JP5985229B2 - Process for producing sugar adducts of poorly water-soluble polyphenols - Google Patents
Process for producing sugar adducts of poorly water-soluble polyphenols Download PDFInfo
- Publication number
- JP5985229B2 JP5985229B2 JP2012089815A JP2012089815A JP5985229B2 JP 5985229 B2 JP5985229 B2 JP 5985229B2 JP 2012089815 A JP2012089815 A JP 2012089815A JP 2012089815 A JP2012089815 A JP 2012089815A JP 5985229 B2 JP5985229 B2 JP 5985229B2
- Authority
- JP
- Japan
- Prior art keywords
- poorly water
- rhamnose
- reaction
- sugar
- soluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 235000013824 polyphenols Nutrition 0.000 title claims description 104
- 150000008442 polyphenolic compounds Chemical class 0.000 title claims description 102
- 235000000346 sugar Nutrition 0.000 title claims description 61
- 238000000034 method Methods 0.000 title claims description 37
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 claims description 60
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 claims description 60
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 claims description 60
- 238000006243 chemical reaction Methods 0.000 claims description 53
- 238000010438 heat treatment Methods 0.000 claims description 45
- 150000008265 rhamnosides Chemical group 0.000 claims description 37
- 238000003379 elimination reaction Methods 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 24
- 108700023372 Glycosyltransferases Proteins 0.000 claims description 17
- 102000051366 Glycosyltransferases Human genes 0.000 claims description 16
- 239000012736 aqueous medium Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 8
- 238000006276 transfer reaction Methods 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 238000005918 transglycosylation reaction Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 3
- 239000012295 chemical reaction liquid Substances 0.000 claims 1
- 102000004190 Enzymes Human genes 0.000 description 34
- 108090000790 Enzymes Proteins 0.000 description 34
- 239000000243 solution Substances 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 229940088598 enzyme Drugs 0.000 description 28
- 239000001100 (2S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one Substances 0.000 description 19
- ARGKVCXINMKCAZ-UHFFFAOYSA-N neohesperidine Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(OC3C(C(O)C(O)C(CO)O3)OC3C(C(O)C(O)C(C)O3)O)=CC(O)=C2C(=O)C1 ARGKVCXINMKCAZ-UHFFFAOYSA-N 0.000 description 18
- QUQPHWDTPGMPEX-UHFFFAOYSA-N Hesperidine Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(OC3C(C(O)C(O)C(COC4C(C(O)C(O)C(C)O4)O)O3)O)=CC(O)=C2C(=O)C1 QUQPHWDTPGMPEX-UHFFFAOYSA-N 0.000 description 17
- QUQPHWDTPGMPEX-UTWYECKDSA-N aurantiamarin Natural products COc1ccc(cc1O)[C@H]1CC(=O)c2c(O)cc(O[C@@H]3O[C@H](CO[C@@H]4O[C@@H](C)[C@H](O)[C@@H](O)[C@H]4O)[C@@H](O)[C@H](O)[C@H]3O)cc2O1 QUQPHWDTPGMPEX-UTWYECKDSA-N 0.000 description 17
- APSNPMVGBGZYAJ-GLOOOPAXSA-N clematine Natural products COc1cc(ccc1O)[C@@H]2CC(=O)c3c(O)cc(O[C@@H]4O[C@H](CO[C@H]5O[C@@H](C)[C@H](O)[C@@H](O)[C@H]5O)[C@@H](O)[C@H](O)[C@H]4O)cc3O2 APSNPMVGBGZYAJ-GLOOOPAXSA-N 0.000 description 17
- QUQPHWDTPGMPEX-QJBIFVCTSA-N hesperidin Chemical compound C1=C(O)C(OC)=CC=C1[C@H]1OC2=CC(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO[C@H]4[C@@H]([C@H](O)[C@@H](O)[C@H](C)O4)O)O3)O)=CC(O)=C2C(=O)C1 QUQPHWDTPGMPEX-QJBIFVCTSA-N 0.000 description 17
- VUYDGVRIQRPHFX-UHFFFAOYSA-N hesperidin Natural products COc1cc(ccc1O)C2CC(=O)c3c(O)cc(OC4OC(COC5OC(O)C(O)C(O)C5O)C(O)C(O)C4O)cc3O2 VUYDGVRIQRPHFX-UHFFFAOYSA-N 0.000 description 17
- 229940025878 hesperidin Drugs 0.000 description 17
- 235000005493 rutin Nutrition 0.000 description 14
- JMGZEFIQIZZSBH-UHFFFAOYSA-N Bioquercetin Natural products CC1OC(OCC(O)C2OC(OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5)C(O)C2O)C(O)C(O)C1O JMGZEFIQIZZSBH-UHFFFAOYSA-N 0.000 description 13
- IVTMALDHFAHOGL-UHFFFAOYSA-N eriodictyol 7-O-rutinoside Natural products OC1C(O)C(O)C(C)OC1OCC1C(O)C(O)C(O)C(OC=2C=C3C(C(C(O)=C(O3)C=3C=C(O)C(O)=CC=3)=O)=C(O)C=2)O1 IVTMALDHFAHOGL-UHFFFAOYSA-N 0.000 description 13
- FDRQPMVGJOQVTL-UHFFFAOYSA-N quercetin rutinoside Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 FDRQPMVGJOQVTL-UHFFFAOYSA-N 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- IKGXIBQEEMLURG-BKUODXTLSA-N rutin Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@@H]1OC[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](OC=2C(C3=C(O)C=C(O)C=C3OC=2C=2C=C(O)C(O)=CC=2)=O)O1 IKGXIBQEEMLURG-BKUODXTLSA-N 0.000 description 13
- ALABRVAAKCSLSC-UHFFFAOYSA-N rutin Natural products CC1OC(OCC2OC(O)C(O)C(O)C2O)C(O)C(O)C1OC3=C(Oc4cc(O)cc(O)c4C3=O)c5ccc(O)c(O)c5 ALABRVAAKCSLSC-UHFFFAOYSA-N 0.000 description 13
- 229960004555 rutoside Drugs 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000011521 glass Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 9
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 235000013361 beverage Nutrition 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 229920000858 Cyclodextrin Polymers 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- 235000013305 food Nutrition 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 108010030923 hesperidinase Proteins 0.000 description 5
- 108010001078 naringinase Proteins 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 229930003949 flavanone Natural products 0.000 description 3
- 150000002208 flavanones Chemical class 0.000 description 3
- 235000011981 flavanones Nutrition 0.000 description 3
- 229930003935 flavonoid Natural products 0.000 description 3
- 235000017173 flavonoids Nutrition 0.000 description 3
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 description 3
- 229940080345 gamma-cyclodextrin Drugs 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000001606 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5-hydroxy-2-(4-hydroxyphenyl)chroman-4-one Substances 0.000 description 2
- TWCMVXMQHSVIOJ-UHFFFAOYSA-N Aglycone of yadanzioside D Natural products COC(=O)C12OCC34C(CC5C(=CC(O)C(O)C5(C)C3C(O)C1O)C)OC(=O)C(OC(=O)C)C24 TWCMVXMQHSVIOJ-UHFFFAOYSA-N 0.000 description 2
- PLMKQQMDOMTZGG-UHFFFAOYSA-N Astrantiagenin E-methylester Natural products CC12CCC(O)C(C)(CO)C1CCC1(C)C2CC=C2C3CC(C)(C)CCC3(C(=O)OC)CCC21C PLMKQQMDOMTZGG-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 244000269722 Thea sinensis Species 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 150000002215 flavonoids Chemical class 0.000 description 2
- HVQAJTFOCKOKIN-UHFFFAOYSA-N flavonol Natural products O1C2=CC=CC=C2C(=O)C(O)=C1C1=CC=CC=C1 HVQAJTFOCKOKIN-UHFFFAOYSA-N 0.000 description 2
- 150000002216 flavonol derivatives Chemical class 0.000 description 2
- 235000011957 flavonols Nutrition 0.000 description 2
- -1 glucosyl hesperetin Chemical compound 0.000 description 2
- 235000013402 health food Nutrition 0.000 description 2
- AIONOLUJZLIMTK-UHFFFAOYSA-N hesperetin Natural products C1=C(O)C(OC)=CC=C1C1OC2=CC(O)=CC(O)=C2C(=O)C1 AIONOLUJZLIMTK-UHFFFAOYSA-N 0.000 description 2
- 235000010209 hesperetin Nutrition 0.000 description 2
- 229960001587 hesperetin Drugs 0.000 description 2
- PFOARMALXZGCHY-UHFFFAOYSA-N homoegonol Natural products C1=C(OC)C(OC)=CC=C1C1=CC2=CC(CCCO)=CC(OC)=C2O1 PFOARMALXZGCHY-UHFFFAOYSA-N 0.000 description 2
- FTODBIPDTXRIGS-UHFFFAOYSA-N homoeriodictyol Natural products C1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 FTODBIPDTXRIGS-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229930019673 naringin Natural products 0.000 description 2
- DFPMSGMNTNDNHN-ZPHOTFPESA-N naringin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](OC=2C=C3O[C@@H](CC(=O)C3=C(O)C=2)C=2C=CC(O)=CC=2)O[C@H](CO)[C@@H](O)[C@@H]1O DFPMSGMNTNDNHN-ZPHOTFPESA-N 0.000 description 2
- 229940052490 naringin Drugs 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 150000007965 phenolic acids Chemical class 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 235000013616 tea Nutrition 0.000 description 2
- IMMBLRJLSYJQIZ-UNQGIHKMSA-N (2S)-7-[3,4-dihydroxy-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl]oxan-2-yl]oxy-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydrochromen-4-one Chemical compound COc1ccc(cc1O)[C@@H]1CC(=O)c2c(O)cc(OC3OC(COC4OC(C)C(O)C(O)C4O)C(OC4OC(CO)C(O)C(O)C4O)C(O)C3O)cc2O1 IMMBLRJLSYJQIZ-UNQGIHKMSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- SATHPVQTSSUFFW-UHFFFAOYSA-N 4-[6-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxymethyl]-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy-2-(hydroxymethyl)-6-methyloxane-3,5-diol Chemical compound OC1C(OC)C(O)COC1OCC1C(O)C(OC)C(O)C(OC2C(C(CO)OC(C)C2O)O)O1 SATHPVQTSSUFFW-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 108010033764 Amylosucrase Proteins 0.000 description 1
- 229920000189 Arabinogalactan Polymers 0.000 description 1
- 239000001904 Arabinogalactan Substances 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 1
