit 200B and the low-temperature side heat exchange unit 40A and between the magnetic body positioned at the other end of the magnetic unit 200B and the high-temperature side heat exchange unit 40B. .
 永久磁石と磁性体との位置関係が、図18に示す状態1にあるとき、磁性体ユニット200Aの対応位置では、熱伝達部の熱伝達状態と磁性体との関係は図17Aに示すものと等価になっている。同時に、磁性体ユニット200Bの対応位置では、熱伝達部の熱伝達状態と磁性体との関係は図17Bに示すものと等価になっている。 When the positional relationship between the permanent magnet and the magnetic body is in the state 1 shown in FIG. 18, the relationship between the heat transfer state of the heat transfer unit and the magnetic body is as shown in FIG. 17A at the corresponding position of the magnetic body unit 200A. It is equivalent. At the same time, at the corresponding position of the magnetic body unit 200B, the relationship between the heat transfer state of the heat transfer section and the magnetic body is equivalent to that shown in FIG. 17B.
 次に、磁石配置板800を30°時計方向に回転し、永久磁石と磁性体との位置関係が、図18Bに示す状態2にあるとき、磁性体ユニット200Aの対応位置では、熱伝達部30と磁性体との位置関係は図17Bに示すものと等価になっている。同時に、磁性体ユニット200Bの対応位置では、熱伝達部30と磁性体との位置関係は図17Aに示すものと等価になっている。状態2における永久磁石と磁性体との位置関係は、状態1における永久磁石と磁性体との位置関係を、隣り合う磁気ユニット間で逆にしたものである。 Next, when the magnet arrangement plate 800 is rotated 30 ° clockwise and the positional relationship between the permanent magnet and the magnetic body is in the state 2 shown in FIG. 18B, the heat transfer section 30 is at the corresponding position of the magnetic body unit 200A. The positional relationship between the magnetic body and the magnetic body is equivalent to that shown in FIG. 17B. At the same time, at the corresponding position of the magnetic unit 200B, the positional relationship between the heat transfer section 30 and the magnetic body is equivalent to that shown in FIG. 17A. The positional relationship between the permanent magnet and the magnetic body in the state 2 is obtained by reversing the positional relationship between the permanent magnet and the magnetic body in the state 1 between adjacent magnetic units.
 上記の状態2は図18Bに示すとおりである。磁性体ユニット200Aの対応位置では、隣り合う磁性体ブロックの隣り合う磁性体との間ならびに磁性体ユニット200Aの一端に位置する磁性体と低温側熱交換部40Aとの間および磁性体ユニット200Aの他端に位置する磁性体と高温側熱交換部40Bとの間で熱を伝達させ、磁性体ユニット200Bの対応位置では、各磁性体ブロック内の隣り合う磁性体との間で熱を伝達させる。 State 2 above is as shown in FIG. 18B. At the corresponding position of the magnetic body unit 200A, between the adjacent magnetic bodies of the adjacent magnetic body blocks, between the magnetic body located at one end of the magnetic body unit 200A and the low-temperature side heat exchange unit 40A, and between the magnetic body units 200A. Heat is transmitted between the magnetic body located at the other end and the high temperature side heat exchanging section 40B, and heat is transmitted between adjacent magnetic bodies in each magnetic body block at the corresponding position of the magnetic body unit 200B. .
 以上のように、磁石配置板800の熱伝達部は、状態1のときには、隣り合う一方の磁性体ユニットの各磁性体ブロック内の隣り合う磁性体との間で熱を伝達させ、他方の磁性体ユニットの隣り合う磁性体ブロックの隣り合う磁性体との間ならびに前記他方の磁性体ユニットの一端に位置する磁性体と前記低温側熱交換部との間および前記他方の磁性体ユニットの他端に位置する磁性体と前記高温側熱交換部との間で熱を伝達させる。また、状態2のときには、前記隣り合う他方の磁性体ユニットの各磁性体ブロック内の隣り合う磁性体との間で熱を伝達させ、一方の磁性体ユニットの隣り合う磁性体ブロックの隣り合う磁性体との間並びに前記一方の磁性体ユニットの一端に位置する磁性体と前記低温側熱交換部との間および前記一方の磁性体ユニットの他端に位置する磁性体と前記高温側熱交換部との間で熱を伝達させる。 As described above, when the heat transfer portion of the magnet arrangement plate 800 is in the state 1, the heat transfer portion transfers heat between adjacent magnetic bodies in each magnetic block of one adjacent magnetic body unit and the other magnetic body. Between adjacent magnetic bodies of adjacent magnetic body blocks of the body unit, between the magnetic body located at one end of the other magnetic body unit and the low temperature side heat exchange section, and at the other end of the other magnetic body unit Heat is transferred between the magnetic body located at the high temperature side and the high temperature side heat exchange part. In state 2, heat is transferred between adjacent magnetic bodies in each magnetic block of the other adjacent magnetic body unit, and adjacent magnetic bodies of adjacent magnetic body blocks of one magnetic body unit are transferred. And between the magnetic body located at one end of the one magnetic body unit and the low-temperature side heat exchange section and between the magnetic body located at the other end of the one magnetic body unit and the high-temperature side heat exchange section. Heat to and from.
 図16および図17に示す駆動部は、磁性体・熱伝達部配置板700と磁石配置板800を磁性体ユニットの配置方向に相対的に移動させるために、磁性体・熱伝達部配置板700または磁石配置板800のいずれか一方を回転させるものである。駆動部は、磁性体・熱伝達部配置板700、磁石配置板800を回転させることができるものであれば、あらゆる種類の電気モータを用いることができる。本実施形態では、磁石配置板800をその中心部を回転軸として回転させている。 The drive unit shown in FIGS. 16 and 17 has a magnetic body / heat transfer portion arrangement plate 700 for relatively moving the magnetic body / heat transfer portion arrangement plate 700 and the magnet arrangement plate 800 in the arrangement direction of the magnetic body unit. Alternatively, either one of the magnet arrangement plates 800 is rotated. Any type of electric motor can be used as the drive unit as long as it can rotate the magnetic body / heat transfer unit arrangement plate 700 and the magnet arrangement plate 800. In the present embodiment, the magnet arrangement plate 800 is rotated with its central portion as the rotation axis.
 低温側熱交換部40Aおよび高温側熱交換部40Bは、たとえば室内の空気などの外部環境との熱交換ができる機構を備えている。たとえば、外部から冷媒を供給し、その冷媒を介して外部環境との熱交換ができるようにした機構を採用しても良い。 The low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B are provided with a mechanism capable of exchanging heat with an external environment such as indoor air. For example, a mechanism may be adopted in which a refrigerant is supplied from the outside and heat exchange with the external environment can be performed via the refrigerant.
 以上のように構成されている本実施形態に係る磁気冷暖房装置500は次のようにして磁気冷凍を行う。 The magnetic air conditioner 500 according to the present embodiment configured as described above performs magnetic refrigeration as follows.
 まず、駆動部を作動させて磁石配置板800を時計または反時計方向に回転させると、30°回転するごとに、それぞれの磁性体ユニットにおいて、図1Aと図1Bの状態、すなわち図18Aと図18Bの状態を繰り返すことになる。つまり、状態1と状態2を繰り返す。この繰り返しによって、それぞれの磁気ユニットにおいて、低温側熱交換部40Aから高温側熱交換部40Bに熱が移動する。 First, when the drive unit is operated to rotate the magnet arrangement plate 800 in the clockwise or counterclockwise direction, the state shown in FIGS. 1A and 1B, that is, FIG. 18A and FIG. The state of 18B will be repeated. That is, state 1 and state 2 are repeated. By repeating this, in each magnetic unit, heat is transferred from the low temperature side heat exchange section 40A to the high temperature side heat exchange section 40B.
 このとき、本実施形態2においても、起動時温度を作動温度範囲とする磁気熱量材料を、少なくとももっとも低温側および高温側の磁性体に組み合わせているので、起動時から一速く定常状態に達することができる。すなわち従来の磁性体を用いて同じ構成の磁気冷暖房装置と比較して磁石配置板800の回転回数が少ないうちに定常状態に達するのである。 At this time, also in the second embodiment, since the magnetocaloric material having the starting temperature within the operating temperature range is combined with at least the lowest temperature side and the higher temperature side magnetic body, the steady state is reached quickly from the startup time. Can do. That is, the steady state is reached while the number of rotations of the magnet arrangement plate 800 is small compared to a magnetic air conditioner having the same configuration using a conventional magnetic body.
 そして、最終的定常状態に達すれば、低温側熱交換部40Aの温度を下げ、高温側熱交換部40Bの温度を上げることができ、低温側熱交換部40Aと高温側熱交換部40Bとの間に温度差を生じさせることができる。 When the final steady state is reached, the temperature of the low temperature side heat exchange unit 40A can be lowered and the temperature of the high temperature side heat exchange unit 40B can be increased, and the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B can be increased. A temperature difference can be produced between them.
 なお、冷凍能力の大きな磁気冷暖房装置を構成する場合には、直列に配列する磁性体ブロックの数を増やして、低温側熱交換部40Aと高温側熱交換部40Bに接続する。直列に配列する磁性体ブロックの数を増やすことによって、低温側熱交換部40Aと高温側熱交換部40Bとの間の温度差をより大きくすることができる。そのような場合も起動時温度を作動温度範囲とする磁気熱量材料を、少なくとももっとも低温側および高温側の磁性体に組み合わせる。また冷凍能力の大きな磁気冷暖房装置の場合は、もっとも低温側および高温側の磁性体だけでなく、もっとも低温側および高温側の磁性体と起動時温度の磁性体との間に配置される磁性体においても、起動時温度の磁性体を組み合わせることが好ましい。 In the case of configuring a magnetic air conditioner with a large refrigerating capacity, the number of magnetic blocks arranged in series is increased and connected to the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B. By increasing the number of magnetic blocks arranged in series, the temperature difference between the low temperature side heat exchange unit 40A and the high temperature side heat exchange unit 40B can be increased. In such a case, a magnetocaloric material whose starting temperature is within the operating temperature range is combined with at least the lowest temperature side and the higher temperature side magnetic body. In addition, in the case of a magnetic cooling / heating device with a large refrigerating capacity, not only the magnetic material at the lowest temperature side and the high temperature side, but also the magnetic material arranged between the magnetic material at the lowest temperature side and the high temperature side and the magnetic material at the starting temperature. In this case, it is preferable to combine magnetic materials having a starting temperature.
 本実施形態2の磁気冷暖房装置は、車両の冷凍装置(特に燃料電池や二次電池の冷却装置)のほか、室内の空調を行うエアコン、冷蔵庫、また車室内の空調を行うエアコンなどに適用させることができる。 The magnetic air conditioner according to the second embodiment is applied to an air conditioner that performs indoor air conditioning, a refrigerator, an air conditioner that performs air conditioning in a vehicle interior, in addition to a vehicle refrigeration apparatus (particularly a fuel cell or secondary battery cooling apparatus). be able to.
 本実施形態2では、磁石配置板800に永久磁石および磁気突起を配置した形態を例示した。このように永久磁石および磁気突起を一体的に形成すると、磁石配置板800を小型化、軽量化できる。 In the second embodiment, an example in which permanent magnets and magnetic protrusions are arranged on the magnet arrangement plate 800 is illustrated. Thus, if a permanent magnet and a magnetic protrusion are integrally formed, the magnet arrangement | positioning board 800 can be reduced in size and weight.
 さらに、本実施形態2では、磁性体・熱伝達部配置板700と磁石配置板800を円盤状にして両板を相対的に回転させるものを例示したが、磁性体・熱伝達部配置板700と磁石配置板800を平板状にして両板を相対的に直線的に往復移動させるものであっても良い。 Furthermore, in the second embodiment, the magnetic body / heat transfer portion arrangement plate 700 and the magnet arrangement plate 800 are illustrated in a disk shape, and both plates are relatively rotated. And the magnet arrangement | positioning board 800 may be made into flat form, and both plates may be reciprocated relatively linearly.
 以上のように磁気冷暖房装置を構成すると、磁性体・熱伝達部配置板700と磁石配置板800を磁性体ユニットの配置方向に相対的に移動させだけで、磁気冷凍を行うことができるので、磁気冷暖房装置の構成を単純化でき、小型化、軽量化、低コスト化が実現できる。 When the magnetic cooling / heating apparatus is configured as described above, magnetic refrigeration can be performed only by relatively moving the magnetic body / heat transfer portion arrangement plate 700 and the magnet arrangement plate 800 in the arrangement direction of the magnetic body unit. The configuration of the magnetic air conditioner can be simplified, and downsizing, weight reduction, and cost reduction can be realized.
 次に、実施形態2に使用した熱伝導部の例を説明する。ここでは、熱伝導部として、それ自身は移動せずに、熱の伝導と遮断を切り替えることのできるものを使用している。以下では、このような移動を伴わずに熱の伝導と遮断を切り替える熱伝導部を熱スイッチ部と称する。 Next, an example of the heat conduction unit used in the second embodiment will be described. Here, as the heat conducting portion, a member that can switch between conduction and interruption of heat without moving itself is used. Hereinafter, a heat conduction part that switches between conduction and interruption of heat without such movement is referred to as a heat switch part.
 熱スイッチ部は、たとえば、電気、磁場を印加することで熱伝導率が大きく変化する材料やデバイス、また、電気濡れ効果で液体金属の出し入れによる熱伝導率を変化させるものなどがある。 The thermal switch section includes, for example, materials and devices whose thermal conductivity changes greatly by applying electricity and a magnetic field, and those which change the thermal conductivity by taking in and out liquid metal due to the electric wetting effect.
 また、以下の各形態において磁性体は実施形態1として説明した磁性体を使用する。 Further, in each of the following forms, the magnetic body described as Embodiment 1 is used as the magnetic body.
 <熱スイッチ部の形態1>
 図19は熱スイッチ部の形態1を説明するための説明図である。
<Form 1 of thermal switch part>
FIG. 19 is an explanatory diagram for explaining the first form of the thermal switch section.
