WO2014034318A1 - Plasma emission device and substrate processing device - Google Patents

Plasma emission device and substrate processing device Download PDF

Info

Publication number
WO2014034318A1
WO2014034318A1 PCT/JP2013/069610 JP2013069610W WO2014034318A1 WO 2014034318 A1 WO2014034318 A1 WO 2014034318A1 JP 2013069610 W JP2013069610 W JP 2013069610W WO 2014034318 A1 WO2014034318 A1 WO 2014034318A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
frequency
frequency power
high frequency
generator
Prior art date
Application number
PCT/JP2013/069610
Other languages
French (fr)
Japanese (ja)
Inventor
健一 花輪
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2014034318A1 publication Critical patent/WO2014034318A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/26Matching networks

Definitions

  • the present invention relates to a plasma generator and a substrate processing apparatus using the same.
  • a parallel plate type plasma processing apparatus is provided with an anode / cathode electrode in a chamber, a high-frequency power generator (high-frequency power supply) provided outside the chamber passes through a matching unit (matcher), and then high-frequency power is applied to the cathode electrode.
  • a high-frequency power generator high-frequency power supply
  • Matcher matching unit
  • a parallel plate type plasma processing apparatus When such a parallel plate type plasma processing apparatus is applied to a plasma processing such as a film forming process or an etching process of a glass substrate used for, for example, a solar cell panel or a flat panel, a high frequency (RF) frequency (RF The frequency is fixed to one type such as 13.56 MHz, and the plasma processing is performed using the type of processing gas, flow rate, pressure, distance between electrodes, high frequency power, and the like as process parameters.
  • RF high frequency
  • the frequency is an effective process parameter for controlling the plasma density and improving the crystallization rate. It is known that the frequency can be changed for each process.
  • an object of the present invention is to provide a plasma generator capable of changing the RF frequency without exchanging a high-frequency power generator or a matching unit, and a substrate processing apparatus using the plasma generator.
  • a plasma generator for generating plasma by supplying high frequency power to a plasma generating electrode, the high frequency oscillator capable of changing the frequency of the oscillating high frequency, and the high frequency
  • a high-frequency power generator that amplifies high-frequency power oscillated from an oscillator to generate high-frequency power
  • a transmission line that transmits high-frequency power from the high-frequency power generator to the plasma generation electrode
  • the transmission line A matching unit for matching the impedance of the generated plasma load with the impedance of the transmission line on the high-frequency power generator side, and a directional coupling provided between the high-frequency power generator and the matching unit of the transmission line
  • the spectrum of the reflected wave guided through the directional coupler, and the reflected component of the fundamental frequency is detected in advance. It provided a plasma generating apparatus including a detector for feeding back to the matching unit.
  • a pass-type power sensor provided between the high-frequency power generator and the matcher in the transmission line, and a signal from the pass-type power sensor are measured, A power meter that feeds back to the high-frequency generator can be further provided.
  • a spectrum analyzer can be used as the detector.
  • a detector having a Fourier transform function for obtaining a frequency spectrum by converting an input signal into a digital signal and performing fast Fourier transform can be used.
  • a substrate processing apparatus for processing a substrate with plasma of a processing gas generated by high frequency power
  • the chamber accommodating the substrate and capable of being held under vacuum
  • a plasma generation electrode for generating plasma by supplying high frequency power
  • a plasma generator for generating plasma by supplying high frequency power to the plasma generation electrode
  • a processing gas supply for supplying a processing gas to the chamber
  • a high frequency oscillator capable of changing the frequency of the oscillating high frequency
  • a high frequency power generator for amplifying the high frequency of the frequency oscillated from the high frequency oscillator to generate high frequency power
  • a transmission line for transmitting high-frequency power from the high-frequency power generator to the plasma generation electrode, and a generation provided in the transmission line
  • a matching unit for matching the impedance of the plasma load to the impedance of the transmission line on the high-frequency power generator side, and a directional coupler provided between the high-frequency power generator and the matching unit of the transmission line;
  • a detector for detecting a spectrum of a reflected wave
  • the reflected wave that has passed through the matching device is guided to the detector by the directional coupler, the spectrum of the reflected wave is detected by the detector, and the detector feeds back the reflected component of the fundamental frequency to the matching device.
  • the reflection component and the harmonic component of the fundamental frequency can be separated with high accuracy, and only the reflection component of the fundamental frequency is substantially fed back to the matching unit. For this reason, even when the frequency is made variable, high-precision tuning can be performed in the matching unit. Since tuning with high accuracy can be performed in this manner, the RF frequency can be changed without exchanging the high-frequency power generator or the matching unit, and a process in which the frequency is practically changed can be performed.
  • FIG. 1 is a cross-sectional view showing a substrate processing apparatus according to a first embodiment of the present invention. It is a figure which shows the circuit structure of a matching device. It is a figure which shows a frequency spectrum when the harmonic component which is too high compared with a fundamental frequency component is output as a result of a harmonic component not being attenuate
  • FIG. 1 is a sectional view showing a substrate processing apparatus according to a first embodiment of the present invention.
  • the substrate processing apparatus 100 is configured as a parallel plate type plasma processing apparatus.
  • the substrate processing apparatus 100 accommodates a substrate S and performs plasma processing, a plasma generating apparatus 2, a cathode electrode 3 and an anode electrode 4 constituting parallel plate electrodes provided in the chamber 1, and a chamber 1.
  • a processing gas supply unit 5 that supplies processing gas therein, an exhaust unit 6 that exhausts the inside of the chamber 1, and a control unit 7 that controls each component of the substrate processing apparatus 100 are provided.
  • the cathode electrode 3 is configured as an upper electrode and functions as a plasma generation electrode to which high-frequency power is supplied. Further, the cathode electrode 3 has a gas diffusion space 3 a inside and a gas discharge hole 3 b provided through the gas diffusion space 3 a into the chamber 1. An eggplant shower head 10 is configured. The cathode electrode 3 is supported on the top wall of the chamber 1 through an insulating member 12.
  • the anode electrode 4 is configured as a lower electrode and functions as a mounting table on which the substrate S is mounted.
  • a heater 14 is embedded in the anode electrode 4, and the heater 14 generates heat when power is supplied to the heater 14 from a power source (not shown) so that the substrate S on the anode electrode 4 is heated to a predetermined temperature. It has become.
  • the anode electrode 4 is supported on the bottom wall of the chamber 1 through an insulating member 13.
  • the anode electrode 4 is grounded.
  • the distance between the cathode electrode 3 and the anode electrode 4 may be adjustable.
  • the processing gas supply unit 5 includes a processing gas supply mechanism 15 that supplies a processing gas, and the above-described shower head 10 and a processing gas supply path 16 that guides the processing gas from the processing gas supply mechanism 15 to the shower head 10.
  • the exhaust unit 6 controls an exhaust pipe 17 connected to the bottom of the chamber 1, an exhaust device 18 including a vacuum pump connected to the exhaust pipe 17, and the pressure in the chamber 1 provided in the middle of the exhaust pipe 17. And an automatic pressure control valve (APC) 19.
  • APC automatic pressure control valve
  • a loading / unloading port 20 for loading / unloading the substrate S is provided on the side wall of the chamber 1, and the loading / unloading port 20 can be opened and closed by a gate valve 21.
  • the plasma generator 2 includes an external oscillator (high frequency oscillator) 31, a high frequency power generator 32, a transmission line 33, a matching unit 34, a directional coupler 35, a spectrum analyzer (detector) 36, and a pass type.
  • a power sensor 37 and a power meter 38 are included.
  • the external oscillator (high frequency oscillator) 31 oscillates a high frequency and can change the frequency of the oscillating high frequency.
  • the high frequency power generator 32 amplifies the high frequency of the frequency oscillated from the external oscillator 31 to generate high frequency power.
  • the transmission line 33 transmits high frequency power from the high frequency power generator 32 to the cathode electrode 3.
  • the matching unit 34 is provided in the transmission line 33 and matches the impedance of the plasma load generated in the chamber 1 with the impedance of the transmission line 33 on the high-frequency power generator 32 side.
  • the directional coupler 35 is provided between the high frequency power generator 32 and the matching unit 34 of the transmission line 33.
  • the spectrum analyzer 36 detects the spectrum of the reflected wave guided through the directional coupler 35 and feeds back the reflected component of the fundamental frequency to the matching unit 34.
  • the pass-type power sensor 37 is provided between the high-frequency power generator 32 and the matching unit 34 in the transmission line 33, and the power meter 38 measures a signal from the pass-type power sensor 37, and the high-frequency generator 32. Feedback to
  • the external oscillator 31 has an external interface, and the frequency is variable by remote control.
  • the high frequency power generator 32 amplifies the high frequency oscillated by the external oscillator 31 by a class C or class AB analog amplifier.
  • the high frequency power generator 32 is provided with a low pass filter (LPF) 32a for attenuating harmonics.
  • LPF low pass filter
  • the external oscillator 31 may be housed in the same housing as the high frequency power generator 32. Further, the high frequency power generator 32 may have the frequency variable function of the external oscillator 31. Since the circuit constant of the low-pass filter (LPF) 32a provided in the high-frequency power generator 32 is fixed, when the frequency is made variable in this way, the cutoff frequency does not match the output frequency, and the low-pass filter A harmonic component that cannot be attenuated by the (LPF) 32 a is generated from the high-frequency power generator 32.
  • LPF low-pass filter
  • the transmission line 33 is composed of a coaxial cable.
  • the matching unit 34 includes a transmission line 41 connecting the input side and the output side of the transmission line 33, and a first variable capacitor provided by branching from a branch point 42 of the transmission line 41. 43, a second variable capacitor 44 provided on the output side of the branch point 42 of the transmission line 41, and a coil (inductor) 45 provided on the input side of the branch point 42.
  • the positions (capacities) of the first variable capacitor 43 and the second variable capacitor 44 are automatically adjusted to automatically transmit the transmission line.
  • the impedance of 33 (50 ⁇ ) and the impedance of the plasma load are matched.
  • the transmission line 33 on the output side of the matching unit 34 is connected to the center of the upper surface of the cathode electrode 3.
  • the directional coupler 35 is inserted into the transmission line 33 and extracts a reflected wave propagating through the transmission line 33 to another port, and a spectrum analyzer 36 is connected to the other port.
  • the spectrum analyzer 36 obtains a spectrum of a signal including harmonics obtained through the directional coupler 35 after being reflected by the plasma and passing through the matching unit 34, and extracts only the reflected component of the fundamental frequency from the spectrum.
  • the signal is fed back to the matching unit 34.
  • the matching unit 34 can be tuned by detecting only the fundamental frequency. If the frequency of the RF sensor existing in the matching unit 34 is made variable, the reflected component and the harmonic component of the fundamental frequency may not be separated with high accuracy. In this way, the directional coupler 35 and the spectrum analyzer 36 By using this, only the fundamental frequency can be detected with high accuracy, and the matching unit 34 can perform high-precision tuning.
  • the spectrum analyzer 36 is preferably an FFT type having a fast Fourier transform (FFT) function.
  • FFT fast Fourier transform
  • an input signal is converted into a digital signal, and a fast Fourier transform is performed by a CPU to obtain a frequency spectrum, that is, frequency and amplitude data.
  • the pass-type power sensor 37 detects high-frequency power (power) in the transmission line 33.
  • the passing power sensor is more accurate than the power sensor built in the high-frequency power generator. For this reason, the pass-type power sensor 37 can recognize the high-frequency power (power) superimposed with higher harmonics more correctly than the high-frequency power generator 32. For this reason, when the transmission type power sensor 37 is provided in the transmission line 33, and the signal is fed back to the high frequency power generator 32 through the power meter 38 and used for power control and reflected wave control, the frequency is made variable. The power accuracy can be improved.