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 108010012023 Dextrin dextranase Proteins 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 206010056474 Erythrosis Diseases 0.000 description 1
- 229920002670 Fructan Polymers 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 102100024295 Maltase-glucoamylase Human genes 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 229920001218 Pullulan Polymers 0.000 description 1
- 239000004373 Pullulan Substances 0.000 description 1
- LUJAXSNNYBCFEE-UHFFFAOYSA-N Quercetin 3,7-dimethyl ether Natural products C=1C(OC)=CC(O)=C(C(C=2OC)=O)C=1OC=2C1=CC=C(O)C(O)=C1 LUJAXSNNYBCFEE-UHFFFAOYSA-N 0.000 description 1
- PUTDIROJWHRSJW-UHFFFAOYSA-N Quercitrin Natural products CC1OC(Oc2cc(cc(O)c2O)C3=CC(=O)c4c(O)cc(O)cc4O3)C(O)C(O)C1O PUTDIROJWHRSJW-UHFFFAOYSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- OXGUCUVFOIWWQJ-XIMSSLRFSA-N acanthophorin B Natural products O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@H]1OC1=C(C=2C=C(O)C(O)=CC=2)OC2=CC(O)=CC(O)=C2C1=O OXGUCUVFOIWWQJ-XIMSSLRFSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- FYGDTMLNYKFZSV-DZOUCCHMSA-N alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)O[C@H](O[C@@H]2[C@H](OC(O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-DZOUCCHMSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 108010030291 alpha-Galactosidase Proteins 0.000 description 1
- 102000005840 alpha-Galactosidase Human genes 0.000 description 1
- 108010028144 alpha-Glucosidases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 230000003266 anti-allergic effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 235000019312 arabinogalactan Nutrition 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010047754 beta-Glucosidase Proteins 0.000 description 1
- 102000006995 beta-Glucosidase Human genes 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 235000014510 cooky Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-NGQZWQHPSA-N d-xylitol Chemical compound OC[C@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-NGQZWQHPSA-N 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 108010042194 dextransucrase Proteins 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229930003944 flavone Natural products 0.000 description 1
- 150000002213 flavones Chemical class 0.000 description 1
- 235000011949 flavones Nutrition 0.000 description 1
- 229930182486 flavonoid glycoside Natural products 0.000 description 1
- 150000007955 flavonoid glycosides Chemical class 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229940108690 glucosyl hesperidin Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 102000045442 glycosyltransferase activity proteins Human genes 0.000 description 1
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 1
- 235000009569 green tea Nutrition 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- AIONOLUJZLIMTK-AWEZNQCLSA-N hesperetin Chemical compound C1=C(O)C(OC)=CC=C1[C@H]1OC2=CC(O)=CC(O)=C2C(=O)C1 AIONOLUJZLIMTK-AWEZNQCLSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- CJWQYWQDLBZGPD-UHFFFAOYSA-N isoflavone Natural products C1=C(OC)C(OC)=CC(OC)=C1C1=COC2=C(C=CC(C)(C)O3)C3=C(OC)C=C2C1=O CJWQYWQDLBZGPD-UHFFFAOYSA-N 0.000 description 1
- 150000002515 isoflavone derivatives Chemical class 0.000 description 1
- 235000008696 isoflavones Nutrition 0.000 description 1
- 235000015110 jellies Nutrition 0.000 description 1
- 239000008274 jelly Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- DCYOADKBABEMIQ-OWMUPTOHSA-N myricitrin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1OC1=C(C=2C=C(O)C(O)=C(O)C=2)OC2=CC(O)=CC(O)=C2C1=O DCYOADKBABEMIQ-OWMUPTOHSA-N 0.000 description 1
- DCYOADKBABEMIQ-FLCVNNLFSA-N myricitrin Natural products O([C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](C)O1)C1=C(c2cc(O)c(O)c(O)c2)Oc2c(c(O)cc(O)c2)C1=O DCYOADKBABEMIQ-FLCVNNLFSA-N 0.000 description 1
- ARGKVCXINMKCAZ-UZRWAPQLSA-N neohesperidin Chemical compound C1=C(O)C(OC)=CC=C1[C@H]1OC2=CC(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@H]3[C@@H]([C@H](O)[C@@H](O)[C@H](C)O3)O)=CC(O)=C2C(=O)C1 ARGKVCXINMKCAZ-UZRWAPQLSA-N 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 235000009048 phenolic acids Nutrition 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 235000020991 processed meat Nutrition 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 235000019423 pullulan Nutrition 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- OEKUVLQNKPXSOY-UHFFFAOYSA-N quercetin 3-O-beta-D-glucopyranosyl(1->3)-alpha-L-rhamnopyranosyl(1->6)-beta-d-galactopyranoside Natural products OC1C(O)C(C(O)C)OC1OC1=C(C=2C=C(O)C(O)=CC=2)OC2=CC(O)=CC(O)=C2C1=O OEKUVLQNKPXSOY-UHFFFAOYSA-N 0.000 description 1
- QPHXPNUXTNHJOF-UHFFFAOYSA-N quercetin-7-O-beta-L-rhamnopyranoside Natural products OC1C(O)C(O)C(C)OC1OC1=CC(O)=C2C(=O)C(O)=C(C=3C=C(O)C(O)=CC=3)OC2=C1 QPHXPNUXTNHJOF-UHFFFAOYSA-N 0.000 description 1
- OXGUCUVFOIWWQJ-HQBVPOQASA-N quercitrin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1OC1=C(C=2C=C(O)C(O)=CC=2)OC2=CC(O)=CC(O)=C2C1=O OXGUCUVFOIWWQJ-HQBVPOQASA-N 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 235000011888 snacks Nutrition 0.000 description 1
- 235000014214 soft drink Nutrition 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000006098 transglycosylation Effects 0.000 description 1
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Description
本発明は、難水溶性ポリフェノール類の糖付加物を製造する方法に関する。 The present invention relates to a method for producing a sugar adduct of poorly water-soluble polyphenols.
昨今、生理機能を有する様々な素材が提案され、これらを含有する数多くの健康食品が上市されている。なかでも、ポリフェノールは、抗酸化力を有することが知られており、抗動脈硬化、抗アレルギー、血流増強等の効果が期待されるため、健康食品の重要な成分として認識されている。
しかしながら、ポリフェノールには難水溶性のものが多く、それらを清涼飲料等の水性食品へ使用することは難しい。
Recently, various materials having physiological functions have been proposed, and many health foods containing these have been put on the market. Among them, polyphenols are known to have an antioxidant power and are expected to have effects such as anti-arteriosclerosis, anti-allergy and blood flow enhancement, and thus are recognized as important ingredients in health foods.
However, many polyphenols have poor water solubility, and it is difficult to use them for aqueous foods such as soft drinks.
そこで、難水溶性のポリフェノールを水に可溶化させる技術が検討され、ポリフェノールにグルコース等の糖を付加させた糖付加物が提案されている。例えば、ヘスペリジンの25℃における水への溶解度は僅かに0.02mg/gであるが、ヘスペリジンにグルコースを結合させたα-グルコシルヘスペリジンでは、25℃の水への溶解度が200mg/g以上と高くなる。更に、ポリフェノールの糖付加物は、ポリフェノールと同等の生理機能を発揮する等の利点がある。 Therefore, a technique for solubilizing poorly water-soluble polyphenols in water has been studied, and sugar adducts obtained by adding sugars such as glucose to polyphenols have been proposed. For example, the solubility of hesperidin in water at 25 ° C. is only 0.02 mg / g, but α-glucosyl hesperidin in which glucose is bound to hesperidin has a high solubility in water at 25 ° C. of 200 mg / g or more. Become. Furthermore, the sugar addition product of polyphenol has advantages such as exerting physiological functions equivalent to those of polyphenol.
ポリフェノールの糖付加物を製造する方法としては、例えば、懸濁状もしくはpH7.0を超えるアルカリ側pHで溶解させた溶液状のルチン又はヘスペリジンと澱粉部分加水分解物等を含有する溶液に糖転移酵素を作用させる方法(特許文献1、2)、フラボノイドをpH8〜10に調整した増粘多糖類溶液に溶解させ、サイクロデキストリン合成酵素を作用させるフラボノイド糖転移法(特許文献3)、フラボノイド類をpH8以上のアルカリ域であるいは/およびサイクロデキストリンを加えて可溶化し、さらにアルカリ域でサイクロデキストリン合成酵素を作用させるフラボノイド配糖体の製造方法(特許文献4)等が報告されている。 As a method for producing a sugar addition product of polyphenol, for example, sugar transfer to a solution containing rutin or hesperidin in a suspended state or dissolved at an alkaline pH exceeding 7.0, and a partial hydrolyzate of starch, etc. A method of allowing an enzyme to act (Patent Documents 1 and 2), a flavonoid glycosyl transfer method (Patent Document 3) in which a flavonoid is dissolved in a thickened polysaccharide solution adjusted to pH 8 to 10 and a cyclodextrin synthase is allowed to act; There has been reported a flavonoid glycoside production method (Patent Document 4) in which the solubilization is performed in an alkaline region of pH 8 or higher and / or cyclodextrin is added, and a cyclodextrin synthase is allowed to act in the alkaline region.
しかしながら、特許文献1〜4のように、ポリフェノールをアルカリ性の水溶液に溶解した後、糖転移酵素と反応させる方法は、アルカリ域でのポリフェノールの安定性が低く分解され易い上に、アルカリの中和と脱塩の工程が必要で、製造プロセスの煩雑化が懸念される。また、特許文献1及び2のように、難水溶性のポリフェノールを懸濁した溶液に糖転移酵素を作用させる方法は、糖転移反応液中のポリフェノールの溶解量が少ないため十分な転化率が得られない場合がある。
したがって、本発明の課題は、難水溶性ポリフェノール類からその糖付加物を効率よく製造する方法を提供することにある。
However, as disclosed in Patent Documents 1 to 4, the method of reacting with a glycosyltransferase after dissolving polyphenol in an alkaline aqueous solution is low in stability of the polyphenol in the alkaline region and easily decomposed, and also neutralizes the alkali. And a desalting step is necessary, and there is a concern that the manufacturing process may become complicated. In addition, as in Patent Documents 1 and 2, the method of allowing glycosyltransferase to act on a solution in which a poorly water-soluble polyphenol is suspended has a sufficient conversion rate because the amount of polyphenol dissolved in the transglycosylation reaction solution is small. It may not be possible.