 図示した磁気冷暖房装置においては、低温側熱交換部40Aと磁性体10Aとの間に熱スイッチ部30Aを、磁性体10Aと磁性体10Bの間に熱スイッチ部30Bを配置している。ここで熱スイッチ部30Aと30Bは、実施形態1および2における熱伝導部と同様に、熱の伝達、遮断を切り替えるものである(ここでは熱スイッチ部についても上述した熱伝導部と同じ符号を付した)。また、図示しないが、他の磁性体同士の間、および磁性体と高温側熱交換部との間にも、ここで説明する熱スイッチ部30Aおよび30Bが配置されることになる。 In the illustrated magnetic air conditioner, the thermal switch unit 30A is disposed between the low temperature side heat exchange unit 40A and the magnetic body 10A, and the thermal switch unit 30B is disposed between the magnetic body 10A and the magnetic body 10B. Here, the heat switch units 30A and 30B are configured to switch between transmission and interruption of heat in the same manner as the heat conduction unit in the first and second embodiments (here, the same reference numerals as those of the heat conduction unit described above are also used for the heat switch unit). Attached). Moreover, although not shown in figure, thermal switch part 30A and 30B demonstrated here are arrange | positioned also between other magnetic bodies and between a magnetic body and a high temperature side heat exchange part.
 図19に示すように、磁性体10Aの対向する両面に熱スイッチ部30Aと30Bが配置されている。熱スイッチ部30A、30Bは、磁性体10Aの対向する両面に接合または接着によって一体化する。磁性体10Aの両隣には低温側熱交換部40Aと磁性体10Bが存在する。熱伝導部30Aは低温側熱交換部40Aと磁性体10Aに接合または接着され、熱スイッチ部30Bは磁性体10Aと磁性体10Bに接合または接着される。したがって、低温側熱交換部40A、熱スイッチ部30A、磁性体10A、熱スイッチ部30B、磁性体10Bは一体化する。 As shown in FIG. 19, thermal switch portions 30A and 30B are arranged on both opposing surfaces of the magnetic body 10A. The thermal switch parts 30A and 30B are integrated on both opposing surfaces of the magnetic body 10A by bonding or adhesion. The low temperature side heat exchange part 40A and the magnetic body 10B exist on both sides of the magnetic body 10A. The heat conducting unit 30A is bonded or bonded to the low temperature side heat exchanging unit 40A and the magnetic body 10A, and the thermal switch unit 30B is bonded or bonded to the magnetic body 10A and the magnetic body 10B. Therefore, the low temperature side heat exchange unit 40A, the thermal switch unit 30A, the magnetic body 10A, the thermal switch unit 30B, and the magnetic body 10B are integrated.
 (熱スイッチ部の動作)
 熱スイッチ部30Aと30Bは、9テスラ程度の磁気が印加されると、印加される前よりも熱伝導率が大きくなる。熱伝導率の大きさの変化は、100倍から3000倍の範囲である。したがって、熱スイッチ部30Aと30Bは、磁気が印加されなければ熱伝導率は極めて小さくなり、接続されている低温側熱交換部40A、磁性体10A、磁性体10Bの間では熱を伝導しない。一方、熱スイッチ部30Aと30Bは、磁気が印加されると熱伝導率は極めて大きくなり、接続されている低温側熱交換部40A、磁性体10A、磁性体10Bの間で熱が伝導する。
(Operation of thermal switch)
When the magnetism of about 9 Tesla is applied to the thermal switch units 30A and 30B, the thermal conductivity becomes larger than before the application. The change in the magnitude of the thermal conductivity ranges from 100 times to 3000 times. Therefore, the thermal switch units 30A and 30B have extremely low thermal conductivity unless magnetism is applied, and do not conduct heat among the low temperature side heat exchange unit 40A, the magnetic body 10A, and the magnetic body 10B that are connected. On the other hand, when the magnetism is applied to the thermal switch units 30A and 30B, the thermal conductivity becomes extremely large, and heat is conducted between the low temperature side heat exchange unit 40A, the magnetic body 10A, and the magnetic body 10B that are connected.
 図19に示すように、熱スイッチ部30Aと30Bは、磁気の印加、除去によって絶縁体、金属に相転移する転移体を含む。転移体は、少なくとも1種類以上の電荷整列絶縁体を含む。したがって、転移体に磁気を印加すると金属に相転移して熱伝導率が相対的に大きくなる。また、転移体から磁気を除去すると絶縁体に相転移して熱伝導率が相対的に小さくなる。 As shown in FIG. 19, the thermal switch sections 30A and 30B include an insulator and a transition body that undergoes a phase transition to metal by applying and removing magnetism. The transition body includes at least one or more types of charge alignment insulators. Therefore, when magnetism is applied to the transition body, the phase transition to the metal occurs and the thermal conductivity becomes relatively large. Further, when magnetism is removed from the transition body, the phase transition to an insulator causes a relatively small thermal conductivity.
 図19の場合、熱スイッチ部30Aには磁気が印加されていないので、熱スイッチ部30Aは絶縁体としての性質を持ち、伝導電子が流れ難くなって、低温側熱交換部40Aと磁性体10Aとの間では熱が伝導しない。一方、熱スイッチ部30Bには、永久磁石21BH、26BHによって磁気が印加されているので、熱スイッチ部30Bは金属としての性質を持ち、伝導電子が流れやすくなって、磁性体10Aと磁性体10Bとの間で熱が伝導する。一般的に固体の熱伝導は、フォノンおよび伝導電子が担っていることが知られている。すなわち、ここでは伝導電子の流れを磁気によって制御しているのである。 In the case of FIG. 19, since magnetism is not applied to the thermal switch part 30A, the thermal switch part 30A has a property as an insulator, and it becomes difficult for conduction electrons to flow, and the low temperature side heat exchange part 40A and the magnetic substance 10A Heat is not conducted between the two. On the other hand, since magnetism is applied to the thermal switch unit 30B by the permanent magnets 21BH and 26BH, the thermal switch unit 30B has a property as a metal, and conduction electrons easily flow, and the magnetic body 10A and the magnetic body 10B. Heat is conducted between them. In general, it is known that phonons and conduction electrons are responsible for heat conduction of solids. That is, here, the flow of conduction electrons is controlled by magnetism.
 磁気を印加することで絶縁体から金属に相転移するメカニズムを解明する研究の結果によれば、次のような報告がなされた。 According to the results of research to elucidate the mechanism of phase transition from insulator to metal by applying magnetism, the following report was made.
 遷移金属の酸化物の中には、大量の電子が存在し電子間の相関が強い物質であるために、電子同士が反発し合い局在化した、電荷整列絶縁体という絶縁体が多く存在している。電荷整列絶縁体では、電子のスピンや軌道など、電荷以外の電子の持つ性質(自由度)に直接作用する外場が、電荷整列絶縁体という絶縁体を金属に相変化させる。特に、磁気が電子のスピンに作用すると、局在している大量の電子を雪崩のように動かし、絶縁体を金属に相変化させる。報告によると、ネオジウムストロンチウムマンガン酸化物を用いた場合、温度10K(-236℃)2.4テスラの磁気では電気抵抗率が500Ωmと高い絶縁体状態であったが、9テスラの磁気では電気抵抗率が0.2Ωmと4桁ほど減少したことが示された。本実施形態の熱スイッチ部はこの現象を積極的に利用して、磁気冷暖房装置を構成している。なお、本実施形態では、磁気を印加すると金属化する電荷整列絶縁体として、Gd0.55Sr0.45MnO、Pr0.5Ca0.5MnO3を用いる。 Among transition metal oxides, there are many insulators called charge alignment insulators, where electrons are repelled and localized due to the presence of a large amount of electrons and a strong correlation between the electrons. ing. In a charge alignment insulator, an external field that directly affects the properties (degrees of freedom) of electrons other than charges, such as the spin and orbit of electrons, causes a phase change from an insulator called a charge alignment insulator to a metal. In particular, when magnetism acts on electron spin, it moves a large amount of localized electrons like an avalanche, causing the insulator to phase change to metal. According to the report, when neodymium strontium manganese oxide was used, the electrical resistivity was 500 Ωm at a temperature of 10 K (−236 ° C.) 2.4 Tesla, but it was an insulator, but the electrical resistance was 9 Tesla. It was shown that the rate decreased by about 4 digits to 0.2Ωm. The thermal switch unit of the present embodiment actively utilizes this phenomenon to configure a magnetic air conditioning apparatus. In the present embodiment, Gd 0.55 Sr 0.45 MnO and Pr 0.5 Ca 0.5 MnO 3 are used as the charge alignment insulator that is metallized when magnetism is applied.
 このように、熱スイッチ部を、電荷整列絶縁体を含む転移体で形成すると、磁気の印加、除去によって、熱伝導率の大きさを大きく変えることができ、熱スイッチとして機能させることができる。磁気の印加、除去によって熱伝導率が変化する熱スイッチ部30A、30Bを用いると、隣接する磁性体との熱伝導を、磁気の印加、除去だけで断続させることができる。したがって、熱スイッチ部(熱伝導部)自身を移動させて、熱交換器と磁性体の間、磁性体同士の間を挿脱させる必要がなくなるため、熱スイッチ部の耐久性が向上し、同時に信頼性も向上する。 Thus, when the thermal switch portion is formed of a transition body including a charge alignment insulator, the magnitude of thermal conductivity can be greatly changed by applying and removing magnetism, and the thermal switch section can function as a thermal switch. When the thermal switch portions 30A and 30B whose thermal conductivity changes due to the application and removal of magnetism are used, the heat conduction with the adjacent magnetic body can be interrupted only by the application and removal of magnetism. Therefore, it is not necessary to move the heat switch part (heat conduction part) itself, and to insert / remove between the heat exchanger and the magnetic body, and between the magnetic bodies. Reliability is also improved.
 <熱スイッチ部の形態2>
 図20は熱スイッチ部の形態2を説明するための説明図である。
<Thermal switch part 2>
FIG. 20 is an explanatory diagram for explaining a form 2 of the thermal switch section.
 熱スイッチ部の形態2に係る熱スイッチ部130は、磁性体10Aと10Bに取り付ける電極31A、31Bと、電極31A、31Bの間に取り付ける金属/絶縁相転移体32とによって構成される。電極31Aの一方の面は磁性体10Aの一方の面に接合または接着によって取り付ける。電極31Bの一方の面は磁性体10Bの一方の面に接合または接着によって取り付ける。同様に、金属/絶縁相転移体32の両面は電極31Aと電極31Bの他方の面に接合または接着によって取り付ける。したがって、磁性体10A、熱スイッチ部130、磁性体10Bは一体化される。図示はしていないが、冷暖房装置を構成する他の磁性体と熱スイッチ部も上記のように接合または接着によって一体化される。また、磁性体と熱交換器の間に配置される熱スイッチ部も上記のように接合または接着によって一体化される(以下、他の形態についても同様である)。 The thermal switch unit 130 according to the second form of the thermal switch unit is configured by the electrodes 31A and 31B attached to the magnetic bodies 10A and 10B and the metal / insulating phase transition body 32 attached between the electrodes 31A and 31B. One surface of the electrode 31A is attached to one surface of the magnetic body 10A by bonding or adhesion. One surface of the electrode 31B is attached to one surface of the magnetic body 10B by bonding or adhesion. Similarly, both surfaces of the metal / insulating phase transition body 32 are attached to the other surfaces of the electrode 31A and the electrode 31B by bonding or adhesion. Therefore, the magnetic body 10A, the thermal switch unit 130, and the magnetic body 10B are integrated. Although not shown in the drawing, the other magnetic body and the thermal switch part constituting the air conditioning apparatus are also integrated by bonding or bonding as described above. Further, the heat switch unit disposed between the magnetic body and the heat exchanger is also integrated by bonding or bonding as described above (hereinafter, the same applies to other forms).
 電極31A、31Bは導電性の良好なアルミニウムや銅などの金属(金属単体または合金でも良い)を用いる。磁性体10A、10Bの間では電極31Aと31Bを介して熱が伝導するので、電極31Aと31Bは熱伝導率のより大きい金属を用いることが好ましい。 The electrodes 31A and 31B are made of metal (such as a simple metal or an alloy) such as aluminum or copper having good conductivity. Since heat is conducted between the magnetic bodies 10A and 10B via the electrodes 31A and 31B, the electrodes 31A and 31B are preferably made of a metal having a higher thermal conductivity.
 電極31A、31Bを磁性体10A、10Bおよび金属/絶縁相転移体32に接着する接着剤は、熱伝導率の大きいものを用いる。たとえば、接着剤に金属粉を接着性が妨げられない程度に混ぜ込んだ熱伝導性を改善した接着剤を用いる。 As the adhesive for adhering the electrodes 31A and 31B to the magnetic bodies 10A and 10B and the metal / insulating phase transition body 32, one having a high thermal conductivity is used. For example, an adhesive having improved thermal conductivity in which metal powder is mixed with the adhesive to such an extent that adhesion is not hindered is used.
 金属/絶縁相転移体32は、電圧を印加すると絶縁体から金属に相転移し、熱伝導率が大きくなり、逆に、電圧を遮断すると金属から絶縁体に相転移し、熱伝導率が小さくなる性質を持つものである。金属と絶縁体の相互間の相転移を示す絶縁体は、無機酸化物モット絶縁体または有機モット絶縁体がある。無機酸化物モット絶縁体は少なくとも遷移金属元素を含む。モット絶縁体としては、LaTiO3、SrRuO4、BEDT-TTF(TCNQ)が知られている。金属と絶縁体の相互間の相転移が可能なデバイスとして現在知られているものは、ZnO単結晶薄膜電気二重層FET、TMTSF/TCNQ積層型FET素子がある。熱は、熱電子および格子結晶によって移送することができる。ZnO単結晶薄膜電気二重層FETおよびTMTSF/TCNQ積層型FET素子は、電圧を印加すると熱電子が活発に移動するようになる性質を利用する。ここでは、金属/絶縁相転移体32に、少なくとも遷移金属元素を含む無機酸化物モット絶縁体、有機モット絶縁体、ZnO単結晶薄膜電気二重層FET、TMTSF/TCNQ積層型FET素子など、電圧の印加除去によって熱伝導率が大きく変化するものを用いる。 When a voltage is applied to the metal / insulating phase transition body 32, the phase transition from the insulator to the metal increases, and the thermal conductivity increases. Conversely, when the voltage is cut off, the phase transition from the metal to the insulator causes a small thermal conductivity. It has the property which becomes. An insulator exhibiting a phase transition between a metal and an insulator is an inorganic oxide mott insulator or an organic mott insulator. The inorganic oxide Mott insulator includes at least a transition metal element. As Mott insulators, LaTiO 3 , SrRuO 4 , and BEDT-TTF (TCNQ) are known. Currently known devices capable of phase transition between metal and insulator include a ZnO single crystal thin film electric double layer FET and a TMTSF / TCNQ stacked FET element. Heat can be transferred by thermionic and lattice crystals. The ZnO single crystal thin film electric double layer FET and the TMTSF / TCNQ stacked FET element utilize the property that the thermal electrons move actively when a voltage is applied. Here, the metal / insulating phase transition body 32 includes an inorganic oxide mott insulator containing at least a transition metal element, an organic mott insulator, a ZnO single crystal thin film electric double layer FET, a TMTSF / TCNQ stacked FET element, etc. A material whose thermal conductivity changes greatly by application removal is used.
