WO2014030731A1 - Method for producing polyphenol composition - Google Patents

Method for producing polyphenol composition Download PDF

Info

Publication number
WO2014030731A1
WO2014030731A1 PCT/JP2013/072526 JP2013072526W WO2014030731A1 WO 2014030731 A1 WO2014030731 A1 WO 2014030731A1 JP 2013072526 W JP2013072526 W JP 2013072526W WO 2014030731 A1 WO2014030731 A1 WO 2014030731A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenol
protein
soluble
poorly water
water
Prior art date
Application number
PCT/JP2013/072526
Other languages
French (fr)
Japanese (ja)
Inventor
山田 泰司
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2014030731A1 publication Critical patent/WO2014030731A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a method for producing a polyphenol composition having excellent solubility in water.
  • polyphenols are known to have an antioxidant power and are expected to have effects such as anti-arteriosclerosis, anti-allergy and blood flow enhancement, and thus are recognized as important ingredients in health foods.
  • polyphenols are hardly water-soluble, and it is difficult to use them for food and drink.
  • Patent Document 1 a method in which hesperidin glycoside is added to citrus fruit juice and juice drink and then heated to dissolve the contained flavonoid compound.
  • Patent Document 2 A method in which a slightly water-soluble flavonoid and ⁇ -cyclodextrin are heat-treated so that the slightly water-soluble flavonoid is included in ⁇ -cyclodextrin, and then ⁇ -glucosyl hesperidin is allowed to coexist (Patent Document 2); There has been proposed a method (Patent Document 3) in which a slightly soluble flavonoid and soybean saponin and / or malonyl isoflavone glycoside are coexisted and heat-treated to solubilize the flavonoid. In these methods, the heat treatment of the poorly water-soluble polyphenol is performed at around 70 to 90 ° C.
  • Patent Document 4 a technique for solubilizing hesperidin by heat-treating hesperidin and hesperidin sugar adduct at 100 to 180 ° C. in the presence of an aqueous medium is known (Patent Document 4).
  • Patent Documents 5 to 6 techniques for improving sustained release, bitterness / astringency, dispersibility, etc. by blending protein with polyphenol have also been reported.
  • the present invention includes the following steps (1) and (2): (1) a step of heat-treating the poorly water-soluble polyphenol (A) and the protein (B) at 100 to 180 ° C. in the presence of an aqueous medium; (2) A step of spray-drying or freeze-drying the obtained treatment liquid within 300 minutes after completion of the heat treatment, The manufacturing method (henceforth a method) of the polyphenol composition containing this is provided.
  • the present invention also includes the following steps (1) and (2): (1) heat-treating the poorly water-soluble polyphenol (A) at 100 to 180 ° C.
  • Patent Documents 1 to 3 the conventionally known methods for increasing the solubility of poorly water-soluble polyphenols using solubilizing agents such as sugar adducts required the use of a large amount of solubilizing agents. For this reason, only compositions having a low water-soluble polyphenol content are obtained.
  • Patent Document 4 is a technique related to the promotion of solubilization, but an expensive polyphenol glycoside is used as a solubilizer, and a more economical method has been demanded.
  • the techniques of Patent Documents 5 to 6 are techniques for improving sustained release, bitterness / astringency, dispersibility, and the like, and are intended for catechins that are water-soluble polyphenols. There are no disclosures of techniques for applying to poorly water-soluble polyphenols or improving water solubility.
  • the present invention relates to providing a method for efficiently producing a polyphenol composition having a high content of poorly water-soluble polyphenols and excellent solubility in water.
  • the inventors of the present invention have made various studies on the solubilization technique for poorly water-soluble polyphenols.
  • a treatment liquid obtained after adding a protein to the poorly water-soluble polyphenol in the presence of an aqueous medium and heat-treating it in a specific temperature range After spray-drying or freeze-drying or heat-treating the poorly water-soluble polyphenol in a specific temperature range, adding the protein to the resulting treatment liquid and then spray-drying or freeze-drying will reduce the dissolution concentration of the poorly water-soluble polyphenol. It has been found that a polyphenol composition having a high water solubility can be obtained in a high yield, which can be greatly increased and dried while maintaining a high concentration.
  • concentration of the poorly water-soluble polyphenol with respect to water can be increased, and the polyphenol composition which is excellent in solubility with a high yield can be manufactured.
  • the polyphenol composition of the present invention has a good flavor and is useful for various foods and beverages and pharmaceuticals.
  • FIG. 2 is a graph showing the results of powder X-ray diffraction of the polyphenol composition of Example 1.
  • FIG. It is a figure which shows the result of the powder X-ray diffraction of the polyphenol composition of Example 3. It is a figure which shows the result of the powder X-ray diffraction of the polyphenol composition of Example 4. It is a figure which shows the result of the powder X-ray diffraction of the polyphenol composition of the comparative example 1.
  • Step (1) of the method a of the present invention is a step of heat-treating the hardly water-soluble polyphenol (A) and the protein (B) at 100 to 180 ° C. in the presence of an aqueous medium.
  • “poorly water-soluble polyphenol” refers to those having a log P value of ⁇ 1.0 to 4.0.
  • the poorly water-soluble polyphenol preferably has a log P value of ⁇ 0.5 to 3.5.
  • the log P value is a value obtained by taking the common logarithm of the distribution coefficient between 1-octanol / water and is an index indicating the hydrophobicity of an organic compound. The larger the value, the higher the hydrophobicity.
  • the log P value of polyphenol can be measured by a flask shaking method described in Japanese Industrial Standard Z7260-107. Details are described in the examples.
  • the “slightly water-soluble polyphenol” used in the present invention for example, the solubility in water at 25 ° C.
  • solubility represents the number of grams of solute dissolved in 1 L of the solution, and the unit is [g / L].
  • a phenolic substance in which one or more hydroxyl groups and further two or more hydroxyl groups are bonded to the benzene ring can be preferably applied.
  • plant-derived flavonoids, tannins, phenolic acids and the like can be mentioned.
  • poorly water-soluble polyphenols that can be more preferably applied include flavonols, flavanones, flavones, isoflavones, phenol carboxylic acids, anthocyanidins, hydroxycinnamic acid derivatives, ellagic acid and the like.
  • flavonols such as rutin, quercitrin, isoquercitrin, quercetin, myricitrin, myricetin, kaempferol; isoflavones such as daidzein, daidzin, glycitein, glycitin, genistein, genistin; hesperidin, neohesperidin, hesperetin, Flavanones such as naringin; curcumins such as curcumin; flavones such as ringenin, purnin, astragalin, apiin, and apigenin; delphinidin, delphin, nasin, peonidin, peonine, petuninin, malvidin, malvin, enin, cyanidin, leucocyanidine, Anthocyanidins such as cyanine, chrysanthemin, kerocyanin, sacredn, mecocyanin
  • the poorly water-soluble polyphenol may be one type or a mixture of two or more types.
  • the “protein” used in the present invention includes plant protein and animal protein. From the viewpoint that the effect of promoting the solubilization of the component (A) is great, a water-soluble protein is preferable. Specific examples of the water-soluble protein include casein, albumin, methylated collagen, hydrolyzed collagen, water-soluble collagen, gelatin, whey protein, soy protein, egg protein, and the like. Moreover, you may use these partial decomposition products. Of these, whey protein, soy protein, and gelatin are preferable, and whey protein (whey) is more preferable.
  • the aqueous medium used in the present invention means water and an aqueous solution of an organic solvent.
  • water include tap water, distilled water, ion exchange water, and purified water.
  • the organic solvent is not particularly limited as long as it is uniformly mixed with water.
  • alcohol having 4 or less carbon atoms is preferable, methanol and ethanol are more preferable, and ethanol is more preferable from the viewpoint of being applicable to foods.
  • the concentration of the organic solvent in the aqueous medium is preferably 0.1 to 80% by mass (hereinafter simply referred to as “%”), more preferably 1 to 70%, and still more preferably 5 to 60%.
  • the poorly water-soluble polyphenol (A) Since the poorly water-soluble polyphenol (A) has low solubility in water, it is preferably dispersed in an aqueous medium and present in a slurry state.
  • the content of the poorly water-soluble polyphenol (A) in the aqueous medium in the heat treatment varies depending on the kind of the poorly water-soluble polyphenol (A), but is usually preferably 0.1 to 100 g / L from the viewpoint of fluidity. 0.3 to 50 g / L is more preferable, 0.5 to 50 g / L is more preferable, 0.7 to 20 g / L is still more preferable, and 0.72 to 10 g / L is still more preferable.
  • the protein (B) of the present invention is preferably used after being dissolved in an aqueous medium.
  • the content of the protein (B) in the aqueous medium in the heat treatment is preferably 0.1 to 200 g / L, more preferably 0.5 to 100 g / L, from the viewpoint of ensuring the fluidity of the treatment liquid after the heat treatment. It is preferably 1 to 50 g / L, more preferably 1 to 20 g / L.
  • the mass ratio ((A) / (B)) of the poorly water-soluble polyphenol (A) to the protein (B) in the heat treatment step is 0 from the viewpoint of increasing the solubility of the polyphenol composition obtained after the heat treatment and cooling.
  • 0.005 to 10 is preferable, 0.01 to 10 is more preferable, 0.05 to 3 is still more preferable, 0.1 to 2 is still more preferable, and 0.2 to 1 is still more preferable.
  • the method for heat-treating the poorly water-soluble polyphenol (A) and the protein (B) in the presence of an aqueous medium is not particularly limited, and a known method can be applied.
  • the temperature of the heat treatment is 100 to 180 ° C., but is preferably 110 ° C. or higher, more preferably 120 ° C. or higher from the viewpoint of improving the solubility of the poorly water-soluble polyphenol, and from the viewpoint of thermal stability, 170 ° C. or lower, Further, it is preferably 160 ° C. or lower, and more preferably 150 ° C. or lower.
  • 110 to 170 ° C is more preferable, 110 to 150 ° C is more preferable, and 120 to 150 ° C is still more preferable.
  • the heating means include water vapor and electricity.
  • the pressure during the heat treatment is preferably 0 to 10 MPa, more preferably 0.1 to 8 MPa, further preferably 0.1 to 6 MPa, further preferably 0.2 to 6 MPa, and further preferably 0.2 to 4 MPa in terms of gauge pressure.
  • 0.25 to 2 MPa is more preferable, 0.3 to 1.5 MPa is more preferable, and 0.3 to 0.6 MPa is further preferable.
  • Gas may be used for pressurization, and examples of the gas used include inert gas, water vapor, nitrogen gas, helium gas, and the like.
  • the pressurization may be adjusted by a back pressure valve without using gas.
  • the heat treatment can be performed by any method such as a batch method, a semi-batch method, and a flow reaction method.
  • the flow-type reaction method is preferable in that the reaction time can be easily controlled.
  • the time for the heat treatment is preferably 0.1 to 30 minutes after the aqueous medium reaches the set temperature, more preferably 0.2 to 15 minutes, and further 0 to improve the solubility of the poorly water-soluble polyphenol and the heat stability. .5-8 minutes is preferred.
  • the heat treatment time is an average residence time calculated by dividing the volume of the high-temperature and high-pressure part of the reactor by the supply rate of the aqueous medium.
  • the flow rate of the aqueous medium in the case of the flow reaction method varies depending on the volume of the reactor. For example, when the reactor volume is 100 mL, 3.3 to 200 mL / min is preferable, and further 6.7 to 150 mL / min. Is preferred.
  • After the heat treatment it is preferable to perform a step of cooling the obtained treatment liquid to 90 ° C. or less, preferably 50 ° C. or less, more preferably 30 ° C. or less.
  • 0 degreeC or more is preferable and 10 degreeC or more is preferable.
  • the cooling rate of the reaction solution calculated from the time required to decrease from the heat treatment temperature to 90 ° C is 0.1 ° C / s or more, further 0.2 ° C / s or more, further 0.5 ° C / s or more, It is preferably 1 ° C./s or more, more preferably 3 ° C./s or more, and further preferably 5 ° C./s or more.
  • the upper limit of the cooling rate is not particularly defined, but is preferably 100 ° C./s or less, and more preferably 50 ° C./s or less.
  • the method for removing the solid part is not particularly limited, and can be performed by, for example, filter filtration, centrifugation, or decantation.
  • Step (2) of the method a of the present invention is a step of spray-drying or freeze-drying the obtained treatment liquid within 300 minutes after completion of the heat treatment.
  • “Within 300 minutes” after the end of the heat treatment refers to the time from the time when the heat treatment is finished, that is, the time when the treatment liquid obtained in the step (1) falls below 100 ° C. until the start of spray drying or freeze drying. It is.
  • the time from the end of the heat treatment to the start of spray drying or freeze drying is preferably within 240 minutes, more preferably within 150 minutes, further preferably within 0.1 to 150 minutes, from the viewpoint of increasing the yield of polyphenol. 0.1 to 60 minutes is preferable.
  • the method of spray drying or freeze drying is not particularly limited, and a known method can be applied.
  • the treatment liquid in the case of spray drying, can be dried by spraying from a nozzle and dropping it in hot air at 100 to 220 ° C., preferably 130 to 190 ° C.
  • the treatment liquid can be frozen in liquid nitrogen, a cool bath, a freezer, etc., crushed, sieved, and then dried by sublimating moisture in a vacuum.
  • the freezing temperature of the treatment liquid is preferably ⁇ 70 to 0 ° C.
  • the absolute pressure during drying is preferably from 0.1 to 1000 Pa, more preferably from 0.5 to 100 Pa, still more preferably from 1 to 10 Pa. After spray drying or freeze drying, classification, granulation, pulverization, and the like may be performed as necessary.
  • Step (1) of the method b of the present invention is a step of heat-treating the poorly water-soluble polyphenol (A) at 100 to 180 ° C. in the presence of an aqueous medium.
  • Step (1) of method b is carried out under the same conditions except that protein (B) is not added in step (1) of method a. That is, the same conditions as in step (1) of method a are applied to the amount of aqueous medium, heat treatment conditions, and cooling conditions.
  • Step (2) of the method b of the present invention is a step in which the protein (B) is added to the treatment liquid obtained in the step (1) and spray-dried or freeze-dried within 300 minutes after completion of the heat treatment.
  • the protein (B) addition step is performed after the treatment liquid is cooled to preferably 90 ° C. or lower, more preferably 50 ° C. or lower, and still more preferably 30 ° C. or lower.
  • the protein (B) to be used is the same as in step (1) of the a method, and the amount of protein (B) added is also the same as in step (1) of the a method.
  • the protein (B) may be dissolved by adding it to the treatment liquid as a powder, or an aqueous solution in which the protein (B) is dissolved at a high concentration may be mixed with the treatment liquid. From the viewpoint of allowing the protein (B) to be dissolved in a short time, a method of mixing an aqueous solution in which the protein (B) is dissolved in a high concentration with the treatment liquid is preferable.
  • the protein (B) is added within 0 to 240 minutes, preferably within 0 to 180 minutes after completion of the heat treatment.
  • the treatment liquid to which protein (B) has been added is preferably stirred for 0.1 to 10 minutes before being subjected to a drying step.
  • step (2) of the method b it is preferable to perform spray drying or freeze drying within 300 minutes after the completion of the heat treatment as in the step (2) of the method a.
  • the time from the end of the heat treatment to the start of spray drying or freeze drying is preferably within 240 minutes, more preferably within 150 minutes, further preferably within 0.1 to 150 minutes, and further preferably from 0.1 to 150 minutes from the viewpoint of polyphenol yield. 1 to 60 minutes is preferable.
  • the conditions for spray drying and freeze drying are the same as in step (2) of method a.
  • the polyphenol composition thus obtained is in an amorphous state and is extremely excellent in solubility in water.
