WO2014033892A1 - Power interchange route creation method and power interchange route creation device - Google Patents

Power interchange route creation method and power interchange route creation device Download PDF

Info

Publication number
WO2014033892A1
WO2014033892A1 PCT/JP2012/072095 JP2012072095W WO2014033892A1 WO 2014033892 A1 WO2014033892 A1 WO 2014033892A1 JP 2012072095 W JP2012072095 W JP 2012072095W WO 2014033892 A1 WO2014033892 A1 WO 2014033892A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
self
excited
asynchronous interconnection
route
Prior art date
Application number
PCT/JP2012/072095
Other languages
French (fr)
Japanese (ja)
Inventor
石田 隆張
弘起 佐藤
民則 冨田
道樹 中野
靖子 志賀
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2014532663A priority Critical patent/JPWO2014033892A1/en
Priority to PCT/JP2012/072095 priority patent/WO2014033892A1/en
Publication of WO2014033892A1 publication Critical patent/WO2014033892A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention divides the current power system into a plurality of independent power systems, and interconnects with each other via a self-excited converter to operate stably. It relates to the operation means.
  • Patent Document 1 JP 2011-061970 (Patent Document 1) as background art in this technical field.
  • Patent Document 1 in order to enable a large amount of renewable energy to be introduced, renewable energy and other power sources such as a power source / load and a power storage device are balanced in each power system so as to be independent.
  • An efficient interconnection device is disclosed in which excess or deficiency is generated by connecting asynchronously with other power systems, including the main power system, to allow power to be interchanged.
  • a technology for constructing a power system including control of these power devices, an efficient and flexible control system for controlling the whole, a communication system as a communication base, and an optimal power interchange algorithm is disclosed.
  • Patent Document 1 When attempting to allow power interchange or power distribution with the technology of Patent Document 1, it is necessary to determine the amount of power to be accommodated through the self-excited power converter and the route to be accommodated. However, Patent Document 1 only describes a criterion for minimizing power transmission loss with respect to a flexible route. In the future, since various forms, or various power distribution devices and power interchange methods and distribution methods using power distribution devices are conceivable, indicators that express the effects of specific power interchange and distribution other than transmission loss were used. There is a need for a method for determining a power interchange route and a device for realizing the method.
  • connection information in a network when accommodating power, a database of facilities, and a multi-terminal asynchronous connection not described in the patent literature is referred to.
  • the maximum efficiency of all the self-excited power converters in the multi-terminal asynchronous interconnected equipment installed in the entire target network Calculate the flexible route to operate with self-excited power converter loss minimum).
  • the block diagram which shows the 1st Example of this invention An example of target system connection data and equipment database. An example of self-excited power converter conversion efficiency data. An example of the processing sequence of an accommodation route calculation apparatus. An example of the detail of a process in an accommodation route calculation apparatus. The flowchart which calculates
  • Fig. 1 shows a system configuration example of this embodiment.
  • Center system (power interchange route creation device) 110 multi-terminal asynchronous interconnection device 120, 500-1, 500-2, 500-3, power transmission / distribution network 131, communication line 132, loads 611, 613, 615, distributed power supply 612 , 614, 616.
  • the distributed power source here includes a storage battery.
  • an electric vehicle can also be discharged in the form of V2G (Vehicle To Grid), it may be considered as a storage battery.
  • V2G Vehicle To Grid
  • the center system 110 is a self-excited power converter that shows characteristics between the output and efficiency of different self-excited power converters used in the equipment database 111 related to systems in the target range and multi-terminal asynchronous interconnection equipment.
  • Conversion efficiency data 112 target system connection data 113 indicating the connection state of the target power system, external communication I / F 114, interchange route calculation function 115, interchange route calculation that accumulates the results calculated by the interchange route calculation function 115
  • the system includes a database 116 and a billing system 117 that settles power transmission / reception costs when power is exchanged and distributed.
  • the center system includes a CPU, a memory device, a storage device, and the like for performing computer processing, the present invention is not directly related to the present invention and is therefore omitted from the drawing.
  • the center system 110 is connected to each multi-terminal asynchronous interconnection device 500-1 to 500-3, 120 via the communication I / F 508-1 to 3 in each multi-terminal asynchronous interconnection device via the communication line 132.
  • the multi-terminal asynchronous interconnection device controls the transmission and reception of power between each self-excited power converter by connecting multiple self-excited power converters via a DC bus in a method called Back To Back.
  • This is a device having a power circuit that operates and an arithmetic module that controls the power circuit.
  • power lines for supplying power from the external power source 100 and power lines for connecting each multi-terminal asynchronous interconnection device.
  • These power lines are self-excited power converters 121-1 in each multi-terminal asynchronous interconnection device. .., 501-1 to 3, 502-1 to 3, and 503-1 to 3 are connected to each multi-terminal asynchronous interconnection device or an external power source.
  • a control program stored in a storage device not described in the figure is loaded into a memory (not shown) and the CPU
  • power is exchanged and distributed between multi-terminal asynchronous interconnection devices based on control commands from the center system.
  • 999 indicates a DC bus.
  • Reference numeral 301 denotes data indicating facilities of power transmission lines and distribution lines stored in the facility database 111.
  • An example of data consisting of at least the tap ratio when the transmission line, distribution line resistance, induction, capacity, transmission line, distribution line type is a transformer, or SVR (Step Voltage Regulator). It is.
  • SVR Step Voltage Regulator
  • an On / Off flag describing whether or not each facility is used may be provided.
  • the 302 is an example of data relating to the power generation equipment stored in the equipment database.
  • the reactive power output QG in the case of being connected, the active power value PL of the load, the reactive power value QL of the load, and the SCShR that is a value when the capacitor and the reactor are connected are configured at least.
  • the initial voltage value here is an item used in the tidal current calculation that is executed when obtaining the power generation origin described later using this database, so this item may be deleted as necessary. Is possible.
  • Data corresponding to the target system connection data 113 is obtained by adding an On / Off flag indicating a connection state to the data of the above-described format 301.
  • the self-excited power converter conversion efficiency data 112 will be described with reference to FIG.
  • the multi-terminal asynchronous interconnection device 500 includes a communication I / F 508 and self-excited power converters 501 to 503.
  • the equipment connected to each self-excited power converter is a self-excited type because it is a device with various ratings including, for example, photovoltaic power generation, storage batteries, gas turbines, general loads, and power loads often found in factories.
  • the power converter is usually not a self-excited power converter having the same capacity but a self-excited power converter having a different capacity.
  • the characteristic curves indicating the effective power output and efficiency of each self-excited power converter are generally greatly different as shown by 511 to 513.
  • the self-excited power converter conversion efficiency database 112 stores data corresponding to the efficiency curves 511 to 513 shown here.
  • the processing of the flexible route calculation unit 115 will be described with reference to the sequence diagram of FIG.
  • This sequence is executed based on the signal from the multi-terminal asynchronous interconnected device (power receiving side) to obtain the power interchange of the power transmitted to the accommodation route calculation unit at a fixed period (power receiving side) It is executed by any one of the methods in which execution is started by an event raised from the multi-terminal asynchronous interconnection device. In this embodiment, it is assumed that the sequence of FIG. 4 is periodically executed by the accommodation route calculation unit 115.
  • a signal for obtaining necessary data is distributed from the flexible route calculation unit 115 to each multi-terminal asynchronous interconnection device 500 via a communication line.
  • the requested data includes at least the On / Off information 301 shown in FIG. 2, the data shown in 302, and at least whether or not there is excess or deficiency of power (power supply / demand status) below each multi-terminal asynchronous interconnection device. To do.
  • a data response from each multi-terminal asynchronous interconnection device 500 is sent to the accommodation route calculation unit 115 in processing 403.
  • the interchange route calculation unit 115 determines whether or not it is necessary to interchange power between the multi-terminal asynchronous interconnection devices 500 in processing 405. In this determination, the value of the presence or absence of excess or deficiency of power returned from each of the multi-terminal asynchronous interconnection devices 500 exceeds a predetermined threshold value (for example, 2% of the required power amount), and the multi-terminal When the storage battery storing the necessary power is not connected to the asynchronous interconnection device, the accommodation route calculation unit 115 determines that the electricity accommodation is necessary.
  • a predetermined threshold value for example, 2% of the required power amount
  • the process ends as it is, and this process enters a sleep state until the next activation time or an event that triggers activation occurs.
  • the accommodation route calculation unit 115 relates to the storage capacity or power generation capacity of each multi-terminal asynchronous interconnection device 500 in process 406. Request data.
  • the interchange route calculation unit 115 acquires data relating to the power generation surplus required from each multi-terminal asynchronous interconnection device 500 in the process 407
  • the interchange pattern calculation unit in the process 408 uses the power interchange source and its amount, and the power Determine the route to accommodate. This specific process will be described later with reference to FIG.
  • control signal necessary for accommodation is reserved in processing 409 by the next control cycle.
  • the reservation of control progress here refers to self-excited power converters 501 to 503 or 121-1 to 121, which are constituent devices, with respect to the multi-terminal asynchronous interconnection device 500 in order to transmit and receive desired accommodation power. -4 is distributed.
  • the specific control signal here relates to, for example, the phase of the current flowing through each self-excited power converter or the voltage of the common bus of each self-excited power converter.
  • control signal for example, control execution immediately, control execution at a specific time, and effective duration, etc.
  • the signal After the flexible route calculation unit 115 confirms that each multi-terminal asynchronous interconnection device 500 has received the processing time in step 410, each multi-terminal asynchronous interconnection device 500 becomes flexible in step 411 when the above-described execution time is reached.
  • Execute control In process 412, a signal is transmitted from each multi-terminal asynchronous interconnection device 500 to the accommodation route calculation unit that the control can be normally executed during control execution, and in process 413, the signal transmitted in process 412 is sent to the accommodation route.
  • the information received by the calculation unit is returned to each multi-terminal asynchronous interconnection device.
  • the process 414 if it is within the effective continuation time described above and it is time to continue the accommodation, the process returns to the process 411 to continue the accommodation. If it is time for the accommodation to end, the process ends.
  • the case where it is executed based on the signal from the multi-terminal asynchronous interconnection device for obtaining the accommodation of the power transmitted to the accommodation route calculation unit (power receiving side) the opposite case, that is, Even in the case of requesting power interchange when the power is in a surplus state (on the power transmission side), it can be executed by reversing the power transmission and power reception in the above description.
  • FIG. 5 assumes a power system in which five multi-terminal asynchronous interconnection devices 601 to 605 are interconnected, and each multi-terminal asynchronous interconnection device has a load 611, 613, 615, 617, 619 and a distributed power source. (Including storage battery) 612, 614, 616, 618, 620 is assumed to be connected. In this case, it is assumed that the load power for charging the EV is procured from the distributed power source under the other multi-terminal asynchronous interconnection device 604 among the loads connected to the multi-terminal asynchronous interconnection device 604.
  • the power from the multi-terminal asynchronous interconnection devices 601 and 602 is once multi-terminal asynchronous.
  • candidates for an accommodation route are obtained. The data is stored in the temporary storage device of the accommodation route calculation device or stored in the calculation database 116 for the accommodation route.
  • the merit of accommodating power from a plurality of distributed power sources is that when passing through the self-excited power converter in the multi-terminal asynchronous interconnection device in FIG. It is to reduce the power loss as a whole. For example, when interchanged power is transmitted from one distributed power source in the state of full output of the self-excited power converter, the efficiency of the self-excited power converter decreases in the high power region as shown in FIG.
  • FIG. 6 is a flowchart showing the contents of the accommodation route calculation process 115 described with reference to FIG.
  • process 701 detection of a multi-terminal asynchronous interconnection device to which a load of a desired power source (power receiving side) is connected and the desired flexible power consumption are input.
  • processing 702 conversion efficiency data regarding the self-excited converter in the multi-terminal asynchronous interconnection device that passes through each interchange route candidate is read for each interchange route.
  • a distributed power source that can be accommodated is detected based on the data from the multi-terminal asynchronous interconnection device acquired in process 407. Thereafter, the optimization calculation is performed in the processing 704 using the above-described formulation example, and the interchange route in which the loss in the self-excited power converter is minimized among the above-mentioned interchange route candidates, and each self-excited power conversion at that time Calculate the power value flowing through the container. Instead of the power value, the current value in each self-excited converter may be calculated. After obtaining the accommodation route and the power value to be supplied to each self-excited power converter, the power value is converted into a control command for accommodation at that power value.
  • the conversion of the control command here may be a reference method based on a table showing a correlation between a control amount and a flexible power amount created in advance, or may be a method of solving a complicated control model each time.
  • the data is stored in the database 116, and the control value is transmitted to each multi-terminal asynchronous interconnection device before the control execution cycle.
  • the accounting process is performed and the entire process is completed.
  • step 721 the location and the supply amount of the flexible supply source power transmitted to the multi-terminal asynchronous interconnection device of the flexible request source are acquired. This can be acquired from the data periodically transmitted from the multi-terminal asynchronous interconnection device to the center system in the process 412 of FIG.
  • step 722 the charging fee of the multi-terminal asynchronous interconnection device of the accommodation destination is calculated from the basic unit of each supply source, each supply amount, and the fee on the center system side To do.
  • the interchange between the distributed power source of the supplier and the load of the multi-terminal asynchronous interconnection device The power loss at the time of accommodation is calculated from the efficiency of the self-excited power converter in the route and the transmission line parameters between the multi-terminal asynchronous interconnection devices (FIG. 2, 301).
  • the charging fee obtained above and the power loss generated at the time of accommodation are written in the database, and the process is terminated.
  • this accommodation route calculation part 115 can also be used as one function of a feeding system, and is one of the computer applications of a feeding system. It can also be positioned.
  • the conversion efficiency data of the self-excited power converter constituting the method and apparatus is input.
  • the interchange route calculation section for data the load connected to one multi-terminal asynchronous interconnection device in the power system connected by multiple multi-terminal asynchronous interconnection devices to other multi-terminal asynchronous interconnection devices.
  • FIG. 8 shows a system configuration in the second embodiment. As shown in FIG. 8, a passing power derived database 118 of the self-excited power converter is added. This makes it possible to clarify the origin of renewable energy and fossil fuel derived from the power passing through the self-excited power converter, thereby reducing CO2 emissions in addition to the interchange loss in the self-excited power converter. There is an effect that becomes possible.
  • FIG. 9 shows an example of a self-excited power converter-derived power database.
  • Reference numeral 304 in FIG. 9 shows an example in which power derived from fossil fuel, renewable energy, and other power sources is stored for each self-excited power converter. A method for calculating the derived power here will be described with reference to FIGS. 10 and 11.
  • Figure 10 shows the calculation flow.
  • data is acquired from the database 751 as input data, and the data acquired in the process 752 is preprocessed.
  • the contents of the database 751 here are the same data format as 301 and 302 shown in FIG. 2 and the contents of the equivalent data.
  • Preprocessing for inputting this data into the computer program is performed in processing 752, and then power flow calculation generally performed in power analysis calculation is executed.
  • the influence area of the generator is calculated in processing 754.
  • the power flow is calculated based on the power flow from an arbitrary generator and the flow direction of the power flow from the result of the power flow calculation.
  • step 755 the contribution of each generator to the influence area (area shown in FIG. 11 as an example) of each generator divided in step 754 is obtained, the power generation origin for an arbitrary load is obtained, and the result Is stored in the database derived from the passing power of the self-excited power converter.
  • power generation origin can be obtained by adding a signal as additional information to the power flowing through the system using a technology such as PLC (Power Line Communication), The result may be stored in the database derived from the passing power of the self-excited power converter.
  • a method of calculating the passing current of the self-excited power converter by flowing a packet for recognizing the amount, direction, and quality of power flowing on a separately prepared communication line in synchronization with the power flowing in the system.
  • FIG. 12 is a flowchart showing the contents of the accommodation route calculation process 115 in the second embodiment.
  • process 701 the detection of the multi-terminal asynchronous interconnection device to which the load of the accommodation request source is connected and the desired accommodation power amount are input.
  • process 702 conversion efficiency data regarding the self-excited power converter connected on the accommodation route candidate is read.
  • step 703 a distributed power source that can be accommodated is detected based on the data from the multi-terminal asynchronous interconnection device acquired in step 407.
  • an optimization calculation is performed based on the formulation described later in processing 708, and the loss in the self-excited power converter and the power derived from renewable energy passing through the self-excited power converter at the time of interchange are minimized.
  • the interchange route and the power value to be supplied to each self-excited power converter at that time are calculated.
  • the power value is converted into a control command for accommodation.
  • the conversion of the control command here may be a reference method based on a table showing a correlation between a control amount and a flexible power amount created in advance, or may be a method of solving a complicated control model each time.
  • the data is stored in the database 116, and the control value is transmitted to each multi-terminal asynchronous interconnection device before the control execution cycle.
  • the accounting process is performed and the entire process is completed. The accounting process is the same as in the first embodiment.
  • FIG. 13 shows an example of the power interchange in the center facility 110 and a monitoring screen at the time of power interchange.
  • This screen is an example of displaying the power source, the amount and price of the interchanged power for each multi-terminal asynchronous interconnection device, and the self-excited power converter efficiency when the interchange is executed.
  • the display shows three types of fossil fuel origin, renewable energy origin, and others, or 602
  • the power origin for each multi-terminal asynchronous interconnection device of the interchange.
  • FIG. 13 shows the amount of electricity and the price of the accommodation or accommodation.
  • this accommodation route calculation part 115 can also be used as one function of a feeding system, and is one of the computer applications of a feeding system. It can also be positioned.
  • At least the input data of the self-excited power converter conversion efficiency data constituting the method and apparatus is input data.
  • Connect to other multi-terminal asynchronous interconnection devices in the load connected to one multi-terminal asynchronous interconnection device in the power system connected by multiple multi-terminal asynchronous interconnection devices When power is distributed from distributed power sources, the efficiency of the self-excited power converter existing in the interchange route is maximized as a whole, and the utilization ratio of power derived from renewable energy is maximized, for example. Thus, it is possible to determine the amount of power to be accommodated with the power interchange route.