 図20に示すように、電極31Aと31Bとの間に直流電圧Vを印加すると、金属/絶縁相転移体32の熱伝導率が相対的に大きくなって、磁性体10Aと10Bとの間で熱の移動が起こる。一方、電極31Aと31Bとの間の直流電圧Vを除去すると、金属/絶縁相転移体32の熱伝導率が相対的に小さくなって、磁性体10Aと10Bとの間の熱の移動が阻止される。したがって、熱スイッチ部130は、電圧の印加、除去によって熱の移動を制御する熱スイッチとなる。 As shown in FIG. 20, when a DC voltage V is applied between the electrodes 31A and 31B, the thermal conductivity of the metal / insulating phase transition body 32 becomes relatively large, and between the magnetic bodies 10A and 10B. Heat transfer occurs. On the other hand, when the DC voltage V between the electrodes 31A and 31B is removed, the thermal conductivity of the metal / insulating phase transition body 32 becomes relatively small, and the heat transfer between the magnetic bodies 10A and 10B is prevented. Is done. Therefore, the thermal switch unit 130 is a thermal switch that controls the movement of heat by applying and removing voltage.
 熱スイッチ部30A-30Gの熱伝導の断続は、電圧の印加、除去によって制御できるので、磁性体間に熱スイッチ部を摺動させずに熱を輸送させることができる。このため、熱スイッチ部に摺動の耐久性を持たせる必要がなく、熱スイッチ部の信頼性が向上する。また、摩擦による機械的な損失をなくすことができ、熱スイッチ部を駆動させるための損失を低減できる。さらに、熱スイッチ部は磁性体との並び方向にのみ熱を輸送でき、熱スイッチ部の熱伝導率は摺動型のものに比較して大きくできるので、熱の輸送に際して熱的な損失が小さくできる。加えて、熱スイッチ部は、電圧の印加、除去に応じて、磁性体間をすべての接触面を使って接続できるので、熱輸送能力および熱輸送効率を向上させることができる。 Since the thermal conduction of the thermal switch sections 30A-30G can be controlled by applying and removing voltage, heat can be transported without sliding the thermal switch section between the magnetic bodies. For this reason, it is not necessary to give the thermal switch part sliding durability, and the reliability of the thermal switch part is improved. Moreover, the mechanical loss by friction can be eliminated and the loss for driving a thermal switch part can be reduced. In addition, the thermal switch unit can transport heat only in the direction of alignment with the magnetic material, and the thermal conductivity of the thermal switch unit can be larger than that of the sliding type, so that thermal loss is small when transporting heat. it can. In addition, since the thermal switch unit can connect between the magnetic bodies using all contact surfaces in accordance with the application and removal of voltage, the heat transport capability and the heat transport efficiency can be improved.
 熱スイッチ部130の熱伝導の断続は、電極31Aと31Bに電圧を印加、除去することによってできる。電極31Aと31Bを設けることで、金属/絶縁相転移体32に容易に電圧を印加することができる。また、金属/絶縁相転移体32に、少なくとも遷移金属元素を含む無機酸化物モット絶縁体、有機モット絶縁体、ZnO単結晶薄膜電気二重層FET、TMTSF/TCNQ積層型FET素子を用いると、熱伝導率の変化の応答性が良好になる。 The thermal conduction of the thermal switch unit 130 can be interrupted by applying and removing a voltage to the electrodes 31A and 31B. By providing the electrodes 31A and 31B, a voltage can be easily applied to the metal / insulating phase transition body 32. Further, when an inorganic oxide Mott insulator, an organic Mott insulator, a ZnO single crystal thin film electric double layer FET, or a TMTSF / TCNQ stacked FET element containing at least a transition metal element is used as the metal / insulating phase transition body 32, Responsiveness of change in conductivity is improved.
 <熱スイッチ部の形態3>
 図21は熱スイッチ部の形態3を説明するための説明図である。
<Third form of thermal switch part>
FIG. 21 is an explanatory view for explaining a third form of the thermal switch section.
 熱スイッチ部の形態3に係る熱スイッチ部130は、熱スイッチ部の形態2で説明した熱スイッチ部130(図20)に、さらに補助電極33A、33Bを追加している。その他の構成および動作は熱スイッチ部の形態2と同様である。 The thermal switch unit 130 according to the thermal switch unit form 3 further includes auxiliary electrodes 33A and 33B in addition to the thermal switch unit 130 (FIG. 20) described in the thermal switch unit form 2. Other configurations and operations are the same as those in the second form of the thermal switch section.
 補助電極33Aと33Bは、金属/絶縁相転移体32に接合または接着によって取り付ける。補助電極33Aと33Bは熱伝導性を考慮しなくても良い。また補助電極33Aと33Bを金属/絶縁相転移体32に接着する接着剤も熱伝導性を考慮しなくても良い。補助電極33Aと33Bと接着剤には、熱電子が通過しないからである。 Auxiliary electrodes 33A and 33B are attached to the metal / insulating phase transition body 32 by bonding or adhesion. The auxiliary electrodes 33A and 33B need not take thermal conductivity into consideration. Further, the adhesive for adhering the auxiliary electrodes 33A and 33B to the metal / insulating phase transition body 32 need not take thermal conductivity into consideration. This is because thermoelectrons do not pass through the auxiliary electrodes 33A and 33B and the adhesive.
 補助電極33Aと33Bは、電極31Aと31Bに対して、直交方向に電圧を印加する。補助電極33Aと33Bとの間に直流電圧を印加すると、金属/絶縁相転移体32内の電子の分布が補助電極33Aと33Bの方向に偏る。このため、磁性体10Aと10Bとの間を移動する熱電子の抵抗が減少し、熱電子が移動しやすくなる。つまり、補助電極33Aと33Bを設けることで、金属/絶縁相転移体32の熱伝導率をより大きくすることができる。 The auxiliary electrodes 33A and 33B apply a voltage in the orthogonal direction to the electrodes 31A and 31B. When a DC voltage is applied between the auxiliary electrodes 33A and 33B, the distribution of electrons in the metal / insulating phase transition body 32 is biased toward the auxiliary electrodes 33A and 33B. For this reason, the resistance of the thermoelectrons moving between the magnetic bodies 10A and 10B is reduced, and the thermoelectrons easily move. That is, by providing the auxiliary electrodes 33A and 33B, the thermal conductivity of the metal / insulating phase transition body 32 can be further increased.
 <熱スイッチ部の形態4>
 図22は熱スイッチ部の形態4を説明するための説明図である。
<Thermal switch part form 4>
FIG. 22 is an explanatory diagram for explaining a fourth mode of the thermal switch section.
 熱スイッチ部の形態4に係る熱スイッチ部130は、電極31Aと31Bを、金属/絶縁相転移体32と磁性体10A、10Bとの間には設けずに、金属/絶縁相転移体32内を移動する熱電子の移動方向に対して直交する方向から電圧が印加できるように設ける。その他の構成および動作は熱スイッチ部の形態2と同様である。 The thermal switch unit 130 according to the fourth form of the thermal switch unit does not include the electrodes 31A and 31B between the metal / insulating phase transition body 32 and the magnetic bodies 10A and 10B, and the inside of the metal / insulating phase transition body 32. Is provided so that a voltage can be applied from a direction orthogonal to the moving direction of the thermoelectrons moving. Other configurations and operations are the same as those in the second form of the thermal switch section.
 したがって、金属/絶縁相転移体32は、磁性体10Aと10Bに直接取り付ける。金属/絶縁相転移体32と磁性体10A、10Bとは、接合または接着剤で取り付ける。このときに用いる接着剤は、熱伝導性の大きいものを用いる。 Therefore, the metal / insulating phase transition body 32 is directly attached to the magnetic bodies 10A and 10B. The metal / insulating phase transition body 32 and the magnetic bodies 10A and 10B are attached by bonding or an adhesive. The adhesive used at this time has a high thermal conductivity.
 電極31Aと31Bは、金属/絶縁相転移体32に接合または接着によって取り付ける。電極31Aと31Bは熱伝導性を考慮しなくても良い。また電極31Aと31Bを金属/絶縁相転移体32に接着する接着剤も熱伝導性を考慮しなくても良い。電極31Aと31Bと接着剤には、熱電子が通過しないからである。 The electrodes 31A and 31B are attached to the metal / insulating phase transition body 32 by bonding or adhesion. The electrodes 31A and 31B do not have to consider thermal conductivity. Further, the adhesive for adhering the electrodes 31A and 31B to the metal / insulating phase transition body 32 need not take thermal conductivity into consideration. This is because thermoelectrons do not pass through the electrodes 31A and 31B and the adhesive.
 電極31Aと31Bは、金属/絶縁相転移体32内を移動する熱電子の移動方向に対して、直交方向に電圧を印加する。電極31Aと31Bとの間に直流電圧を印加すると、金属/絶縁相転移体32内の電子の分布が電極31Aと31Bの方向に偏って相転移する。このため、磁性体10Aと10Bとの間を移動する熱電子の抵抗が減少し、熱電子が移動しやすくなる。 The electrodes 31A and 31B apply a voltage in a direction orthogonal to the moving direction of the thermoelectrons moving in the metal / insulating phase transition body 32. When a DC voltage is applied between the electrodes 31A and 31B, the distribution of electrons in the metal / insulating phase transition body 32 is shifted in the direction of the electrodes 31A and 31B. For this reason, the resistance of the thermoelectrons moving between the magnetic bodies 10A and 10B is reduced, and the thermoelectrons easily move.
 熱スイッチ部の形態2、3の場合には、熱電子の通過方向に電極31A、31Bが存在するので、熱電子にとっては電極31A、31Bが障害物となる。このため、電極31A、31Bの存在は熱伝導率を小さくする方向に働く。熱スイッチ部の形態4の場合には、金属/絶縁相転移体32を磁性体10Aと10Bに直接取り付けるので、電極31A、31Bの存在は熱伝導率を下げる方向には働かない。したがって、本実施形態に係る熱スイッチ部30の熱伝導率は、熱スイッチ部の形態2、3の場合と比較して、大きくなる。 In the cases 2 and 3 of the thermal switch part, since the electrodes 31A and 31B exist in the direction of the passage of the thermoelectrons, the electrodes 31A and 31B become obstacles for the thermoelectrons. For this reason, the presence of the electrodes 31A and 31B works in the direction of decreasing the thermal conductivity. In the case of the form 4 of the thermal switch portion, the metal / insulating phase transition body 32 is directly attached to the magnetic bodies 10A and 10B, so the presence of the electrodes 31A and 31B does not work in the direction of lowering the thermal conductivity. Therefore, the thermal conductivity of the thermal switch unit 30 according to the present embodiment is larger than in the case of the thermal switch units 2 and 3.
 <熱スイッチ部の形態5>
 図23は熱スイッチ部の形態5を説明するための説明図である。
<Thermal switch part form 5>
FIG. 23 is an explanatory diagram for explaining the fifth mode of the thermal switch section.
 熱スイッチ部の形態5に係る熱スイッチ部130は、金属/絶縁相転移体(32)を磁性体10Aと10Bに直接取り付け、磁性体10Aと10Bに直流電圧を印加できるようにしたものである。金属/絶縁相転移体と磁性体10A、10Bとは接合または接着剤で取り付ける。接着剤は熱伝導率の大きいものを用いる。その他の構成および動作は熱スイッチ部の形態2と同様である。 The thermal switch section 130 according to the fifth form of the thermal switch section is configured such that the metal / insulating phase transition body (32) is directly attached to the magnetic bodies 10A and 10B so that a DC voltage can be applied to the magnetic bodies 10A and 10B. . The metal / insulating phase transition body and the magnetic bodies 10A and 10B are attached by bonding or an adhesive. An adhesive having a high thermal conductivity is used. Other configurations and operations are the same as those in the second form of the thermal switch section.
 磁性体10Aと10Bを電極の代わりに用いると、構造が単純化され、また、部品点数の減少と製造工程の簡略化が図れる。また、熱スイッチ部の形態4の場合と同様に、熱スイッチ部30の熱伝導率は、熱スイッチ部の形態2、3の場合と比較して、大きくなる。 When the magnetic bodies 10A and 10B are used instead of electrodes, the structure is simplified, and the number of parts can be reduced and the manufacturing process can be simplified. Similarly to the case of the thermal switch unit form 4, the thermal conductivity of the thermal switch unit 30 is larger than that of the thermal switch unit forms 2 and 3.
 <熱スイッチ部の形態6>
 図24は熱スイッチ部の形態6を説明するための説明図である。
<Thermal switch form 6>
FIG. 24 is an explanatory diagram for explaining a thermal switch section 6.
 熱スイッチ部の形態6は、熱スイッチ部130に絶縁体34を追加している。具体的には、図24に示すように、熱電子の移動を妨げる絶縁体34を電極31Aと金属/絶縁相転移体32との間に設けている。図24では、図20の構成に絶縁体34を追加しているが、図21~23の構成に対して絶縁体34を追加しても良い。その他の構成および動作は熱スイッチ部の形態2と同様である。 In the thermal switch section 6, an insulator 34 is added to the thermal switch section 130. Specifically, as shown in FIG. 24, an insulator 34 that prevents the movement of thermoelectrons is provided between the electrode 31 </ b> A and the metal / insulating phase transition body 32. In FIG. 24, the insulator 34 is added to the configuration of FIG. 20, but the insulator 34 may be added to the configurations of FIGS. Other configurations and operations are the same as those in the second form of the thermal switch section.