  • the control unit 7 controls each component of the substrate processing apparatus 100, and includes a controller including a microprocessor, a keyboard for an operator to input commands for managing the substrate processing apparatus 100, and the like.
  • a user interface comprising a display for visualizing and displaying the operating status of the processing apparatus 100, a control program for realizing various processes executed by the substrate processing apparatus 100 under the control of the controller, and a substrate according to the processing conditions
  • a storage unit storing a processing recipe for causing the processing apparatus 100 to execute a predetermined process.
  • the processing recipe or the like is stored in a storage medium, and is read from the storage medium and executed in the storage unit.
  • the storage medium may be a hard disk or a semiconductor memory, or may be a portable medium such as a CD-ROM, DVD, or flash memory. Recipes and the like are read from the storage unit according to instructions from the user interface as necessary, and are executed by the controller, whereby desired processing in the substrate processing apparatus 100 is performed under the control of the controller.
  • the gate valve 21 is opened, and the substrate S is loaded into the chamber 1 from the loading / unloading port 20 by a transfer device (not shown) and mounted on the anode electrode 4 functioning as a mounting table.
  • the transfer device is retracted from the chamber 1 and the gate valve 21 is closed, the interior of the chamber 1 is exhausted by the exhaust device 18 to create a predetermined vacuum atmosphere therein.
  • the substrate S on the anode electrode 4 is heated to a predetermined temperature by the heater 14.
  • the processing gas is discharged from the processing gas supply mechanism 15 into the chamber 1 through the processing gas supply path 16 and the shower head 10 in a shower shape, and high frequency power is supplied from the high frequency power generator 32 to the cathode electrode 3.
  • a high frequency electric field is generated between the cathode electrode 3 and the anode electrode 4 facing each other, and a predetermined plasma treatment is performed on the substrate S heated by the heater 14 by the plasma of the processing gas generated by the high frequency electric field.
  • plasma CVD is performed.
  • the high frequency power generator 32 has a variable frequency of the high frequency power output from the external oscillator 31.
  • the reference frequency of the high-frequency power generator 32 is 13.56 MHz
  • the frequency can be changed by about ⁇ 3 MHz.
  • the high-frequency power generator 32 is provided with a low-pass filter 32a for attenuating harmonics with respect to the fundamental frequency of the reference frequency (for example, 20MHz and 30MHz when the fundamental frequency is 10MHz), but the constant is fixed. For this reason, when the frequency is changed from the reference frequency, harmonics that cannot be attenuated by the low-pass filter (LPF) 32a are generated.
  • LPF low-pass filter
  • the high frequency power generator 32 As shown in the spectrum of FIG. 3, as a result of the harmonic component not being sufficiently attenuated by the low pass filter (LPF) 32a, the high frequency power generator 32 generates a second harmonic component that is too high compared to the fundamental frequency component. Is output.
  • the output waveform at this time is as shown in FIG. 4, and the harmonic component is sufficiently attenuated and distorted as compared with the appropriate output waveform shown in FIG.
  • the high frequency power generator 32 generates harmonic components that could not be attenuated by the low pass filter (LPF) 32a, and in addition to this, harmonics are also generated from the plasma load, and these are synthesized in the transmission line 33.
  • LPF low pass filter
  • the RF sensor of the matching device has a poor frequency characteristic (Q is low). Therefore, when the harmonic component generated when the frequency is varied in this way is included, the harmonic component cannot be removed. For this reason, the harmonic component reacts with the detector of the matching unit 34 to cause a problem in tuning, and it becomes difficult to achieve matching.
  • the directional coupler 35 guides the reflected wave that has passed through the matching unit 34 to the spectrum analyzer 36, detects the spectrum of the reflected wave, and feeds back the reflected component of the fundamental frequency to the matching unit 34.
  • the spectrum analyzer 36 can accurately separate the reflection component and the harmonic component of the fundamental frequency, and substantially only the reflection component of the fundamental frequency is fed back to the matching unit 34, so that the frequency is variable.
  • the matching unit 34 can perform high-precision tuning.
  • the RF frequency can be changed without exchanging the high-frequency power generator or the matching unit, and a process in which the frequency is practically changed can be performed.
  • the RF frequency when it is desired to increase the plasma density, in particular, when it is desired to increase the film formation rate in CVD film formation, it is preferable to increase the RF frequency to process the product.
  • the signal from the directional coupler 35 can be effectively used as a new process condition determination, trouble analysis, and RF signal monitor.
  • the pass-type power sensor is more accurate than the power sensor built in the high-frequency power generator. For this reason, the pass-type power sensor 37 can recognize the high-frequency power (power) on which the harmonics are superimposed more correctly than the high-frequency power generator 32. For this reason, the signal detected by the passing type power sensor 37 is fed back to the high frequency power generator 32 via the power meter 38 and used for power control and reflected wave control, so that the frequency is variable. Power accuracy can be improved.
  • the pass-type power sensor 37 is attached to the tip of the coaxial cable constituting the transmission line 33. Therefore, the transmission signal is fed back to the high-frequency power generator 32, thereby transmitting the transmission line. It is possible to correct the loss due to 33, and it is possible to control the power value closer to the power value used in the actual process.
  • the frequency range of the pass-type power sensor 37 is appropriately selected, the fundamental frequency (the frequency after the change when the frequency is changed) is set within the range of the pass-type power sensor 37, and the harmonic frequency is set. By making it out of the frequency range, the accuracy can be further improved.
  • high-accuracy tuning in the matching unit 34 is also realized by feeding back the detection signal of the pass-type power sensor 37 to the matching unit 34. can do.
  • FIG. 6 is a schematic view showing a substrate processing apparatus according to the second embodiment of the present invention.
  • the substrate processing apparatus 200 according to the present embodiment is basically the one in which the substrate processing apparatus 100 according to the first embodiment is applied to an apparatus (batch type apparatus) that performs plasma processing on a plurality of substrates. 6 having the same functions as those in FIG. 1 are denoted by the same reference numerals.
  • the substrate processing apparatus 200 is configured as a parallel plate type plasma processing apparatus that performs plasma processing on a plurality of substrates.
  • the chamber 1 accommodates a plurality (three in FIG. 6) of substrates S and performs plasma processing. have.
  • the chamber 1 is safety grounded as in the first embodiment.
  • a plurality of pairs (three pairs in FIG. 6) of parallel plate electrodes in which the cathode electrode 3 and the anode electrode 4 are arranged to face each other in the up-down direction are arranged.
  • the anode electrode 4 functions as a mounting table for the substrate S, and a heater 14 is embedded and grounded.
  • the cathode electrode 3 is configured as an upper electrode and functions as a plasma generation electrode to which high-frequency power is supplied.
  • the cathode electrode 3 does not have a shower head function.
  • the cathode electrode 3 and the anode electrode 4 are supported by the chamber 1 by a support member 52. It should be noted that a distance between the cathode electrode 3 and the anode electrode 4 may be adjustable by providing an elevating mechanism and moving the cathode electrode 3 or the anode electrode 4 up and down.
  • the processing gas supply unit 5 includes the processing gas supply mechanism 15 and the processing gas supply path 16, but the processing gas supply path 16 is a gas provided on the top wall of the chamber 1. It is connected to the inlet 10 'and no shower head is used.
  • each cathode electrode 3 may function as a shower head, and the processing gas may be introduced from each cathode electrode in a shower shape.
  • the exhaust unit 6 has the same basic configuration as that of the first embodiment, and includes an exhaust pipe 17, an exhaust device 18, and an automatic pressure control valve (APC) 19. Is connected to the upper and lower portions of the side wall, not the bottom.
  • APC automatic pressure control valve
  • a transfer port capable of transferring a plurality of substrates at once is provided on the side wall of the chamber 1, and the transfer port can be opened and closed by a gate valve (not shown).
  • the substrate processing apparatus 200 of this embodiment has the same plasma generator 2 as that of the first embodiment. That is, also in the present embodiment, the plasma generator 2 includes the external oscillator 31, the high frequency power generator 32, the transmission line 33, the matching unit 34, the directional coupler 35, the spectrum analyzer 36, and the transmission line 33.
  • a pass-type power sensor 37 provided upstream of the matching unit 34, and a power meter 38 that measures a signal from the pass-type power sensor 37 and feeds it back to the high-frequency generator 32.
  • the transmission line 33 branches to the transmission line 51 at the tip of the matching unit 34, and the branched transmission line 51 is connected to the center of the upper surface of each cathode electrode 3.
  • the substrate processing apparatus 200 of this embodiment also has a control unit (computer) 7 configured in the same manner as in the first embodiment, and each component is controlled by this control unit 7. ing.
  • plasma processing for example, plasma CVD processing is performed in the same manner as the substrate processing apparatus 100 of the first embodiment. That is, a plurality (three) of substrates S are placed on each anode electrode 4, the chamber 1 is evacuated to a predetermined vacuum atmosphere, and the substrate S is heated to a predetermined temperature by the heater 14. Then, the processing gas is introduced into the chamber 1 from the processing gas supply mechanism 15 through the processing gas supply path 16 and the gas introduction port 10 ′, and high frequency power is supplied from the high frequency power generator 32 to each cathode electrode 3.
  • plasma processing for example, plasma CVD processing is performed in the same manner as the substrate processing apparatus 100 of the first embodiment. That is, a plurality (three) of substrates S are placed on each anode electrode 4, the chamber 1 is evacuated to a predetermined vacuum atmosphere, and the substrate S is heated to a predetermined temperature by the heater 14. Then, the processing gas is introduced into the chamber 1 from the processing gas supply mechanism 15 through the processing gas supply path 16 and the gas introduction port 10 ′, and high frequency
  • a high frequency electric field is generated between the cathode electrode 3 and the anode electrode 4 facing each other in each parallel plate electrode, and a predetermined gas is generated on the substrate S heated by the heater 14 by the plasma of the processing gas generated by the high frequency electric field.
  • Plasma processing for example, plasma CVD is performed.
  • the directional coupler 35 can guide the reflected wave that has passed through the matching unit 34 to the spectrum analyzer 36, take the spectrum of the reflected wave, and feed back only the reflected component of the fundamental frequency to the matching unit 34. Therefore, the matching unit 34 can perform highly accurate tuning.
  • the passing power sensor 37 the signal detected there can be fed back to the high frequency power generator 32 via the power meter 38, which can be used for power control and reflected wave control, and the frequency can be varied. In this case, the power accuracy can be improved.
  • the present invention can be variously modified without being limited to the above embodiment.
  • the transmission power sensor 37 is provided on the high-frequency power generator 32 side of the transmission line 33 with respect to the directional coupler 35, but these positions may be reversed.
  • the spectrum analyzer 36 is used as a detector for obtaining the spectrum of the reflected wave signal including harmonics, but the present invention is not limited to this as long as the spectrum can be obtained with high accuracy.
  • an FFT type detector is exemplified as a preferred example, such a detector is not limited to this, and may be another type such as a superheterodyne method.
  • plasma CVD has been exemplified as the plasma processing in the substrate processing apparatus, it is needless to say that the present invention is not limited to this in principle, and can be applied to other plasma processing such as plasma etching. it can.
  • the high frequency power is introduced to the upper electrode of the parallel plate electrode and the lower electrode is grounded.
  • the upper electrode may be grounded and the high frequency power may be introduced to the lower electrode, or both the upper electrode and the lower electrode may be introduced. High frequency power may be introduced into the.
  • the present invention is applied to a batch type apparatus, the number of substrates processed at a time is not limited to three.
  • the substrate applied to the present invention is not particularly limited, and can be applied to various substrates such as a solar cell substrate and a flat panel display (FPD) glass substrate.
  • FPD flat panel display

