JP5926944B2 - Method for producing polyphenol composition - Google Patents

Method for producing polyphenol composition Download PDF

Info

Publication number
JP5926944B2
JP5926944B2 JP2011273272A JP2011273272A JP5926944B2 JP 5926944 B2 JP5926944 B2 JP 5926944B2 JP 2011273272 A JP2011273272 A JP 2011273272A JP 2011273272 A JP2011273272 A JP 2011273272A JP 5926944 B2 JP5926944 B2 JP 5926944B2
Authority
JP
Japan
Prior art keywords
polyphenol
soluble
water
poorly water
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011273272A
Other languages
Japanese (ja)
Other versions
JP2012224612A (en
Inventor
山田 泰司
泰司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2011273272A priority Critical patent/JP5926944B2/en
Publication of JP2012224612A publication Critical patent/JP2012224612A/en
Application granted granted Critical
Publication of JP5926944B2 publication Critical patent/JP5926944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、水への溶解性に優れるポリフェノール組成物の製造方法に関する。   The present invention relates to a method for producing a polyphenol composition having excellent solubility in water.

昨今、生理機能を有する様々な素材が提案され、これらを含有する数多くの健康食品が上市されている。なかでも、ポリフェノールは、抗酸化力を有することが知られており、抗動脈硬化、抗アレルギー、血流増強等の効果が期待されるため、健康食品の重要な成分として認識されている。
しかしながら、ポリフェノールには難水溶性のものが多く、それらを飲食品等へ使用することは難しい。
Recently, various materials having physiological functions have been proposed, and many health foods containing these have been put on the market. Among them, polyphenols are known to have an antioxidant power and are expected to have effects such as anti-arteriosclerosis, anti-allergy and blood flow enhancement, and thus are recognized as important ingredients in health foods.
However, many polyphenols are hardly water-soluble, and it is difficult to use them for food and drink.

そこで、難水溶性ポリフェノールを水に可溶化させる技術が検討され、例えば、ヘスペリジン配糖体を柑橘果汁ならびに果汁飲料に添加ののち加熱し、含まれているフラボノイド化合物を溶解する方法(特許文献1);難水溶性フラボイドとβ−サイクロデキストリンを加熱処理して難水溶性フラボノイドをβ−サイクロデキストリンに包接させた後、α−グルコシルヘスペリジンを共存させる方法(特許文献2);水性媒体中に難溶性のフラボノイドと大豆サポニン及び/又はマロニルイソフラボン配糖体を共存させ、加熱処理してフラボノイドを可溶化させる方法(特許文献3)が提案されている。これらの方法において、難水溶性ポリフェノールの加熱処理は、70℃〜90℃前後で行われている。   Therefore, a technique for solubilizing poorly water-soluble polyphenols in water has been studied. For example, a method in which hesperidin glycoside is added to citrus fruit juice and juice drink and then heated to dissolve the contained flavonoid compound (Patent Document 1). ); A method in which a poorly water-soluble flavonoid and β-cyclodextrin are heat-treated to include a poorly water-soluble flavonoid in β-cyclodextrin, and then α-glucosyl hesperidin is allowed to coexist (Patent Document 2); There has been proposed a method (Patent Document 3) in which a slightly soluble flavonoid and soybean saponin and / or malonyl isoflavone glycoside are coexisted and heat-treated to solubilize the flavonoid. In these methods, the heat treatment of the poorly water-soluble polyphenol is performed at around 70 ° C to 90 ° C.

また、水難溶性フラボノイドとケルセチン−3−O−配糖体が共存するアルカリ溶液等を乾燥させる水難溶性フラボノイドの改質方法(特許文献4)、ヘスペリジンとヘスペリジン糖付加物を特定の割合でアルカリ性水溶液に溶解し、乾燥してアモルファス状態とすることによりヘスペリジンの水溶性を向上させる方法(特許文献5)が提案されている。   Further, a method for modifying a poorly water-soluble flavonoid that dries an alkaline solution or the like in which a poorly water-soluble flavonoid and quercetin-3-O-glycoside coexist (Patent Document 4). A method of improving the water solubility of hesperidin by dissolving in water and drying to an amorphous state has been proposed (Patent Document 5).

特開2000−236856号公報JP 2000-236856 A 特開2008−271839号公報JP 2008-271839 A 国際公開第2005/003112号International Publication No. 2005/003112 特開平7−10898号公報JP 7-10898 A 特開2007−308414号公報JP 2007-308414 A

特許文献1〜3のように、従来知られている糖付加物等の可溶化剤を用いて難水溶性ポリフェノールの溶解度を高める方法は、可溶化剤を多量に使用する必要があった。このため、難水溶性ポリフェノール含有量が低い組成物しか得られておらず、経済的な方法とは言えない。
一方で、特許文献4及び5のように、難水溶性ポリフェノールと可溶化剤をアルカリ性水溶液に溶解した後アモルファス状態として溶解度を高める方法は、アルカリの中和と脱塩の工程が必要で、プロセスの煩雑化が懸念される。
As in Patent Documents 1 to 3, a conventionally known method for increasing the solubility of a poorly water-soluble polyphenol using a solubilizer such as a sugar adduct needs to use a large amount of the solubilizer. For this reason, only a composition having a low content of poorly water-soluble polyphenol has been obtained, which is not an economical method.
On the other hand, as in Patent Documents 4 and 5, the method of increasing the solubility as an amorphous state after dissolving the poorly water-soluble polyphenol and the solubilizing agent in the alkaline aqueous solution requires steps of alkali neutralization and desalting. There is concern about complications.

したがって、本発明の課題は、難水溶性ポリフェノールの含有量が高く、かつ水への溶解性に優れるポリフェノール組成物を効率よく製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for efficiently producing a polyphenol composition having a high content of poorly water-soluble polyphenol and excellent solubility in water.

本発明者らは、難水溶性ポリフェノールの可溶化技術について種々検討したところ、水性媒体の存在下、難水溶性ポリフェノールを特定の温度範囲で加熱処理した後に、特定の時間内に噴霧乾燥又は凍結乾燥すると、難水溶性ポリフェノールの溶解濃度を大幅に高め、かつ高濃度を維持したまま乾燥することができ、水溶性に優れたポリフェノール組成物を高収率で得られることを見出した。   The inventors of the present invention have made various studies on the solubilization technique of poorly water-soluble polyphenols, and after heat-treating the poorly water-soluble polyphenols in a specific temperature range in the presence of an aqueous medium, spray drying or freezing within a specific time. It has been found that when dried, the dissolution concentration of the poorly water-soluble polyphenol can be greatly increased and the polyphenol composition having excellent water solubility can be obtained in a high yield while maintaining the high concentration.

すなわち、本発明は、次の工程(1)及び(2):
(1)水性媒体の存在下、難水溶性ポリフェノール(A)を100〜180℃で加熱処理する工程、
(2)加熱処理後600分以内に処理液を噴霧乾燥又は凍結乾燥する工程、
を含み、
前記加熱処理を、難水溶性ポリフェノール(A)と可溶化剤(B)の合計に対する可溶化剤(B)の質量比[(B)/((A)+(B))]が0.1未満である条件で行う、ポリフェノール組成物の製造方法を提供するものである。
That is, the present invention includes the following steps (1) and (2):
(1) A step of heat-treating the hardly water-soluble polyphenol (A) at 100 to 180 ° C. in the presence of an aqueous medium
(2) A step of spray drying or freeze drying the treatment liquid within 600 minutes after the heat treatment,
Including
In the heat treatment, the mass ratio [(B) / ((A) + (B))] of the solubilizer (B) to the total of the poorly water-soluble polyphenol (A) and the solubilizer (B) is 0.1. The manufacturing method of the polyphenol composition performed on the conditions which are less than this is provided.

