WO2013054573A1 - Power sharing method and power sharing device - Google Patents
Power sharing method and power sharing device Download PDFInfo
- Publication number
- WO2013054573A1 WO2013054573A1 PCT/JP2012/066865 JP2012066865W WO2013054573A1 WO 2013054573 A1 WO2013054573 A1 WO 2013054573A1 JP 2012066865 W JP2012066865 W JP 2012066865W WO 2013054573 A1 WO2013054573 A1 WO 2013054573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- storage battery
- battery
- function
- charge
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/65—Monitoring or controlling charging stations involving identification of vehicles or their battery types
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Definitions
- the present invention relates to a technique for accommodating power using a storage battery.
- Patent Document 1 JP-A-2006-288162 (Patent Document 1). A plurality of consumers are provided, and power interchange control is performed between the consumers via a power interchange control device. In addition, it is described that the power amount accommodation control device executes control of power supply to a load in the consumer and control of power supply stop according to the remaining amount of power stored in the power storage unit.
- the concept of using a storage battery for power interchange is based on the premise that it is stationary as shown in the above known example. For this reason, when the power to be accommodated exceeds the maximum capacity of the storage battery, it is necessary to cope with it by newly installing the battery. However, since it takes a predetermined time for a new installation, it is difficult to respond immediately. Also, even if supplemented by other methods of power interchange (for example, self-excited BackToBack), the conversion capacity is 100 MW or less per place, so considering the equipment cost and installation period, there is a convenient method that does not cost much more It is desired.
- other methods of power interchange for example, self-excited BackToBack
- the present application includes a plurality of means for solving the above-mentioned problems.
- a method of performing power interchange between a plurality of power supply areas by transporting and charging / discharging storage batteries has at least a power interchange system composed of a charge / discharge command device and an accompanying input data database, an output database for storing output data from the charge / discharge command device, and a battery management center. It is characterized by “accommodating power by transporting storage batteries”.
- the first embodiment of the present invention provides a green power index between regions based on the remaining battery level of each region and the green power index of each storage battery via a charge / discharge command device installed in each region.
- the storage battery is selected so that the objective function is maximized, and the selected storage battery is transported for power interchange, minimizing the environmental burden between regions and stable in the region where power interchange was performed. Electric power can be supplied. Furthermore, since power interchange is performed in a distributed manner between regions, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced.
- FIG. 1 shows a first configuration for realizing the power interchange system of the present invention.
- the first embodiment shows a case where electric power is accommodated by transporting a storage battery that is already charged in each region or a storage battery that needs to be charged.
- 11, 12, and 13 in the figure indicate systems (regional supply systems) that manage the power in a region that is a unit of power supply. This area may be considered as a power supply unit in a narrow area called CEMS (Community Energy Management System), for example. Further, 11, 12, and 13 may be considered as areas having an area of about a municipality unit.
- CEMS Common Energy Management System
- Each regional supply system includes at least a charge / discharge command device 101, an input database 102, an output database 103, and a battery management center 104, and a plurality of storage batteries not shown in the figure are connected to the charge / discharge command device. ing.
- the charge / discharge command devices 101 existing in each region are connected to each other via a communication line, and the information on the state of each charge / discharge command device can be acquired by the communication line.
- the charge / discharge command device and the battery management center are connected by a communication line, so that necessary information can be taken in sequentially.
- FIG. 2 shows the configuration of the charge / discharge command apparatus in the first embodiment.
- the charge / discharge command device 101 is a communication bus 123 for connecting each function, a charge / discharge request function 115 for determining whether or not a storage battery needs to be charged / discharged in each area, and charge / discharge in other areas where a charge / discharge request is coming.
- Battery selection function 116 for determining which storage battery in the region should be moved, when charging / discharging is required in other regions where charging / discharging is required, Destination determination function 117 for determining where to perform charging / discharging, instruction function 118 for transmitting a specific instruction to move the battery in the area to the administrator of the storage battery, input database 111, output database 112, program Is stored in a storage area 113, a memory 121 for performing calculations, and a CPU 122.
- FIG. 3 shows the input / output data relationship of the battery selection function 116.
- the battery selection function includes a green power calculation process 328 and a battery arrangement calculation function 329, which will be described later in the description of the flowchart.
- the green power calculation process 328 is acquired from the regional battery database 131, the regional constraint condition 132, and other regions.
- the charge / discharge mode and the regional database 136 are set as minimum input data.
- the other region system database 134, the other region charging station position database 135, the other region restriction condition 131, the charge / discharge mode from other regions acquired from the charge / discharge request function 115, and the charge / discharge request amount 133 are provided.
- the output data from the green power calculation device 328 as input data.
- the charge / discharge request function measures the supply and demand status excluding storage batteries in the area with sensors, etc., calculates the excess or deficiency of power in the area based on the result, and covers the power in the area This is a function for requesting power supply when power is insufficient with respect to other adjacent areas connected by a communication line, and requesting power sales when power is surplus.
- the battery selection function 116 which is a characteristic function of the present embodiment will be described.
- the battery selection function 116 selects a storage battery to be transported to another area from the storage batteries existing in the area.
- FIG. 4A An example of the regional battery database 131 is shown in FIG. 4A.
- the charge / discharge mode is time-series data consisting of time and excess / deficiency of supply and demand. In addition, it is possible to add data items as necessary.
- Restriction items include the number of storage batteries that can be transported at one time by the transport vehicle that transports the storage battery, the cost for transporting the battery, the distance from the current storage battery position to the storage battery location of the destination, It is also possible to add the maximum value of the storage battery capacity that can be connected at the battery station, such as the direction of charging / discharging and the minimum secured SOC.
- the lower limit is 0, and the reference value is blank.
- the upper limit is the cost that becomes the break-even point
- the lower limit is the cost that makes the profit n%
- the reference value is the cost that makes the profit m% (m ⁇ n). It is.
- the upper limit is calculated based on the fuel efficiency history database not described in the specification. The distance is the distance when the fuel efficiency is the best, the lower limit is the distance when the fuel efficiency is the worst, and the reference value is the distance calculated from the average fuel efficiency.
- the regional database 131 and the other regional system database 134 are shown in FIGS. 8A and 8B. Details will be described in the description of the green power calculation function described later.
- the other area charging station location database 135 is data 704 including the equipment name and the presence / absence of the station. It is assumed that the connection battery upper limit value in each station is included in the constraint conditions 132 and 137.
- step 321 the charge / discharge request amount at each time point is read from the charge / discharge command device in the area where the storage battery has been offered for charging / discharging.
- step 352 supply and demand forecast data for each region is read. Thereafter, in step 323, the restriction condition data of the region is read, and in step 324, the total remaining power of the storage batteries in the region is compared with the supply and demand prediction data.
- the relaxation of the constraint condition means, for example, adjusting the minimum guaranteed SOC of each storage battery shown in 143.
- a method for obtaining the green power index will be described with reference to FIGS. 6A to 6C.
- the principle for obtaining the green power index is as follows.
- the generator and load of the target power system are expressed as current as shown in FIG. 6A
- the generator is expressed as a current source using the power equation shown in FIG. 6B.
- the sensitivity coefficient is used to determine how much the load fluctuates when one unit is changed minutely.
- a specific calculation method will be described with reference to FIG.
- target power system data created by the system configuration generation device omitted from the figure is read in process 651.
- an admittance matrix is created in process 652, and a determinant shown in formula (1) in FIG. 6B is created in process 653.
- each bus voltage when only one current source is installed from each generator node is calculated in process 654, and generated in each power source using the bus voltage and the admittance matrix in process 655.
- the distribution of the current and the load from the bus voltage to the load from the kth generator to the bus i is calculated using the equation (2) shown in FIG. 6C.
- the CO2-derived amount at each load is obtained by multiplying the power-derived power of the generator determined here by the CO2 emission coefficient defined for each type of power generation.
- Reference numeral 701 in FIG. 8A indicates transmission line, distribution line, transformer connection end point, start point, and parameters of the power system branch for which the green power index is obtained.
- 702 is a node equipment name, a flag indicating whether or not a generator node, a specified voltage value, and a green power index calculation uses a general power flow calculation method using a Newton method, and therefore uses a repetitive calculation. Is required, and the active power generation specified amount (PG), reactive power generation specified amount (QG), active power load specified amount (PL), and reactive power load specified amount (QL) for each node.
- PG active power generation specified amount
- QG reactive power generation specified amount
- PL active power load specified amount
- QL reactive power load specified amount
- the green power index calculation process As shown in the example of 703 in FIG. 8C, by converting into a green power index for each generator, thermal power generation, nuclear power generation, renewable energy power generation By classifying into the form of origin, it is possible to obtain a green power index. After obtaining the green power index of each storage battery in this way, the combination of storage batteries is determined by processing 329 (storage battery arrangement calculation function).
- a method for determining the combination of storage batteries will be described with reference to FIG.
- the charge / discharge mode acquired from the charge / discharge request apparatus 115 and the charge / discharge request amount are read in process 901.
- the area and other area restriction conditions shown in 132 and 137 described above are read.
- the restriction condition here is also the connection upper limit value of the storage battery in the battery stand.
- an objective function is set.
- the objective function here is the green power obtained by the above-mentioned calculation, or the voltage stability index after connecting the storage battery to which the storage battery is transported, the transmission loss, the sum of the deviation values from the reference voltage, and the storage battery Use a value typified by transport distance.
- the objective function set here may be changed for each region where a charge / discharge request is made, may be changed for each time, or may be fixed in advance.
- the battery arrangement calculation is performed based on the constraint conditions and the objective function set so far.
- the calculation method used here it is possible to use a numerical calculation method represented by a linear programming method, a quadratic programming method, a tabu search, or the like generally used as an optimization method.
- processing 905 it is determined whether there is a solution whose objective function is further improved than the solution obtained in processing 904. If the objective function value does not improve any more in the process 905, the calculation ends here. If the objective function value is improved, the process returns to step 904 to continue the battery arrangement calculation.
- the storage battery to be transported to other areas and its transport location are determined by the result here. Since the item for minimizing the transport distance of the storage battery is included in the objective function, priority is given to the power interchange to the nearby area, and the transport cost of the storage battery is reduced.
- the instruction function 118 gives an instruction to actually transport the storage battery selected by the battery selection function to the place in another area. In this case, an instruction is issued to the battery station in the area where the storage battery is stored, and an instruction is given to transport the storage battery within the time received from the charge / discharge request function.
- the configuration of the battery station will be described later with reference to FIG.
- the first embodiment of the present invention provides a green power index between regions based on the remaining battery level of each region and the green power index of each storage battery via a charge / discharge command device installed in each region.
- the storage battery is selected so that the objective function is maximized, and the selected storage battery is transported for power interchange, minimizing the environmental burden between regions and stable in the region where power interchange was performed. Electric power can be supplied.
- power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced.
- the charge / discharge command apparatus in each region is a distributed configuration in which the storage battery is transported to each other by using a communication line, and the collection of regions is compared.
- a charge / discharge commanding device that exists in only one place in the body, and instructing each battery management center to give instructions for transporting the storage battery in the entire region in other words, a charge / discharge commanding device that performs centralized control and a power interchange method using the same An example will be described.
- the charge / discharge command apparatus in the second embodiment is that the supply and demand determination function 114 is substituted for the charge / discharge request apparatus 115 as compared with the charge / discharge command apparatus shown in FIG. is there.
- FIG. 12 Other configurations will be described with reference to FIG. 12 for a supply and demand determination function 114 which is a characteristic function of the second embodiment, which is the same as the first embodiment.
- the demand determination function 114 includes a power demand prediction unit 201, a power supply prediction unit 202, and a power shortage amount calculation unit 203, and inputs to these calculation units include renewable energy power generation long-term fluctuation history data 211. , Renewable energy power generation amount short-term recoil history data 212, stationary storage battery usage history data 213, power demand history data 214, feeder power history data 215, and EV (electric vehicle) mounted battery usage history data 216. Among these data, the renewable energy long-term fluctuation history data 211 and the renewable energy short-term fluctuation history data 212 are collected for each renewable energy generator in the table illustrated as 221 in FIG. 13A.
- the power demand prediction unit 201 reads data in a period required by the power demand history data 214 as learning data for predicting demand in the process 241.
- the required period may be about one year.
- the data acquired in process 241 is classified by type.
- This process is a preprocess for improving the prediction accuracy, for example, because it is well known that the power demand tends to vary greatly from day to day. Such processing can be omitted depending on the data.
- history data for the period is learned.
- the functional relationship between power demand and external factors for example, temperature, humidity, weather
- process 244 abnormal data that is considered to exist in the learned data is removed.
- a value deviating greatly for example, data having an error of 3 ⁇ or more when the standard deviation is ⁇ is removed as abnormal data.
- the power supply amount prediction apparatus first inputs an external factor in process 251. Thereafter, a feeder power prediction amount is input in processing 252.
- the feeder power prediction here can be similarly performed by using the learning data input to the power demand amount prediction processing shown in 201 as feeder data.
- step 253 the power generation amount of an unstable power source represented by a distributed power source, for example, solar power generation or wind power generation, connected in each area is predicted.
- the data to be learned may be changed from the case of the power demand amount prediction apparatus 201.
- the processing result 255 integrates the prediction result of the distributed power source thus obtained and the feeder power prediction amount. In this way, the predicted state of supply and demand balance in each region is obtained, and the result is output in processing 256.
- the history data of the stationary battery is acquired.
- the history data are parameters including the SOC value and battery capacity of the storage battery in the area under the jurisdiction of the charge / discharge command device.
- the predicted power supply amount (supply / demand balance) calculated in 202 is read.
- the two are compared to determine whether there is a supply shortage. If there is a shortage of supply, the information on the storage battery is read in 265 and the supply amount is corrected using the storage battery data in processing 267. The sum of the supply amounts is calculated to determine whether there is a supply shortage.
- process 268 if there is no shortage of supply in process 268, this process is terminated, and the process proceeds to the process to the battery selection device 116 described in the first embodiment for selecting the storage battery to be transported.
- an error message is output in process 269 and the process ends.
- the processing shown in FIG. 5 described above is performed to determine the storage battery to be transported and the transport location of the storage battery.
- the target system loss minimization or the voltage stability index maximization is set in the objective function in the process 329 during the calculation of the battery selection device 116, the voltage deviation between the regions is reduced as the optimization calculation. Since the storage battery is arranged in the direction, a stable system operation is possible in the target system.
- FIG. 17 shows an example of the battery management center 104.
- the battery management center 104 includes a storage battery 381, a controller 382, a converter 384, a step-up transformer 385, a switch 386, 387, and a control device 388.
- a communication module (not shown) is mounted on the control device. Communication is possible.
- the control device 388, the controller 382, the switches 386 and 387, the step-up transformer 385, and the converter 384 are connected via communication lines 391 to 395.
- Reference numeral 389 denotes a power network.
- the storage battery 381 installed in the area can be switched between the charge mode and the discharge mode via the controller 381 in accordance with a command from the control device 388 in the battery station.
- the control device controls the switches 386 and 387 to receive power from the system and charges the storage battery via the converter 384 when charging is necessary. At this time, by issuing a command from the control device to the controller, it is possible to prevent the connected storage battery from being charged or discharged.
- the control device receives an instruction from the instruction function 118, the controller issues an instruction to the controller to which the storage battery is connected, and changes to a state where charging / discharging is not performed to prepare for a state where transportation is possible.
- FIG. 18 shows a configuration in which an electric vehicle 380 is connected instead of the storage battery, as compared with the embodiment shown in FIG.
- An electric vehicle can use a part of the charging connector as a discharging connector, or may be provided with a new connector dedicated to discharging on the vehicle side.
- the communication line 391 can use a PLC, or can be directly connected to an electric vehicle by wireless technology.
- the green power index is calculated for the entire region based on the remaining amount of the storage battery and the green power index for each storage battery via the charge / discharge command device installed in one place.
- the environmental load is minimized in the target area and the power interchange is performed This makes it possible to supply stable power.
- the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system.
- the green power index is calculated for the entire region based on the remaining amount of the storage battery and the green power index for each storage battery via the charge / discharge command device installed in one place.
- the environmental load is minimized in the target area and the power interchange is performed This makes it possible to supply stable power.
- the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system.
- an electric vehicle storage battery that can be moved by itself can be used as an electric storage battery to move a storage battery mounted on an electric vehicle across regions.
- a configuration example of a device that gives an incentive to a vehicle driver will be described.
- FIG. 19 is an example showing a configuration of a charge / discharge command apparatus that realizes the above-described object.
- the difference from the first embodiment is that a contract verification device 120 is added compared to the first embodiment, and an incentive calculation process is added to the battery selection function process as will be described later. .
- This configuration is shown in FIG. In FIG. 20, an incentive calculation device 351 is added to FIG. 3, and EV user usage history data 361 and an incentive database 362 are added as input data of the incentive calculation device.
- the EV user usage history data 361 stores the data exemplified in 141 in FIG. 4 described above in each EV.
- An example of the contents of the incentive database is 362 in FIG. 22A.
- the example illustrates the frequency of cooperation indicating the frequency of cooperation, and price suitability indicating the relationship between the incentive price when the EV user cooperates in power interchange and the satisfaction level of the EV user at that time.
- the contract verification device is a contract form for each user, such as a contract form that can acquire a fixed amount incentive every time the user cooperates or the incentive changes at the time of cooperation. It is.