Abstract

A plasma emission device (2) which emits plasma by supplying RF electricity to a plasma generation electrode (3) comprises: an RF oscillator (31) which is capable of changing an oscillating RF frequency; an RF electricity emitter (32) which amplifies the frequency RF which is oscillated from the RF oscillator (31) and emits RF electricity; a transmission path (33) which transmits the RF electricity from the RF electricity emitter (32) to the plasma generation electrode (3); a matcher (34) which is disposed upon the transmission path (33) for impedance matching; a directional coupler (35) which is disposed upon the transmission path (33); and a detector (36) which detects a spectrum of a reflected wave which is guided via the directional coupler (35), and sends feedback of a reflected component of a base frequency within the spectrum to the matcher (34).

Description

プラズマ発生装置および基板処理装置Plasma generator and substrate processing apparatus
 本発明は、プラズマ発生装置およびそれを用いた基板処理装置に関する。 The present invention relates to a plasma generator and a substrate processing apparatus using the same.
 従来、平行平板型のプラズマ処理装置は、チャンバ内にアノード・カソード電極を設け、チャンバ外に設けられた高周波電力発生器(高周波電源)から整合器(マッチャー)を経た後カソード電極に高周波電力を供給するものが知られている(例えば特許文献1)。 Conventionally, a parallel plate type plasma processing apparatus is provided with an anode / cathode electrode in a chamber, a high-frequency power generator (high-frequency power supply) provided outside the chamber passes through a matching unit (matcher), and then high-frequency power is applied to the cathode electrode. What is supplied is known (for example, Patent Document 1).
 このような平行平板型のプラズマ処理装置を、例えば太陽電池パネルやフラットパネル等に用いるガラス基板の成膜処理やエッチング処理等のプラズマ処理に適用する場合には、高周波(RF)の周波数(RF周波数)を例えば13.56MHzなど1種類に固定し、処理ガスの種類、流量、圧力、電極間距離、高周波パワー等をプロセスパラメータとしてプラズマ処理を行っている。 When such a parallel plate type plasma processing apparatus is applied to a plasma processing such as a film forming process or an etching process of a glass substrate used for, for example, a solar cell panel or a flat panel, a high frequency (RF) frequency (RF The frequency is fixed to one type such as 13.56 MHz, and the plasma processing is performed using the type of processing gas, flow rate, pressure, distance between electrodes, high frequency power, and the like as process parameters.
特開昭61-119686号公報JP-A 61-119686
 ところで、平行平板型のプラズマ処理装置を、例えば太陽電池パネルのCVD(Chemical Vapor Deposition)装置に用いる場合には、プラズマ密度のコントロールや結晶化率の向上などのために、周波数は有効なプロセスパラメータとなり得ることが知られており、プロセス毎に周波数を変更することが望まれている。 By the way, when a parallel plate type plasma processing apparatus is used for, for example, a CVD (Chemical Vapor Deposition) apparatus of a solar cell panel, the frequency is an effective process parameter for controlling the plasma density and improving the crystallization rate. It is known that the frequency can be changed for each process.
 しかし、平行平板型のプラズマ処理装置において、現状では、高周波電力発生器や整合器(マッチャー)は周波数毎に専用のものを用いる必要があり、周波数を変更しようとすると、その周波数毎に高周波発生器、場合によってはRF同軸ケーブルなどを交換する必要があるため、RF周波数を変更することは量産レベルでは採用されていない。 However, in a parallel plate type plasma processing apparatus, it is currently necessary to use a dedicated high-frequency power generator and matching unit (matcher) for each frequency, and when trying to change the frequency, a high-frequency generator is generated for each frequency. Changing the RF frequency is not adopted at the mass production level because it is necessary to replace the RF coaxial cable or the like in some cases.
 したがって、本発明の目的は、高周波電力発生器や整合器を交換することなくRF周波数を変更することができるプラズマ発生装置およびそれを用いた基板処理装置を提供することにある。 Therefore, an object of the present invention is to provide a plasma generator capable of changing the RF frequency without exchanging a high-frequency power generator or a matching unit, and a substrate processing apparatus using the plasma generator.
 すなわち、本発明の第1の観点によれば、高周波電力をプラズマ生成電極に供給することによりプラズマを発生させるプラズマ発生装置であって、発振する高周波の周波数を変更可能な高周波発振器と、前記高周波発振器から発振された周波数の高周波を増幅して高周波電力を発生する高周波電力発生器と、前記高周波電力発生器から前記プラズマ生成電極に高周波電力を伝送する伝送線路と、前記伝送線路に設けられた、発生したプラズマ負荷のインピーダンスを前記高周波電力発生器側の前記伝送線路のインピーダンスに整合させる整合器と、前記伝送線路の前記高周波電力発生器と前記整合器との間に設けられた方向性結合器と、前記方向性結合器を介して導かれた反射波のスペクトルを検出し、その中の基本周波数の反射成分を前記整合器にフィードバックする検出器とを具備するプラズマ発生装置を提供される。 That is, according to the first aspect of the present invention, there is provided a plasma generator for generating plasma by supplying high frequency power to a plasma generating electrode, the high frequency oscillator capable of changing the frequency of the oscillating high frequency, and the high frequency A high-frequency power generator that amplifies high-frequency power oscillated from an oscillator to generate high-frequency power, a transmission line that transmits high-frequency power from the high-frequency power generator to the plasma generation electrode, and the transmission line A matching unit for matching the impedance of the generated plasma load with the impedance of the transmission line on the high-frequency power generator side, and a directional coupling provided between the high-frequency power generator and the matching unit of the transmission line And the spectrum of the reflected wave guided through the directional coupler, and the reflected component of the fundamental frequency is detected in advance. It provided a plasma generating apparatus including a detector for feeding back to the matching unit.
 上記第1の観点のプラズマ発生装置において、前記伝送線路の前記高周波電力発生器と前記整合器との間に設けられた通過型パワーセンサと、前記通過型パワーセンサからの信号を計測し、前記高周波発生器へフィードバックするパワーメータとをさらに具備する構成とすることができる。 In the plasma generating apparatus according to the first aspect, a pass-type power sensor provided between the high-frequency power generator and the matcher in the transmission line, and a signal from the pass-type power sensor are measured, A power meter that feeds back to the high-frequency generator can be further provided.
 また、前記検出器としてスペクトラムアナライザを用いることができる。また、前記検出器として、入力信号をデジタル信号に変換し、高速フーリエ変換を行って、周波数のスペクトルを得るフーリエ変換機能を有するものを用いることができる。 Also, a spectrum analyzer can be used as the detector. Further, as the detector, a detector having a Fourier transform function for obtaining a frequency spectrum by converting an input signal into a digital signal and performing fast Fourier transform can be used.
 本発明の第2の観点によれば、高周波電力により発生させた処理ガスのプラズマによって基板を処理する基板処理装置であって、基板を収容し、真空下に保持可能なチャンバと、前記チャンバ内に設けられ、高周波電力が供給されてプラズマを生成するプラズマ生成電極と、前記プラズマ生成電極に高周波電力を供給してプラズマを発生させるプラズマ発生装置と、前記チャンバに処理ガスを供給する処理ガス供給機構とを具備し、前記プラズマ発生装置は、発振する高周波の周波数を変更可能な高周波発振器と、前記高周波発振器から発振された周波数の高周波を増幅して高周波電力を発生する高周波電力発生器と、前記高周波電力発生器から前記プラズマ生成電極に高周波電力を伝送する伝送線路と、前記伝送線路に設けられた、発生したプラズマ負荷のインピーダンスを前記高周波電力発生器側の前記伝送線路のインピーダンスに整合させる整合器と、前記伝送線路の前記高周波電力発生器と前記整合器との間に設けられた方向性結合器と、前記方向性結合器を介して導かれた反射波のスペクトルを検出し、その中の基本周波数の反射成分を前記整合器にフィードバックする検出器とを有する、基板処理装置が提供される。 According to a second aspect of the present invention, there is provided a substrate processing apparatus for processing a substrate with plasma of a processing gas generated by high frequency power, the chamber accommodating the substrate and capable of being held under vacuum, A plasma generation electrode for generating plasma by supplying high frequency power, a plasma generator for generating plasma by supplying high frequency power to the plasma generation electrode, and a processing gas supply for supplying a processing gas to the chamber A high frequency oscillator capable of changing the frequency of the oscillating high frequency, a high frequency power generator for amplifying the high frequency of the frequency oscillated from the high frequency oscillator to generate high frequency power, A transmission line for transmitting high-frequency power from the high-frequency power generator to the plasma generation electrode, and a generation provided in the transmission line A matching unit for matching the impedance of the plasma load to the impedance of the transmission line on the high-frequency power generator side, and a directional coupler provided between the high-frequency power generator and the matching unit of the transmission line; And a detector for detecting a spectrum of a reflected wave guided through the directional coupler and feeding back a reflected component of a fundamental frequency therein to the matching unit.
 上記第2の観点の基板処理装置において、複数の基板に対応して複数のプラズマ生成電極を有し、前記プラズマ発生装置から前記各プラズマ生成電極へ高周波電力が供給されて生成されたプラズマにより、複数の基板を処理するようにすることができる。 In the substrate processing apparatus according to the second aspect, a plurality of plasma generation electrodes corresponding to a plurality of substrates, and plasma generated by supplying high-frequency power from the plasma generation apparatus to the plasma generation electrodes, Multiple substrates can be processed.
 本発明では、方向性結合器により整合器を経た反射波を検出器に導き、検出器により反射波のスペクトルを検出し、検出器がその中の基本周波数の反射成分を整合器にフィードバックする。これにより、基本周波数の反射成分と高調波成分とを精度良く分離することができ、実質的にその基本周波数の反射成分のみが整合器にフィードバックされる。このため、周波数を可変にした場合においても、整合器において、高精度のチューニングを行うことができる。このように高精度のチューニングを行うことができるため、高周波電力発生器や整合器を交換することなくRF周波数を変更することができ、実用的に周波数を変化させたプロセスを行うことができる。 In the present invention, the reflected wave that has passed through the matching device is guided to the detector by the directional coupler, the spectrum of the reflected wave is detected by the detector, and the detector feeds back the reflected component of the fundamental frequency to the matching device. Thereby, the reflection component and the harmonic component of the fundamental frequency can be separated with high accuracy, and only the reflection component of the fundamental frequency is substantially fed back to the matching unit. For this reason, even when the frequency is made variable, high-precision tuning can be performed in the matching unit. Since tuning with high accuracy can be performed in this manner, the RF frequency can be changed without exchanging the high-frequency power generator or the matching unit, and a process in which the frequency is practically changed can be performed.
本発明の第1の実施形態に係る基板処理装置を示す断面図である。1 is a cross-sectional view showing a substrate processing apparatus according to a first embodiment of the present invention. 整合器の回路構成を示す図である。It is a figure which shows the circuit structure of a matching device. 高調波成分がローパスフィルタで十分減衰されない結果、基本周波数成分に比較して高すぎる二次高調波成分が出力された際の周波数スペクトルを示す図である。It is a figure which shows a frequency spectrum when the harmonic component which is too high compared with a fundamental frequency component is output as a result of a harmonic component not being attenuate | damped sufficiently with a low-pass filter. 図3の際の出力波形を示す図である。It is a figure which shows the output waveform in the case of FIG. 適切な出力波形を示す図である。It is a figure which shows an appropriate output waveform. 本発明の第2の実施形態に係る基板処理装置を示す断面図である。It is sectional drawing which shows the substrate processing apparatus which concerns on the 2nd Embodiment of this invention.
 以下、添付図面を参照して本発明の実施形態について説明する。
 <第1の実施形態>
 まず、第1の実施形態について説明する。図1は本発明の第1の実施形態に係る基板処理装置を示す断面図である。
 基板処理装置100は、平行平板型のプラズマ処理装置として構成されている。基板処理装置100は、基板Sを収容し、プラズマ処理を行うチャンバ1と、プラズマ発生装置2と、チャンバ1内に設けられた平行平板電極を構成するカソード電極3およびアノード電極4と、チャンバ1内に処理ガスを供給する処理ガス供給部5と、チャンバ1内を排気する排気部6と、基板処理装置100の各構成部を制御する制御部7とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<First Embodiment>