  • the amorphous refers to a solid substance having no crystallinity.
  • the amorphous state can be confirmed by the fact that a clear diffraction peak is not detected when powder X-ray diffraction is performed.
  • the highest diffraction intensity is the diffraction intensity at the 2 ⁇ position where the highest diffraction intensity is observed when powder X-ray diffraction of the poorly water-soluble polyphenol (A) is performed.
  • the polyphenol composition of the present invention has a ratio of the highest diffraction intensity to the diffraction intensity at a diffraction angle 2 ⁇ of 5 ° in powder X-ray diffraction (the highest diffraction intensity / diffraction angle 2 ⁇ is 5 °). From the viewpoint of initial solubility in water and solubility, it is preferably 12 or less, more preferably 10 or less, further preferably 8 or less, and further preferably 7 or less. As shown in FIG.
  • the ferulic acid composition of the present invention has a diffraction angle 2 ⁇ of powder X-ray diffraction.
  • the ratio of the diffraction intensity when the diffraction angle 2 ⁇ is 15.5 ° to the diffraction intensity when the diffraction angle 2 ⁇ is 5 ° is water. From the viewpoint of the initial solubility and solubility with respect to, it is preferably 12 or less, more preferably 10 or less, further preferably 8 or less, and further preferably 7 or less.
  • the water solubility (25 ° C.) of the poorly water-soluble polyphenol (A) in the obtained polyphenol composition is increased, preferably 3 times or more, more preferably 5 times or more, still more preferably 9 times or more, still more preferably. Increases more than 10 times.
  • the solubility (25 ° C.) of the poorly water-soluble polyphenol (A) in water in the obtained polyphenol composition varies depending on the kind of the poorly water-soluble polyphenol, but is preferably 1 to 50 (g / L), more preferably 1 to 20 (G / L), more preferably 1.2 to 20 (g / L).
  • the content of the poorly water-soluble polyphenol (A) is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, From the viewpoint of storage stability of the polyphenol composition, it is preferably 70% by mass or less, more preferably 60% by mass or less.
  • the content of the hardly water-soluble polyphenol (A) is preferably 5 to 70% by mass, more preferably 5 to 60% by mass, further 10 to 60% by mass, and further preferably 20 to 60% by mass.
  • the content of the protein (B) is preferably 30% by mass or more, more preferably 40% by mass or more, and is 95% by mass or less, further 90% by mass or less, and further 80% by mass or less. It is preferable.
  • the protein (B) content is preferably 30 to 95% by mass, more preferably 40 to 90% by mass, and further preferably 40 to 80% by mass.
  • the polyphenol composition obtained by the production method of the present invention can be used for various foods and beverages and pharmaceuticals.
  • foods and beverages include confectionery such as breads, noodles, cookies, snacks, jelly, dairy products, frozen foods, instant foods such as powdered coffee, processed starch products, processed meat products, other processed foods, seasonings Solid or semi-solid foods and beverages such as food and nutritional supplements.
  • the poorly water-soluble polyphenol (A) is preferably a polyphenol having a logP value of ⁇ 1.0 to 4.0, more preferably a polyphenol having a logP value of 0.5 to 3.5 ⁇ 1> or ⁇ 1>2> manufacturing method.
  • the poorly water-soluble polyphenol (A) is preferably selected from flavonols, flavanones, flavones, isoflavones, phenol carboxylic acids and ellagic acid, more preferably rutin, quercetin, hesperidin, hesperetin, A method for producing ⁇ 1> to ⁇ 3>, which is one or more selected from naringin, glucamine, resveratrol, caffeic acid, ferulic acid and ellagic acid.
  • Protein (B) is preferably one or more selected from casein, albumin, collagens, gelatin, whey protein, soy protein, egg protein, more preferably whey protein, soy protein And a method of producing ⁇ 1> to ⁇ 4>, which is one or more selected from gelatin and more preferably whey protein.
  • aqueous medium is preferably water or an aqueous solution of an organic solvent, more preferably water or an alcohol aqueous solution having 4 or less carbon atoms, and still more preferably water or an aqueous ethanol solution.
  • the aqueous medium is preferably water or a 0.1 to 80% by mass organic solvent aqueous solution, more preferably water or a 1 to 70% by mass organic solvent aqueous solution, still more preferably water or a 5 to 60% by mass organic solvent.
  • ⁇ 1> to ⁇ 6> production method which is an aqueous solution.
  • the content of the poorly water-soluble polyphenol in the aqueous medium in the heat treatment is preferably 0.1 to 100 g / L, more preferably 0.3 to 50 g / L, still more preferably 0.5 to 50 g / L.
  • the content of the protein (B) in the aqueous medium in the heat treatment is preferably 0.1 to 200 g / L, more preferably 0.5 to 100 g / L, still more preferably 1 to 50 g / L, and further
  • the mass ratio ((A) / (B)) of the poorly water-soluble polyphenol (A) to the protein (B) in the heat treatment is preferably 0.005 to 10, more preferably 0.01 to 10.
  • the production method of ⁇ 1> to ⁇ 9> preferably 0.05 to 3, more preferably 0.1 to 2, and still more preferably 0.2 to 1.
  • the temperature of the heat treatment is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 170 ° C. or lower, more preferably 160 ° C. or lower, still more preferably 150 ° C. or lower
  • the pressure during the heat treatment is preferably 0 to 10 MPa in gauge pressure, more preferably 0.1 to 8 MPa, more preferably 0.1 to 6 MPa, still more preferably 0.2 to 6 MPa, and still more preferably 0.
  • the production method of ⁇ 1> to ⁇ 11> which is 2 to 4 MPa, more preferably 0.25 to 2 MPa, more preferably 0.3 to 1.5 MPa, and further preferably 0.3 to 0.6 MPa.
  • the heat treatment time is preferably 0.1 to 30 minutes, more preferably 0.2 to 15 minutes, and further preferably 0.5 to 8 minutes after the aqueous medium reaches the set temperature. > To ⁇ 12> production method.
  • the time from the end of the heat treatment to the start of spray drying or freeze drying is preferably within 240 minutes, more preferably within 150 minutes, more preferably 0.1 to 150 minutes, and still more preferably 0.1 to 150 minutes.
  • the ratio of the highest diffraction intensity to the diffraction intensity when the diffraction angle 2 ⁇ is 5 ° in powder X-ray diffraction is preferably 12 or less. More preferably, it is 10 or less, More preferably, it is 8 or less, More preferably, it is 7 or less, ⁇ 16>
  • the polyphenol composition is preferably 12 or less. More preferably, it is 10 or less, More preferably, it is 8 or less, More preferably, it is 7 or less.
  • the poorly water-soluble polyphenol (A) is ferulic acid, and the ratio of the diffraction intensity at a diffraction angle 2 ⁇ of 15.5 ° to the diffraction intensity at a diffraction angle 2 ⁇ of 5 ° in powder X-ray diffraction (diffraction angle 2 ⁇ ).
  • the diffraction intensity at 15.5 ° / diffraction angle 2 ⁇ is 5 °) is preferably 12 or less, more preferably 10 or less, still more preferably 8 or less, and even more preferably 7 or less ⁇ 16> Polyphenol composition.
  • the mass ratio ((A) / (B)) of the poorly water-soluble polyphenol (A) to the protein (B) is preferably 0.005 to 10, more preferably 0.01 to 10, and still more preferably 0.
  • the content of ⁇ 20> poorly water-soluble polyphenol (A) is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and preferably 70% by mass or less. It is preferably 60% by mass or less, preferably 5 to 70% by mass, more preferably 5 to 60% by mass, further preferably 10 to 60% by mass, and further preferably 20 to 60% by mass.
  • ⁇ 16> ⁇ 19> A polyphenol composition.
  • the content of ⁇ 21> protein (B) is preferably 30% by mass or more, more preferably 40% by mass or more, preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 80%.
  • the polyphenol composition according to ⁇ 16> to ⁇ 20> which is not more than mass%, preferably 30 to 95 mass%, more preferably 40 to 90 mass%, and still more preferably 40 to 80 mass%.
  • the poorly water-soluble polyphenol (A) is preferably selected from flavonols, flavanones, flavones, isoflavones, phenol carboxylic acids and ellagic acid, more preferably rutin, quercetin, hesperidin, hesperetin, ⁇ 16>, ⁇ 17>, ⁇ 19> to ⁇ 21>, a polyphenol composition, which is one or more selected from naringin, glucamine, resveratrol, caffeic acid, ferulic acid and ellagic acid.
  • Protein (B) is preferably one or more selected from casein, albumin, collagens, gelatin, whey protein, soy protein, egg protein, more preferably whey protein, soy protein And a polyphenol composition according to ⁇ 16> to ⁇ 22>, which is one or more selected from gelatin and more preferably whey protein.
  • Quantification of poorly water-soluble polyphenols Quantification of the poorly water-soluble polyphenol was carried out by a gradient method using a high-performance liquid chromatograph manufactured by Hitachi, equipped with an intact column Cadenza CD-C18 (4.6 mm ⁇ ⁇ 150 mm, 3 ⁇ m) and a column temperature of 40 ° C.
  • the mobile phase A solution was 0.05 mol / L acetic acid aqueous solution
  • the B solution was acetonitrile
  • the solution was fed at 1.0 mL / min.
  • the gradient conditions are as follows.
  • the sample injection amount was 10 ⁇ L, detection was determined by absorbance at a wavelength of 320 nm for ferulic acid, a wavelength of 425 nm for curcumin, and other water-insoluble polyphenols at a wavelength of 283 nm.
  • the ellagic acid was quantified using the same apparatus and setting only the gradient conditions as follows.
  • the sample injection amount was 10 ⁇ L and quantified by absorbance at a wavelength of 254 nm.
  • solubility evaluation The solubility of the poorly water-soluble polyphenol in the polyphenol composition is such that a cellulose acetate membrane having a pore diameter of 0.2 ⁇ m is introduced after shaking the polyphenol composition in an amount not completely soluble in pH 1.5 buffer (50 mM HCl / KCl) at 25 ° C. for 5 minutes. It calculated
  • ferulic acid in the case of ferulic acid composition, ferulic acid is 5 g / L, in the case of hesperetin composition and curcumin composition, hesperetin and curcumin are 0.5 g / L, and in the case of ellagic acid composition, ellagic acid is 1 g / L.
  • the polyphenol composition was introduced and evaluated.
  • Example 1 Add 5 g of ferulic acid preparation (manufactured by Tsukino Food Industry Co., Ltd., ferulic acid content 100%) and 5 g of whey (manufactured by Morinaga Milk Industry Co., Ltd., Mirai 80, protein content 80%) to 1250 mL of distilled water and heat.
  • the processing raw material was prepared and stirred uniformly in the slurry supply tank.
  • the liquid in the slurry supply tank was supplied at 100 mL / min to a stainless-steel flow reactor (made by Nitto Koatsu Co., Ltd.) having an internal volume of 100 mL, and heat treatment was performed at 120 ° C. (average residence time 1 minute).
  • the pressure was adjusted to 0.3 MPa (gauge pressure) with an outlet valve.
  • the heat treatment liquid was extracted from the reactor outlet, cooled to room temperature (25 ° C.) with a heat exchanger, and recovered by returning the pressure to atmospheric pressure with an outlet valve.
  • the cooling rate obtained from the cooling time from 120 ° C. to 90 ° C. was 7.06 ° C./s.
  • the treatment liquid was pre-frozen in a -50 ° C. cool bath, and after 10 minutes from the end of the heat treatment, drying under reduced pressure was started by a freeze dryer (ALPHA1-4LSC manufactured by CHRIST).
  • the absolute pressure at this time was 1 Pa. After 72 hours, a polyphenol composition was obtained in the form of a powder.
  • Example 2 The same treatment as in Example 1 was conducted except that 2.5 g of the ferulic acid preparation and 10 g of whey were used.
  • Example 3 A heat treatment liquid was obtained in the same manner as in Example 2. 10 minutes after the end of the heat treatment, the treatment liquid is supplied to a spray dryer (Yamato Scientific Co., Ltd., SPRAY DRYER ADL311S, inlet air temperature 160 ° C., outlet air temperature 70 ° C.) at a flow rate of 6.5 g / min. A polyphenol composition was obtained in the form of a powder.
  • Example 4 Without adding whey, only 2.5 g of ferulic acid preparation was added to 1250 mL of distilled water, heat-treated in the same manner as in Example 2, and cooled to 25 ° C. to obtain a treatment liquid. 10 g of whey was added to 125 g of this treatment liquid, and the mixture was stirred at 25 ° C. for 3 minutes. Then, after pre-freezing in a ⁇ 50 ° C. cool bath, lyophilization was started in the same manner as in Example 1 10 minutes after the end of the heat treatment to obtain a polyphenol composition.
  • Example 5 The same treatment as in Example 1 was conducted except that soy protein powder (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of whey.
  • soy protein powder manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 6 The same treatment as in Example 1 was carried out except that 5 g of the ferulic acid preparation and 20 g of ⁇ -lactoglobulin (manufactured by Sigma-Aldrich) were used instead of whey.
  • Example 7 The same treatment as in Example 1 was conducted except that 5 g of the ferulic acid preparation and 20 g of gelatin (manufactured by Wako Pure Chemical Industries, Ltd.) were used instead of whey.
  • Example 8 The treatment was performed in the same manner as in Example 1 except that lyophilization was started 180 minutes after the end of the heat treatment.
  • Example 9 The treatment was performed in the same manner as in Example 1 except that the heat treatment temperature was 110 ° C.
  • Example 10 The treatment was performed in the same manner as in Example 1 except that the heat treatment temperature was 150 ° C. and the heat treatment pressure was 0.6 MPa.
  • Comparative Example 1 A polyphenol composition was obtained by mixing 5 g of ferulic acid preparation and 5 g of whey with a shell.
  • Comparative Example 2 The treatment was performed in the same manner as in Example 1 except that the heat treatment temperature was 40 ° C. and the gauge pressure was 0 MPa.
  • Comparative Example 3 The same treatment as in Example 1 was conducted except that freeze-drying was started 360 minutes after the end of the heat treatment.
  • Comparative Example 4 The treatment was performed in the same manner as in Example 1 except that the heat treatment temperature was 80 ° C. and the heat treatment pressure was 0 MPa.
  • the polyphenol composition which the solubility with respect to water improved by the method of this invention was able to be obtained.
  • the heating temperature was low even when the protein was added, the solubility of the poorly water-soluble polyphenol was not so improved.
  • the polyphenol composition obtained in the example was in an amorphous state with no clear diffraction peak detected in powder X-ray diffraction.
  • Ratio of the diffraction intensity when the diffraction angle 2 ⁇ is 15.5 ° with respect to the diffraction intensity when the diffraction angle 2 ⁇ of the polyphenol compositions of Examples 1, 3, 4 and Comparative Example 1 is 5 ° (the diffraction angle 2 ⁇ is The diffraction intensity at 15.5 ° / diffraction angle 2 ⁇ at 5 ° is (FIG. 1-a) 72.6, (FIG. 1-b) 10.9, (FIG. 1-c) 7 0.0, (Fig. 1-d) 6.5 and (Fig. 1-e) 23.0.
  • Example 11 Using 1.25 g of Hesperetin (manufactured by Wako Pure Chemical Industries, Ltd.) and 5 g of whey, the hot water treatment was performed in the same manner as in Example 1. After cooling, the treatment solution was passed through a sintered filter having a pore diameter of 7 ⁇ m to remove undissolved solids, and freeze-dried in the same manner as in Example 1 to obtain a polyphenol composition. Hesperetin in the powder composition was 11.1%.
  • Comparative Example 5 1.11 g of hesperetin and 8.89 g of whey were mixed with a medicine basket to obtain a polyphenol composition.
  • Example 12 A polyphenol composition was obtained in the same manner as in Example 11 except that gelatin was used instead of whey. Hesperetin in the powder was 12.4%.
  • Comparative Example 6 A polyphenol composition was obtained by mixing 1.24 g of hesperetin and 8.76 g of gelatin with a shell.
  • Example 13 A polyphenol composition was obtained in the same manner as in Example 12 except that curcumin (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of hesperetin. Curcumin in the powder was 11.4%.
  • Example 14 Using hot water treatment in the same manner as in Example 1, 0.5 g of ellagic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd., ellagic acid content 89%) and 4.5 g of whey were used. After cooling, the pressure was returned to atmospheric pressure with an outlet valve, and the heat treatment liquid was recovered and freeze-dried in the same manner as in Example 1 to obtain a polyphenol composition. Ellagic acid in the powder composition was 8.9%.
  • Comparative Example 8 A polyphenol composition was obtained by mixing 0.5 g of ellagic acid dihydrate and 4.5 g of whey with a medicine basket.
  • Table 2 shows the results of Examples and Comparative Examples. In the polyphenol composition obtained in the examples, no clear diffraction peak was detected in powder X-ray diffraction, and the composition was in an amorphous state.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Pulmonology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