- the vehicle can be charged and discharged as an option, whether or not both are possible, or the maximum and minimum SOCs at which charging / discharging is interrupted, what is the charge / discharge level at the user's request. For example, a time zone in which discharge is prohibited.
- the contract verification device 120 first excludes the EVs that are not covered, and can contribute to power interchange.
- process 751 the charge / discharge request amount at each time relating to the other area where the charge / discharge request apparatus request is made is read. Thereafter, supply and demand forecast data in the area is read in process 752. Thereafter, the restriction condition data in the area is acquired in processing 753, and the remaining battery capacity in the area is compared with supply / demand data at each time in 754. As a result of the check in the process 755, if there is no shortage of electric power in the area, it is possible to exchange power by moving the EV to another area.
- the green power of each EV storage battery Perform index calculation.
- the same process as in the case of the storage battery described above is performed, and the green degree of the electric power charged from the initial state is accumulated and updated.
- process 759. Data acquired by the contract verification device 120 described above is used as the data for this investigation.
- process 760 a power price necessary for power interchange between regions is calculated.
- the power price is calculated.
- the power price here is determined by, for example, proportional distribution of the price of power from the distributed power source existing in the area in addition to the price of the grid power received in the area.
- the price including the margin corresponding to the profit is determined in comparison with the power price presented from the charge / discharge command device from other areas.
- the margin fee here is determined in advance as an area having each charge / discharge command device.
- an incentive index for each EV storage battery is calculated at 351. As shown at 385 in FIG. 22B, the distance or time the EV user travels to accommodate the battery, the incentive curve 376 representing the user's desired price of the power price (incentive fee), and the charge / discharge management command device side
- the incentive curve 377 representing the desired price is collated, and the intersection is determined as an incentive fee commensurate with the travel distance as indicated by 378.
- FIG. 23 is an example in which user actions for incentive index calculation and merits in that case are summarized. Based on such an example, the incentive curve on the EV user side shown in FIG. 22 is changed. For example, in the table of FIG.
- the incentive is given from the idea that he / she must buy high Otherwise, there is a possibility that it will not cooperate with the accommodation, but for example, an EV user who does not have a certain destination may have a low incentive to cooperate with the electricity accommodation.
- Such an EV user's action pattern is reflected in the incentive curve, and is reflected in the objective function of the process 329.
- the process 329 selects the EV to be moved using the optimization calculation as exemplified in the first embodiment.
- an incentive index is inserted into the objective function, and optimization calculation is performed so that the incentive index is maximized for many EV users so that as many EV users as possible cooperate with accommodation can enjoy the benefits.
- the remaining amount of the battery mounted on the EV in each area, the green power index of each storage battery, and the EV user's Based on the incentive indicator select the EV that moves so that the objective function including the green power indicator and incentive is maximized between the regions, and connect the selected EV to the battery station for power interchange
- the power interchange is performed in a distributed manner between regions, priority is given to power interchange between adjacent regions, and there is an effect that the travel distance of each EV is reduced.
- the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
- the power interchange of EV users In addition to minimizing the environmental load between regions, there is a merit that cooperates with the power interchange of EV users, and it is possible to supply stable power in the region where the power interchange was performed.
- power interchange is performed in a distributed manner between regions, priority is given to power interchange between adjacent regions, and there is an effect that the travel distance of each EV is reduced.
- the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
- an EV-mounted storage battery is used instead of the storage battery, and each EV-mounted storage battery is interchanged between regions.
- description is abbreviate
- the contract verification function 120 is added to the second embodiment, and the battery selection function 116 becomes the function of the configuration used in the third embodiment.
- the fourth embodiment of the present invention is based on the remaining amount of storage battery in the entire region, the green power index of each storage battery, and the incentive index of EV users through a charge / discharge command device installed in one place.
- the fourth embodiment of the present invention is based on the remaining amount of storage battery in the entire region, the green power index of each storage battery, and the incentive index of EV users through a charge / discharge command device installed in one place. Select the EV that moves so that the objective function including the green power index and incentives is maximized throughout the region, so that the power is interchanged. Thus, stable power can be supplied in an area where power is interchanged. Moreover, since the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system. In addition, since the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
- FIG. 24 is an example in which a power theft estimation function 1001 that is a characteristic feature of the present embodiment is added to the charge / discharge command apparatus 101 of the first embodiment.
- the device for estimating the amount of stolen power uses information from sensors connected to nodes and branches for the physical model called nodes consisting of generators and loads and the physical model called branches consisting of transmission lines, distribution lines, and transformers.
- a state estimation method Power System State Estimation
- the method of estimating the amount of theft of electricity is N times the weighting coefficient regarding the observation values 901 to 903 and 908 to 910 regarding the node among the observation values 901 to 910 as the branch observation values 904 to 907.
- FIG. 26 shows the configuration of the amount of power theft estimation apparatus.
- the theft power estimation apparatus 1001 uses the standing tree system database 1021 and the other regional apparatus database 1022 as input data.
- the weight coefficient setting function 1023, the state estimation function 1024, the theft power calculation function 1025, the weight coefficient inclination existence estimation result 1026, the weight coefficient inclination It is composed of the none estimation result 1027.
- the observation value of the node and the observation value of the branch are separated from the observation value data read in the processing 1101, and the weight of the observation value of the node is set to N times the branch observation value.
- the approximate standard for N is preferably about 10-100.
- the state estimation calculation is performed with the observation value data in which the weighting factor is changed, and the result is recorded in the processing 1104. Based on this estimation result, it is checked in process 1105 whether or not bad data has been detected. If bad data is not detected, the process is terminated assuming that there is no power theft. If bad data is detected in processing 1105, the weighting coefficient of the observation value of the node and the observation value of the branch is set to the same value in processing 1106.
- step 1107 Based on the data, state estimation calculation is performed in step 1107, and the result is recorded in step 1108.
- the difference between the estimated values before and after changing the weighting coefficient is set as the estimated amount of theft for the observed value detected as bad data in the data recorded in the processing 1104 and the data recorded in the processing 1109.
- the same calculation as in the first embodiment may be performed by reflecting the estimated amount of theft in the value of the process 901 in FIG. 9 in the first embodiment. Since the fifth embodiment of the present invention is provided with the function of estimating the amount of theft in the configuration of the first embodiment, the remaining amount of the storage battery in each region and the green power index of each storage battery are obtained through the charge / discharge command device.
- the fifth embodiment of the present invention is provided with the function of estimating the amount of theft in the configuration of the first embodiment, the remaining amount of the storage battery in each region and the green power index of each storage battery are obtained through the charge / discharge command device.
- the power consumption using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region. It is possible to minimize the environmental load in the area and supply stable power in the area where power is interchanged.
- power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced.
- the power theft estimation function in the configurations of the second to fourth embodiments, it becomes possible to stabilize the regional system by power interchange even if the power theft is increased in each region.
- the first to fourth examples were based on the premise that the power system in the area is operating soundly, but sudden outages in the local system where the power generation facilities do not have sufficient capacity May occur.
- the present embodiment is an embodiment that provides a power interchange effect by transporting a storage battery even if a power failure occurs by providing a power failure estimation function.
- description is abbreviate
- FIG. 28 shows a configuration in which a power failure estimation function 1002 is added to the charge / discharge command apparatus in the first embodiment.
- the power outage estimation function acquires frequency fluctuation data from the outside through communication and constantly monitors the trend.
- the operation of the power failure estimation function will be described with reference to FIG.
- Supply / demand prediction is performed in processing 1151.
- This supply and demand prediction is the same as the power demand amount prediction function 201 and the power supply function 202 shown in FIGS. 15A and 15B. After that, based on these data, frequency calculation of other systems is performed. Next, a frequency moving average value from a past time point is calculated in order to average frequency fluctuations in processing 1153.
- a further power shortage amount is estimated from the system capacity and the frequency, and the amount is shown in FIG. 9 in the first embodiment.
- the same calculation as in the first embodiment may be performed by reflecting the value in the process 901 in the middle.
- the power failure estimation function is provided in the configuration of the first embodiment, the remaining amount of storage battery in each region and the green power index of each storage battery are based on the charge / discharge command device.
- power is exchanged using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
A power sharing method allows power to be shared among power supply communities in such a way that: a desired share amount is received from another power supply community; a storage battery corresponding to the desired share amount is specified; and the specified storage battery is transported to the another power supply community.
Description
本出願は、2011年10月13日に出願された日本特許出願第2011―225455号の優先権を主張し、その内容を参照することにより本出願に取り込む。
This application claims the priority of Japanese Patent Application No. 2011-225455 filed on Oct. 13, 2011, and is incorporated herein by reference.
本発明は、蓄電池を用いて電力を融通する技術に関する。
The present invention relates to a technique for accommodating power using a storage battery.
本技術分野の背景技術として、特開2006-288162号公報(特許文献1)がある。需要家を複数設け、需要家間で電力量融通制御装置を介して電力量の融通制御を行う。また、電力量融通制御装置は、蓄電部に充電された電力貯蔵残量に応じて需要家内の負荷への電力供給、及び電力供給停止の制御を実行すると記載されている。
As a background art in this technical field, there is JP-A-2006-288162 (Patent Document 1). A plurality of consumers are provided, and power interchange control is performed between the consumers via a power interchange control device. In addition, it is described that the power amount accommodation control device executes control of power supply to a load in the consumer and control of power supply stop according to the remaining amount of power stored in the power storage unit.
電力の融通に蓄電池を用いる考え方は上記公知例に示されているように定置を前提にしている。このため融通をすべき電力が蓄電池の最大容量を超過した場合には電池の新規設置により対応する必要がある。しかし新規に設置する場合所定の時間がかかるため、直ちに対応することは困難である。また、他の方法による電力融通(たとえば自励式BackToBack)で補うにしても、一か所あたり100MW以下の変換能力なので、設備コストと設置期間を考えると、さらにコストがかからない利便性のある方式が望まれている。
The concept of using a storage battery for power interchange is based on the premise that it is stationary as shown in the above known example. For this reason, when the power to be accommodated exceeds the maximum capacity of the storage battery, it is necessary to cope with it by newly installing the battery. However, since it takes a predetermined time for a new installation, it is difficult to respond immediately. Also, even if supplemented by other methods of power interchange (for example, self-excited BackToBack), the conversion capacity is 100 MW or less per place, so considering the equipment cost and installation period, there is a convenient method that does not cost much more It is desired.
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、「複数の電力供給地域間の電力の融通を蓄電池の輸送と充放電により行う方式で、各電力供給地域には少なくとも充放電指令装置とそれに付随する入力データデータベース、充放電指令装置からの出力データを蓄積する出力データベースと電池管理センタから構成される電力融通システムを有し、各地域の電力融通システム間で電力の融通を蓄電池の輸送で行うこと」を特徴とする。
The present application includes a plurality of means for solving the above-mentioned problems. To give an example, the following is an example of “a method of performing power interchange between a plurality of power supply areas by transporting and charging / discharging storage batteries. Has at least a power interchange system composed of a charge / discharge command device and an accompanying input data database, an output database for storing output data from the charge / discharge command device, and a battery management center. It is characterized by “accommodating power by transporting storage batteries”.
本発明の第一の実施例は地域ごとに設置された充放電指令装置を介して、各地域の電池の残量と各蓄電池のグリーン電力指標をもとに、各地域間でグリーン電力指標をはじめとした目的関数が最大となるように蓄電池を選択し、選択した蓄電池を輸送して電力融通を行うため、地域間で環境負荷を最小とするとともに、電力融通を行った地域にて安定した電力を供給することが可能となる。更には、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。
本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。 The first embodiment of the present invention provides a green power index between regions based on the remaining battery level of each region and the green power index of each storage battery via a charge / discharge command device installed in each region. The storage battery is selected so that the objective function is maximized, and the selected storage battery is transported for power interchange, minimizing the environmental burden between regions and stable in the region where power interchange was performed. Electric power can be supplied. Furthermore, since power interchange is performed in a distributed manner between regions, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。 The first embodiment of the present invention provides a green power index between regions based on the remaining battery level of each region and the green power index of each storage battery via a charge / discharge command device installed in each region. The storage battery is selected so that the objective function is maximized, and the selected storage battery is transported for power interchange, minimizing the environmental burden between regions and stable in the region where power interchange was performed. Electric power can be supplied. Furthermore, since power interchange is performed in a distributed manner between regions, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
以下、実施例を図面を用いて説明する。
Hereinafter, examples will be described with reference to the drawings.
以下、本発明の実施例を図を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は本発明の電力融通方式を実現するための第一の構成である。第一の実施例では各地域にあるすでに充電された蓄電池、あるいは充電が必要となる蓄電池を、輸送することにより電力を融通する場合を示している。図中の11、12、13はそれぞれ電力供給の単位となる地域の電力を管理するシステム(地域供給系統)を示している。
この地域はたとえばCEMS(Community Energy Management System)と呼ばれている狭い地域の電力供給単位と考えてもよい。また、11,12,13は市町村単位程度の面積を持つ地域と考えてもよい。それぞれの地域供給系統の中には少なくとも充放電指令装置101、入力データベース102、出力データベース103、電池管理センタ104が存在し、充放電指令装置には図中に示していない複数の蓄電池が接続されている。それぞれ地域に存在する充放電指令装置101は互いに通信線で接続されていて、それぞれの充放電指令装置で各充放電指令装置の状態を通信線により情報を取得することが可能となっている。また、充放電指令装置と電池管理センタは通信線で接続され、逐次必要となる情報を取り込むことが可能となっている。 FIG. 1 shows a first configuration for realizing the power interchange system of the present invention. The first embodiment shows a case where electric power is accommodated by transporting a storage battery that is already charged in each region or a storage battery that needs to be charged. 11, 12, and 13 in the figure indicate systems (regional supply systems) that manage the power in a region that is a unit of power supply.
This area may be considered as a power supply unit in a narrow area called CEMS (Community Energy Management System), for example. Further, 11, 12, and 13 may be considered as areas having an area of about a municipality unit. Each regional supply system includes at least a charge /discharge command device 101, an input database 102, an output database 103, and a battery management center 104, and a plurality of storage batteries not shown in the figure are connected to the charge / discharge command device. ing. The charge / discharge command devices 101 existing in each region are connected to each other via a communication line, and the information on the state of each charge / discharge command device can be acquired by the communication line. In addition, the charge / discharge command device and the battery management center are connected by a communication line, so that necessary information can be taken in sequentially.
この地域はたとえばCEMS(Community Energy Management System)と呼ばれている狭い地域の電力供給単位と考えてもよい。また、11,12,13は市町村単位程度の面積を持つ地域と考えてもよい。それぞれの地域供給系統の中には少なくとも充放電指令装置101、入力データベース102、出力データベース103、電池管理センタ104が存在し、充放電指令装置には図中に示していない複数の蓄電池が接続されている。それぞれ地域に存在する充放電指令装置101は互いに通信線で接続されていて、それぞれの充放電指令装置で各充放電指令装置の状態を通信線により情報を取得することが可能となっている。また、充放電指令装置と電池管理センタは通信線で接続され、逐次必要となる情報を取り込むことが可能となっている。 FIG. 1 shows a first configuration for realizing the power interchange system of the present invention. The first embodiment shows a case where electric power is accommodated by transporting a storage battery that is already charged in each region or a storage battery that needs to be charged. 11, 12, and 13 in the figure indicate systems (regional supply systems) that manage the power in a region that is a unit of power supply.
This area may be considered as a power supply unit in a narrow area called CEMS (Community Energy Management System), for example. Further, 11, 12, and 13 may be considered as areas having an area of about a municipality unit. Each regional supply system includes at least a charge /
図2に、第一の実施例における充放電指令装置の構成を示す。充放電指令装置101は各機能を接続する通信バス123、各地域内で蓄電池の充放電が必要か否かを判定する充放電要求機能115、充放電の要求が来ている他の地域で充放電が必要となる場合に、地域内のどの蓄電池を移動させるべきかを判定する電池選択機能116、充放電の要求が来ている他の地域で充放電が必要となる場合に、他の地域のどこの場所に行って充放電を行うかを決定する行き先決定機能117、地域内の電池を移動する具体的な指示を蓄電池の管理者に伝える指示機能118、入力データベース111、出力データベース112、プログラムが格納されている蓄積エリア113、さらに計算を実施するためのメモリ121、CPU122からなる。
FIG. 2 shows the configuration of the charge / discharge command apparatus in the first embodiment. The charge / discharge command device 101 is a communication bus 123 for connecting each function, a charge / discharge request function 115 for determining whether or not a storage battery needs to be charged / discharged in each area, and charge / discharge in other areas where a charge / discharge request is coming. Battery selection function 116 for determining which storage battery in the region should be moved, when charging / discharging is required in other regions where charging / discharging is required, Destination determination function 117 for determining where to perform charging / discharging, instruction function 118 for transmitting a specific instruction to move the battery in the area to the administrator of the storage battery, input database 111, output database 112, program Is stored in a storage area 113, a memory 121 for performing calculations, and a CPU 122.