First, the first embodiment will be described. FIG. 1 is a sectional view showing a substrate processing apparatus according to a first embodiment of the present invention.
The substrate processing apparatus 100 is configured as a parallel plate type plasma processing apparatus. The substrate processing apparatus 100 accommodates a substrate S and performs plasma processing, a plasma generating apparatus 2, a cathode electrode 3 and an anode electrode 4 constituting parallel plate electrodes provided in the chamber 1, and a chamber 1. A processing gas supply unit 5 that supplies processing gas therein, an exhaust unit 6 that exhausts the inside of the chamber 1, and a control unit 7 that controls each component of the substrate processing apparatus 100 are provided.
 カソード電極3は上部電極として構成され、高周波電力が供給されるプラズマ生成電極として機能する。また、カソード電極3は、内部にガス拡散空間3aと、このガス拡散空間3aからチャンバ1内に貫通して設けられたガス吐出孔3bとを有しており、ガス供給部5の一部をなすシャワーヘッド10を構成している。カソード電極3は絶縁部材12を介してチャンバ1の天壁に支持されている。 The cathode electrode 3 is configured as an upper electrode and functions as a plasma generation electrode to which high-frequency power is supplied. Further, the cathode electrode 3 has a gas diffusion space 3 a inside and a gas discharge hole 3 b provided through the gas diffusion space 3 a into the chamber 1. An eggplant shower head 10 is configured. The cathode electrode 3 is supported on the top wall of the chamber 1 through an insulating member 12.
 一方、アノード電極4は下部電極として構成され、基板Sを載置する載置台として機能する。また、アノード電極4内にはヒーター14が埋設されており、図示しない電源からヒーター14に給電されることによりヒーター14が発熱し、アノード電極4上の基板Sが所定温度に加熱されるようになっている。アノード電極4は絶縁部材13を介してチャンバ1の底壁に支持されている。アノード電極4は接地されている。なお、カソード電極3とアノード電極4との間の距離を調節可能としてもよい。 On the other hand, the anode electrode 4 is configured as a lower electrode and functions as a mounting table on which the substrate S is mounted. In addition, a heater 14 is embedded in the anode electrode 4, and the heater 14 generates heat when power is supplied to the heater 14 from a power source (not shown) so that the substrate S on the anode electrode 4 is heated to a predetermined temperature. It has become. The anode electrode 4 is supported on the bottom wall of the chamber 1 through an insulating member 13. The anode electrode 4 is grounded. The distance between the cathode electrode 3 and the anode electrode 4 may be adjustable.
 処理ガス供給部5は、処理ガスを供給する処理ガス供給機構15と、上記シャワーヘッド10と処理ガス供給機構15からシャワーヘッド10へ処理ガスを導く処理ガス供給路16とを有する。 The processing gas supply unit 5 includes a processing gas supply mechanism 15 that supplies a processing gas, and the above-described shower head 10 and a processing gas supply path 16 that guides the processing gas from the processing gas supply mechanism 15 to the shower head 10.
 排気部6は、チャンバ1の底部に接続された排気配管17と、排気配管17に接続された真空ポンプからなる排気装置18と、排気配管17の途中に設けられたチャンバ1内の圧力を制御するための自動圧力制御バルブ(APC)19とを有している。 The exhaust unit 6 controls an exhaust pipe 17 connected to the bottom of the chamber 1, an exhaust device 18 including a vacuum pump connected to the exhaust pipe 17, and the pressure in the chamber 1 provided in the middle of the exhaust pipe 17. And an automatic pressure control valve (APC) 19.
 チャンバ1の側壁には基板Sの搬入出を行うための搬入出口20が設けられており、搬入出口20はゲートバルブ21により開閉可能となっている。 A loading / unloading port 20 for loading / unloading the substrate S is provided on the side wall of the chamber 1, and the loading / unloading port 20 can be opened and closed by a gate valve 21.
 プラズマ発生装置2は、外部発振器(高周波発振器)31と、高周波電力発生器32と、伝送線路33と、整合器34と、方向性結合器35と、スペクトラムアナライザ(検出器)36と、通過型パワーセンサ37と、パワーメータ38とを有する。 The plasma generator 2 includes an external oscillator (high frequency oscillator) 31, a high frequency power generator 32, a transmission line 33, a matching unit 34, a directional coupler 35, a spectrum analyzer (detector) 36, and a pass type. A power sensor 37 and a power meter 38 are included.
 外部発振器(高周波発振器)31は、高周波を発振するとともに、発振する高周波の周波数を変更可能である。高周波電力発生器32は、外部発振器31から発振された周波数の高周波を増幅して高周波電力を発生する。伝送線路33は、高周波電力発生器32からカソード電極3へ高周波電力を伝送する。整合器34は、伝送線路33に設けられ、チャンバ1内に生成されるプラズマ負荷のインピーダンスを高周波電力発生器32側の伝送線路33のインピーダンスに整合させる。方向性結合器35は、伝送線路33の高周波電力発生器32と整合器34との間に設けられている。スペクトラムアナライザ36は、方向性結合器35を介して導かれた反射波のスペクトルを検出し、基本周波数の反射成分を整合器34にフィードバックする。通過型パワーセンサ37は、伝送線路33の高周波電力発生器32と整合器34との間に設けられており、パワーメータ38は、通過型パワーセンサ37からの信号を計測し、高周波発生器32へフィードバックする。 The external oscillator (high frequency oscillator) 31 oscillates a high frequency and can change the frequency of the oscillating high frequency. The high frequency power generator 32 amplifies the high frequency of the frequency oscillated from the external oscillator 31 to generate high frequency power. The transmission line 33 transmits high frequency power from the high frequency power generator 32 to the cathode electrode 3. The matching unit 34 is provided in the transmission line 33 and matches the impedance of the plasma load generated in the chamber 1 with the impedance of the transmission line 33 on the high-frequency power generator 32 side. The directional coupler 35 is provided between the high frequency power generator 32 and the matching unit 34 of the transmission line 33. The spectrum analyzer 36 detects the spectrum of the reflected wave guided through the directional coupler 35 and feeds back the reflected component of the fundamental frequency to the matching unit 34. The pass-type power sensor 37 is provided between the high-frequency power generator 32 and the matching unit 34 in the transmission line 33, and the power meter 38 measures a signal from the pass-type power sensor 37, and the high-frequency generator 32. Feedback to
 外部発振器31は、外部インターフェースを有しており、リモート制御により周波数を可変とする。また、高周波電力発生器32は、C級やAB級アナログアンプにより外部発振器31で発振された高周波を増幅する。高周波電力発生器32には高調波を減衰させるためのローパスフィルタ(LPF)32aが設けられている。 The external oscillator 31 has an external interface, and the frequency is variable by remote control. The high frequency power generator 32 amplifies the high frequency oscillated by the external oscillator 31 by a class C or class AB analog amplifier. The high frequency power generator 32 is provided with a low pass filter (LPF) 32a for attenuating harmonics.
 外部発振器31は、高周波電力発生器32と一体として同一筐体に収めてもよい。また、高周波電力発生器32に外部発振器31の周波数可変機能を持たせてもよい。高周波電力発生器32に設けられているローパスフィルタ(LPF)32aの回路定数は固定であるため、このように周波数を可変にした場合には、カットオフ周波数が出力周波数と適合しなくなり、ローパスフィルタ(LPF)32aで減衰できない高調波成分が高周波電力発生器32から発生する。 The external oscillator 31 may be housed in the same housing as the high frequency power generator 32. Further, the high frequency power generator 32 may have the frequency variable function of the external oscillator 31. Since the circuit constant of the low-pass filter (LPF) 32a provided in the high-frequency power generator 32 is fixed, when the frequency is made variable in this way, the cutoff frequency does not match the output frequency, and the low-pass filter A harmonic component that cannot be attenuated by the (LPF) 32 a is generated from the high-frequency power generator 32.
 伝送線路33は、同軸ケーブルで構成されている。また、整合器34は、図2に示すように、伝送線路33の入力側と出力側とを繋ぐ伝送ライン41と、伝送ライン41の分岐点42から分岐して設けられた第1の可変コンデンサ43と、伝送ライン41の分岐点42の出力側に設けられた第2の可変コンデンサ44と、分岐点42の入力側に設けられたコイル(インダクタ)45とを有している。そして、内蔵されたRFセンサ(図示せず)の検出値に基づいて、第1の可変コンデンサ43と第2の可変コンデンサ44のポジション(容量)を自動的に調整して、自動的に伝送線路33のインピーダンス(50Ω)とプラズマ負荷のインピーダンスとの整合をとるようになっている。整合器34の出側の伝送線路33は、カソード電極3の上面中央に接続されている。 The transmission line 33 is composed of a coaxial cable. Further, as shown in FIG. 2, the matching unit 34 includes a transmission line 41 connecting the input side and the output side of the transmission line 33, and a first variable capacitor provided by branching from a branch point 42 of the transmission line 41. 43, a second variable capacitor 44 provided on the output side of the branch point 42 of the transmission line 41, and a coil (inductor) 45 provided on the input side of the branch point 42. Based on the detection value of the built-in RF sensor (not shown), the positions (capacities) of the first variable capacitor 43 and the second variable capacitor 44 are automatically adjusted to automatically transmit the transmission line. The impedance of 33 (50Ω) and the impedance of the plasma load are matched. The transmission line 33 on the output side of the matching unit 34 is connected to the center of the upper surface of the cathode electrode 3.
 方向性結合器35は、伝送線路33に挿入され、伝送線路33を伝播する反射波を別ポートに取り出すものであり、その別ポートにスペクトラムアナライザ36が接続される。 The directional coupler 35 is inserted into the transmission line 33 and extracts a reflected wave propagating through the transmission line 33 to another port, and a spectrum analyzer 36 is connected to the other port.
 スペクトラムアナライザ36は、プラズマで反射して整合器34を経た後に方向性結合器35を介して得られた高調波を含む信号のスペクトルを求め、そのスペクトルの中から基本周波数の反射成分のみをとりだして、その信号を整合器34にフィードバックする。これにより整合器34において、基本周波数のみを検出したチューニングが可能となる。整合器34に存在しているRFセンサでは周波数を可変にすると、基本周波数の反射成分と高調波成分とを精度良く分離できない場合が生じるが、このように方向性結合器35とスペクトラムアナライザ36とを用いることにより基本周波数のみを精度よく検出することができ、整合器34において高精度のチューニングを行うことができる。 The spectrum analyzer 36 obtains a spectrum of a signal including harmonics obtained through the directional coupler 35 after being reflected by the plasma and passing through the matching unit 34, and extracts only the reflected component of the fundamental frequency from the spectrum. The signal is fed back to the matching unit 34. As a result, the matching unit 34 can be tuned by detecting only the fundamental frequency. If the frequency of the RF sensor existing in the matching unit 34 is made variable, the reflected component and the harmonic component of the fundamental frequency may not be separated with high accuracy. In this way, the directional coupler 35 and the spectrum analyzer 36 By using this, only the fundamental frequency can be detected with high accuracy, and the matching unit 34 can perform high-precision tuning.
 スペクトラムアナライザ36としては、高速フーリエ変換(FFT)機能を有するFFT方式のものが好ましい。FFT方式は、入力信号をデジタル信号に変換し、CPUで高速フーリエ変換を行って、周波数のスペクトル、すなわち周波数と振幅のデータを得るものである。 The spectrum analyzer 36 is preferably an FFT type having a fast Fourier transform (FFT) function. In the FFT method, an input signal is converted into a digital signal, and a fast Fourier transform is performed by a CPU to obtain a frequency spectrum, that is, frequency and amplitude data.
 通過型パワーセンサ37は、伝送線路33における高周波電力(パワー)を検出するものである。一般的に、通過型パワーセンサは、高周波電力発生器に内蔵されているパワーセンサよりも高精度である。このため、通過型パワーセンサ37では、高調波が重畳した高周波電力(パワー)も、高周波電力発生器32と比較すると、より正しく認識することができる。このため、伝送線路33に通過型パワーセンサ37を設け、その信号をパワーメータ38を経て高周波電力発生器32にフィードバックし、パワー制御および反射波制御に使用することで、周波数を可変にした場合のパワー精度を向上させることができる。 The pass-type power sensor 37 detects high-frequency power (power) in the transmission line 33. In general, the passing power sensor is more accurate than the power sensor built in the high-frequency power generator. For this reason, the pass-type power sensor 37 can recognize the high-frequency power (power) superimposed with higher harmonics more correctly than the high-frequency power generator 32. For this reason, when the transmission type power sensor 37 is provided in the transmission line 33, and the signal is fed back to the high frequency power generator 32 through the power meter 38 and used for power control and reflected wave control, the frequency is made variable. The power accuracy can be improved.