 絶縁体34は、熱電子以外の電子の移動を阻止するために設ける。電極31Aと31Bとの間に直流電圧を印加すると、電極31Aと31Bとの間に電流が流れるが、本来移動してほしい熱電子に加え、熱輸送に関与しない電子を過剰に移動させてしまう可能性がある。この熱輸送に関与しない電子の過剰の移動を防ぐために、絶縁体34を金属/絶縁相転移体32に取り付けることによって、金属/絶縁相転移体32の熱伝導率の低下を防止できる。 The insulator 34 is provided to prevent the movement of electrons other than thermal electrons. When a DC voltage is applied between the electrodes 31A and 31B, a current flows between the electrodes 31A and 31B, but in addition to the thermoelectrons that are originally desired to move, electrons that are not involved in heat transport are excessively moved. there is a possibility. In order to prevent the excessive movement of electrons not involved in the heat transport, by attaching the insulator 34 to the metal / insulating phase transition body 32, it is possible to prevent a decrease in the thermal conductivity of the metal / insulating phase transition body 32.
 <熱スイッチ部の形態7>
 図25は熱スイッチ部の形態7を説明するための説明図である。
<Thermal switch form 7>
FIG. 25 is an explanatory diagram for explaining the form 7 of the thermal switch section.
 熱スイッチ部の形態7は、熱スイッチ部の形態4に係る図22の熱スイッチ部130に分極体35を追加している。具体的には、電極31Aと金属/絶縁相転移体32との間に熱電子の移動を促す分極体35を配置する。分極体35は、誘電体およびイオン性液体のうちの少なくとも1種類以上から形成する。その他の構成および動作は熱スイッチ部の形態4と同様である。 In the thermal switch part form 7, a polarizing body 35 is added to the thermal switch part 130 of FIG. 22 according to the thermal switch part form 4. Specifically, a polarizing body 35 that promotes the movement of thermoelectrons is disposed between the electrode 31 </ b> A and the metal / insulating phase transition body 32. The polarizing body 35 is formed from at least one of a dielectric and an ionic liquid. Other configurations and operations are the same as those of the thermal switch unit 4.
 分極体35は、金属/絶縁相転移体32内を移動する電子を取り出したり、金属/絶縁相転移体32内に電子を注入したりする。このため、金属/絶縁相転移体32内の電子の分布状態が変化して、熱電子が流れやすくなる。分極体35を配置することで、金属/絶縁相転移体32の熱伝導率をより大きくすることができる。 The polarizing body 35 takes out electrons moving in the metal / insulating phase transition body 32 and injects electrons into the metal / insulating phase transition body 32. For this reason, the distribution state of the electrons in the metal / insulating phase transition body 32 changes, and thermal electrons easily flow. By disposing the polarization body 35, the thermal conductivity of the metal / insulating phase transition body 32 can be further increased.
 熱スイッチ部の形態2~7のように、電圧の印加、除去によって熱伝導率が変化する熱スイッチ部130を用いると、隣接する磁性体との熱伝導を、電圧の印加、除去だけで断続させることができる。したがって、熱スイッチ部自身を移動させて、熱交換器と磁性体の間、磁性体同士の間を挿脱させる必要がなくなるため、熱スイッチ部の耐久性が向上し、同時に信頼性も向上する。 When the thermal switch 130 whose thermal conductivity changes as a result of applying or removing voltage is used, as in forms 2 to 7 of the thermal switch, thermal conduction with the adjacent magnetic material is intermittently applied only by applying or removing voltage. Can be made. Therefore, it is not necessary to move the heat switch part itself and insert / remove between the heat exchanger and the magnetic body, and between the magnetic bodies, so that the durability of the heat switch part is improved and at the same time the reliability is improved. .
 <熱スイッチ部の形態8>
 図26は熱スイッチ部の形態8における熱スイッチ部の構成を説明するための熱スイッチ部部分の断面図である。図27は熱スイッチ部の形態8における熱スイッチ部の構成を説明するための熱スイッチ部部分の平面図(図26の矢視Aの図)である。
<Thermal switch part form 8>
FIG. 26 is a cross-sectional view of the thermal switch portion for explaining the configuration of the thermal switch portion in Embodiment 8 of the thermal switch portion. FIG. 27 is a plan view of the thermal switch part for explaining the configuration of the thermal switch part in the eighth form of the thermal switch part (a view of arrow A in FIG. 26).
 本形態の熱スイッチ部は、電気濡れ(エレクトロウェッティング)効果を利用したものである。 The thermal switch part of the present embodiment utilizes an electric wetting (electrowetting) effect.
 ここでは、磁性体10とそれに隣接する磁性体10’の間に設けられた熱スイッチ部230を例に説明する。ここで説明する磁性体10とそれに隣接する磁性体10’は、図1における磁性体10Aを10B、10Cと10D、10Eと10Fに対応する。また、低温側熱交換部40Aと磁性体10A、磁性体10Fと高温側熱交換部40Bにも同様に対応する。ただしその場合は、磁性体10または10’のうち一方が低温側熱交換部40Aまたは高温側熱交換部40Bとなる。 Here, the thermal switch unit 230 provided between the magnetic body 10 and the adjacent magnetic body 10 'will be described as an example. The magnetic body 10 and the magnetic body 10 'adjacent thereto described here correspond to the magnetic body 10A in FIG. 1 as 10B, 10C and 10D, 10E and 10F. Moreover, it corresponds similarly to the low temperature side heat exchange part 40A and the magnetic body 10A, the magnetic body 10F, and the high temperature side heat exchange part 40B. However, in that case, one of the magnetic bodies 10 or 10 'becomes the low temperature side heat exchange part 40A or the high temperature side heat exchange part 40B.
 熱スイッチ部230は、磁性体10に接する第1電極構造体11と、磁性体10’に接する第2電極構造体21と、第1電極構造体11および第2電極構造体21の間の隙間20と、この隙間20に出し入れされる液体金属18とを有する。また、隙間20の一端には、液体金属18を収容する液溜まり17を有する。なお、隙間20において、液溜まり17を設けた一端の反対側の端部は開放端となっている。 The thermal switch unit 230 includes a first electrode structure 11 in contact with the magnetic body 10, a second electrode structure 21 in contact with the magnetic body 10 ′, and a gap between the first electrode structure 11 and the second electrode structure 21. 20 and the liquid metal 18 withdrawn into and out of the gap 20. In addition, a liquid reservoir 17 that stores the liquid metal 18 is provided at one end of the gap 20. In the gap 20, the end opposite to the one end where the liquid reservoir 17 is provided is an open end.
 第1電極構造体11と第2電極構造体21は、同じ構造を有していて、隙間20を中心線とする対称構造である。第1電極構造体11は、磁性体10側から順に、第1電極12、誘電体13、第2電極14、撥液コート層15を有する。第2電極構造体21も同様に、磁性体10’側から順に、第1電極12、誘電体13、第2電極14、および撥液コート層15を有する。つまり、隙間20を中心としてみれば、第1電極構造体11も第2電極構造体21も、隙間20側から順に撥液コート層15、第2電極14、誘電体13、第1電極12となるように配置されているのである。 The first electrode structure 11 and the second electrode structure 21 have the same structure and have a symmetrical structure with the gap 20 as the center line. The first electrode structure 11 includes a first electrode 12, a dielectric 13, a second electrode 14, and a liquid repellent coating layer 15 in order from the magnetic body 10 side. Similarly, the second electrode structure 21 includes the first electrode 12, the dielectric 13, the second electrode 14, and the liquid repellent coating layer 15 in this order from the magnetic body 10 'side. That is, when the gap 20 is taken as the center, both the first electrode structure 11 and the second electrode structure 21 are in order from the gap 20 side, the liquid repellent coating layer 15, the second electrode 14, the dielectric 13, and the first electrode 12. It is arranged to become.
 磁性体全体の下部には、下部基板16を有する。この下部基板16内に、隙間20に連通した液溜まり17を有している。 A lower substrate 16 is provided below the entire magnetic material. The lower substrate 16 has a liquid reservoir 17 communicating with the gap 20.
 第2電極14は、液溜まり17内部にまで入っていて、液体金属18と電気的に導通することができるようになっている。一方、第1電極12は液溜まり17からは絶縁されている。すなわち、第1電極12は液体金属18と絶縁されているのである。 The second electrode 14 extends into the liquid reservoir 17 and can be electrically connected to the liquid metal 18. On the other hand, the first electrode 12 is insulated from the liquid reservoir 17. That is, the first electrode 12 is insulated from the liquid metal 18.
 これにより、第1電極12と第2電極14は、その間にある誘電体13を介したキャパシター構造となっていて、これがそのまま液体金属18と第1電極12のキャパシターとして作用することになる(詳細後述)。 As a result, the first electrode 12 and the second electrode 14 have a capacitor structure with the dielectric 13 between them, and this acts as a capacitor of the liquid metal 18 and the first electrode 12 (details). Later).
 第1電極構造体11と第2電極構造体21の上部には、それぞれ第1および第2電極12、14から導かれた配線が形成される上部基板100を有する。上部基板100は、第1電極構造体11側と第2電極構造体21側とで、隙間20の延長によって分離、絶縁され、第1電極構造体11および第2電極構造体21と同様に隙間20によって対称な同じ構造である。上部基板100は、それぞれ第1電極12からの第1配線111と、第2電極14からの第2配線112が絶縁層113によって絶縁されている。第1および第2配線111および112は、この熱スイッチ部230を制御するために、磁気冷暖房装置の制御装置(不図示)に接続されている。そして制御装置が、磁気の移動に同期して、この熱スイッチ部230による熱伝達状態と断熱状態を切り替えている。 The upper substrate 100 on which wirings led from the first and second electrodes 12 and 14 are formed is provided above the first electrode structure 11 and the second electrode structure 21. The upper substrate 100 is separated and insulated by the extension of the gap 20 on the first electrode structure 11 side and the second electrode structure 21 side, and the gap is the same as the first electrode structure 11 and the second electrode structure 21. 20 is the same structure symmetrical. In the upper substrate 100, the first wiring 111 from the first electrode 12 and the second wiring 112 from the second electrode 14 are insulated by an insulating layer 113. The first and second wirings 111 and 112 are connected to a control device (not shown) of the magnetic air conditioner in order to control the thermal switch unit 230. The control device switches between the heat transfer state and the heat insulation state by the heat switch unit 230 in synchronization with the magnetic movement.
 以下さらに熱スイッチ部各部を詳細に説明する。 Hereinafter, each part of the thermal switch section will be described in detail.
 第1電極12および第2電極14は、たとえば、銅、アルミニウムなど、導電性のものであれば、特に限定されない。第1電極12および第2電極14の形状はともに同じであり、隙間20の大きさ(隙間の間隔を除く)と一致する電極板となっている。 The first electrode 12 and the second electrode 14 are not particularly limited as long as they are conductive, such as copper and aluminum. The shapes of the first electrode 12 and the second electrode 14 are the same, and are electrode plates that match the size of the gap 20 (excluding the gap interval).
 誘電体13は、第1電極12と第2電極14の間にあって、たとえば、シリコン酸化膜やシリコ窒化膜など、誘電体13であれば特に限定されない。誘電体13の形状は第1電極12と第2電極14と同じ大きさであり、第1電極12と第2電極14が短絡しない形状となっている。 The dielectric 13 is not particularly limited as long as it is between the first electrode 12 and the second electrode 14 and is a dielectric 13 such as a silicon oxide film or a silicon nitride film. The shape of the dielectric 13 is the same size as the first electrode 12 and the second electrode 14, and the first electrode 12 and the second electrode 14 are not short-circuited.
 撥液コート層15は、液体金属18に対して撥液性を有する。また、撥液コート層15は、導電性であることが好ましい。このような撥液コート層15に用いる材料とは、たとえば、導電性酸化膜、導電性ガラス材、導電性セラミックス材、グラフェンなどが好ましい。 The liquid repellent coating layer 15 has liquid repellency with respect to the liquid metal 18. The liquid repellent coating layer 15 is preferably conductive. Examples of the material used for the liquid repellent coating layer 15 include a conductive oxide film, a conductive glass material, a conductive ceramic material, and graphene.
 このように、撥液コート層15が液体金属18に対して撥液性となっていることで、電気を印加していない状態では、液体金属18が容易に液溜まり17内に収納されるようになる。また、導電性を有することで、第2電極14に流した電気を液体金属18に直接流すことができて効率が良い。また、第2電極14に電気を流して液体金属18を第1電極構造体11と第2電極構造体21の間の隙間20に充填する際に、液溜まり17内を空にできるので、液体金属18使用量を少なくすることができる。 Thus, since the liquid repellent coating layer 15 is liquid repellent with respect to the liquid metal 18, the liquid metal 18 can be easily accommodated in the liquid reservoir 17 when no electricity is applied. become. Further, by having conductivity, electricity that has flowed to the second electrode 14 can be directly flowed to the liquid metal 18, which is efficient. Further, when the liquid metal 18 is filled in the gap 20 between the first electrode structure 11 and the second electrode structure 21 by supplying electricity to the second electrode 14, the liquid reservoir 17 can be emptied. The amount of metal 18 used can be reduced.
 なお、液溜まり17内に常に液体金属18の一部が残留して、第2電極14から液体金属18に電気を流すことができれば、撥液コート層15は撥液性を有するだけで、導電性のないものであっても良い。また、第2電極14の隙間20側の表面に極薄いシリコン酸化膜やシリコン窒化膜などの絶縁性の撥液性部材を形成しても良い。極薄いシリコン酸化膜やシリコン窒化膜であれば、これらが介在していても第2電極14に電気を流したときにトンネル効果によって、液体金属18に電気を流すことができる。 If a part of the liquid metal 18 always remains in the liquid reservoir 17 and electricity can flow from the second electrode 14 to the liquid metal 18, the liquid repellent coating layer 15 only has liquid repellency and is conductive. It may be non-sexual. Further, an insulating liquid repellent member such as an extremely thin silicon oxide film or silicon nitride film may be formed on the surface of the second electrode 14 on the gap 20 side. If it is an extremely thin silicon oxide film or silicon nitride film, electricity can be passed through the liquid metal 18 by the tunnel effect when electricity is passed through the second electrode 14 even if they are present.