図3は電池選択機能116の入出力データの関係を示している。電池選択機能はフローチャートの説明中で後述するグリーン電力算出処理328、電池配置計算機能329から構成され、グリーン電力算出処理328は該地域電池データベース131、該地域制約条件132、他の地域から取得した充放電モード、該地域データベース136を最低限の入力データとする。また、電池配置計算機能329では他地域系統データベース134、他地域充電ステーション位置データベース135、他地域制約条件131、充放電要求機能115から取得した他地域からの充放電モード、並びに充放電要求量133と、グリーン電力算出装置328からの出力データを入力データとする。
なお、充放電要求機能は該地域内の蓄電池を除く需給状態をセンサ等で計測し、その結果をもとに、地域内における電力の過不足分を算出し、該地域内で電力を賄うことができない場合に、通信線で接続されている隣接の他地域に対して電力が不足する場合には電力供給の要求、電力が余剰になる場合は電力販売の要求を行う機能である。
次に本実施例の特徴的な機能である電池選択機能116の動作について説明する。電池選択機能116は該地域内に存在する蓄電池の中から他の地域に輸送する蓄電池を選択する。 FIG. 3 shows the input / output data relationship of thebattery selection function 116. The battery selection function includes a green power calculation process 328 and a battery arrangement calculation function 329, which will be described later in the description of the flowchart. The green power calculation process 328 is acquired from the regional battery database 131, the regional constraint condition 132, and other regions. The charge / discharge mode and the regional database 136 are set as minimum input data. Further, in the battery arrangement calculation function 329, the other region system database 134, the other region charging station position database 135, the other region restriction condition 131, the charge / discharge mode from other regions acquired from the charge / discharge request function 115, and the charge / discharge request amount 133 are provided. And the output data from the green power calculation device 328 as input data.
The charge / discharge request function measures the supply and demand status excluding storage batteries in the area with sensors, etc., calculates the excess or deficiency of power in the area based on the result, and covers the power in the area This is a function for requesting power supply when power is insufficient with respect to other adjacent areas connected by a communication line, and requesting power sales when power is surplus.
Next, the operation of thebattery selection function 116 which is a characteristic function of the present embodiment will be described. The battery selection function 116 selects a storage battery to be transported to another area from the storage batteries existing in the area.
なお、充放電要求機能は該地域内の蓄電池を除く需給状態をセンサ等で計測し、その結果をもとに、地域内における電力の過不足分を算出し、該地域内で電力を賄うことができない場合に、通信線で接続されている隣接の他地域に対して電力が不足する場合には電力供給の要求、電力が余剰になる場合は電力販売の要求を行う機能である。
次に本実施例の特徴的な機能である電池選択機能116の動作について説明する。電池選択機能116は該地域内に存在する蓄電池の中から他の地域に輸送する蓄電池を選択する。 FIG. 3 shows the input / output data relationship of the
The charge / discharge request function measures the supply and demand status excluding storage batteries in the area with sensors, etc., calculates the excess or deficiency of power in the area based on the result, and covers the power in the area This is a function for requesting power supply when power is insufficient with respect to other adjacent areas connected by a communication line, and requesting power sales when power is surplus.
Next, the operation of the
該地域電池データベース131の一例を図4Aに示す。電池データベース131の構成例としては、141に示すように充電開始時刻、充電終了時刻、充電開始時のSOC、充電終了時のSOC、SOHと呼ばれる電池の劣化度、累積の充放電電力の履歴が蓄電池ごとに記録されている。このほかにも拡張する項目があれば適宜追加することも可能である。充放電モード133の一例を図4Bに示す。充放電モードは時刻と需給過不足量からなる時系列のデータである。このほかにも必要に応じてデータ項目を追加することが可能である。該地域制約条件132、他地域制約条件137のデータの一例を図4Cに示す。制約条件の項目としては、蓄電池を運搬する輸送車が一度に運搬することができる蓄電池の数、電池を運搬するためのコスト、現在の蓄電池の位置から、送付先の蓄電池の位置までの距離、充放電の方向、最低確保SOC等、電池ステーションにて接続可能な蓄電池容量の最大値を加えることも可能である。
An example of the regional battery database 131 is shown in FIG. 4A. As an example of the configuration of the battery database 131, as shown at 141, there are a charge start time, a charge end time, an SOC at the start of charge, an SOC at the end of charge, a battery deterioration level called SOH, and a history of accumulated charge / discharge power. Recorded for each storage battery. If there are other items to be expanded, they can be added as appropriate. An example of the charge / discharge mode 133 is shown in FIG. 4B. The charge / discharge mode is time-series data consisting of time and excess / deficiency of supply and demand. In addition, it is possible to add data items as necessary. An example of the data of the area restriction condition 132 and the other area restriction condition 137 is shown in FIG. 4C. Restriction items include the number of storage batteries that can be transported at one time by the transport vehicle that transports the storage battery, the cost for transporting the battery, the distance from the current storage battery position to the storage battery location of the destination, It is also possible to add the maximum value of the storage battery capacity that can be connected at the battery station, such as the direction of charging / discharging and the minimum secured SOC.
たとえば図4Cにおける制約条件の一例として、蓄電池を運搬する輸送車が一度に運搬することができる蓄電池の数であるならば、上限値はn(個)、下限値は0、基準値は空欄となる。また、電池を運搬するためのコストであるならば、上限は損益分岐点となるコストであり、下限は利益n%となるコストであり、基準値は利益m%(m<n)となるコストである。現在の蓄電池の位置から、送付先の蓄電池の位置までの距離であるならば、明細書には記載していない燃費の履歴データベースをもとにして、上限は前記データベースをもとに算出される最も燃費が良い場合の距離であり、下限は同様にして最も燃費が悪い場合の距離であり、基準値は平均的な燃費から算出した距離となる。
For example, as an example of the constraint in FIG. 4C, if the number of storage batteries that can be transported at one time by a transport vehicle that transports storage batteries is n (pieces), the lower limit is 0, and the reference value is blank. Become. In addition, if it is the cost for transporting the battery, the upper limit is the cost that becomes the break-even point, the lower limit is the cost that makes the profit n%, and the reference value is the cost that makes the profit m% (m <n). It is. If the distance is from the current storage battery position to the destination storage battery position, the upper limit is calculated based on the fuel efficiency history database not described in the specification. The distance is the distance when the fuel efficiency is the best, the lower limit is the distance when the fuel efficiency is the worst, and the reference value is the distance calculated from the average fuel efficiency.
該地域データベース131、他地域系統データベース134の具体的内容を図8A、図8Bに示す。詳細については後述するグリーン電力算出機能の説明の中で示す。他地域充電ステーション位置データベース135は図8Dに示すように設備名とステーションの有無からなるデータ704である。各ステーションにおける蓄電池の接続上限値は制約条件132、137に含まれるものとする。
Specific contents of the regional database 131 and the other regional system database 134 are shown in FIGS. 8A and 8B. Details will be described in the description of the green power calculation function described later. As shown in FIG. 8D, the other area charging station location database 135 is data 704 including the equipment name and the presence / absence of the station. It is assumed that the connection battery upper limit value in each station is included in the constraint conditions 132 and 137.
次に図5に蓄電池選択機能を実現するためのフローチャートについて説明する。処理321にて充放電をするための蓄電池の融通を申し出てきた地域の充放電指令装置からの各時点の充放電要求量を読み込む。
Next, a flowchart for realizing the storage battery selection function will be described with reference to FIG. In step 321, the charge / discharge request amount at each time point is read from the charge / discharge command device in the area where the storage battery has been offered for charging / discharging.
次に処理352にて各地地域の需給予測データを読み込む。その後処理323にて該地域の制約条件データを読み込んで、処理324にて該地域内の蓄電池の電力残容量の総和と需給予測データを比較する。その結果、処理325にて該地域にて蓄電池供給の不足が発生する場合には処理326にて該地域における制約条件の緩和が可能か判定する。ここでの制約条件の緩和とは、たとえば143に示した、各蓄電池の最低保障SOCを調整することである。この処理が対象となる地域における各蓄電池で可能となる場合は処理327にて該地域における制約条件を緩和する。処理326にて該地域の制約条件が緩和できない場合には、該地域にて他地域の電力融通に貢献することができないことになるため、その旨のメッセージを出力して処理を終了する。処理325にて不足が発生しない場合には、処理328にて、各電池のグリーン電力指標を算出する。
Next, in step 352, supply and demand forecast data for each region is read. Thereafter, in step 323, the restriction condition data of the region is read, and in step 324, the total remaining power of the storage batteries in the region is compared with the supply and demand prediction data. As a result, when there is a shortage of storage battery supply in the area in the process 325, it is determined in the process 326 whether or not the restriction conditions in the area can be relaxed. Here, the relaxation of the constraint condition means, for example, adjusting the minimum guaranteed SOC of each storage battery shown in 143. When this process is possible for each storage battery in the target area, the restriction condition in the area is relaxed in process 327. If the restriction condition of the area cannot be relaxed in the process 326, it cannot contribute to the power interchange of the other area in the area, so that a message to that effect is output and the process is terminated. If no shortage occurs in the process 325, a green power index for each battery is calculated in a process 328.
図6Aから図6Cを用いて、グリーン電力指標の求め方を説明する。グリーン電力指標を求める原理は図6Aに示すように対象とする電力系統の発電機、負荷を電流で表現した際に、図6Bに示す電力方程式を用いて、電流源として表現した発電機の任意の一台を微小変化させた際に、負荷がどの程度変動するかの感度係数を用いて求める。具体的な計算方法を図7を用いて説明する。グリーン電力指標は図中より省いてある系統構成生成装置にて作成した対象とする電力系統データを処理651にて読み込む。
A method for obtaining the green power index will be described with reference to FIGS. 6A to 6C. The principle for obtaining the green power index is as follows. When the generator and load of the target power system are expressed as current as shown in FIG. 6A, the generator is expressed as a current source using the power equation shown in FIG. 6B. The sensitivity coefficient is used to determine how much the load fluctuates when one unit is changed minutely. A specific calculation method will be described with reference to FIG. For the green power index, target power system data created by the system configuration generation device omitted from the figure is read in process 651.
このデータをもとに処理652にてアドミタンス行列を作成し、処理653にて図6Bの式(1)に示した行列式を作成する。その後、処理654にて各発電機ノードの中から電流源を一つだけ設置した際の各母線電圧を計算し、処理655にて前記母線電圧と前記アドミタンス行列を用いてそれぞれの電源によって発生する電流の潮流状態を算出する。最後に656にて前記電流と、母線電圧からk番目の発電機から母線iへの負荷への配分を図6Cに示した式(2)を用いて計算する。ここで求められた発電機の電力由来に対し、発電種類ごとに定義されているCO2排出係数を乗ずることにより、各負荷におけるCO2由来量を求める。
Based on this data, an admittance matrix is created in process 652, and a determinant shown in formula (1) in FIG. 6B is created in process 653. Thereafter, each bus voltage when only one current source is installed from each generator node is calculated in process 654, and generated in each power source using the bus voltage and the admittance matrix in process 655. Calculate the current flow state. Finally, at 656, the distribution of the current and the load from the bus voltage to the load from the kth generator to the bus i is calculated using the equation (2) shown in FIG. 6C. The CO2-derived amount at each load is obtained by multiplying the power-derived power of the generator determined here by the CO2 emission coefficient defined for each type of power generation.
図8Aから図8Dに、グリーン電力指標を求めるために必要な入力データの一例を示す。図8Aの701はグリーン電力指標を求める対象である電力系統のブランチと呼ばれる送電線、配電線、変圧器の接続の終点、始点、並びにそれらのパラメータを示していて、ブランチの抵抗分、誘導分、容量分、ブランチがタップである場合のタップ比からなる例を示している。
8A to 8D show examples of input data necessary for obtaining the green power index. Reference numeral 701 in FIG. 8A indicates transmission line, distribution line, transformer connection end point, start point, and parameters of the power system branch for which the green power index is obtained. , An example of a tap ratio when the branch is a tap for the capacity.
また、入力データのもう一つの例として、ノードと呼ばれる発電機の出力、負荷の電力消費量を示したデータ例を図8Bの702に示す。702はノードの設備名称、発電機ノードであるか否かのフラグ、電圧の指定値、グリーン電力指標計算は一般的なNewton法を用いた潮流計算法を用いることから繰り返し計算を用いるため、電圧の初期値が必要となり、さらに各ノードに対する有効電力の発電指定量(PG)、無効電力の発電指定量(QG)、有効電力の負荷指定量(PL)、無効電力の負荷指定量(QL)、調相機器(スタティックコンデンサ、シャントリアクトル)の投入量からなるデータの例である。このような入力データを用いることにより、グリーン電力指標算出処理では図8Cの703の例に示すように、各発電機ごとのグリーン電力指標に変換することにより、火力発電、原子力発電、再生エネルギー発電由来という形に分類することにより、グリーン電力指標を求めることが可能となる。このように各蓄電池のグリーン電力指標を求めたのちに処理329(蓄電池配置計算機能)にて蓄電池の組合せを決定する。
Also, as another example of input data, a data example showing the output of a generator called a node and the power consumption of a load is shown at 702 in FIG. 8B. 702 is a node equipment name, a flag indicating whether or not a generator node, a specified voltage value, and a green power index calculation uses a general power flow calculation method using a Newton method, and therefore uses a repetitive calculation. Is required, and the active power generation specified amount (PG), reactive power generation specified amount (QG), active power load specified amount (PL), and reactive power load specified amount (QL) for each node. It is an example of the data which consists of the input amount of a phase adjusting device (a static capacitor, a shunt reactor). By using such input data, in the green power index calculation process, as shown in the example of 703 in FIG. 8C, by converting into a green power index for each generator, thermal power generation, nuclear power generation, renewable energy power generation By classifying into the form of origin, it is possible to obtain a green power index. After obtaining the green power index of each storage battery in this way, the combination of storage batteries is determined by processing 329 (storage battery arrangement calculation function).
図9を用いて蓄電池の組合せを決定する方法を説明する。処理はまず処理901にて前記した充放電要求装置115から取得した充放電モード、ならびに充放電要求量を読み込む。次に処理902にて前述した132、137に示した該地域、他地域制約条件を読み込む。ここでの制約条件には電池スタンドにおける蓄電池の接続上限値についても対象となる。次に処理903にて目的関数を設定する。ここでの目的関数は前述した計算で求めたグリーン電力度、あるいは蓄電池を輸送する先の蓄電池接続後の電圧安定度指標、送電ロス、基準電圧からの偏差値の総和、蓄電池を融通するための輸送距離に代表される値を用いる。ここで設定する目的関数は充放電の要求が来た地域ごとに変えることでもよいし、時間ごとに変えることでもよいし、あらかじめ固定であってもよい。処理904ではここまでに設定した制約条件、目的関数をもとに、電池配置計算を行う。ここで用いる計算手法としては、最適化手法として一般的に用いられている線形計画法、二次計画法、タブーサーチ等に代表される数値計算手法を用いることが可能である。処理905で、処理904にて求まった解よりもさらに目的関数が向上する解があるかどうかを判定する。処理905にてこれ以上目的関数値が向上しないのであれば、ここで計算を終了する。目的関数値が向上するようであれば処理904に戻り電池配置計算を継続する。ここでの結果で他地域に輸送する蓄電池とその輸送場所が決定する。目的関数の中に蓄電池の輸送距離を最小にする項目を入れてあるので、近接の地域への電力融通が優先され、蓄電池の輸送コストが低減されることとなる。
A method for determining the combination of storage batteries will be described with reference to FIG. In the process, first, the charge / discharge mode acquired from the charge / discharge request apparatus 115 and the charge / discharge request amount are read in process 901. Next, in the process 902, the area and other area restriction conditions shown in 132 and 137 described above are read. The restriction condition here is also the connection upper limit value of the storage battery in the battery stand. In step 903, an objective function is set. The objective function here is the green power obtained by the above-mentioned calculation, or the voltage stability index after connecting the storage battery to which the storage battery is transported, the transmission loss, the sum of the deviation values from the reference voltage, and the storage battery Use a value typified by transport distance. The objective function set here may be changed for each region where a charge / discharge request is made, may be changed for each time, or may be fixed in advance. In process 904, the battery arrangement calculation is performed based on the constraint conditions and the objective function set so far. As the calculation method used here, it is possible to use a numerical calculation method represented by a linear programming method, a quadratic programming method, a tabu search, or the like generally used as an optimization method. In processing 905, it is determined whether there is a solution whose objective function is further improved than the solution obtained in processing 904. If the objective function value does not improve any more in the process 905, the calculation ends here. If the objective function value is improved, the process returns to step 904 to continue the battery arrangement calculation. The storage battery to be transported to other areas and its transport location are determined by the result here. Since the item for minimizing the transport distance of the storage battery is included in the objective function, priority is given to the power interchange to the nearby area, and the transport cost of the storage battery is reduced.
電池選択機能で選択した蓄電池を実際に他地域における当該場所に輸送するための指示を指示機能118にて行う。これは蓄電池が保管されている当該地域の電池ステーションに指示が出され、充放電要求機能から受信した時間内に当該蓄電池を輸送するよう指示を出す。電池ステーションの構成については図17の説明にて後述する。
The instruction function 118 gives an instruction to actually transport the storage battery selected by the battery selection function to the place in another area. In this case, an instruction is issued to the battery station in the area where the storage battery is stored, and an instruction is given to transport the storage battery within the time received from the charge / discharge request function. The configuration of the battery station will be described later with reference to FIG.
本発明の第一の実施例は地域ごとに設置された充放電指令装置を介して、各地域の電池の残量と各蓄電池のグリーン電力指標をもとに、各地域間でグリーン電力指標をはじめとした目的関数が最大となるように蓄電池を選択し、選択した蓄電池を輸送して電力融通を行うため、地域間で環境負荷を最小とするとともに、電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。
The first embodiment of the present invention provides a green power index between regions based on the remaining battery level of each region and the green power index of each storage battery via a charge / discharge command device installed in each region. The storage battery is selected so that the objective function is maximized, and the selected storage battery is transported for power interchange, minimizing the environmental burden between regions and stable in the region where power interchange was performed. Electric power can be supplied. In addition, since power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced.