 制御部7は、基板処理装置100の各構成部を制御するものであり、マイクロプロセッサを備えたコントローラと、オペレータが基板処理装置100を管理するためのコマンドの入力操作等を行うキーボードや、基板処理装置100の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェースと、基板処理装置100で実行される各種処理をコントローラの制御にて実現するための制御プログラムや、処理条件に応じて基板処理装置100に所定の処理を実行させるための処理レシピが格納された記憶部とを有している。処理レシピ等は記憶媒体に記憶されており、記憶部において記憶媒体から読み出して実行される。記憶媒体は、ハードディスクや半導体メモリであってもよいし、CD-ROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。レシピ等は、必要に応じてユーザーインターフェースからの指示等にて記憶部から読み出し、コントローラに実行させることで、コントローラの制御下で、基板処理装置100での所望の処理が行われる。 The control unit 7 controls each component of the substrate processing apparatus 100, and includes a controller including a microprocessor, a keyboard for an operator to input commands for managing the substrate processing apparatus 100, and the like. A user interface comprising a display for visualizing and displaying the operating status of the processing apparatus 100, a control program for realizing various processes executed by the substrate processing apparatus 100 under the control of the controller, and a substrate according to the processing conditions A storage unit storing a processing recipe for causing the processing apparatus 100 to execute a predetermined process. The processing recipe or the like is stored in a storage medium, and is read from the storage medium and executed in the storage unit. The storage medium may be a hard disk or a semiconductor memory, or may be a portable medium such as a CD-ROM, DVD, or flash memory. Recipes and the like are read from the storage unit according to instructions from the user interface as necessary, and are executed by the controller, whereby desired processing in the substrate processing apparatus 100 is performed under the control of the controller.
 次に、このように構成される基板処理装置100の処理動作について説明する。
 最初に、ゲートバルブ21を開けて、搬入出口20から搬送装置(図示せず)により基板Sをチャンバ1内に搬入し、載置台として機能するアノード電極4の上に載置する。搬送装置をチャンバ1から退避させ、ゲートバルブ21を閉じた後、排気装置18によりチャンバ1内を排気してその中を所定の真空雰囲気とする。このとき、アノード電極4上の基板Sは、ヒーター14により所定温度に加熱される。
Next, the processing operation of the substrate processing apparatus 100 configured as described above will be described.
First, the gate valve 21 is opened, and the substrate S is loaded into the chamber 1 from the loading / unloading port 20 by a transfer device (not shown) and mounted on the anode electrode 4 functioning as a mounting table. After the transfer device is retracted from the chamber 1 and the gate valve 21 is closed, the interior of the chamber 1 is exhausted by the exhaust device 18 to create a predetermined vacuum atmosphere therein. At this time, the substrate S on the anode electrode 4 is heated to a predetermined temperature by the heater 14.
 そして、処理ガス供給機構15から処理ガス供給路16およびシャワーヘッド10を経てチャンバ1内に処理ガスをシャワー状に吐出させるとともに、高周波電力発生器32からカソード電極3に高周波電力を供給する。 Then, the processing gas is discharged from the processing gas supply mechanism 15 into the chamber 1 through the processing gas supply path 16 and the shower head 10 in a shower shape, and high frequency power is supplied from the high frequency power generator 32 to the cathode electrode 3.
 これにより、互いに対向するカソード電極3とアノード電極4との間に高周波電界が生じ、この高周波電界により生成された処理ガスのプラズマにより、ヒーター14で加熱された基板S上で所定のプラズマ処理、例えばプラズマCVDが行われる。 Thereby, a high frequency electric field is generated between the cathode electrode 3 and the anode electrode 4 facing each other, and a predetermined plasma treatment is performed on the substrate S heated by the heater 14 by the plasma of the processing gas generated by the high frequency electric field. For example, plasma CVD is performed.
 本実施形態においては、高周波電力発生器32は、外部発振器31により出力する高周波電力の周波数が可変である。例えば、高周波電力発生器32の基準となる周波数が13.56MHzの場合、±3MHz程度周波数を変化させることができる。高周波電力発生器32には、基準となる周波数の基本周波数に対する高調波(例えば基本周波数を10MHzとすると20MHz、30MHz等)を減衰させるためのローパスフィルタ32aが設けられているが、定数固定であるため、周波数を基準となる周波数から変化させた場合には、ローパスフィルタ(LPF)32aで減衰しきれなかった高調波が発生してくる。 In the present embodiment, the high frequency power generator 32 has a variable frequency of the high frequency power output from the external oscillator 31. For example, when the reference frequency of the high-frequency power generator 32 is 13.56 MHz, the frequency can be changed by about ± 3 MHz. The high-frequency power generator 32 is provided with a low-pass filter 32a for attenuating harmonics with respect to the fundamental frequency of the reference frequency (for example, 20MHz and 30MHz when the fundamental frequency is 10MHz), but the constant is fixed. For this reason, when the frequency is changed from the reference frequency, harmonics that cannot be attenuated by the low-pass filter (LPF) 32a are generated.
 例えば、図3のスペクトルに示すように、高調波成分がローパスフィルタ(LPF)32aで十分減衰されない結果、高周波電力発生器32からは、基本周波数成分に比較して高すぎる二次高調波成分が出力される。このときの出力波形は図4に示すようになり、高調波成分が十分に減衰されてほぼサインカーブである図5に示す適切な出力波形に比較して歪んだものとなる。 For example, as shown in the spectrum of FIG. 3, as a result of the harmonic component not being sufficiently attenuated by the low pass filter (LPF) 32a, the high frequency power generator 32 generates a second harmonic component that is too high compared to the fundamental frequency component. Is output. The output waveform at this time is as shown in FIG. 4, and the harmonic component is sufficiently attenuated and distorted as compared with the appropriate output waveform shown in FIG.
 このように高周波電力発生器32からは、ローパスフィルタ(LPF)32aで減衰しきれなかった高調波成分が発生し、それに加えプラズマ負荷からも高調波が発生してきて、伝送線路33ではこれらが合成され、整合器34によるチューニングの際に問題が生じる。すなわち、チューニングは基本周波数(周波数を変化させた場合には、変化させた後の周波数)で行うのが最善であり、整合器34ではRFセンサにより基本周波数のみをセンシングしてチューニングを行うが、一般的に整合器のRFセンサは周波数特性がよくない(Qが低い)ため、このように周波数可変にした際に発生する高調波成分を含む場合には、高調波成分を除去できない。このため、その高調波成分が整合器34の検出器に反応してチューニングに問題が生じ、整合をとることが困難となる。 In this way, the high frequency power generator 32 generates harmonic components that could not be attenuated by the low pass filter (LPF) 32a, and in addition to this, harmonics are also generated from the plasma load, and these are synthesized in the transmission line 33. This causes a problem during tuning by the matching unit 34. That is, tuning is best performed at the fundamental frequency (if the frequency is changed, the frequency after the change), and the matching unit 34 performs tuning by sensing only the fundamental frequency with an RF sensor. In general, the RF sensor of the matching device has a poor frequency characteristic (Q is low). Therefore, when the harmonic component generated when the frequency is varied in this way is included, the harmonic component cannot be removed. For this reason, the harmonic component reacts with the detector of the matching unit 34 to cause a problem in tuning, and it becomes difficult to achieve matching.
 そこで、本実施形態では、方向性結合器35により、整合器34を経た反射波をスペクトラムアナライザ36へ導き、反射波のスペクトルを検出し、基本周波数の反射成分を整合器34にフィードバックする。スペクトラムアナライザ36は、基本周波数の反射成分と高調波成分とを精度良く分離することができ、実質的にその基本周波数の反射成分のみが整合器34にフィードバックされるので、周波数を可変にした場合においても、整合器34において、高精度のチューニングを行うことができる。 Therefore, in this embodiment, the directional coupler 35 guides the reflected wave that has passed through the matching unit 34 to the spectrum analyzer 36, detects the spectrum of the reflected wave, and feeds back the reflected component of the fundamental frequency to the matching unit 34. The spectrum analyzer 36 can accurately separate the reflection component and the harmonic component of the fundamental frequency, and substantially only the reflection component of the fundamental frequency is fed back to the matching unit 34, so that the frequency is variable. However, the matching unit 34 can perform high-precision tuning.
 このように高精度のチューニングを行うことができるため、高周波電力発生器や整合器を交換することなくRF周波数を変更することができ、実用的に周波数を変化させたプロセスを行うことができる。 Since high-precision tuning can be performed in this way, the RF frequency can be changed without exchanging the high-frequency power generator or the matching unit, and a process in which the frequency is practically changed can be performed.
 例えば、プラズマ密度を上げたい場合、特に、CVD成膜において成膜速度を向上させたい場合等は、RF周波数を上げて製品処理することが好ましく、また、例えば太陽電池パネルのCVD処理において、結晶化率を上げたい場合等は、RF周波数を下げて製品処理することが好ましい。 For example, when it is desired to increase the plasma density, in particular, when it is desired to increase the film formation rate in CVD film formation, it is preferable to increase the RF frequency to process the product. When it is desired to increase the conversion rate, it is preferable to lower the RF frequency and process the product.
 なお、方向性結合器35からの信号は、新しいプロセスの条件出しや、トラブル解析や、RF信号のモニタとして有効に利用することができる。 It should be noted that the signal from the directional coupler 35 can be effectively used as a new process condition determination, trouble analysis, and RF signal monitor.
 また、上述したように、各種高調波がプラズマで反射して高周波電力発生器32に戻ってくることによって、高周波電力発生器32のパワーセンサで正しい進行波、反射波が読めない場合がある。特に、周波数を変化させ、本来調整されている周波数以外で運用する場合にそれが顕著である。 Also, as described above, various harmonics are reflected by the plasma and returned to the high-frequency power generator 32, so that the correct traveling wave and reflected wave may not be read by the power sensor of the high-frequency power generator 32. This is particularly noticeable when the frequency is changed and the system is operated at a frequency other than the originally adjusted frequency.
 このような問題に対しては、通過型パワーセンサ37を設けることにより解消可能である。上述したように、一般的に、通過型パワーセンサは、高周波電力発生器に内蔵されているパワーセンサよりも高精度である。このため、通過型パワーセンサ37では、高調波が重畳した高周波電力(パワー)も、高周波電力発生器32と比較すると、より正しく認識することができる。このため、通過型パワーセンサ37で検出した信号を、パワーメータ38を介して高周波電力発生器32へフィードバックし、これをパワー制御および反射波制御に使用することで、周波数を可変にした場合のパワー精度を向上させることができる。 Such a problem can be solved by providing a passing power sensor 37. As described above, in general, the pass-type power sensor is more accurate than the power sensor built in the high-frequency power generator. For this reason, the pass-type power sensor 37 can recognize the high-frequency power (power) on which the harmonics are superimposed more correctly than the high-frequency power generator 32. For this reason, the signal detected by the passing type power sensor 37 is fed back to the high frequency power generator 32 via the power meter 38 and used for power control and reflected wave control, so that the frequency is variable. Power accuracy can be improved.
 通過型パワーセンサ37は、周波数を変化させない場合であっても、伝送線路33を構成する同軸ケーブルの先端に取り付けているので、その検出信号を高周波電力発生器32にフィードバックすることによって、伝送線路33によるロスを補正することが可能となり、実プロセスに使用されるパワー値に、より近いパワー値に制御することができる。また、通過型パワーセンサ37の周波数レンジを適切に選択し、基本周波数(周波数を変化させた場合には、変化させた後の周波数)を通過型パワーセンサ37のレンジ内とし、高調波周波数を周波数レンジ外とすることで、より、精度を上げることができる。 Even when the frequency is not changed, the pass-type power sensor 37 is attached to the tip of the coaxial cable constituting the transmission line 33. Therefore, the transmission signal is fed back to the high-frequency power generator 32, thereby transmitting the transmission line. It is possible to correct the loss due to 33, and it is possible to control the power value closer to the power value used in the actual process. In addition, the frequency range of the pass-type power sensor 37 is appropriately selected, the fundamental frequency (the frequency after the change when the frequency is changed) is set within the range of the pass-type power sensor 37, and the harmonic frequency is set. By making it out of the frequency range, the accuracy can be further improved.