 このような部材によって構成される撥液コート層15の形状は第2電極14を覆う大きさである。 The shape of the liquid repellent coating layer 15 constituted by such a member is large enough to cover the second electrode 14.
 さらに、第2電極14自体を導電性で、かつ、その表面が撥液性となる部材を用いても良い。つまり第2電極14自体を導電性酸化膜、導電性ガラス材、導電性セラミックス材、グラフェンなどによって形成するのである。この場合、第2電極14の隙間側表面に、撥液コート層を設ける必要がなくなる。 Further, a member that is conductive for the second electrode 14 and has a liquid repellent surface may be used. That is, the second electrode 14 itself is formed of a conductive oxide film, a conductive glass material, a conductive ceramic material, graphene, or the like. In this case, it is not necessary to provide a liquid repellent coating layer on the gap side surface of the second electrode 14.
 下部基板16は、少なくとも第1および第2電極12、14との間で絶縁されているものであれば良い。たとえば、全体が絶縁性を有する材料として、エポキシ基板、フェノール基板、ABS樹脂基板などが用いられる。そして、これら基板に液溜まり17を設ける。この場合、液体金属18を液溜まり17内に収納しやすいように、液溜まり内壁面を親液性にする。親液性を持たせるためには、液溜まり壁面に金属膜19(たとえば銅、ニッケル、アルミニウムなどの金属膜)を形成することが好ましい。 The lower substrate 16 only needs to be insulated from at least the first and second electrodes 12 and 14. For example, an epoxy substrate, a phenol substrate, an ABS resin substrate, or the like is used as a material having insulation properties as a whole. A liquid reservoir 17 is provided on these substrates. In this case, the inner wall surface of the liquid reservoir is made lyophilic so that the liquid metal 18 can be easily stored in the liquid reservoir 17. In order to impart lyophilicity, it is preferable to form a metal film 19 (for example, a metal film of copper, nickel, aluminum, etc.) on the liquid reservoir wall surface.
 また、下部基板16としては、たとえばシリコン基板を用いることもできる。シリコン基板を用いた場合、まず液溜まり17の形成後、液溜まり17内部の壁面表面を含めて、すべての表面をシリコン酸化膜やシリコン窒化膜などにより絶縁層(不図示)を形成する。そして、液溜まり17内に親液性を持たせるために金属膜19(たとえば銅、ニッケル、アルミニウムなどの金属膜、さらにシリコン基板とした場合は導電性を付与したポリシリコンなどでも良い)を形成することが好ましい。 Further, as the lower substrate 16, for example, a silicon substrate can be used. In the case of using a silicon substrate, first, after the liquid reservoir 17 is formed, an insulating layer (not shown) is formed on the entire surface including the wall surface inside the liquid reservoir 17 with a silicon oxide film, a silicon nitride film, or the like. Then, a metal film 19 (for example, a metal film such as copper, nickel, aluminum or the like, or polysilicon provided with conductivity in the case of a silicon substrate) may be formed in order to make the liquid reservoir 17 lyophilic. It is preferable to do.
 液溜まり17内に形成した金属膜19は第2電極14と導通するようにしても良い。 The metal film 19 formed in the liquid reservoir 17 may be electrically connected to the second electrode 14.
 なお、液溜まり17内の金属膜19はなくても良い。上述したとおり、液溜まり17内の金属膜19は、液溜まり17内壁面を親液性にすることで液体金属18が下がったときに、液体金属18が液溜まり17内に収納されやすくするためのものである。このため、液溜まり17の大きさが十分に大きく、液溜まり17内壁面が親液性でなくても液体金属18の収納がスムーズにゆく場合には金属膜19はなくても良い。 Note that the metal film 19 in the liquid reservoir 17 may be omitted. As described above, the metal film 19 in the liquid reservoir 17 makes the liquid metal 18 easily stored in the liquid reservoir 17 when the liquid metal 18 is lowered by making the inner wall surface of the liquid reservoir 17 lyophilic. belongs to. For this reason, the metal film 19 may be omitted if the liquid reservoir 17 is sufficiently large and the liquid metal 18 can be smoothly stored even if the inner wall surface of the liquid reservoir 17 is not lyophilic.
 さらに、下部基板16の液溜まり17には、液体金属18が漏れ出ない程度の空気穴25が設けられている(空気穴25の機能については後述)。 Further, the liquid reservoir 17 of the lower substrate 16 is provided with an air hole 25 that does not leak the liquid metal 18 (the function of the air hole 25 will be described later).
 上部基板100は、第1電極構造体11側と第2電極構造体21側で同じ構成であり、第1電極12と電気的に接続された第1配線111と、第2電極14と電気的に接続された第2配線112と、これらを絶縁分離する絶縁層113を有する。また、すでに説明したように、第1電極構造体11側と第2電極構造体21側は隙間20によって絶縁、分離されているため、当然に上部基板100も第1電極構造体11側と第2電極構造体21側でそれぞれ分離して同じ構成となるように設けられている。また、各第2配線112の隙間20に面した部分は、撥液コート層15が形成されている。また、隙間20部分は、上から見ると、図27に示すように、撥液コート層15が隙間20を取り囲むように形成されており、隙間20の側面部分15aから液体金属が漏れないようになっている。なお、隙間20の側面部分15aには、図示しないが、撥液コート層15の外側に、隙間の側面部分(または磁性体の側面を含めた側面全体)を覆う構造体(不図示)があっても良い。このような構造体は、たとえば樹脂やセラミックなど非磁性、非導電性の部材が好ましい。 The upper substrate 100 has the same configuration on the first electrode structure 11 side and the second electrode structure 21 side, and is electrically connected to the first wiring 111 electrically connected to the first electrode 12 and the second electrode 14. And a second wiring 112 connected to each other and an insulating layer 113 for insulating and separating them. Further, as already described, the first electrode structure 11 side and the second electrode structure 21 side are insulated and separated by the gap 20, so that the upper substrate 100 is naturally separated from the first electrode structure 11 side by the first electrode structure 11 side. The two electrode structures 21 are provided so as to be separated and have the same configuration. In addition, a liquid repellent coating layer 15 is formed on the portion of each second wiring 112 facing the gap 20. Further, when viewed from above, the gap 20 portion is formed so that the liquid repellent coating layer 15 surrounds the gap 20 as shown in FIG. 27 so that the liquid metal does not leak from the side surface portion 15a of the gap 20. It has become. Although not shown, the side surface portion 15a of the gap 20 has a structure (not shown) that covers the side surface portion of the gap (or the entire side surface including the side surface of the magnetic body) outside the liquid repellent coating layer 15. May be. Such a structure is preferably a non-magnetic, non-conductive member such as resin or ceramic.
 上部基板100で配線が対向した部分(図26中のまるで囲った部分)は、開放端となっていて、液体金属18の移動によって隙間20内の圧力が上ったり下がったりしないようになっている。このため液体金属18は、スムーズに隙間20内を移動できる。 A portion of the upper substrate 100 facing the wiring (a portion surrounded by a circle in FIG. 26) is an open end so that the pressure in the gap 20 does not increase or decrease due to the movement of the liquid metal 18. Yes. For this reason, the liquid metal 18 can move in the gap 20 smoothly.
 上部基板100に用いられる配線111、112は、第1および第2電極12、14と同じく、銅、アルミニウムなどである。一方、絶縁層113は、少なくとも誘電体13よりも誘電率の低い絶縁体(絶縁材)が好ましい。 The wirings 111 and 112 used for the upper substrate 100 are made of copper, aluminum or the like, like the first and second electrodes 12 and 14. On the other hand, the insulating layer 113 is preferably an insulator (insulating material) having a dielectric constant lower than that of the dielectric 13 at least.
 配線111、112は、第1および第2電極12、14に対して電圧を印加するための配線である。このため配線が対向した部分(図26中のまるで囲った開放端近傍部分)でも、第1および第2電極12、14と同じ電圧がかかる。そうすると、上部基板100の絶縁層113として誘電率の高い材料が用いられていると、この部分でも液体金属18と配線112との間がキャパシター構造となってしまう。そうすると液体金属18が上昇してきたときに、その勢いで、まるで囲んだ部分からさらに上にまで液体金属18が来て、吐出してしまう虞がある。これを防ぐために、この配線112同士が隙間20を介して向き合う部分では、誘電率が低い絶縁材を用いることで、液体金属18がこの配線112同士が対向する部分の隙間20に入ってくるのを防止している。具体的には、たとえば、半導体装置において使用されている、いわゆるLow-k材料を使用することができる。たとえばシリコン酸化物にフッ素や炭素を添加したもの、有機ポリマーなどがある。そのほか、第1および第2電極12、14の間に用いた誘電体13よりも誘電率が低い材料であれば良い。これらLow-k材料であっても良い。これらのLow-k材料は、SiO2の比誘電率4.2~4.0に対して、比誘電率3.0以下であることが知られている。 The wirings 111 and 112 are wirings for applying a voltage to the first and second electrodes 12 and 14. For this reason, the same voltage as that of the first and second electrodes 12 and 14 is applied to the portion where the wiring is opposed (portion near the open end in FIG. 26). Then, if a material having a high dielectric constant is used for the insulating layer 113 of the upper substrate 100, a capacitor structure is formed between the liquid metal 18 and the wiring 112 even in this portion. Then, when the liquid metal 18 rises, there is a possibility that the liquid metal 18 may come from the enclosed portion to the upper side and be discharged at that momentum. In order to prevent this, in the part where the wirings 112 face each other through the gap 20, the liquid metal 18 enters the gap 20 where the wirings 112 face each other by using an insulating material having a low dielectric constant. Is preventing. Specifically, for example, a so-called Low-k material used in a semiconductor device can be used. For example, silicon oxide added with fluorine or carbon, organic polymer, and the like. In addition, any material having a lower dielectric constant than the dielectric 13 used between the first and second electrodes 12 and 14 may be used. These Low-k materials may be used. These Low-k materials are known to have a relative dielectric constant of 3.0 or less with respect to a relative dielectric constant of 4.2 to 4.0 of SiO 2 .
 なお、絶縁体である絶縁層113を配置する開放端近傍部分は、配線112および113が絶縁される厚みであるが、たとえば隙間上端から誘電体13の厚み程度の厚さ分もあれば、液体金属18が上がってきたときに上端から吐出することはない。 The portion near the open end where the insulating layer 113 that is an insulator is disposed has a thickness at which the wirings 112 and 113 are insulated. For example, if there is a thickness about the thickness of the dielectric 13 from the upper end of the gap, When the metal 18 rises, it is not discharged from the upper end.
 そして、液体金属18(導電性流体と称されることもある)は、少なくともこの磁気冷暖房装置が使用される温度範囲において液体の金属である。たとえば、ガリウム、インジウム、スズの共晶合金であるガリンスタンを用いることができる。ガリンスタンは、常温で液体の金属であり、ガリウム、インジウム、スズの組成よって融点が異なる。たとえば、ガリウム68.5%、インジウム21.5%、スズ10%のガリンスタンは、融点:-19℃、沸点:1300℃以上、比重:6.44g/cm3、粘度:0.0024Pa・s(at20℃)、熱伝導率:16.5W/(m・K)である。そのほかにも、周知の様々な液体金属18を用いてもよく、熱伝達率が高いものが好ましい。 The liquid metal 18 (sometimes referred to as a conductive fluid) is a liquid metal at least in a temperature range in which the magnetic air conditioner is used. For example, galinstan which is a eutectic alloy of gallium, indium and tin can be used. Galinstan is a metal that is liquid at room temperature and has a different melting point depending on the composition of gallium, indium, and tin. For example, a galinstan of 68.5% gallium, 21.5% indium and 10% tin has a melting point: −19 ° C., a boiling point: 1300 ° C. or more, a specific gravity: 6.44 g / cm 3 , and a viscosity: 0.0024 Pa · s ( at 20 ° C.) and thermal conductivity: 16.5 W / (m · K). In addition, various known liquid metals 18 may be used, and those having a high heat transfer coefficient are preferable.
 次に、このように構成された熱スイッチ部230の作用を説明する。 Next, the operation of the thermal switch unit 230 configured as described above will be described.
 熱スイッチ部230の機能は、すでに説明したとおり、磁性体等間における熱の伝達と遮断(断熱)である。このような機能を持つことから、これを熱スイッチと称することがある。 As described above, the function of the heat switch unit 230 is to transfer and block heat (heat insulation) between magnetic bodies and the like. Since it has such a function, it may be called a thermal switch.
 本形態においては、この熱スイッチ機能を隙間20と液溜まり17の間を行き来する液体金属18により行っている。そして、液体金属18を隙間20と液溜まり17の間を行き来させるためには、エレクトロウェッティングを用いている。エレクトロウェッティングによる液体金属18の移動自体には、公知であり、たとえば、特開2007-103363号公報などに開示されるので、ここでは本形態の理解のために必要な原理について説明する。 In this embodiment, this thermal switch function is performed by the liquid metal 18 that moves back and forth between the gap 20 and the liquid reservoir 17. Electrowetting is used to move the liquid metal 18 back and forth between the gap 20 and the liquid reservoir 17. The movement of the liquid metal 18 by electrowetting is known per se and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-103363. Therefore, the principle necessary for understanding this embodiment will be described here.
 図28はエレクトロウェッティングの原理を説明するための説明図である。 FIG. 28 is an explanatory diagram for explaining the principle of electrowetting.
 エレクトロウェッティングは、電極板300上に設けられた誘電体301の表面に液体金属18(ここでは液滴として示した)を乗せ、電極板300と液体金属18の間に電圧を印加することで、誘電体表面における液体金属18との濡れ性を制御する技術である。 Electrowetting is performed by placing a liquid metal 18 (shown here as a droplet) on the surface of a dielectric 301 provided on the electrode plate 300 and applying a voltage between the electrode plate 300 and the liquid metal 18. This is a technique for controlling wettability with the liquid metal 18 on the dielectric surface.