Accordingly, an object of the present invention is to provide a method for efficiently producing a sugar adduct from poorly water-soluble polyphenols.
本発明者らは、上記課題に鑑み鋭意検討したところ、ラムノシド構造を有する難水溶性ポリフェノール類を特定の温度範囲で加熱処理した後に、特定の時間内にラムノシダーゼ活性を有する酵素を作用させて当該ポリフェノール類のラムノースを脱離させ、次いでその反応液に糖転移酵素を作用させると、ラムノシド構造を有する難水溶性ポリフェノール類の溶解濃度を大幅に高め、かつ高濃度を維持したままラムノース脱離反応が進行し、その後糖転移反応も高濃度で進行するため、水溶性に優れたポリフェノール糖付加物が高収率で得られることを見出した。 The present inventors have intensively studied in view of the above problems, and after heat-treating a poorly water-soluble polyphenol having a rhamnoside structure in a specific temperature range, the enzyme having a rhamnosidase activity is allowed to act within a specific time. When rhamnose of polyphenols is eliminated and then glycosyltransferase is allowed to act on the reaction solution, the dissolution concentration of poorly water-soluble polyphenols having a rhamnoside structure is greatly increased and the rhamnose elimination reaction is maintained while maintaining a high concentration. It was found that a polyphenol sugar adduct having excellent water solubility can be obtained in a high yield because the sugar transfer reaction proceeds at a high concentration.
すなわち、本発明は、次の工程(1)、(2)及び(3):
(1)水性媒体の存在下、ラムノシド構造を有する難水溶性ポリフェノール類(A)を100〜180℃で加熱処理し、加熱処理液を得る工程、
(2)得られた加熱処理液に対し、加熱処理後300分以内にラムノース脱離反応を開始し、ラムノースが脱離した難水溶性ポリフェノール類(A’)を含む反応液を得る工程、及び
(3)得られた反応液に糖供与体(B)及び糖転移酵素を添加し、糖転移反応によりラムノースが脱離した難水溶性ポリフェノール類の糖付加物を得る工程、を含む難水溶性ポリフェノール類の糖付加物の製造方法を提供するものである。
That is, the present invention includes the following steps (1), (2) and (3):
(1) A step of heat-treating the poorly water-soluble polyphenols (A) having a rhamnoside structure at 100 to 180 ° C. in the presence of an aqueous medium to obtain a heat treatment liquid,
(2) A step of starting a rhamnose elimination reaction within 300 minutes after the heat treatment to obtain a reaction solution containing the poorly water-soluble polyphenols (A ′) from which rhamnose has been removed, and (3) A step of adding a sugar donor (B) and a glycosyltransferase to the obtained reaction solution to obtain a sugar adduct of a poorly water-soluble polyphenol from which rhamnose has been removed by a sugar transfer reaction. A method for producing a sugar adduct of polyphenols is provided.
本発明によれば、ラムノース脱離反応の転化率、及びポリフェノール糖付加物の収率を向上させることができ、高収率で溶解性に優れるポリフェノール類の糖付加物を製造することができる。 ADVANTAGE OF THE INVENTION According to this invention, the conversion rate of a rhamnose elimination reaction and the yield of a polyphenol sugar adduct can be improved, and the sugar adduct of polyphenols excellent in solubility can be manufactured with a high yield.
本発明の方法における工程(1)は、水性媒体の存在下、ラムノシド構造を有する難水溶性ポリフェノール類(A)を100〜180℃で加熱処理し、加熱処理液を得る工程である。 Step (1) in the method of the present invention is a step of obtaining a heat-treated liquid by heat-treating the poorly water-soluble polyphenols (A) having a rhamnoside structure at 100 to 180 ° C. in the presence of an aqueous medium.
本明細書において「難水溶性ポリフェノール類」とは、logP値が−1.0〜4.0のポリフェノール類を云う。難水溶性ポリフェノール類は、logP値が−0.5〜3.5のものが好ましい。logP値は、1−オクタノール/水間の分配係数の常用対数をとった値で、有機化合物の疎水性を示す指標である。この値が正に大きい程疎水性が高いことを表す。ポリフェノールのlogP値は、日本工業規格 Z7260−107記載のフラスコ振盪法により測定できる。詳細は実施例に記載した。また、25℃における水への溶解量が5g/L以下のものに適用するのが好ましく、2g/L以下がより好ましく、さらに1g/L以下、さらに0.5g/L以下、さらに0.1g/L以下が好ましい。 In the present specification, “poorly water-soluble polyphenols” refers to polyphenols having a log P value of −1.0 to 4.0. The slightly water-soluble polyphenols preferably have a log P value of -0.5 to 3.5. The log P value is a value obtained by taking the common logarithm of the distribution coefficient between 1-octanol / water and is an index indicating the hydrophobicity of an organic compound. The larger the value, the higher the hydrophobicity. The log P value of polyphenol can be measured by a flask shaking method described in Japanese Industrial Standard Z7260-107. Details are described in the examples. Further, it is preferably applied to those having a solubility in water at 25 ° C. of 5 g / L or less, more preferably 2 g / L or less, further 1 g / L or less, further 0.5 g / L or less, and further 0.1 g. / L or less is preferable.
本発明に用いられるラムノシド構造を有する難水溶性ポリフェノール類(A)は、logP値が−1.0〜4.0である、ラムノシド構造を有するポリフェノール類である。当該原料のラムノシド構造を有するポリフェノール類(A)としては、ベンゼン環にヒドロキシ基が1個以上、更に2個以上結合し、かつラムノシド構造を有するフェノール性物質が好ましく適用できる。例えば、植物由来のフラボノイド、タンニン、フェノール酸等が挙げられる。より好ましく適用できるラムノシド構造を有する難水溶性ポリフェノール類としては、ラムノシド構造を有するフラボノール類、フラバノン類、フラボン類、イソフラボン類、フェノールカルボン酸類から選ばれるものが挙げられる。
具体的には、ルチン、ケルシトリン、ミリシトリン、ヘスペリジン、ネオヘスペリジン、ナリンギン、又はこれらの誘導体が挙げられる。上記誘導体としては、アセチル化物、マロニル化物、メチル化物が例示される。なかでも、原料の溶解性の低さから、ラムノシド構造を有するフラボノール類及びフラバノン類が好ましく適用でき、ラムノシド構造を有するフラバノン類がより好ましく、ルチン、ヘスペリジンが更に好ましい。当該ラムノシド構造を有する難水溶性ポリフェノール類は、1種であっても、2種以上の混合物であってもよい。
The poorly water-soluble polyphenols (A) having a rhamnoside structure used in the present invention are polyphenols having a rhamnoside structure having a log P value of -1.0 to 4.0. As the raw material polyphenols (A) having a rhamnoside structure, phenolic substances having one or more, more preferably two or more hydroxy groups bonded to the benzene ring and having a rhamnoside structure can be preferably applied. For example, plant-derived flavonoids, tannins, phenolic acids and the like can be mentioned. Examples of the poorly water-soluble polyphenols having a rhamnoside structure that can be more preferably applied include those selected from flavonols, flavanones, flavones, isoflavones, and phenolcarboxylic acids having a rhamnoside structure.
Specific examples include rutin, quercitrin, myricitrin, hesperidin, neohesperidin, naringin, or derivatives thereof. Examples of the derivatives include acetylated products, malonylated products, and methylated products. Among these, flavonols and flavanones having a rhamnoside structure are preferably applicable because of low solubility of the raw materials, flavanones having a rhamnoside structure are more preferable, and rutin and hesperidin are more preferable. The poorly water-soluble polyphenols having the rhamnoside structure may be one kind or a mixture of two or more kinds.
本明細書において水性媒体とは、水、及び有機溶媒の水溶液を云う。水としては、水道水、蒸留水、イオン交換水、精製水が例示される。有機溶媒としては、水と均一に混合するものであれば特に限定されない。有機溶媒としては炭素数4以下のアルコールが好ましく、メタノール及びエタノールがより好ましく、食品に適用可能であるという観点よりエタノールが更に好ましい。水性媒体として有機溶媒の水溶液を用いる場合は、前記水溶液中の有機溶媒の濃度は、0.1〜80質量%が好ましく、1〜70質量%がより好ましく、5〜60質量%が更に好ましい。 In the present specification, the aqueous medium refers to water and an aqueous solution of an organic solvent. Examples of water include tap water, distilled water, ion exchange water, and purified water. The organic solvent is not particularly limited as long as it is uniformly mixed with water. As the organic solvent, alcohol having 4 or less carbon atoms is preferable, methanol and ethanol are more preferable, and ethanol is more preferable from the viewpoint of being applicable to foods. When an aqueous solution of an organic solvent is used as the aqueous medium, the concentration of the organic solvent in the aqueous solution is preferably 0.1 to 80% by mass, more preferably 1 to 70% by mass, and still more preferably 5 to 60% by mass.
水性媒体のpHは、原料のラムノシド構造を有する難水溶性ポリフェノール類(A)の安定性の観点より、3以上7未満が好ましく、3.5〜6.9がより好ましく、4〜6.8が更に好ましい。 The pH of the aqueous medium is preferably 3 or more and less than 7, more preferably 3.5 to 6.9, and more preferably 4 to 6.8 from the viewpoint of the stability of the poorly water-soluble polyphenols (A) having a rhamnoside structure as a raw material. Is more preferable.
原料のラムノシド構造を有する難水溶性ポリフェノール類(A)は水への溶解度が低いため、水性媒体へ分散させ、スラリーの状態で存在させるのが好ましい。水性媒体中の原料のラムノシド構造を有する難水溶性ポリフェノール類(A)の含有量は、当該難水溶性ポリフェノール類の種類によって異なるが、スラリーの流動性の点から、0.1〜100g/Lが好ましく、0.5〜50g/Lがより好ましく、0.7〜20g/Lが更に好ましく、0.7〜10g/Lが更に好ましい。 Since the poorly water-soluble polyphenols (A) having a rhamnoside structure as a raw material have low solubility in water, it is preferable that they be dispersed in an aqueous medium and exist in a slurry state. The content of the poorly water-soluble polyphenols (A) having a rhamnoside structure as a raw material in the aqueous medium varies depending on the kind of the poorly water-soluble polyphenols, but is 0.1 to 100 g / L from the viewpoint of the fluidity of the slurry. Is preferable, 0.5-50 g / L is more preferable, 0.7-20 g / L is still more preferable, and 0.7-10 g / L is still more preferable.