Abstract

When interchanging or transmitting and distributing power by a technology using each multi-terminal non-synchronous interconnection device described in a patent document (1), it is necessary to determine an interchanging route and the amount of power to be interchanged through a self-exciting power converter. In the above prior art, however, a rule in which the power transmission loss for the interchanging route is minimized is only described. In the future, since methods for interchanging and transmitting and distributing various forms of power or power using various power transmission and distribution devices and power distribution devices are expected, a method for determining a power interchange route using an index representing the effect of specific power interchange and transmission and distribution other than the power transmission loss and a device implementing the method are required. As indicated in the above part of the problem to be solved by the invention, first the present invention uses, as input data, connection information and facility database in a network used when interchanging power and characteristics not described in the patent document and representing the conversion efficiency of the self-exciting power converter in the multi-terminal non-synchronous interconnection device to calculate an interchange route through which a large number of self-exciting power converters in the multi-terminal non-synchronous interconnection devices installed in the entire target network are operated at the maximum efficiency (minimum self-exciting power converter loss) as a whole. Further, the expense for a power trade occurring during the interchange is also simultaneously calculated. Further, in addition to the minimization of the self-exciting power converter loss, power flow is optimally distributed so that a green-power index is maximized that becomes an index representing the use amount of power derived from renewable energy, and an interchange plan for maximizing the use of power derived from renewable energy and a control method are designed.