本発明によれば、水に対する難水溶性ポリフェノールの溶解濃度を増加させることができ、高収率で溶解性に優れるポリフェノール組成物を製造することができる。また、可溶化剤を用いなくとも、あるいは可溶化剤の使用量を低減させても難水溶性ポリフェノールを溶解させることができるため、難水溶性ポリフェノールの純度が高い組成物を得ることが可能である。   ADVANTAGE OF THE INVENTION According to this invention, the melt | dissolution density | concentration of the poorly water-soluble polyphenol with respect to water can be increased, and the polyphenol composition which is excellent in solubility with a high yield can be manufactured. In addition, it is possible to dissolve a poorly water-soluble polyphenol without using a solubilizer or even when the amount of solubilizer used is reduced, so that it is possible to obtain a composition having a high purity of the poorly water-soluble polyphenol. is there.

ポリフェノール組成物IのX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of the polyphenol composition I. ポリフェノール組成物IIのX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of polyphenol composition II. ポリフェノール組成物IIIのX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of polyphenol composition III. ポリフェノール組成物IVのX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of polyphenol composition IV. ポリフェノール組成物VのX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of the polyphenol composition V. ポリフェノール組成物VIのX線回折の結果を示す図である。It is a figure which shows the result of the X-ray diffraction of the polyphenol composition VI.

本明細書において「難水溶性ポリフェノール」とは、logP値が−1.0〜4.0のポリフェノールを云う。難水溶性ポリフェノールは、logP値が−0.5〜3.5のものが好ましい。logP値は、1−オクタノール/水間の分配係数の常用対数をとった値で、有機化合物の疎水性を示す指標である。この値が正に大きい程疎水性が高いことを表す。ポリフェノールのlogP値は、日本工業規格 Z7260−107記載のフラスコ振盪法により測定できる。詳細は実施例に記載した。   As used herein, “poorly water-soluble polyphenol” refers to a polyphenol having a log P value of −1.0 to 4.0. The poorly water-soluble polyphenol preferably has a log P value of -0.5 to 3.5. The log P value is a value obtained by taking the common logarithm of the distribution coefficient between 1-octanol / water and is an index indicating the hydrophobicity of an organic compound. The larger the value, the higher the hydrophobicity. The log P value of polyphenol can be measured by a flask shaking method described in Japanese Industrial Standard Z7260-107. Details are described in the examples.

本明細書における難水溶性ポリフェノール(A)とは、ベンゼン環にヒドロキシル基が1個以上、好ましくは2個以上結合したフェノール性物質を云う。例えば、植物由来のフラボノイド、タンニン、フェノール酸等が挙げられる。より好ましく適用できる難水溶性ポリフェノールとしては、フラボノール類、フラバノン類、フラボン類、イソフラボン類、フェノールカルボン酸類等が挙げられる。
具体的には、ルチン、ケルシトリン、イソケルシトリン、ケルセチン、ミリシトリン、ダイゼイン、ダイジン、グリシテイン、グリシチン、ゲニステイン、ゲニスチン、ミリセチン、ヘスペリジン、ネオヘスペリジン、ヘスペレチン、ナリンギン、クルクミン、リンゲニン、プルニン、アストラガリン、ケンフェロール、レスベラトロール、アピイン、アピゲニン、デルフィニジン、デルフィン、ナスニン、ペオニジン、ペオニン、ペツニン、ペオニジン、マルビジン、マルビン、エニン、シアニジン、ロイコシアニジン、シアニン、クリサンテミン、ケラシアニン、イデイン、メコシアニン、ペラルゴニジン、カリステフィン、フェルラ酸、p−クマル酸又はこれらの誘導体が挙げられる。上記誘導体としては、アセチル化物、マロニル化物、メチル化物、配糖体が例示される。なかでも、フラボノール類及びフラバノン類が好ましく、ヘスペリジン、ナリンギン、ルチンが更に好ましい。難水溶性ポリフェノールは、1種であっても、2種以上の混合物であってもよい。
The poorly water-soluble polyphenol (A) in the present specification refers to a phenolic substance in which one or more, preferably two or more hydroxyl groups are bonded to a benzene ring. For example, plant-derived flavonoids, tannins, phenolic acids and the like can be mentioned. Examples of poorly water-soluble polyphenols that can be more preferably applied include flavonols, flavanones, flavones, isoflavones, phenol carboxylic acids, and the like.
Specifically, rutin, quercitrin, isoquercitrin, quercetin, myricitrin, daidzein, daidzin, glycitein, glycitin, genistein, genistin, myricetin, hesperidin, neohesperidin, hesperetin, naringin, curcumin, ringenin, prnin, astragaline, Kaempferol, Resveratrol, Apine, Apigenin, Delphinidin, Delphin, Nasnin, Peonidin, Peonin, Petunin, Peonidin, Malvidin, Malvin, Enine, Cyanidine, Leucocyanidin, Cyanine, Chrysanthemin, Kerocyanine, Idein, Mecocyanine, Pelargonidin Examples include ferulic acid, p-coumaric acid, and derivatives thereof. Examples of the derivatives include acetylated products, malonylated products, methylated products, and glycosides. Of these, flavonols and flavanones are preferable, and hesperidin, naringin and rutin are more preferable. The poorly water-soluble polyphenol may be one type or a mixture of two or more types.

本明細書において水性媒体とは、水、及び有機溶媒の水溶液を云う。水としては、水道水、蒸留水、イオン交換水、精製水が例示される。有機溶媒としては、水と均一に混合するものであれば特に限定されない。有機溶媒としては炭素数4以下のアルコールが好ましく、メタノール及びエタノールがより好ましく、食品に適用可能であるという観点よりエタノールが更に好ましい。前記水溶液中の有機溶媒の濃度は、0.1〜80質量%(以下、単に「%」とする)が好ましく、1〜70%がより好ましく、5〜60%が更に好ましい。   In the present specification, the aqueous medium refers to water and an aqueous solution of an organic solvent. Examples of water include tap water, distilled water, ion exchange water, and purified water. The organic solvent is not particularly limited as long as it is uniformly mixed with water. As the organic solvent, alcohol having 4 or less carbon atoms is preferable, methanol and ethanol are more preferable, and ethanol is more preferable from the viewpoint of being applicable to foods. The concentration of the organic solvent in the aqueous solution is preferably 0.1 to 80% by mass (hereinafter simply referred to as “%”), more preferably 1 to 70%, and still more preferably 5 to 60%.

水性媒体のpHは、難水溶性ポリフェノールの安定性の観点より、3以上9未満が好ましく、3.5〜8.5がより好ましく、4〜8が更に好ましい。   From the viewpoint of the stability of the poorly water-soluble polyphenol, the pH of the aqueous medium is preferably 3 or more and less than 9, more preferably 3.5 to 8.5, and still more preferably 4 to 8.

難水溶性ポリフェノール(A)は水への溶解度が低いため、水性媒体へ分散させ、スラリーの状態で存在させるのが好ましい。水性媒体中の難水溶性ポリフェノール(A)の含有量は、難水溶性ポリフェノールの種類によって異なるが、スラリーの流動性の点から、0.1〜100g/Lが好ましく、0.5〜50g/Lがより好ましく、0.7〜20g/Lが更に好ましく、0.7〜10g/Lが更に好ましい。   Since the poorly water-soluble polyphenol (A) has low solubility in water, it is preferably dispersed in an aqueous medium and present in a slurry state. The content of the poorly water-soluble polyphenol (A) in the aqueous medium varies depending on the kind of the poorly water-soluble polyphenol, but is preferably 0.1 to 100 g / L, and preferably 0.5 to 50 g / L from the viewpoint of the fluidity of the slurry. L is more preferable, 0.7 to 20 g / L is more preferable, and 0.7 to 10 g / L is still more preferable.