本実施例では、実施例1が各地域における充放電指令装置が互いに通信回線を用いて互いに電力の融通を蓄電池の輸送を行うという分散型の構成であったのと比較して、地域の集合体の中で1か所だけ存在する充放電指令装置にて、地域全体の蓄電池輸送に対する指示を各電池管理センタに、いわば集中制御的に行う充放電指令装置とそれを用いた電力融通方法の例について説明する。なお、既に説明した図に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。
In the present embodiment, the charge / discharge command apparatus in each region is a distributed configuration in which the storage battery is transported to each other by using a communication line, and the collection of regions is compared. A charge / discharge commanding device that exists in only one place in the body, and instructing each battery management center to give instructions for transporting the storage battery in the entire region, in other words, a charge / discharge commanding device that performs centralized control and a power interchange method using the same An example will be described. In addition, description is abbreviate | omitted about the part which has the same code | symbol shown by the figure already demonstrated, and the part which has the same function.
図10中の11、12、13は第一の実施例と同じくそれぞれ電力供給の単位となる地域を示している。 第一の実施例と異なる点は地域11には充放電指令装置101が存在するものの、図10の例において他の地域に関しては電池管理センタ104が存在する点である。
第二の実施例での充放電指令装置は図11に示すように、図2で示した充放電指令装置と比較して需給決定機能114が充放電要求装置115の代わりとなっている点である。そのほかの構成については第一の実施例と同様である
第二の実施例で特徴的な機能である需給決定機能114について図12を用いて説明する。図12の例では需要決定機能114は電力需要予測部201、電力供給予測部202、電力不足量算出部203からなり、それらの計算部への入力には再生可能エネルギー発電量長期変動履歴データ211、再生可能エネルギー発電量短期反動履歴データ212、定置型蓄電池利用履歴データ213、電力需要履歴データ214、フィーダ電力履歴データ215、EV(電気自動車)搭載電池利用履歴データ216がある。これらのデータの中で再生エネルギー長期変動履歴データ211、再生エネルギー短期変動履歴データ212は図13Aの221に例示するテーブルにて再生エネルギー発電機ごとに収集されている。また、電力需要履歴データ214、フィーダ電力履歴データ215は外性要因データとともに図13Bの222に例示する形態で地域ごとに格納されている。また、定置型蓄電池利用履歴データ213、EV搭載電池利用履歴データ216は図14中の223に例示する形態で格納されている。次に各計算処理部の内容について図15A、図15B、図16を用いて説明する。電力需要予測部201は処理241にて需要予測するための学習データとして、電力需要履歴データ214の必要とする期間のデータを読み込む。ここでの必要とする期間の目安はたとえば1年程度あればよい。処理242にて処理241で取得したデータを種別で分類する。この処理はたとえば電力需要は曜日ごとに傾向が大きく違うことがよく知られているため、予測精度を向上させるための前処理である。データによってはこのような処理を省くことも可能である。次に処理243にて該期間の履歴データを学習する。ここでの学習とは履歴データより、電力需要量と外性要因(たとえば気温、湿度、天気)との関数関係を回帰分析、ニューラルネット、統計手法に代表される予測手法を用いて学習する。処理244で、学習したデータの中に存在することが考えられる異常データを除去する。以上データの除去は243にて算出した平均的な関数関係と比較して、大きく外れている値、たとえば標準偏差をσとした際に3σ以上の誤差があるデータを異常データとして除去する。以上データの除去が終了した後に、処理245にて再学習を行い、より平均的な電力需要と外性要因との傾向を求める。その後、処理246にて予測当日の外性要因を入力することにより処理247にて電力需要の予測結果を出力する。
次に電力供給量予測処理202の内容について説明する。電力供給量予測装置はまず処理251にて外性要因を入力する。その後処理252にてフィーダ電力予測量を入力する。ここでのフィーダ電力予測は201に示した電力需要量予測処理に入力した学習データをフィーダデータにすることで同様に行うことが可能である。次に処理253にて各当該地域内に接続されている分散電源、たとえば太陽光発電、風力発電に代表される不安定な電源の発電量の予測を行う。処理253での分散電源長周期分予測に関しては電力需要量予測装置201の場合と学習させるデータを変更すればよい。このように求めた分散電源の予測結果とフィーダ電力予測量を処理255にて統合する。このようにして各地域内での需給バランスの予測状態を求めてその結果を処理256にて出力する。 10, 11, 12, and 13 indicate regions serving as units of power supply, as in the first embodiment. The difference from the first embodiment is that although the charge /discharge command device 101 exists in the area 11, the battery management center 104 exists in other areas in the example of FIG. 10.
As shown in FIG. 11, the charge / discharge command apparatus in the second embodiment is that the supply anddemand determination function 114 is substituted for the charge / discharge request apparatus 115 as compared with the charge / discharge command apparatus shown in FIG. is there. Other configurations will be described with reference to FIG. 12 for a supply and demand determination function 114 which is a characteristic function of the second embodiment, which is the same as the first embodiment. In the example of FIG. 12, the demand determination function 114 includes a power demand prediction unit 201, a power supply prediction unit 202, and a power shortage amount calculation unit 203, and inputs to these calculation units include renewable energy power generation long-term fluctuation history data 211. , Renewable energy power generation amount short-term recoil history data 212, stationary storage battery usage history data 213, power demand history data 214, feeder power history data 215, and EV (electric vehicle) mounted battery usage history data 216. Among these data, the renewable energy long-term fluctuation history data 211 and the renewable energy short-term fluctuation history data 212 are collected for each renewable energy generator in the table illustrated as 221 in FIG. 13A. Further, the power demand history data 214 and the feeder power history data 215 are stored for each region in the form illustrated in 222 of FIG. 13B together with the external factor data. In addition, stationary storage battery usage history data 213 and EV-mounted battery usage history data 216 are stored in the form illustrated as 223 in FIG. Next, the contents of each calculation processing unit will be described with reference to FIGS. 15A, 15B, and 16. FIG. The power demand prediction unit 201 reads data in a period required by the power demand history data 214 as learning data for predicting demand in the process 241. Here, for example, the required period may be about one year. In process 242, the data acquired in process 241 is classified by type. This process is a preprocess for improving the prediction accuracy, for example, because it is well known that the power demand tends to vary greatly from day to day. Such processing can be omitted depending on the data. Next, in process 243, history data for the period is learned. In this learning, the functional relationship between power demand and external factors (for example, temperature, humidity, weather) is learned from historical data using a prediction method represented by regression analysis, neural network, and statistical method. In process 244, abnormal data that is considered to exist in the learned data is removed. In the above data removal, compared with the average function relationship calculated in 243, a value deviating greatly, for example, data having an error of 3σ or more when the standard deviation is σ is removed as abnormal data. After the data removal is completed as described above, re-learning is performed in process 245 to obtain a tendency between a more average power demand and external factors. Thereafter, by inputting an external factor on the prediction day in the process 246, a prediction result of the power demand is output in the process 247.
Next, the contents of the power supplyamount prediction process 202 will be described. The power supply amount prediction apparatus first inputs an external factor in process 251. Thereafter, a feeder power prediction amount is input in processing 252. The feeder power prediction here can be similarly performed by using the learning data input to the power demand amount prediction processing shown in 201 as feeder data. Next, in step 253, the power generation amount of an unstable power source represented by a distributed power source, for example, solar power generation or wind power generation, connected in each area is predicted. For the distributed power source long-period prediction in the process 253, the data to be learned may be changed from the case of the power demand amount prediction apparatus 201. The processing result 255 integrates the prediction result of the distributed power source thus obtained and the feeder power prediction amount. In this way, the predicted state of supply and demand balance in each region is obtained, and the result is output in processing 256.
第二の実施例での充放電指令装置は図11に示すように、図2で示した充放電指令装置と比較して需給決定機能114が充放電要求装置115の代わりとなっている点である。そのほかの構成については第一の実施例と同様である
第二の実施例で特徴的な機能である需給決定機能114について図12を用いて説明する。図12の例では需要決定機能114は電力需要予測部201、電力供給予測部202、電力不足量算出部203からなり、それらの計算部への入力には再生可能エネルギー発電量長期変動履歴データ211、再生可能エネルギー発電量短期反動履歴データ212、定置型蓄電池利用履歴データ213、電力需要履歴データ214、フィーダ電力履歴データ215、EV(電気自動車)搭載電池利用履歴データ216がある。これらのデータの中で再生エネルギー長期変動履歴データ211、再生エネルギー短期変動履歴データ212は図13Aの221に例示するテーブルにて再生エネルギー発電機ごとに収集されている。また、電力需要履歴データ214、フィーダ電力履歴データ215は外性要因データとともに図13Bの222に例示する形態で地域ごとに格納されている。また、定置型蓄電池利用履歴データ213、EV搭載電池利用履歴データ216は図14中の223に例示する形態で格納されている。次に各計算処理部の内容について図15A、図15B、図16を用いて説明する。電力需要予測部201は処理241にて需要予測するための学習データとして、電力需要履歴データ214の必要とする期間のデータを読み込む。ここでの必要とする期間の目安はたとえば1年程度あればよい。処理242にて処理241で取得したデータを種別で分類する。この処理はたとえば電力需要は曜日ごとに傾向が大きく違うことがよく知られているため、予測精度を向上させるための前処理である。データによってはこのような処理を省くことも可能である。次に処理243にて該期間の履歴データを学習する。ここでの学習とは履歴データより、電力需要量と外性要因(たとえば気温、湿度、天気)との関数関係を回帰分析、ニューラルネット、統計手法に代表される予測手法を用いて学習する。処理244で、学習したデータの中に存在することが考えられる異常データを除去する。以上データの除去は243にて算出した平均的な関数関係と比較して、大きく外れている値、たとえば標準偏差をσとした際に3σ以上の誤差があるデータを異常データとして除去する。以上データの除去が終了した後に、処理245にて再学習を行い、より平均的な電力需要と外性要因との傾向を求める。その後、処理246にて予測当日の外性要因を入力することにより処理247にて電力需要の予測結果を出力する。
次に電力供給量予測処理202の内容について説明する。電力供給量予測装置はまず処理251にて外性要因を入力する。その後処理252にてフィーダ電力予測量を入力する。ここでのフィーダ電力予測は201に示した電力需要量予測処理に入力した学習データをフィーダデータにすることで同様に行うことが可能である。次に処理253にて各当該地域内に接続されている分散電源、たとえば太陽光発電、風力発電に代表される不安定な電源の発電量の予測を行う。処理253での分散電源長周期分予測に関しては電力需要量予測装置201の場合と学習させるデータを変更すればよい。このように求めた分散電源の予測結果とフィーダ電力予測量を処理255にて統合する。このようにして各地域内での需給バランスの予測状態を求めてその結果を処理256にて出力する。 10, 11, 12, and 13 indicate regions serving as units of power supply, as in the first embodiment. The difference from the first embodiment is that although the charge /
As shown in FIG. 11, the charge / discharge command apparatus in the second embodiment is that the supply and
Next, the contents of the power supply
次に電力不足量算出装置203の処理内容について図16を用いて説明する。まず処理261にて定置型電池の履歴データを取得する。ここでの履歴データとは充放電指令装置が管轄する地域中にある蓄電池のSOC値、電池容量をはじめとするパラメータである。次に202にて算出した電力供給量予測値(需給バランス)を読み込む。処理263にてその両者を比較して、供給不足があるか否かを判定する。供給不足がある場合には前記した蓄電池の情報を265にて読み込み、処理267にて蓄電池のデータを用いて供給量を補正する。その供給量の総和を算出して供給不足があるかどうかを判定する。さらに処理268にて供給不足がなければ本処理を終了して、輸送する蓄電池を選択する第一の実施例に記述した電池選択装置116への処理に移動する。供給不足がさらに発生する際には、エラーメッセージを処理269にて出力して処理を終了する。このような処理を行った後に、前述した図5に示した処理を行うことで、輸送する蓄電池の決定と、該蓄電池の輸送場所を決定する。この際、電池選択装置116の計算中、処理329において目的関数に対象系統のロス最小化、あるいは電圧安定度指標の最大化を設定すると、最適化計算として蓄電池を各地域間の電圧偏差が少なくなる方向に蓄電池を配置するため、対象系統で安定的な系統運用が可能となる。
Next, the processing contents of the power shortage calculation device 203 will be described with reference to FIG. First, in process 261, the history data of the stationary battery is acquired. Here, the history data are parameters including the SOC value and battery capacity of the storage battery in the area under the jurisdiction of the charge / discharge command device. Next, the predicted power supply amount (supply / demand balance) calculated in 202 is read. In process 263, the two are compared to determine whether there is a supply shortage. If there is a shortage of supply, the information on the storage battery is read in 265 and the supply amount is corrected using the storage battery data in processing 267. The sum of the supply amounts is calculated to determine whether there is a supply shortage. Further, if there is no shortage of supply in process 268, this process is terminated, and the process proceeds to the process to the battery selection device 116 described in the first embodiment for selecting the storage battery to be transported. When supply shortage further occurs, an error message is output in process 269 and the process ends. After performing such processing, the processing shown in FIG. 5 described above is performed to determine the storage battery to be transported and the transport location of the storage battery. At this time, if the target system loss minimization or the voltage stability index maximization is set in the objective function in the process 329 during the calculation of the battery selection device 116, the voltage deviation between the regions is reduced as the optimization calculation. Since the storage battery is arranged in the direction, a stable system operation is possible in the target system.
図17は電池管理センタ104の一例である。電池管理センタ104は蓄電池381、コントローラ382、コンバータ384、昇圧トランス385、開閉器386,387、制御装置388から構成される制御装置には図に示していない通信モジュールが搭載され、外部機器との通信を行うことが可能である。制御機器388とコントローラ382、開閉器386,387、昇圧トランス385、コンバータ384は通信線391~395を介して接続されている。また、389は電力ネットワークを示している。地域内に設置されている蓄電池381は電池ステーション中にて制御装置388からの指令によりコントローラ381を介して充電モード、放電モードを切り替えることが可能である。充電が必要な場合は系統からの電力を制御装置が開閉器386,387を制御することにより系統からの電力受電を行い、コンバータ384を介して蓄電池に充電を行う。この際、制御装置からコントローラに指令を出すことにより、接続されている蓄電池でも充放電の対象にしないようにすることが可能である。指示機能118からの指示を制御装置が受信した際には、該蓄電池が接続されているコントローラに指示を出し、充放電を行っていない状態に変更して、輸送が可能な状態に備える。
FIG. 17 shows an example of the battery management center 104. The battery management center 104 includes a storage battery 381, a controller 382, a converter 384, a step-up transformer 385, a switch 386, 387, and a control device 388. A communication module (not shown) is mounted on the control device. Communication is possible. The control device 388, the controller 382, the switches 386 and 387, the step-up transformer 385, and the converter 384 are connected via communication lines 391 to 395. Reference numeral 389 denotes a power network. The storage battery 381 installed in the area can be switched between the charge mode and the discharge mode via the controller 381 in accordance with a command from the control device 388 in the battery station. When charging is required, the control device controls the switches 386 and 387 to receive power from the system and charges the storage battery via the converter 384 when charging is necessary. At this time, by issuing a command from the control device to the controller, it is possible to prevent the connected storage battery from being charged or discharged. When the control device receives an instruction from the instruction function 118, the controller issues an instruction to the controller to which the storage battery is connected, and changes to a state where charging / discharging is not performed to prepare for a state where transportation is possible.
図18は図17に示した実施例と比較して、蓄電池の代わりに電気自動車380が接続された形態である。電気自動車は充電コネクタの一部を放電コネクタとして利用することも可能であるし、新たな放電専用のコネクタを車側に備える形でもよい。また、通信線391はPLCを用いることも可能であるし、無線技術により直接電気自動車と接続することも可能である。
本発明の第二の実施例は一か所に設置された充放電指令装置を介して、地域全体の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域全体でグリーン電力指標をはじめとした目的関数が最大となるように蓄電池を選択し、選択した蓄電池を該当する地域に輸送して電力融通を行うため、対象地域で環境負荷を最小とするとともに、電力融通を行った地域にて安定した電力を供給することが可能となる。また、対象地域全体で蓄電池を融通するために対象系統全体で電力の安定供給が可能となる。 FIG. 18 shows a configuration in which anelectric vehicle 380 is connected instead of the storage battery, as compared with the embodiment shown in FIG. An electric vehicle can use a part of the charging connector as a discharging connector, or may be provided with a new connector dedicated to discharging on the vehicle side. Further, the communication line 391 can use a PLC, or can be directly connected to an electric vehicle by wireless technology.
In the second embodiment of the present invention, the green power index is calculated for the entire region based on the remaining amount of the storage battery and the green power index for each storage battery via the charge / discharge command device installed in one place. In order to select the storage battery so that the objective function is maximized and transport the selected storage battery to the corresponding area for power interchange, the environmental load is minimized in the target area and the power interchange is performed This makes it possible to supply stable power. Moreover, since the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system.