 なお、高周波電力発生器32からの周波数の変化量があまり大きくない場合には、通過型パワーセンサ37の検出信号を整合器34にフィードバックすることによっても、整合器34における高精度のチューニングを実現することができる。 When the amount of change in frequency from the high-frequency power generator 32 is not so large, high-accuracy tuning in the matching unit 34 is also realized by feeding back the detection signal of the pass-type power sensor 37 to the matching unit 34. can do.
 <第2の実施形態>
 次に、第2の実施形態について説明する。図6は、本発明の第2の実施形態に係る基板処理装置を示す模式図である。本実施形態に係る基板処理装置200は、基本的に、第1の実施形態の基板処理装置100を複数の基板のプラズマ処理を行う装置(バッチ式装置)に適用したものである。したがって、図6において図1と同じ機能を有するものには同じ符号を付して説明する。
<Second Embodiment>
Next, a second embodiment will be described. FIG. 6 is a schematic view showing a substrate processing apparatus according to the second embodiment of the present invention. The substrate processing apparatus 200 according to the present embodiment is basically the one in which the substrate processing apparatus 100 according to the first embodiment is applied to an apparatus (batch type apparatus) that performs plasma processing on a plurality of substrates. 6 having the same functions as those in FIG. 1 are denoted by the same reference numerals.
 基板処理装置200は、複数の基板に対してプラズマ処理を施す平行平板型のプラズマ処理装置として構成されており、複数(図6では3枚)の基板Sを収容し、プラズマ処理を行うチャンバ1を有している。チャンバ1は実施形態1と同様、保安接地されている。 The substrate processing apparatus 200 is configured as a parallel plate type plasma processing apparatus that performs plasma processing on a plurality of substrates. The chamber 1 accommodates a plurality (three in FIG. 6) of substrates S and performs plasma processing. have. The chamber 1 is safety grounded as in the first embodiment.
 チャンバ1内には、カソード電極3およびアノード電極4が上下方向に対向して配置された平行平板電極が上下方向に複数対(図6では3対)配置されている。アノード電極4は下部電極として構成され、基板処理装置100同様、基板Sの載置台として機能し、ヒーター14が埋設され、接地されている。カソード電極3は、上部電極として構成され、高周波電力が供給されるプラズマ生成電極として機能するが、第1の実施形態と異なり、シャワーヘッドの機能を有していない。 In the chamber 1, a plurality of pairs (three pairs in FIG. 6) of parallel plate electrodes in which the cathode electrode 3 and the anode electrode 4 are arranged to face each other in the up-down direction are arranged. Like the substrate processing apparatus 100, the anode electrode 4 functions as a mounting table for the substrate S, and a heater 14 is embedded and grounded. The cathode electrode 3 is configured as an upper electrode and functions as a plasma generation electrode to which high-frequency power is supplied. However, unlike the first embodiment, the cathode electrode 3 does not have a shower head function.
 これらカソード電極3およびアノード電極4は、支持部材52によりチャンバ1に支持されている。なお、昇降機構を設けて、カソード電極3またはアノード電極4を昇降させることにより、カソード電極3とアノード電極4との間の距離を調節可能としてもよい。 The cathode electrode 3 and the anode electrode 4 are supported by the chamber 1 by a support member 52. It should be noted that a distance between the cathode electrode 3 and the anode electrode 4 may be adjustable by providing an elevating mechanism and moving the cathode electrode 3 or the anode electrode 4 up and down.
 本実施形態においても、処理ガス供給部5は、処理ガス供給機構15と、処理ガス供給路16とを有しているが、処理ガス供給路16は、チャンバ1の天壁に設けられたガス導入口10′に接続されており、シャワーヘッドは用いていない。もちろん、第1の実施形態と同様、各カソード電極3をシャワーヘッドとして機能させて各カソード電極から処理ガスをシャワー状に導入するようにしてもよい。 Also in this embodiment, the processing gas supply unit 5 includes the processing gas supply mechanism 15 and the processing gas supply path 16, but the processing gas supply path 16 is a gas provided on the top wall of the chamber 1. It is connected to the inlet 10 'and no shower head is used. Of course, as in the first embodiment, each cathode electrode 3 may function as a shower head, and the processing gas may be introduced from each cathode electrode in a shower shape.
 排気部6も、基本構成は第1の実施形態と同じであり、排気配管17と、排気装置18と、自動圧力制御バルブ(APC)19とを有しているが、排気配管17はチャンバ1の底部ではなく、側壁上部および下部に接続されている。 The exhaust unit 6 has the same basic configuration as that of the first embodiment, and includes an exhaust pipe 17, an exhaust device 18, and an automatic pressure control valve (APC) 19. Is connected to the upper and lower portions of the side wall, not the bottom.
 チャンバ1の側壁には複数の基板を一括して搬送可能な搬送口(図示せず)が設けられており、搬送口はゲートバルブ(図示せず)により開閉可能となっている。 A transfer port (not shown) capable of transferring a plurality of substrates at once is provided on the side wall of the chamber 1, and the transfer port can be opened and closed by a gate valve (not shown).
 本実施形態の基板処理装置200は、第1の実施形態と同様のプラズマ発生装置2を有している。すなわち、本実施形態においてもプラズマ発生装置2は、外部発振器31と、高周波電力発生器32と、伝送線路33と、整合器34と、方向性結合器35と、スペクトラムアナライザ36と、伝送線路33の整合器34よりも上流側に設けられた通過型パワーセンサ37と、通過型パワーセンサ37からの信号を計測し、高周波発生器32へフィードバックするパワーメータ38とを有する。伝送線路33は、整合器34の先で伝送線路51に分岐し、分岐した伝送線路51が各カソード電極3の上面中央に接続されている。 The substrate processing apparatus 200 of this embodiment has the same plasma generator 2 as that of the first embodiment. That is, also in the present embodiment, the plasma generator 2 includes the external oscillator 31, the high frequency power generator 32, the transmission line 33, the matching unit 34, the directional coupler 35, the spectrum analyzer 36, and the transmission line 33. A pass-type power sensor 37 provided upstream of the matching unit 34, and a power meter 38 that measures a signal from the pass-type power sensor 37 and feeds it back to the high-frequency generator 32. The transmission line 33 branches to the transmission line 51 at the tip of the matching unit 34, and the branched transmission line 51 is connected to the center of the upper surface of each cathode electrode 3.
 本実施形態の基板処理装置200においても、第1の実施形態と同様に構成された、制御部(コンピュータ)7を有しており、この制御部7により各構成部が制御されるようになっている。 The substrate processing apparatus 200 of this embodiment also has a control unit (computer) 7 configured in the same manner as in the first embodiment, and each component is controlled by this control unit 7. ing.
 このように構成された基板処理装置200においては、第1の実施形態の基板処理装置100と同様にしてプラズマ処理、例えばプラズマCVD処理が行われる。すなわち、複数枚(3枚)の基板Sを各アノード電極4上に載置し、チャンバ1内を排気してその中を所定の真空雰囲気とし、ヒーター14により基板Sを所定温度に加熱しつつ、処理ガス供給機構15から処理ガス供給路16およびガス導入口10′を経てチャンバ1内に処理ガスを導入し、高周波電力発生器32から各カソード電極3に高周波電力を供給する。 In the substrate processing apparatus 200 configured as described above, plasma processing, for example, plasma CVD processing is performed in the same manner as the substrate processing apparatus 100 of the first embodiment. That is, a plurality (three) of substrates S are placed on each anode electrode 4, the chamber 1 is evacuated to a predetermined vacuum atmosphere, and the substrate S is heated to a predetermined temperature by the heater 14. Then, the processing gas is introduced into the chamber 1 from the processing gas supply mechanism 15 through the processing gas supply path 16 and the gas introduction port 10 ′, and high frequency power is supplied from the high frequency power generator 32 to each cathode electrode 3.
 これにより、各平行平板電極において対向するカソード電極3とアノード電極4との間に高周波電界が生じ、この高周波電界により生成された処理ガスのプラズマにより、ヒーター14で加熱された基板S上で所定のプラズマ処理、例えばプラズマCVDが行われる。 As a result, a high frequency electric field is generated between the cathode electrode 3 and the anode electrode 4 facing each other in each parallel plate electrode, and a predetermined gas is generated on the substrate S heated by the heater 14 by the plasma of the processing gas generated by the high frequency electric field. Plasma processing, for example, plasma CVD is performed.
 本実施形態においても、方向性結合器35により、整合器34を経た反射波をスペクトラムアナライザ36へ導き、反射波のスペクトルをとり、基本周波数の反射成分のみを整合器34にフィードバックすることができるので、整合器34において、高精度のチューニングを行うことができる。 Also in the present embodiment, the directional coupler 35 can guide the reflected wave that has passed through the matching unit 34 to the spectrum analyzer 36, take the spectrum of the reflected wave, and feed back only the reflected component of the fundamental frequency to the matching unit 34. Therefore, the matching unit 34 can perform highly accurate tuning.
 また、通過型パワーセンサ37を設けることにより、そこで検出した信号をパワーメータ38を介して高周波電力発生器32へフィードバックし、これをパワー制御および反射波制御に使用することができ、周波数を可変にした場合のパワー精度を向上させることができる。 Further, by providing the passing power sensor 37, the signal detected there can be fed back to the high frequency power generator 32 via the power meter 38, which can be used for power control and reflected wave control, and the frequency can be varied. In this case, the power accuracy can be improved.
 <変形例等>
 なお、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、上記実施形態では、伝送線路33において、通過型パワーセンサ37を方向性結合器35よりも高周波電力発生器32側に設けたが、これらの位置は逆でもよい。
<Modifications>
The present invention can be variously modified without being limited to the above embodiment. For example, in the above-described embodiment, the transmission power sensor 37 is provided on the high-frequency power generator 32 side of the transmission line 33 with respect to the directional coupler 35, but these positions may be reversed.
 また、上記実施形態では、高調波を含む反射波信号のスペクトルを求めるための検出器としてスペクトラムアナライザ36を用いたが、精度よくスペクトルを求めることができればこれに限るものではない。また、このような検出器としてFFT方式のものを好ましい例として例示したが、これに限らず、スーパーヘテロダイン方式等、他の方式であってもよい。 In the above embodiment, the spectrum analyzer 36 is used as a detector for obtaining the spectrum of the reflected wave signal including harmonics, but the present invention is not limited to this as long as the spectrum can be obtained with high accuracy. In addition, although an FFT type detector is exemplified as a preferred example, such a detector is not limited to this, and may be another type such as a superheterodyne method.
 さらに、基板処理装置におけるプラズマ処理としてプラズマCVDを例示したが、本発明では原理上、これに限定されるものではないことはいうまでもなく、プラズマエッチング等、他のプラズマ処理に適用することができる。さらに、上記実施形態では平行平板電極の上部電極に高周波電力を導入し下部電極を接地したが、上部電極を接地し下部電極に高周波電力を導入してもよいし、上部電極および下部電極の両方に高周波電力を導入してもよい。さらにまた、本発明をバッチ式装置に適用する場合、一度に処理する基板の数は3枚に限るものではない。さらにまた、本発明に適用される基板は特に限定されるものではなく、太陽電池用基板やフラットパネルディスプレイ(FPD)用ガラス基板等、種々の基板に適用可能である。 Furthermore, although plasma CVD has been exemplified as the plasma processing in the substrate processing apparatus, it is needless to say that the present invention is not limited to this in principle, and can be applied to other plasma processing such as plasma etching. it can. Further, in the above embodiment, the high frequency power is introduced to the upper electrode of the parallel plate electrode and the lower electrode is grounded. However, the upper electrode may be grounded and the high frequency power may be introduced to the lower electrode, or both the upper electrode and the lower electrode may be introduced. High frequency power may be introduced into the. Furthermore, when the present invention is applied to a batch type apparatus, the number of substrates processed at a time is not limited to three. Furthermore, the substrate applied to the present invention is not particularly limited, and can be applied to various substrates such as a solar cell substrate and a flat panel display (FPD) glass substrate.
 1;チャンバ、2;プラズマ発生装置、3;カソード電極(上部電極)、4;アノード電極(下部電極)、5;処理ガス供給部、6;排気部、7;制御部、10;シャワーヘッド、14;ヒーター、15;処理ガス供給機構、18;排気装置、31;外部発振器、32;高周波電力発生器、33;伝送線路、34;整合器、35;方向性結合器、36;スペクトラムアナライザ、37;通過型パワーセンサ、38;パワーメータ、100,200;基板処理装置、S;基板 DESCRIPTION OF SYMBOLS 1; Chamber, 2; Plasma generator, 3; Cathode electrode (upper electrode), 4; Anode electrode (lower electrode), 5; Process gas supply part, 6: Exhaust part, 7: Control part, 10: Shower head, 14; Heater, 15; Process gas supply mechanism, 18; Exhaust device, 31; External oscillator, 32; High frequency power generator, 33; Transmission line, 34; Matching device, 35; Directional coupler, 36; 37; passing power sensor, 38; power meter, 100, 200; substrate processing apparatus, S; substrate