Provided is a method for efficiently producing an exceptionally water-soluble polyphenol composition containing a large quantity of poorly-water-soluble polyphenol. A method for producing a polyphenol composition, comprising (1) a step for heat-treating a poorly water-soluble polyphenol (A) and a protein (B) at 100-180°C in the presence of an aqueous medium; and (2) a step for spray-drying or freeze-drying the treated solution within 300 minutes after the heat treatment has concluded.

Description

ポリフェノール組成物の製造方法Method for producing polyphenol composition
 本発明は、水への溶解性に優れるポリフェノール組成物の製造方法に関する。 The present invention relates to a method for producing a polyphenol composition having excellent solubility in water.
 昨今、生理機能を有する様々な素材が提案され、これらを含有する数多くの健康食品が上市されている。なかでも、ポリフェノールは、抗酸化力を有することが知られており、抗動脈硬化、抗アレルギー、血流増強等の効果が期待されるため、健康食品の重要な成分として認識されている。
 しかしながら、ポリフェノールには難水溶性のものが多く、それらを飲食品等へ使用することは難しい。
Recently, various materials having physiological functions have been proposed, and many health foods containing these have been put on the market. Among them, polyphenols are known to have an antioxidant power and are expected to have effects such as anti-arteriosclerosis, anti-allergy and blood flow enhancement, and thus are recognized as important ingredients in health foods.
However, many polyphenols are hardly water-soluble, and it is difficult to use them for food and drink.
 そこで、難水溶性ポリフェノールを水に可溶化させる技術が検討され、例えば、ヘスペリジン配糖体を柑橘果汁ならびに果汁飲料に添加ののち加熱し、含まれているフラボノイド化合物を溶解する方法(特許文献1);難水溶性フラボイドとβ-サイクロデキストリンを加熱処理して難水溶性フラボノイドをβ-サイクロデキストリンに包接させた後、α-グルコシルヘスペリジンを共存させる方法(特許文献2);水性媒体中に難溶性のフラボノイドと大豆サポニン及び/又はマロニルイソフラボン配糖体を共存させ、加熱処理してフラボノイドを可溶化させる方法(特許文献3)が提案されている。これらの方法において、難水溶性ポリフェノールの加熱処理は、70~90℃前後で行われている。 Therefore, a technique for solubilizing poorly water-soluble polyphenols in water has been studied. For example, a method in which hesperidin glycoside is added to citrus fruit juice and juice drink and then heated to dissolve the contained flavonoid compound (Patent Document 1). ); A method in which a slightly water-soluble flavonoid and β-cyclodextrin are heat-treated so that the slightly water-soluble flavonoid is included in β-cyclodextrin, and then α-glucosyl hesperidin is allowed to coexist (Patent Document 2); There has been proposed a method (Patent Document 3) in which a slightly soluble flavonoid and soybean saponin and / or malonyl isoflavone glycoside are coexisted and heat-treated to solubilize the flavonoid. In these methods, the heat treatment of the poorly water-soluble polyphenol is performed at around 70 to 90 ° C.
 また、水性媒体の存在下、ヘスペリジン及びヘスペリジン糖付加物を100~180℃で加熱処理して、ヘスペリジンを可溶化する技術が知られている(特許文献4)。 In addition, a technique for solubilizing hesperidin by heat-treating hesperidin and hesperidin sugar adduct at 100 to 180 ° C. in the presence of an aqueous medium is known (Patent Document 4).
 一方、ポリフェノールにタンパク質を配合することにより徐放性、苦味・渋み、分散性等を改善する技術も報告されている(特許文献5~6)。 On the other hand, techniques for improving sustained release, bitterness / astringency, dispersibility, etc. by blending protein with polyphenol have also been reported (Patent Documents 5 to 6).
特開2000-236856号公報JP 2000-236856 A 特開2008-271839号公報JP 2008-271839 A 国際公開第2005/003112号パンフレットInternational Publication No. 2005/003112 Pamphlet 特開2012-17322号公報JP 2012-17322 A 特開2005-124540号公報JP 2005-124540 A 特開2007-8920号公報JP 2007-8920 A
 本発明は、次の工程(1)及び(2):
(1)水性媒体の存在下、難水溶性ポリフェノール(A)とタンパク質(B)を100~180℃で加熱処理する工程、
(2)加熱処理終了後300分以内に、得られた処理液を噴霧乾燥又は凍結乾燥する工程、
を含む、ポリフェノール組成物の製造方法(以下、a法という)を提供するものである。
 また、本発明は、次の工程(1)及び(2):
(1)水性媒体の存在下、難水溶性ポリフェノール(A)を100~180℃で加熱処理する工程、
(2)加熱処理終了後300分以内に、得られた処理液にタンパク質(B)を加えて噴霧乾燥又は凍結乾燥する工程、
を含む、ポリフェノール組成物の製造方法(以下、b法という)を提供するものである。
 さらに本発明は、上記の製造方法により得られる、ポリフェノール組成物を提供するものである。
The present invention includes the following steps (1) and (2):
(1) a step of heat-treating the poorly water-soluble polyphenol (A) and the protein (B) at 100 to 180 ° C. in the presence of an aqueous medium;
(2) A step of spray-drying or freeze-drying the obtained treatment liquid within 300 minutes after completion of the heat treatment,
The manufacturing method (henceforth a method) of the polyphenol composition containing this is provided.
The present invention also includes the following steps (1) and (2):
(1) heat-treating the poorly water-soluble polyphenol (A) at 100 to 180 ° C. in the presence of an aqueous medium;
(2) A step of adding the protein (B) to the obtained treatment liquid and spray drying or freeze drying within 300 minutes after completion of the heat treatment,
The manufacturing method (henceforth b method) of the polyphenol composition containing this is provided.
Furthermore, this invention provides the polyphenol composition obtained by said manufacturing method.
発明の詳細な説明Detailed Description of the Invention
 特許文献1~3のように、従来知られている糖付加物等の可溶化剤を用いて難水溶性ポリフェノールの溶解度を高める方法は、可溶化剤を多量に使用する必要があった。このため、難水溶性ポリフェノール含有量が低い組成物しか得られていない。特許文献4は可溶化の促進にかかる技術であるが、可溶化剤として高価であるポリフェノール配糖体を使用しており、より経済的な方法が求められていた。
 また、特許文献5~6の技術は、徐放性、苦味・渋み、分散性等を改善する技術であり、水溶性ポリフェノールであるカテキン類等を対象とするものである。難水溶性ポリフェノールへの適用や水溶性を高めようとする技術の開示はない。
As in Patent Documents 1 to 3, the conventionally known methods for increasing the solubility of poorly water-soluble polyphenols using solubilizing agents such as sugar adducts required the use of a large amount of solubilizing agents. For this reason, only compositions having a low water-soluble polyphenol content are obtained. Patent Document 4 is a technique related to the promotion of solubilization, but an expensive polyphenol glycoside is used as a solubilizer, and a more economical method has been demanded.
The techniques of Patent Documents 5 to 6 are techniques for improving sustained release, bitterness / astringency, dispersibility, and the like, and are intended for catechins that are water-soluble polyphenols. There are no disclosures of techniques for applying to poorly water-soluble polyphenols or improving water solubility.
 したがって、本発明は、難水溶性ポリフェノールの含有量が高く、かつ水への溶解性に優れるポリフェノール組成物を効率よく製造する方法を提供することに関する。 Therefore, the present invention relates to providing a method for efficiently producing a polyphenol composition having a high content of poorly water-soluble polyphenols and excellent solubility in water.
 本発明者らは、難水溶性ポリフェノールの可溶化技術について種々検討したところ、水性媒体の存在下、難水溶性ポリフェノールにタンパク質を加えて特定の温度範囲で加熱処理した後に、得られた処理液を噴霧乾燥又は凍結乾燥するか、又は難水溶性ポリフェノールを特定の温度範囲で加熱処理した後に、得られた処理液にタンパク質を加えて噴霧乾燥又は凍結乾燥すると、難水溶性ポリフェノールの溶解濃度を大幅に高め、かつ高濃度を維持したまま乾燥することができ、水溶性に優れたポリフェノール組成物を高収率で得られることを見出した。 The inventors of the present invention have made various studies on the solubilization technique for poorly water-soluble polyphenols. As a result, a treatment liquid obtained after adding a protein to the poorly water-soluble polyphenol in the presence of an aqueous medium and heat-treating it in a specific temperature range. After spray-drying or freeze-drying or heat-treating the poorly water-soluble polyphenol in a specific temperature range, adding the protein to the resulting treatment liquid and then spray-drying or freeze-drying will reduce the dissolution concentration of the poorly water-soluble polyphenol. It has been found that a polyphenol composition having a high water solubility can be obtained in a high yield, which can be greatly increased and dried while maintaining a high concentration.
 本発明によれば、水に対する難水溶性ポリフェノールの溶解濃度を増加させることができ、高収率で溶解性に優れるポリフェノール組成物を製造することができる。
 本発明のポリフェノール組成物は、風味が良好であり、様々な飲食品や医薬品に有用である。
ADVANTAGE OF THE INVENTION According to this invention, the melt | dissolution density | concentration of the poorly water-soluble polyphenol with respect to water can be increased, and the polyphenol composition which is excellent in solubility with a high yield can be manufactured.
The polyphenol composition of the present invention has a good flavor and is useful for various foods and beverages and pharmaceuticals.
フェルラ酸の粉末X線回折の結果を示す図である。It is a figure which shows the result of the powder X-ray diffraction of ferulic acid. 実施例1のポリフェノール組成物の粉末X線回折の結果を示す図である。2 is a graph showing the results of powder X-ray diffraction of the polyphenol composition of Example 1. FIG. 実施例3のポリフェノール組成物の粉末X線回折の結果を示す図である。It is a figure which shows the result of the powder X-ray diffraction of the polyphenol composition of Example 3. 実施例4のポリフェノール組成物の粉末X線回折の結果を示す図である。It is a figure which shows the result of the powder X-ray diffraction of the polyphenol composition of Example 4. 比較例1のポリフェノール組成物の粉末X線回折の結果を示す図である。It is a figure which shows the result of the powder X-ray diffraction of the polyphenol composition of the comparative example 1.
 本発明a法の工程(1)は、水性媒体の存在下、難水溶性ポリフェノール(A)とタンパク質(B)を100~180℃で加熱処理する工程である。 Step (1) of the method a of the present invention is a step of heat-treating the hardly water-soluble polyphenol (A) and the protein (B) at 100 to 180 ° C. in the presence of an aqueous medium.
 本明細書において「難水溶性ポリフェノール」とは、logP値が-1.0~4.0のものを云う。難水溶性ポリフェノールは、logP値が-0.5~3.5のものが好ましい。logP値は、1-オクタノール/水間の分配係数の常用対数をとった値で、有機化合物の疎水性を示す指標である。この値が正に大きい程疎水性が高いことを表す。ポリフェノールのlogP値は、日本工業規格 Z7260-107記載のフラスコ振盪法により測定できる。詳細は実施例に記載した。
 また、本発明で用いられる「難水溶性ポリフェノール」としては、例えば、水に対する25℃での溶解度が2.0g/L以下、更に1.0g/L以下、更に0.8g/L以下であるものが好ましく適用できる。ここで溶解度は、溶液1L中に溶解している溶質のグラム数を表し、単位は[g/L]である。
In the present specification, “poorly water-soluble polyphenol” refers to those having a log P value of −1.0 to 4.0. The poorly water-soluble polyphenol preferably has a log P value of −0.5 to 3.5. The log P value is a value obtained by taking the common logarithm of the distribution coefficient between 1-octanol / water and is an index indicating the hydrophobicity of an organic compound. The larger the value, the higher the hydrophobicity. The log P value of polyphenol can be measured by a flask shaking method described in Japanese Industrial Standard Z7260-107. Details are described in the examples.
In addition, as the “slightly water-soluble polyphenol” used in the present invention, for example, the solubility in water at 25 ° C. is 2.0 g / L or less, further 1.0 g / L or less, and further 0.8 g / L or less. Those are preferably applicable. Here, the solubility represents the number of grams of solute dissolved in 1 L of the solution, and the unit is [g / L].
 難水溶性ポリフェノール(A)としては、ベンゼン環にヒドロキシル基が1個以上、更に2個以上結合したフェノール性物質が好ましく適用できる。例えば、植物由来のフラボノイド、タンニン、フェノール酸等が挙げられる。より好ましく適用できる難水溶性ポリフェノールとしては、フラボノール類、フラバノン類、フラボン類、イソフラボン類、フェノールカルボン酸類、アントシアニジン類、ヒドロキシケイ皮酸誘導体、エラグ酸等が挙げられる。
 具体的には、ルチン、ケルシトリン、イソケルシトリン、ケルセチン、ミリシトリン、ミリセチン、ケンフェロール等のフラボノール類;ダイゼイン、ダイジン、グリシテイン、グリシチン、ゲニステイン、ゲニスチン等のイソフラボン類;ヘスペリジン、ネオヘスペリジン、ヘスペレチン、ナリンギン等のフラバノン類;クルクミン等のクルクミン類;リンゲニン、プルニン、アストラガリン、アピイン、アピゲニン等のフラボン類;デルフィニジン、デルフィン、ナスニン、ペオニジン、ペオニン、ペツニン、マルビジン、マルビン、エニン、シアニジン、ロイコシアニジン、シアニン、クリサンテミン、ケラシアニン、イデイン、メコシアニン、ペラルゴニジン、カリステフィン等のアントシアニジン類;レスベラトロール、カフェ酸、フェルラ酸、p-クマル酸等のヒドロキシケイ皮酸誘導体;エラグ酸が挙げられる。なかでも、ルチン、ケルセチン、ヘスペリジン、ヘスペレチン、ナリンギン、クルクミン、レスベラトロール、カフェ酸、フェルラ酸、エラグ酸が好ましい。難水溶性ポリフェノールは、1種であっても、2種以上の混合物であってもよい。
As the poorly water-soluble polyphenol (A), a phenolic substance in which one or more hydroxyl groups and further two or more hydroxyl groups are bonded to the benzene ring can be preferably applied. For example, plant-derived flavonoids, tannins, phenolic acids and the like can be mentioned. Examples of poorly water-soluble polyphenols that can be more preferably applied include flavonols, flavanones, flavones, isoflavones, phenol carboxylic acids, anthocyanidins, hydroxycinnamic acid derivatives, ellagic acid and the like.
Specifically, flavonols such as rutin, quercitrin, isoquercitrin, quercetin, myricitrin, myricetin, kaempferol; isoflavones such as daidzein, daidzin, glycitein, glycitin, genistein, genistin; hesperidin, neohesperidin, hesperetin, Flavanones such as naringin; curcumins such as curcumin; flavones such as ringenin, purnin, astragalin, apiin, and apigenin; delphinidin, delphin, nasin, peonidin, peonine, petuninin, malvidin, malvin, enin, cyanidin, leucocyanidine, Anthocyanidins such as cyanine, chrysanthemin, kerocyanin, idein, mecocyanin, pelargonidin, and calisterfin; resveratrol, caffeic acid It includes ellagic acid; ferulic acid, hydroxycinnamic acid derivatives such as p- coumaric acid. Of these, rutin, quercetin, hesperidin, hesperetin, naringin, curcumin, resveratrol, caffeic acid, ferulic acid and ellagic acid are preferred. The poorly water-soluble polyphenol may be one type or a mixture of two or more types.
 本発明で用いられる「タンパク質」には、植物性タンパク質及び動物性タンパク質が含まれる。(A)成分の可溶化を促進する効果が大きいという観点より、水溶性タンパク質が好ましい。具体的には、水溶性タンパク質として、カゼイン、アルブミン、メチル化コラーゲン、加水分解コラーゲン、水溶性コラーゲン、ゼラチン、乳清タンパク質、大豆タンパク質、卵タンパク質等が挙げられる。また、これらの部分分解物を用いてもよい。このうち、乳清タンパク質、大豆タンパク質、ゼラチンが好ましく、更に乳清タンパク質(ホエイ)が好ましい。 The “protein” used in the present invention includes plant protein and animal protein. From the viewpoint that the effect of promoting the solubilization of the component (A) is great, a water-soluble protein is preferable. Specific examples of the water-soluble protein include casein, albumin, methylated collagen, hydrolyzed collagen, water-soluble collagen, gelatin, whey protein, soy protein, egg protein, and the like. Moreover, you may use these partial decomposition products. Of these, whey protein, soy protein, and gelatin are preferable, and whey protein (whey) is more preferable.
 本発明で用いる水性媒体とは、水、及び有機溶媒の水溶液をいう。水としては、水道水、蒸留水、イオン交換水、精製水が例示される。有機溶媒としては、水と均一に混合するものであれば特に限定されない。有機溶媒としては炭素数4以下のアルコールが好ましく、メタノール及びエタノールがより好ましく、食品に適用可能であるという観点よりエタノールが更に好ましい。水性媒体中の有機溶媒の濃度は、0.1~80質量%(以下、単に「%」とする)が好ましく、1~70%がより好ましく、5~60%が更に好ましい。 The aqueous medium used in the present invention means water and an aqueous solution of an organic solvent. Examples of water include tap water, distilled water, ion exchange water, and purified water. The organic solvent is not particularly limited as long as it is uniformly mixed with water. As the organic solvent, alcohol having 4 or less carbon atoms is preferable, methanol and ethanol are more preferable, and ethanol is more preferable from the viewpoint of being applicable to foods. The concentration of the organic solvent in the aqueous medium is preferably 0.1 to 80% by mass (hereinafter simply referred to as “%”), more preferably 1 to 70%, and still more preferably 5 to 60%.
 難水溶性ポリフェノール(A)は水への溶解度が低いため、水性媒体へ分散させ、スラリーの状態で存在させるのが好ましい。加熱処理における水性媒体中の難水溶性ポリフェノール(A)の含有量は、難水溶性ポリフェノール(A)の種類によって異なるが、通常、流動性の点から、0.1~100g/Lが好ましく、0.3~50g/Lがより好ましく、0.5~50g/Lがより好ましく、0.7~20g/Lが更に好ましく、0.72~10g/Lが更に好ましい。 Since the poorly water-soluble polyphenol (A) has low solubility in water, it is preferably dispersed in an aqueous medium and present in a slurry state. The content of the poorly water-soluble polyphenol (A) in the aqueous medium in the heat treatment varies depending on the kind of the poorly water-soluble polyphenol (A), but is usually preferably 0.1 to 100 g / L from the viewpoint of fluidity. 0.3 to 50 g / L is more preferable, 0.5 to 50 g / L is more preferable, 0.7 to 20 g / L is still more preferable, and 0.72 to 10 g / L is still more preferable.
 一方、本発明のタンパク質(B)は水性媒体に溶解して用いるのが好ましい。加熱処理における水性媒体中のタンパク質(B)の含有量は、加熱処理後の処理液の流動性を確保する観点から、0.1~200g/Lが好ましく、0.5~100g/Lがより好ましく、1~50g/Lが更に好ましく、1~20g/Lが更に好ましい。 On the other hand, the protein (B) of the present invention is preferably used after being dissolved in an aqueous medium. The content of the protein (B) in the aqueous medium in the heat treatment is preferably 0.1 to 200 g / L, more preferably 0.5 to 100 g / L, from the viewpoint of ensuring the fluidity of the treatment liquid after the heat treatment. It is preferably 1 to 50 g / L, more preferably 1 to 20 g / L.
 加熱処理する工程におけるタンパク質(B)に対する難水溶性ポリフェノール(A)の質量比((A)/(B))は、加熱処理、冷却後に得られるポリフェノール組成物の溶解性を高める観点から、0.005~10が好ましく、0.01~10がより好ましく、0.05~3が更に好ましく、0.1~2が更に好ましく、0.2~1が更に好ましい。 The mass ratio ((A) / (B)) of the poorly water-soluble polyphenol (A) to the protein (B) in the heat treatment step is 0 from the viewpoint of increasing the solubility of the polyphenol composition obtained after the heat treatment and cooling. 0.005 to 10 is preferable, 0.01 to 10 is more preferable, 0.05 to 3 is still more preferable, 0.1 to 2 is still more preferable, and 0.2 to 1 is still more preferable.
 水性媒体の存在下、難水溶性ポリフェノール(A)とタンパク質(B)を加熱処理する方法は、特に制限されず、公知の方法を適用できる。
 加熱処理の温度は、100~180℃であるが、難水溶性ポリフェノールの溶解性向上の点から、110℃以上、更に120℃以上が好ましく、また、熱安定性の点から、170℃以下、更に160℃以下、更に150℃以下が好ましい。また、難水溶性ポリフェノールの溶解性向上と熱安定性の点から、110~170℃がより好ましく、110~150℃がより好ましく、120~150℃が更に好ましい。加熱の手段は、例えば、水蒸気、電気が挙げられる。
The method for heat-treating the poorly water-soluble polyphenol (A) and the protein (B) in the presence of an aqueous medium is not particularly limited, and a known method can be applied.
The temperature of the heat treatment is 100 to 180 ° C., but is preferably 110 ° C. or higher, more preferably 120 ° C. or higher from the viewpoint of improving the solubility of the poorly water-soluble polyphenol, and from the viewpoint of thermal stability, 170 ° C. or lower, Further, it is preferably 160 ° C. or lower, and more preferably 150 ° C. or lower. Further, from the viewpoint of improving the solubility of the poorly water-soluble polyphenol and the thermal stability, 110 to 170 ° C is more preferable, 110 to 150 ° C is more preferable, and 120 to 150 ° C is still more preferable. Examples of the heating means include water vapor and electricity.
 加熱処理時の圧力は、ゲージ圧力で0~10MPaが好ましく、0.1~8MPaがより好ましく、0.1~6MPaが更に好ましく、0.2~6MPaが更に好ましく、0.2~4MPaが更に好ましく、0.25~2MPaが更に好ましく、0.3~1.5MPaが更に好ましく、0.3~0.6MPaが更に好ましい。また、水の飽和蒸気圧以上に設定するのが好ましい。加圧には、ガスを用いてもよく、用いられるガスとしては、例えば、不活性ガス、水蒸気、窒素ガス、ヘリウムガス等が挙げられる。加圧には、ガスを用いず、背圧弁により調整しても良い。 The pressure during the heat treatment is preferably 0 to 10 MPa, more preferably 0.1 to 8 MPa, further preferably 0.1 to 6 MPa, further preferably 0.2 to 6 MPa, and further preferably 0.2 to 4 MPa in terms of gauge pressure. Preferably, 0.25 to 2 MPa is more preferable, 0.3 to 1.5 MPa is more preferable, and 0.3 to 0.6 MPa is further preferable. Moreover, it is preferable to set it more than the saturated vapor pressure of water. Gas may be used for pressurization, and examples of the gas used include inert gas, water vapor, nitrogen gas, helium gas, and the like. The pressurization may be adjusted by a back pressure valve without using gas.
 加熱処理は、例えば、回分法、半回分法、流通式反応方法等いずれの方法によっても実施できる。なかでも、流通式反応方法は、反応時間の制御が容易である点で好ましい。 The heat treatment can be performed by any method such as a batch method, a semi-batch method, and a flow reaction method. Among these, the flow-type reaction method is preferable in that the reaction time can be easily controlled.
 加熱処理の時間は、難水溶性ポリフェノールの溶解性向上と熱安定性の点から、水性媒体が設定温度に達してから0.1~30分が好ましく、更に0.2~15分、更に0.5~8分が好ましい。
 流通式反応方式で行う場合、加熱処理の時間は、反応器の高温高圧部の体積を水性媒体の供給速度で割ることにより算出される平均滞留時間を用いる。
The time for the heat treatment is preferably 0.1 to 30 minutes after the aqueous medium reaches the set temperature, more preferably 0.2 to 15 minutes, and further 0 to improve the solubility of the poorly water-soluble polyphenol and the heat stability. .5-8 minutes is preferred.
In the case of the flow reaction method, the heat treatment time is an average residence time calculated by dividing the volume of the high-temperature and high-pressure part of the reactor by the supply rate of the aqueous medium.
 流通式反応方式で行う場合の水性媒体の流速は、反応器の体積によって異なるが、例えば、反応器体積が100mLの場合、3.3~200mL/分が好ましく、更に6.7~150mL/分が好ましい。
 加熱処理後、得られた処理液を90℃以下、好ましくは50℃以下、更に好ましくは30℃以下に冷却する工程を行うのが好ましい。液状のポリフェノール組成物を得る場合には、0℃以上が好ましく、10℃以上が好ましい。
 加熱処理温度から90℃まで低下するのに要した時間から算出される反応液の冷却速度は0.1℃/s以上、更に0.2℃/s以上、更に0.5℃/s以上、1℃/s以上、更に3℃/s以上、更に5℃/s以上が好ましい。冷却速度が大きいほど溶解度を改善することができる。このため、冷却速度の上限は特に定めないが、例えば100℃/s以下、更に50℃/s以下が好ましい。
 更に、反応液から固体部を除去する工程を行うのが、得られるポリフェノール組成物の溶解性を高める点から好ましい。固体部を除去する方法としては、特に制限されず、例えばフィルターろ過や遠心分離やデカンテーションにより行うことができる。
The flow rate of the aqueous medium in the case of the flow reaction method varies depending on the volume of the reactor. For example, when the reactor volume is 100 mL, 3.3 to 200 mL / min is preferable, and further 6.7 to 150 mL / min. Is preferred.
After the heat treatment, it is preferable to perform a step of cooling the obtained treatment liquid to 90 ° C. or less, preferably 50 ° C. or less, more preferably 30 ° C. or less. When obtaining a liquid polyphenol composition, 0 degreeC or more is preferable and 10 degreeC or more is preferable.
The cooling rate of the reaction solution calculated from the time required to decrease from the heat treatment temperature to 90 ° C is 0.1 ° C / s or more, further 0.2 ° C / s or more, further 0.5 ° C / s or more, It is preferably 1 ° C./s or more, more preferably 3 ° C./s or more, and further preferably 5 ° C./s or more. The greater the cooling rate, the better the solubility. For this reason, the upper limit of the cooling rate is not particularly defined, but is preferably 100 ° C./s or less, and more preferably 50 ° C./s or less.
Furthermore, it is preferable to perform the process of removing a solid part from a reaction liquid from the point which improves the solubility of the polyphenol composition obtained. The method for removing the solid part is not particularly limited, and can be performed by, for example, filter filtration, centrifugation, or decantation.
 本発明a法の工程(2)は、加熱処理終了後300分以内に、得られた処理液を噴霧乾燥又は凍結乾燥する工程である。
 加熱処理終了後「300分以内」とは、加熱処理が終了した時点、すなわち工程(1)で得られた処理液が100℃未満に下がった時点から、噴霧乾燥又は凍結乾燥の開始までの時間である。加熱処理終了後から噴霧乾燥又は凍結乾燥の開始までの時間は、ポリフェノールの収率を高める観点から、240分以内が好ましく、150分以内がより好ましく、更に0.1~150分が好ましく、更に0.1~60分が好ましい。
Step (2) of the method a of the present invention is a step of spray-drying or freeze-drying the obtained treatment liquid within 300 minutes after completion of the heat treatment.
“Within 300 minutes” after the end of the heat treatment refers to the time from the time when the heat treatment is finished, that is, the time when the treatment liquid obtained in the step (1) falls below 100 ° C. until the start of spray drying or freeze drying. It is. The time from the end of the heat treatment to the start of spray drying or freeze drying is preferably within 240 minutes, more preferably within 150 minutes, further preferably within 0.1 to 150 minutes, from the viewpoint of increasing the yield of polyphenol. 0.1 to 60 minutes is preferable.
 噴霧乾燥又は凍結乾燥の方法は、特に制限されず、公知の方法を適用できる。
 例えば、噴霧乾燥の場合、処理液をノズルからスプレーし、100~220℃、好ましくは130~190℃の熱風中を落下させることにより、乾燥することができる。
 また、凍結乾燥の場合、処理液を液体窒素やクールバス、冷凍庫等で凍結し、粉砕し、篩別したのち真空で水分を昇華させて、乾燥することができる。処理液の凍結温度は-70~0℃が好ましい。乾燥中の絶対圧力は0.1~1000Paが好ましく、0.5~100Paがより好ましく、1~10Paが更に好ましい。
 噴霧乾燥又は凍結乾燥後、必要に応じて、分級、造粒、粉砕等を行ってもよい。
The method of spray drying or freeze drying is not particularly limited, and a known method can be applied.
For example, in the case of spray drying, the treatment liquid can be dried by spraying from a nozzle and dropping it in hot air at 100 to 220 ° C., preferably 130 to 190 ° C.
In the case of lyophilization, the treatment liquid can be frozen in liquid nitrogen, a cool bath, a freezer, etc., crushed, sieved, and then dried by sublimating moisture in a vacuum. The freezing temperature of the treatment liquid is preferably −70 to 0 ° C. The absolute pressure during drying is preferably from 0.1 to 1000 Pa, more preferably from 0.5 to 100 Pa, still more preferably from 1 to 10 Pa.
After spray drying or freeze drying, classification, granulation, pulverization, and the like may be performed as necessary.
 本発明b法の工程(1)は、水性媒体の存在下、難水溶性ポリフェノール(A)を100~180℃で加熱処理する工程である。
 b法の工程(1)は、a法の工程(1)において、タンパク質(B)を添加しないことを除けば、同じ条件で行なわれる。すなわち、水性媒体の量、加熱処理条件、及び冷却条件は、前記a法の工程(1)と同じ条件が適用される。
Step (1) of the method b of the present invention is a step of heat-treating the poorly water-soluble polyphenol (A) at 100 to 180 ° C. in the presence of an aqueous medium.
Step (1) of method b is carried out under the same conditions except that protein (B) is not added in step (1) of method a. That is, the same conditions as in step (1) of method a are applied to the amount of aqueous medium, heat treatment conditions, and cooling conditions.
 本発明b法の工程(2)は、加熱処理終了後300分以内に、工程(1)で得られた処理液にタンパク質(B)を加えて噴霧乾燥又は凍結乾燥する工程である。タンパク質(B)の添加工程は処理液を好ましくは90℃以下に、より好ましくは50℃以下に、更に好ましくは30℃以下に冷却した後で行われる。 Step (2) of the method b of the present invention is a step in which the protein (B) is added to the treatment liquid obtained in the step (1) and spray-dried or freeze-dried within 300 minutes after completion of the heat treatment. The protein (B) addition step is performed after the treatment liquid is cooled to preferably 90 ° C. or lower, more preferably 50 ° C. or lower, and still more preferably 30 ° C. or lower.
 ここで、用いるタンパク質(B)は前記a法の工程(1)と同様であり、タンパク質(B)の添加量もa法の工程(1)と同様である。タンパク質(B)は粉体のまま処理液に添加して溶解してもよく、また、タンパク質(B)を高濃度に溶解した水溶液を処理液に混合してもよい。タンパク質(B)の溶解を短時間で実施できる観点から、タンパク質(B)を高濃度に溶解した水溶液を処理液に混合する方法が好ましい。タンパク質(B)の添加は、加熱処理終了後、0~240分以内、好ましくは0~180分以内に行うのがよい。タンパク質(B)を添加した処理液は0.1~10分攪拌してから乾燥工程に供するのが望ましい。 Here, the protein (B) to be used is the same as in step (1) of the a method, and the amount of protein (B) added is also the same as in step (1) of the a method. The protein (B) may be dissolved by adding it to the treatment liquid as a powder, or an aqueous solution in which the protein (B) is dissolved at a high concentration may be mixed with the treatment liquid. From the viewpoint of allowing the protein (B) to be dissolved in a short time, a method of mixing an aqueous solution in which the protein (B) is dissolved in a high concentration with the treatment liquid is preferable. The protein (B) is added within 0 to 240 minutes, preferably within 0 to 180 minutes after completion of the heat treatment. The treatment liquid to which protein (B) has been added is preferably stirred for 0.1 to 10 minutes before being subjected to a drying step.
 b法の工程(2)においても、a法の工程(2)と同様に加熱処理終了後300分以内に噴霧乾燥又は凍結乾燥を行うのが好ましい。加熱処理終了後から噴霧乾燥又は凍結乾燥の開始までの時間は、ポリフェノール収率の点から、240分以内が好ましく、150分以内がより好ましく、更に0.1~150分が好ましく、更に0.1~60分が好ましい。
 また、タンパク質(B)を添加後300分以内、好ましくは180分以内、より好ましくは120分以内、さらに好ましくは60分以内に噴霧乾燥又は凍結乾燥を開始することが望ましい。噴霧乾燥及び凍結乾燥の条件も前記a法の工程(2)と同様である。
Also in the step (2) of the method b, it is preferable to perform spray drying or freeze drying within 300 minutes after the completion of the heat treatment as in the step (2) of the method a. The time from the end of the heat treatment to the start of spray drying or freeze drying is preferably within 240 minutes, more preferably within 150 minutes, further preferably within 0.1 to 150 minutes, and further preferably from 0.1 to 150 minutes from the viewpoint of polyphenol yield. 1 to 60 minutes is preferable.
In addition, it is desirable to start spray drying or freeze drying within 300 minutes, preferably within 180 minutes, more preferably within 120 minutes, and even more preferably within 60 minutes after the addition of protein (B). The conditions for spray drying and freeze drying are the same as in step (2) of method a.
 かくして得られるポリフェノール組成物は、アモルファス状態であり、水への溶解性に極めて優れる。ここで、アモルファスとは、結晶性を持たない固体物質を指す。アモルファス状態は粉末X線回折を行った場合に明瞭な回折ピークが検出されないことで確認できる。
 本発明においては、粉末X線回折における回折角2θが5°での回折強度に対する最高強度の回折強度の比によりポリフェノール組成物のアモルファス状態を確認するのが好ましい。最高強度の回折強度は、難水溶性ポリフェノール(A)の粉末X線回折を行った場合に最も高い回折強度が観察される2θの位置における回折強度である。
 本発明のポリフェノール組成物は、粉末X線回折における回折角2θが5°での回折強度に対する最高強度の回折強度の比(最高強度の回折強度/回折角2θが5°での回折強度)が、水に対する初期溶解度、及び溶解性の点から、12以下であることが好ましく、更に10以下が好ましく、更に8以下であることが好ましく、更に7以下であることが好ましい。
 図1-aに示すように、フェルラ酸の場合は回折角2θが15.5°において最も高い回折強度が観察されるので、本発明のフェルラ酸組成物は、粉末X線回折における回折角2θが5°での回折強度に対する回折角2θが15.5°での回折強度の比(回折角2θが15.5°での回折強度/回折角2θが5°での回折強度)が、水に対する初期溶解度、及び溶解性の点から、12以下であることが好ましく、更に10以下が好ましく、更に8以下であることが好ましく、更に7以下であることが好ましい。
The polyphenol composition thus obtained is in an amorphous state and is extremely excellent in solubility in water. Here, the amorphous refers to a solid substance having no crystallinity. The amorphous state can be confirmed by the fact that a clear diffraction peak is not detected when powder X-ray diffraction is performed.
In the present invention, it is preferable to confirm the amorphous state of the polyphenol composition by the ratio of the highest diffraction intensity to the diffraction intensity at a diffraction angle 2θ of 5 ° in powder X-ray diffraction. The highest diffraction intensity is the diffraction intensity at the 2θ position where the highest diffraction intensity is observed when powder X-ray diffraction of the poorly water-soluble polyphenol (A) is performed.
The polyphenol composition of the present invention has a ratio of the highest diffraction intensity to the diffraction intensity at a diffraction angle 2θ of 5 ° in powder X-ray diffraction (the highest diffraction intensity / diffraction angle 2θ is 5 °). From the viewpoint of initial solubility in water and solubility, it is preferably 12 or less, more preferably 10 or less, further preferably 8 or less, and further preferably 7 or less.
As shown in FIG. 1-a, in the case of ferulic acid, the highest diffraction intensity is observed at a diffraction angle 2θ of 15.5 °. Therefore, the ferulic acid composition of the present invention has a diffraction angle 2θ of powder X-ray diffraction. The ratio of the diffraction intensity when the diffraction angle 2θ is 15.5 ° to the diffraction intensity when the diffraction angle 2θ is 5 ° (the diffraction intensity when the diffraction angle 2θ is 15.5 ° / the diffraction intensity when the diffraction angle 2θ is 5 °) is water. From the viewpoint of the initial solubility and solubility with respect to, it is preferably 12 or less, more preferably 10 or less, further preferably 8 or less, and further preferably 7 or less.
 即ち、得られたポリフェノール組成物における難水溶性ポリフェノール(A)の水に対する溶解度(25℃)が増加し、好ましくは3倍以上、より好ましくは5倍以上、更に好ましくは9倍以上、更に好ましくは10倍以上増加する。得られるポリフェノール組成物における難水溶性ポリフェノール(A)の水に対する溶解度(25℃)は、難水溶性ポリフェノールの種類によって異なるが、好ましくは1~50(g/L)、より好ましくは1~20(g/L)、更に好ましくは1.2~20(g/L)である。 That is, the water solubility (25 ° C.) of the poorly water-soluble polyphenol (A) in the obtained polyphenol composition is increased, preferably 3 times or more, more preferably 5 times or more, still more preferably 9 times or more, still more preferably. Increases more than 10 times. The solubility (25 ° C.) of the poorly water-soluble polyphenol (A) in water in the obtained polyphenol composition varies depending on the kind of the poorly water-soluble polyphenol, but is preferably 1 to 50 (g / L), more preferably 1 to 20 (G / L), more preferably 1.2 to 20 (g / L).
 ポリフェノール組成物中、難水溶性ポリフェノール(A)の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、また、ポリフェノール組成物の保存安定性の点から70質量%以下、更に60質量%以下であることが好ましい。また、難水溶性ポリフェノール(A)の含有量は、5~70質量%、更に5~60質量%、更に10~60質量%、更に20~60質量%であることが好ましい。 In the polyphenol composition, the content of the poorly water-soluble polyphenol (A) is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, From the viewpoint of storage stability of the polyphenol composition, it is preferably 70% by mass or less, more preferably 60% by mass or less. The content of the hardly water-soluble polyphenol (A) is preferably 5 to 70% by mass, more preferably 5 to 60% by mass, further 10 to 60% by mass, and further preferably 20 to 60% by mass.
 ポリフェノール組成物中、タンパク質(B)の含有量は、30質量%以上、更に40質量%以上であることが好ましく、また、95質量%以下、更に90質量%以下、更に80質量%以下であることが好ましい。また、タンパク質(B)の含有量は、30~95質量%、更に40~90質量%、更に40~80質量%であることが好ましい。 In the polyphenol composition, the content of the protein (B) is preferably 30% by mass or more, more preferably 40% by mass or more, and is 95% by mass or less, further 90% by mass or less, and further 80% by mass or less. It is preferable. The protein (B) content is preferably 30 to 95% by mass, more preferably 40 to 90% by mass, and further preferably 40 to 80% by mass.
 本発明の製造方法で得られたポリフェノール組成物は、様々な飲食品や医薬品等に使用することができる。例えば、飲食品としては、パン類、麺類、クッキー等の菓子類、スナック類、ゼリー類、乳製品、冷凍食品、粉末コーヒー等のインスタント食品、でんぷん加工製品、加工肉製品、その他加工食品、調味料、栄養補助食品等の固形状又は半固形状の飲食品が挙げられる。 The polyphenol composition obtained by the production method of the present invention can be used for various foods and beverages and pharmaceuticals. For example, foods and beverages include confectionery such as breads, noodles, cookies, snacks, jelly, dairy products, frozen foods, instant foods such as powdered coffee, processed starch products, processed meat products, other processed foods, seasonings Solid or semi-solid foods and beverages such as food and nutritional supplements.
 次に本発明の態様及び好ましい態様を示す。 Next, embodiments and preferred embodiments of the present invention will be shown.
<1>次の工程(1)及び(2):
(1)水性媒体の存在下、難水溶性ポリフェノール(A)とタンパク質(B)を100~180℃で加熱処理する工程、
(2)加熱処理終了後300分以内に、得られた処理液を噴霧乾燥又は凍結乾燥する工程、
を含む、ポリフェノール組成物の製造方法。
<1> Next steps (1) and (2):
(1) a step of heat-treating the poorly water-soluble polyphenol (A) and the protein (B) at 100 to 180 ° C. in the presence of an aqueous medium;
(2) A step of spray-drying or freeze-drying the obtained treatment liquid within 300 minutes after completion of the heat treatment,
A process for producing a polyphenol composition, comprising:
<2>次の工程(1)及び(2):
(1)水性媒体の存在下、難水溶性ポリフェノール(A)を100~180℃で加熱処理する工程、
(2)加熱処理終了後300分以内に、得られた処理液にタンパク質(B)を加えて噴霧乾燥又は凍結乾燥する工程、
を含む、ポリフェノール組成物の製造方法。
<2> Next steps (1) and (2):
(1) heat-treating the poorly water-soluble polyphenol (A) at 100 to 180 ° C. in the presence of an aqueous medium;
(2) A step of adding the protein (B) to the obtained treatment liquid and spray drying or freeze drying within 300 minutes after completion of the heat treatment,
A process for producing a polyphenol composition, comprising:
<3>難水溶性ポリフェノール(A)が、好ましくはlogP値が-1.0~4.0のポリフェノール、より好ましくはlogP値が0.5~3.5のポリフェノールである<1>又は<2>の製造方法。
<4>難水溶性ポリフェノール(A)が、好ましくはフラボノール類、フラバノン類、フラボン類、イソフラボン類、フェノールカルボン酸類及びエラグ酸から選ばれるものであり、より好ましくはルチン、ケルセチン、ヘスペリジン、ヘスペレチン、ナリンギン、グルクミン、レスベラトロール、カフェ酸、フェラル酸及びエラグ酸から選ばれる1種又は2種以上である<1>~<3>の製造方法。
<5>タンパク質(B)が、好ましくはカゼイン、アルブミン、コラーゲン類、ゼラチン、乳清タンパク質、大豆タンパク質、卵タンパク質から選ばれる1種又は2種以上であり、より好ましくは乳清タンパク質、大豆タンパク質及びゼラチンから選ばれる1種又は2種以上であり、更に好ましくは乳清タンパク質である<1>~<4>の製造方法。
<6>水性媒体が、好ましくは水又は有機溶媒の水溶液であり、より好ましくは水又は炭素数4以下のアルコール水溶液、更に好ましくは水又はエタノール水溶液である<1>~<5>の製造方法。
<7>水性媒体が、好ましくは水又は0.1~80質量%有機溶媒水溶液であり、より好ましくは水又は1~70質量%有機溶媒水溶液、更に好ましくは水又は5~60質量%有機溶媒水溶液である<1>~<6>の製造方法。
<8>加熱処理における水性媒体中の難水溶性ポリフェノールの含有量が、好ましくは0.1~100g/L、より好ましくは0.3~50g/L、更に好ましくは0.5~50g/L、更に好ましくは0.7~20g/L、更に好ましくは0.72~10g/Lである<1>~<7>の製造方法。
<9>加熱処理における水性媒体中のタンパク質(B)の含有量が、好ましくは0.1~200g/L、より好ましくは0.5~100g/L、更に好ましくは1~50g/L、更に好ましくは1~20g/Lである<1>、<3>~<8>の製造方法。
<10>加熱処理におけるタンパク質(B)に対する難水溶性ポリフェノール(A)の質量比((A)/(B))が、好ましくは0.005~10、より好ましくは0.01~10、より好ましくは0.05~3、更に好ましくは0.1~2、更に好ましくは0.2~1である<1>~<9>の製造方法。
<11>加熱処理の温度が、好ましくは110℃以上、より好ましくは120℃以上であり、また、好ましくは170℃以下、より好ましくは160℃以下、更に好ましくは150℃以下であり、また、好ましくは110~170℃、より好ましくは120~160℃、更に好ましくは120~150℃である<1>~<10>の製造方法。
<12>加熱処理時の圧力が、好ましくはゲージ圧力で0~10MPa、より好ましくは0.1~8MPa、より好ましくは0.1~6MPa、更に好ましくは0.2~6MPa、更に好ましくは0.2~4MPa、更に好ましくは0.25~2MPa、更に好ましくは0.3~1.5MPa、更に好ましくは0.3~0.6MPaである<1>~<11>の製造方法。
<13>加熱処理の時間が、水性媒体が設定温度に達してから好ましくは0.1~30分、より好ましくは0.2~15分、更に好ましくは0.5~8分である<1>~<12>の製造方法。
<14>加熱処理終了後から噴霧乾燥又は凍結乾燥の開始までの時間が、好ましくは240分以内、より好ましくは150分以内、より好ましくは0.1~150分、更に好ましくは0.1~60分である<1>~<13>の製造方法。
<15><1>~<14>のいずれかの製造方法により得られるポリフェノール組成物。
<16>難水溶性ポリフェノール(A)とタンパク質(B)を含有するポリフェノール組成物であって、アモルファス状態であるポリフェノール組成物。
<17>粉末X線回折における回折角2θが5°での回折強度に対する最高強度の回折強度の比(最高強度の回折強度/回折角2θが5°での回折強度)が、好ましくは12以下、より好ましくは10以下、更に好ましくは8以下、更に好ましくは7以下である<16>のポリフェノール組成物。
<18>難水溶性ポリフェノール(A)がフェルラ酸であり、粉末X線回折における回折角2θが5°での回折強度に対する回折角2θが15.5°での回折強度の比(回折角2θが15.5°での回折強度/回折角2θが5°での回折強度)が、好ましくは12以下、より好ましくは10以下、更に好ましくは8以下、更に好ましくは7以下である<16>のポリフェノール組成物。
<19>タンパク質(B)に対する難水溶性ポリフェノール(A)の質量比((A)/(B))が、好ましくは0.005~10、より好ましくは0.01~10、更に好ましくは0.05~3、更に好ましくは0.1~2、更に好ましくは0.2~1である<16>~<18>のポリフェノール組成物。
<20>難水溶性ポリフェノール(A)の含有量が、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、また、好ましくは70質量%以下、より好ましくは60質量%以下であり、また、好ましくは5~70質量%、より好ましくは5~60質量%、更に好ましくは10~60質量%、更に好ましくは20~60質量%である<16>~<19>のポリフェノール組成物。
<21>タンパク質(B)の含有量が、好ましくは30質量%以上、より好ましくは40質量%以上であり、また、好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは80質量%以下であり、また、好ましくは30~95質量%、より好ましくは40~90質量%、更に好ましくは40~80質量%である<16>~<20>のポリフェノール組成物。
<22>難水溶性ポリフェノール(A)が、好ましくはフラボノール類、フラバノン類、フラボン類、イソフラボン類、フェノールカルボン酸類及びエラグ酸から選ばれるものであり、より好ましくはルチン、ケルセチン、ヘスペリジン、ヘスペレチン、ナリンギン、グルクミン、レスベラトロール、カフェ酸、フェラル酸及びエラグ酸から選ばれる1種又は2種以上である<16>、<17>、<19>~<21>のポリフェノール組成物。
<23>タンパク質(B)が、好ましくはカゼイン、アルブミン、コラーゲン類、ゼラチン、乳清タンパク質、大豆タンパク質、卵タンパク質から選ばれる1種又は2種以上であり、より好ましくは乳清タンパク質、大豆タンパク質及びゼラチンから選ばれる1種又は2種以上であり、更に好ましくは乳清タンパク質である<16>~<22>のポリフェノール組成物。
<3> The poorly water-soluble polyphenol (A) is preferably a polyphenol having a logP value of −1.0 to 4.0, more preferably a polyphenol having a logP value of 0.5 to 3.5 <1> or <1>2> manufacturing method.
<4> The poorly water-soluble polyphenol (A) is preferably selected from flavonols, flavanones, flavones, isoflavones, phenol carboxylic acids and ellagic acid, more preferably rutin, quercetin, hesperidin, hesperetin, A method for producing <1> to <3>, which is one or more selected from naringin, glucamine, resveratrol, caffeic acid, ferulic acid and ellagic acid.
<5> Protein (B) is preferably one or more selected from casein, albumin, collagens, gelatin, whey protein, soy protein, egg protein, more preferably whey protein, soy protein And a method of producing <1> to <4>, which is one or more selected from gelatin and more preferably whey protein.
<6> The method according to <1> to <5>, wherein the aqueous medium is preferably water or an aqueous solution of an organic solvent, more preferably water or an alcohol aqueous solution having 4 or less carbon atoms, and still more preferably water or an aqueous ethanol solution. .
<7> The aqueous medium is preferably water or a 0.1 to 80% by mass organic solvent aqueous solution, more preferably water or a 1 to 70% by mass organic solvent aqueous solution, still more preferably water or a 5 to 60% by mass organic solvent. <1> to <6> production method which is an aqueous solution.
<8> The content of the poorly water-soluble polyphenol in the aqueous medium in the heat treatment is preferably 0.1 to 100 g / L, more preferably 0.3 to 50 g / L, still more preferably 0.5 to 50 g / L. The production method of <1> to <7>, more preferably 0.7 to 20 g / L, and still more preferably 0.72 to 10 g / L.
<9> The content of the protein (B) in the aqueous medium in the heat treatment is preferably 0.1 to 200 g / L, more preferably 0.5 to 100 g / L, still more preferably 1 to 50 g / L, and further The production method of <1>, <3> to <8>, preferably 1 to 20 g / L.
<10> The mass ratio ((A) / (B)) of the poorly water-soluble polyphenol (A) to the protein (B) in the heat treatment is preferably 0.005 to 10, more preferably 0.01 to 10. The production method of <1> to <9>, preferably 0.05 to 3, more preferably 0.1 to 2, and still more preferably 0.2 to 1.
<11> The temperature of the heat treatment is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, preferably 170 ° C. or lower, more preferably 160 ° C. or lower, still more preferably 150 ° C. or lower, The production method of <1> to <10>, preferably 110 to 170 ° C., more preferably 120 to 160 ° C., and still more preferably 120 to 150 ° C.
<12> The pressure during the heat treatment is preferably 0 to 10 MPa in gauge pressure, more preferably 0.1 to 8 MPa, more preferably 0.1 to 6 MPa, still more preferably 0.2 to 6 MPa, and still more preferably 0. The production method of <1> to <11>, which is 2 to 4 MPa, more preferably 0.25 to 2 MPa, more preferably 0.3 to 1.5 MPa, and further preferably 0.3 to 0.6 MPa.
<13> The heat treatment time is preferably 0.1 to 30 minutes, more preferably 0.2 to 15 minutes, and further preferably 0.5 to 8 minutes after the aqueous medium reaches the set temperature. > To <12> production method.
<14> The time from the end of the heat treatment to the start of spray drying or freeze drying is preferably within 240 minutes, more preferably within 150 minutes, more preferably 0.1 to 150 minutes, and still more preferably 0.1 to 150 minutes. <1> to <13> production method of 60 minutes.
<15> A polyphenol composition obtained by the production method according to any one of <1> to <14>.
<16> A polyphenol composition containing a poorly water-soluble polyphenol (A) and a protein (B), which is in an amorphous state.
<17> The ratio of the highest diffraction intensity to the diffraction intensity when the diffraction angle 2θ is 5 ° in powder X-ray diffraction (the highest diffraction intensity / diffraction angle 2θ is 5 °) is preferably 12 or less. More preferably, it is 10 or less, More preferably, it is 8 or less, More preferably, it is 7 or less, <16> The polyphenol composition.
<18> The poorly water-soluble polyphenol (A) is ferulic acid, and the ratio of the diffraction intensity at a diffraction angle 2θ of 15.5 ° to the diffraction intensity at a diffraction angle 2θ of 5 ° in powder X-ray diffraction (diffraction angle 2θ The diffraction intensity at 15.5 ° / diffraction angle 2θ is 5 °) is preferably 12 or less, more preferably 10 or less, still more preferably 8 or less, and even more preferably 7 or less <16> Polyphenol composition.
<19> The mass ratio ((A) / (B)) of the poorly water-soluble polyphenol (A) to the protein (B) is preferably 0.005 to 10, more preferably 0.01 to 10, and still more preferably 0. The polyphenol composition according to <16> to <18>, which is 0.05 to 3, more preferably 0.1 to 2, more preferably 0.2 to 1.
The content of <20> poorly water-soluble polyphenol (A) is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 20% by mass or more, and preferably 70% by mass or less. It is preferably 60% by mass or less, preferably 5 to 70% by mass, more preferably 5 to 60% by mass, further preferably 10 to 60% by mass, and further preferably 20 to 60% by mass. <16><19> A polyphenol composition.
The content of <21> protein (B) is preferably 30% by mass or more, more preferably 40% by mass or more, preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 80%. The polyphenol composition according to <16> to <20>, which is not more than mass%, preferably 30 to 95 mass%, more preferably 40 to 90 mass%, and still more preferably 40 to 80 mass%.
<22> The poorly water-soluble polyphenol (A) is preferably selected from flavonols, flavanones, flavones, isoflavones, phenol carboxylic acids and ellagic acid, more preferably rutin, quercetin, hesperidin, hesperetin, <16>, <17>, <19> to <21>, a polyphenol composition, which is one or more selected from naringin, glucamine, resveratrol, caffeic acid, ferulic acid and ellagic acid.
<23> Protein (B) is preferably one or more selected from casein, albumin, collagens, gelatin, whey protein, soy protein, egg protein, more preferably whey protein, soy protein And a polyphenol composition according to <16> to <22>, which is one or more selected from gelatin and more preferably whey protein.
[難水溶性ポリフェノールの定量]
 難水溶性ポリフェノールの定量は、日立製作所製高速液体クロマトグラフを用い、インタクト社製カラムCadenza CD-C18 (4.6mmφ×150mm、3μm)を装着し、カラム温度40℃でグラジエント法により行った。移動相A液は0.05mol/L酢酸水溶液、B液はアセトニトリルとし、1.0mL/分で送液した。グラジエント条件は以下のとおりである。
  時間(分)  A液(%)  B液(%)
   0      85     15
  20      80     20
  35      10     90
  50      10     90
  50.1    85     15
  60      85     15
 試料注入量は10μL、検出はフェルラ酸は波長320nm、クルクミンは波長425nm、その他の難水溶性ポリフェノールは波長283nmの吸光度により定量した。

 また、エラグ酸の定量は、同じ装置を用いてグラジエント条件のみを以下のように設定して行った。
  時間(分)  A液(%)   B液(%)
   0      99      1
  10      90     10
  20      85     15
  40      10     90
  50      10     90
  50.1    85     15
  60      85     15
 試料注入量は10μL、波長254nmの吸光度により定量した。
[Quantification of poorly water-soluble polyphenols]
Quantification of the poorly water-soluble polyphenol was carried out by a gradient method using a high-performance liquid chromatograph manufactured by Hitachi, equipped with an intact column Cadenza CD-C18 (4.6 mmφ × 150 mm, 3 μm) and a column temperature of 40 ° C. The mobile phase A solution was 0.05 mol / L acetic acid aqueous solution, the B solution was acetonitrile, and the solution was fed at 1.0 mL / min. The gradient conditions are as follows.
Time (min) A liquid (%) B liquid (%)
0 85 15
20 80 20
35 10 90
50 10 90
50.1 85 15
60 85 15
The sample injection amount was 10 μL, detection was determined by absorbance at a wavelength of 320 nm for ferulic acid, a wavelength of 425 nm for curcumin, and other water-insoluble polyphenols at a wavelength of 283 nm.

The ellagic acid was quantified using the same apparatus and setting only the gradient conditions as follows.
Time (min) A liquid (%) B liquid (%)
0 99 1
10 90 10
20 85 15
40 10 90
50 10 90
50.1 85 15
60 85 15
The sample injection amount was 10 μL and quantified by absorbance at a wavelength of 254 nm.
[難水溶性ポリフェノールのlogP値の測定]
 日本工業規格 Z7260-107記載のフラスコ振盪法に従って測定した。まず1-オクタノールと蒸留水を25℃で24時間振とうして平衡化させた。次いで蓋付きガラス瓶にポリフェノール10mgを量りとり、平衡化させた1-オクタノールと蒸留水をそれぞれ4mLずつ加え、25℃で4日間振とうした。遠心分離により1-オクタノール相と水相を分け、上記[難水溶性ポリフェノールの測定]と同様にしてHPLCにより各相のポリフェノール濃度を測定した。2相間の分配係数の常用対数を取った値をlogP値とした。
[Measurement of log P value of poorly water-soluble polyphenol]
It was measured according to the flask shaking method described in Japanese Industrial Standard Z7260-107. First, 1-octanol and distilled water were equilibrated by shaking at 25 ° C. for 24 hours. Next, 10 mg of polyphenol was weighed into a glass bottle with a lid, 4 mL each of 1-octanol and distilled water equilibrated were added, and the mixture was shaken at 25 ° C. for 4 days. The 1-octanol phase and the aqueous phase were separated by centrifugation, and the polyphenol concentration of each phase was measured by HPLC in the same manner as in the above [Measurement of poorly water-soluble polyphenol]. The value obtained by taking the common logarithm of the distribution coefficient between the two phases was defined as the logP value.
[溶解性評価]
 ポリフェノール組成物における難水溶性ポリフェノールの溶解性は、pH1.5buffer(50mM HCl/KCl)に溶けきれない量のポリフェノール組成物を投入し、25℃で5分振盪後に孔径0.2μmのセルロースアセテートメンブレンフィルターでろ過して溶解濃度を測定することで求めた。例えば、フェルラ酸組成物の場合はフェルラ酸が5g/L、ヘスペレチン組成物およびクルクミン組成物の場合はヘスペレチンおよびクルクミンが0.5g/L、エラグ酸組成物の場合はエラグ酸が1g/Lになるようにポリフェノール組成物を投入して評価した。
[Solubility evaluation]
The solubility of the poorly water-soluble polyphenol in the polyphenol composition is such that a cellulose acetate membrane having a pore diameter of 0.2 μm is introduced after shaking the polyphenol composition in an amount not completely soluble in pH 1.5 buffer (50 mM HCl / KCl) at 25 ° C. for 5 minutes. It calculated | required by filtering with a filter and measuring melt | dissolution density | concentration. For example, in the case of ferulic acid composition, ferulic acid is 5 g / L, in the case of hesperetin composition and curcumin composition, hesperetin and curcumin are 0.5 g / L, and in the case of ellagic acid composition, ellagic acid is 1 g / L. The polyphenol composition was introduced and evaluated.
[粉末X線回折分析]
 粉末X線回折強度は、株式会社リガク製の「Rigaku RINT 2500VC X-RAY diffractometer」を用いて以下の条件で測定した。
 X線源:Cu/Kα-radiation,管電圧:40kv,管電流:120mA,測定範囲:2θ=5~45°。測定用サンプルは面積320mm×厚さ1mmのペレットを圧縮し作製した。X線のスキャンスピードは10°/min。
[Powder X-ray diffraction analysis]
The powder X-ray diffraction intensity was measured using “Rigaku RINT 2500VC X-RAY diffractometer” manufactured by Rigaku Corporation under the following conditions.
X-ray source: Cu / Kα-radiation, tube voltage: 40 kv, tube current: 120 mA, measurement range: 2θ = 5 to 45 °. The measurement sample was prepared by compressing a pellet having an area of 320 mm 2 × thickness of 1 mm. X-ray scanning speed is 10 ° / min.
実施例1
 フェルラ酸製剤(築野食品工業(株)製、フェルラ酸含有量100%)5gとホエー(森永乳業(株)製、ミライ80、タンパク質含有量80%)5gとを蒸留水1250mLに加え、加熱処理原料を調製し、スラリー供給タンク内で均一攪拌した。内容積100mLのステンレス製流通式反応器(日東高圧(株)製)に、スラリー供給タンク内の液を100mL/分で供給し、120℃で加熱処理を行った(平均滞留時間1分)。圧力は出口バルブにより0.3MPa(ゲージ圧力)に調整した。反応器出口から加熱処理液を抜き出し、熱交換器により室温(25℃)まで冷却し、出口バルブで圧力を大気圧に戻して回収した。120℃から90℃までの冷却時間から求めた冷却速度は7.06℃/sであった。
 処理液を-50℃のクールバスで予備凍結した後、加熱処理終了時点から10分後に凍結乾燥機(CHRIST社製ALPHA1-4LSC)により減圧乾燥を開始した。このときの絶対圧力は1Paであった。72時間後に粉末の形態にてポリフェノール組成物を得た。
Example 1
Add 5 g of ferulic acid preparation (manufactured by Tsukino Food Industry Co., Ltd., ferulic acid content 100%) and 5 g of whey (manufactured by Morinaga Milk Industry Co., Ltd., Mirai 80, protein content 80%) to 1250 mL of distilled water and heat. The processing raw material was prepared and stirred uniformly in the slurry supply tank. The liquid in the slurry supply tank was supplied at 100 mL / min to a stainless-steel flow reactor (made by Nitto Koatsu Co., Ltd.) having an internal volume of 100 mL, and heat treatment was performed at 120 ° C. (average residence time 1 minute). The pressure was adjusted to 0.3 MPa (gauge pressure) with an outlet valve. The heat treatment liquid was extracted from the reactor outlet, cooled to room temperature (25 ° C.) with a heat exchanger, and recovered by returning the pressure to atmospheric pressure with an outlet valve. The cooling rate obtained from the cooling time from 120 ° C. to 90 ° C. was 7.06 ° C./s.
The treatment liquid was pre-frozen in a -50 ° C. cool bath, and after 10 minutes from the end of the heat treatment, drying under reduced pressure was started by a freeze dryer (ALPHA1-4LSC manufactured by CHRIST). The absolute pressure at this time was 1 Pa. After 72 hours, a polyphenol composition was obtained in the form of a powder.
実施例2
 フェルラ酸製剤を2.5g、ホエーを10gとした以外は実施例1と同様に処理した。
Example 2
The same treatment as in Example 1 was conducted except that 2.5 g of the ferulic acid preparation and 10 g of whey were used.
実施例3
 実施例2と同様にして加熱処理液を得た。処理液を、加熱処理終了時点から10分後に噴霧乾燥機(ヤマト科学(株)製、SPRAY DRYER ADL311S、入口エアー温度160℃、出口エアー温度70℃)に6.5g/minの流速で供給し、粉末の形態にてポリフェノール組成物を得た。
Example 3
A heat treatment liquid was obtained in the same manner as in Example 2. 10 minutes after the end of the heat treatment, the treatment liquid is supplied to a spray dryer (Yamato Scientific Co., Ltd., SPRAY DRYER ADL311S, inlet air temperature 160 ° C., outlet air temperature 70 ° C.) at a flow rate of 6.5 g / min. A polyphenol composition was obtained in the form of a powder.
実施例4
 ホエーを加えずにフェルラ酸製剤2.5gのみを蒸留水1250mLに加え、実施例2と同様にして加熱処理し、25℃まで冷却して処理液を得た。
 この処理液125gにホエー10gを加え、25℃にて3分間攪拌した。その後-50℃のクールバスで予備凍結した後、加熱処理終了時点から10分後に実施例1と同様にして凍結乾燥を開始してポリフェノール組成物を得た。
Example 4
Without adding whey, only 2.5 g of ferulic acid preparation was added to 1250 mL of distilled water, heat-treated in the same manner as in Example 2, and cooled to 25 ° C. to obtain a treatment liquid.
10 g of whey was added to 125 g of this treatment liquid, and the mixture was stirred at 25 ° C. for 3 minutes. Then, after pre-freezing in a −50 ° C. cool bath, lyophilization was started in the same manner as in Example 1 10 minutes after the end of the heat treatment to obtain a polyphenol composition.
実施例5
 ホエーにかえて大豆タンパク質粉末(和光純薬工業(株)製)を用いた以外は実施例1と同様に処理した。
Example 5
The same treatment as in Example 1 was conducted except that soy protein powder (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of whey.
実施例6
 フェルラ酸製剤を5g、ホエーにかえてβ-ラクトグロブリン(Sigma-Aldrich製)を20g用いた以外は実施例1と同様に処理した。
Example 6
The same treatment as in Example 1 was carried out except that 5 g of the ferulic acid preparation and 20 g of β-lactoglobulin (manufactured by Sigma-Aldrich) were used instead of whey.
実施例7
 フェルラ酸製剤を5g、ホエーにかえてゼラチン(和光純薬工業(株)製)を20g用いた以外は実施例1と同様に処理した。
Example 7
The same treatment as in Example 1 was conducted except that 5 g of the ferulic acid preparation and 20 g of gelatin (manufactured by Wako Pure Chemical Industries, Ltd.) were used instead of whey.
実施例8
 加熱処理終了時点から180分後に凍結乾燥を開始した以外は実施例1と同様に処理した。
Example 8
The treatment was performed in the same manner as in Example 1 except that lyophilization was started 180 minutes after the end of the heat treatment.
実施例9
 加熱処理温度を110℃とした以外は実施例1と同様に処理した。
Example 9
The treatment was performed in the same manner as in Example 1 except that the heat treatment temperature was 110 ° C.
実施例10
 加熱処理温度を150℃、加熱処理圧力を0.6MPaとした以外は実施例1と同様に処理した。
Example 10
The treatment was performed in the same manner as in Example 1 except that the heat treatment temperature was 150 ° C. and the heat treatment pressure was 0.6 MPa.
比較例1
 フェルラ酸製剤5gとホエー5gを薬匙で混合してポリフェノール組成物を得た。
Comparative Example 1
A polyphenol composition was obtained by mixing 5 g of ferulic acid preparation and 5 g of whey with a shell.
比較例2
 加熱処理温度を40℃、ゲージ圧を0MPaとした以外は実施例1と同様に処理した。
Comparative Example 2
The treatment was performed in the same manner as in Example 1 except that the heat treatment temperature was 40 ° C. and the gauge pressure was 0 MPa.
比較例3
 加熱処理終了時点から360分後に凍結乾燥を開始した以外は実施例1と同様に処理した。
Comparative Example 3
The same treatment as in Example 1 was conducted except that freeze-drying was started 360 minutes after the end of the heat treatment.
比較例4
 加熱処理温度を80℃、加熱処理圧力を0MPaとした以外は実施例1と同様に処理した。
Comparative Example 4
The treatment was performed in the same manner as in Example 1 except that the heat treatment temperature was 80 ° C. and the heat treatment pressure was 0 MPa.
 実施例及び比較例の結果を表1に示す。
 また、フェルラ酸の粉末X線回折パターンを(図1-a9)に、実施例1、3、4及び比較例1で得られたポリフェノール組成物の粉末X線回折パターンを(図1-b)~(図1-e)に示す。
The results of Examples and Comparative Examples are shown in Table 1.
The powder X-ray diffraction pattern of ferulic acid (FIG. 1-a9) and the powder X-ray diffraction patterns of the polyphenol compositions obtained in Examples 1, 3, 4 and Comparative Example 1 (FIG. 1-b) are shown. It is shown in (FIG. 1-e).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明方法により水に対する溶解性が向上したポリフェノール組成物を得ることができた。
 一方、タンパク質を添加しても加熱温度が低い場合には、難水溶性ポリフェノールの溶解度はあまり向上しなかった。
 図1より、実施例において得られたポリフェノール組成物は、粉末X線回折において明瞭な回折ピークが検出されず、アモルファス状態であった。フェルラ酸と、実施例1、3、4及び比較例1のポリフェノール組成物の回折角2θが5°での回折強度に対する回折角2θが15.5°での回折強度の比(回折角2θが15.5°での回折強度/回折角2θが5°での回折強度)は、それぞれ(図1-a)72.6、(図1-b)10.9、(図1-c)7.0、(図1-d)6.5及び(図1-e)23.0であった。
From Table 1, the polyphenol composition which the solubility with respect to water improved by the method of this invention was able to be obtained.
On the other hand, when the heating temperature was low even when the protein was added, the solubility of the poorly water-soluble polyphenol was not so improved.
From FIG. 1, the polyphenol composition obtained in the example was in an amorphous state with no clear diffraction peak detected in powder X-ray diffraction. Ratio of the diffraction intensity when the diffraction angle 2θ is 15.5 ° with respect to the diffraction intensity when the diffraction angle 2θ of the polyphenol compositions of Examples 1, 3, 4 and Comparative Example 1 is 5 ° (the diffraction angle 2θ is The diffraction intensity at 15.5 ° / diffraction angle 2θ at 5 ° is (FIG. 1-a) 72.6, (FIG. 1-b) 10.9, (FIG. 1-c) 7 0.0, (Fig. 1-d) 6.5 and (Fig. 1-e) 23.0.
実施例11
 ヘスペレチン(和光純薬工業(株)製)1.25gとホエー5gを用い、実施例1と同様に加圧熱水処理した。冷却後に処理液を孔径7μmの焼結フィルターに通して未溶解固形分を除去し、実施例1と同様に凍結乾燥してポリフェノール組成物を得た。粉末組成物中のヘスペレチンは11.1%であった。
Example 11
Using 1.25 g of Hesperetin (manufactured by Wako Pure Chemical Industries, Ltd.) and 5 g of whey, the hot water treatment was performed in the same manner as in Example 1. After cooling, the treatment solution was passed through a sintered filter having a pore diameter of 7 μm to remove undissolved solids, and freeze-dried in the same manner as in Example 1 to obtain a polyphenol composition. Hesperetin in the powder composition was 11.1%.
比較例5
 ヘスペレチン1.11gとホエー8.89gを薬匙で混合してポリフェノール組成物を得た。
Comparative Example 5
1.11 g of hesperetin and 8.89 g of whey were mixed with a medicine basket to obtain a polyphenol composition.
実施例12
 ホエーにかえてゼラチンを用いた以外は実施例11と同様にしてポリフェノール組成物を得た。粉末中のヘスペレチンは12.4%であった。
Example 12
A polyphenol composition was obtained in the same manner as in Example 11 except that gelatin was used instead of whey. Hesperetin in the powder was 12.4%.
比較例6
 ヘスペレチン1.24gとゼラチン8.76gを薬匙で混合してポリフェノール組成物を得た。
Comparative Example 6
A polyphenol composition was obtained by mixing 1.24 g of hesperetin and 8.76 g of gelatin with a shell.
実施例13
 ヘスペレチンにかえてクルクミン(和光純薬工業(株)製)を用いた以外は実施例12と同様にしてポリフェノール組成物を得た。粉末中のクルクミンは11.4%であった。
Example 13
A polyphenol composition was obtained in the same manner as in Example 12 except that curcumin (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of hesperetin. Curcumin in the powder was 11.4%.
比較例7
 クルクミン1.14gとゼラチン8.86gを薬匙で混合してポリフェノール組成物を得た。
Comparative Example 7
Curcumin (1.14 g) and gelatin (8.66 g) were mixed in a shell to obtain a polyphenol composition.
実施例14
 エラグ酸二水和物(和光純薬工業(株)製、エラグ酸含有量89%)0.5gとホエー4.5gを用い、実施例1と同様に加圧熱水処理した。冷却後に出口バルブで圧力を大気圧に戻して加熱処理液を回収し、実施例1と同様に凍結乾燥してポリフェノール組成物を得た。粉末組成物中のエラグ酸は8.9%であった。
Example 14
Using hot water treatment in the same manner as in Example 1, 0.5 g of ellagic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd., ellagic acid content 89%) and 4.5 g of whey were used. After cooling, the pressure was returned to atmospheric pressure with an outlet valve, and the heat treatment liquid was recovered and freeze-dried in the same manner as in Example 1 to obtain a polyphenol composition. Ellagic acid in the powder composition was 8.9%.
比較例8
 エラグ酸二水和物0.5gとホエー4.5gを薬匙で混合してポリフェノール組成物を得た。
Comparative Example 8
A polyphenol composition was obtained by mixing 0.5 g of ellagic acid dihydrate and 4.5 g of whey with a medicine basket.
 実施例及び比較例の結果を表2に示す。実施例において得られたポリフェノール組成物は、粉末X線回折において明瞭な回折ピークが検出されず、アモルファス状態であった。 Table 2 shows the results of Examples and Comparative Examples. In the polyphenol composition obtained in the examples, no clear diffraction peak was detected in powder X-ray diffraction, and the composition was in an amorphous state.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表2より、本発明方法により水に対する溶解性が向上したポリフェノール組成物を得ることができた。

From Table 2, the polyphenol composition which the solubility with respect to water improved by the method of this invention was able to be obtained.

Claims (14)

  1.  次の工程(1)及び(2):
    (1)水性媒体の存在下、難水溶性ポリフェノール(A)とタンパク質(B)を100~180℃で加熱処理する工程、
    (2)加熱処理終了後300分以内に、得られた処理液を噴霧乾燥又は凍結乾燥する工程、
    を含む、ポリフェノール組成物の製造方法。
    Next steps (1) and (2):
    (1) a step of heat-treating the poorly water-soluble polyphenol (A) and the protein (B) at 100 to 180 ° C. in the presence of an aqueous medium;
    (2) A step of spray-drying or freeze-drying the obtained treatment liquid within 300 minutes after completion of the heat treatment,
    A process for producing a polyphenol composition, comprising:
  2.  次の工程(1)及び(2):
    (1)水性媒体の存在下、難水溶性ポリフェノール(A)を100~180℃で加熱処理する工程、
    (2)加熱処理終了後300分以内に、得られた処理液にタンパク質(B)を加えて噴霧乾燥又は凍結乾燥する工程、
    を含む、ポリフェノール組成物の製造方法。
    Next steps (1) and (2):
    (1) heat-treating the poorly water-soluble polyphenol (A) at 100 to 180 ° C. in the presence of an aqueous medium;
    (2) A step of adding the protein (B) to the obtained treatment liquid and spray drying or freeze drying within 300 minutes after completion of the heat treatment,
    A process for producing a polyphenol composition, comprising:
  3.  難水溶性ポリフェノール(A)のlogP値が-1.0~4.0である、請求項1又は2記載のポリフェノール組成物の製造方法。 The method for producing a polyphenol composition according to claim 1 or 2, wherein the poorly water-soluble polyphenol (A) has a log P value of -1.0 to 4.0.
  4.  難水溶性ポリフェノール(A)が、ルチン、ケルセチン、ヘスペリジン、ヘスペレチン、ナリンギン、クルクミン、レスベラトロール、カフェ酸、フェルラ酸及びエラグ酸から選択される1種又は2種以上である請求項1又は2記載のポリフェノール組成物の製造方法。 The poorly water-soluble polyphenol (A) is one or more selected from rutin, quercetin, hesperidin, hesperetin, naringin, curcumin, resveratrol, caffeic acid, ferulic acid and ellagic acid. The manufacturing method of the polyphenol composition of description.
  5.  タンパク質(B)が乳清タンパク質である請求項1~4のいずれか1項記載のポリフェノール組成物の製造方法。 The method for producing a polyphenol composition according to any one of claims 1 to 4, wherein the protein (B) is whey protein.
  6.  加熱処理工程において、(B)タンパク質に対する難水溶性ポリフェノール(A)の質量比(A)/(B)が0.005~10である、請求項1~5のいずれか1項記載のポリフェノール組成物の製造方法。 6. The polyphenol composition according to claim 1, wherein in the heat treatment step, (B) the mass ratio (A) / (B) of the poorly water-soluble polyphenol (A) to the protein is 0.005 to 10. Manufacturing method.
  7.  請求項1~6のいずれか1項記載の製造方法により得られる、ポリフェノール組成物。 A polyphenol composition obtained by the production method according to any one of claims 1 to 6.
  8.  難水溶性ポリフェノール(A)とタンパク質(B)とを含有するポリフェノール組成物であって、アモルファスであるポリフェノール組成物。 A polyphenol composition containing a poorly water-soluble polyphenol (A) and a protein (B), which is an amorphous polyphenol composition.
  9.  粉末X線回折における回折角2θが5°での回折強度に対する最高強度の回折強度の比が、12以下である請求項8記載のポリフェノール組成物。 9. The polyphenol composition according to claim 8, wherein the ratio of the maximum diffraction intensity to the diffraction intensity at a diffraction angle 2θ of 5 ° in powder X-ray diffraction is 12 or less.
  10.  (B)タンパク質に対する難水溶性ポリフェノール(A)の質量比(A)/(B)が0.005~10である請求項8又は9記載のポリフェノール組成物。 The polyphenol composition according to claim 8 or 9, wherein (B) the mass ratio (A) / (B) of the poorly water-soluble polyphenol (A) to the protein is 0.005 to 10.
  11.  難水溶性ポリフェノール(A)の含有量が5~70質量%である請求項8~10のいずれか1項記載のポリフェノール組成物。 The polyphenol composition according to any one of claims 8 to 10, wherein the content of the hardly water-soluble polyphenol (A) is 5 to 70% by mass.
  12.  タンパク質(B)の含有量が30~95質量%である請求項8~11のいずれか1項記載のポリフェノール組成物。 The polyphenol composition according to any one of claims 8 to 11, wherein the content of the protein (B) is 30 to 95% by mass.
  13.  難水溶性ポリフェノール(A)が、ルチン、ケルセチン、ヘスペリジン、ヘスペレチン、ナリンギン、クルクミン、レスベラトロール、カフェ酸、フェルラ酸及びエラグ酸から選択される1種又は2種以上である請求項8~12のいずれか1項記載のポリフェノール組成物。 The poorly water-soluble polyphenol (A) is one or more selected from rutin, quercetin, hesperidin, hesperetin, naringin, curcumin, resveratrol, caffeic acid, ferulic acid and ellagic acid. The polyphenol composition according to any one of the above.
  14.  タンパク質(B)が乳清タンパク質である請求項8~13のいずれか1項記載のポリフェノール組成物。 The polyphenol composition according to any one of claims 8 to 13, wherein the protein (B) is whey protein.
PCT/JP2013/072526 2012-08-24 2013-08-23 Method for producing polyphenol composition WO2014030731A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012185736 2012-08-24
JP2012-185736 2012-08-24
JP2013-082254 2013-04-10
JP2013082254 2013-04-10

Publications (1)

Publication Number Publication Date
WO2014030731A1 true WO2014030731A1 (en) 2014-02-27

Family

ID=50150034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072526 WO2014030731A1 (en) 2012-08-24 2013-08-23 Method for producing polyphenol composition

Country Status (2)

Country Link
JP (1) JP6392507B2 (en)
WO (1) WO2014030731A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031651A1 (en) * 2014-08-29 2016-03-03 花王株式会社 Method for producing solid dispersion containing hardly soluble polyphenol
CN110099696A (en) * 2016-12-23 2019-08-06 哥本哈根大学 The total amorphous form of substance and protein

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6653091B2 (en) * 2016-01-28 2020-02-26 池田食研株式会社 Method for producing ellagic acid-containing composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397761A (en) * 1989-08-17 1991-04-23 Kalamazoo Holdings Inc Curcumine composite formed on water-dispersible base material
JP2008148587A (en) * 2006-12-14 2008-07-03 Taiyo Kagaku Co Ltd Polyphenol composition
JP2008148586A (en) * 2006-12-14 2008-07-03 Taiyo Kagaku Co Ltd Polyphenol composition
JP2008148588A (en) * 2006-12-14 2008-07-03 Taiyo Kagaku Co Ltd Polyphenol composition
WO2011155505A1 (en) * 2010-06-09 2011-12-15 花王株式会社 Manufacturing method for polyphenol composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685363B2 (en) * 2004-03-31 2011-05-18 長田産業株式会社 Method for producing high concentration of quercetin
EP2289343A1 (en) * 2009-07-29 2011-03-02 Nestec S.A. Flavanones-containing food compositions
JP2012077051A (en) * 2010-10-05 2012-04-19 Kao Corp Method for producing hesperidin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397761A (en) * 1989-08-17 1991-04-23 Kalamazoo Holdings Inc Curcumine composite formed on water-dispersible base material
JP2008148587A (en) * 2006-12-14 2008-07-03 Taiyo Kagaku Co Ltd Polyphenol composition
JP2008148586A (en) * 2006-12-14 2008-07-03 Taiyo Kagaku Co Ltd Polyphenol composition
JP2008148588A (en) * 2006-12-14 2008-07-03 Taiyo Kagaku Co Ltd Polyphenol composition
WO2011155505A1 (en) * 2010-06-09 2011-12-15 花王株式会社 Manufacturing method for polyphenol composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG Y. ET AL.: "Study on microencapsulation of curcumin pigments by spray drying", EUROPEAN FOOD RESEARCH AND TECHNOLOGY, vol. 229, no. 3, 2009, pages 391 - 396 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031651A1 (en) * 2014-08-29 2016-03-03 花王株式会社 Method for producing solid dispersion containing hardly soluble polyphenol
JP2016049105A (en) * 2014-08-29 2016-04-11 花王株式会社 Method for producing solid dispersion containing difficult-to-dissolve polyphenol
CN106793821A (en) * 2014-08-29 2017-05-31 花王株式会社 The manufacture method of the solid dispersions containing slightly solubility Polyphenols
US10894058B2 (en) 2014-08-29 2021-01-19 Kao Corporation Method for producing solid dispersion containing hardly soluble polyphenol
CN106793821B (en) * 2014-08-29 2021-05-07 花王株式会社 Method for producing solid dispersion containing hardly soluble polyphenol
CN110099696A (en) * 2016-12-23 2019-08-06 哥本哈根大学 The total amorphous form of substance and protein
JP2020502086A (en) * 2016-12-23 2020-01-23 ユニバーシティ オブ コペンハーゲン Co-amorphous forms of substances and proteins

Also Published As

Publication number Publication date
JP6392507B2 (en) 2018-09-19
JP2014217369A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
US10894058B2 (en) Method for producing solid dispersion containing hardly soluble polyphenol
Kaur et al. A critical appraisal of solubility enhancement techniques of polyphenols
JP4347899B2 (en) Method for producing polyphenol-rich composition
KR101774075B1 (en) Manufacturing method for polyphenol composition
JP6150518B2 (en) Method for producing polyphenol composition
JP5162698B2 (en) Method for producing polyphenol composition
WO2017061627A1 (en) Polyphenol-containing solid composition
JP6392507B2 (en) Method for producing polyphenol composition
JP5228083B2 (en) Method for producing hesperidin composition
CA2517668A1 (en) Process for producing proanthocyanin-rich material
JP2012077051A (en) Method for producing hesperidin composition
JP5926944B2 (en) Method for producing polyphenol composition
JP2001114675A (en) Vitamin composition
JP6062783B2 (en) Method for producing polyphenol composition
JP6454094B2 (en) Method for producing ellagic acid composition
JP5422871B2 (en) Isoflavones composition
BRPI0719164A2 (en) Process for Manufacturing Encapsulated Soybean Extracts, Encapsulated Soybean Extract, and Encapsulated Material
JP6358422B2 (en) Method for producing Iwabenkei plant extract
JP2017131163A (en) Method for producing ellagic acid-containing composition
JP2013042712A (en) Method for producing sugar adduct of water-insoluble polyphenol
JP2018057286A (en) Powdered or granulated beverage, and production method thereof
JP2010037258A (en) Absorption promoter for polyphenol
JP2019026624A (en) Methods for producing membrane structures for ingestion
JP2001169742A (en) Water-soluble soybean hypocotyl processed food and method for producing the same
JP2023144436A (en) Method for producing ellagic acid-containing composition and ellagic acid-containing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830983

Country of ref document: EP

Kind code of ref document: A1