本発明の第二の実施例は一か所に設置された充放電指令装置を介して、地域全体の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域全体でグリーン電力指標をはじめとした目的関数が最大となるように蓄電池を選択し、選択した蓄電池を該当する地域に輸送して電力融通を行うため、対象地域で環境負荷を最小とするとともに、電力融通を行った地域にて安定した電力を供給することが可能となる。また、対象地域全体で蓄電池を融通するために対象系統全体で電力の安定供給が可能となる。 FIG. 18 shows a configuration in which an
In the second embodiment of the present invention, the green power index is calculated for the entire region based on the remaining amount of the storage battery and the green power index for each storage battery via the charge / discharge command device installed in one place. In order to select the storage battery so that the objective function is maximized and transport the selected storage battery to the corresponding area for power interchange, the environmental load is minimized in the target area and the power interchange is performed This makes it possible to supply stable power. Moreover, since the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system.
<実施例2のまとめ>
本発明の第二の実施例は一か所に設置された充放電指令装置を介して、地域全体の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域全体でグリーン電力指標をはじめとした目的関数が最大となるように蓄電池を選択し、選択した蓄電池を該当する地域に輸送して電力融通を行うため、対象地域で環境負荷を最小とするとともに、電力融通を行った地域にて安定した電力を供給することが可能となる。また、対象地域全体で蓄電池を融通するために対象系統全体で電力の安定供給が可能となる。 <Summary of Example 2>
In the second embodiment of the present invention, the green power index is calculated for the entire region based on the remaining amount of the storage battery and the green power index for each storage battery via the charge / discharge command device installed in one place. In order to select the storage battery so that the objective function is maximized and transport the selected storage battery to the corresponding area for power interchange, the environmental load is minimized in the target area and the power interchange is performed This makes it possible to supply stable power. Moreover, since the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system.
本発明の第二の実施例は一か所に設置された充放電指令装置を介して、地域全体の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域全体でグリーン電力指標をはじめとした目的関数が最大となるように蓄電池を選択し、選択した蓄電池を該当する地域に輸送して電力融通を行うため、対象地域で環境負荷を最小とするとともに、電力融通を行った地域にて安定した電力を供給することが可能となる。また、対象地域全体で蓄電池を融通するために対象系統全体で電力の安定供給が可能となる。 <Summary of Example 2>
In the second embodiment of the present invention, the green power index is calculated for the entire region based on the remaining amount of the storage battery and the green power index for each storage battery via the charge / discharge command device installed in one place. In order to select the storage battery so that the objective function is maximized and transport the selected storage battery to the corresponding area for power interchange, the environmental load is minimized in the target area and the power interchange is performed This makes it possible to supply stable power. Moreover, since the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system.
本実施例では、第一の実施例に対して、対象となる蓄電池として、それだけで移動可能な電気自動車の蓄電池を対象にして、電気自動車搭載の蓄電池を地域をまたいで移動してもらうため電気自動車運転者へのインセンティブを与える装置の構成例について説明する。なお、既に説明した図に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。
In this embodiment, in contrast to the first embodiment, as a target storage battery, an electric vehicle storage battery that can be moved by itself can be used as an electric storage battery to move a storage battery mounted on an electric vehicle across regions. A configuration example of a device that gives an incentive to a vehicle driver will be described. In addition, description is abbreviate | omitted about the part which has the same code | symbol shown by the figure already demonstrated, and the part which has the same function.
図19は前記の目的を実現する充放電指令装置の構成を示した例である。第一の実施例と異なる点は、第一の実施例と比較して契約照合装置120が追加された点と、後述するように電池選択機能の処理にインセンティブ算出処理が追加となる点である。この構成を図20に示す。図20は図3にインセンティブ算出装置351が追加され、インセンティブ算出装置の入力データとしてのEVユーザ利用履歴データ361、インセンティブデータベース362が追加される。EVユーザ利用履歴データ361は前述した図4中の141に例示したデータを各EVに格納してある。また、インセンティブデータベースの内容例は図22Aの362で、CO2排出レベル、EV搭載車両のSOCレベル、EVが過去に電力融通のために移動した際の近接度、EVが過去に電力融通のために協力した頻度を示す協力頻度、EVユーザが電力融通に協力した際のインセンティブ価格とその際のEVユーザの満足度の関係を示す価格適合性を例示している。
FIG. 19 is an example showing a configuration of a charge / discharge command apparatus that realizes the above-described object. The difference from the first embodiment is that a contract verification device 120 is added compared to the first embodiment, and an incentive calculation process is added to the battery selection function process as will be described later. . This configuration is shown in FIG. In FIG. 20, an incentive calculation device 351 is added to FIG. 3, and EV user usage history data 361 and an incentive database 362 are added as input data of the incentive calculation device. The EV user usage history data 361 stores the data exemplified in 141 in FIG. 4 described above in each EV. An example of the contents of the incentive database is 362 in FIG. 22A. The CO2 emission level, the SOC level of the EV-equipped vehicle, the proximity when the EV moves for power interchange in the past, and the EV for power interchange in the past. The example illustrates the frequency of cooperation indicating the frequency of cooperation, and price suitability indicating the relationship between the incentive price when the EV user cooperates in power interchange and the satisfaction level of the EV user at that time.
契約照合装置は図21中の363に例示するように、ユーザごとに契約形態、たとえば協力するたびに定額インセンティブを獲得することができる、あるいは協力する時点でインセンティブが変わる、をはじめとした契約形態である。さらに例ではオプションとして充電、放電が可能な車両であるかどうか、あるいは両方可能であるかどうか、あるいは充放電を打ち切る最大、最小のSOCはいくらかになるかという充放電レベル、ユーザの希望で充放電を禁止したい時間帯、等が挙げられる。他の地域の充放電指令装置からの充放電要請が該地域の充放電指令装置に届いた場合は、まず契約照合装置120で対象外となるEVを除外して、電力融通の貢献が可能であるEVだけに絞ることが可能となる。
次に図20に示した電池選択処理の具体的な処理を図22A、図22Bを用いて説明する。処理751にて充放電要求装置化要求があった他地域に関する各時刻の充放電要求量を読み込む。その後、処理752にて該地域における需給予測データを読み込む。その後、該地域における制約条件データを処理753にて取得し、該地域内の電池残容量と各時刻の需給データを754にて比較する。処理755でのチェックの結果、該地域内で電力の不足が発生しない場合には他地域へのEVの移動による電力融通が可能であることになるため、処理328にて各EV蓄電池のグリーン電力指標算出を行う。この処理は前述した蓄電池の場合と同様の処理を行い、初期状態から充電された電力のグリーン度を累積して更新しておく。その後、各EV蓄電池の利用可否を処理759にて調査する。この調査のためのデータは前述した契約照合装置120にて取得したデータを用いる。その後処理760にて地域間の電力融通に必要な電力価格を算出する。次に処理351で電力価格の算出を行う。ここでの電力価格は、該地域において受電している系統電力の価格に加えて、該地域内に存在している分散型電源からの電力の価格をたとえば比例配分により決定する。その後、他地域からの充放電指令装置から提示してきた電力価格と比較して利益が出る分のマージンを乗せた価格を決定する。ここでのマージン料金はあらかじめ各充放電指令装置を有する地域と決定しておく。次に各EV蓄電池のインセンティブ指標を351にて算出する。図22Bの385に示すようにEVユーザが電池を融通するために走行する距離あるいは到達時間と、電力価格(インセンティブ料金)のユーザ側の希望価格を表すインセンティブカーブ376と充放電管理指令装置側の希望価格を表すインセンティブカーブ377を照合させ、378に示すようにその交差点を走行距離に見合うインセンティブ料金として決定する。電力をEVを用いて他地域へ融通する場合のパターンとして大きな影響を及ぼす要素はEVユーザが協力してくれるかどうかであり、また、そのためには電力融通に協力をお願いするタイミングが重要となる。図23はインセンティブ指標算出のためのユーザの行動とその場合のメリットをまとめた例である。このような例をもとに、図22に示したEVユーザ側のインセンティブカーブを変更する。たとえば、図23の表において、電力放電(=融通に協力する)EVユーザはユーザから見たメリットが大きいと考えた場合には、高く買い取ってくれるに違いない、との考えからインセンティブを高く与えないと融通に協力してくれない可能性がある一方で、たとえば確たる目的地がないEVユーザに対しては低めのインセンティブでも電力融通に協力してもらえる可能性がある。このようなEVユーザの行動パターンをインセンティブカーブに反映することで処理329の目的関数に反映させる。処理329は第一の実施例にて例示したように最適化計算を用いて移動するEVを選択する。本実施例では目的関数にインセンティブ指標を入れ、融通に協力してくれるEVユーザのできるだけ多くがメリットを享受できるように、多くのEVユーザにとってインセンティブ指標が最大になるように最適化計算を行う。 As illustrated in 363 in FIG. 21, the contract verification device is a contract form for each user, such as a contract form that can acquire a fixed amount incentive every time the user cooperates or the incentive changes at the time of cooperation. It is. In addition, in the example, whether or not the vehicle can be charged and discharged as an option, whether or not both are possible, or the maximum and minimum SOCs at which charging / discharging is interrupted, what is the charge / discharge level at the user's request. For example, a time zone in which discharge is prohibited. When a charge / discharge request from a charge / discharge command device in another region arrives at the charge / discharge command device in that region, thecontract verification device 120 first excludes the EVs that are not covered, and can contribute to power interchange. It becomes possible to focus only on a certain EV.
Next, specific processing of the battery selection processing shown in FIG. 20 will be described with reference to FIGS. 22A and 22B. Inprocess 751, the charge / discharge request amount at each time relating to the other area where the charge / discharge request apparatus request is made is read. Thereafter, supply and demand forecast data in the area is read in process 752. Thereafter, the restriction condition data in the area is acquired in processing 753, and the remaining battery capacity in the area is compared with supply / demand data at each time in 754. As a result of the check in the process 755, if there is no shortage of electric power in the area, it is possible to exchange power by moving the EV to another area. Therefore, in the process 328, the green power of each EV storage battery Perform index calculation. In this process, the same process as in the case of the storage battery described above is performed, and the green degree of the electric power charged from the initial state is accumulated and updated. Thereafter, whether or not each EV storage battery can be used is investigated in process 759. Data acquired by the contract verification device 120 described above is used as the data for this investigation. Thereafter, in process 760, a power price necessary for power interchange between regions is calculated. Next, in a process 351, the power price is calculated. The power price here is determined by, for example, proportional distribution of the price of power from the distributed power source existing in the area in addition to the price of the grid power received in the area. After that, the price including the margin corresponding to the profit is determined in comparison with the power price presented from the charge / discharge command device from other areas. The margin fee here is determined in advance as an area having each charge / discharge command device. Next, an incentive index for each EV storage battery is calculated at 351. As shown at 385 in FIG. 22B, the distance or time the EV user travels to accommodate the battery, the incentive curve 376 representing the user's desired price of the power price (incentive fee), and the charge / discharge management command device side The incentive curve 377 representing the desired price is collated, and the intersection is determined as an incentive fee commensurate with the travel distance as indicated by 378. A factor that has a major impact on the pattern of accommodating power in other regions using EV is whether or not EV users will cooperate, and for that purpose the timing of requesting cooperation for power interchange is important. . FIG. 23 is an example in which user actions for incentive index calculation and merits in that case are summarized. Based on such an example, the incentive curve on the EV user side shown in FIG. 22 is changed. For example, in the table of FIG. 23, if the electric discharge (= cooperating with interchange) EV user thinks that the merit seen from the user is great, the incentive is given from the idea that he / she must buy high Otherwise, there is a possibility that it will not cooperate with the accommodation, but for example, an EV user who does not have a certain destination may have a low incentive to cooperate with the electricity accommodation. Such an EV user's action pattern is reflected in the incentive curve, and is reflected in the objective function of the process 329. The process 329 selects the EV to be moved using the optimization calculation as exemplified in the first embodiment. In the present embodiment, an incentive index is inserted into the objective function, and optimization calculation is performed so that the incentive index is maximized for many EV users so that as many EV users as possible cooperate with accommodation can enjoy the benefits.
次に図20に示した電池選択処理の具体的な処理を図22A、図22Bを用いて説明する。処理751にて充放電要求装置化要求があった他地域に関する各時刻の充放電要求量を読み込む。その後、処理752にて該地域における需給予測データを読み込む。その後、該地域における制約条件データを処理753にて取得し、該地域内の電池残容量と各時刻の需給データを754にて比較する。処理755でのチェックの結果、該地域内で電力の不足が発生しない場合には他地域へのEVの移動による電力融通が可能であることになるため、処理328にて各EV蓄電池のグリーン電力指標算出を行う。この処理は前述した蓄電池の場合と同様の処理を行い、初期状態から充電された電力のグリーン度を累積して更新しておく。その後、各EV蓄電池の利用可否を処理759にて調査する。この調査のためのデータは前述した契約照合装置120にて取得したデータを用いる。その後処理760にて地域間の電力融通に必要な電力価格を算出する。次に処理351で電力価格の算出を行う。ここでの電力価格は、該地域において受電している系統電力の価格に加えて、該地域内に存在している分散型電源からの電力の価格をたとえば比例配分により決定する。その後、他地域からの充放電指令装置から提示してきた電力価格と比較して利益が出る分のマージンを乗せた価格を決定する。ここでのマージン料金はあらかじめ各充放電指令装置を有する地域と決定しておく。次に各EV蓄電池のインセンティブ指標を351にて算出する。図22Bの385に示すようにEVユーザが電池を融通するために走行する距離あるいは到達時間と、電力価格(インセンティブ料金)のユーザ側の希望価格を表すインセンティブカーブ376と充放電管理指令装置側の希望価格を表すインセンティブカーブ377を照合させ、378に示すようにその交差点を走行距離に見合うインセンティブ料金として決定する。電力をEVを用いて他地域へ融通する場合のパターンとして大きな影響を及ぼす要素はEVユーザが協力してくれるかどうかであり、また、そのためには電力融通に協力をお願いするタイミングが重要となる。図23はインセンティブ指標算出のためのユーザの行動とその場合のメリットをまとめた例である。このような例をもとに、図22に示したEVユーザ側のインセンティブカーブを変更する。たとえば、図23の表において、電力放電(=融通に協力する)EVユーザはユーザから見たメリットが大きいと考えた場合には、高く買い取ってくれるに違いない、との考えからインセンティブを高く与えないと融通に協力してくれない可能性がある一方で、たとえば確たる目的地がないEVユーザに対しては低めのインセンティブでも電力融通に協力してもらえる可能性がある。このようなEVユーザの行動パターンをインセンティブカーブに反映することで処理329の目的関数に反映させる。処理329は第一の実施例にて例示したように最適化計算を用いて移動するEVを選択する。本実施例では目的関数にインセンティブ指標を入れ、融通に協力してくれるEVユーザのできるだけ多くがメリットを享受できるように、多くのEVユーザにとってインセンティブ指標が最大になるように最適化計算を行う。 As illustrated in 363 in FIG. 21, the contract verification device is a contract form for each user, such as a contract form that can acquire a fixed amount incentive every time the user cooperates or the incentive changes at the time of cooperation. It is. In addition, in the example, whether or not the vehicle can be charged and discharged as an option, whether or not both are possible, or the maximum and minimum SOCs at which charging / discharging is interrupted, what is the charge / discharge level at the user's request. For example, a time zone in which discharge is prohibited. When a charge / discharge request from a charge / discharge command device in another region arrives at the charge / discharge command device in that region, the
Next, specific processing of the battery selection processing shown in FIG. 20 will be described with reference to FIGS. 22A and 22B. In
本発明の第三の実施例は地域ごとに設置された充放電指令装置を介して、各地域中にあるEVに搭載されている電池の残量と各蓄電池のグリーン電力指標と、EVユーザのインセンティブ指標をもとに、各地域間でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように移動するEVを選択し、選択したEVを電池ステーションに接続して電力融通を行うため、地域間で環境負荷を最小とするとともに、EVユーザの電力融通に協力したメリットが生じ、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、各EVの走行距離が低減される効果がある。また、本実施例は各地域の周波数が異なる系統であっても有効な効果を示すため、異周波数電力系統間の電力融通において建設に時間とコストがかかる周波数変換所を設置することなく電力の融通を異周波数系統間で行うことが可能となる。
According to the third embodiment of the present invention, the remaining amount of the battery mounted on the EV in each area, the green power index of each storage battery, and the EV user's Based on the incentive indicator, select the EV that moves so that the objective function including the green power indicator and incentive is maximized between the regions, and connect the selected EV to the battery station for power interchange In addition to minimizing the environmental load between regions, there is a merit that cooperates with the power interchange of EV users, and it is possible to supply stable power in the region where the power interchange was performed. In addition, since power interchange is performed in a distributed manner between regions, priority is given to power interchange between adjacent regions, and there is an effect that the travel distance of each EV is reduced. In addition, since the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
<実施例3のまとめ>
本発明の第三の実施例は地域ごとに設置された充放電指令装置を介して、各地域中にあるEVに搭載されている電池の残量と各蓄電池のグリーン電力指標と、EVユーザのインセンティブ指標をもとに、各地域間でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように移動するEVを選択し、選択したEVを電池ステーションに接続して電力融通を行うため、地域間で環境負荷を最小とするとともに、EVユーザの電力融通に協力したメリットが生じ、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、各EVの走行距離が低減される効果がある。また、本実施例は各地域の周波数が異なる系統であっても有効な効果を示すため、異周波数電力系統間の電力融通において建設に時間とコストがかかる周波数変換所を設置することなく電力の融通を異周波数系統間で行うことが可能となる。 <Summary of Example 3>
According to the third embodiment of the present invention, the remaining amount of the battery mounted on the EV in each area, the green power index of each storage battery, and the EV user's Based on the incentive indicator, to select the EV that moves so that the objective function including the green power indicator and incentive is maximized between the regions, and connect the selected EV to the battery station for power interchange In addition to minimizing the environmental load between regions, there is a merit that cooperates with the power interchange of EV users, and it is possible to supply stable power in the region where the power interchange was performed. In addition, since power interchange is performed in a distributed manner between regions, priority is given to power interchange between adjacent regions, and there is an effect that the travel distance of each EV is reduced. In addition, since the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
本発明の第三の実施例は地域ごとに設置された充放電指令装置を介して、各地域中にあるEVに搭載されている電池の残量と各蓄電池のグリーン電力指標と、EVユーザのインセンティブ指標をもとに、各地域間でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように移動するEVを選択し、選択したEVを電池ステーションに接続して電力融通を行うため、地域間で環境負荷を最小とするとともに、EVユーザの電力融通に協力したメリットが生じ、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、各EVの走行距離が低減される効果がある。また、本実施例は各地域の周波数が異なる系統であっても有効な効果を示すため、異周波数電力系統間の電力融通において建設に時間とコストがかかる周波数変換所を設置することなく電力の融通を異周波数系統間で行うことが可能となる。 <Summary of Example 3>
According to the third embodiment of the present invention, the remaining amount of the battery mounted on the EV in each area, the green power index of each storage battery, and the EV user's Based on the incentive indicator, to select the EV that moves so that the objective function including the green power indicator and incentive is maximized between the regions, and connect the selected EV to the battery station for power interchange In addition to minimizing the environmental load between regions, there is a merit that cooperates with the power interchange of EV users, and it is possible to supply stable power in the region where the power interchange was performed. In addition, since power interchange is performed in a distributed manner between regions, priority is given to power interchange between adjacent regions, and there is an effect that the travel distance of each EV is reduced. In addition, since the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
本実施例では、第二の実施例に対して、蓄電池の代わりにEV搭載の蓄電池を用いて、EV搭載の各蓄電池を地域間で融通する実施例である。なお、既に説明した図に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。この実施例(図23)では第二の実施例に契約照合機能120が追加され、電池選択機能116が第三の実施例で用いた構成の機能となる。
本発明の第四の実施例は一か所に設置された充放電指令装置を介して、地域全体の蓄電池の残量と各蓄電池のグリーン電力指標と、EVユーザのインセンティブ指標をもとに、地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように移動するEVを選択し電力融通を行うため、対象地域で環境負荷を最小とするとともに、EVユーザの電力融通に協力したメリットが生じ、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、対象地域全体で蓄電池を融通するために対象系統全体で電力の安定供給が可能となる。また、本実施例は各地域の周波数が異なる系統であっても有効な効果を示すため、異周波数電力系統間の電力融通において建設に時間とコストがかかる周波数変換所を設置することなく電力の融通を異周波数系統間で行うことが可能となる。 In this embodiment, in contrast to the second embodiment, an EV-mounted storage battery is used instead of the storage battery, and each EV-mounted storage battery is interchanged between regions. In addition, description is abbreviate | omitted about the part which has the same code | symbol shown by the figure already demonstrated, and the part which has the same function. In this embodiment (FIG. 23), thecontract verification function 120 is added to the second embodiment, and the battery selection function 116 becomes the function of the configuration used in the third embodiment.