水性媒体の存在下、原料のラムノシド構造を有する難水溶性ポリフェノール類(A)を加熱処理する方法は、特に制限されず、公知の方法を適用できる。
加熱処理の温度は、100〜180℃であるが、110〜170℃がより好ましく、120〜160℃が更に好ましく、120〜150℃が更に好ましい。100℃以上において大幅な溶解性の向上が達成され、また、180℃以下において原料のラムノシド構造を有する難水溶性ポリフェノール類(A)の安定性が確保される。加熱の手段は、例えば、水蒸気、電気が挙げられる。
The method for heat-treating the poorly water-soluble polyphenols (A) having a rhamnoside structure as a raw material in the presence of an aqueous medium is not particularly limited, and known methods can be applied.
Although the temperature of heat processing is 100-180 degreeC, 110-170 degreeC is more preferable, 120-160 degreeC is still more preferable, 120-150 degreeC is still more preferable. A significant improvement in solubility is achieved at 100 ° C. or higher, and the stability of the poorly water-soluble polyphenols (A) having a raw rhamnoside structure at 180 ° C. or lower is ensured. Examples of the heating means include water vapor and electricity.
加熱処理時の圧力は、ゲージ圧で0〜10MPaが好ましく、0.1〜8MPaがより好ましく、0.1〜6MPaが更に好ましく、0.2〜6MPaが更に好ましく、0.2〜4MPaが更に好ましく、0.25〜2MPaが更に好ましく、0.3〜1.5MPaが更に好ましく、0.3〜0.6MPaが更に好ましい。また、水の飽和蒸気圧以上に設定するのが好ましい。飽和蒸気圧以上の加圧は、背圧弁により調整しても良く、また、ガスを用いてもよい。用いられるガスとしては、例えば、不活性ガスが好ましく、窒素ガス、ヘリウムガスがより好ましい。 The pressure during the heat treatment is preferably 0 to 10 MPa, more preferably 0.1 to 8 MPa, further preferably 0.1 to 6 MPa, further preferably 0.2 to 6 MPa, and further preferably 0.2 to 4 MPa in terms of gauge pressure. Preferably, 0.25 to 2 MPa is more preferable, 0.3 to 1.5 MPa is further preferable, and 0.3 to 0.6 MPa is further preferable. Moreover, it is preferable to set it more than the saturated vapor pressure of water. Pressurization higher than the saturated vapor pressure may be adjusted by a back pressure valve, or gas may be used. As the gas used, for example, an inert gas is preferable, and nitrogen gas and helium gas are more preferable.
加熱処理は、例えば、回分法、半回分法、流通式処理方法等いずれの方法によっても実施できる。なかでも、流通式処理方法は、処理時間の制御が容易である点で好ましい。 The heat treatment can be performed by any method such as a batch method, a semi-batch method, and a flow-type treatment method. Among these, the flow-type processing method is preferable in that the processing time can be easily controlled.
加熱処理の時間は、原料のラムノシド構造を有する難水溶性ポリフェノール類(A)の溶解性向上と熱安定性の点から、上記の加熱処理の温度範囲にある時間が0.1〜30分が好ましく、更に0.2〜15分、更に0.5〜8分が好ましい。
流通式処理方式で行う場合、加熱処理の時間は、処理器の高温高圧部の体積を水性媒体の供給速度で割ることにより算出される平均滞留時間を用いる。
The heat treatment time is from 0.1 to 30 minutes in the temperature range of the heat treatment from the viewpoint of improving the solubility and heat stability of the poorly water-soluble polyphenols (A) having a rhamnoside structure as a raw material. Preferably, it is further 0.2 to 15 minutes, and further preferably 0.5 to 8 minutes.
In the case of using the flow treatment method, the heat treatment time is an average residence time calculated by dividing the volume of the high-temperature high-pressure part of the processor by the supply rate of the aqueous medium.
加熱処理後、得られた加熱処理液を90℃以下、好ましくは50℃以下、更に好ましくは30℃以下に冷却する工程を行うのが、ポリフェノールの熱劣化防止の点から好ましい。冷却時に、加熱処理液を混合攪拌してもよい。 After the heat treatment, it is preferable from the viewpoint of preventing thermal degradation of the polyphenol that the obtained heat treatment liquid is cooled to 90 ° C. or lower, preferably 50 ° C. or lower, more preferably 30 ° C. or lower. When cooling, the heat treatment liquid may be mixed and stirred.
加熱処理温度から90℃まで低下するのに要した時間から算出される加熱処理液の冷却速度は0.2℃/s以上、更に0.5℃/s以上、1℃/s以上、更に3℃/s以上、更に5℃/s以上が好ましい。冷却速度が大きいほど原料のラムノシド構造を有する難水溶性ポリフェノール類(A)の溶解量を向上させることができる。このため、冷却速度の上限は特に定めないが、例えば100℃/s以下、更に50℃/s以下が好ましい。 The cooling rate of the heat treatment liquid calculated from the time required to decrease from the heat treatment temperature to 90 ° C. is 0.2 ° C./s or more, further 0.5 ° C./s or more, 1 ° C./s or more, and further 3 It is preferably at least 5 ° C / s, more preferably at least 5 ° C / s. As the cooling rate increases, the amount of the poorly water-soluble polyphenols (A) having a rhamnoside structure as a raw material can be improved. For this reason, the upper limit of the cooling rate is not particularly defined, but is preferably 100 ° C./s or less, and more preferably 50 ° C./s or less.
更に、加熱処理液から、溶解せずに残留する固体を除去する工程を行うのが、得られる難水溶性ポリフェノール類の糖付加物の溶解性を高める点から好ましい。固体を除去する方法としては、特に制限されず、例えば遠心分離やデカンテーション、ろ過により行うことができる。固体の除去は、下記の工程(2)の前に行うことが好ましい。 Furthermore, it is preferable to carry out the step of removing the solid that remains without being dissolved from the heat treatment liquid, from the viewpoint of increasing the solubility of the resulting poorly water-soluble polyphenols sugar adduct. The method for removing the solid is not particularly limited, and can be performed by, for example, centrifugation, decantation, or filtration. The removal of the solid is preferably performed before the following step (2).
本発明の方法において、加熱処理は、可溶化剤(C)の存在下に行ってもよい。加熱処理は、原料のラムノシド構造を有する難水溶性ポリフェノール類(A)と可溶化剤(C)の合計に対する可溶化剤(C)の質量比[(C)/((A)+(C))]が0.1未満である条件で行うのが、原料のラムノシド構造を有する難水溶性ポリフェノール類(A)からラムノースが脱離した難水溶性ポリフェノール類(A’)への転化率向上の点、反応生成物の精製負荷軽減の点から好ましい。
すなわち、原料のラムノシド構造を有する難水溶性ポリフェノール類(A)と可溶化剤(C)の関係は、
0≦(C)/((A)+(C))<0.1
と表すことができる。
反応生成物の精製負荷軽減の点という観点からは、上記質量比は0.09以下が好ましく、0.07以下がより好ましく、0.05以下が更に好ましく、0.04以下が更に好ましく、0、すなわち可溶化剤(C)が存在しない条件が殊更好ましい。
In the method of the present invention, the heat treatment may be performed in the presence of the solubilizer (C). In the heat treatment, the mass ratio of the solubilizer (C) to the total of the poorly water-soluble polyphenols (A) having the rhamnoside structure and the solubilizer (C) [(C) / ((A) + (C) )] Is less than 0.1 to improve the conversion rate of the raw water-insoluble polyphenols (A) having a rhamnoside structure to the water-insoluble polyphenols (A ′) from which rhamnose has been eliminated. In view of reducing the purification load of the reaction product.
That is, the relationship between the poorly water-soluble polyphenols (A) having a rhamnoside structure as a raw material and the solubilizer (C) is
0 ≦ (C) / ((A) + (C)) <0.1
It can be expressed as.
From the viewpoint of reducing the purification load of the reaction product, the mass ratio is preferably 0.09 or less, more preferably 0.07 or less, further preferably 0.05 or less, further preferably 0.04 or less, 0 That is, a condition in which the solubilizer (C) is not present is particularly preferable.
可溶化剤(C)としては、原料であるラムノシド構造を有する難水溶性ポリフェノール類(A)より水溶性が高いものが好ましく、ラムノシド構造を有する難水溶性ポリフェノール類(A)の糖付加物が好ましく、ヘスペレチン糖付加物、例えばグルコシルヘスペリジンやグルコシルヘスペレチンがより好適に用いられる。 As the solubilizer (C), those having higher water solubility than the poorly water-soluble polyphenols (A) having a rhamnoside structure as a raw material are preferable, and a sugar adduct of the poorly water-soluble polyphenols (A) having a rhamnoside structure is preferable. Preferably, hesperetin sugar adducts such as glucosyl hesperidin and glucosyl hesperetin are more preferably used.
本発明における工程(2)は、工程(1)で得られた加熱処理液に対し、加熱処理後300分以内にラムノース脱離反応を開始し、ラムノースが脱離した難水溶性ポリフェノール類(A’)を含む反応液を得る工程である。 In the step (2) of the present invention, the rhamnose elimination reaction is started within 300 minutes after the heat treatment for the heat treatment liquid obtained in the step (1), and the poorly water-soluble polyphenols (A This is a step of obtaining a reaction solution containing ').
ラムノース脱離反応は、ラムノシド構造を有する難水溶性ポリフェノール類(A)からラムノースを脱離させ、ラムノースが脱離した難水溶性ポリフェノール類(A’)を得る反応である。
ラムノース脱離反応は、加熱処理液にラムノシダーゼ活性を有する酵素を添加し、ラムノシダーゼ活性を発現する反応温度に設定することにより開始する。
The rhamnose elimination reaction is a reaction in which rhamnose is eliminated from the poorly water-soluble polyphenols (A) having a rhamnoside structure to obtain poorly water-soluble polyphenols (A ′) from which rhamnose is eliminated.
The rhamnose elimination reaction is started by adding an enzyme having rhamnosidase activity to the heat treatment solution and setting the reaction temperature to express the rhamnosidase activity.