 電極板300と液体金属18との間は誘電体301を介してキャパシターが形成されている。図28Aに示すように、電極板300と液体金属18との間に電圧を印加すると、このキャパシターの静電エネルギーが変化(増加)して、それに相当する液体金属18の表面エネルギーが減少し、液体金属18の表面張力が低下する。これにより液体金属18の表面に対する接触角度θが変化する。ここで接触角度θとは、液体金属18が乗っている誘電体301の表面における液体金属表面とのなす角をいう。この接触角度θは、液体金属18の表面張力に応じて0°~180°の範囲で変化する。 A capacitor is formed between the electrode plate 300 and the liquid metal 18 via a dielectric 301. As shown in FIG. 28A, when a voltage is applied between the electrode plate 300 and the liquid metal 18, the electrostatic energy of the capacitor changes (increases), and the corresponding surface energy of the liquid metal 18 decreases. The surface tension of the liquid metal 18 is reduced. As a result, the contact angle θ with respect to the surface of the liquid metal 18 changes. Here, the contact angle θ refers to an angle between the surface of the dielectric 301 on which the liquid metal 18 is placed and the surface of the liquid metal. The contact angle θ varies in the range of 0 ° to 180 ° depending on the surface tension of the liquid metal 18.
 ここで図28Aに示すように(電圧印加時)、接触角度θが、0°から90°までは、液体金属18に対する表面の濡れ性が良い状態、すなわち親液性のある状態である。一方、図28Bに示すように(電圧印加無しの時)、接触角度θは、90°を超えて180°であり、これが濡れ性の悪い状態、すなわち撥液性の状態である。このように誘電体表面に置いた液体金属18の接触角度θを、電圧の印加によって変更できるのがエレクトロウェッティングである。 Here, as shown in FIG. 28A (when voltage is applied), when the contact angle θ is 0 ° to 90 °, the surface has good wettability with respect to the liquid metal 18, that is, a lyophilic state. On the other hand, as shown in FIG. 28B (when no voltage is applied), the contact angle θ exceeds 90 ° and is 180 °, which is a state of poor wettability, that is, a liquid repellent state. Electrowetting can change the contact angle θ of the liquid metal 18 placed on the dielectric surface in this way by applying a voltage.
 図29は隙間における液体金属の移動を説明するための説明図で、隙間における液体金属部分の拡大図である。 FIG. 29 is an explanatory diagram for explaining the movement of the liquid metal in the gap, and is an enlarged view of the liquid metal portion in the gap.
 本形態では、液体金属18が移動する表面は、磁性体10と10’の間の隙間20に対向するように設けられた撥液コート層15である。この撥液コート層15は、すでに説明したとおり、液体金属18に対する撥液性を有する。このため、第1および第2電極12、14の間に電圧を印加しなければ、図29Aに示すように、液体金属18は、撥液コート層15の表面においてその接触角度は90°以上となって撥液性(疎液性ともいう)となっている。 In this embodiment, the surface on which the liquid metal 18 moves is the liquid repellent coating layer 15 provided to face the gap 20 between the magnetic bodies 10 and 10 '. The liquid repellent coating layer 15 has liquid repellency with respect to the liquid metal 18 as already described. Therefore, if no voltage is applied between the first and second electrodes 12 and 14, the liquid metal 18 has a contact angle of 90 ° or more on the surface of the liquid repellent coating layer 15 as shown in FIG. 29A. It becomes liquid repellency (also called lyophobic).
 このように液体の接触面(撥液コート層15の表面)と接触角度が90°以上となることで、図29Aに示したように、液体金属18の液面は、中央部分が凸となって、液体金属18の撥液コート層15表面との接触部分が下がった状態になる。このため液体金属18が撥液コート層15表面を伝って行く力が働かなくなり、液体金属18が毛細管現象によって上昇してしまうことはない。 In this way, the contact angle with the liquid contact surface (the surface of the liquid repellent coating layer 15) is 90 ° or more, so that the center of the liquid surface of the liquid metal 18 is convex as shown in FIG. 29A. Thus, the contact portion of the liquid metal 18 with the surface of the liquid repellent coating layer 15 is lowered. For this reason, the force that the liquid metal 18 travels along the surface of the liquid repellent coating layer 15 does not work, and the liquid metal 18 does not rise due to capillary action.
 この状態は、熱伝達部30全体としては図26に示した状態であり、液体金属18は、液溜まり17内にあって、隙間20は空気により満たされている。したがって、この空気で満たされた隙間20によって磁性体10と10’の間は断熱状態となる。 This state is the state shown in FIG. 26 for the heat transfer section 30 as a whole, and the liquid metal 18 is in the liquid reservoir 17 and the gap 20 is filled with air. Therefore, the gap 20 filled with air provides a heat insulating state between the magnetic bodies 10 and 10 '.
 一方、磁性体10と10’のそれぞれにある第1電極12と第2電極14の間に電圧を印加すると、第1電極12と第2電極14の間にある誘電体13が分極して静電エネルギーが変化(増加)する。このとき第2電極14と液体金属18とは電気的導通がとられているため、結果的に、液体金属18と第1電極12とが誘電体13を介してキャパシター構造となっている。この構造はエレクトロウェッティングの原理を説明した図28の電極板300と誘電体301を介した液体金属18とによるキャパシター構造と同様の構造ということである。 On the other hand, when a voltage is applied between the first electrode 12 and the second electrode 14 in each of the magnetic bodies 10 and 10 ′, the dielectric 13 between the first electrode 12 and the second electrode 14 is polarized and statically applied. Electric energy changes (increases). At this time, since the second electrode 14 and the liquid metal 18 are electrically connected, the liquid metal 18 and the first electrode 12 have a capacitor structure with the dielectric 13 interposed therebetween. This structure is the same structure as the capacitor structure of the electrode plate 300 in FIG. 28 and the liquid metal 18 through the dielectric 301, explaining the principle of electrowetting.
 このため、第1電極12と第2電極14の間に電圧を印加したことで、液体金属18の表面エネルギーが増加して、それに伴い撥液コート層15(誘電膜)表面における液体金属18の表面張力が減少し、濡れ性がよくなる。そうすると、図29Bに示すように、撥液コート層15表面に接している液体金属18表面の接触角度θが90°以下になる。これにより、液体金属18自体の表面張力は失われるものの、隙間20を毛細管現象により登ってゆく張力が働くことになる。図29Bにおけるhがもとの液面に位置(図29A)からの上昇量である。なお、図29においてdは隙間の間隔である。 For this reason, by applying a voltage between the first electrode 12 and the second electrode 14, the surface energy of the liquid metal 18 increases, and accordingly, the liquid metal 18 on the surface of the liquid repellent coating layer 15 (dielectric film) is increased. Surface tension is reduced and wettability is improved. As a result, as shown in FIG. 29B, the contact angle θ of the surface of the liquid metal 18 in contact with the surface of the liquid repellent coating layer 15 becomes 90 ° or less. As a result, although the surface tension of the liquid metal 18 itself is lost, the tension that climbs the gap 20 by the capillary phenomenon works. In FIG. 29B, h is the amount of increase from the position (FIG. 29A) on the original liquid level. In FIG. 29, d is the gap interval.
 図30は、図26と同じ部分の断面図であり、液体金属18が隙間20を上がってきた状態、すなわち熱伝達状態を示している。 FIG. 30 is a cross-sectional view of the same portion as FIG. 26, showing a state in which the liquid metal 18 has gone up through the gap 20, that is, a heat transfer state.
 図示するように、液体金属18は隙間20の頂上である上部基板100の位置まで到達する。上部基板100の隙間部分ではすでに説明したように、上部基板100の第1配線111と第2配線112の間には誘電体が存在しない(または誘電率が低い)。このため、この部分での静電エネルギーはほとんど変化しないため、上昇した液体金属18の濡れ性はよくならないので、これ以上液体金属18が上昇することはない。 As shown in the figure, the liquid metal 18 reaches the position of the upper substrate 100 that is the top of the gap 20. As already described, there is no dielectric between the first wiring 111 and the second wiring 112 of the upper substrate 100 (or the dielectric constant is low) in the gap portion of the upper substrate 100. For this reason, since the electrostatic energy in this portion hardly changes, the wettability of the raised liquid metal 18 does not improve, so the liquid metal 18 does not rise any further.
 そして、液体金属18が上昇したことにより、隙間20は液体金属18で満たされて磁性体10と10’間の熱の伝達が起きて熱伝達状態になる。 Then, as the liquid metal 18 rises, the gap 20 is filled with the liquid metal 18, and heat transfer occurs between the magnetic bodies 10 and 10 ′, resulting in a heat transfer state.
 このようにして本形態の熱スイッチ部230では、エレクトロウェッティングにより熱スイッチ部230に設けた隙間20に液体金属18が充填された熱伝達状態と、隙間20から液体金属18を排除した断熱状態を、電気的に制御することができるのである。 Thus, in the thermal switch unit 230 of this embodiment, the heat transfer state in which the liquid metal 18 is filled in the gap 20 provided in the thermal switch unit 230 by electrowetting and the heat insulation state in which the liquid metal 18 is excluded from the gap 20. Can be electrically controlled.
 熱スイッチ部230を構成する各部の好ましいサイズは、ガリンスタンを液体金属18として用いた場合、隙間20の間隔が10μm~50μmが好ましいものとなる。下限値を10としたのは、この程度の隙間20をあけることで、液体金属18が下がって隙間20内に空気が入ったときに十分な断熱性を有するようにするためである。一方、上限の50μmは、液体金属18が上がって隙間20を満たした場合の熱伝達性能を保つためである。 The preferable size of each part constituting the thermal switch part 230 is such that when the gallinstan is used as the liquid metal 18, the gap 20 is preferably 10 μm to 50 μm. The reason why the lower limit is set to 10 is to provide sufficient heat insulation when the liquid metal 18 is lowered and air enters the gap 20 by opening the gap 20 of this level. On the other hand, the upper limit of 50 μm is for maintaining the heat transfer performance when the liquid metal 18 rises and fills the gap 20.
 なお、図30に示したように、液体金属18が隙間20を上昇すると液溜まり17内から液体金属18が出てゆくことになる。このとき、仮に液溜まり17が密閉状態だと、液溜まり17内部が負圧(真空)になるため液体金属18が液溜まり17から隙間20に出て行きづらくなる。そこで、本形態では、液溜まり17の下部端に空気穴25を設けたのである。空気穴25の大きさは液体金属18が漏れ出ない程度でかつ空気の流入、流出が起こる程度の大きさとする。なお、空気穴25の位置は、液溜まり17の下部端以外であってもよく、液体金属18が液溜まり17から隙間20に出て行きやすくなるように配置されていれば良い。 In addition, as shown in FIG. 30, when the liquid metal 18 rises through the gap 20, the liquid metal 18 comes out from the liquid reservoir 17. At this time, if the liquid reservoir 17 is in a sealed state, the inside of the liquid reservoir 17 becomes a negative pressure (vacuum), so that the liquid metal 18 does not easily go out of the liquid reservoir 17 into the gap 20. Therefore, in this embodiment, the air hole 25 is provided at the lower end of the liquid reservoir 17. The size of the air hole 25 is set such that the liquid metal 18 does not leak and the inflow and outflow of air occur. The position of the air hole 25 may be other than the lower end of the liquid reservoir 17 and may be arranged so that the liquid metal 18 can easily go out from the liquid reservoir 17 into the gap 20.
 ここで、本形態においては、隙間20を介して対向する第1および第2電極構造体11および21は、それぞれ第1電極12と第2電極14を、誘電体13を介して平行に設けている。このうち、エレクトロウェッティングの作用しているのは、第1電極12、液体金属18、およびその間の誘電体13によって構成されるキャパシターである。このため、エレクトロウェッティングの原理としては、液体金属18に電圧を印加することができれば、第2電極14はなくても良い。たとえば、下部基板を通して、液体金属と電気的に接続される電極を設けるなどである。この場合、第2電極は隙間内に存在しないので、隙間の対向する面は誘電体となり、液体金属に対して撥液性があるので、撥液コート層もなくて良い。 Here, in this embodiment, the first and second electrode structures 11 and 21 that face each other with the gap 20 are provided with the first electrode 12 and the second electrode 14 in parallel with the dielectric 13 interposed therebetween, respectively. Yes. Among these, the capacitor that is constituted by the first electrode 12, the liquid metal 18, and the dielectric 13 between them is acting on the electrowetting. For this reason, as a principle of electrowetting, the second electrode 14 may be omitted as long as a voltage can be applied to the liquid metal 18. For example, an electrode electrically connected to the liquid metal is provided through the lower substrate. In this case, since the second electrode does not exist in the gap, the opposing surface of the gap becomes a dielectric and has liquid repellency with respect to the liquid metal.
 ただし、このようにした場合(第2電極を省略した場合)、キャパシター構造としては、第1電極12の対向電極となる液体金属18が移動するため、電極面積が増減することになる。このため、エレクトロウェッティング作用を起こさせる誘電体での静電エネルギーも増減してしまうことになる。したがって、同じ電圧を印加していても液体金属の上昇量によってエレクトロウェッティング作用により液体金属を移動させる力が変わって、液体金属の上昇速度が変化するおそれがある(なお、第2電極を省略した場合でも、液体金属の移動速度が若干不安定になるおそれはあるものの、第2電極を設けた場合と同様に、摩擦を発生させることなく熱伝達と断熱の切り替えは可能である)。 However, in such a case (when the second electrode is omitted), the electrode structure is increased or decreased because the liquid metal 18 serving as the counter electrode of the first electrode 12 moves as the capacitor structure. For this reason, the electrostatic energy in the dielectric material that causes the electrowetting action also increases or decreases. Therefore, even if the same voltage is applied, the force for moving the liquid metal is changed by the electrowetting action depending on the rising amount of the liquid metal, and the rising speed of the liquid metal may change (the second electrode is omitted). Even in this case, although the moving speed of the liquid metal may be slightly unstable, it is possible to switch between heat transfer and heat insulation without generating friction as in the case of providing the second electrode).
 本形態では、第1電極12と第2電極14を、誘電体13を介して平行に設けているので、第1電極12と第2電極14によるキャパシターの大きさは、液体金属18の移動によって変化しない。したがって、同じ電圧の印加でも、液体金属の移動によって液体金属の移動速度が変化したりせず安定的に熱伝達と断熱を切り替えることができる。 In this embodiment, since the first electrode 12 and the second electrode 14 are provided in parallel via the dielectric 13, the size of the capacitor by the first electrode 12 and the second electrode 14 is determined by the movement of the liquid metal 18. It does not change. Therefore, even when the same voltage is applied, the transfer speed of the liquid metal is not changed by the movement of the liquid metal, and the heat transfer and the heat insulation can be switched stably.