The fourth embodiment of the present invention is based on the remaining amount of storage battery in the entire region, the green power index of each storage battery, and the incentive index of EV users through a charge / discharge command device installed in one place. Select the EV that moves so that the objective function including the green power index and incentives is maximized throughout the region, so that the power is interchanged. Thus, stable power can be supplied in an area where power is interchanged. Moreover, since the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system. In addition, since the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
本発明の第四の実施例は一か所に設置された充放電指令装置を介して、地域全体の蓄電池の残量と各蓄電池のグリーン電力指標と、EVユーザのインセンティブ指標をもとに、地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように移動するEVを選択し電力融通を行うため、対象地域で環境負荷を最小とするとともに、EVユーザの電力融通に協力したメリットが生じ、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、対象地域全体で蓄電池を融通するために対象系統全体で電力の安定供給が可能となる。また、本実施例は各地域の周波数が異なる系統であっても有効な効果を示すため、異周波数電力系統間の電力融通において建設に時間とコストがかかる周波数変換所を設置することなく電力の融通を異周波数系統間で行うことが可能となる。 In this embodiment, in contrast to the second embodiment, an EV-mounted storage battery is used instead of the storage battery, and each EV-mounted storage battery is interchanged between regions. In addition, description is abbreviate | omitted about the part which has the same code | symbol shown by the figure already demonstrated, and the part which has the same function. In this embodiment (FIG. 23), the
The fourth embodiment of the present invention is based on the remaining amount of storage battery in the entire region, the green power index of each storage battery, and the incentive index of EV users through a charge / discharge command device installed in one place. Select the EV that moves so that the objective function including the green power index and incentives is maximized throughout the region, so that the power is interchanged. Thus, stable power can be supplied in an area where power is interchanged. Moreover, since the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system. In addition, since the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
<実施例4のまとめ>
本発明の第四の実施例は一か所に設置された充放電指令装置を介して、地域全体の蓄電池の残量と各蓄電池のグリーン電力指標と、EVユーザのインセンティブ指標をもとに、地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように移動するEVを選択し電力融通を行うため、対象地域で環境負荷を最小とするとともに、EVユーザの電力融通に協力したメリットが生じ、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、対象地域全体で蓄電池を融通するために対象系統全体で電力の安定供給が可能となる。また、本実施例は各地域の周波数が異なる系統であっても有効な効果を示すため、異周波数電力系統間の電力融通において建設に時間とコストがかかる周波数変換所を設置することなく電力の融通を異周波数系統間で行うことが可能となる。 <Summary of Example 4>
The fourth embodiment of the present invention is based on the remaining amount of storage battery in the entire region, the green power index of each storage battery, and the incentive index of EV users through a charge / discharge command device installed in one place. Select the EV that moves so that the objective function including the green power index and incentives is maximized throughout the region, so that the power is interchanged. Thus, stable power can be supplied in an area where power is interchanged. Moreover, since the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system. In addition, since the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
本発明の第四の実施例は一か所に設置された充放電指令装置を介して、地域全体の蓄電池の残量と各蓄電池のグリーン電力指標と、EVユーザのインセンティブ指標をもとに、地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように移動するEVを選択し電力融通を行うため、対象地域で環境負荷を最小とするとともに、EVユーザの電力融通に協力したメリットが生じ、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、対象地域全体で蓄電池を融通するために対象系統全体で電力の安定供給が可能となる。また、本実施例は各地域の周波数が異なる系統であっても有効な効果を示すため、異周波数電力系統間の電力融通において建設に時間とコストがかかる周波数変換所を設置することなく電力の融通を異周波数系統間で行うことが可能となる。 <Summary of Example 4>
The fourth embodiment of the present invention is based on the remaining amount of storage battery in the entire region, the green power index of each storage battery, and the incentive index of EV users through a charge / discharge command device installed in one place. Select the EV that moves so that the objective function including the green power index and incentives is maximized throughout the region, so that the power is interchanged. Thus, stable power can be supplied in an area where power is interchanged. Moreover, since the storage batteries can be accommodated in the entire target area, it is possible to stably supply power in the entire target system. In addition, since the present embodiment shows an effective effect even in systems where frequencies in each region are different, it is possible to save power without installing a frequency conversion station that requires time and cost for construction in power interchange between different frequency power systems. Accommodation can be performed between different frequency systems.
本実施例では、第一から第四の実施例では地域における電力系統が健全に運用されていることが前提であったものの、実際の電力系統では途中で電力が予想外の大きさで盗電される場合もある。このような予想外の盗電が発生した場合には蓄電池で電力融通を行っても効果が低下する可能性があるので、本実施例では盗電量推定装置を設けることにより盗電が発生しても蓄電池を輸送することで電力融通の効果を出すための実施例である。 なお、既に説明した図に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。
図24は、実施例1の充放電指令装置101に対して本実施例で特徴的な機能である盗電量推定機能1001が追加された例である。盗電量推定機能の原理を図25を用いて説明する。盗電量推定装置は、発電機、負荷からなるノードと呼ばれる物理モデルと送電線、配電線、変圧器からなるブランチと呼ばれる物理モデルを対象として、ノード、ブランチに接続されているセンサからの情報をもとに、最小二乗法を用いた状態推定法(Power System State Estimation)を利用する。本状態推定法に関してはHolten, L.; Gjelsvik, A.; Aam, S.; Wu, F.F.; Liu, W.-H.E.; Comparison of different methods for state estimation. IEEE Transactions on Power Systems, Vol.3(1988), 1798-1806.にその手法について詳細がある。
盗電量推定手法は図25の例では901~910まで観測値の中でノードに関する観測値901~903、908~910の観測値に関する重み係数をブランチの観測値に904~907に対してN倍に設定する。盗電は一般的に送電線、配電線から分岐を作って電力を横流しすることから、この状態で状態推定を実施すると、盗電が発生している場合には状態推定計算を行った結果、ノードの観測値には推定残差(=観測値―推定値)が少なく、ブランチの観測値に大きな観測誤差が算出されることとなる。そのため、ブランチの観測値に大きな食い違い、すなわち推定残差が大きいとバッドデータとして異常検出され、バッドデータが発生したブランチにおいて盗電が発生していることが推定でき、そのバッドデータを除去し、ノードとブランチの観測値に対する重み係数を同一にして状態推定を行った「正しい状態」の推定結果と前記した「正しくない状態」でのバッドデータが検出されたブランチの推定結果の差分が盗電量として計算されることとなる。この盗電量を見込んだ値を他の地域における充放電指令装置からの要求量に織り込むことにより、電力融通中に盗電が発生してもあらかじめ盗電量を見込んで蓄電池の輸送による融通を行うため該地域では電量融通により安定な電力の確保が可能となる。
盗電量推定装置の構成を図26に示す。盗電量推定装置1001は立木系統データベース1021、他地域関装置データベース1022を入力データとし、重み係数設定機能1023、状態推定機能1024、盗電量算出機能1025、重み係数傾斜有推定結果1026、重み係数傾斜なし推定結果1027から構成される。これらの動作を再度図27のフローチャートにて説明する。処理1101にて他系統の観測値データ、系統データを読み込む。処理1102にて処理1101にて読み込んだ観測値データの中で、ノードの観測値とブランチの観測値を分離し、ノードの観測値の重みをブランチ観測値のN倍に設定する。Nのおおよその目安は10~100程度が望ましい。その後、重み係数を変更した観測値データで状態推定計算をしょり1103にて行い、その結果を処理1104にて記録する。この推定結果で、バッドデータが検出されたかどうかを処理1105にてチェックし、バッドデータが検出されなければ、盗電がないものとして処理を終了する。処理1105にてバッドデータが検出された場合は、処理1106にてノードの観測値とブランチの観測値の重み係数を同じ値に設定する。そのデータをもとに処理1107にて状態推定計算を実施し、その結果を処理1108にてデータを記録する。処理1109で処理1104で記録したデータと処理1109で記録したデータの中で、バッドデータとして検出された観測値に関して、重み係数を変更する前後の推定値の差分を盗電推定量と設定する。盗電推定量を求めたのちは、第一の実施例における図9中の処理901の値に、盗電推定量を反映させて実施例1と同様の計算を行えばよい。
本発明の第五の実施例は第一の実施例の構成に、盗電量推定機能を設けたため、充放電指令装置を介して、各地域の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域内での盗電量が大きくなっても地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように地域間を輸送する蓄電池を用いて電力融通を行うため、対象地域で環境負荷を最小とするとともに、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。また、第二~第四の実施例の構成に本盗電量推定機能を設けることにより、各地域において盗電量が大きくなっても電力融通による地域系統の安定化を図ることが可能となる。 In this example, although it was assumed in the first to fourth examples that the power system in the area was operating soundly, in the actual power system, power was stolen at an unexpected level. There is also a case. If such unexpected power theft occurs, the effect may be reduced even if power is exchanged with the storage battery. Therefore, in this embodiment, even if the power is stolen, the storage battery It is an Example for taking out the effect of electric power interchange by transporting. In addition, description is abbreviate | omitted about the part which has the same code | symbol shown by the figure already demonstrated, and the part which has the same function.
FIG. 24 is an example in which a powertheft estimation function 1001 that is a characteristic feature of the present embodiment is added to the charge / discharge command apparatus 101 of the first embodiment. The principle of the power theft estimation function will be described with reference to FIG. The device for estimating the amount of stolen power uses information from sensors connected to nodes and branches for the physical model called nodes consisting of generators and loads and the physical model called branches consisting of transmission lines, distribution lines, and transformers. Originally, a state estimation method (Power System State Estimation) using the least square method is used. Holten, L .; Gjelsvik, A .; Aam, S .; Wu, FF; Liu, W.-HE; Comparison of different methods for state estimation.IEEE Transactions on Power Systems, Vol. 3 ( 1988), 1798-1806.
In the example of FIG. 25, the method of estimating the amount of theft of electricity is N times the weighting coefficient regarding the observation values 901 to 903 and 908 to 910 regarding the node among the observation values 901 to 910 as the branch observation values 904 to 907. Set to. Stealing power generally creates a branch from power transmission lines and distribution lines and crosses the power, so when state estimation is performed in this state, the state estimation calculation is performed when there is power theft. There is little estimated residual (= observed value−estimated value) in the observed value, and a large observation error is calculated for the observed value in the branch. Therefore, if there is a large discrepancy in the observed value of the branch, that is, if the estimated residual is large, anomaly is detected as bad data, it can be estimated that theft has occurred in the branch where bad data occurred, the bad data is removed, and the node The difference between the estimation result of the “correct state” in which the state estimation was performed with the same weighting coefficient for the observation value of the branch and the estimation result of the branch in which the bad data was detected in the “incorrect state” is the amount of theft Will be calculated. By incorporating the value that anticipates the amount of power theft into the amount requested from the charge / discharge command device in other areas, even if theft occurs during the power interchange, the amount of theft can be anticipated in advance and the storage battery transport can be accommodated. In the region, it is possible to secure stable power through electricity interchange.
FIG. 26 shows the configuration of the amount of power theft estimation apparatus. The theftpower estimation apparatus 1001 uses the standing tree system database 1021 and the other regional apparatus database 1022 as input data. The weight coefficient setting function 1023, the state estimation function 1024, the theft power calculation function 1025, the weight coefficient inclination existence estimation result 1026, the weight coefficient inclination It is composed of the none estimation result 1027. These operations will be described again with reference to the flowchart of FIG. In processing 1101, observation value data and system data of another system are read. In the processing 1102, the observation value of the node and the observation value of the branch are separated from the observation value data read in the processing 1101, and the weight of the observation value of the node is set to N times the branch observation value. The approximate standard for N is preferably about 10-100. Thereafter, the state estimation calculation is performed with the observation value data in which the weighting factor is changed, and the result is recorded in the processing 1104. Based on this estimation result, it is checked in process 1105 whether or not bad data has been detected. If bad data is not detected, the process is terminated assuming that there is no power theft. If bad data is detected in processing 1105, the weighting coefficient of the observation value of the node and the observation value of the branch is set to the same value in processing 1106. Based on the data, state estimation calculation is performed in step 1107, and the result is recorded in step 1108. In the processing 1109, the difference between the estimated values before and after changing the weighting coefficient is set as the estimated amount of theft for the observed value detected as bad data in the data recorded in the processing 1104 and the data recorded in the processing 1109. After obtaining the estimated amount of theft, the same calculation as in the first embodiment may be performed by reflecting the estimated amount of theft in the value of the process 901 in FIG. 9 in the first embodiment.
Since the fifth embodiment of the present invention is provided with the function of estimating the amount of theft in the configuration of the first embodiment, the remaining amount of the storage battery in each region and the green power index of each storage battery are obtained through the charge / discharge command device. In addition, even if the amount of power theft in the region increases, power is exchanged using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region. It is possible to minimize the environmental load in the area and supply stable power in the area where power is interchanged. In addition, since power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced. Further, by providing the power theft estimation function in the configurations of the second to fourth embodiments, it becomes possible to stabilize the regional system by power interchange even if the power theft is increased in each region.