本明細書において、加熱処理後「300分以内」とは、加熱処理が終了した時点、すなわち加熱処理液が100℃未満に下がった時点から、ラムノース脱離反応の開始までの時間である。
加熱処理後からラムノース脱離反応の開始までの時間は、ラムノース脱離反応率向上の点から、0.1〜300分が好ましく、更に0.1〜180分が好ましく、更に1〜120分が好ましく、1〜60分が好ましい。
In this specification, “within 300 minutes” after the heat treatment refers to the time from the time when the heat treatment is completed, that is, the time when the heat treatment liquid is lowered to less than 100 ° C. to the start of the rhamnose elimination reaction.
The time from the heat treatment to the start of the rhamnose elimination reaction is preferably 0.1 to 300 minutes, more preferably 0.1 to 180 minutes, and further preferably 1 to 120 minutes, from the viewpoint of improving the rhamnose elimination reaction rate. Preferably, 1 to 60 minutes is preferable.
工程(2)に用いられるラムノシダーゼ活性を有する酵素としては、ラムノシド構造からラムノースを脱離させる活性を有する酵素であればよく、例えばナリンギンからラムノースを脱離させる酵素であるナリンギナーゼ製剤、ヘスペリジンからラムノースを脱離させる酵素であるヘスペリジナーゼ製剤、セルラーゼ製剤等が挙げられる。
ラムノシダーゼ活性を有する酵素は、その起源に限定はなく、動物由来、植物由来、微生物由来等のすべての由来のものを使用することができる。さらに、遺伝子組み換え技術、部分加水分解等による人工酵素であってもよい。
また、当該酵素の形態は特に限定されず、酵素蛋白質の乾燥物、酵素蛋白質を含む粒子、及び酵素蛋白質を含む液体等を用いることができる。
The enzyme having the rhamnosidase activity used in the step (2) may be any enzyme having an activity to desorb rhamnose from the rhamnoside structure. For example, a naringinase preparation which is an enzyme desorbing rhamnose from naringin, rhamnose from hesperidin Examples include hesperidinase preparations and cellulase preparations that are enzymes to be eliminated.
The origin of the enzyme having rhamnosidase activity is not limited, and those derived from animals, plants, microorganisms, etc. can be used. Further, it may be an artificial enzyme by gene recombination technique, partial hydrolysis or the like.
The form of the enzyme is not particularly limited, and a dried product of enzyme protein, particles containing enzyme protein, liquid containing enzyme protein, and the like can be used.
ラムノシダーゼ活性を有する酵素の使用量は、用いる酵素の種類、反応条件、原料ラムノシド構造を有する難水溶性ポリフェノール類(A)の種類などによって異なるが、例えばヘスペリジナーゼの場合、原料ラムノシド構造を有する難水溶性ポリフェノール類(A)1gに対し0.01〜10Uが好ましい。ここで、ヘスペリジンから40℃、pH3.8で1分間に1μmolの糖を生成する酵素量を1ユニット(1U)とする。 The amount of the enzyme having rhamnosidase activity varies depending on the type of enzyme used, the reaction conditions, the kind of poorly water-soluble polyphenols (A) having a raw material rhamnoside structure, and in the case of hesperidinase, for example, the poorly water-soluble material having a raw material rhamnoside structure 0.01-10 U is preferable with respect to 1 g of water-soluble polyphenols (A). Here, the amount of enzyme that generates 1 μmol of sugar per minute at 40 ° C. and pH 3.8 from hesperidin is defined as 1 unit (1 U).
工程(2)のラムノース脱離反応の条件は、使用する酵素の特性に合わせて反応温度や反応液のpHを選択することが可能であるが、例えばヘスペリジナーゼやナリンギナーゼを用いる場合、pH3〜7とすることが好ましく、pH4〜6.5とすることがさらに好ましい。 The conditions for the rhamnose elimination reaction in step (2) can be selected according to the characteristics of the enzyme used, the reaction temperature and the pH of the reaction solution. For example, when hesperidinase or naringinase is used, the pH is 3-7. It is preferable to adjust the pH to 4 to 6.5.
また、反応温度は、ラムノシダーゼ活性を有する酵素の安定性の点、ラムノース脱離反応の反応速度向上の点から、10〜80℃、更に20〜60℃、更に35〜55℃とすることが好ましい。 The reaction temperature is preferably 10 to 80 ° C., more preferably 20 to 60 ° C., and more preferably 35 to 55 ° C. from the viewpoint of the stability of the enzyme having rhamnosidase activity and the improvement of the reaction rate of the rhamnose elimination reaction. .
反応は、例えば反応液を加熱により酵素を失活させる方法、又は反応液から酵素を分離除去する方法等により終了する。
反応時間は、ラムノシダーゼ活性を有する酵素の種類等によって異なるが、ラムノシド構造を有する難水溶性ポリフェノール類(A)のラムノース脱離率向上の点、後述のラムノースが脱離した難水溶性ポリフェノール類(A’)の糖付加物の生産性向上の点から、例えば、0.5〜120時間が好ましく、更に1〜100時間、更に2〜20時間が好ましい。
The reaction is completed by, for example, a method of inactivating the enzyme by heating the reaction solution or a method of separating and removing the enzyme from the reaction solution.
Although the reaction time varies depending on the type of enzyme having rhamnosidase activity, etc., the point of improving the rhamnose elimination rate of the poorly water-soluble polyphenols (A) having a rhamnoside structure, the poorly water-soluble polyphenols from which rhamnose is eliminated (described later) From the viewpoint of improving the productivity of the sugar adduct of A ′), for example, 0.5 to 120 hours are preferable, 1 to 100 hours, and further 2 to 20 hours are preferable.
工程(2)の終了後は、反応液から、遊離したラムノースを樹脂吸着法やアルコール沈澱法により除去してもよい。樹脂としては、合成吸着樹脂ダイヤイオンHP−20(三菱化学(株)製)などが用いられる。その処理方法は反応液に反応前の原料難水溶性ポリフェノール1gに対し10〜1000mlの樹脂を添加し、10〜55℃でカラム通液処理後樹脂を水で洗浄して30〜80%エタノール水で溶出すればよい。 After completion of the step (2), the liberated rhamnose may be removed from the reaction solution by a resin adsorption method or an alcohol precipitation method. As the resin, synthetic adsorption resin Diaion HP-20 (manufactured by Mitsubishi Chemical Corporation) or the like is used. In the treatment method, 10 to 1000 ml of resin is added to 1 g of the raw material poorly water-soluble polyphenol before reaction to the reaction solution, and after passing through the column at 10 to 55 ° C., the resin is washed with water to obtain 30 to 80% ethanol water. To elute.
工程(2)によれば、50〜100%、更に60〜95%、更に70〜90%のラムノース脱離反応率で、ラムノシド構造を有する難水溶性ポリフェノール類(A)からラムノースが脱離した難水溶性ポリフェノール類(A’)を製造することができる。 According to the step (2), rhamnose was eliminated from the poorly water-soluble polyphenols (A) having a rhamnoside structure at a rhamnose elimination reaction rate of 50 to 100%, further 60 to 95%, and further 70 to 90%. Slightly water-soluble polyphenols (A ′) can be produced.
本発明の方法における工程(3)は、工程(2)で得られた反応液に糖供与体(B)及び糖転移酵素を添加し、糖転移反応によりラムノースが脱離した難水溶性ポリフェノール類の糖付加物を得る工程である。
この糖付加反応は、ラムノースが脱離した難水溶性ポリフェノール類(A’)の水溶性が高まっているため、工程(2)のように、反応開始の時間に制限はない。
Step (3) in the method of the present invention is a slightly water-soluble polyphenol obtained by adding a sugar donor (B) and a glycosyltransferase to the reaction solution obtained in step (2) and releasing rhamnose by a sugar transfer reaction. This is a step of obtaining the sugar adduct.
In this sugar addition reaction, since the water-solubility of the poorly water-soluble polyphenols (A ′) from which rhamnose is eliminated is increased, there is no limitation on the reaction start time as in step (2).
本発明の工程(3)で用いられる糖供与体(B)としては、ラムノースが脱離した難水溶性ポリフェノール類(A’)に後述する糖を供与できるものであれば特に制限はない。
糖供与体(B)の具体例としては、澱粉、デキストリン、シクロデキストリン、マルトオリゴ糖等の澱粉部分加水分解物、キシロオリゴ糖、フラクタン、アラビノガラクタン、プルラン、ラフィノース、又はこれらの含有物等が挙げられる。
The sugar donor (B) used in step (3) of the present invention is not particularly limited as long as it can donate the sugar described below to the poorly water-soluble polyphenols (A ′) from which rhamnose has been eliminated.
Specific examples of the sugar donor (B) include starch, dextrin, cyclodextrin, malto-oligosaccharide and other starch partial hydrolysates, xylooligosaccharide, fructan, arabinogalactan, pullulan, raffinose, and contents thereof. It is done.
糖供与体(B)の使用量は、ラムノースが脱離した難水溶性ポリフェノール類(A’)の転化率向上の点から、糖転移反応の反応開始時におけるラムノースが脱離した難水溶性ポリフェノール類(A’)に対する質量比(B)/(A’)として1〜30が好ましく、更に1.2〜15が好ましく、更に2〜12が好ましい。 The amount of the sugar donor (B) used is a slightly water-soluble polyphenol from which rhamnose has been eliminated at the start of the transglycosylation reaction in order to improve the conversion rate of the poorly water-soluble polyphenols (A ′) from which rhamnose has been eliminated. The mass ratio (B) / (A ′) to the class (A ′) is preferably 1 to 30, more preferably 1.2 to 15, and further preferably 2 to 12.
本発明の工程(3)で用いられる糖転移酵素としては、ラムノースが脱離した難水溶性ポリフェノール類(A’)に対して糖の転移活性を有する酵素であれば特に制限はないが、用いる糖供与体(B)の種類に応じて適宜選択し得る。
糖転移酵素の具体例としては、シクロマルトデキストリングルカノトランスフェラーゼ、デキストリンデキストラナーゼ、アミロスクラーゼ、デキストランスクラーゼ、α−グルコシダーゼ、β−グルコシダーゼ、α−ガラクトシダーゼ、β−ガラクトシダーゼ、α−アミラーゼ、キシラナーゼ、プルラナーゼ、アラビノフラノシダーゼ等が挙げられる。
The glycosyltransferase used in the step (3) of the present invention is not particularly limited as long as it is an enzyme having a sugar transfer activity with respect to the poorly water-soluble polyphenols (A ′) from which rhamnose has been eliminated. It can select suitably according to the kind of sugar donor (B).