 <熱スイッチ部の形態9>
 図31は熱スイッチ部の形態9における熱スイッチ部の構成を説明するための平面図であって、図26中の矢視Aに相当する方向から見た図である。
<Thermal switch section 9>
FIG. 31 is a plan view for explaining the configuration of the thermal switch part in the ninth form of the thermal switch part, as seen from the direction corresponding to the arrow A in FIG.
 本形態の熱スイッチもまた、電気濡れ(エレクトロウェッティング)効果を利用したものである。したがって、熱スイッチ部の形態8の変形例となる。 The thermal switch of this embodiment also uses the electric wetting (electrowetting) effect. Therefore, this is a modification of the thermal switch section 8.
 熱スイッチ部の形態9は、熱スイッチ部230の隙間20に第1電極構造体11側と第2電極構造体21側のそれぞれの壁面、すなわち撥液コート層15の表面にブレード31を配置したものである。このブレード31は、下部基板16の液溜まり17から上部基板100方向に垂直に延びており、第1電極構造体11側のブレード31と第2電極構造体21側のブレード31は互い接触しない幅となっている。ブレード31自体は、たとえば撥液コート層15の材料をそのままブレード31の構造となるように形成すると良い。 In the thermal switch section 9, the blades 31 are arranged on the wall surfaces of the first electrode structure 11 side and the second electrode structure 21 side in the gap 20 of the thermal switch section 230, that is, on the surface of the liquid repellent coating layer 15. Is. The blade 31 extends vertically from the liquid reservoir 17 of the lower substrate 16 in the direction of the upper substrate 100, and the blade 31 on the first electrode structure 11 side and the blade 31 on the second electrode structure 21 side do not contact each other. It has become. The blade 31 itself may be formed, for example, so that the material of the liquid repellent coating layer 15 has the structure of the blade 31 as it is.
 そのほかの構成は、熱スイッチ部の形態8と同じであるので説明を省略する。 Other configurations are the same as those of the thermal switch section 8 and will not be described.
 このようにすることで、液体金属18と第1電極構造体11の壁面および第2電極構造体21の壁面との接触表面積が大きくなって熱伝達効率が良くなる。また、第1電極構造体11側のブレード31と第2電極構造体21側のブレード31との間で隙間dBが形成されるため、このブレード31間の隙間dBでもブレード壁面に液体金属18の表面張力が働き、いっそう液体金属18が上昇しやすくなる(電圧印加時)。ブレード31間の隙間dBもすでに説明したとおり、10μm~50μm程度が好ましい。 By doing so, the contact surface area between the liquid metal 18 and the wall surface of the first electrode structure 11 and the wall surface of the second electrode structure 21 is increased, and the heat transfer efficiency is improved. Further, since the gap d B is formed between the blade 31 of the first electrode structure 11 side and the blade 31 of the second electrode structure 21 side, the liquid metal to the blade wall even gap d B between the blade 31 The surface tension of 18 works and the liquid metal 18 is more likely to rise (when voltage is applied). As the gap d B also previously described between the blade 31, it is preferably about 10 [mu] m ~ 50 [mu] m.
 以上説明した本実施形態2のように、熱伝導部として、それ自身の移動を伴わずに熱の伝達、遮断を行うことのできる熱スイッチを用いたことで磁気冷暖房装置を小型化することができる。たとえば磁気冷暖房装置を車載するためには小型化が要求され、小型化するためには磁気冷暖房装置の高周波化が必要である。高周波化するためには、磁性体間の熱伝導を高速(例えば0.1秒程度)で行う必要がある。本実施形態2の熱スイッチ部によって、電圧をON、OFFする周期を短くすることで高周波化できるようになる。 As in Embodiment 2 described above, the magnetic cooling / heating device can be reduced in size by using a heat switch that can transfer and block heat without moving itself as the heat conducting unit. it can. For example, in order to mount a magnetic air conditioner on-board, downsizing is required, and in order to reduce the size, it is necessary to increase the frequency of the magnetic air conditioner. In order to increase the frequency, it is necessary to conduct heat conduction between magnetic bodies at high speed (for example, about 0.1 second). By the thermal switch unit of the second embodiment, the frequency can be increased by shortening the cycle of turning on and off the voltage.
 なお、熱スイッチ部は、実施形態1においても熱伝達部材として使用可能である。 Note that the thermal switch unit can also be used as a heat transfer member in the first embodiment.
 以上説明した本実施形態よれば以下の効果を奏する。 According to this embodiment described above, the following effects are obtained.
 (1)列状に並んだ複数の磁性体のうち、少なくとも一つの磁性体として、一つの磁性体の中に作動温度範囲の異なる少なくとも2つの磁気熱量材料を有するようにし、このうち一つは作動温度範囲として起動時温度を含む磁気熱量材料とした。このためこの磁性体には起動時温度を作動温度範囲とする磁気熱量材料が含まれるため、起動時から温度変化するようになって起動時から定常状態までの過渡特性が向上し、従来よりも短い時間で定常状態にすることができる。 (1) Among at least one magnetic body arranged in a row, at least one magnetic body has at least two magnetocaloric materials having different operating temperature ranges, one of which is Magneto-caloric material including start-up temperature as operating temperature range. For this reason, this magnetic material contains a magnetocaloric material whose starting temperature is within the operating temperature range, so that the temperature changes from the starting time, and the transient characteristics from the starting time to the steady state are improved. A steady state can be achieved in a short time.
 (2)複数の磁気熱量材料を組み合わせる際の各磁気熱量材料の配置は、磁性体が列状に並んだ方向に沿う断面において、作動温度範囲として起動時温度を含む磁気熱量材料を中央に配置し、その外側に磁性体自身の作動温度範囲を担う磁気熱量材料を配置した。これにより、磁性体同士の熱伝達を効率よくすることができる。 (2) The arrangement of each magnetocaloric material when combining a plurality of magnetocaloric materials is arranged in the center with the magnetocaloric material including the starting temperature as the operating temperature range in the cross section along the direction in which the magnetic bodies are arranged in a line. In addition, a magnetocaloric material that bears the operating temperature range of the magnetic material itself is disposed outside thereof. Thereby, the heat transfer between magnetic bodies can be made efficient.
 (3)複数の磁気熱量材料を組み合わせる際の各磁気熱量材料の配置は、磁性体が列状に並んだ方向に沿う断面において、作動温度範囲として起動時温度を含む磁気熱量材料を中央に配置し、その外側に磁性体自身の作動温度範囲を担う磁気熱量材料を配置した構成を基本配置として、この基本配置を複数組み合わせている。これにより、磁性体同士の熱伝達を効率よくすることができる。 (3) The arrangement of each magnetocaloric material when combining a plurality of magnetocaloric materials is arranged in the center with the magnetocaloric material including the starting temperature as the operating temperature range in the cross section along the direction in which the magnetic bodies are arranged in a line. A plurality of the basic arrangements are combined with the basic arrangement of a configuration in which a magnetocaloric material bearing the operating temperature range of the magnetic material itself is arranged on the outside. Thereby, the heat transfer between magnetic bodies can be made efficient.
 (4)一つの磁性体の中に作動温度範囲の異なる少なくとも2つの磁気熱量材料を有するようにした磁性体を、低温側熱交換部および/または高温側熱交換部に隣接する磁性体とした。これにより起動時温度からもっとも離れた作動温度範囲となる低温側または高温側の熱交換部に隣接する磁性体であっても、起動時から温度変化するようになる。 (4) A magnetic body having at least two magnetocaloric materials having different operating temperature ranges in one magnetic body is a magnetic body adjacent to the low temperature side heat exchange section and / or the high temperature side heat exchange section. . Thereby, even if it is a magnetic body adjacent to the heat exchange part of the low temperature side or high temperature side which becomes the operating temperature range most distant from the temperature at the time of starting, a temperature changes from the time of starting.
 (5)低温側熱交換部または高温側熱交換部に隣接する磁性体には、さらに自身以外の磁性体の作動温度範囲の磁気熱量材料を組み合わせている。これにより、起動時温度から外れ、さらに自身の作動温度範囲まで至らない途中の段階においても、組み合わせた磁気熱量材料によって温度変化がもたらされる。このため起動から定常状態に至る途中の段階を速く抜けて定常状態にすることができる。 (5) The magnetic body adjacent to the low temperature side heat exchange section or the high temperature side heat exchange section is further combined with a magnetocaloric material in the operating temperature range of the magnetic body other than itself. As a result, even when the temperature deviates from the start-up temperature and does not reach the operating temperature range of itself, a temperature change is caused by the combined magnetocaloric material. For this reason, it is possible to quickly pass through the middle stage from the start to the steady state to be in the steady state.
 (6)複数の磁性体を同じ質量にすることで、ぞれぞれの熱容量の違いをなくし(または少なくし)熱伝達のばらつきを抑えることができる。そして、同じ質量とする場合には、作動温度範囲として起動時温度を含む磁気熱量材料の組み合わせ割合を5質量%以上50質量%未満とすることで、一速くて定常状態にすることができるとともに、定常状態となった後も安定した冷却動作を行うことができる。 (6) By making a plurality of magnetic bodies have the same mass, it is possible to eliminate (or reduce) the difference in heat capacity of each and suppress the variation in heat transfer. And when setting it as the same mass, while being able to make it quick and a steady state by setting the combination rate of the magnetocaloric material including the starting temperature as the operating temperature range to 5% by mass or more and less than 50% by mass. A stable cooling operation can be performed even after a steady state is reached.
 (7)複数の磁性体は同じ体積にすることで、ぞれぞれの熱容量の違いをなくし(または少なくし)熱伝達のばらつきを抑えることができる。そして、同じ体積とする場合には、各磁性体自身の作動温度範囲を担う磁気熱量材料を100質量%としたときに、この100質量%に対して作動温度範囲として起動時温度を含む磁気熱量材料の組み合わせ割合を5質量%以上50質量%未満にする。これにより一速くて定常状態にすることができるとともに、定常状態となった後も安定した冷却動作を行うことができる。 (7) By making the plurality of magnetic bodies have the same volume, it is possible to eliminate (or reduce) the difference in the heat capacities of each and suppress the variation in heat transfer. And when setting it as the same volume, when the magnetocaloric material which bears the operating temperature range of each magnetic body itself is 100 mass%, the magnetocaloric energy including the starting temperature as the operating temperature range with respect to 100 mass%. The combination ratio of the materials is set to 5% by mass or more and less than 50% by mass. As a result, the steady state can be achieved faster and a stable cooling operation can be performed even after the steady state is reached.
 以上本発明を適用した実施形態について説明したが、本発明は上述した実施形態に限らず、様々な変形が可能である。たとえば、作動時温度範囲として起動時温度を含む磁性体を、複数の磁性体を並べた列の中央部分ではなく、偏った位置に配置しても良い。たとえば図1の例では、磁性体10Fとして、作動時温度範囲として起動時温度を含む磁性体を配置する(またはこの逆に磁性体10Aを起動時温度としても良い)。このような場合には低温側熱交換部に隣接する磁性体10Aに、起動時温度の磁気熱量材料すなわちこの場合は磁性体10Fの磁気熱量材料を組み合わせる(逆の場合は磁性体10Aの磁気熱量材料を磁性体10Fに組み合わせる)。もちろんこの場合も、隣接する磁性体の作動温度範囲の磁気熱量材料をさらに組み合わせても良い。また途中にある磁性体にも起動時温度の磁気熱量材料を組み合わせても良い。このような場合でも、上述した実施形態と同様に一速く定常状態の温度に達することができる。 Although the embodiment to which the present invention is applied has been described above, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the magnetic body including the startup temperature as the operating temperature range may be arranged at a biased position, not in the central portion of the row in which a plurality of magnetic bodies are arranged. For example, in the example of FIG. 1, as the magnetic body 10F, a magnetic body including the startup temperature as the operating temperature range is disposed (or conversely, the magnetic body 10A may be set as the startup temperature). In such a case, the magnetic body 10A adjacent to the low temperature side heat exchanging portion is combined with the magnetocaloric material at the start-up temperature, that is, the magnetic calorific material of the magnetic body 10F in this case (in the opposite case, the magnetic calorific value of the magnetic body 10A). Combine material with magnetic body 10F). Of course, in this case as well, a magnetocaloric material in the operating temperature range of the adjacent magnetic material may be further combined. Moreover, you may combine the magnetocaloric material of starting temperature with the magnetic body in the middle. Even in such a case, the steady-state temperature can be reached quickly as in the above-described embodiment.
 また、起動時温度の磁気熱量材料を組み合わせる磁性体としては、低温側熱交換部または高温側熱交換部に隣接する磁性体に限られない。たとえば、低温側熱交換部または高温側熱交換部に隣接する磁性体と中央にある磁性体の途中にある磁性体にだけ、起動時温度の磁気熱量材料を組み合わせても良い。このようにすることでも、起動時温度から作動温度範囲が外れている磁性体のうち、少なくとも一つは、起動時から温度変化を起こすようになるので、その分だけでも、定常状態に速く達するようになる。 Also, the magnetic body combined with the magnetocaloric material at the starting temperature is not limited to the magnetic body adjacent to the low temperature side heat exchange section or the high temperature side heat exchange section. For example, the magnetocaloric material at the start-up temperature may be combined only with the magnetic body in the middle of the magnetic body adjacent to the low temperature side heat exchange section or the high temperature side heat exchange section and the magnetic body in the center. Even in this way, at least one of the magnetic materials whose operating temperature range is out of the starting temperature will cause a temperature change from the starting time, so that the steady state can be reached quickly by just that much. It becomes like this.
 また、上述した実施形態では、起動時の温度として常温(20℃)を想定したが、起動時温度が必ずしも常温ではない場合であって適用可能である。 In the above-described embodiment, the normal temperature (20 ° C.) is assumed as the temperature at the start-up, but the case where the temperature at the start-up is not necessarily the normal temperature is applicable.
 そのほか、本発明は、特許請求の範囲により規定した事項によって定められる様々な変形形態が可能であることは有までもない。 In addition, it is needless to say that the present invention can be modified in various forms determined by matters defined by the scope of claims.
 さらに、本出願は、2012年9月3日に出願された日本特許出願番号2012-193449号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。 Furthermore, this application is based on Japanese Patent Application No. 2012-193449 filed on September 3, 2012, the disclosures of which are referenced and incorporated as a whole.