図24は、実施例1の充放電指令装置101に対して本実施例で特徴的な機能である盗電量推定機能1001が追加された例である。盗電量推定機能の原理を図25を用いて説明する。盗電量推定装置は、発電機、負荷からなるノードと呼ばれる物理モデルと送電線、配電線、変圧器からなるブランチと呼ばれる物理モデルを対象として、ノード、ブランチに接続されているセンサからの情報をもとに、最小二乗法を用いた状態推定法(Power System State Estimation)を利用する。本状態推定法に関してはHolten, L.; Gjelsvik, A.; Aam, S.; Wu, F.F.; Liu, W.-H.E.; Comparison of different methods for state estimation. IEEE Transactions on Power Systems, Vol.3(1988), 1798-1806.にその手法について詳細がある。
盗電量推定手法は図25の例では901~910まで観測値の中でノードに関する観測値901~903、908~910の観測値に関する重み係数をブランチの観測値に904~907に対してN倍に設定する。盗電は一般的に送電線、配電線から分岐を作って電力を横流しすることから、この状態で状態推定を実施すると、盗電が発生している場合には状態推定計算を行った結果、ノードの観測値には推定残差(=観測値―推定値)が少なく、ブランチの観測値に大きな観測誤差が算出されることとなる。そのため、ブランチの観測値に大きな食い違い、すなわち推定残差が大きいとバッドデータとして異常検出され、バッドデータが発生したブランチにおいて盗電が発生していることが推定でき、そのバッドデータを除去し、ノードとブランチの観測値に対する重み係数を同一にして状態推定を行った「正しい状態」の推定結果と前記した「正しくない状態」でのバッドデータが検出されたブランチの推定結果の差分が盗電量として計算されることとなる。この盗電量を見込んだ値を他の地域における充放電指令装置からの要求量に織り込むことにより、電力融通中に盗電が発生してもあらかじめ盗電量を見込んで蓄電池の輸送による融通を行うため該地域では電量融通により安定な電力の確保が可能となる。
盗電量推定装置の構成を図26に示す。盗電量推定装置1001は立木系統データベース1021、他地域関装置データベース1022を入力データとし、重み係数設定機能1023、状態推定機能1024、盗電量算出機能1025、重み係数傾斜有推定結果1026、重み係数傾斜なし推定結果1027から構成される。これらの動作を再度図27のフローチャートにて説明する。処理1101にて他系統の観測値データ、系統データを読み込む。処理1102にて処理1101にて読み込んだ観測値データの中で、ノードの観測値とブランチの観測値を分離し、ノードの観測値の重みをブランチ観測値のN倍に設定する。Nのおおよその目安は10~100程度が望ましい。その後、重み係数を変更した観測値データで状態推定計算をしょり1103にて行い、その結果を処理1104にて記録する。この推定結果で、バッドデータが検出されたかどうかを処理1105にてチェックし、バッドデータが検出されなければ、盗電がないものとして処理を終了する。処理1105にてバッドデータが検出された場合は、処理1106にてノードの観測値とブランチの観測値の重み係数を同じ値に設定する。そのデータをもとに処理1107にて状態推定計算を実施し、その結果を処理1108にてデータを記録する。処理1109で処理1104で記録したデータと処理1109で記録したデータの中で、バッドデータとして検出された観測値に関して、重み係数を変更する前後の推定値の差分を盗電推定量と設定する。盗電推定量を求めたのちは、第一の実施例における図9中の処理901の値に、盗電推定量を反映させて実施例1と同様の計算を行えばよい。
本発明の第五の実施例は第一の実施例の構成に、盗電量推定機能を設けたため、充放電指令装置を介して、各地域の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域内での盗電量が大きくなっても地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように地域間を輸送する蓄電池を用いて電力融通を行うため、対象地域で環境負荷を最小とするとともに、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。また、第二~第四の実施例の構成に本盗電量推定機能を設けることにより、各地域において盗電量が大きくなっても電力融通による地域系統の安定化を図ることが可能となる。 In this example, although it was assumed in the first to fourth examples that the power system in the area was operating soundly, in the actual power system, power was stolen at an unexpected level. There is also a case. If such unexpected power theft occurs, the effect may be reduced even if power is exchanged with the storage battery. Therefore, in this embodiment, even if the power is stolen, the storage battery It is an Example for taking out the effect of electric power interchange by transporting. In addition, description is abbreviate | omitted about the part which has the same code | symbol shown by the figure already demonstrated, and the part which has the same function.
FIG. 24 is an example in which a power
In the example of FIG. 25, the method of estimating the amount of theft of electricity is N times the weighting coefficient regarding the observation values 901 to 903 and 908 to 910 regarding the node among the observation values 901 to 910 as the branch observation values 904 to 907. Set to. Stealing power generally creates a branch from power transmission lines and distribution lines and crosses the power, so when state estimation is performed in this state, the state estimation calculation is performed when there is power theft. There is little estimated residual (= observed value−estimated value) in the observed value, and a large observation error is calculated for the observed value in the branch. Therefore, if there is a large discrepancy in the observed value of the branch, that is, if the estimated residual is large, anomaly is detected as bad data, it can be estimated that theft has occurred in the branch where bad data occurred, the bad data is removed, and the node The difference between the estimation result of the “correct state” in which the state estimation was performed with the same weighting coefficient for the observation value of the branch and the estimation result of the branch in which the bad data was detected in the “incorrect state” is the amount of theft Will be calculated. By incorporating the value that anticipates the amount of power theft into the amount requested from the charge / discharge command device in other areas, even if theft occurs during the power interchange, the amount of theft can be anticipated in advance and the storage battery transport can be accommodated. In the region, it is possible to secure stable power through electricity interchange.
FIG. 26 shows the configuration of the amount of power theft estimation apparatus. The theft
Since the fifth embodiment of the present invention is provided with the function of estimating the amount of theft in the configuration of the first embodiment, the remaining amount of the storage battery in each region and the green power index of each storage battery are obtained through the charge / discharge command device. In addition, even if the amount of power theft in the region increases, power is exchanged using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region. It is possible to minimize the environmental load in the area and supply stable power in the area where power is interchanged. In addition, since power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced. Further, by providing the power theft estimation function in the configurations of the second to fourth embodiments, it becomes possible to stabilize the regional system by power interchange even if the power theft is increased in each region.
<実施例5のまとめ>
本発明の第五の実施例は第一の実施例の構成に、盗電量推定機能を設けたため、充放電指令装置を介して、各地域の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域内での盗電量が大きくなっても地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように地域間を輸送する蓄電池を用いて電力融通を行うため、対象地域で環境負荷を最小とするとともに、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。また、第二~第四の実施例の構成に本盗電量推定機能を設けることにより、各地域において盗電量が大きくなっても電力融通による地域系統の安定化を図ることが可能となる。 <Summary of Example 5>
Since the fifth embodiment of the present invention is provided with the function of estimating the amount of theft in the configuration of the first embodiment, the remaining amount of the storage battery in each region and the green power index of each storage battery are obtained through the charge / discharge command device. In addition, even if the amount of power theft in the region increases, the power consumption using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region. It is possible to minimize the environmental load in the area and supply stable power in the area where power is interchanged. In addition, since power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced. Further, by providing the power theft estimation function in the configurations of the second to fourth embodiments, it becomes possible to stabilize the regional system by power interchange even if the power theft is increased in each region.
本発明の第五の実施例は第一の実施例の構成に、盗電量推定機能を設けたため、充放電指令装置を介して、各地域の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域内での盗電量が大きくなっても地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように地域間を輸送する蓄電池を用いて電力融通を行うため、対象地域で環境負荷を最小とするとともに、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。また、第二~第四の実施例の構成に本盗電量推定機能を設けることにより、各地域において盗電量が大きくなっても電力融通による地域系統の安定化を図ることが可能となる。 <Summary of Example 5>
Since the fifth embodiment of the present invention is provided with the function of estimating the amount of theft in the configuration of the first embodiment, the remaining amount of the storage battery in each region and the green power index of each storage battery are obtained through the charge / discharge command device. In addition, even if the amount of power theft in the region increases, the power consumption using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region. It is possible to minimize the environmental load in the area and supply stable power in the area where power is interchanged. In addition, since power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced. Further, by providing the power theft estimation function in the configurations of the second to fourth embodiments, it becomes possible to stabilize the regional system by power interchange even if the power theft is increased in each region.
本実施例では、第一から第四の実施例では地域における電力系統が健全に運用されていることが前提であったものの、発電設備が十分な量を備えていない地域系統では突発的な停電が発生する場合がある。このような予想外の停電をあらかじめ防止するように、本実施例では停電推定機能を設けることにより盗電が発生しても蓄電池を輸送することで電力融通の効果を出す実施例である。なお、既に説明した図に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。
In this example, the first to fourth examples were based on the premise that the power system in the area is operating soundly, but sudden outages in the local system where the power generation facilities do not have sufficient capacity May occur. In order to prevent such an unexpected power failure in advance, the present embodiment is an embodiment that provides a power interchange effect by transporting a storage battery even if a power failure occurs by providing a power failure estimation function. In addition, description is abbreviate | omitted about the part which has the same code | symbol shown by the figure already demonstrated, and the part which has the same function.
図28は第一の実施例における充放電指令装置に停電推定機能1002が追加された構成である。停電推定機能は外部から周波数の変動データを通信により取得し、その動向を常時監視している。停電推定機能の動作を図28を用いて説明する。処理1151にて需給予測を行う。この需給予測は図15A、図15Bに示した電力需要量予測機能201、電力供給機能202と同様である。その後、これらのデータをもとに、他系統の周波数計算を実施する。次に処理1153にて周波数の変動を平均化するために、過去の時点からの周波数移動平均値を算出する。処理1154にてあらかじめ設定したεよりも周波数の変化が大きくなる時間が一定時間継続した場合には、系統容量と周波数からさらなる電力不足量を推定し、その量を第一の実施例における図9中の処理901の値に反映させて実施例1と同様の計算を行えばよい。
本発明の第六の実施例は第一の実施例の構成に、停電推定機能を設けたため、充放電指令装置を介して、各地域の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域内での停電可能性が大きくなっても地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように地域間を輸送する蓄電池を用いて電力融通を行うため、対象地域で環境負荷を最小とするとともに、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。また、第二~第四の実施例の構成に本停電推定機能を設けることにより、各地域において停電の可能性が大きくなっても電力融通による地域系統の安定化を図ることが可能となる。 FIG. 28 shows a configuration in which a powerfailure estimation function 1002 is added to the charge / discharge command apparatus in the first embodiment. The power outage estimation function acquires frequency fluctuation data from the outside through communication and constantly monitors the trend. The operation of the power failure estimation function will be described with reference to FIG. Supply / demand prediction is performed in processing 1151. This supply and demand prediction is the same as the power demand amount prediction function 201 and the power supply function 202 shown in FIGS. 15A and 15B. After that, based on these data, frequency calculation of other systems is performed. Next, a frequency moving average value from a past time point is calculated in order to average frequency fluctuations in processing 1153. When the time during which the frequency change becomes larger than ε set in advance in the processing 1154 continues for a certain period of time, a further power shortage amount is estimated from the system capacity and the frequency, and the amount is shown in FIG. 9 in the first embodiment. The same calculation as in the first embodiment may be performed by reflecting the value in the process 901 in the middle.
In the sixth embodiment of the present invention, since the power failure estimation function is provided in the configuration of the first embodiment, the remaining amount of storage battery in each region and the green power index of each storage battery are based on the charge / discharge command device. In addition, even if the possibility of power outage in the region increases, power is exchanged using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region. It is possible to minimize the environmental load in the area and supply stable power in the area where power is interchanged. In addition, since power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced. In addition, by providing the power failure estimation function in the configurations of the second to fourth embodiments, it is possible to stabilize the regional system by power interchange even if the possibility of power failure increases in each region.
本発明の第六の実施例は第一の実施例の構成に、停電推定機能を設けたため、充放電指令装置を介して、各地域の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域内での停電可能性が大きくなっても地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように地域間を輸送する蓄電池を用いて電力融通を行うため、対象地域で環境負荷を最小とするとともに、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。また、第二~第四の実施例の構成に本停電推定機能を設けることにより、各地域において停電の可能性が大きくなっても電力融通による地域系統の安定化を図ることが可能となる。 FIG. 28 shows a configuration in which a power
In the sixth embodiment of the present invention, since the power failure estimation function is provided in the configuration of the first embodiment, the remaining amount of storage battery in each region and the green power index of each storage battery are based on the charge / discharge command device. In addition, even if the possibility of power outage in the region increases, power is exchanged using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region. It is possible to minimize the environmental load in the area and supply stable power in the area where power is interchanged. In addition, since power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced. In addition, by providing the power failure estimation function in the configurations of the second to fourth embodiments, it is possible to stabilize the regional system by power interchange even if the possibility of power failure increases in each region.
<実施例6のまとめ>
本発明の第六の実施例は第一の実施例の構成に、停電推定機能を設けたため、充放電指令装置を介して、各地域の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域内での停電可能性が大きくなっても地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように地域間を輸送する蓄電池を用いて電力融通を行うため、対象地域で環境負荷を最小とするとともに、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。また、第二~第四の実施例の構成に本停電推定機能を設けることにより、各地域において停電の可能性が大きくなっても電力融通による地域系統の安定化を図ることが可能となる。
上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。 <Summary of Example 6>
In the sixth embodiment of the present invention, since the power failure estimation function is provided in the configuration of the first embodiment, the remaining amount of storage battery in each region and the green power index of each storage battery are based on the charge / discharge command device. In addition, even if the possibility of power outage in the region increases, power is exchanged using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region. It is possible to minimize the environmental load in the area and supply stable power in the area where power is interchanged. In addition, since power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced. In addition, by providing the power failure estimation function in the configurations of the second to fourth embodiments, it is possible to stabilize the regional system by power interchange even if the possibility of power failure increases in each region.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
本発明の第六の実施例は第一の実施例の構成に、停電推定機能を設けたため、充放電指令装置を介して、各地域の蓄電池の残量と各蓄電池のグリーン電力指標をもとに、地域内での停電可能性が大きくなっても地域全体でグリーン電力指標、インセンティブをはじめとした目的関数が最大となるように地域間を輸送する蓄電池を用いて電力融通を行うため、対象地域で環境負荷を最小とするとともに、かつ電力融通を行った地域にて安定した電力を供給することが可能となる。また、各地域間で分散処理的に電力融通を行うため、近接の地域間での電力融通が優先され、蓄電池の輸送コストが低減される効果がある。また、第二~第四の実施例の構成に本停電推定機能を設けることにより、各地域において停電の可能性が大きくなっても電力融通による地域系統の安定化を図ることが可能となる。
上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。 <Summary of Example 6>
In the sixth embodiment of the present invention, since the power failure estimation function is provided in the configuration of the first embodiment, the remaining amount of storage battery in each region and the green power index of each storage battery are based on the charge / discharge command device. In addition, even if the possibility of power outage in the region increases, power is exchanged using storage batteries that transport between regions so that the objective function including the green power index and incentive is maximized throughout the region. It is possible to minimize the environmental load in the area and supply stable power in the area where power is interchanged. In addition, since power interchange is performed between the regions in a distributed manner, priority is given to power interchange between adjacent regions, and there is an effect that the transportation cost of the storage battery is reduced. In addition, by providing the power failure estimation function in the configurations of the second to fourth embodiments, it is possible to stabilize the regional system by power interchange even if the possibility of power failure increases in each region.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
101 充放電指令装置
102 入力データベース
103 出力データベース
104 電池管理センタ
123 通信バス
114 需給決定機能
115 充放電要求機能
116 電池選択機能
117 行き先決定機能
118 指示装置
111 入力データベース
112 出力データベース
113 蓄積エリア
121 メモリ
122 CPU
328 グリーン電力算出装置
329 蓄電池配置計算機能
1001盗電量推定機能
1002 停電推定機能 DESCRIPTION OFSYMBOLS 101 Charging / discharging instruction | command apparatus 102 Input database 103 Output database 104 Battery management center 123 Communication bus 114 Supply-and-demand determination function 115 Charge / discharge request function 116 Battery selection function 117 Destination determination function 118 Instruction apparatus 111 Input database 112 Output database 113 Storage area 121 Memory 122 CPU
328 Greenpower calculation device 329 Storage battery arrangement calculation function 1001 Power theft estimation function 1002 Power failure estimation function
102 入力データベース
103 出力データベース
104 電池管理センタ
123 通信バス
114 需給決定機能
115 充放電要求機能
116 電池選択機能
117 行き先決定機能
118 指示装置
111 入力データベース
112 出力データベース
113 蓄積エリア
121 メモリ
122 CPU
328 グリーン電力算出装置
329 蓄電池配置計算機能
1001盗電量推定機能
1002 停電推定機能 DESCRIPTION OF
328 Green
Claims (16)
- 電力供給地域間で電力を融通する電力融通方法であって、
他の電力供給地域から、融通希望量を受信する受信ステップと、
前記融通希望量に対応する蓄電池を特定する特定ステップと、
前記特定された蓄電池を前記他の電力供給地域に輸送することで電力の融通を実行する実行ステップと、
を備える電力融通方法。 A power interchange method for accommodating power between power supply areas,
A receiving step of receiving a desired amount of accommodation from another power supply area;
A specific step of identifying a storage battery corresponding to the desired amount of accommodation;
An execution step of performing power accommodation by transporting the identified storage battery to the other power supply area; and
A power interchange method comprising: - 請求項1に記載の電力融通方法において、
前記特定ステップは、前記電力供給地域に存在する複数の前記蓄電池のそれぞれについて、少なくとも電圧情報と、当該蓄電池への電力供給元を示す電力由来情報と、から当該電池のグリーン電力指標を算出し、当該グリーン電力指標に基いて、前記融通希望量に対応する蓄電池を特定する、電力融通方法。 The power interchange method according to claim 1,