Claims (6)

  1.  高周波電力をプラズマ生成電極に供給することによりプラズマを発生させるプラズマ発生装置であって、
     発振する高周波の周波数を変更可能な高周波発振器と、
     前記高周波発振器から発振された周波数の高周波を増幅して高周波電力を発生する高周波電力発生器と、
     前記高周波電力発生器から前記プラズマ生成電極に高周波電力を伝送する伝送線路と、
     前記伝送線路に設けられた、発生したプラズマ負荷のインピーダンスを前記高周波電力発生器側の前記伝送線路のインピーダンスに整合させる整合器と、
     前記伝送線路の前記高周波電力発生器と前記整合器との間に設けられた方向性結合器と、
     前記方向性結合器を介して導かれた反射波のスペクトルを検出し、その中の基本周波数の反射成分を前記整合器にフィードバックする検出器と
    を具備する、プラズマ発生装置。
    A plasma generator for generating plasma by supplying high frequency power to a plasma generating electrode,
    A high frequency oscillator capable of changing the frequency of the high frequency to oscillate;
    A high frequency power generator for amplifying a high frequency of a frequency oscillated from the high frequency oscillator to generate a high frequency power;
    A transmission line for transmitting high frequency power from the high frequency power generator to the plasma generating electrode;
    A matching unit provided in the transmission line, for matching the impedance of the generated plasma load with the impedance of the transmission line on the high-frequency power generator side,
    A directional coupler provided between the high-frequency power generator and the matching unit of the transmission line;
    A plasma generator comprising: a detector that detects a spectrum of a reflected wave guided through the directional coupler and feeds back a reflected component of a fundamental frequency therein to the matching unit.
  2.  前記伝送線路の前記高周波電力発生器と前記整合器との間に設けられた通過型パワーセンサと、
     前記通過型パワーセンサからの信号を計測し、前記高周波発生器へフィードバックするパワーメータとをさらに具備する、請求項1に記載のプラズマ発生装置。
    A passing power sensor provided between the high-frequency power generator and the matching unit of the transmission line;
    The plasma generating apparatus according to claim 1, further comprising a power meter that measures a signal from the passing power sensor and feeds back the signal to the high-frequency generator.
  3.  前記検出器は、スペクトラムアナライザである、請求項1に記載のプラズマ発生装置。 The plasma generator according to claim 1, wherein the detector is a spectrum analyzer.
  4.  前記検出器は、入力信号をデジタル信号に変換し、高速フーリエ変換を行って、周波数のスペクトルを得るフーリエ変換機能を有する、請求項1に記載のプラズマ発生装置。 2. The plasma generating apparatus according to claim 1, wherein the detector has a Fourier transform function for converting an input signal into a digital signal and performing a fast Fourier transform to obtain a frequency spectrum.
  5.  高周波電力により発生させた処理ガスのプラズマによって基板を処理する基板処理装置であって、
     基板を収容し、真空下に保持可能なチャンバと、
     前記チャンバ内に設けられ、高周波電力が供給されてプラズマを生成するプラズマ生成電極と、
     前記プラズマ生成電極に高周波電力を供給してプラズマを発生させるプラズマ発生装置と、
     前記チャンバに処理ガスを供給する処理ガス供給機構と
    を具備し、
     前記プラズマ発生装置は、
     発振する高周波の周波数を変更可能な高周波発振器と、
     前記高周波発振器から発振された周波数の高周波を増幅して高周波電力を発生する高周波電力発生器と、
     前記高周波電力発生器から前記プラズマ生成電極に高周波電力を伝送する伝送線路と、
     前記伝送線路に設けられた、発生したプラズマ負荷のインピーダンスを前記高周波電力発生器側の前記伝送線路のインピーダンスに整合させる整合器と、
     前記伝送線路の前記高周波電力発生器と前記整合器との間に設けられた方向性結合器と、
     前記方向性結合器を介して導かれた反射波のスペクトルを検出し、その中の基本周波数の反射成分を前記整合器にフィードバックする検出器と
    を有する、基板処理装置。
    A substrate processing apparatus for processing a substrate with plasma of a processing gas generated by high frequency power,
    A chamber that accommodates the substrate and can be held under vacuum;
    A plasma generating electrode provided in the chamber and supplied with high frequency power to generate plasma;
    A plasma generator for generating plasma by supplying high-frequency power to the plasma generating electrode;
    A processing gas supply mechanism for supplying a processing gas to the chamber;
    The plasma generator comprises:
    A high frequency oscillator capable of changing the frequency of the high frequency to oscillate;
    A high frequency power generator for amplifying a high frequency of a frequency oscillated from the high frequency oscillator to generate a high frequency power;
    A transmission line for transmitting high frequency power from the high frequency power generator to the plasma generating electrode;
    A matching unit provided in the transmission line, for matching the impedance of the generated plasma load with the impedance of the transmission line on the high-frequency power generator side,
    A directional coupler provided between the high-frequency power generator and the matching unit of the transmission line;
    A substrate processing apparatus, comprising: a detector that detects a spectrum of a reflected wave guided through the directional coupler and feeds back a reflected component of a fundamental frequency therein to the matching unit.
  6.  複数の基板に対応して複数のプラズマ生成電極を有し、前記プラズマ発生装置から前記各プラズマ生成電極へ高周波電力が供給されて生成されたプラズマにより、複数の基板を処理する、請求項5に記載の基板処理装置。 6. The plurality of plasma generation electrodes corresponding to the plurality of substrates, wherein the plurality of substrates are processed by plasma generated by supplying high-frequency power from the plasma generator to each plasma generation electrode. The substrate processing apparatus as described.
PCT/JP2013/069610 2012-09-03 2013-07-19 Plasma emission device and substrate processing device WO2014034318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012192847A JP2014049362A (en) 2012-09-03 2012-09-03 Plasma generation device and substrate processing device
JP2012-192847 2012-09-03