Description

電力融通ルート作成方法、並びに電力融通ルート作成装置Power accommodation route creation method and power accommodation route creation device
 本発明は再生可能エネルギーの大量導入を可能にする為に、現状の電力系統を自立した複数の電力系統に分割し、自励式変換器経由で相互に連系して安定に運用する電力システムとその運用手段に関する。 In order to enable large-scale introduction of renewable energy, the present invention divides the current power system into a plurality of independent power systems, and interconnects with each other via a self-excited converter to operate stably. It relates to the operation means.
 本技術分野の背景技術として、特開2011-061970号公報(特許文献1)がある。特許文献1には、再生可能エネルギーを大量導入を可能にするため、個々の電力系統の中で再生可能エネルギーと他の電源・負荷および電力貯蔵装置等の電力機器の需給をバランスさせて自立させ、過不足が生じる部分について、基幹電力系統も含め、他の電力系統と非同期に接続して電力を融通し合える効率的な連系装置が開示されている。さらにそれら電力機器の制御、全体をコントロールする効率的で柔軟な制御システム、その通信基盤となる通信システム、最適な電力融通アルゴリズムを含む電力システムを構築する技術が開示されている。 There is JP 2011-061970 (Patent Document 1) as background art in this technical field. In Patent Document 1, in order to enable a large amount of renewable energy to be introduced, renewable energy and other power sources such as a power source / load and a power storage device are balanced in each power system so as to be independent. An efficient interconnection device is disclosed in which excess or deficiency is generated by connecting asynchronously with other power systems, including the main power system, to allow power to be interchanged. Further, a technology for constructing a power system including control of these power devices, an efficient and flexible control system for controlling the whole, a communication system as a communication base, and an optimal power interchange algorithm is disclosed.
特開2011-061970号公報JP 2011-061970
 特許文献1の技術で電力融通あるいは電力流通を行おうとする際には、自励式電力変換器を介して融通する電力の量と融通するルートを決定する必要がある。しかしながら特許文献1では融通するルートに関しては送電ロスを最小化する、という基準が記述されているのみである。今後様々な形態、あるいはさまざまな電力流通機器、配電機器を用いた電力の融通方法、流通方法が考えられることから、送電ロス以外の具体的な電力融通、流通の効果を表現する指標を用いた電力融通ルートの決定方法並びにそれを実現する装置が必要である。 When attempting to allow power interchange or power distribution with the technology of Patent Document 1, it is necessary to determine the amount of power to be accommodated through the self-excited power converter and the route to be accommodated. However, Patent Document 1 only describes a criterion for minimizing power transmission loss with respect to a flexible route. In the future, since various forms, or various power distribution devices and power interchange methods and distribution methods using power distribution devices are conceivable, indicators that express the effects of specific power interchange and distribution other than transmission loss were used. There is a need for a method for determining a power interchange route and a device for realizing the method.
 本発明では上記の発明が解決しようとする課題の部分で示したように、まず、電力を融通する際のネットワーク中における接続情報、設備のデータベースと特許文献には記述されていない多端子非同期連系機器中の自励式電力変換器の変換効率を示す特性を入力データとして、対象ネットワーク全体に設置されている多端子非同期連系機器中の多数の自励式電力変換器を全体で最大の効率(自励式電力変換器ロス最小)で運用する融通ルートを算出する。 In the present invention, as described in the problem to be solved by the above-described invention, first, connection information in a network when accommodating power, a database of facilities, and a multi-terminal asynchronous connection not described in the patent literature. Using the characteristics indicating the conversion efficiency of the self-excited power converter in the system equipment as input data, the maximum efficiency of all the self-excited power converters in the multi-terminal asynchronous interconnected equipment installed in the entire target network ( Calculate the flexible route to operate with self-excited power converter loss minimum).
 本発明により、対象ネットワーク全体に設置されている多端子非同期連系機器中の多数の自励式電力変換器を全体で効率的に運用する融通ルートを得ることができる。 According to the present invention, it is possible to obtain a flexible route for efficiently operating a large number of self-excited power converters in a multi-terminal asynchronous interconnection device installed in the entire target network.
本発明の第一の実施例を示す構成図。The block diagram which shows the 1st Example of this invention. 対象系統接続データ、設備データベースの一例。An example of target system connection data and equipment database. 自励式電力変換器変換効率データの一例。An example of self-excited power converter conversion efficiency data. 融通ルート算出装置の処理シーケンスの一例。An example of the processing sequence of an accommodation route calculation apparatus. 融通ルート算出装置における処理の詳細の一例。An example of the detail of a process in an accommodation route calculation apparatus. 融通ルート算出装置における組合せケースと融通量を求めるフローチャート。The flowchart which calculates | requires the combination case and the amount of accommodation in an accommodation route calculation apparatus. 融通ルート算出装置における課金フローチャート。The accounting flowchart in an accommodation route calculation apparatus. 本発明の第二の実施例を示す構成図。The block diagram which shows the 2nd Example of this invention. 自励式電力変換器の通過電力由来データの一例。An example of data derived from passing power of a self-excited power converter. 電力の発電由来を求める方式の一例。An example of a method for obtaining power generation origin. 発電機の影響範囲を求めた結果の一例。An example of the result which calculated | required the influence range of the generator. 融通ルート算出装置における組合せケースと融通量を求めるフローチャート。The flowchart which calculates | requires the combination case and the amount of accommodation in an accommodation route calculation apparatus. センタ設備での監視画面の一例Example of monitoring screen at center equipment
 以下、本発明の実施例を図を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は本実施例のシステム構成例である。センタシステム(電力融通ルート作成装置)110、多端子非同期連系機器120、500-1、500-2、500-3、送配電網131、通信線132、負荷611、613、615、分散電源612、614、616から構成される。ここでの分散電源には蓄電池も含む。また、電気自動車もV2G(Vehicle  To Grid)の形態で放電することも可能であるため、蓄電池として考慮してもよい。 Fig. 1 shows a system configuration example of this embodiment. Center system (power interchange route creation device) 110, multi-terminal asynchronous interconnection device 120, 500-1, 500-2, 500-3, power transmission / distribution network 131, communication line 132, loads 611, 613, 615, distributed power supply 612 , 614, 616. The distributed power source here includes a storage battery. Moreover, since an electric vehicle can also be discharged in the form of V2G (Vehicle To Grid), it may be considered as a storage battery.
 センタシステム110は対象とする範囲にある系統に関する設備データベース111、多端子非同期連系機器中に用いられているそれぞれ異なる自励式電力変換器の出力と効率間の特性を示した自励式電力変換器の変換効率データ112、対象とする電力系統の接続状態を示した対象系統接続データ113、外部通信I/F114、融通ルート算出機能115、融通ルート算出機能115で算出した結果を蓄積する融通ルート算出データベース116、電力融通、流通を行った際の電力送受費用を精算する課金システム117から構成される。なお、センタシステム中にはこのほかにも計算機処理をするためのCPU、メモリ装置、記憶装置等が具備されているものの、本発明には直接的な関係はないので図中から割愛する。 The center system 110 is a self-excited power converter that shows characteristics between the output and efficiency of different self-excited power converters used in the equipment database 111 related to systems in the target range and multi-terminal asynchronous interconnection equipment. Conversion efficiency data 112, target system connection data 113 indicating the connection state of the target power system, external communication I / F 114, interchange route calculation function 115, interchange route calculation that accumulates the results calculated by the interchange route calculation function 115 The system includes a database 116 and a billing system 117 that settles power transmission / reception costs when power is exchanged and distributed. Although the center system includes a CPU, a memory device, a storage device, and the like for performing computer processing, the present invention is not directly related to the present invention and is therefore omitted from the drawing.
 センタシステム110は通信線132を介して各多端子非同期連系機器中の通信I/F508-1~3を経由して各多端子非同期連系機器500-1~500-3、120に接続されている。ここで、多端子非同期連系機器とは、複数の自励式電力変換器を直流母線を介してBack To Backと呼ばれる方式で接続して各自励式電力変換器間での電力の送電、受電を制御する電力回路とそれを制御する演算モジュールを有する機器である。 The center system 110 is connected to each multi-terminal asynchronous interconnection device 500-1 to 500-3, 120 via the communication I / F 508-1 to 3 in each multi-terminal asynchronous interconnection device via the communication line 132. ing. Here, the multi-terminal asynchronous interconnection device controls the transmission and reception of power between each self-excited power converter by connecting multiple self-excited power converters via a DC bus in a method called Back To Back. This is a device having a power circuit that operates and an arithmetic module that controls the power circuit.
 また、外部電源100から電力を供給する電力線、ならびに各多端子非同期連系機器を接続する電力線は131であり、これらの電力線は各多端子非同期連系機器中の自励式電力変換器121-1~4、501-1~3、502-1~3、503-1~3を介して各多端子非同期連系機器、あるいは外部電源と接続している。通信I/Fを介してセンタシステム110からの信号をもとに、図中に記述していない記憶装置中に蓄積されている制御プログラムを図示していないメモリ中にロードして、CPUにて演算処理を行うことでセンタシステムからの制御指令に基づいて、多端子非同期連系機器間の電力の融通、流通を行う。なお、図中999は直流母線を示している。 In addition, there are 131 power lines for supplying power from the external power source 100 and power lines for connecting each multi-terminal asynchronous interconnection device. These power lines are self-excited power converters 121-1 in each multi-terminal asynchronous interconnection device. .., 501-1 to 3, 502-1 to 3, and 503-1 to 3 are connected to each multi-terminal asynchronous interconnection device or an external power source. Based on a signal from the center system 110 via the communication I / F, a control program stored in a storage device not described in the figure is loaded into a memory (not shown) and the CPU By performing arithmetic processing, power is exchanged and distributed between multi-terminal asynchronous interconnection devices based on control commands from the center system. In the figure, 999 indicates a DC bus.
 図2を用いて本実施例で用いられるデータの内容について説明する。301は設備データベース111に格納される送電線、配電線の設備を示すデータである。データは構成要素として送電線、配電線の抵抗分、誘導分、容量分、送電線、配電線の種類が変圧器、あるいはSVR(Step Voltage Regulator)である場合のタップ比から少なくとも構成される例である。付加情報として、各設備が利用されているかどうかの状態を記述するOn/Offフラグを備えてもよい。 The contents of data used in this embodiment will be described with reference to FIG. Reference numeral 301 denotes data indicating facilities of power transmission lines and distribution lines stored in the facility database 111. An example of data consisting of at least the tap ratio when the transmission line, distribution line resistance, induction, capacity, transmission line, distribution line type is a transformer, or SVR (Step Voltage Regulator). It is. As additional information, an On / Off flag describing whether or not each facility is used may be provided.
 302は設備データベースに格納される発電設備に関するデータの一例であり、発電機の接続の有無、電圧指定値、電圧初期値、発電機が接続されている場合の有効電力出力PG、発電機が接続されている場合の無効電力出力QG、負荷の有効電力値PL、負荷の無効電力値QL、コンデンサ、リアクトルが接続されている場合の値であるSCShRが少なくとも構成される。なお、ここでの電圧初期値とは、このデータベースを用いて後述する電力の発電由来を求める際に実行する潮流計算の際に用いる項目であるので、この項目は必要に応じて削除することも可能である。 302 is an example of data relating to the power generation equipment stored in the equipment database. The presence / absence of connection of the power generator, the specified voltage value, the initial voltage value, the active power output PG when the power generator is connected, and the power generator connected. The reactive power output QG in the case of being connected, the active power value PL of the load, the reactive power value QL of the load, and the SCShR that is a value when the capacitor and the reactor are connected are configured at least. Note that the initial voltage value here is an item used in the tidal current calculation that is executed when obtaining the power generation origin described later using this database, so this item may be deleted as necessary. Is possible.