10、10A-10F、10Aa-10Af、10Ba-10Bf 磁性体、
20A-20F、20Aa-20Ae、20Ba-20Be 永久磁石、
20Ab-20Af 磁気突起、
30、30A-30G、30Ab-30Af、30Ba-30Bg、230 熱伝導部(熱スイッチ部)、
40A 低温側熱交換部、
40B 高温側熱交換部、
500 磁気冷暖房装置、
700 磁性体・熱伝達部配置板、
800 磁石配置板。
10, 10A-10F, 10Aa-10Af, 10Ba-10Bf magnetic material,
20A-20F, 20Aa-20Ae, 20Ba-20Be Permanent magnet,
20Ab-20Af Magnetic protrusion,
30, 30A-30G, 30Ab-30Af, 30Ba-30Bg, 230 Heat conduction part (thermal switch part),
40A low temperature side heat exchange section,
40B high temperature side heat exchange section,
500 Magnetic air conditioner,
700 Magnetic body / heat transfer part arrangement plate,
800 Magnet placement plate.

Claims (7)

  1.  間隔を設けて列状に配置された複数の磁性体と、
     前記複数の磁性体のそれぞれに磁気を印加および除去する磁気印加部と、
     前記複数の磁性体の前記列の一端部に磁性体から間隔をあけて配置された低温側熱交換部と、
     前記複数の磁性体の前記列の他端部に磁性体から間隔をあけて配置された高温側熱交換部と、
     前記磁性体同士の間、前記磁性体と前記低温側熱交換部の間、および前記磁性体と前記高温側熱交換部の間のそれぞれに配置され、これらの間の熱の伝達および断熱を行う熱伝導部と、
     を有し、
     前記複数の磁性体は、前記磁気の印加および除去により、それぞれ異なる作動温度範囲で温度変化する少なくとも一つの磁気熱量材料を有し、
     前記複数の磁性体のうち少なくとも一つの磁性体は、一つの磁性体の中に作動温度範囲の異なる少なくとも2つの磁気熱量材料を有していてこのうち一つは作動温度範囲として起動時温度を含む磁気熱量材料であることを特徴とする磁気冷暖房装置。
    A plurality of magnetic bodies arranged in rows at intervals, and
    A magnetic application unit for applying and removing magnetism to each of the plurality of magnetic bodies;
    A low temperature side heat exchanging portion disposed at one end of the row of the plurality of magnetic bodies and spaced from the magnetic body;
    A high temperature side heat exchanging portion disposed at a distance from the magnetic body at the other end of the row of the plurality of magnetic bodies;
    It is arranged between the magnetic bodies, between the magnetic body and the low temperature side heat exchange section, and between the magnetic body and the high temperature side heat exchange section, and performs heat transfer and heat insulation between them. A heat conduction part;
    Have
    The plurality of magnetic bodies have at least one magnetocaloric material that changes in temperature in different operating temperature ranges by applying and removing the magnetism,
    At least one of the plurality of magnetic bodies has at least two magnetocaloric materials having different operating temperature ranges in one magnetic body, and one of them has a startup temperature as the operating temperature range. A magnetic air conditioner comprising a magnetocaloric material.
  2.  前記少なくとも2つの磁気熱量材料を有していてこのうち一つは作動温度範囲として起動時温度を含む磁気熱量材料を有する前記磁性体は、前記複数の磁性体が列状に並んだ方向に沿う断面において、前記作動温度範囲として起動時温度を含む磁気熱量材料を中央に配置し、その外側に前記磁性体自身の作動温度範囲を担う磁気熱量材料を配置していることを特徴とする請求項1に記載の磁気冷暖房装置。 The magnetic body having the at least two magnetocaloric materials, one of which has a magnetocaloric material including a startup temperature as an operating temperature range, is along a direction in which the plurality of magnetic bodies are arranged in a line. In the cross section, a magnetocaloric material including a starting temperature as the operating temperature range is arranged in the center, and a magnetocaloric material that bears the operating temperature range of the magnetic body itself is arranged outside thereof. The magnetic air conditioner according to 1.
  3.  前記少なくとも2つの磁気熱量材料を有していてこのうち一つは作動温度範囲として起動時温度を含む磁気熱量材料を有する前記磁性体は、前記複数の磁性体が列状に並んだ方向に沿う断面において、前記作動温度範囲として起動時温度を含む磁気熱量材料を中央に配置し、その外側に前記磁性体自身の作動温度範囲を担う磁気熱量材料を配置した構成を基本配置として、当該基本配置を複数組み合わせていることを特徴とする請求項1に記載の磁気冷暖房装置。 The magnetic body having the at least two magnetocaloric materials, one of which has a magnetocaloric material including a startup temperature as an operating temperature range, is along a direction in which the plurality of magnetic bodies are arranged in a line. In the cross-section, the basic arrangement is a configuration in which the magnetocaloric material including the starting temperature as the operating temperature range is arranged in the center, and the magnetocaloric material bearing the operating temperature range of the magnetic body itself is arranged outside the basic arrangement. The magnetic air conditioner according to claim 1, wherein a plurality of these are combined.
  4.  前記少なくとも2つの磁気熱量材料を有していてこのうち一つは作動温度範囲として起動時温度を含む磁気熱量材料を有する前記磁性体は、前記低温側熱交換部および/または前記高温側熱交換部に隣接する磁性体であることを特徴とする請求項1~3のいずれか一つに記載の磁気冷暖房装置。 The magnetic body having the at least two magnetocaloric materials, one of which includes a magnetocaloric material including a startup temperature as an operating temperature range, includes the low temperature side heat exchange section and / or the high temperature side heat exchange. The magnetic air-conditioning apparatus according to any one of claims 1 to 3, wherein the magnetic air-conditioning apparatus is a magnetic body adjacent to the section.
  5.  前記低温側熱交換部および/または高温側熱交換部に隣接する前記磁性体は、
     それ自身の作動温度範囲の磁気熱量材料、動温度範囲として起動時温度を含む磁気熱量材料、これらの磁気熱量材料の作動温度範囲以外の作動温度範囲の磁気熱量材料を有することを特徴とする請求項4に記載の磁気冷暖房装置。
    The magnetic body adjacent to the low temperature side heat exchange part and / or the high temperature side heat exchange part,
    It has a magnetocaloric material in its own operating temperature range, a magnetocaloric material including a starting temperature as a dynamic temperature range, and a magnetocaloric material in an operating temperature range other than the operating temperature range of these magnetocaloric materials. Item 5. A magnetic air conditioner according to item 4.
  6.  前記複数の磁性体は同じ質量であり、一つの磁性体に含まれる作動温度範囲として起動時温度を含む磁気熱量材料の割合は5質量%以上50質量%未満であることを特徴とする請求項1~5のいずれか一つに記載の磁気冷暖房装置。 The plurality of magnetic bodies have the same mass, and a ratio of a magnetocaloric material including a startup temperature as an operating temperature range included in one magnetic body is 5 mass% or more and less than 50 mass%. The magnetic air conditioner according to any one of 1 to 5.
  7.  前記複数の磁性体は同じ体積であり、各磁性体自身の作動温度範囲を担う磁気熱量材料を100質量%としたとき、当該100質量%に対して作動温度範囲として起動時温度を含む磁気熱量材料の割合は5質量%以上50質量%未満であることを特徴とする請求項1~5のいずれか一つに記載の磁気冷暖房装置。 The plurality of magnetic bodies have the same volume, and when the magnetocaloric material responsible for the operating temperature range of each magnetic body is 100% by mass, the magnetocaloric amount including the startup temperature as the operating temperature range with respect to 100% by mass. The magnetic air conditioner according to any one of claims 1 to 5, wherein the ratio of the material is 5 mass% or more and less than 50 mass%.
PCT/JP2013/070915 2012-09-03 2013-08-01 Magnetic cooling/heating device WO2014034374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014532896A JP5807723B2 (en) 2012-09-03 2013-08-01 Magnetic air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-193449 2012-09-03
JP2012193449 2012-09-03

Publications (1)

Publication Number Publication Date
WO2014034374A1 true WO2014034374A1 (en) 2014-03-06

Family

ID=50183192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070915 WO2014034374A1 (en) 2012-09-03 2013-08-01 Magnetic cooling/heating device

Country Status (2)

Country Link
JP (1) JP5807723B2 (en)
WO (1) WO2014034374A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003826A (en) * 2014-06-18 2016-01-12 株式会社フジクラ Magnetic heat pump device and air conditioning device
JP2016023839A (en) * 2014-07-17 2016-02-08 日産自動車株式会社 Air conditioner
JP2016080206A (en) * 2014-10-10 2016-05-16 株式会社デンソー Magneto-caloric element and thermomagnetic cycle device
JP2016080205A (en) * 2014-10-10 2016-05-16 株式会社デンソー Magneto-caloric element and thermomagnetic cycle device
EP3104103A1 (en) * 2015-06-08 2016-12-14 Eberspächer Climate Control Systems GmbH & Co. KG. Temperature control device, in particular vehicle temperature control device
WO2020067043A1 (en) * 2018-09-27 2020-04-02 ダイキン工業株式会社 Magnetic refrigeration system
WO2022044835A1 (en) * 2020-08-26 2022-03-03 東京エレクトロン株式会社 Caloric effect element, heat transfer device, semiconductor manufacturing device, and caloric effect element control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525291A (en) * 2007-12-27 2010-07-22 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Composite structure having magnetocalorically active material and method for producing the same
JP2011520030A (en) * 2008-03-31 2011-07-14 ユニベルシテ アンリ ポアンカレ ナンシー 1 New intermetallic compounds, their use and production
JP2012503754A (en) * 2008-09-25 2012-02-09 クールテック アプリケーションズ エス.エイ.エス. Magnetocaloric effect element
JP2012073006A (en) * 2010-09-29 2012-04-12 Toshiba Corp Heat exchanger unit, and thermal cycling unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288456A (en) * 1986-06-09 1987-12-15 株式会社日立製作所 Magnetic refrigeration method
JP4649389B2 (en) * 2006-09-28 2011-03-09 株式会社東芝 Magnetic refrigeration device and magnetic refrigeration method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525291A (en) * 2007-12-27 2010-07-22 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー Composite structure having magnetocalorically active material and method for producing the same
JP2011520030A (en) * 2008-03-31 2011-07-14 ユニベルシテ アンリ ポアンカレ ナンシー 1 New intermetallic compounds, their use and production
JP2012503754A (en) * 2008-09-25 2012-02-09 クールテック アプリケーションズ エス.エイ.エス. Magnetocaloric effect element
JP2012073006A (en) * 2010-09-29 2012-04-12 Toshiba Corp Heat exchanger unit, and thermal cycling unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003826A (en) * 2014-06-18 2016-01-12 株式会社フジクラ Magnetic heat pump device and air conditioning device
JP2016023839A (en) * 2014-07-17 2016-02-08 日産自動車株式会社 Air conditioner
JP2016080206A (en) * 2014-10-10 2016-05-16 株式会社デンソー Magneto-caloric element and thermomagnetic cycle device
JP2016080205A (en) * 2014-10-10 2016-05-16 株式会社デンソー Magneto-caloric element and thermomagnetic cycle device
EP3104103A1 (en) * 2015-06-08 2016-12-14 Eberspächer Climate Control Systems GmbH & Co. KG. Temperature control device, in particular vehicle temperature control device
CN106240304A (en) * 2015-06-08 2016-12-21 埃贝斯佩歇气候控制系统有限责任两合公司 Thermoregulator, particularly vehicle thermoregulator
US10119731B2 (en) 2015-06-08 2018-11-06 Eberspächer Climate Control Systems GmbH & Co. KG Temperature control unit, especially vehicle temperature control unit
WO2020067043A1 (en) * 2018-09-27 2020-04-02 ダイキン工業株式会社 Magnetic refrigeration system
JP2020051693A (en) * 2018-09-27 2020-04-02 ダイキン工業株式会社 Magnetic refrigeration system
JP7108183B2 (en) 2018-09-27 2022-07-28 ダイキン工業株式会社 magnetic refrigeration system
WO2022044835A1 (en) * 2020-08-26 2022-03-03 東京エレクトロン株式会社 Caloric effect element, heat transfer device, semiconductor manufacturing device, and caloric effect element control method

Also Published As

Publication number Publication date
JP5807723B2 (en) 2015-11-10
JPWO2014034374A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP5807723B2 (en) Magnetic air conditioner
JP6079498B2 (en) Magnetic air conditioner
JP6212955B2 (en) Magnetic air conditioner
JP5966740B2 (en) Magnetic structure and magnetic air conditioner using the same
US7536866B2 (en) Magnetic refrigerator
US9273886B2 (en) Magnetic refrigerator utilizing a permanent magnet to create movement between plates comprising high and low temperature side heat exchangers
US10544965B2 (en) Magnetocaloric refrigerator
KR102149720B1 (en) Magnetic cooling apparatus
JP4649389B2 (en) Magnetic refrigeration device and magnetic refrigeration method
CN112254370B (en) All-solid-state energy conversion refrigerating device based on thermoelectric magnetic coupling
US8453466B2 (en) Heat-power conversion magnetism device and system for converting energy thereby
US20110162388A1 (en) Magnetocaloric device
US20140130515A1 (en) Magnetic refrigeration device and magnetic refrigeration system
US20040182086A1 (en) Magnetocaloric refrigeration device
US20100146989A1 (en) Continuously rotary magnetic refrigerator or heat pump
BRPI0615261A2 (en) thermal generator using magneto-thermally material
CN112066591A (en) Thermoelectric and electromagnetic composite refrigeration system
JP2014095535A (en) Magnetic air-heating and cooling apparatus
JP5796682B2 (en) Magnetic air conditioner
KR101204325B1 (en) Compact active magnetic regenerative refrigerator
JP6136529B2 (en) Magnetic air conditioner and air conditioning system
JP7037688B1 (en) Energy conversion element and temperature control device using it
CN115435508B (en) Thermoelectric and electromagnetic composite all-solid-state refrigerating device
CN113494785A (en) All-solid-state magnetic refrigeration device and use method and application thereof
JP2016023839A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832889

Country of ref document: EP

Kind code of ref document: A1