Publications (1)

Publication Number Publication Date
WO2014034318A1 true WO2014034318A1 (en) 2014-03-06

Family

ID=50183138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069610 WO2014034318A1 (en) 2012-09-03 2013-07-19 Plasma emission device and substrate processing device

Country Status (3)

Country Link
JP (1) JP2014049362A (en)
TW (1) TW201424463A (en)
WO (1) WO2014034318A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014210A1 (en) * 2015-07-21 2017-01-26 東京エレクトロン株式会社 Plasma processing device and plasma processing method
KR20180080631A (en) * 2017-01-04 2018-07-12 주식회사 메디플 Apparatus of supplying power for generating plasma

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6541623B2 (en) * 2016-06-20 2019-07-10 東京エレクトロン株式会社 Plasma processing apparatus and waveform correction method
JP6832500B2 (en) * 2016-09-30 2021-02-24 パナソニックIpマネジメント株式会社 Plasma processing equipment
KR102217139B1 (en) 2017-08-14 2021-02-18 가부시키가이샤 코쿠사이 엘렉트릭 Plasma generating device, substrate processing device, and manufacturing method of semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031073A (en) * 1998-02-26 2000-01-28 Canon Inc Plasma processor and processing method
JP2002151429A (en) * 2000-07-20 2002-05-24 Axcelis Technologies Inc Rf plasma generator and wafer processing system
JP2003179030A (en) * 2001-12-10 2003-06-27 Tokyo Electron Ltd High frequency power supply and control method thereof
JP2011217482A (en) * 2010-03-31 2011-10-27 Daihen Corp High-frequency power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031073A (en) * 1998-02-26 2000-01-28 Canon Inc Plasma processor and processing method
JP2002151429A (en) * 2000-07-20 2002-05-24 Axcelis Technologies Inc Rf plasma generator and wafer processing system
JP2003179030A (en) * 2001-12-10 2003-06-27 Tokyo Electron Ltd High frequency power supply and control method thereof
JP2011217482A (en) * 2010-03-31 2011-10-27 Daihen Corp High-frequency power supply device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014210A1 (en) * 2015-07-21 2017-01-26 東京エレクトロン株式会社 Plasma processing device and plasma processing method
TWI685016B (en) * 2015-07-21 2020-02-11 日商東京威力科創股份有限公司 Plasma processing device and plasma processing method
US10622197B2 (en) 2015-07-21 2020-04-14 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
KR20180080631A (en) * 2017-01-04 2018-07-12 주식회사 메디플 Apparatus of supplying power for generating plasma
WO2018128235A1 (en) * 2017-01-04 2018-07-12 주식회사 메디플 Power supply device for plasma generation
KR101927439B1 (en) 2017-01-04 2018-12-10 주식회사 메디플 Apparatus of supplying power for generating plasma

Also Published As

Publication number Publication date
JP2014049362A (en) 2014-03-17
TW201424463A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
US9837249B2 (en) Radial waveguide systems and methods for post-match control of microwaves
WO2014034318A1 (en) Plasma emission device and substrate processing device
JP6037688B2 (en) Anomaly detection method in microwave introduction module
US20150270106A1 (en) Radial waveguide systems and methods for post-match control of microwaves
JP2018125170A (en) Microwave plasma source, microwave plasma processing device, and plasma processing method
US20230131809A1 (en) Methods and Apparatus for Controlling RF Parameters at Multiple Frequencies
JP6754665B2 (en) Microwave output device and plasma processing device
CN109952816B (en) Microwave output device and plasma processing device
US10663491B2 (en) Voltage-current probe for measuring radio-frequency electrical power in a high-temperature environment and method of calibrating the same
US11646178B2 (en) Apparatus for plasma processing
JP6643034B2 (en) Plasma processing equipment
JP2020016592A (en) Detection device, microwave output device and plasma processing device
JP2016058361A (en) Plasma processing device and method for detecting light
JP2021125566A (en) Plasma processing apparatus and gas flow rate adjustment method
US9870901B2 (en) Method of producing processing condition of plasma processing apparatus, and plasma processing apparatus
JP7374023B2 (en) Inspection method and plasma processing equipment
JP2014220288A (en) Microwave plasma processing apparatus and microwave plasma source
JP2014220046A (en) Microwave plasma processing apparatus and microwave plasma source
KR102659673B1 (en) Pulse monitor device and plasma processing apparatus
KR20220047173A (en) Plasma processing apparatus and plasma processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833143

Country of ref document: EP

Kind code of ref document: A1