 303は、設備データベースに格納される、各設備の運用上下限を示したデータである。この例は設備ごとに定められている運用の有効電力の上限値、下限値を示している一例である。対象系統接続データ113相当するデータは前述した301の形式のデータに接続状態を示すOn/Offのフラグが追加されたものとなる。 303 is data indicating the upper and lower operational limits of each facility stored in the facility database. This example is an example showing an upper limit value and a lower limit value of active power for operation determined for each facility. Data corresponding to the target system connection data 113 is obtained by adding an On / Off flag indicating a connection state to the data of the above-described format 301.
 図3を用いて、自励式電力変換器変換効率データ112について説明する。 The self-excited power converter conversion efficiency data 112 will be described with reference to FIG.
 多端子非同期連系機器500は、通信I/F508と、自励式電力変換器501~503とから構成されている。各自励式電力変換器に接続される機器は、たとえば、太陽光発電、蓄電池、ガスタービン、一般の負荷、工場に多く見られる動力負荷をはじめとした、様々の定格の機器であるため、自励式電力変換器は通常、同一の容量の自励式電力変換器ではなく、それぞれ異なった容量の自励式電力変換器である。さらに、各自励式電力変換器の有効電力出力と効率を示す特性曲線は511~513に示すように、それぞれ大きく異なることが一般的である。ここで示した511~513の効率曲線に相当するデータを蓄積するのが自励式電力変換器変換効率データベース112となる。 The multi-terminal asynchronous interconnection device 500 includes a communication I / F 508 and self-excited power converters 501 to 503. The equipment connected to each self-excited power converter is a self-excited type because it is a device with various ratings including, for example, photovoltaic power generation, storage batteries, gas turbines, general loads, and power loads often found in factories. The power converter is usually not a self-excited power converter having the same capacity but a self-excited power converter having a different capacity. Furthermore, the characteristic curves indicating the effective power output and efficiency of each self-excited power converter are generally greatly different as shown by 511 to 513. The self-excited power converter conversion efficiency database 112 stores data corresponding to the efficiency curves 511 to 513 shown here.
 図4のシーケンス図を用いて、融通ルート算出部115の処理について説明する。本シーケンスは一定の周期で融通ルート算出部に送信される電力の融通を求める(受電側)多端子非同期連系機器からの信号に基づいて実行される、あるいは電力の融通を求める(受電側)多端子非同期連系機器から上がってきたイベントにより実行が開始される、のいずれかの方式で実行される。なお、本実施例では図4のシーケンスは周期的に融通ルート算出部115にて実行されることを想定している。 The processing of the flexible route calculation unit 115 will be described with reference to the sequence diagram of FIG. This sequence is executed based on the signal from the multi-terminal asynchronous interconnected device (power receiving side) to obtain the power interchange of the power transmitted to the accommodation route calculation unit at a fixed period (power receiving side) It is executed by any one of the methods in which execution is started by an event raised from the multi-terminal asynchronous interconnection device. In this embodiment, it is assumed that the sequence of FIG. 4 is periodically executed by the accommodation route calculation unit 115.
 融通ルート算出部は前記した電力の融通を求める(受電側)多端子非同期連系機器からの、希望受電時刻、希望受電量、希望受電継続時間をはじめとしたデータを受信した次の制御周期において、まず処理402にて融通ルート算出部115から各多端子非同期連系機器500に必要データの取得のための信号を通信回線経由で配信する。ここで要求されるデータは図2に示した301のOn/Off情報、302に示したデータ、さらに各多端子非同期連系機器以下で電力の過不足の有無(電力の需給状態)を少なくとも要求する。各多端子非同期連系機器500からのデータ回答が処理403にて融通ルート算出部115に送られる。融通ルート算出部115では処理405にて各多端子非同期連系機器500間で電力の融通が必要かどうかを判定する。この判定は前記した各多端子非同期連系機器500から返信される電力の過不足の有無の値があらかじめ決定した閾値(一例として、必要電力量の2%)を超過して、かつ該多端子非同期連系機器に必要電力を蓄積した蓄電池が接続されていない場合、融通ルート算出部115は電力融通が必要であると判断する。処理405にて電力融通が必要ない場合はそのまま終了し、次に起動される時間まで、あるいは起動のトリガーとなるイベントが発生するまで本処理はスリープ状態となる。処理405にて電力融通が必要であると判断された場合、融通ルート算出部115は処理406にて各多端子非同期連系機器500に対してそれぞれが有している蓄電余力、あるいは発電余力に関するデータを要求する。処理407にて各多端子非同期連系機器500から必要となる発電余力に関するデータを融通ルート算出部115が取得した後に、処理408の融通パターン算出部にて電力の融通元とその量、ならびに電力を融通するルートを決定する。この具体的な処理については後述する図5にて説明する。この決定に基づき、次の制御周期までに処理409にて融通に必要な制御信号の予約を行う。ここでの制御進行の予約とは、所望の融通電力を送受電するために、多端子非同期連系機器500に対し、構成機器である自励式電力変換器501~503、あるいは121-1から121-4に対する制御信号を配信する。ここでの具体的な制御信号はたとえば各自励式電力変換器を流れる電流の位相、あるいは各自励式電力変換器の共通母線の電圧に関するものである。この制御信号には実行時間に関する情報が付与されていて(たとえば即時に制御実行、特定の時間に制御実行、ならびに実効継続時間、等)を各多端子非同期連系機器500に配信し、その信号を各多端子非同期連系機器500が受信したことを処理410で融通ルート算出部115が確認した後に、前記した実行時間に到達した時点で処理411にて各多端子非同期連系機器500は融通制御を実行する。処理412では制御実行中に正常に制御が実行できていることを各多端子非同期連系機器500から融通ルート算出部に信号を送信し、処理413では処理412にて送信された信号を融通ルート算出部にて受信したことを各多端子非同期連系機器に返信する。処理414では前記した実効継続時間内にあり、融通を継続する時間であれば処理411に戻り融通を継続する。融通が終了する時間であれば処理を終了する。なお、以上の説明では融通ルート算出部に送信される電力の融通を求める(受電側)多端子非同期連系機器からの信号に基づいて実行される場合について説明したものの、この逆の場合、すなわち電力が余剰状態にある場合に電力の融通を求める(送電側)の場合も、上記の説明での送電、受電を反対に読み換えて行うことで実行が可能である。 In the next control cycle in which the interchange route calculation unit receives the data including the desired power reception time, the desired power reception amount, and the desired power reception continuation time from the multi-terminal asynchronous interconnection device that calculates the power interchange described above (power reception side). First, in processing 402, a signal for obtaining necessary data is distributed from the flexible route calculation unit 115 to each multi-terminal asynchronous interconnection device 500 via a communication line. The requested data includes at least the On / Off information 301 shown in FIG. 2, the data shown in 302, and at least whether or not there is excess or deficiency of power (power supply / demand status) below each multi-terminal asynchronous interconnection device. To do. A data response from each multi-terminal asynchronous interconnection device 500 is sent to the accommodation route calculation unit 115 in processing 403. The interchange route calculation unit 115 determines whether or not it is necessary to interchange power between the multi-terminal asynchronous interconnection devices 500 in processing 405. In this determination, the value of the presence or absence of excess or deficiency of power returned from each of the multi-terminal asynchronous interconnection devices 500 exceeds a predetermined threshold value (for example, 2% of the required power amount), and the multi-terminal When the storage battery storing the necessary power is not connected to the asynchronous interconnection device, the accommodation route calculation unit 115 determines that the electricity accommodation is necessary. If no power interchange is required in the process 405, the process ends as it is, and this process enters a sleep state until the next activation time or an event that triggers activation occurs. When it is determined in process 405 that power accommodation is necessary, the accommodation route calculation unit 115 relates to the storage capacity or power generation capacity of each multi-terminal asynchronous interconnection device 500 in process 406. Request data. After the interchange route calculation unit 115 acquires data relating to the power generation surplus required from each multi-terminal asynchronous interconnection device 500 in the process 407, the interchange pattern calculation unit in the process 408 uses the power interchange source and its amount, and the power Determine the route to accommodate. This specific process will be described later with reference to FIG. Based on this determination, the control signal necessary for accommodation is reserved in processing 409 by the next control cycle. The reservation of control progress here refers to self-excited power converters 501 to 503 or 121-1 to 121, which are constituent devices, with respect to the multi-terminal asynchronous interconnection device 500 in order to transmit and receive desired accommodation power. -4 is distributed. The specific control signal here relates to, for example, the phase of the current flowing through each self-excited power converter or the voltage of the common bus of each self-excited power converter. Information related to execution time is given to this control signal (for example, control execution immediately, control execution at a specific time, and effective duration, etc.) are distributed to each multi-terminal asynchronous interconnection device 500, and the signal After the flexible route calculation unit 115 confirms that each multi-terminal asynchronous interconnection device 500 has received the processing time in step 410, each multi-terminal asynchronous interconnection device 500 becomes flexible in step 411 when the above-described execution time is reached. Execute control. In process 412, a signal is transmitted from each multi-terminal asynchronous interconnection device 500 to the accommodation route calculation unit that the control can be normally executed during control execution, and in process 413, the signal transmitted in process 412 is sent to the accommodation route. The information received by the calculation unit is returned to each multi-terminal asynchronous interconnection device. In the process 414, if it is within the effective continuation time described above and it is time to continue the accommodation, the process returns to the process 411 to continue the accommodation. If it is time for the accommodation to end, the process ends. In the above description, the case where it is executed based on the signal from the multi-terminal asynchronous interconnection device for obtaining the accommodation of the power transmitted to the accommodation route calculation unit (power receiving side), the opposite case, that is, Even in the case of requesting power interchange when the power is in a surplus state (on the power transmission side), it can be executed by reversing the power transmission and power reception in the above description.