The specifying step calculates a green power index of the battery from at least voltage information and power-derived information indicating a power supply source to the storage battery for each of the plurality of storage batteries existing in the power supply area, A power accommodation method for identifying a storage battery corresponding to the desired amount of accommodation based on the green power index. - 請求項2に記載の電力融通方法において、
前記蓄電池は、電気自動車に搭載されている蓄電池である、電力融通方法。 The power interchange method according to claim 2,
The power storage method, wherein the storage battery is a storage battery mounted on an electric vehicle. - 請求項3に記載の電力融通方法において、
前記特定ステップは、更に、前記自動車が移動した際に前記他の電力供給地域への接近度情報に基づいて前記融通希望量に対応する蓄電池を特定する、電力融通方法。 In the electric power accommodation method of Claim 3,
The specifying step further specifies a storage battery corresponding to the desired amount of accommodation based on the proximity information to the other power supply area when the automobile moves. - 他の電力融通装置との間で電力を融通する電力融通装置であって、
他の電力融通装置から、融通要求情報を受信するインタフェース部と、
前記融通要求情報に基づき、融通に用いる蓄電池を特定する、蓄電池特定部と、
を備える電力融通装置。 A power interchange device that interchanges power with other power interchange devices,
An interface unit for receiving accommodation request information from another electricity accommodation device;
Based on the accommodation request information, a storage battery specifying unit for specifying a storage battery used for accommodation;
A power interchange apparatus comprising: - 請求項5に記載の電力融通装置において、
前記蓄電池特定部は、前記電力供給地域に存在する複数の前記蓄電池のそれぞれについて、少なくとも電圧情報と、当該蓄電池への電力供給元を示す電力由来情報と、から当該蓄電池のグリーン電力指標を算出し、当該グリーン電力指標に基づいて、前記融通要求情報に対応する蓄電池を特定する、電力融通装置。 In the electric power interchange apparatus of Claim 5,
The storage battery specifying unit calculates a green power index of the storage battery from at least voltage information and power-derived information indicating a power supply source to the storage battery for each of the plurality of storage batteries existing in the power supply area. A power accommodation apparatus that identifies a storage battery corresponding to the accommodation request information based on the green power index. - 請求項6に記載の電力融通装置において、
前記蓄電池は、電気自動車の蓄電池であって、
前記蓄電池特定部は、更に、前記自動車が移動した際に前記他の電力供給地域への接近度情報に基づいて前記融通要求情報に対応する蓄電池を特定する、電力融通装置。 In the electric power interchange apparatus of Claim 6,
The storage battery is an electric vehicle storage battery,
The said storage battery specific | specification part is an electric power accommodation apparatus which specifies the storage battery corresponding to the said accommodation request | requirement information further based on the approach degree information to the said other electric power supply area, when the said motor vehicle moves. - 複数の電力供給地域間の電力の融通を蓄電池の輸送と充放電により行う電力融通方法であって、
前記各電力供給地域には少なくとも充放電指令装置とそれに付随する入力データデータベース、充放電指令装置からの出力データを蓄積する出力データベースと電池管理センタから構成される電力融通システムを有し、
前記各地域の電力融通システム間で電力の融通を蓄電池の輸送で行う、電力融通方法。 A power interchange method for performing power interchange between a plurality of power supply areas by transporting and charging / discharging storage batteries,
Each power supply area has at least a charge / discharge command device and an input data database associated therewith, an output database for storing output data from the charge / discharge command device, and a power interchange system comprising a battery management center,
An electric power interchange method for performing electric power interchange between the electric power interchange systems in each region by transporting a storage battery. - 請求項8に記載の電力融通方法において、
充放電指令装置は、少なくとも他の地域からの電力融通要求を取得する充放電要求機能と、自地域から他地域へ充電された蓄電池を輸送するために自地域に存在する蓄電池を選択する電池選択機能、前記電池選択機能からの算出結果を電池ステーションに伝達する指示機能を少なくとも含む、充放電指令装置を有する蓄電池による電力融通方法。 The power interchange method according to claim 8,
The charge / discharge command device has a charge / discharge request function for acquiring at least a power interchange request from another region, and a battery selection for selecting a storage battery existing in the own region in order to transport a charged battery from the own region to another region. A power interchange method using a storage battery having a charge / discharge command device, which includes at least a function and an instruction function for transmitting a calculation result from the battery selection function to a battery station. - 請求項9に記載の電力融通方法において、
充放電指令装置に含まれる電池選択装置は、自地域に存在する蓄電池に蓄積されている電力の由来を仮想的に算出すグリーン電力算出処理機能を有する、充放電指令装置を有する蓄電池による電力融通方法。 The power interchange method according to claim 9,
The battery selection device included in the charge / discharge instruction device has a green power calculation processing function for virtually calculating the origin of the electric power stored in the storage battery existing in the local area, and the power interchange by the storage battery having the charge / discharge instruction device. Method. - 請求項10に記載の電力融通方法において、
充放電指令装置は、少なくとも各地域の電力融通要求を管理し、需給の過不足を検出する取得する需給決定機能と、自地域から他地域へ充電された蓄電池を輸送するために自地域に存在する蓄電池を選択する電池選択機能、前記電池選択機能からの算出結果を電池ステーションに伝達する指示機能を少なくとも含む、充放電指令機能を有する蓄電池による電力融通方法。 The power accommodation method according to claim 10,
The charge / discharge command device manages at least the power interchange request in each region, and obtains the supply and demand decision function to detect the excess and deficiency of supply and demand, and exists in its own region to transport the storage battery charged from its own region to other regions A power interchange method using a storage battery having a charge / discharge command function, including at least a battery selection function for selecting a storage battery to be performed and an instruction function for transmitting a calculation result from the battery selection function to a battery station. - 請求項11に記載の電力融通方法において、
前記充放電指令装置は、少なくとも他の地域からの電力融通要求を取得する充放電要求機能と、自地域から他地域へ充電された蓄電池を輸送するために自地域に存在する蓄電池を選択する電池選択機能、前記電池選択機能からの算出結果を電池ステーションに伝達する指示機能、電気自動車の充放電を実施するための情報を照会する契約照合機能を少なくとも含むことを特徴とする充放電指令装置を有する、各地域の電力融通システム間で電力の融通を電気自動車の移動とそれに搭載されている蓄電池の充放電で行う、電力融通方法。 The power interchange method according to claim 11,
The charge / discharge command device includes a charge / discharge request function for obtaining at least a power interchange request from another area, and a battery for selecting a storage battery existing in the own area in order to transport a storage battery charged from the own area to the other area. A charge / discharge command apparatus comprising at least a selection function, an instruction function for transmitting a calculation result from the battery selection function to a battery station, and a contract verification function for inquiring information for charging / discharging an electric vehicle A power interchange method for performing power interchange between electric power interchange systems in each region by moving an electric vehicle and charging / discharging a storage battery mounted thereon. - 請求項12に記載の電力融通方法において、
前記充放電指令装置に含まれる電池選択装置は、自地域に存在する蓄電池に蓄積されている電力の由来を仮想的に算出すグリーン電力算出処理機能と電気自動車ユーザに電力融通に協力してもらうためのインセンティブ算出処理を有することを特徴とする、各地域の電力融通システム間で電力の融通を電気自動車の移動とそれに搭載されている蓄電池の充放電で行う、電力融通方法。 The power interchange method according to claim 12,
The battery selection device included in the charge / discharge command device has a green power calculation processing function for virtually calculating the origin of the electric power stored in the storage battery existing in its own region and the electric vehicle user cooperates in power interchange. A power interchange method for performing power interchange between electric power interchange systems in each region by moving an electric vehicle and charging / discharging a storage battery mounted on the electric power interchange system. - 請求項8に記載の電力融通方法において、
前記充放電指令装置は、少なくとも他の地域からの電力融通要求を取得する充放電要求機能と、自地域から他地域へ充電された蓄電池を輸送するために自地域に存在する蓄電池を選択する電池選択機能、前記電池選択機能からの算出結果を電池ステーションに伝達する指示機能と、地域電力系統内での盗電量を推定する機能を少なくとも含む、充放電指令装置を有する蓄電池による電力融通方法。 The power interchange method according to claim 8,
The charge / discharge command device includes a charge / discharge request function for obtaining at least a power interchange request from another area, and a battery for selecting a storage battery existing in the own area in order to transport a storage battery charged from the own area to the other area. A power interchange method using a storage battery having a charge / discharge command device, comprising at least a selection function, an instruction function for transmitting a calculation result from the battery selection function to a battery station, and a function for estimating an amount of power theft in a local power system. - 請求項14に記載の電力融通方法において、
前記充放電指令装置は、該盗電量を推定する機能は、状態推定機能と重み係数設定機能と盗電量算出装置を少なくとも含む、充放電指令装置を有する蓄電池による電力融通方法。 The power interchange method according to claim 14,
The charge / discharge command device includes a storage battery having a charge / discharge command device, wherein the function of estimating the power theft includes at least a state estimation function, a weight coefficient setting function, and a power theft calculation device. - 請求項15に記載の電力融通方法において、
前記充放電指令装置は、少なくとも他の地域からの電力融通要求を取得する充放電要求機能と、自地域から他地域へ充電された蓄電池を輸送するために自地域に存在する蓄電池を選択する電池選択機能、前記電池選択機能からの算出結果を電池ステーションに伝達する指示機能と、地域電力系統内での停電を推定する機能を少なくとも含む、充放電指令装置を有する蓄電池による電力融通方法。 The power interchange method according to claim 15, wherein
The charge / discharge command device includes a charge / discharge request function for obtaining at least a power interchange request from another area, and a battery for selecting a storage battery existing in the own area in order to transport a storage battery charged from the own area to the other area. A power interchange method using a storage battery having a charge / discharge command device, comprising at least a selection function, an instruction function for transmitting a calculation result from the battery selection function to a battery station, and a function for estimating a power failure in a local power system.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011225455A JP2013090344A (en) | 2011-10-13 | 2011-10-13 | Power interchange method and power interchange device |
JP2011-225455 | 2011-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013054573A1 true WO2013054573A1 (en) | 2013-04-18 |
Family
ID=48081635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/066865 WO2013054573A1 (en) | 2011-10-13 | 2012-07-02 | Power sharing method and power sharing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013090344A (en) |
WO (1) | WO2013054573A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103839116A (en) * | 2014-03-21 | 2014-06-04 | 国家电网公司 | Transformer substation capacity allocation method based on different power supply areas |
TWI738210B (en) * | 2019-03-11 | 2021-09-01 | 日商歐姆龍股份有限公司 | Monitoring system |
WO2022255406A1 (en) * | 2021-06-04 | 2022-12-08 | パナソニックIpマネジメント株式会社 | Electricity storage device management system |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6311233B2 (en) * | 2013-08-07 | 2018-04-18 | 日産自動車株式会社 | Power management system |
CN103457326B (en) * | 2013-09-09 | 2015-04-08 | 国家电网公司 | Distributed uniting coordination control method of large-scale electric automobile charging load |
JP6337690B2 (en) * | 2014-08-25 | 2018-06-06 | 富士電機株式会社 | Arrangement position calculation device, control method and program for arrangement position calculation device |
KR102373507B1 (en) * | 2014-11-25 | 2022-03-14 | 한국전자통신연구원 | System for Priority-based Hierarchical Asset Management |
KR102440060B1 (en) * | 2014-11-25 | 2022-09-06 | 한국전자통신연구원 | Probabilistic Model-based Distributed Resource Management System and Method thereof |
MY183555A (en) | 2015-03-12 | 2021-02-26 | Omron Tateisi Electronics Co | Excess/deficiency determination device, method for controlling same, control program, and recording medium |
JP6754615B2 (en) * | 2015-07-17 | 2020-09-16 | 積水化学工業株式会社 | Incentive calculation system and control method of incentive calculation system |
JP2017028863A (en) * | 2015-07-22 | 2017-02-02 | 富士電機株式会社 | Power transfer planning device and program |
JP6468372B2 (en) * | 2016-01-18 | 2019-02-13 | 東京電力ホールディングス株式会社 | Theft detection device and program |
WO2019003632A1 (en) * | 2017-06-27 | 2019-01-03 | ソニー株式会社 | Power control apparatus, power control method, and computer program |
JP7206657B2 (en) * | 2017-09-15 | 2023-01-18 | 東京電力ホールディングス株式会社 | POWER THEFT MONITORING SYSTEM, POWER THEFT MONITORING DEVICE, POWER THEFT MONITORING METHOD AND PROGRAM |
WO2019171757A1 (en) * | 2018-03-07 | 2019-09-12 | 本田技研工業株式会社 | Supply-demand management device, program, and supply-demand management method |
JP7339752B2 (en) * | 2019-03-22 | 2023-09-06 | 株式会社日立製作所 | EV management system |
JP7299737B2 (en) * | 2019-04-05 | 2023-06-28 | 株式会社Subaru | Management server and charging system |
WO2023218860A1 (en) * | 2022-05-13 | 2023-11-16 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | Information processing method, information processing device and information processing program |
JP2024126830A (en) * | 2023-03-08 | 2024-09-20 | 株式会社日立ハイテク | Battery pack diagnostic method and diagnostic device |
US20240326631A1 (en) * | 2023-04-01 | 2024-10-03 | Toyota Motor North America, Inc. | Decentralized power exchange |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003209938A (en) * | 2002-01-15 | 2003-07-25 | Yokogawa Electric Corp | Power monitoring system |
WO2008047400A1 (en) * | 2006-10-16 | 2008-04-24 | Vpec, Inc. | Electric power system |
JP2009232670A (en) * | 2008-02-29 | 2009-10-08 | Osaka Gas Co Ltd | Energy supplying system |
WO2011077780A1 (en) * | 2009-12-24 | 2011-06-30 | 株式会社 日立製作所 | Power grid control system using electric vehicle, power grid control apparatus, information distribution apparatus, and information distribution method |
JP2011142779A (en) * | 2010-01-08 | 2011-07-21 | Panasonic Electric Works Co Ltd | Energy delivery system |
JP2011193625A (en) * | 2010-03-15 | 2011-09-29 | Nec Corp | Power controller, power control system, storage battery controlling method, and program |
-
2011
- 2011-10-13 JP JP2011225455A patent/JP2013090344A/en active Pending
-
2012
- 2012-07-02 WO PCT/JP2012/066865 patent/WO2013054573A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003209938A (en) * | 2002-01-15 | 2003-07-25 | Yokogawa Electric Corp | Power monitoring system |
WO2008047400A1 (en) * | 2006-10-16 | 2008-04-24 | Vpec, Inc. | Electric power system |
JP2009232670A (en) * | 2008-02-29 | 2009-10-08 | Osaka Gas Co Ltd | Energy supplying system |
WO2011077780A1 (en) * | 2009-12-24 | 2011-06-30 | 株式会社 日立製作所 | Power grid control system using electric vehicle, power grid control apparatus, information distribution apparatus, and information distribution method |
JP2011142779A (en) * | 2010-01-08 | 2011-07-21 | Panasonic Electric Works Co Ltd | Energy delivery system |
JP2011193625A (en) * | 2010-03-15 | 2011-09-29 | Nec Corp | Power controller, power control system, storage battery controlling method, and program |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103839116A (en) * | 2014-03-21 | 2014-06-04 | 国家电网公司 | Transformer substation capacity allocation method based on different power supply areas |
TWI738210B (en) * | 2019-03-11 | 2021-09-01 | 日商歐姆龍股份有限公司 | Monitoring system |
WO2022255406A1 (en) * | 2021-06-04 | 2022-12-08 | パナソニックIpマネジメント株式会社 | Electricity storage device management system |
Also Published As
Publication number | Publication date |
---|---|
JP2013090344A (en) | 2013-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013054573A1 (en) | Power sharing method and power sharing device | |
Eltoumi et al. | The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations | |
Dufo-López et al. | Techno-economic analysis of grid-connected battery storage | |
JP5529894B2 (en) | Electric power system control system, electric power system control apparatus, information distribution apparatus, and information distribution method using electric vehicle | |
Falvo et al. | Electric vehicles integration in demand response programs | |
US20130096725A1 (en) | Electric Power Control Method, Program, and Electric Power Control Apparatus | |
JP7460422B2 (en) | Energy trading system and management device | |
KR101712944B1 (en) | Apparatus and method for charge and discharge scheduling in energy storage device | |
KR20130022039A (en) | Smart micro-grid operating system and method | |
Zafar et al. | PV-EV integrated home energy management using vehicle-to-home (V2H) technology and household occupant behaviors | |
CN110598904B (en) | Vehicle network energy interaction optimization method considering renewable energy consumption in market environment | |
Nikolaidis et al. | Sustainable services to enhance flexibility in the upcoming smart grids | |
Saboori et al. | Mobile battery‐integrated charging station for reducing electric vehicles charging queue and cost via renewable energy curtailment recovery | |
Naik et al. | Optimization of vehicle-to-grid (V2G) services for development of smart electric grid: A review | |
Zhang et al. | Sustainable plug-in electric vehicle integration into power systems | |
Gottwalt | Managing flexible loads in residential areas | |
Kumar et al. | Reliability oriented techno-economic assessment of fast charging stations with photovoltaic and battery systems in paired distribution & urban network | |
JP2020061800A (en) | Charging method and control device | |
Pelzer | A modular framework for optimizing grid integration of mobile and stationary energy storage in smart grids | |
Blanchard | Smart energy solutions using fuel cells | |
Soares et al. | Assessment of real-time tariffs for electric vehicles in denmark | |
Zhao et al. | Optimal scheduling of home energy management system with plug-in electric vehicles using model predictive control | |
CN114365370A (en) | Regional energy management device and regional energy management method | |
Sah et al. | Smart Charging: An Outlook Towards its Role and Impacts, Enablers, Markets, and the Global Energy System | |
Wei et al. | Cost-effective sizing method of Vehicle-to-Building chargers and energy storage systems during the planning stage of smart micro-grid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12840148 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12840148 Country of ref document: EP Kind code of ref document: A1 |