本発明の方法における工程(1)は、水性媒体の存在下、難水溶性ポリフェノール(A)を100〜180℃で加熱処理する工程である。
水性媒体の存在下、難水溶性ポリフェノール(A)を加熱処理する方法は、特に制限されず、公知の方法を適用できる。
加熱処理の温度は、100〜180℃であるが、110〜170℃がより好ましく、120〜160℃が更に好ましく、120〜150℃が更に好ましい。100℃以上において大幅な溶解性の向上が達成され、また、180℃以下において難水溶性ポリフェノールの安定性が確保される。加熱の手段は、例えば、水蒸気、電気が挙げられる。
Step (1) in the method of the present invention is a step of heat-treating the poorly water-soluble polyphenol (A) at 100 to 180 ° C. in the presence of an aqueous medium.
The method for heat-treating the poorly water-soluble polyphenol (A) in the presence of an aqueous medium is not particularly limited, and a known method can be applied.
Although the temperature of heat processing is 100-180 degreeC, 110-170 degreeC is more preferable, 120-160 degreeC is still more preferable, 120-150 degreeC is still more preferable. A significant improvement in solubility is achieved at 100 ° C. or higher, and the stability of the poorly water-soluble polyphenol is ensured at 180 ° C. or lower. Examples of the heating means include water vapor and electricity.

加熱処理時の圧力は、ゲージ圧で0〜10MPaが好ましく、0.1〜8MPaがより好ましく、0.1〜6MPaが更に好ましく、0.2〜6MPaが更に好ましく、0.2〜4MPaが更に好ましく、0.25〜2MPaが更に好ましく、0.3〜1.5MPaが更に好ましく、0.3〜0.6MPaが更に好ましい。なお、ゲージ圧とは、大気圧を0MPaとした圧力である。また、水の飽和蒸気圧以上に設定するのが好ましい。飽和蒸気圧以上の加圧は、背圧弁により調整しても良く、また、ガスを用いてもよい。用いられるガスとしては、例えば、不活性ガスが好ましく、窒素ガス、ヘリウムガス等がより好ましい。   The pressure during the heat treatment is preferably 0 to 10 MPa, more preferably 0.1 to 8 MPa, further preferably 0.1 to 6 MPa, further preferably 0.2 to 6 MPa, and further preferably 0.2 to 4 MPa in terms of gauge pressure. Preferably, 0.25 to 2 MPa is more preferable, 0.3 to 1.5 MPa is further preferable, and 0.3 to 0.6 MPa is further preferable. The gauge pressure is a pressure at atmospheric pressure of 0 MPa. Moreover, it is preferable to set it more than the saturated vapor pressure of water. Pressurization higher than the saturated vapor pressure may be adjusted by a back pressure valve, or gas may be used. As a gas used, for example, an inert gas is preferable, and nitrogen gas, helium gas, and the like are more preferable.

加熱処理は、例えば、回分法、半回分法、流通式処理方法等いずれの方法によっても実施できる。なかでも、流通式処理方法は、処理時間の制御が容易である点で好ましい。   The heat treatment can be performed by any method such as a batch method, a semi-batch method, and a flow-type treatment method. Among these, the flow-type processing method is preferable in that the processing time can be easily controlled.

加熱処理の時間は、難水溶性ポリフェノールの溶解性向上と熱安定性の点から、水性媒体が設定温度に達してから0.1〜30分が好ましく、更に0.2〜15分、更に0.5〜8分が好ましい。
流通式処理方式で行う場合、加熱処理の時間は、処理器の高温高圧部の体積を水性媒体の供給速度で割ることにより算出される平均滞留時間を用いる。
The time for the heat treatment is preferably 0.1 to 30 minutes after the aqueous medium reaches the set temperature, more preferably 0.2 to 15 minutes, and further 0 from the viewpoint of improving the solubility of the poorly water-soluble polyphenol and the thermal stability. .5-8 minutes is preferred.
In the case of using the flow treatment method, the heat treatment time is an average residence time calculated by dividing the volume of the high-temperature high-pressure part of the processor by the supply rate of the aqueous medium.

加熱処理後、噴霧乾燥又は凍結乾燥前に処理液を90℃以下、好ましくは50℃以下、更に好ましくは30℃以下に冷却する工程を行うのが、ポリフェノールの熱劣化防止の点から好ましい。冷却時に、処理液を混合攪拌してもよい。
加熱処理温度から90℃まで低下するのに要した時間から算出される処理液の冷却速度は0.1℃/s以上、更に0.2℃/s以上、更に0.5℃/s以上、1℃/s以上、更に3℃/s以上、更に5℃/s以上が好ましい。冷却速度が大きいほど難溶性ポリフェノールの溶解度を改善することができる。このため、冷却速度の上限は特に定めないが、製造設備の制約等の観点より、例えば100℃/s以下、更に50℃/s以下が好ましい。
It is preferable from the viewpoint of preventing thermal degradation of the polyphenol that the treatment liquid is cooled to 90 ° C. or less, preferably 50 ° C. or less, more preferably 30 ° C. or less after the heat treatment and before spray drying or freeze drying. During cooling, the treatment liquid may be mixed and stirred.
The cooling rate of the treatment liquid calculated from the time required to decrease from the heat treatment temperature to 90 ° C is 0.1 ° C / s or more, further 0.2 ° C / s or more, further 0.5 ° C / s or more, It is preferably 1 ° C./s or more, more preferably 3 ° C./s or more, and further preferably 5 ° C./s or more. As the cooling rate increases, the solubility of the poorly soluble polyphenol can be improved. For this reason, although the upper limit of a cooling rate is not specifically defined, 100 degrees C / s or less, for example, 50 degrees C / s or less are preferable from viewpoints, such as restrictions of manufacturing equipment.

更に、処理液から溶解せずに残留する固体部を除去する工程を行うのが、得られるポリフェノール組成物の溶解性を高める点から好ましい。固体部を除去する方法としては、特に制限されず、例えば遠心分離やデカンテーション、ろ過により行うことができる。   Furthermore, it is preferable to perform the step of removing the solid part remaining without being dissolved from the treatment liquid from the viewpoint of increasing the solubility of the resulting polyphenol composition. The method for removing the solid part is not particularly limited, and can be performed, for example, by centrifugation, decantation, or filtration.

本発明の方法において、加熱処理は、難水溶性ポリフェノール(A)と可溶化剤(B)の合計に対する可溶化剤(B)の質量比[(B)/((A)+(B))]が0.1未満である条件で行う。すなわち、難水溶性ポリフェノール(A)と可溶化剤(B)の関係は、
0≦(B)/((A)+(B))<0.1
と表すことができる。
組成物中の難水溶性ポリフェノール純度を高めるという観点からは、上記質量比は0.09以下が好ましく、0.07以下がより好ましく、0.05以下が更に好ましく、0.04以下が更に好ましく、0(可溶化剤(B)が存在しない条件)が殊更好ましい。
In the method of the present invention, the heat treatment is performed by mass ratio of the solubilizer (B) to the total of the poorly water-soluble polyphenol (A) and the solubilizer (B) [(B) / ((A) + (B)). ] Is less than 0.1. That is, the relationship between the poorly water-soluble polyphenol (A) and the solubilizer (B) is
0 ≦ (B) / ((A) + (B)) <0.1
It can be expressed as.
From the viewpoint of increasing the purity of the poorly water-soluble polyphenol in the composition, the mass ratio is preferably 0.09 or less, more preferably 0.07 or less, further preferably 0.05 or less, and further preferably 0.04 or less. 0 (conditions in which the solubilizer (B) is not present) is particularly preferred.

可溶化剤(B)としては、難水溶性ポリフェノール(A)の糖付加物が好ましく、ヘスペリジン糖付加物がより好適に用いられる。難水溶性ポリフェノール(A)の糖付加物は、難水溶性ポリフェノール(A)に1個〜10個の糖が結合した化合物である。糖としては、グルコース、マルトース、フルクトース、ラムノース、ラクトース等が挙げられる。なお、難水溶性ポリフェノールの中にはアグリコンに糖が結合した配糖体が含まれる。例えば、ヘスペリジンは、ヘスペレチン(5,7,3’−トリヒドロキシ−4’−メトキシ
フラバノン)の7位の水酸基にルチノース(L−ラムノシル−(α1→6)−D−グルコース)がβ結合した配糖体である。本発明においてはこれと区別するため、難水溶性ポリフェノールに更に糖が結合したものを難水溶性ポリフェノール糖付加物、ヘスペリジンに更に糖が結合したものをヘスペリジン糖付加物と表記する。
As the solubilizer (B), a sugar adduct of a poorly water-soluble polyphenol (A) is preferable, and a hesperidin sugar adduct is more preferably used. The sugar adduct of the poorly water-soluble polyphenol (A) is a compound in which 1 to 10 sugars are bonded to the poorly water-soluble polyphenol (A). Examples of the sugar include glucose, maltose, fructose, rhamnose, lactose and the like. In addition, the poorly water-soluble polyphenol includes glycosides in which sugar is bound to aglycone. For example, hesperidin is a compound in which rutinose (L-rhamnosyl- (α1 → 6) -D-glucose) is β-bonded to the 7-position hydroxyl group of hesperetin (5,7,3′-trihydroxy-4′-methoxyflavanone). It is a saccharide. In the present invention, for distinction from this, a product in which a saccharide is further bound to a poorly water-soluble polyphenol is referred to as a sparingly water-soluble polyphenol sugar adduct, and a product in which a sugar is further bound to hesperidin is referred to as a hesperidin sugar adduct.

本発明の方法における工程(2)は、加熱処理後600分以内に処理液を噴霧乾燥又は凍結乾燥する工程である。
本明細書において、加熱処理後「600分以内」とは、加熱処理が終了した時点、すなわち処理液が100℃未満に下がった時点から、噴霧乾燥又は凍結乾燥の開始までの時間である。加熱処理後から噴霧乾燥又は凍結乾燥の開始までの時間は、ポリフェノール収率の点から、0.1〜600分が好ましく、更に0.1〜200分が好ましい。
Step (2) in the method of the present invention is a step of spray-drying or freeze-drying the treatment liquid within 600 minutes after the heat treatment.
In this specification, “within 600 minutes” after the heat treatment refers to the time from the time when the heat treatment is completed, that is, the time when the treatment liquid is lowered to less than 100 ° C. to the start of spray drying or freeze drying. The time from the heat treatment to the start of spray drying or freeze drying is preferably from 0.1 to 600 minutes, more preferably from 0.1 to 200 minutes, from the viewpoint of polyphenol yield.

噴霧乾燥又は凍結乾燥の方法は、特に制限されず、公知の方法を適用できる。
例えば、噴霧乾燥の場合、処理液をノズルからスプレーし、100〜220℃、好ましくは130〜190℃の熱風中を落下させることにより、乾燥することができる。
また、凍結乾燥の場合、処理液を液体窒素やクールバス、冷凍庫等で凍結し、粉砕し、篩別したのち真空で水分を昇華させて、乾燥することができる。処理液の凍結温度は−70〜0℃が好ましい。乾燥中の絶対圧力は0.1〜1000Paが好ましく、0.5〜100Paがより好ましく、1〜10Paが更に好ましい。
噴霧乾燥又は凍結乾燥後、必要に応じて、分級、造粒、粉砕等を行ってもよい。
The method of spray drying or freeze drying is not particularly limited, and a known method can be applied.
For example, in the case of spray drying, the treatment liquid can be sprayed from a nozzle and dried by dropping in hot air at 100 to 220 ° C., preferably 130 to 190 ° C.
In the case of lyophilization, the treatment liquid can be frozen in liquid nitrogen, a cool bath, a freezer, etc., crushed, sieved, and then dried by sublimating moisture in a vacuum. The freezing temperature of the treatment liquid is preferably -70 to 0 ° C. The absolute pressure during drying is preferably 0.1 to 1000 Pa, more preferably 0.5 to 100 Pa, and still more preferably 1 to 10 Pa.
After spray drying or freeze drying, classification, granulation, pulverization, and the like may be performed as necessary.

かくして得られるポリフェノール組成物は、アモルファス状態であり、水への溶解性に極めて優れる。ここで、アモルファスとは、結晶性を持たない固体物質を指す。アモルファス状態はX線回折を行った場合に明瞭な回折ピークが検出されないことで確認できる。
例えば本発明のヘスペリジン組成物の場合は、X線回折における回折角(2θ)15.5°での回折強度と回折角(2θ)14.5°での回折強度との比(回折角(2θ)15.5°での回折強度/回折角(2θ)14.5°での回折強度)が、水に対する初期溶解度、および溶解性の点から、3.0以下であることが好ましく、さらに2.0以下が好ましい。
The polyphenol composition thus obtained is in an amorphous state and is extremely excellent in solubility in water. Here, the amorphous refers to a solid substance having no crystallinity. The amorphous state can be confirmed by the fact that no clear diffraction peak is detected when X-ray diffraction is performed.
For example, in the case of the hesperidin composition of the present invention, the ratio of the diffraction intensity at the diffraction angle (2θ) of 15.5 ° and the diffraction intensity at the diffraction angle (2θ) of 14.5 ° in X-ray diffraction (diffraction angle (2θ ) Diffraction intensity at 15.5 ° / Diffraction angle (2θ) (Diffraction intensity at 14.5 °) is preferably 3.0 or less from the viewpoint of initial solubility in water and solubility, and further 2 0.0 or less is preferable.

また、ポリフェノール組成物における水に対する難水溶性ポリフェノール(A)の初期溶解度(25℃)は、好ましくは1〜1000(g/L)、より好ましくは10〜1000(g/L)である。なお、「初期」とは、水への溶解時から30分まで、好ましくは5分までの期間を云う。   Moreover, the initial solubility (25 degreeC) of the poorly water-soluble polyphenol (A) with respect to the water in a polyphenol composition becomes like this. Preferably it is 1-1000 (g / L), More preferably, it is 10-1000 (g / L). “Initial” refers to a period of up to 30 minutes, preferably up to 5 minutes from the time of dissolution in water.

本発明の製造方法によれば、可溶化剤の量を少なくしても難水溶性ポリフェノールの溶解度を高めることができる。即ち、ポリフェノール組成物の難水溶性ポリフェノール(A)の純度を高めることができる。純度は95%以上であることが好ましく、さらに97%以上、実質的に100%であることが可溶化剤の異味異臭を抑制する点からより好ましい。本明細書において難水溶性ポリフェノール(A)の純度(質量%)とは、[難水溶性ポリフェノール/(難水溶性ポリフェノール+可溶化剤)×100]を指す。
例えば、ヘスペリジンに対してヘスペリジン糖付加物を可溶化剤として用いる場合、ポリフェノール組成物中のヘスペリジンの純度は、95%以上であるものを好ましく得ることができ、さらに97%以上、実質的に100%であるものをより好ましく得ることができる。本明細書においてヘスペリジンの純度(質量%)とは、[ヘスペリジン/(ヘスペリジン+ヘスペリジン糖付加物)×100]を指す。
According to the production method of the present invention, the solubility of the poorly water-soluble polyphenol can be increased even if the amount of the solubilizer is decreased. That is, the purity of the poorly water-soluble polyphenol (A) of the polyphenol composition can be increased. The purity is preferably 95% or more, and more preferably 97% or more and substantially 100% from the viewpoint of suppressing the off-flavor of the solubilizer. In the present specification, the purity (mass%) of the poorly water-soluble polyphenol (A) refers to [slightly water-soluble polyphenol / (slightly water-soluble polyphenol + solubilizer) × 100].
For example, when a hesperidin sugar adduct is used as a solubilizer for hesperidin, the purity of hesperidin in the polyphenol composition can be preferably 95% or more, and more preferably 97% or more, substantially 100%. % Can be obtained more preferably. In the present specification, the purity (mass%) of hesperidin refers to [hesperidin / (hesperidin + hesperidin sugar adduct) × 100].