 図5にて融通パターン算出部にて電力の融通元とその量、ならびに電力を融通するルートを決定する方法について説明する。図5は5か所の多端子非同期連系機器601~605が連系された電力系統を想定し、各多端子非同期連系機器にはそれぞれ負荷611、613、615、617、619と分散電源(含む蓄電池)612、614、616、618、620が接続されている状態を前提とする。この場合、多端子非同期連系機器604に接続している負荷の中で、EVを充電する際の負荷電力を他の多端子非同期連系機器下の分散電源から調達する場面を想定する。この場合、基幹系統と接続している多端子非同期連系機器601と602、603,605から電力を融通する例について説明する。まず、多端子非同期連系機器604に同601、602、603、605から電力を送電する融通ルートの候補を求める。ここでの融通ルートの求め方を図5を用いて説明すると、この例での融通ルートの候補は各多端子非同期連系機器601,602,603、605と直接多端子非同期連系機器604に接続する融通ルート、多端子非同期連系機器601からの電力を一度多端子非同期連系機器602、603,605いずれかに集約してから多端子非同期連系機器604に融通するルート、多端子非同期連系機器602からの電力を一度多端子非同期連系機器601、603,605いずれかに集約してから多端子非同期連系機器604に融通するルート、多端子非同期連系機器603からの電力を一度多端子非同期連系機器601、602,605いずれかに集約してから多端子非同期連系機器604に融通するルート、多端子非同期連系機器605からの電力を一度多端子非同期連系機器601、602,603いずれかに集約してから多端子非同期連系機器604に融通するルート、多端子非同期連系機器601,602からの電力を一度多端子非同期連系機器603、605いずれかに集約してから多端子非同期連系機器604に融通するルート・・・という融通が可能な複数の分散電源から電力を融通ルートの候補を求め、前記した115の融通ルート算出装置の一時記憶装置中に保存、あるいは融通ルートする算出データベース116に記憶する。 Referring to FIG. 5, a method for determining a power interchange source and its amount, and a route for accommodating power in the accommodation pattern calculation unit will be described. FIG. 5 assumes a power system in which five multi-terminal asynchronous interconnection devices 601 to 605 are interconnected, and each multi-terminal asynchronous interconnection device has a load 611, 613, 615, 617, 619 and a distributed power source. (Including storage battery) 612, 614, 616, 618, 620 is assumed to be connected. In this case, it is assumed that the load power for charging the EV is procured from the distributed power source under the other multi-terminal asynchronous interconnection device 604 among the loads connected to the multi-terminal asynchronous interconnection device 604. In this case, an example in which power is accommodated from the multi-terminal asynchronous interconnection devices 601 and 602, 603, and 605 connected to the backbone system will be described. First, a candidate for an interchange route for transmitting power to the multi-terminal asynchronous interconnection device 604 from 601, 602, 603, 605 is obtained. The method for obtaining the accommodation route here will be described with reference to FIG. 5. The candidates for the accommodation route in this example are the multi-terminal asynchronous interconnection devices 601, 602, 603, and 605 and the direct multi-terminal asynchronous interconnection device 604. Convergence route to be connected, power from multi-terminal asynchronous interconnection device 601 once aggregated to any of multi-terminal asynchronous interconnection device 602, 603, 605 and then exchange to multi-terminal asynchronous interconnection device 604, multi-terminal asynchronous The power from the interconnecting device 602 is once integrated into one of the multi-terminal asynchronous interconnecting devices 601, 603, 605 and then routed to the multi-terminal asynchronous interconnecting device 604, and the power from the multi-terminal asynchronous interconnecting device 603 is used. From the multi-terminal asynchronous interconnection device 605, a route that is once integrated into the multi-terminal asynchronous interconnection device 601, 602, 605 and then accommodated to the multi-terminal asynchronous interconnection device 604. Once the power is aggregated to one of the multi-terminal asynchronous interconnection devices 601, 602, 603, the route for accommodating the multi-terminal asynchronous interconnection device 604, the power from the multi-terminal asynchronous interconnection devices 601 and 602 is once multi-terminal asynchronous. From the plurality of distributed power sources that can be accommodated such as a route to be accommodated in the multi-terminal asynchronous interconnection device 604 after being aggregated to any of the interconnection devices 603 and 605, candidates for an accommodation route are obtained. The data is stored in the temporary storage device of the accommodation route calculation device or stored in the calculation database 116 for the accommodation route.
 次に、これらの融通ルートの候補から最適な融通ルートを求める。このように多端子非同期連系機器が導入された系統において、複数の分散電源から電力を融通するメリットは図5中の多端子非同期連系機器中にある自励式電力変換器を通過する際の電力ロスを全体で低減することである。たとえば1か所の分散電源から自励式電力変換器のフル出力の状態で融通電力を送電すると、自励式電力変換器の効率は図3に示したように、高電力領域では効率が低下することから、できるだけ効率の高い自励式電力変換器領域を用いて複数の自励式電力変換器を介して電力融通を行うほうが自励式電力変換器における電力ロスの低減メリットが大きいという考えに基づいている。電力の融通が可能と回答した602,603、605の多端子非同期連系機器から電力を融通する際に通過する自励式電力変換器は図中で黒塗りしたものとなる。611で必要とする融通量を満たすように黒塗りした自励式電力変換器の通過電力を図3に示した各自励式電力変換器の効率曲線の効率が高い領域で運用するように、最適な組み合わせ問題を二次計画法に代表される最適化手法を用いて解く。定式化の一例は下記の式となる。 Next, an optimal accommodation route is obtained from these accommodation route candidates. In the system in which the multi-terminal asynchronous interconnection device is introduced in this way, the merit of accommodating power from a plurality of distributed power sources is that when passing through the self-excited power converter in the multi-terminal asynchronous interconnection device in FIG. It is to reduce the power loss as a whole. For example, when interchanged power is transmitted from one distributed power source in the state of full output of the self-excited power converter, the efficiency of the self-excited power converter decreases in the high power region as shown in FIG. Therefore, it is based on the idea that it is more advantageous to reduce power loss in a self-excited power converter by performing power interchange through a plurality of self-excited power converters using a self-excited power converter region that is as efficient as possible. The self-excited power converter that passes when the power is interchanged from the multi-terminal asynchronous interconnection devices 602, 603, and 605 that answered that the power can be interchanged is blackened in the figure. Optimal combination so that the passing power of the self-excited power converters blacked to satisfy the required amount in 611 is operated in the region where the efficiency curve of each self-excited power converter shown in FIG. 3 is high. The problem is solved using an optimization method represented by quadratic programming. An example of the formulation is the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 あるいは最適な組み合わせを求めるに際し、考えられるすべての組合せを洗い出して、それぞれの組合せの目的関数、この場合は対象とする融通系統で自励式電力変換器の全体の効率、を最大にする組合せを選択する方法でもよい。 Or, when finding the optimal combination, identify all possible combinations and select the combination that maximizes the objective function of each combination, in this case, the overall efficiency of the self-excited power converter in the target flexible system. It is also possible to do it.
 図6に、図5を用いて説明した融通ルート算出処理115の内容をフローチャートで示す。まず処理701にて融通希望元(受電側)の負荷が接続されている多端子非同期連系機器の検出と、その希望融通電力量を入力する。 FIG. 6 is a flowchart showing the contents of the accommodation route calculation process 115 described with reference to FIG. First, in process 701, detection of a multi-terminal asynchronous interconnection device to which a load of a desired power source (power receiving side) is connected and the desired flexible power consumption are input.
 次に処理702にて各融通ルート候補で通過する多端子非同期連系機器中の自励式変換器に関する変換効率データを融通ルートごとに読み込む。 Next, in processing 702, conversion efficiency data regarding the self-excited converter in the multi-terminal asynchronous interconnection device that passes through each interchange route candidate is read for each interchange route.
 処理703にて前記処理407にて取得した多端子非同期連系機器からのデータをもとに融通が可能な分散電源を検出する。その後処理704で前述した定式化の例を用いて最適化計算を実施し、前述した融通ルート候補の中から自励式電力変換器における損失が極小となる融通ルート、ならびにその際の各自励式電力変換器に流す電力値を算出する。電力値の代わりに、各自励式変換器での電流値を算出することでもよい。融通ルート、並びに各自励式電力変換器に流す電力値を求めた後に、その電力値で融通を行うための制御指令に変換する。ここでの制御指令の変換は、あらかじめ作成した制御量と融通電力量との相関を示したテーブルに基づいた参照方法でもよいし、複雑な制御モデルをそのたびに解く方法を用いることでもよい。その変換が終了した後にデータベース116に該データを格納し、制御実行周期になる前に、各多端子非同期連系機器にその制御値を伝送する。融通が終了した後に、課金処理を行って全体処理を終了する。 In process 703, a distributed power source that can be accommodated is detected based on the data from the multi-terminal asynchronous interconnection device acquired in process 407. Thereafter, the optimization calculation is performed in the processing 704 using the above-described formulation example, and the interchange route in which the loss in the self-excited power converter is minimized among the above-mentioned interchange route candidates, and each self-excited power conversion at that time Calculate the power value flowing through the container. Instead of the power value, the current value in each self-excited converter may be calculated. After obtaining the accommodation route and the power value to be supplied to each self-excited power converter, the power value is converted into a control command for accommodation at that power value. The conversion of the control command here may be a reference method based on a table showing a correlation between a control amount and a flexible power amount created in advance, or may be a method of solving a complicated control model each time. After the conversion is completed, the data is stored in the database 116, and the control value is transmitted to each multi-terminal asynchronous interconnection device before the control execution cycle. After the accommodation is completed, the accounting process is performed and the entire process is completed.
 図7にてセンタシステムにおける課金処理部の概要をフローチャートに基づいて説明する。処理721にて融通希望元の多端子非同期連系機器に送電した融通供給元電源の場所と供給量を取得する。これは図4の処理412にて周期的に多端子非同期連系機器からセンタシステムに送信するデータより取得することが可能である。次に、前記供給量の内訳情報を取得した後に、処理722にて各供給元電源の原単位と各供給量ならびにセンタシステム側の手数料から融通先の多端子非同期連系機器の課金料を算出する。次に処理723で自励式電力変換器でのロスが融通した電力料金にどれだけの影響を及ぼすかを評価するために、供給元の分散電源と、多端子非同期連系機器の負荷間の融通ルートにある自励式電力変換器の効率、多端子非同期連系機器間の送電線パラメータ(図2,301)から融通時の電力ロス分を算出する。最後に処理724にて上記で求められた課金料、融通時に発生した電力ロス分をデータベースに書き込んで処理を終了する。 Referring to FIG. 7, an outline of the billing processing unit in the center system will be described based on a flowchart. In step 721, the location and the supply amount of the flexible supply source power transmitted to the multi-terminal asynchronous interconnection device of the flexible request source are acquired. This can be acquired from the data periodically transmitted from the multi-terminal asynchronous interconnection device to the center system in the process 412 of FIG. Next, after acquiring the breakdown information of the supply amount, in processing 722, the charging fee of the multi-terminal asynchronous interconnection device of the accommodation destination is calculated from the basic unit of each supply source, each supply amount, and the fee on the center system side To do. Next, in order to evaluate how much the loss in the self-excited power converter has an effect on the flexible electricity bill in process 723, the interchange between the distributed power source of the supplier and the load of the multi-terminal asynchronous interconnection device The power loss at the time of accommodation is calculated from the efficiency of the self-excited power converter in the route and the transmission line parameters between the multi-terminal asynchronous interconnection devices (FIG. 2, 301). Finally, in the process 724, the charging fee obtained above and the power loss generated at the time of accommodation are written in the database, and the process is terminated.
 なお、以上の実施例では融通ルート算出部115の機能について記載しているものの、この融通ルート算出部115は給電システムの一機能として用いることも可能であり、給電システムの計算機アプリケーションの一つとして位置付けることも可能である。 In addition, although the function of the accommodation route calculation part 115 was described in the above Example, this accommodation route calculation part 115 can also be used as one function of a feeding system, and is one of the computer applications of a feeding system. It can also be positioned.
 以上述べたように本発明の電力融通ルート作成方法、並びに電力融通ルート作成部の第一の実施例によれば、前記方法並びに装置を構成する、自励式電力変換器の変換効率データを少なくとも入力データとする融通ルート算出部にて、複数の多端子非同期連系機器で接続された電力系統内で一の多端子非同期連系機器に接続している負荷に他の多端子非同期連系機器に接続している分散電源から電力を融通する際に、融通ルート内に存在する自励式電力変換器の効率が全体で最大になるように、電力の融通ルートと融通する電力量を求めることが可能となる。 As described above, according to the first embodiment of the power accommodation route creation method and the power accommodation route creation unit of the present invention, at least the conversion efficiency data of the self-excited power converter constituting the method and apparatus is input. In the interchange route calculation section for data, the load connected to one multi-terminal asynchronous interconnection device in the power system connected by multiple multi-terminal asynchronous interconnection devices to other multi-terminal asynchronous interconnection devices When accumulating power from the connected distributed power supply, it is possible to determine the amount of power to be accommodated with the power interchange route so that the efficiency of the self-excited power converter existing in the interchange route is maximized overall. It becomes.
 次に本発明の第二の実施例について説明する。 Next, a second embodiment of the present invention will be described.
 図8に、第二の実施例におけるシステム構成を示す。図8に示すように自励式電力変換器の通過電力由来データベース118が追加された点である。このことにより、自励式電力変換器を通過する電力の再生可能エネルギー由来、化石燃料由来を明確化することが可能となるので、自励式電力変換器における融通ロスに加えて、CO2排出量低減することが可能となる効果がある。 FIG. 8 shows a system configuration in the second embodiment. As shown in FIG. 8, a passing power derived database 118 of the self-excited power converter is added. This makes it possible to clarify the origin of renewable energy and fossil fuel derived from the power passing through the self-excited power converter, thereby reducing CO2 emissions in addition to the interchange loss in the self-excited power converter. There is an effect that becomes possible.
 図9に、自励式電力変換器由来電力データベースの一例を示す。図9中の304は各自励式電力変換器に対して由来電力が化石燃料由来、再生可能エネルギー由来、その他の電源由来のデータを格納する一例を示している。ここでの由来電力の算出方法について図10、図11を用いて説明する。 FIG. 9 shows an example of a self-excited power converter-derived power database. Reference numeral 304 in FIG. 9 shows an example in which power derived from fossil fuel, renewable energy, and other power sources is stored for each self-excited power converter. A method for calculating the derived power here will be described with reference to FIGS. 10 and 11.
 図10に計算のフローを示す。まず、入力データとしてデータベース751からデータを取得し、処理752にて取得したデータを前処理する。ここでのデータベース751の内容は図2に示した301,302と同等のデータフォーマット、ならびに同等のデータの内容である。このデータを計算機プログラムに入力するための前処理を処理752にて行った後、電力解析計算で一般的に行われている潮流計算を実行する。潮流計算を実行した後に、処理754にて発電機の影響エリアを算出する。この方法は潮流計算を行った結果から、任意の発電機からの電力潮流と電力潮流の流れる方向をもとにして算出する。その後、処理755にて処理754にて分割した各発電機の影響エリア(一例として図11に示したエリア)に対する各発電機の貢献度を求めて、任意の負荷に対する発電由来を求め、その結果を自励式電力変換器の通過電力由来データベースに蓄積する。 Figure 10 shows the calculation flow. First, data is acquired from the database 751 as input data, and the data acquired in the process 752 is preprocessed. The contents of the database 751 here are the same data format as 301 and 302 shown in FIG. 2 and the contents of the equivalent data. Preprocessing for inputting this data into the computer program is performed in processing 752, and then power flow calculation generally performed in power analysis calculation is executed. After executing the tidal current calculation, the influence area of the generator is calculated in processing 754. In this method, the power flow is calculated based on the power flow from an arbitrary generator and the flow direction of the power flow from the result of the power flow calculation. Thereafter, in step 755, the contribution of each generator to the influence area (area shown in FIG. 11 as an example) of each generator divided in step 754 is obtained, the power generation origin for an arbitrary load is obtained, and the result Is stored in the database derived from the passing power of the self-excited power converter.
 あるいは、このような解析的な方法を用いることなしに、系統中に流れる電力にPLC(Power Line Communication)のような技術を使って電力に付加情報となる信号を加えることで発電由来を求め、その結果を自励式電力変換器の通過電力由来データベース中に蓄積することでもよい。あるいは、系統中に流れる電力に同期して、別途用意する通信回線上に電力の流れる量と方向と品質を認識するパケットを流すことで自励式電力変換器の通過電流を算出する方法でもよい。 Alternatively, without using such an analytical method, power generation origin can be obtained by adding a signal as additional information to the power flowing through the system using a technology such as PLC (Power Line Communication), The result may be stored in the database derived from the passing power of the self-excited power converter. Alternatively, a method of calculating the passing current of the self-excited power converter by flowing a packet for recognizing the amount, direction, and quality of power flowing on a separately prepared communication line in synchronization with the power flowing in the system.
 図12に、実施例2における融通ルート算出処理115の内容をフローチャートで示す。まず処理701にて融通希望元の負荷が接続されている多端子非同期連系機器の検出と、その希望融通電力量を入力する。次に処理702にて融通ルート候補上に接続されている自励式電力変換器に関する変換効率データを読み込む。処理703にて前記処理407にて取得した多端子非同期連系機器からのデータをもとに融通が可能な分散電源を検出する。その後処理708で後述する定式化をもとに最適化計算を実施し、自励式電力変換器における損失、ならびに融通の際に自励式電力変換器を通過する再生可能エネルギー由来の電力が極小となる融通ルート、ならびにその際の各自励式電力変換器に流す電力値を算出する。 FIG. 12 is a flowchart showing the contents of the accommodation route calculation process 115 in the second embodiment. First, in process 701, the detection of the multi-terminal asynchronous interconnection device to which the load of the accommodation request source is connected and the desired accommodation power amount are input. Next, in process 702, conversion efficiency data regarding the self-excited power converter connected on the accommodation route candidate is read. In step 703, a distributed power source that can be accommodated is detected based on the data from the multi-terminal asynchronous interconnection device acquired in step 407. Thereafter, an optimization calculation is performed based on the formulation described later in processing 708, and the loss in the self-excited power converter and the power derived from renewable energy passing through the self-excited power converter at the time of interchange are minimized. The interchange route and the power value to be supplied to each self-excited power converter at that time are calculated.
 この場合の定式化の一例は以下のようになる。 An example of formulation in this case is as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記に示したように融通ルート、並びに各自励式電力変換器に流す電力値を求めた後に、その電力値で融通を行うための制御指令に変換する。ここでの制御指令の変換は、あらかじめ作成した制御量と融通電力量との相関を示したテーブルに基づいた参照方法でもよいし、複雑な制御モデルをそのたびに解く方法を用いることでもよい。その変換が終了した後にデータベース116に該データを格納し、制御実行周期になる前に、各多端子非同期連系機器にその制御値を伝送する。融通が終了した後に、課金処理を行って全体処理を終了する。課金処理に関しては第一の実施例と同様である。 As described above, after obtaining the accommodation route and the power value to be sent to each self-excited power converter, the power value is converted into a control command for accommodation. The conversion of the control command here may be a reference method based on a table showing a correlation between a control amount and a flexible power amount created in advance, or may be a method of solving a complicated control model each time. After the conversion is completed, the data is stored in the database 116, and the control value is transmitted to each multi-terminal asynchronous interconnection device before the control execution cycle. After the accommodation is completed, the accounting process is performed and the entire process is completed. The accounting process is the same as in the first embodiment.
 図13はセンタ設備110にて電力の融通、並びに電力の融通時の監視画面に関する一例を示す。この画面では多端子非同期連系機器ごとに電力由来、融通を行った電力の量と価格、ならびに融通を実行している際の自励式電力変換器効率を表示する例である。図13では電力由来に関しては601の多端子非同期連系機器にあるように化石燃料由来、再生可能エネルギー由来、その他、の3種類に関しての表示を行っている図面となっている場合、あるいは602の多端子非同期連系機器にあるように融通元の多端子非同期連系機器ごとの電力由来を表示することも可能である。融通電力の表示に関しては図13では融通した、あるいは融通された電力量と価格を表示している。これも画面を操作することでどの多端子非同期連系機器からどれだけの電力を受電したか、等の詳細を表示することも可能である。また、各多端子非同期連系機器に接続されている分散電源からの異なっている単位電力価格を明確な形で第三者に理解できるようにすることも可能である。 FIG. 13 shows an example of the power interchange in the center facility 110 and a monitoring screen at the time of power interchange. This screen is an example of displaying the power source, the amount and price of the interchanged power for each multi-terminal asynchronous interconnection device, and the self-excited power converter efficiency when the interchange is executed. In FIG. 13, regarding power origin, as in the case of the multi-terminal asynchronous interconnection device 601, the display shows three types of fossil fuel origin, renewable energy origin, and others, or 602 As in the multi-terminal asynchronous interconnection device, it is also possible to display the power origin for each multi-terminal asynchronous interconnection device of the interchange. With regard to the display of the accommodation power, FIG. 13 shows the amount of electricity and the price of the accommodation or accommodation. It is also possible to display details such as how much power is received from which multi-terminal asynchronous interconnection device by operating the screen. It is also possible to make a third party understand clearly the different unit power prices from the distributed power sources connected to each multi-terminal asynchronous interconnection device.
 なお、以上の実施例では融通ルート算出部115の機能について記載しているものの、この融通ルート算出部115は給電システムの一機能として用いることも可能であり、給電システムの計算機アプリケーションの一つとして位置付けることも可能である。 In addition, although the function of the accommodation route calculation part 115 was described in the above Example, this accommodation route calculation part 115 can also be used as one function of a feeding system, and is one of the computer applications of a feeding system. It can also be positioned.
 以上述べたように本発明の電力融通ルート作成方法、並びに電力融通ルート作成部の第二の実施例によれば、前記方法並びに装置を構成する、自励式電力変換器変換効率データを少なくとも入力データとする融通ルート算出部にて、複数の多端子非同期連系機器で接続された電力系統内で一の多端子非同期連系機器に接続している負荷に他の多端子非同期連系機器に接続している分散電源から電力を融通する際に、融通ルート内に存在する自励式電力変換器の効率が全体で最大になり、かつたとえば再生可能エネルギー由来の電力の利用比率を極大になるように、電力の融通ルートと融通する電力量を求めることが可能となる。 As described above, according to the second embodiment of the power accommodation route creation method and the power accommodation route creation unit of the present invention, at least the input data of the self-excited power converter conversion efficiency data constituting the method and apparatus is input data. Connect to other multi-terminal asynchronous interconnection devices in the load connected to one multi-terminal asynchronous interconnection device in the power system connected by multiple multi-terminal asynchronous interconnection devices When power is distributed from distributed power sources, the efficiency of the self-excited power converter existing in the interchange route is maximized as a whole, and the utilization ratio of power derived from renewable energy is maximized, for example. Thus, it is possible to determine the amount of power to be accommodated with the power interchange route.
100:基幹電源設備、110:センタ設備、111:設備データベース、112:自励式電力変換器変換効率データベース、113:対象系統接続データ、114:外部通信I/F、115:融通ルート算出部、116:融通ルート算出データベース、117:課金処理部、120:多端子非同期連系機器、121:自励式電力変換器、131:電力線,132:通信線、125:通信線、500:多端子非同期連系機器、501~503:自励式電力変換器、612,614,616:分散電源、611、613,615:負荷、511~513:自励式電力変換器の効率曲線、118:自励式電力変換器の通過電力由来データ、999:直流母線 100: Core power supply equipment, 110: Center equipment, 111: Equipment database, 112: Self-excited power converter conversion efficiency database, 113: Target system connection data, 114: External communication I / F, 115: Flexible route calculation unit, 116 : Interchange route calculation database, 117: billing processing unit, 120: multi-terminal asynchronous interconnection device, 121: self-excited power converter, 131: power line, 132: communication line, 125: communication line, 500: multi-terminal asynchronous interconnection Equipment, 501 to 503: self-excited power converter, 612, 614, 616: distributed power source, 611, 613, 615: load, 511-513: efficiency curve of self-excited power converter, 118: self-excited power converter Passing power derived data, 999: DC bus