Specific examples of glycosyltransferases include cyclomaltodextrin glucanotransferase, dextrin dextranase, amylosucrase, dextransucrase, α-glucosidase, β-glucosidase, α-galactosidase, β-galactosidase, α-amylase, xylanase, pullulanase And arabinofuranosidase.
糖転移酵素は、その起源に限定はなく、動物由来、植物由来、微生物由来等のすべての由来のものを使用することができる。さらに、遺伝子組み換え技術、部分加水分解等による人工酵素であってもよい。
また、糖転移酵素の形態は特に限定されず、酵素蛋白質の乾燥物、酵素蛋白質を含む粒子、及び酵素蛋白質を含む液体等を用いることができる。
The origin of the glycosyltransferase is not limited, and those derived from all origins such as those derived from animals, plants, and microorganisms can be used. Further, it may be an artificial enzyme by gene recombination technique, partial hydrolysis or the like.
The form of glycosyltransferase is not particularly limited, and a dried product of enzyme protein, particles containing enzyme protein, liquid containing enzyme protein, and the like can be used.
糖転移酵素の使用量は、糖転移反応の条件、糖の種類等によって異なるが、例えば、シクロマルトデキストリングルカノトランスフェラーゼの場合、10〜10,000U/mLが好ましい。ここで活性は以下に示す方法により測定される。
5mM Tris−HCl緩衝溶液(pH7.5)、0.05%(w/v)アミロース、および酵素を含む液100μLを30℃、30分間反応させた後、ヨウ素溶液(1mg/mL KI,0.1mg/mL I2 ,3.8mM HClを含む)2mLを添加して反応を停止し、波長660nmにおける吸光度を測定して定量する。1分間に吸光度を1%低下させる酵素量を1ユニット(U)とする。
The amount of glycosyltransferase used varies depending on the conditions of the glycosyltransferase reaction, the type of sugar, and the like. For example, in the case of cyclomaltodextrin glucanotransferase, 10 to 10,000 U / mL is preferable. Here, the activity is measured by the following method.
After reacting 100 μL of a solution containing 5 mM Tris-HCl buffer solution (pH 7.5), 0.05% (w / v) amylose and enzyme at 30 ° C. for 30 minutes, iodine solution (1 mg / mL KI, 0. The reaction is stopped by adding 2 mL (containing 1 mg / mL I 2 , 3.8 mM HCl), and the absorbance at a wavelength of 660 nm is measured and quantified. The amount of enzyme that decreases the absorbance by 1% per minute is defined as 1 unit (U).
工程(3)において糖転移反応の条件は、使用する酵素の特性に合わせて反応温度や反応液のpHを選択することが可能であるが、例えば、シクロマルトデキストリングルカノトランスフェラーゼを用いる場合、pH3〜7とすることが好ましく、更に4〜6.5とすることが好ましい。 In the step (3), it is possible to select the reaction temperature and the pH of the reaction solution as the conditions for the glycosyltransferase reaction in accordance with the characteristics of the enzyme to be used. For example, when cyclomaltodextrin glucanotransferase is used, pH 3 It is preferable to set it to -7, and also it is preferable to set it as 4-6.5.
また、反応温度は、糖転移酵素の安定性の点、糖転移反応の反応速度向上の点から、10〜80℃、更に20〜60℃、更に35〜55℃とすることが好ましい。 In addition, the reaction temperature is preferably 10 to 80 ° C., more preferably 20 to 60 ° C., and further preferably 35 to 55 ° C. from the viewpoint of the stability of glycosyltransferase and the improvement of the reaction rate of the glycosyltransferase reaction.
反応時間は、糖転移酵素の種類等によって異なるが、ラムノースが脱離した難水溶性ポリフェノール類(A’)転化率向上の点、目的ラムノースが脱離した難水溶性ポリフェノール類の糖付加物の生産性向上の点から、例えば、0.5〜120時間が好ましく、更に1〜100時間、更に2〜20時間が好ましい。 Although the reaction time varies depending on the type of glycosyltransferase, etc., the water-insoluble polyphenols (A ′) from which rhamnose has been released are improved, the sugar adduct of the poorly water-soluble polyphenols from which the target rhamnose has been released is used. From the viewpoint of improving productivity, for example, 0.5 to 120 hours are preferable, 1 to 100 hours, and further 2 to 20 hours are preferable.
本発明の方法によれば、40〜100%、更に45〜95%の収率で、ラムノシド構造を有する難水溶性ポリフェノール類(A)からラムノースが脱離した難水溶性ポリフェノール類の糖付加物を製造することができる。なお、転化率は、後記実施例に記載した式(1)により算出できる。 According to the method of the present invention, a sugar adduct of poorly water-soluble polyphenols from which rhamnose is eliminated from poorly water-soluble polyphenols (A) having a rhamnoside structure in a yield of 40 to 100%, and further 45 to 95%. Can be manufactured. The conversion rate can be calculated by the formula (1) described in Examples below.
本発明の方法により得られるラムノースが脱離した難水溶性ポリフェノール類の糖付加物は、ラムノースが脱離した難水溶性ポリフェノール類(A’)に少なくとも1個の糖が結合した化合物である。ラムノースが脱離した難水溶性ポリフェノール類(A’)に結合する糖の種類は、特に制限されないが、グルコース、ガラクトース、フルクトース、ラムノース、キシロース、アラビノース、エリトロース等の4〜6炭糖から選ばれる少なくとも1種以上が好ましい。また、糖の結合数は、好ましくは1個〜10個、より好ましくは1個〜6個であるラムノースが脱離した難水溶性ポリフェノール類への糖の結合部位は、フェノール性水酸基又は配糖体の糖残基である。難水溶性ポリフェノール類とこれら糖との結合様式はα−結合又はβ−結合のいずれであってもよい。 The sugar adduct of poorly water-soluble polyphenols from which rhamnose has been obtained obtained by the method of the present invention is a compound in which at least one sugar is bound to the poorly water-soluble polyphenols (A ′) from which rhamnose has been eliminated. The type of sugar that binds to the poorly water-soluble polyphenols (A ′) from which rhamnose has been removed is not particularly limited, but is selected from 4 to 6 carbon sugars such as glucose, galactose, fructose, rhamnose, xylose, arabinose, and erythrose. At least one or more are preferred. In addition, the number of sugar bonds is preferably 1 to 10, more preferably 1 to 6, and the sugar binding site to the poorly water-soluble polyphenols from which rhamnose has been removed is a phenolic hydroxyl group or a glycoside. It is the sugar residue of the body. The binding mode between the poorly water-soluble polyphenols and these sugars may be either α-bond or β-bond.
本発明の方法により得られるラムノースが脱離した難水溶性ポリフェノール類の糖付加物の溶解量は、好ましくは1g/L以上であり、より好ましくは2g/L以上であり、更に好ましくは5g/L以上であり、更に好ましくは10g/L以上である。本明細書における溶解量は、水に対する25℃での溶解量である。 The dissolution amount of the poorly water-soluble polyphenols sugar adduct obtained by removing the rhamnose obtained by the method of the present invention is preferably 1 g / L or more, more preferably 2 g / L or more, still more preferably 5 g / L. L or more, more preferably 10 g / L or more. The amount dissolved in this specification is the amount dissolved in water at 25 ° C.
本発明の製造方法で得られるラムノースが脱離したポリフェノール類の糖付加物は、様々な飲食品や医薬品等に使用することができる。例えば、飲食品としては、飲料、パン類、麺類、クッキー等の菓子類、スナック類、ゼリー類、乳製品、冷凍食品、粉末コーヒー等のインスタント食品、でんぷん加工製品、加工肉製品、その他加工食品、調味料、栄養補助食品等の液状、固形状又は半固形状の飲食品が挙げられる。とりわけ、容器詰飲料に利用するのが有用である。容器詰飲料としては、緑茶等の茶系飲料や、スポーツ飲料、アイソトニック飲料、ニアウォーター等の非茶系飲料が挙げられる。 The sugar adduct of polyphenols from which rhamnose is eliminated obtained by the production method of the present invention can be used for various foods and beverages, pharmaceuticals and the like. For example, as food and drink, confectionery such as beverages, breads, noodles, cookies, snacks, jelly, dairy products, frozen foods, instant foods such as powdered coffee, starch processed products, processed meat products, and other processed foods , Liquid, solid or semi-solid foods and beverages such as seasonings and dietary supplements. In particular, it is useful to be used for a packaged beverage. Examples of the packaged beverage include tea-based beverages such as green tea, and non-tea beverages such as sports beverages, isotonic beverages, and near water.
[難水溶性ポリフェノール類の測定]
難水溶性ポリフェノール類の測定は、日立製作所製高速液体クロマトグラフを用い、インタクト社製カラムCadenza CD−C18 (4.6mmφ×150mm、 3μm)を装着し、カラム温度40℃でグラジエント法により行った。移動相A液は0.05mol/L酢酸水溶液、B液はアセトニトリルとし、1.0mL/分で送液した。グラジエント条件は以下のとおりである。
時間(分) A液(%) B液(%)
0 85 15
20 80 20
35 10 90
50 10 90
50.1 85 15
60 85 15
試料注入量は10μL、検出はルチン類は波長360nm、ヘスペリジン類は波長283nmの吸光度により定量した。
[Measurement of poorly water-soluble polyphenols]
Measurement of poorly water-soluble polyphenols was carried out by a gradient method using a high-performance liquid chromatograph manufactured by Hitachi, equipped with an intact column Cadenza CD-C18 (4.6 mmφ × 150 mm, 3 μm) and a column temperature of 40 ° C. . The mobile phase A solution was 0.05 mol / L acetic acid aqueous solution, the B solution was acetonitrile, and the solution was fed at 1.0 mL / min. The gradient conditions are as follows.
Time (min) A liquid (%) B liquid (%)
0 85 15
20 80 20
35 10 90
50 10 90
50.1 85 15
60 85 15
The sample injection amount was 10 μL, the detection was quantified by the absorbance of rutins at a wavelength of 360 nm, and hesperidins at a wavelength of 283 nm.