本発明の製造方法で得られたポリフェノール組成物は、様々な飲食品や医薬品等に使用することができる。例えば、飲食品としては、パン類、麺類、クッキー等の菓子類、スナック類、ゼリー類、乳製品、冷凍食品、粉末コーヒー等のインスタント食品、でんぷん加工製品、加工肉製品、その他加工食品、調味料、栄養補助食品等の固形状又は半固形状の飲食品が挙げられる。   The polyphenol composition obtained by the production method of the present invention can be used for various foods and beverages, pharmaceuticals and the like. For example, foods and beverages include confectionery such as breads, noodles, cookies, snacks, jelly, dairy products, frozen foods, instant foods such as powdered coffee, processed starch products, processed meat products, other processed foods, seasonings Solid or semi-solid foods and beverages such as food and nutritional supplements.

[難水溶性ポリフェノールの測定]
難水溶性ポリフェノールの測定は、日立製作所製高速液体クロマトグラフを用い、インタクト社製カラムCadenza CD−C18 (4.6mmφ×150mm、3μm)を装着し、カラム温度40℃でグラジエント法により行った。移動相A液は0.05mol/L酢酸水溶液、B液はアセトニトリルとし、1.0mL/分で送液した。グラジエント条件は以下のとおりである。
時間(分) A液(%) B液(%)
0 85 15
20 80 20
35 10 90
50 10 90
50.1 85 15
60 85 15
試料注入量は10μL、検出はルチンは波長360nm、その他の難水溶性ポリフェノールは波長283nmの吸光度により定量した。
[Measurement of poorly water-soluble polyphenols]
The measurement of poorly water-soluble polyphenols was performed by a gradient method using a high-performance liquid chromatograph manufactured by Hitachi, equipped with an intact column Cadenza CD-C18 (4.6 mmφ × 150 mm, 3 μm) and a column temperature of 40 ° C. The mobile phase A solution was 0.05 mol / L acetic acid aqueous solution, the B solution was acetonitrile, and the solution was fed at 1.0 mL / min. The gradient conditions are as follows.
Time (min) A liquid (%) B liquid (%)
0 85 15
20 80 20
35 10 90
50 10 90
50.1 85 15
60 85 15
The sample injection amount was 10 μL, the detection was quantified by absorbance at a wavelength of 360 nm for rutin, and the other water-insoluble polyphenols at a wavelength of 283 nm.

[難水溶性ポリフェノールのlogP値の測定]
日本工業規格 Z7260−107記載のフラスコ振盪法に従って測定した。まず1−オクタノールと蒸留水を25℃で24時間振とうして平衡化させた。次いで蓋付きガラス瓶にポリフェノール10mgを量りとり、平衡化させた1−オクタノールと蒸留水をそれぞれ4mLずつ加え、25℃で4日間振とうした。遠心分離により1−オクタノール相と水相を分け、上記[難水溶性ポリフェノールの測定]と同様にしてHPLCにより各相のポリフェノール濃度を測定した。2相間の分配係数の常用対数を取った値をlogP値とした。
[Measurement of log P value of poorly water-soluble polyphenol]
It was measured according to the flask shaking method described in Japanese Industrial Standard Z7260-107. First, 1-octanol and distilled water were equilibrated by shaking at 25 ° C. for 24 hours. Next, 10 mg of polyphenol was weighed into a glass bottle with a lid, 4 mL each of 1-octanol and distilled water that had been equilibrated were added, and the mixture was shaken at 25 ° C. for 4 days. The 1-octanol phase and the aqueous phase were separated by centrifugation, and the polyphenol concentration in each phase was measured by HPLC in the same manner as in the above [Measurement of poorly water-soluble polyphenol]. The value obtained by taking the common logarithm of the distribution coefficient between the two phases was defined as the logP value.

[溶解性の評価]
ポリフェノール組成物I〜IXは、試料0.1gを10g/Lとなるように蒸留水に分散させ、ポリフェノール組成物X〜XIは、試料0.1gを1g/Lとなるように蒸留水に分散させ、それぞれ20mLのガラス製サンプル瓶に入れてロータリーシェーカー(アズワン製、50rpm)で25℃で3時間振とう後の状態を目視にて確認した。下記の評価基準で溶解性を評価した。
3:完全に溶解して沈殿なし
2:不溶性固形分による濁りがみられるが沈降物なし
1:サンプル瓶の底に沈殿が層状に堆積
[Evaluation of solubility]
Polyphenol compositions I to IX are dispersed in distilled water so that 0.1 g of sample is 10 g / L, and polyphenol compositions X to XI are dispersed in distilled water so that 0.1 g of sample is 1 g / L. Each was put in a 20 mL glass sample bottle, and the state after shaking at 25 ° C. for 3 hours with a rotary shaker (manufactured by ASONE, 50 rpm) was visually confirmed. The solubility was evaluated according to the following evaluation criteria.
3: Complete dissolution and no precipitation 2: Turbidity due to insoluble solids but no sediment 1: Precipitation deposited in layers at the bottom of the sample bottle

[X線回折分析]
X線回折強度は、株式会社リガク製の「Rigaku RINT 2500VC X−RAY diffractometer」
を用いて以下の条件で測定した。
X線源:Cu/Kα−radiation,管電圧:40kv,管電流:120mA,測定範囲:2θ=5〜45°。測定用サンプルは面積320mm2×厚さ1mmのペレットを圧縮し作製した。X線のスキャンスピードは10°/min。
[X-ray diffraction analysis]
X-ray diffraction intensity is “Rigaku RINT 2500VC X-RAY diffractometer” manufactured by Rigaku Corporation.
Was measured under the following conditions.
X-ray source: Cu / Kα-radiation, tube voltage: 40 kv, tube current: 120 mA, measurement range: 2θ = 5-45 °. The measurement sample was prepared by compressing a pellet having an area of 320 mm 2 × thickness of 1 mm. X-ray scanning speed is 10 ° / min.

[pHの測定]
pHは、水性媒体を20℃において、(株)堀場製作所製pHメーター(F−22)で測定した。
[Measurement of pH]
The pH was measured with a pH meter (F-22) manufactured by Horiba, Ltd. at 20 ° C. in the aqueous medium.

実施例1
ヘスペリジン製剤(ヘスペリジン「ハマリ」(商品名)、浜理薬品工業(株)、ヘスペリジン(HES)含有量90%)を蒸留水(pH7)に10g/Lで分散し、スラリー供給タンク内で均一攪拌した。内容積100mLのステンレス製流通式処理器(日東高圧社製)に、スラリー供給タンク内の液を100mL/分で供給し、120℃で加熱処理を行った(平均滞留時間1分)。処理器内のゲージ圧力は出口バルブにより0.3MPaに調整した。処理器出口から処理液を抜き出し、熱交換器により25℃まで冷却し、孔径7μmの金属焼結フィルターを通した後、出口バルブで溶解液の圧力を大気圧に戻して回収した。溶解液を、加熱処理終了時点から5分後に噴霧乾燥機(Niro社製、モービルマイナmic型、入口エアー温度160℃、出口エアー温度72℃)に供給し、粉末の形態にてポリフェノール組成物Iを得た。溶解液中のHES濃度、HES純度、収率及びポリフェノール組成物Iの溶解性評価の結果を表1に示す。また、ポリフェノール組成物IのX線回折結果を図1に示し、回折角(2θ)15.5°での回折強度と回折角(2θ)14.5°での回折強度の比を表1に示す。
Example 1
Hesperidin preparation (Hesperidin “Hamari” (trade name), Hamari Pharmaceutical Co., Ltd., Hesperidin (HES) content 90%) is dispersed in distilled water (pH 7) at 10 g / L and uniformly stirred in a slurry supply tank. did. The liquid in the slurry supply tank was supplied at a rate of 100 mL / min to a stainless steel flow-type processing device (manufactured by Nitto Koatsu Co., Ltd.) with an internal volume of 100 mL, and heat treatment was performed at 120 ° C. (average residence time 1 minute). The gauge pressure in the processor was adjusted to 0.3 MPa by an outlet valve. The processing solution was extracted from the processing unit outlet, cooled to 25 ° C. with a heat exchanger, passed through a sintered metal filter having a pore diameter of 7 μm, and then recovered by returning the pressure of the solution to atmospheric pressure with an outlet valve. The solution is supplied to a spray dryer (manufactured by Niro, mobile minor mic, inlet air temperature 160 ° C., outlet air temperature 72 ° C.) 5 minutes after the end of the heat treatment, and in the form of powder, polyphenol composition I Got. Table 1 shows the results of HES concentration, HES purity, yield, and solubility evaluation of polyphenol composition I in the solution. The X-ray diffraction result of the polyphenol composition I is shown in FIG. 1, and the ratio of the diffraction intensity at the diffraction angle (2θ) of 15.5 ° and the diffraction intensity at the diffraction angle (2θ) of 14.5 ° is shown in Table 1. Show.

さらに、ポリフェノール組成物の溶解度を調べるためポリフェノール組成物I 0.25gに蒸留水(25℃)0.3gを加えて振盪し、5分後に0.2μmのメンブレンフィルターでろ過してヘスペリジン濃度を測定したところ530g/Lであり、市販ヘスペリジン製剤の溶解度(0.02g/L)と比較して顕著に高かった。   Furthermore, in order to check the solubility of the polyphenol composition, 0.3 g of distilled water (25 ° C.) was added to 0.25 g of polyphenol composition I and shaken, and after 5 minutes, filtered through a 0.2 μm membrane filter to measure the concentration of hesperidin. As a result, it was 530 g / L, which was significantly higher than the solubility (0.02 g / L) of the commercially available hesperidin preparation.

実施例2
加熱処理の温度を150℃、圧力を0.6MPaとした以外は実施例1と同様にして溶解液を回収した。溶解液を、−50℃のクールバスで予備凍結した後、加熱処理終了時点から5分後に凍結乾燥機(CHRIST社製ALPHA1−4LSC)により減圧乾燥した。このときの絶対圧力は1Paであった。72時間後にポリフェノール組成物IIを得た。溶解液中のHES濃度、HES純度、収率及びポリフェノール組成物IIの溶解性評価の結果を表1に示す。また、ポリフェノール組成物IIのX線回折結果を図2に示し、回折角(2θ)15.5°での回折強度と回折角(2θ)14.5°での回折強度の比を表1に示す。
Example 2
The solution was recovered in the same manner as in Example 1 except that the temperature of the heat treatment was 150 ° C. and the pressure was 0.6 MPa. The solution was pre-frozen in a −50 ° C. cool bath and then dried under reduced pressure by a freeze dryer (ALPHA1-4LSC manufactured by CHRIST) 5 minutes after the end of the heat treatment. The absolute pressure at this time was 1 Pa. After 72 hours, polyphenol composition II was obtained. Table 1 shows the results of the HES concentration, HES purity, yield, and solubility evaluation of the polyphenol composition II in the solution. The X-ray diffraction result of the polyphenol composition II is shown in FIG. 2, and the ratio of the diffraction intensity at the diffraction angle (2θ) of 15.5 ° and the diffraction intensity at the diffraction angle (2θ) of 14.5 ° is shown in Table 1. Show.

比較例1
実施例1で用いたヘスペリジン製剤をそのままポリフェノール組成物IIIとした。ポリフェノール組成物IIIの溶解性評価の結果を表1に示す。また、ポリフェノール組成物IIIのX線回折結果を図3に示し、回折角(2θ)15.5°での回折強度と回折角(2θ)14.5°での回折強度の比を表1に示す。
Comparative Example 1
The hesperidin preparation used in Example 1 was used as polyphenol composition III as it was. The results of the solubility evaluation of the polyphenol composition III are shown in Table 1. The X-ray diffraction result of the polyphenol composition III is shown in FIG. 3, and the ratio of the diffraction intensity at the diffraction angle (2θ) of 15.5 ° and the diffraction intensity at the diffraction angle (2θ) of 14.5 ° is shown in Table 1. Show.

比較例2
加熱処理後、乾燥開始までの時間を10分とし、噴霧乾燥機のかわりに70℃に設定した減圧電気乾燥機中で乾燥した以外は実施例1と同様にしてポリフェノール組成物IVを得た。溶解液中のHES濃度、HES純度、収率及びポリフェノール組成物IVの溶解性評価の結果を表1に示す。また、ポリフェノール組成物IVのX線回折結果を図4に示し、回折角(2θ)15.5°での回折強度と回折角(2θ)14.5°での回折強度の比を表1に示す。
Comparative Example 2
After the heat treatment, polyphenol composition IV was obtained in the same manner as in Example 1 except that the time until the start of drying was 10 minutes, and drying was performed in a vacuum electric dryer set at 70 ° C. instead of the spray dryer. Table 1 shows the results of the HES concentration, HES purity, yield, and solubility evaluation of the polyphenol composition IV in the solution. The X-ray diffraction result of the polyphenol composition IV is shown in FIG. 4, and the ratio of the diffraction intensity at the diffraction angle (2θ) of 15.5 ° and the diffraction intensity at the diffraction angle (2θ) of 14.5 ° is shown in Table 1. Show.

比較例3
加熱処理後、乾燥開始までの時間を1440分とした以外は実施例1と同様にしてポリフェノール組成物Vを得た。溶解液中のHES濃度、HES純度、収率及びポリフェノール組成物Vの溶解性評価の結果を表1に示す。また、ポリフェノール組成物VのX線回折結果を図5に示し、回折角(2θ)15.5°での回折強度と回折角(2θ)14.5°での回折強度の比を表1に示す。
Comparative Example 3
After the heat treatment, a polyphenol composition V was obtained in the same manner as in Example 1 except that the time until the start of drying was 1440 minutes. Table 1 shows the results of HES concentration, HES purity, yield, and solubility evaluation of the polyphenol composition V in the solution. The X-ray diffraction result of the polyphenol composition V is shown in FIG. 5, and the ratio of the diffraction intensity at the diffraction angle (2θ) of 15.5 ° and the diffraction intensity at the diffraction angle (2θ) of 14.5 ° is shown in Table 1. Show.

比較例4
加熱処理の温度を80℃、圧力を0.3MPaとした以外は実施例2と同様にしてポリフェノール組成物VIを得た。溶解液中のHES濃度、HES純度、収率及びポリフェノール組成物VIの溶解性評価の結果を表1に示す。また、ポリフェノール組成物VIのX線回折結果を図6に示し、回折角(2θ)15.5°での回折強度と回折角(2θ)14.5°での回折強度の比を表1に示す。
Comparative Example 4
A polyphenol composition VI was obtained in the same manner as in Example 2 except that the temperature of the heat treatment was 80 ° C. and the pressure was 0.3 MPa. Table 1 shows the results of HES concentration, HES purity, yield, and solubility evaluation of the polyphenol composition VI in the solution. The X-ray diffraction result of the polyphenol composition VI is shown in FIG. 6, and the ratio of the diffraction intensity at the diffraction angle (2θ) of 15.5 ° and the diffraction intensity at the diffraction angle (2θ) of 14.5 ° is shown in Table 1. Show.

Figure 0005926944
Figure 0005926944

表1から明らかなように、本発明方法によれば、ヘスペリジンの溶解濃度を顕著に増大させることができ、水への溶解性に極めて優れたヘスペリジン組成物を収率よく得ることができた。特に、実施例1及び2より、可溶化剤を含まないヘスペリジン純度100%の組成物を得ることができた。図1、図2及び表1より、本発明のヘスペリジン組成物はアモルファス状態であることが確認された。
他方、市販ヘスペリジン製剤である比較例1と、70℃乾燥機で乾燥した比較例2では、水への溶解性が低かった。これらは、図3及び4に示すとおり高結晶性であった。
また、噴霧乾燥を加熱処理終了から1440分後に開始した比較例3と、加熱処理を80℃と低い温度で行った比較例4では、ヘスペリジンの収率が悪かった。
As is apparent from Table 1, according to the method of the present invention, the concentration of hesperidin can be remarkably increased, and a hesperidin composition having excellent water solubility can be obtained with high yield. In particular, from Examples 1 and 2, a composition having a hesperidin purity of 100% and containing no solubilizer could be obtained. 1 and 2 and Table 1, it was confirmed that the hesperidin composition of the present invention was in an amorphous state.
On the other hand, Comparative Example 1 which is a commercially available hesperidin preparation and Comparative Example 2 which was dried with a 70 ° C. drier had low solubility in water. These were highly crystalline as shown in FIGS.
Moreover, the yield of hesperidin was bad in the comparative example 3 which started spray-drying 1440 minutes after completion | finish of heat processing, and the comparative example 4 which performed heat processing at a low temperature of 80 degreeC.

実施例3
ヘスペリジン製剤に代えて、ナリンギン製剤(ACROS ORGANICS社製、ナリンギン含有量97%、以下同じ)を用いた以外は実施例1と同様にして溶解液を回収した。120℃から90℃までの冷却時間から求めた冷却速度は7.58℃/sであった。溶解液を、加熱処理終了時点から10分後に噴霧乾燥機(ヤマト科学製、ADL311S−A、入口エアー温度150℃、出口エアー温度60℃)に供給し、粉末の形態にてポリフェノール組成物VIIを得た。溶解液中のナリンギン濃度、ナリンギン純度、収率及びポリフェノール組成物VIIの溶解性評価の結果を表2に示す。
さらに、ポリフェノール組成物の溶解度を調べるためポリフェノール組成物VII 0.25gに蒸留水(25℃)0.3gを加えて振盪し、5分後に0.2μmのメンブレンフィルターでろ過してナリンギン濃度を測定したところ584g/Lであり、市販ナリンギン製剤の溶解度(0.44g/L)と比較して顕著に高かった。
Example 3
The solution was recovered in the same manner as in Example 1 except that a naringin formulation (manufactured by ACROS ORGANICS, content of naringin 97%, the same applies hereinafter) was used instead of the hesperidin formulation. The cooling rate obtained from the cooling time from 120 ° C. to 90 ° C. was 7.58 ° C./s. 10 minutes after the end of the heat treatment, the solution was supplied to a spray dryer (manufactured by Yamato Kagaku, ADL311S-A, inlet air temperature 150 ° C., outlet air temperature 60 ° C.), and the polyphenol composition VII was in the form of powder. Obtained. Table 2 shows the results of the evaluation of naringin concentration, naringin purity, yield, and solubility of polyphenol composition VII in the solution.
Furthermore, in order to investigate the solubility of the polyphenol composition, 0.3 g of distilled water (25 ° C.) was added to 0.25 g of the polyphenol composition VII and shaken, and after 5 minutes, it was filtered through a 0.2 μm membrane filter to measure the naringin concentration. As a result, it was 584 g / L, which was significantly higher than the solubility (0.44 g / L) of the commercially available naringin preparation.

実施例4
ナリンギン製剤を蒸留水(pH7)に10g/Lで分散した分散水150mLを、バッチ式水熱処理装置(日東高圧製Start200New Quick、容積180mL)に入れ、上部空間を窒素置換し、加熱した。昇温速度は3.4℃/分とし、120℃に到達後、1分後に装置を水浴に浸して25℃まで冷却した。120℃から90℃までの冷却時間から求めた冷却速度は0.38℃/sであった。処理液を孔径3μmのメンブレンフィルターを通して溶解液を回収した。溶解液を、実施例3と同様に噴霧乾燥して粉末の形態にてポリフェノール組成物VIIIを得た。溶解液中のナリンギン濃度、ナリンギン純度、収率及びポリフェノール組成物VIIIの溶解性評価の結果を表2に示す。
Example 4
150 mL of dispersed water obtained by dispersing a naringin preparation in distilled water (pH 7) at 10 g / L was placed in a batch hydrothermal apparatus (Start 200 New Quick, volume 180 mL) manufactured by Nitto Koatsu, and the upper space was purged with nitrogen and heated. The temperature elevation rate was 3.4 ° C./min. After reaching 120 ° C., the device was immersed in a water bath after 1 minute and cooled to 25 ° C. The cooling rate obtained from the cooling time from 120 ° C. to 90 ° C. was 0.38 ° C./s. The solution was recovered through a membrane filter having a pore size of 3 μm. The solution was spray dried as in Example 3 to obtain a polyphenol composition VIII in the form of a powder. Table 2 shows the results of the evaluation of naringin concentration, naringin purity, yield, and solubility of polyphenol composition VIII in the solution.

比較例5
実施例3で用いたナリンギン製剤をそのままポリフェノール組成物IXとした。ポリフェノール組成物IXの溶解性評価の結果を表2に示す。
Comparative Example 5
The naringin formulation used in Example 3 was used as polyphenol composition IX as it was. The results of the solubility evaluation of the polyphenol composition IX are shown in Table 2.

実施例5
ヘスペリジン製剤に代えて、ルチン製剤((株)常盤植物化学研究所製、ルチン含有量100%、以下、同じ)を蒸留水に5g/Lで分散した以外は実施例1と同様にして溶解液を回収した。溶解液を、加熱処理終了時点から10分後に実施例2と同様に凍結乾燥して粉末の形態にてポリフェノール組成物Xを得た。溶解液中のルチン濃度、ルチン純度、収率及びポリフェノール組成物Xの溶解性評価の結果を表2に示す。
さらに、ポリフェノール組成物の溶解度を調べるためポリフェノール組成物X 0.25gに蒸留水(25℃)0.3gを加えて振盪し、5分後に0.2μmのメンブレンフィルターでろ過してルチン濃度を測定したところ14g/Lであり、市販ルチン製剤の溶解度(0.03g/L)と比較して顕著に高かった。
Example 5
Instead of the hesperidin preparation, a rutin preparation (manufactured by Tokiwa Plant Chemical Research Co., Ltd., rutin content 100%, hereinafter the same) was dissolved in distilled water at 5 g / L in the same manner as in Example 1. Was recovered. The solution was freeze-dried 10 minutes after the end of the heat treatment in the same manner as in Example 2 to obtain a polyphenol composition X in the form of a powder. Table 2 shows the results of the rutin concentration, rutin purity, yield, and solubility evaluation of the polyphenol composition X in the solution.
Furthermore, in order to investigate the solubility of the polyphenol composition, 0.3 g of distilled water (25 ° C.) was added to 0.25 g of the polyphenol composition X, and the mixture was shaken, and after 5 minutes, it was filtered through a 0.2 μm membrane filter to measure the rutin concentration. As a result, it was 14 g / L, which was significantly higher than the solubility (0.03 g / L) of the commercially available rutin preparation.

比較例6
実施例5で用いたルチン製剤をそのままポリフェノール組成物XIとした。ポリフェノール組成物XIの溶解性評価の結果を表2に示す。
Comparative Example 6
The rutin preparation used in Example 5 was used as polyphenol composition XI as it was. The results of solubility evaluation of the polyphenol composition XI are shown in Table 2.

Figure 0005926944
Figure 0005926944

表2から明らかなように、本発明方法によれば、ナリンギン及びルチンの溶解濃度を顕著に増大させることができ、水への溶解性に極めて優れ、且つ可溶化剤を含まない純度100%の組成物を収率よく得ることができた。
他方、市販ナリンギン製剤及びルチン製剤である比較例5と6では、水への溶解性が低かった。
As is apparent from Table 2, according to the method of the present invention, the dissolution concentration of naringin and rutin can be remarkably increased, the solubility in water is extremely excellent, and the purity is 100% with no solubilizer. The composition could be obtained with good yield.
On the other hand, Comparative Examples 5 and 6 which are commercially available naringin preparations and rutin preparations had low solubility in water.

Claims (6)

次の工程(1)及び(2):
(1)水性媒体の存在下、難水溶性ポリフェノール(A)を100〜180℃で加熱処理し、更に、加熱処理して得られた処理液を冷却する工程、
(2)加熱処理後10分以内に処理液を噴霧乾燥又は凍結乾燥する工程、
を含み、
前記難水溶性ポリフェノール(A)はフラバノン類及びフラボノール類から選ばれる1種又は2種以上であり、下記可溶化剤(B)は難水溶性ポリフェノール(A)の糖付加物であって、
前記加熱処理を、難水溶性ポリフェノール(A)と可溶化剤(B)の合計に対する可溶化剤(B)の質量比[(B)/((A)+(B))]が0.1未満である条件で行う、ポリフェノール組成物の製造方法。
Next steps (1) and (2):
(1) A step of heat-treating the poorly water-soluble polyphenol (A) at 100 to 180 ° C. in the presence of an aqueous medium , and further cooling the treatment liquid obtained by the heat treatment ,
(2) A step of spray drying or freeze drying the treatment liquid within 10 minutes after the heat treatment,
Including
The poorly water-soluble polyphenol (A) is one or more selected from flavanones and flavonols, and the following solubilizer (B) is a sugar adduct of the poorly water-soluble polyphenol (A),
In the heat treatment, the mass ratio [(B) / ((A) + (B))] of the solubilizer (B) to the total of the poorly water-soluble polyphenol (A) and the solubilizer (B) is 0.1. The manufacturing method of the polyphenol composition performed on the conditions which are less than.
水性媒体のpHが3以上9未満である、請求項記載のポリフェノール組成物の製造方法。 PH of the aqueous medium is less than 3 to 9, a manufacturing method of claim 1 polyphenol composition. 更に、冷却された処理液から固体部を除去する工程を含む、請求項1又は2記載のポリフェノール組成物の製造方法。 Further comprising the step of removing the solid portion from the cooling has been treated liquid The process according to claim 1 or 2 polyphenol composition. 処理液を冷却する工程において、加熱処理温度から90℃までの冷却速度が0.5℃/s以上である、請求項1〜3のいずれか1項記載のポリフェノール組成物の製造方法。 The manufacturing method of the polyphenol composition of any one of Claims 1-3 whose cooling rate from heat processing temperature to 90 degreeC is 0.5 degrees C / s or more in the process of cooling a process liquid. 難水溶性ポリフェノール(A)のlogP値が−1.0〜4.0である請求項1〜4のいずれか1項記載のポリフェノール組成物の製造方法。 The method for producing a polyphenol composition according to any one of claims 1 to 4 , wherein the slightly water-soluble polyphenol (A) has a log P value of -1.0 to 4.0. 難水溶性ポリフェノール(A)がヘスペリジン、ナリンギン及びルチンから選択される1種又は2種以上である請求項1〜5のいずれか1項記載のポリフェノール組成物の製造方法。 The method for producing a polyphenol composition according to any one of claims 1 to 5 , wherein the poorly water-soluble polyphenol (A) is one or more selected from hesperidin, naringin and rutin.
JP2011273272A 2011-04-07 2011-12-14 Method for producing polyphenol composition Active JP5926944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011273272A JP5926944B2 (en) 2011-04-07 2011-12-14 Method for producing polyphenol composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011085424 2011-04-07
JP2011085424 2011-04-07
JP2011273272A JP5926944B2 (en) 2011-04-07 2011-12-14 Method for producing polyphenol composition

Publications (2)

Publication Number Publication Date
JP2012224612A JP2012224612A (en) 2012-11-15
JP5926944B2 true JP5926944B2 (en) 2016-05-25

Family

ID=47275201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011273272A Active JP5926944B2 (en) 2011-04-07 2011-12-14 Method for producing polyphenol composition

Country Status (1)

Country Link
JP (1) JP5926944B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140073659A (en) * 2012-12-05 2014-06-17 삼성정밀화학 주식회사 Composition containing natural polyphenolic compound and orally ingestible composition including the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710898A (en) * 1993-06-24 1995-01-13 Sanei Gen F F I Inc Method for modifying sparingly water-soluble flavonoid
JP3878763B2 (en) * 1999-02-24 2007-02-07 江崎グリコ株式会社 Method for producing citrus fruit juice and fruit juice beverage
JP4907122B2 (en) * 2005-08-05 2012-03-28 東洋精糖株式会社 Water-soluble naringin composition
JP5160049B2 (en) * 2006-05-18 2013-03-13 花王株式会社 Hesperidin composition
EP2289343A1 (en) * 2009-07-29 2011-03-02 Nestec S.A. Flavanones-containing food compositions

Also Published As

Publication number Publication date
JP2012224612A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP6691752B2 (en) Method for producing solid dispersion containing sparingly soluble polyphenols
KR101774075B1 (en) Manufacturing method for polyphenol composition
JP4826740B2 (en) Flavonoid solubilizer and solubilization method
JP4347899B2 (en) Method for producing polyphenol-rich composition
JP5162698B2 (en) Method for producing polyphenol composition
JP5930953B2 (en) Method for producing antibacterial agent composition
WO2015020138A1 (en) Agent for promoting in vivo absorption of hydroxytyrosol and derivatives thereof and use of same
JP5228083B2 (en) Method for producing hesperidin composition
JP6392507B2 (en) Method for producing polyphenol composition
CA2517668A1 (en) Process for producing proanthocyanin-rich material
JP5926944B2 (en) Method for producing polyphenol composition
JP4442422B2 (en) High-concentration and high-solubility isoflavone-containing composition and process for producing the same
JP2012077051A (en) Method for producing hesperidin composition
JP6454094B2 (en) Method for producing ellagic acid composition
JP5422871B2 (en) Isoflavones composition
JP6062783B2 (en) Method for producing polyphenol composition
JP5985229B2 (en) Process for producing sugar adducts of poorly water-soluble polyphenols
JP2001169742A (en) Water-soluble soybean hypocotyl processed food and method for producing the same
JP2019026624A (en) Methods for producing membrane structures for ingestion
JP2010037258A (en) Absorption promoter for polyphenol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R151 Written notification of patent or utility model registration

Ref document number: 5926944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250