Claims (8)

  1.  エネルギー供給装置と、エネルギー消費装置と、複数の自励式変換器とを備えたシステムにおける電力融通ルートの作成方法であって、
     電力を必要とする機器に接続された連系機器が、受電要求量を、ルート決定装置に対して送信するステップと、
     ルート決定装置が、全ての連系機器に融通に関する情報を問い合わせるステップと、
     連系機器がルート決定装置に融通に関する情報を返信するステップと、
     融通ルート候補を作成するステップと、
     融通ルート候補に関係する連系機器の効率を確認するステップと、
     融通に関する情報と、連系機器の効率の情報と、からルートを決定するステップと、を備える力融通ルートの作成方法。
    A method for creating a power accommodation route in a system including an energy supply device, an energy consumption device, and a plurality of self-excited converters,
    A step in which a connected device connected to a device that requires power transmits a power reception request amount to the route determination device;
    The route determination device inquires all interconnected devices for information on accommodation;
    A step in which the interconnection device returns information on accommodation to the route determination device;
    Creating an accommodation route candidate;
    A step of confirming the efficiency of the interconnection equipment related to the accommodation route candidate;
    A method for creating a power accommodation route, comprising: a step of determining a route based on information on accommodation and information on efficiency of interconnected devices.
  2.  エネルギー供給装置と、エネルギー消費装置と、複数の自励式変換器とを備えたシステムにおける電力融通ルートの作成方法であって、
     自励式変換器が直流母線を介し放射状に接続され、前記自励式変換器を制御することで自励式変換器を通過する電力を制御する多端子型非同期連系装置を複数有し、多端子型非同期連系装置間にて電力を融通するネットワークシステムにおいて、少なくとも多端子型非同期連系装置を構成する自励式変換器の変換効率データからなるDB、対象系統の接続データ、設備データを用いてネットワークシステム内の前記多端子型非同期連系装置を構成する自励式変換器を最大の効率で運用する融通ルートを算出する演算装置を有することを特徴とする、電力融通ルート作成方法。
    A method for creating a power accommodation route in a system including an energy supply device, an energy consumption device, and a plurality of self-excited converters,
    Self-excited converters are connected in a radial manner via a DC bus, and have a plurality of multi-terminal type asynchronous interconnection devices that control power passing through the self-excited converter by controlling the self-excited converter. In a network system for accommodating power between asynchronous interconnection devices, a network using at least a DB consisting of conversion efficiency data of the self-excited converter constituting the multi-terminal asynchronous interconnection device, connection data of the target system, and equipment data A method for creating a power accommodation route, comprising: an arithmetic unit that calculates an accommodation route for operating the self-excited converter constituting the multi-terminal asynchronous interconnection device in the system with maximum efficiency.
  3.  双方向に電力変換する複数の自励式変換器が直流母線を介し放射状に接続され、前記自励式変換器を制御することで自励式変換器を通過する電力を制御する多端子型非同期連系装置を複数有し、多端子型非同期連系装置間にて電力を融通するネットワークシステムにおいて、少なくとも多端子型非同期連系装置を構成する自励式変換器の変換効率データからなるDB、対象系統の接続データ、設備データを用いてネットワークシステム内の前記多端子型非同期連系装置を構成する自励式変換器を最大の効率で運用する融通ルートを算出する演算装置を有することを特徴とする、電力融通ルート作成装置。 A multi-terminal type asynchronous interconnection device in which a plurality of self-excited converters for bi-directional power conversion are connected radially via a DC bus, and the power passing through the self-excited converter is controlled by controlling the self-excited converter. In a network system having a plurality of terminals and accommodating power between multi-terminal type asynchronous interconnection devices, at least a DB comprising conversion efficiency data of a self-excited converter constituting the multi-terminal type asynchronous interconnection device, connection of the target system Characterized in that it has an arithmetic unit for calculating a flexible route for operating the self-excited converter constituting the multi-terminal asynchronous interconnection device in the network system with maximum efficiency by using data and facility data. Route creation device.
  4. 双方向に電力変換する複数の自励式変換器が直流母線を介し放射状に接続され、前記自励式変換器を制御することで自励式変換器を通過する電力を制御する多端子型非同期連系装置を複数有し、多端子型非同期連系装置間にて電力を融通するネットワークシステムを制御するセンタシステムにおいて、請求項3に記載した電力融通ルート作成装置を有することを特徴とするセンタシステム制御装置。 A multi-terminal type asynchronous interconnection device in which a plurality of self-excited converters for bi-directional power conversion are connected radially via a DC bus, and the power passing through the self-excited converter is controlled by controlling the self-excited converter. A center system controller for controlling a network system for accommodating power among multi-terminal type asynchronous interconnection devices, comprising the power interchange route creation device according to claim 3. .
  5. 双方向に電力変換する複数の自励式変換器が直流母線を介し放射状に接続され、前記自励式変換器を制御することで自励式変換器を通過する電力を制御する多端子型非同期連系装置を複数有し、多端子型非同期連系装置間にて電力を融通するネットワークシステムにおいて、少なくとも多端子型非同期連系装置を構成する自励式変換器の変換効率データからなるDB、対象系統の接続データ、設備データ、自励式変換器に流れる電力の発電由来、あるいは融通元の多端子型非同期連系装置を定義する自励式電力変換器の通過電力由来データベースを用いて、ネットワークシステム内の前記多端子型非同期連系装置を構成する自励式変換器を最大の効率、かつ再生可能エネルギーの利用率を最大にする形で運用する融通ルートを算出する演算装置を有することを特徴とする、電力融通ルート作成方法。 A multi-terminal type asynchronous interconnection device in which a plurality of self-excited converters for bi-directional power conversion are connected radially via a DC bus, and the power passing through the self-excited converter is controlled by controlling the self-excited converter. In a network system having a plurality of terminals and accommodating power between multi-terminal type asynchronous interconnection devices, at least a DB comprising conversion efficiency data of a self-excited converter constituting the multi-terminal type asynchronous interconnection device, connection of the target system Data, equipment data, power generation from the self-excited converter, or the passing power derived database of the self-excited power converter that defines the multi-terminal asynchronous interconnection device of the interchange source. Arithmetic unit that calculates the flexible route for operating the self-excited converter that constitutes the terminal type asynchronous interconnection device in the form of maximum efficiency and maximum utilization of renewable energy And having a power interchange route preparation method.
  6. 双方向に電力変換する複数の自励式変換器が直流母線を介し放射状に接続され、前記自励式変換器を制御することで自励式変換器を通過する電力を制御する多端子型非同期連系装置を複数有し、多端子型非同期連系装置間にて電力を融通するネットワークシステムにおいて、少なくとも多端子型非同期連系装置を構成する自励式変換器の変換効率データからなるDB、対象系統の接続データ、設備データ、自励式変換器に流れる電力の発電由来、あるいは融通元の多端子型非同期連系装置を定義する自励式電力変換器の通過電力由来データベースを用いて、ネットワークシステム内の前記多端子型非同期連系装置を構成する自励式変換器を最大の効率、かつ再生可能エネルギーの利用率を最大にする形で運用する融通ルートを算出する演算装置を有することを特徴とする、電力融通ルート作成装置。 A multi-terminal type asynchronous interconnection device in which a plurality of self-excited converters for bi-directional power conversion are connected radially via a DC bus, and the power passing through the self-excited converter is controlled by controlling the self-excited converter. In a network system having a plurality of terminals and accommodating power between multi-terminal type asynchronous interconnection devices, at least a DB comprising conversion efficiency data of a self-excited converter constituting the multi-terminal type asynchronous interconnection device, connection of the target system Data, equipment data, power generation from the self-excited converter, or the passing power derived database of the self-excited power converter that defines the multi-terminal asynchronous interconnection device of the interchange source. Arithmetic unit that calculates the flexible route for operating the self-excited converter that constitutes the terminal type asynchronous interconnection device in the form of maximum efficiency and maximum utilization of renewable energy And having a power interchange route creation device.
  7. 双方向に電力変換する複数の自励式変換器が直流母線を介し放射状に接続され、前記自励式変換器を制御することで自励式変換器を通過する電力を制御する多端子型非同期連系装置を複数有し、多端子型非同期連系装置間にて電力を融通するネットワークシステムを制御するセンタシステムにおいて、請求項6に記載した電力融通ルート作成装置を有することを特徴とするセンタシステム制御装置。 A multi-terminal type asynchronous interconnection device in which a plurality of self-excited converters for bi-directional power conversion are connected radially via a DC bus, and the power passing through the self-excited converter is controlled by controlling the self-excited converter. A center system controller for controlling a network system for accommodating power among multi-terminal type asynchronous interconnection devices, comprising the power accommodation route creation device according to claim 6. .
  8. 双方向に電力変換する複数の自励式変換器が直流母線を介し放射状に接続され、前記自励式変換器を制御することで自励式変換器を通過する電力を制御する多端子型非同期連系装置を複数有し、多端子型非同期連系装置間にて電力を融通するネットワークシステムを制御するセンタシステムにおいて、電力を融通する際に通過する多端子型非同期連系装置に対する電力由来に関するデータ、融通電力の価格に関するデータ、多端子型非同期連系装置中の自励式電力変換器効率に関するデータを表示することを特徴とする多端子型非同期連系装置の監視制御装置。 A multi-terminal type asynchronous interconnection device in which a plurality of self-excited converters for bi-directional power conversion are connected radially via a DC bus, and the power passing through the self-excited converter is controlled by controlling the self-excited converter. In a center system that controls a network system that accommodates power between multiple terminal type asynchronous interconnection devices, data relating to power origination and accommodation for the multiterminal type asynchronous interconnection device that passes when power is accommodated A monitoring and control device for a multi-terminal asynchronous interconnection device, characterized by displaying data relating to power prices and data relating to efficiency of a self-excited power converter in the multi-terminal asynchronous interconnection device.
PCT/JP2012/072095 2012-08-31 2012-08-31 Power interchange route creation method and power interchange route creation device WO2014033892A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014532663A JPWO2014033892A1 (en) 2012-08-31 2012-08-31 Power accommodation route creation method and power accommodation route creation device
PCT/JP2012/072095 WO2014033892A1 (en) 2012-08-31 2012-08-31 Power interchange route creation method and power interchange route creation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/072095 WO2014033892A1 (en) 2012-08-31 2012-08-31 Power interchange route creation method and power interchange route creation device

Publications (1)

Publication Number Publication Date
WO2014033892A1 true WO2014033892A1 (en) 2014-03-06

Family

ID=50182740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072095 WO2014033892A1 (en) 2012-08-31 2012-08-31 Power interchange route creation method and power interchange route creation device

Country Status (2)

Country Link
JP (1) JPWO2014033892A1 (en)
WO (1) WO2014033892A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016046884A (en) * 2014-08-21 2016-04-04 三菱電機株式会社 Wide-area system control device
JP2017532934A (en) * 2014-08-19 2017-11-02 オリガミ エナジー リミテッド Power distribution control system
CN107508280A (en) * 2017-08-08 2017-12-22 国网宁夏电力公司电力科学研究院 A kind of reconstruction method of power distribution network and system
WO2018008287A1 (en) * 2016-07-08 2018-01-11 ソニー株式会社 Power control device and power control method
CN110460153A (en) * 2019-07-23 2019-11-15 清华大学 A kind of multiport electric energy router control system
US10678198B2 (en) 2014-08-19 2020-06-09 Origami Energy Limited Power distribution control system
WO2021111967A1 (en) 2019-12-03 2021-06-10 古河電気工業株式会社 Power network and power network changing method
CN114362153A (en) * 2021-12-27 2022-04-15 中国电力工程顾问集团西北电力设计院有限公司 Multi-target capacity optimal configuration method and system for grid-connected wind-solar energy storage system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222470A (en) * 2003-01-17 2004-08-05 Toshiba Corp Energy managing system and energy managing server
JP2011061970A (en) * 2009-09-10 2011-03-24 Rikiya Abe Multi-terminal asynchronous link device, power apparatus control terminal device, power network system, and method for controlling the same
JP2011167015A (en) * 2010-02-12 2011-08-25 Tokyo Electric Power Co Inc:The Device for control of converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167014A (en) * 2010-02-12 2011-08-25 Tokyo Electric Power Co Inc:The Device for control of converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222470A (en) * 2003-01-17 2004-08-05 Toshiba Corp Energy managing system and energy managing server
JP2011061970A (en) * 2009-09-10 2011-03-24 Rikiya Abe Multi-terminal asynchronous link device, power apparatus control terminal device, power network system, and method for controlling the same
JP2011167015A (en) * 2010-02-12 2011-08-25 Tokyo Electric Power Co Inc:The Device for control of converter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532934A (en) * 2014-08-19 2017-11-02 オリガミ エナジー リミテッド Power distribution control system
US10678198B2 (en) 2014-08-19 2020-06-09 Origami Energy Limited Power distribution control system
JP2016046884A (en) * 2014-08-21 2016-04-04 三菱電機株式会社 Wide-area system control device
WO2018008287A1 (en) * 2016-07-08 2018-01-11 ソニー株式会社 Power control device and power control method
CN107508280A (en) * 2017-08-08 2017-12-22 国网宁夏电力公司电力科学研究院 A kind of reconstruction method of power distribution network and system
CN110460153A (en) * 2019-07-23 2019-11-15 清华大学 A kind of multiport electric energy router control system
WO2021111967A1 (en) 2019-12-03 2021-06-10 古河電気工業株式会社 Power network and power network changing method
CN114362153A (en) * 2021-12-27 2022-04-15 中国电力工程顾问集团西北电力设计院有限公司 Multi-target capacity optimal configuration method and system for grid-connected wind-solar energy storage system
CN114362153B (en) * 2021-12-27 2023-06-30 中国电力工程顾问集团西北电力设计院有限公司 Multi-target capacity optimal configuration method and system for grid-connected wind-solar storage system

Also Published As

Publication number Publication date
JPWO2014033892A1 (en) 2016-08-08

Similar Documents

Publication Publication Date Title
WO2014033892A1 (en) Power interchange route creation method and power interchange route creation device
Wu et al. Hierarchical operation of electric vehicle charging station in smart grid integration applications—An overview
CA3128478C (en) Behind-the-meter charging station with availability notification
WO2011077780A1 (en) Power grid control system using electric vehicle, power grid control apparatus, information distribution apparatus, and information distribution method
WO2013054573A1 (en) Power sharing method and power sharing device
JP2015107041A (en) Energy management system, energy management method, program, server, and client device
EP3886034A1 (en) Power trading system and management apparatus
KR20210094033A (en) A method for operating an energy management system, an electronic computing device for performing the method, a computer program, and a data carrier
Ma et al. Fuel cell backup power system for grid-service and micro-grid in telecommunication applications
Mohamed et al. The deployment of low carbon technologies in modern distribution networks
CN115693683A (en) Power management system, charging device, server and power supply and demand balance adjusting method
CN111325423A (en) Regional multi-energy interconnection operation optimization method and computing equipment
JP5573258B2 (en) Power control apparatus, power control system, storage battery control method, and program
CN114665460A (en) Power management device and power management method
Paudyal et al. Hierarchical approach for optimal operation of distribution grid and electric vehicles
CN110912203B (en) Multi-microgrid cooperative control and system, computer equipment and readable storage medium
WO2014018884A1 (en) Methods and systems for managing distributed energy resources
JP2016063718A (en) Power supply system, power supply method, and program
Fioriti et al. Development of an Energy Management System for AC/DC hybrid networks: from abstract functional requirements to the flexible tool
JP2018207629A (en) Power management system, fuel cell system, reception method and program
JP2018097802A (en) Electric power charging system, electric power storage system, auxiliary system
CN110920456B (en) Charging system
US11870261B2 (en) Method for controlling voltage and reactive power for an electrical grid
US11870260B2 (en) System for controlling voltage and reactive power for an electrical grid
US11804719B1 (en) Coordinating station-use power across networked plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12883568

Country of ref document: EP

Kind code of ref document: A1