[難水溶性ポリフェノール類のlogP値の測定]
日本工業規格 Z7260−107記載のフラスコ振盪法に従って測定した。まず1−オクタノールと蒸留水を25℃で24時間振とうして平衡化させた。次いで蓋付きガラス瓶にポリフェノール10mgを量りとり、平衡化させた1−オクタノールと蒸留水をそれぞれ4mLずつ加え、25℃で4日間振とうした。遠心分離により1−オクタノール相と水相を分け、上記[難水溶性ポリフェノールの測定]と同様にしてHPLCにより各相のポリフェノール類の濃度を測定した。2相間の分配係数の常用対数を取った値をlogP値とした。
[Measurement of log P value of poorly water-soluble polyphenols]
It was measured according to the flask shaking method described in Japanese Industrial Standard Z7260-107. First, 1-octanol and distilled water were equilibrated by shaking at 25 ° C. for 24 hours. Next, 10 mg of polyphenol was weighed into a glass bottle with a lid, 4 mL each of 1-octanol and distilled water that had been equilibrated were added, and the mixture was shaken at 25 ° C. for 4 days. The 1-octanol phase and the aqueous phase were separated by centrifugation, and the concentration of polyphenols in each phase was measured by HPLC in the same manner as in the above [Measurement of poorly water-soluble polyphenol]. The value obtained by taking the common logarithm of the distribution coefficient between the two phases was defined as the logP value.
[水性媒体及び糖転移反応液のpHの測定]
蒸留水とラムノース脱離反応終了後の反応液のpHを25℃にて測定した。
[Measurement of pH of aqueous medium and transglycosylation reaction solution]
The pH of the reaction solution after completion of the distilled water and rhamnose elimination reaction was measured at 25 ° C.
[ラムノース脱離反応の転化率の算出]
工程(2)における転化率は次式(1)により算出した。
転化率[%]=(工程(2)終了時のラムノースが脱離した難水溶性ポリフェノール類(A’)濃度)/(工程(2)開始時のラムノシド構造を有する難水溶性ポリフェノール類(A)濃度)×100 (1)
[Calculation of conversion rate of rhamnose elimination reaction]
The conversion rate in the step (2) was calculated by the following formula (1).
Conversion rate [%] = (Concentration of poorly water-soluble polyphenols (A ′) from which rhamnose was eliminated at the end of step (2)) / (Slightly water-soluble polyphenols having a rhamnoside structure at the start of step (2) (A ) Density) × 100 (1)
[ポリフェノール糖付加物の収率の算出]
工程(2)、(3)を通した、ラムノースが脱離した難水溶性ポリフェノールの糖付加物の収率は次式(2)により算出した。
収率[%]=(工程(3)終了時のラムノースが脱離した難水溶性ポリフェノール類の糖付加物濃度)/(工程(2)開始時のラムノシド構造を有する難水溶性ポリフェノール類(A)濃度)×100 (2)
[Calculation of yield of polyphenol sugar adduct]
The yield of the sugar adduct of a poorly water-soluble polyphenol from which rhamnose was eliminated through the steps (2) and (3) was calculated by the following formula (2).
Yield [%] = (Concentration of sugar adduct of poorly water-soluble polyphenols from which rhamnose has been eliminated at the end of step (3)) / (Slightly water-soluble polyphenols having a rhamnoside structure at the start of step (2) (A ) Density) × 100 (2)
実施例1
ヘスペリジン製剤(ヘスペリジン「ハマリ」(商品名)、浜理薬品工業(株)製、ヘスペリジン(HES)含有量90%)を蒸留水(pH6.5)に10g/Lの濃度で分散し、スラリー供給タンク内で均一攪拌した。内容積100mLのステンレス製流通式処理器(日東高圧(株)製)に、スラリー供給タンク内の液を100mL/分で供給し、150℃で加熱処理を行った(平均滞留時間1分)。処理器内の圧力は出口バルブにより0.6MPaに調整した。処理器出口から加熱処理液を抜き出し、熱交換器により25℃まで冷却し、孔径7μmの金属焼結フィルターを通した後、出口バルブで圧力を大気圧に戻して加熱処理液を得た。150℃から90℃までの冷却時間から求めた冷却速度は8℃/sであった。
Example 1
Hesperidin preparation (Hesperidin “Hamali” (trade name), manufactured by Hamari Pharmaceutical Co., Ltd., hesperidin (HES) content 90%) is dispersed in distilled water (pH 6.5) at a concentration of 10 g / L, and slurry is supplied. Stirred uniformly in the tank. The liquid in the slurry supply tank was supplied at a rate of 100 mL / min to a stainless steel flow-type processing device (manufactured by Nitto Koatsu Co., Ltd.) having an internal volume of 100 mL, and heat treatment was performed at 150 ° C. (average residence time 1 minute). The pressure in the processor was adjusted to 0.6 MPa by an outlet valve. The heat treatment liquid was extracted from the outlet of the processor, cooled to 25 ° C. with a heat exchanger, passed through a sintered metal filter having a pore diameter of 7 μm, and then the pressure was returned to atmospheric pressure with an outlet valve to obtain a heat treatment liquid. The cooling rate obtained from the cooling time from 150 ° C. to 90 ° C. was 8 ° C./s.
加熱処理終了時点から5分後に、得られた加熱処理液10mLをガラス瓶に入れ、ヘスペリジナーゼ(Sigma-Aldrich製、3units/g)0.005gを添加した。ラムノース脱離反応開始時の反応液中のヘスペリジン濃度は2.5g/Lであり、25℃における水への溶解度(0.02g/L)よりも顕著に高い過飽和溶解状態であった。反応液を50℃においてロータリーシェーカーで70r/minで7時間振盪した。ガラス瓶を沸騰水中に1分間浸漬させることにより酵素を失活させて反応を停止させた。脱離反応終了後のモノグルコシルアグリコン濃度は2.4g/Lであり、収量は0.024gであった。 Five minutes after the end of the heat treatment, 10 mL of the obtained heat treatment solution was put into a glass bottle, and 0.005 g of hesperidinase (manufactured by Sigma-Aldrich, 3 units / g) was added. The hesperidin concentration in the reaction solution at the start of the rhamnose elimination reaction was 2.5 g / L, which was a supersaturated dissolution state significantly higher than the solubility in water at 25 ° C. (0.02 g / L). The reaction solution was shaken at 70 r / min on a rotary shaker at 50 ° C. for 7 hours. The enzyme was deactivated by immersing the glass bottle in boiling water for 1 minute to stop the reaction. The monoglucosyl aglycone concentration after completion of the elimination reaction was 2.4 g / L, and the yield was 0.024 g.
脱離反応停止から10分後に、γ−シクロデキストリン0.2gとコンチザイム0.5mLを添加した。モノグルコシルアグリコンに対するγ−シクロデキストリンの質量比は8.3であった。50℃においてロータリーシェーカーで70r/minで5時間振盪することにより糖転移反応を行った。ガラス瓶を沸騰水中に1分間浸漬させることにより酵素を失活させて反応を停止させた。 Ten minutes after the termination of the elimination reaction, 0.2 g of γ-cyclodextrin and 0.5 mL of contizyme were added. The mass ratio of γ-cyclodextrin to monoglucosyl aglycone was 8.3. The sugar transfer reaction was performed by shaking at 70 r / min for 5 hours at 50 ° C. on a rotary shaker. The enzyme was deactivated by immersing the glass bottle in boiling water for 1 minute to stop the reaction.
比較例1
ヘスペリジン製剤を0.0279gと蒸留水10mLをガラス瓶に入れた。ヘスペリジンは2.5g/Lであるが懸濁状態であった。ヘスペリジナーゼ0.005gを添加して実施例1と同様にラムノース脱離反応および糖転移反応を行った。
Comparative Example 1
0.0279 g of the hesperidin preparation and 10 mL of distilled water were placed in a glass bottle. Although hesperidin was 2.5 g / L, it was in a suspended state. 0.005 g of hesperidinase was added, and rhamnose elimination reaction and sugar transfer reaction were carried out in the same manner as in Example 1.
実施例2
ヘスペリジン製剤10g/Lに代えてルチン製剤((株)常磐植物化学研究所製、ルチン含有量100質量%)を5g/Lとした以外は実施例1と同様に加熱処理液を得た。
加熱処理終了時点から5分後に、得られた加熱処理液10mLをガラス瓶に入れ、ナリンギナーゼ(天野エンザイム(株)製、商品名ナリンギナーゼアマノ)0.01gを添加した。ラムノース脱離反応開始時の反応液中のルチン濃度は5.0g/Lであり、25℃における水への溶解度(0.03g/L)よりも顕著に高い過飽和溶解状態であった。反応液を50℃においてロータリーシェーカーで70r/minで7時間振盪した。ガラス瓶を沸騰水中に1分間浸漬させることにより酵素を失活させて反応を停止させた。
反応停止から10分後に、γ-シクロデキストリン0.2gとコンチザイム0.5mLを添加し、50℃においてロータリーシェーカーで70r/minで5時間振盪することにより糖転移反応を行った。ガラス瓶を沸騰水中に1分間浸漬させることにより酵素を失活させて反応を停止させた。
Example 2
A heat treatment liquid was obtained in the same manner as in Example 1 except that the rutin preparation (manufactured by Tokiwa Plant Chemistry Laboratories, Inc., rutin content 100% by mass) was changed to 5 g / L instead of 10 g / L of the hesperidin preparation.
Five minutes after the end of the heat treatment, 10 mL of the obtained heat treatment solution was placed in a glass bottle, and 0.01 g of naringinase (manufactured by Amano Enzyme, Inc., trade name naringinase amano) was added. The rutin concentration in the reaction solution at the start of the rhamnose elimination reaction was 5.0 g / L, which was a supersaturated dissolution state significantly higher than the solubility in water at 25 ° C. (0.03 g / L). The reaction solution was shaken at 70 r / min on a rotary shaker at 50 ° C. for 7 hours. The enzyme was deactivated by immersing the glass bottle in boiling water for 1 minute to stop the reaction.
Ten minutes after the termination of the reaction, 0.2 g of γ-cyclodextrin and 0.5 mL of contizyme were added, and the sugar transfer reaction was carried out by shaking at 70 r / min with a rotary shaker at 50 ° C. for 5 hours. The enzyme was deactivated by immersing the glass bottle in boiling water for 1 minute to stop the reaction.
比較例2
ルチン製剤を0.05gと蒸留水10mLをガラス瓶に入れた。ルチンは5.0g/Lであるが懸濁状態であった。ナリンギナーゼ0.01gを添加して実施例2と同様にラムノース脱離反応および糖転移反応を行った。
Comparative Example 2
0.05 g of rutin preparation and 10 mL of distilled water were put in a glass bottle. Rutin was in a suspended state at 5.0 g / L. 0.01 g of naringinase was added, and rhamnose elimination and transglycosylation were carried out in the same manner as in Example 2.
実施例3
加熱処理温度を120℃、圧力を0.3MPaとした以外は実施例2と同様に加熱処理液を得た。実施例2と同様にラムノース脱離反応を行った。反応液中のルチン濃度は5.0g/Lであるが僅かに懸濁した状態であった。
Example 3
A heat treatment liquid was obtained in the same manner as in Example 2 except that the heat treatment temperature was 120 ° C. and the pressure was 0.3 MPa. A rhamnose elimination reaction was carried out in the same manner as in Example 2. Although the rutin concentration in the reaction solution was 5.0 g / L, it was in a slightly suspended state.
実施例4
実施例2で得られた加熱処理液10mLをガラス瓶に入れて静置した。加熱処理終了時点から180分後に実施例2と同様にラムノース脱離反応を行った。反応液中のルチン濃度は5.0g/Lであるが懸濁した状態であった。
Example 4
10 mL of the heat treatment liquid obtained in Example 2 was placed in a glass bottle and allowed to stand. A rhamnose elimination reaction was performed in the same manner as in Example 2 180 minutes after the end of the heat treatment. Although the rutin concentration in the reaction solution was 5.0 g / L, it was in a suspended state.
比較例3
実施例2で得られた加熱処理液10mLをガラス瓶に入れて静置した。加熱処理終了時点から360分後に実施例2と同様にラムノース脱離反応を行った。反応液中のルチン濃度は5.0g/Lであるが懸濁した状態であった。
Comparative Example 3
10 mL of the heat treatment liquid obtained in Example 2 was placed in a glass bottle and allowed to stand. A rhamnose elimination reaction was performed in the same manner as in Example 2 360 minutes after the end of the heat treatment. Although the rutin concentration in the reaction solution was 5.0 g / L, it was in a suspended state.
結果を表1に示す。 The results are shown in Table 1.
表1から明らかなように、本発明方法によれば、ラムノシド構造を有する難水溶性ポリフェノール類の溶解量を顕著に増大させることができ、ラムノース脱離反応が効率良く進行し、その結果として高い転化率で難水溶性ポリフェノール類の糖付加物を得ることができた。
他方、比較例1及び2では、ラムノース脱離反応開始時のヘスペリジンやルチンの溶解量が低く懸濁状態であるため、ラムノース脱離反応及び転移反応の転化率は低かった。比較例3では、加熱処理終了直後はルチンやヘスペリジンが溶解していたが、加熱処理から360分経過した後は懸濁状態であり、その後の反応率は低かった。
As is clear from Table 1, according to the method of the present invention, the amount of poorly water-soluble polyphenols having a rhamnoside structure can be remarkably increased, and the rhamnose elimination reaction proceeds efficiently, resulting in a high level. A sugar adduct of poorly water-soluble polyphenols was obtained at a conversion rate.
On the other hand, in Comparative Examples 1 and 2, since the amount of hesperidin and rutin dissolved at the start of the rhamnose elimination reaction was low and in a suspended state, the conversion rates of the rhamnose elimination reaction and the transfer reaction were low. In Comparative Example 3, rutin and hesperidin were dissolved immediately after the end of the heat treatment, but after 360 minutes from the heat treatment, the suspension was in a suspended state and the reaction rate thereafter was low.
Claims (6)
(1)水性媒体の存在下、ラムノシド構造を有する難水溶性ポリフェノール類(A)を、可溶化剤(C)との関係が、
0≦(C)/((A)+(C))<0.1
である条件で110〜180℃で加熱処理し、加熱処理液を得、次いで加熱処理温度から90℃まで低下するのに要した時間から算出される冷却速度が3℃/s以上100℃/s以下の条件で、加熱処理液を加熱処理温度から90℃以下まで冷却する工程、
(2)得られた冷却後の加熱処理液に対し、加熱処理後300分以内にラムノース脱離反応を開始し、ラムノースが脱離した難水溶性ポリフェノール類(A')を含む反応液を得る工程、及び
(3)得られた反応液に糖供与体(B)及び糖転移酵素を添加し、糖転移反応によりラムノースが脱離した難水溶性ポリフェノール類の糖付加物を得る工程、
を含む、難水溶性ポリフェノール類の糖付加物の製造方法。 Next steps (1), (2) and (3):
(1) In the presence of an aqueous medium, the poorly water-soluble polyphenols (A) having a rhamnoside structure are related to the solubilizer (C).
0 ≦ (C) / ((A) + (C)) <0.1
The heat treatment is performed at 110 to 180 ° C. under the above conditions to obtain a heat treatment liquid, and then the cooling rate calculated from the time required for the heat treatment temperature to decrease to 90 ° C. is 3 ° C./s or more and 100 ° C./s under the following conditions, steps it cool the heat-treated solution from the heat treatment temperature to 90 ° C. or less,
(2) The rhamnose elimination reaction is started within 300 minutes after the heat treatment for the obtained heat-treated liquid after cooling to obtain a reaction liquid containing the poorly water-soluble polyphenols (A ′) from which rhamnose is eliminated. A step, and (3) adding a sugar donor (B) and a glycosyltransferase to the resulting reaction solution to obtain a sugar adduct of a poorly water-soluble polyphenol from which rhamnose has been eliminated by a glycosyltransferase reaction,
A process for producing a sugar adduct of a poorly water-soluble polyphenol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012089815A JP5985229B2 (en) | 2012-04-11 | 2012-04-11 | Process for producing sugar adducts of poorly water-soluble polyphenols |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012089815A JP5985229B2 (en) | 2012-04-11 | 2012-04-11 | Process for producing sugar adducts of poorly water-soluble polyphenols |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013215155A JP2013215155A (en) | 2013-10-24 |
JP5985229B2 true JP5985229B2 (en) | 2016-09-06 |
Family
ID=49588093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012089815A Active JP5985229B2 (en) | 2012-04-11 | 2012-04-11 | Process for producing sugar adducts of poorly water-soluble polyphenols |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5985229B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019021510A1 (en) | 2017-07-28 | 2019-01-31 | 太陽化学株式会社 | Method for producing flavonoid clathrate |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11446319B2 (en) | 2018-06-01 | 2022-09-20 | Taiyo Kagaku Co., Ltd. | Composition containing flavonoid-cyclodextrin clathrate compound |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3060227B2 (en) * | 1989-06-03 | 2000-07-10 | 株式会社林原生物化学研究所 | α-Glycosyl hesperidin, its production method and use |
JP3134233B2 (en) * | 1991-07-26 | 2001-02-13 | 株式会社林原生物化学研究所 | α-Glycosyl quercetin, its production method and use |
WO2005003112A1 (en) * | 2003-07-02 | 2005-01-13 | Fuji Oil Company, Limited | Flavonoid solubilization agent and method of solubilizing flavonoid |
US7691425B2 (en) * | 2003-09-29 | 2010-04-06 | San-Ei Gen F.F.I., Inc. | Method for manufacturing α-glycosylisoquercitrin, intermediate product and by-product thereof |
JP4902151B2 (en) * | 2005-08-01 | 2012-03-21 | 株式会社林原生物化学研究所 | Hesperetin-7-β-maltoside, process for producing the same and use thereof |
JP5042519B2 (en) * | 2006-04-18 | 2012-10-03 | 東洋精糖株式会社 | Naringin composition, production method and use thereof |
JP5000373B2 (en) * | 2007-04-27 | 2012-08-15 | 東洋精糖株式会社 | Water-soluble flavonoid composition and production method thereof, food containing water-soluble flavonoid composition, etc. |
JP2011105646A (en) * | 2009-11-18 | 2011-06-02 | Nippon Steel Chem Co Ltd | Method for producing hesperidin |
JP5228083B2 (en) * | 2010-06-09 | 2013-07-03 | 花王株式会社 | Method for producing hesperidin composition |
US9079933B2 (en) * | 2010-06-09 | 2015-07-14 | Kao Corporation | Manufacturing method for polyphenol composition |
-
2012
- 2012-04-11 JP JP2012089815A patent/JP5985229B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019021510A1 (en) | 2017-07-28 | 2019-01-31 | 太陽化学株式会社 | Method for producing flavonoid clathrate |
KR20200013060A (en) | 2017-07-28 | 2020-02-05 | 타이요 카가꾸 가부시키가이샤 | Method for preparing flavonoid clathrate compound |
EP3733860A1 (en) | 2017-07-28 | 2020-11-04 | Taiyo Kagaku Co., Ltd. | Flavonoid inclusion compounds |
Also Published As
Publication number | Publication date |
---|---|
JP2013215155A (en) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3052025C (en) | Method for producing flavonoid clathrate | |
JP3896577B2 (en) | Quercetin glycoside composition and preparation method thereof | |
JP5000884B2 (en) | Method for synthesizing hesperetin inclusion compound and naringenin inclusion compound | |
JP5000373B2 (en) | Water-soluble flavonoid composition and production method thereof, food containing water-soluble flavonoid composition, etc. | |
CN102827891B (en) | Method for preparing steviol by carrying out catalytic hydrolysis on stevioside by beta-glucosidase | |
US7282150B2 (en) | Method of extracting and method of purifying an effective substance | |
KR102528136B1 (en) | Method for preparation of isoquercetin and α-glycosylisoquercetin | |
JP5228083B2 (en) | Method for producing hesperidin composition | |
JP5985229B2 (en) | Process for producing sugar adducts of poorly water-soluble polyphenols | |
WO2002022847A1 (en) | Process for producing purified anthocyanin and crystalline anthocyanin | |
CN101775050A (en) | Alpha-glucose-based new hesperidin dihydrochalcone as well as preparation method and application thereof | |
JP5858686B2 (en) | Process for producing sugar adducts of poorly water-soluble polyphenols | |
JP5255862B2 (en) | Antidiabetic | |
WO2005049046A1 (en) | Hypotensive drug and process for producing the same | |
Shimoda et al. | Glycosylation of daidzein by the Eucalyptus cell cultures | |
JP4023539B2 (en) | Extraction method and purification method of active substance | |
GB2419095A (en) | Water-soluble isoflavone composition, process for producing the same, and use thereof | |
JP6872680B2 (en) | Calcium absorption promoter | |
JP2021011455A (en) | PHLORETIN-4-α-GLUCOSIDE CRYSTAL | |
JP2012224612A (en) | Method for producing polyphenol composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160802 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160803 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5985229 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |