WO2014030547A1 - Rotor structure and rotor manufacturing method for permanent magnet type rotating electrical machine - Google Patents

Rotor structure and rotor manufacturing method for permanent magnet type rotating electrical machine Download PDF

Info

Publication number
WO2014030547A1
WO2014030547A1 PCT/JP2013/071457 JP2013071457W WO2014030547A1 WO 2014030547 A1 WO2014030547 A1 WO 2014030547A1 JP 2013071457 W JP2013071457 W JP 2013071457W WO 2014030547 A1 WO2014030547 A1 WO 2014030547A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
notch
type rotating
stator
Prior art date
Application number
PCT/JP2013/071457
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 室田
徹 仲田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014030547A1 publication Critical patent/WO2014030547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention relates to a rotor structure using a permanent magnet for a rotating electrical machine such as a motor or a generator and a manufacturing method thereof.
  • an embedded magnet type (IPM) motor in which a permanent magnet is embedded in a rotor slot formed in a rotor is known.
  • JP2009-142081A issued by the Japan Patent Office or in 2009, cleaves a permanent magnet formed by pressure-molding magnetic powder to generate a plurality of split pieces for a permanent magnet inserted into the rotor slot of such an IPM motor. It has been proposed to obtain an eddy current suppression effect by restoring the permanent magnet by inserting the piece into the rotor slot in an adjacent state.
  • the coercive force required for the permanent magnet is large on the stator side, that is, on the portion close to the supply side of the external magnetic field. This is because the coercive force necessary for the permanent magnet is determined by the magnitude of the external magnetic field input to the magnet. As a result, the required coercive force of the permanent magnet is increased on the stator side, which is the source of the external magnetic field.
  • a notch is formed in advance by cutting or the like at the cleaved portion.
  • the permanent magnet breaks from the notch and becomes a broken piece.
  • the notch is a factor that impairs the anti-demagnetization performance of the rotor.
  • the present invention has been made to solve the above problems, and an object thereof is to improve the anti-demagnetization performance of a rotor using a split piece permanent magnet of an IPM motor.
  • a rotor structure of a permanent magnet type rotating electrical machine includes a rotor core that is disposed inside a stator and includes a central axis and a rotor slot that is formed substantially parallel to the central axis. And a permanent magnet composite having a notch, which is composed of a plurality of permanent magnet pieces arranged adjacent to each other.
  • the permanent magnet composite in the rotor slot has a first surface and a second surface far from the first surface with respect to the stator, and the permanent magnet composite has a notch located on the second surface. Located in the rotor slot.
  • FIG. 1 is a perspective view of a rotor core and permanent magnet composite according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating stress concentration on the burr due to centrifugal force.
  • FIG. 3 is a diagram for explaining the relationship between the direction of the magnetic flux from the stator and the direction of the notch.
  • FIG. 4 is a cross-sectional view of the rotor core for explaining a variation regarding the arrangement of the magnets on the rotor core.
  • FIG. 5 is a cross-sectional view of the split piece showing variations relating to the transverse shape of the split piece.
  • FIG. 6 is a perspective view of a rotor core and a permanent magnet composite for explaining variations regarding the forming direction of the notch.
  • FIG. 7 is a perspective view of a rotor core and a permanent magnet composite for explaining another variation regarding the forming direction of the notch.
  • the rotor 1 of the IPM motor has four rotor slots 4 inside a rotor core 5.
  • the rotor core 5 has an annular cross section centered on the central axis O.
  • Four rotor slots 4 surround the central axis O and are formed at intervals of 90 degrees.
  • Each rotor slot 4 is parallel to the central axis O. That is, each rotor slot 4 extends in the longitudinal direction.
  • a plurality of split pieces 2 of permanent magnets are inserted into each rotor slot 4.
  • the split piece 2 is produced by pressing a magnetic powder to produce a permanent magnet, forming a notch 3 in the permanent magnet, and then cutting the permanent magnet from the notch 3 with a cleaving device. Generated.
  • the notch 3 is formed by melting a predetermined portion of the notch 3 of the permanent magnet by heating. Specifically, the notch 3 is formed by irradiating a laser at a predetermined position of the notch 3 of the permanent magnet.
  • the split pieces 2 generated in this way are sequentially inserted into the rotor slots 4 adjacent to each other in the axial direction in a state where the split cross section is orthogonal to the central axis O. At that time, the split piece 2 is inserted into the rotor slot 4 so that the notch 3 is positioned far from the stator in the rotor slot 4, that is, the notch 3 faces the central axis O.
  • the permanent magnet composite 20 configured in the rotor slot 4 in this way has a first surface 20A close to the stator and a second surface 20B located farther from the first surface 20A with respect to the stator.
  • the split piece 2 is inserted into the rotor slot 4 so that the notch 3 is positioned on the second surface 20B.
  • Each rotor slot 4 is embedded with a permanent magnet composite 20 configured as described above.
  • the permanent magnet composite 20 may be formed by laminating and adhering the magnet pieces 2 outside the rotor slot 4 in advance, and the formed permanent magnet composite 20 may be inserted into the rotor slot 4.
  • a hole in the longitudinal direction is formed in the center of the rotor core 5 in advance.
  • the rotor core 5 is fixed to a rotating shaft (not shown) that passes through the hole.
  • a stator (not shown) is disposed so as to surround the outer periphery of the rotor core 5.
  • the rotor core 1 configured as described above is rotated by the magnetic force exerted on the permanent magnet composite 20 composed of the split pieces 2 embedded in the four rotor slots 4 by the magnetic field formed by the stator during operation of the IPM motor. .
  • All of the plurality of split pieces 2 constituting the permanent magnet composite in the four rotor slots 4 are arranged with the notch portions 3 directed toward the central axis O on the opposite side of the stator. That is, since the notch 3 does not face the stator, the rotor 1 has a structure in which the resistance to demagnetization is not easily lowered by the notch 3. This will be specifically described below.
  • the heat-affected zone is a layer in which so-called irreversible demagnetization occurs in which the magnetic properties change due to the heat energy generated by laser irradiation and the magnetic force before irradiation does not return even after the temperature is lowered.
  • the heat-affected zone is formed over a wider area than the coercive force drop zone.
  • the rotor 1 When the notch 3 is disposed in the rotor slot 4 toward the stator, that is, when the notch 3 is formed on the first surface 20A, the rotor 1 causes the coercive force lowering portion and the heat affected layer to face the magnetic flux from the stator. In other words, a decrease in anti-demagnetization performance is inevitable.
  • the notch portion 3 faces the central axis O by disposing the notch portion 3 at a position away from the stator in the rotor slot 4, that is, on the second surface 20 ⁇ / b> B.
  • the permanent magnet composite 20 composed of a plurality of adjacent split pieces 2 is in a state in which the coercive force lowering portion and the heat-affected layer are directed to the opposite side with respect to the stator. Therefore, although the rotor 1 has the notch portion 3, it is difficult to be affected by the coercive force lowering portion and the heat-affected layer with respect to the magnetic flux from the stator, and high demagnetization resistance can be maintained.
  • the cutout portion 3 is formed using thermal energy, in particular, by forming the cutout portion 3 by laser irradiation, it is easy to form the cutout portion 3 in the permanent magnet. Can be done.
  • a method for forming the notch 3 inevitably generates a heat-affected layer.
  • the disposition of the notch 3 at a position far from the stator in the rotor slot 4, that is, the second surface, is remarkable with respect to the permanent magnet composite in which the notch 3 is formed by laser irradiation or the like where formation of a heat-affected layer is unavoidable It brings about an effect.
  • the coercive force required for the rotational operation of the IPM motor is smaller on the inner side of the rotor core 5 than on the outer side of the rotor core 5 facing the stator. Therefore, by arranging the coercive force lowering portion and the heat-affected layer toward the inner side of the rotor core 5, an optimal magnet arrangement in accordance with the required coercive force is realized.
  • burrs may occur on both sides of the notch 3 when the notch 3 is generated.
  • the centrifugal force accompanying the rotation of the IPM motor increases the contact pressure between the burr and the wall surface of the rotor slot 4.
  • the compressive stress generated in the burr increases with the length of the split piece 2 in the adjacent direction as shown in FIG.
  • the notch 3 is arranged on the second surface 20B corresponding to a position away from the stator in the rotor slot 4 in advance, so that the notch 3 is directed to the central axis O. Therefore, the centrifugal force accompanying the rotation of the IPM motor acts on the split piece 2 in the direction of reducing the contact pressure between the burr and the wall surface of the rotor slot 4. Therefore, even if burrs remain around the notch 3 of the split piece 2, the load due to the centrifugal force does not concentrate on the burrs when the IPM motor rotates.
  • FIG. 4 another embodiment of the present invention relating to the arrangement of magnets on the rotor core 5 will be described.
  • rotor slots 4 are formed in the rotor core 5 at intervals of 90 degrees, but the position and quantity of the rotor slots 4 are not limited to this.
  • a slot group composed of three rotor slots 4 arranged so as to form a substantially triangular shape is arranged at intervals of 90 degrees.
  • Each rotor slot 4 is embedded with the same split piece 2 as in the embodiment of FIG. 1 to constitute a permanent magnet composite 20.
  • the direction of the notch 3 is set as follows.
  • the notch 3 is disposed on the second surface 20B corresponding to a position far from the stator.
  • the split piece 2 embedded in the other rotor slot 4 any orientation of the notch 3 is possible.
  • the notch 3 by arranging the notch 3 on the second surface 20B corresponding to a position far from the stator for these rotor slots 4 as well, a more favorable effect can be obtained with respect to maintaining the demagnetization resistance performance of the rotor 1.
  • FIG. 4B corresponds to a configuration in which the rotor slot 4 from the outermost periphery of each slot group is omitted from the magnet arrangement of FIG. 4A.
  • the split piece 2 embedded in each rotor slot 4 is arranged so that the notch 3 comes to the second surface 20B far from the stator of the rotor slot 4.
  • FIG. 4C corresponds to a structure in which a smaller rotor slot 4 is formed in parallel outside the rotor slot 4 of the embodiment of FIG.
  • the notch 3 of the split piece 2 of the permanent magnet embedded in the outer rotor slot 4 is provided on the second surface 20B facing the central axis O. With respect to the split piece 2 of the permanent magnet embedded in the inner rotor slot 4, any orientation of the notch 3 is possible.
  • the shape of the transverse section of the split piece 2 cut in parallel with the split section is a rectangle.
  • the cross-sectional shape of the split piece 2 is not limited to a rectangle.
  • Various cross-sectional shapes such as a trapezoid shown in FIG. 5A and a kamaboko shape shown in FIG. 5B can be adopted.
  • the notch 3 is formed in a direction orthogonal to the central axis O.
  • the rotor structure and the rotor manufacturing method according to the present invention are not limited to the direction in which the notch 3 is formed.
  • the direction of the notch 3 can be set obliquely with respect to the central axis O.
  • the notch 3 is formed by laser irradiation, and a heat affected zone is formed in the notch 3 in addition to the coercive force lowering portion.
  • the present invention exerts a remarkable effect in preventing the demagnetization resistance of the rotor having the notched portion 3 in which the heat affected zone is formed in addition to the coercive force lowered portion.
  • a favorable effect can be obtained in preventing a decrease in the anti-demagnetization performance of the rotor caused by the coercive force reduction portion.

Abstract

A rotor core is arranged inside a stator and has a center axis and rotor slots inside the rotor core parallel to the center axis. A permanent magnet composite body with notches is constructed by adjacently arranging a plurality of permanent magnet pieces inside a respective rotor slot. The permanent magnet composite body inside the rotor slot has a first surface and a second surface that is positioned further away from the stator than the first surface. The notch is arranged on the second surface to prevent a degradation in resistance to demagnetization which is due to the notch.

Description

永久磁石式回転電機のロータ構造及びロータ製造方法Rotor structure of permanent magnet type rotating electrical machine and rotor manufacturing method
 本発明は、モータやジェネレータなどの回転電機のための永久磁石を用いたロータの構造と製造方法に関する。 The present invention relates to a rotor structure using a permanent magnet for a rotating electrical machine such as a motor or a generator and a manufacturing method thereof.
 電動車両のモータとして、ロータに形成したロータスロットに永久磁石を埋め込んだ埋込磁石型(IPM)モータが知られている。 As an electric vehicle motor, an embedded magnet type (IPM) motor in which a permanent magnet is embedded in a rotor slot formed in a rotor is known.
 日本国特許庁か2009年に発行したJP2009-142081Aは、こうしたIPMモータのロータスロットに挿入される永久磁石に関して、磁粉を加圧成形した永久磁石を割断して複数の割断片を生成し、割断片を隣接状態でロータスロットに挿入して永久磁石を復元することで、渦電流抑制効果を得ることを提案している。 JP2009-142081A, issued by the Japan Patent Office or in 2009, cleaves a permanent magnet formed by pressure-molding magnetic powder to generate a plurality of split pieces for a permanent magnet inserted into the rotor slot of such an IPM motor. It has been proposed to obtain an eddy current suppression effect by restoring the permanent magnet by inserting the piece into the rotor slot in an adjacent state.
 この場合に、永久磁石に要求される保磁力はステータ側、すなわち外部磁界の供給側に近い部分、で大きい。その理由は、永久磁石に必要な保磁力が磁石に入力される外部磁界の大きさにより決定されるからである。結果として、外部磁界の発生源であるステータ側は、必要とされる永久磁石の保磁力が大きくなる。 In this case, the coercive force required for the permanent magnet is large on the stator side, that is, on the portion close to the supply side of the external magnetic field. This is because the coercive force necessary for the permanent magnet is determined by the magnitude of the external magnetic field input to the magnet. As a result, the required coercive force of the permanent magnet is increased on the stator side, which is the source of the external magnetic field.
 従来技術においては、永久磁石を破断分割するために、割断箇所に切削加工などによりあらかじめ切欠部を形成している。割断機が永久磁石に圧力を加えると永久磁石は切欠部から割れて割断片となる。切欠部はその形成方法によらず、表面の組織破壊に起因して磁力や保磁力が他の部分より低くなることは避けられない。つまり、切欠部はロータの耐減磁性能を損なう要因となる。 In the prior art, in order to break and divide a permanent magnet, a notch is formed in advance by cutting or the like at the cleaved portion. When the cleaving machine applies pressure to the permanent magnet, the permanent magnet breaks from the notch and becomes a broken piece. Regardless of the formation method of the notch, it is inevitable that the magnetic force and the coercive force are lower than those of other portions due to the destruction of the surface structure. That is, the notch is a factor that impairs the anti-demagnetization performance of the rotor.
 本発明は、以上の問題を解決すべくなされたもので、IPMモータの割断片型永久磁石を用いたロータの耐減磁性能を向上させることを目的とする。 The present invention has been made to solve the above problems, and an object thereof is to improve the anti-demagnetization performance of a rotor using a split piece permanent magnet of an IPM motor.
 本発明のある態様によれば、永久磁石式回転電機のロータ構造は、ステータの内側に配置され、中心軸と、中心軸と略平行に形成されたロータスロットと、を有するロータコアと、ロータスロット内に隣接して配置された複数の永久磁石片で構成される、切欠部を有する永久磁石複合体と、を備えている。 According to an aspect of the present invention, a rotor structure of a permanent magnet type rotating electrical machine includes a rotor core that is disposed inside a stator and includes a central axis and a rotor slot that is formed substantially parallel to the central axis. And a permanent magnet composite having a notch, which is composed of a plurality of permanent magnet pieces arranged adjacent to each other.
 ロータスロット内の永久磁石複合体は第1面と、ステータに対して第1面より遠い位置にある第2面とを有し、永久磁石複合体は切欠が第2面上に位置するようにロータスロット内に配置される。 The permanent magnet composite in the rotor slot has a first surface and a second surface far from the first surface with respect to the stator, and the permanent magnet composite has a notch located on the second surface. Located in the rotor slot.
図1はこの発明の実施形態によるロータコアと永久磁石複合体の斜視図である。FIG. 1 is a perspective view of a rotor core and permanent magnet composite according to an embodiment of the present invention. 図2は遠心力によるバリへの応力集中を説明するダイアグラムである。FIG. 2 is a diagram illustrating stress concentration on the burr due to centrifugal force. 図3はステータからの磁束の方向と切欠部の向きの関係を説明するダイアグラムである。FIG. 3 is a diagram for explaining the relationship between the direction of the magnetic flux from the stator and the direction of the notch. 図4はロータコアへの磁石の配置に関するバリエーションを説明するロータコアの横断面図である。FIG. 4 is a cross-sectional view of the rotor core for explaining a variation regarding the arrangement of the magnets on the rotor core. 図5は割断片の横断形状に関するバリエーションを示す割断片の横断面図である。FIG. 5 is a cross-sectional view of the split piece showing variations relating to the transverse shape of the split piece. 図6は切欠部の形成方向に関するバリエーションを説明するロータコアと永久磁石複合体の斜視図である。FIG. 6 is a perspective view of a rotor core and a permanent magnet composite for explaining variations regarding the forming direction of the notch. 図7は切欠部の形成方向に関する別のバリエーションを説明するロータコアと永久磁石複合体の斜視図である。FIG. 7 is a perspective view of a rotor core and a permanent magnet composite for explaining another variation regarding the forming direction of the notch.
 図1を参照すると、IPMモータのロータ1はロータコア5の内部に4個のロータスロット4を有する。ロータコア5は中心軸Oを中心とする環状の横断面を有する。4個のロータスロット4は中心軸Oを囲んで90度間隔で形成される。各ロータスロット4は中心軸Oと平行をなす。すなわち、各ロータスロット4は縦断方向に延設される。 Referring to FIG. 1, the rotor 1 of the IPM motor has four rotor slots 4 inside a rotor core 5. The rotor core 5 has an annular cross section centered on the central axis O. Four rotor slots 4 surround the central axis O and are formed at intervals of 90 degrees. Each rotor slot 4 is parallel to the central axis O. That is, each rotor slot 4 extends in the longitudinal direction.
 各ロータスロット4には永久磁石の複数の割断片2が挿入される。 A plurality of split pieces 2 of permanent magnets are inserted into each rotor slot 4.
 割断片2は前記従来技術と同様に、磁粉を加圧成形して永久磁石を制作し、永久磁石に切欠部3を形成したうえで、割断装置で永久磁石を切欠部3から切断することで生成される。切欠部3は永久磁石の切欠部3の予定部位を加熱により溶融させることで形成する。具体的には永久磁石の切欠部3の予定位置にレーザを照射して切欠部3を形成する。 In the same way as in the prior art, the split piece 2 is produced by pressing a magnetic powder to produce a permanent magnet, forming a notch 3 in the permanent magnet, and then cutting the permanent magnet from the notch 3 with a cleaving device. Generated. The notch 3 is formed by melting a predetermined portion of the notch 3 of the permanent magnet by heating. Specifically, the notch 3 is formed by irradiating a laser at a predetermined position of the notch 3 of the permanent magnet.
 このようにして生成された割断片2は、割断面が中心軸Oと直交する状態で、軸方向に隣接してロータスロット4に順次挿入される。その際、切欠部3がロータスロット4内のステータから遠い位置に位置するように、すなわち切欠部3が中心軸Oを向くように、割断片2をロータスロット4に挿入する。 The split pieces 2 generated in this way are sequentially inserted into the rotor slots 4 adjacent to each other in the axial direction in a state where the split cross section is orthogonal to the central axis O. At that time, the split piece 2 is inserted into the rotor slot 4 so that the notch 3 is positioned far from the stator in the rotor slot 4, that is, the notch 3 faces the central axis O.
 このようにしてロータスロット4内に構成される永久磁石複合体20は、ステータに近い第1面20Aと、ステータに対して第1面20Aより遠い位置にある第2面20Bとを有する。割断片2は切欠部3が第2面20Bに位置するようにロータスロット4に挿入される。 The permanent magnet composite 20 configured in the rotor slot 4 in this way has a first surface 20A close to the stator and a second surface 20B located farther from the first surface 20A with respect to the stator. The split piece 2 is inserted into the rotor slot 4 so that the notch 3 is positioned on the second surface 20B.
 各ロータスロット4にはこのように構成された永久磁石複合体20が埋設される。なお、あらかじめロータスロット4の外で磁石片2を積層接着して永久磁石複合体20を形成し、形成した永久磁石複合体20をロータスロット4に挿入しても良い。 Each rotor slot 4 is embedded with a permanent magnet composite 20 configured as described above. Alternatively, the permanent magnet composite 20 may be formed by laminating and adhering the magnet pieces 2 outside the rotor slot 4 in advance, and the formed permanent magnet composite 20 may be inserted into the rotor slot 4.
 ロータコア5の中心にはあらかじめ縦断方向の孔部が形成される。ロータコア5はこの孔部を貫通する図示されない回転シャフトに固定される。また、ロータコア5の外周を囲むように図示されないステータが配置される。 A hole in the longitudinal direction is formed in the center of the rotor core 5 in advance. The rotor core 5 is fixed to a rotating shaft (not shown) that passes through the hole. A stator (not shown) is disposed so as to surround the outer periphery of the rotor core 5.
 以上のように構成されたロータコア1は、IPMモータの運転時には、ステータが形成する磁界が、4つのロータスロット4内に埋設された割断片2からなる永久磁石複合体20に及ぼす磁力により回転する。 The rotor core 1 configured as described above is rotated by the magnetic force exerted on the permanent magnet composite 20 composed of the split pieces 2 embedded in the four rotor slots 4 by the magnetic field formed by the stator during operation of the IPM motor. .
 4個のロータスロット4内で永久磁石複合体を構成する複数の割断片2は、すべてが切欠部3をステータとは反対側の中心軸O方向に向けて配置されている。つまり、切欠部3がステータを向いていないため、ロータ1は切欠部3による耐減磁性能の低下が生じにくい構造となる。以下に具体的に説明する。 All of the plurality of split pieces 2 constituting the permanent magnet composite in the four rotor slots 4 are arranged with the notch portions 3 directed toward the central axis O on the opposite side of the stator. That is, since the notch 3 does not face the stator, the rotor 1 has a structure in which the resistance to demagnetization is not easily lowered by the notch 3. This will be specifically described below.
 図3Aを参照すると、レーザ照射による割断片2の局部的溶融により切欠部3を形成した場合には、切欠部3の形成それ自体がもたらす保磁力低下部とともに、加熱による熱影響部が生成される。熱影響部はレーザ照射による熱エネルギーにより磁気特性が変化し、温度が低下した後も照射前の磁力が戻らない、いわゆる不可逆減磁が生じる層をいう。熱影響部は保磁力低下部より広範囲に渡って形成される。切欠部3をロータスロット4内でステータ側に向けて配置すると、つまり切欠部3を第1面20Aに形成すると、ロータ1は保磁力低下部や熱影響層をステータからの磁束に正対させることとなり、耐減磁性能の低下は避けられない。 Referring to FIG. 3A, when the cutout portion 3 is formed by local melting of the split piece 2 by laser irradiation, a heat-affected zone due to heating is generated along with the coercive force reduction portion caused by the formation of the cutout portion 3 itself. The The heat-affected zone is a layer in which so-called irreversible demagnetization occurs in which the magnetic properties change due to the heat energy generated by laser irradiation and the magnetic force before irradiation does not return even after the temperature is lowered. The heat-affected zone is formed over a wider area than the coercive force drop zone. When the notch 3 is disposed in the rotor slot 4 toward the stator, that is, when the notch 3 is formed on the first surface 20A, the rotor 1 causes the coercive force lowering portion and the heat affected layer to face the magnetic flux from the stator. In other words, a decrease in anti-demagnetization performance is inevitable.
 図3Bを参照すると、このロータ1においては切欠部3をロータスロット4内のステータから離れた位置、つまり第2面20Bに配置することで、切欠部3が中心軸Oを向く。その結果、複数の隣接する割断片2からなる永久磁石複合体20は、保磁力低下部と熱影響層をステータに対して反対側に向けた状態となる。したがって、ロータ1は切欠部3を有するにもかかわらず、ステータからの磁束に対して保磁力低下部と熱影響層の影響を受けにくく、高い耐減磁性能を維持することができる。 Referring to FIG. 3B, in this rotor 1, the notch portion 3 faces the central axis O by disposing the notch portion 3 at a position away from the stator in the rotor slot 4, that is, on the second surface 20 </ b> B. As a result, the permanent magnet composite 20 composed of a plurality of adjacent split pieces 2 is in a state in which the coercive force lowering portion and the heat-affected layer are directed to the opposite side with respect to the stator. Therefore, although the rotor 1 has the notch portion 3, it is difficult to be affected by the coercive force lowering portion and the heat-affected layer with respect to the magnetic flux from the stator, and high demagnetization resistance can be maintained.
 永久磁石への切欠部3の形成に際しては、切欠部3を、熱エネルギーを用いて形成すること、特にレーザ照射により切欠部3を形成することで、永久磁石への切欠部3の形成を容易に行うことができる。一方、こうした切欠部3の形成方法は熱影響層を不可避的に生成してしまう。切欠部3をロータスロット4内のステータから遠い位置、すなわち第2面、に配置することは、熱影響層の形成が避けられないレーザ照射などで切欠部3を形成した永久磁石複合体に関して顕著な効果をもたらす。 When forming the cutout portion 3 in the permanent magnet, the cutout portion 3 is formed using thermal energy, in particular, by forming the cutout portion 3 by laser irradiation, it is easy to form the cutout portion 3 in the permanent magnet. Can be done. On the other hand, such a method for forming the notch 3 inevitably generates a heat-affected layer. The disposition of the notch 3 at a position far from the stator in the rotor slot 4, that is, the second surface, is remarkable with respect to the permanent magnet composite in which the notch 3 is formed by laser irradiation or the like where formation of a heat-affected layer is unavoidable It brings about an effect.
 一方、ロータコア5の内側では、ステータに面したロータコア5の外側に比べてIPMモータの回転動作に際して必要とされる保磁力が小さい。したがって、保磁力低下部と熱影響層をロータコア5の内側に向けることにより、要求される保磁力に合わせた最適な磁石の配置が実現する。 On the other hand, the coercive force required for the rotational operation of the IPM motor is smaller on the inner side of the rotor core 5 than on the outer side of the rotor core 5 facing the stator. Therefore, by arranging the coercive force lowering portion and the heat-affected layer toward the inner side of the rotor core 5, an optimal magnet arrangement in accordance with the required coercive force is realized.
 また、切欠部3の生成時に切欠部3の両側にバリが生じることがある。図2Aを参照すると、切欠部3をステータ側の第1面20Aに配置した場合には、IPMモータの回転に伴う遠心力がバリとロータスロット4の壁面との接触圧力を増大させる。その結果、バリに発生する圧縮応力は図2Bに示すように割断片2の隣接方向の長さ、言い換えれば切欠部3の間隔とともに増大する。応力集中による部材の損傷を防ぐために、バリを充分に除去する必要があるが、完全に取りきれない場合もある。 Also, burrs may occur on both sides of the notch 3 when the notch 3 is generated. Referring to FIG. 2A, when the notch 3 is arranged on the first surface 20 </ b> A on the stator side, the centrifugal force accompanying the rotation of the IPM motor increases the contact pressure between the burr and the wall surface of the rotor slot 4. As a result, the compressive stress generated in the burr increases with the length of the split piece 2 in the adjacent direction as shown in FIG. In order to prevent damage to the member due to stress concentration, it is necessary to sufficiently remove the burrs, but there are cases where the burrs cannot be completely removed.
 この発明によるロータ1は、あらかじめ切欠部3をロータスロット4内のステータから離れた位置に相当する第2面20Bに配置することで、切欠部3を中心軸Oに向けている。そのため、IPMモータの回転に伴う遠心力は割断片2に対してバリとロータスロット4の壁面との接触圧力を減じる方向に作用する。したがって、割断片2の切欠部3の周囲にバリが残存していた場合でも、IPMモータの回転時に遠心力による荷重がバリに集中することはない。 In the rotor 1 according to the present invention, the notch 3 is arranged on the second surface 20B corresponding to a position away from the stator in the rotor slot 4 in advance, so that the notch 3 is directed to the central axis O. Therefore, the centrifugal force accompanying the rotation of the IPM motor acts on the split piece 2 in the direction of reducing the contact pressure between the burr and the wall surface of the rotor slot 4. Therefore, even if burrs remain around the notch 3 of the split piece 2, the load due to the centrifugal force does not concentrate on the burrs when the IPM motor rotates.
 図4を参照して、ロータコア5への磁石の配置に関する、この発明の他の実施形態を説明する。 Referring to FIG. 4, another embodiment of the present invention relating to the arrangement of magnets on the rotor core 5 will be described.
 図1の実施形態ではロータコア5に90度間隔で4個のロータスロット4を形成しているが、ロータスロット4の位置や数量はこれに限定されない。 In the embodiment of FIG. 1, four rotor slots 4 are formed in the rotor core 5 at intervals of 90 degrees, but the position and quantity of the rotor slots 4 are not limited to this.
 図4Aでは、略三角形をなすように配置された3個のロータスロット4からなるスロット群を90度間隔で配置している。各ロータスロット4には図1の実施形態と同様の割断片2が埋設され、永久磁石複合体20を構成する。この実施形態では、切欠部3の向きを次のように設定する。 In FIG. 4A, a slot group composed of three rotor slots 4 arranged so as to form a substantially triangular shape is arranged at intervals of 90 degrees. Each rotor slot 4 is embedded with the same split piece 2 as in the embodiment of FIG. 1 to constitute a permanent magnet composite 20. In this embodiment, the direction of the notch 3 is set as follows.
 すなわち、各スロット群においてロータコア5の最も外周よりのロータスロット4に埋設される永久磁石複合体20については、切欠部3をステータから遠い位置に相当する第2面20Bに配置する。その他のロータスロット4に埋設される割断片2については、切欠部3の向きはいずれでも可能である。しかしながら、これらのロータスロット4についても切欠部3をステータから遠い位置に相当する第2面20Bに配置することで、ロータ1の耐減磁性能維持に関してより好ましい効果を得ることができる。 That is, with respect to the permanent magnet composite 20 embedded in the rotor slot 4 from the outermost periphery of the rotor core 5 in each slot group, the notch 3 is disposed on the second surface 20B corresponding to a position far from the stator. With respect to the split piece 2 embedded in the other rotor slot 4, any orientation of the notch 3 is possible. However, by arranging the notch 3 on the second surface 20B corresponding to a position far from the stator for these rotor slots 4 as well, a more favorable effect can be obtained with respect to maintaining the demagnetization resistance performance of the rotor 1.
 図4Bは、図4Aの磁石の配置から、各スロット群の最も外周よりのロータスロット4を省略したものに相当する。 FIG. 4B corresponds to a configuration in which the rotor slot 4 from the outermost periphery of each slot group is omitted from the magnet arrangement of FIG. 4A.
 この実施形態でも、各ロータスロット4に埋設される割断片2は、切欠部3がロータスロット4のステータから遠い位置の第2面20Bに来るように配置される。 Also in this embodiment, the split piece 2 embedded in each rotor slot 4 is arranged so that the notch 3 comes to the second surface 20B far from the stator of the rotor slot 4.
 図4Cは、図1の実施形態のロータスロット4の外側にさらに小さなロータスロット4を平行に形成したものに相当する。この実施形態では、外側のロータスロット4に埋設される永久磁石の割断片2の切欠部3は中心軸Oを向いた第2面20Bに設ける。内側のロータスロット4に埋設される永久磁石の割断片2については、切欠部3の向きはいずれでも可能である。しかしながら、内側のロータスロット4内のステータから遠い位置の第2面20Bに切欠部3が来るようにロータスロット4内に割断片2を配置することで、言い換えれば永久磁石複合体の中心軸Oを向いた面に切欠部3が存在するようにすることで、ロータ1の耐減磁性能維持に関してより好ましい効果を得ることができる。 FIG. 4C corresponds to a structure in which a smaller rotor slot 4 is formed in parallel outside the rotor slot 4 of the embodiment of FIG. In this embodiment, the notch 3 of the split piece 2 of the permanent magnet embedded in the outer rotor slot 4 is provided on the second surface 20B facing the central axis O. With respect to the split piece 2 of the permanent magnet embedded in the inner rotor slot 4, any orientation of the notch 3 is possible. However, by arranging the split piece 2 in the rotor slot 4 so that the notch 3 comes to the second surface 20B far from the stator in the inner rotor slot 4, in other words, the central axis O of the permanent magnet complex By providing the notch 3 on the surface facing, a more favorable effect can be obtained with respect to maintaining the anti-demagnetization performance of the rotor 1.
 図1の実施形態では割断面と平行に切断した割断片2の横断面の形状は長方形である。しかしながら、割断片2の横断面形状は長方形に限定されない。図5Aに示す台形や図5Bに示すかまぼこ形など様々な横断面形状を採用することができる。 In the embodiment of FIG. 1, the shape of the transverse section of the split piece 2 cut in parallel with the split section is a rectangle. However, the cross-sectional shape of the split piece 2 is not limited to a rectangle. Various cross-sectional shapes such as a trapezoid shown in FIG. 5A and a kamaboko shape shown in FIG. 5B can be adopted.
 図1の実施形態では切欠部3を中心軸Oと直交する方向へ形成している。しかしながら、この発明によるロータ構造及びロータ製造方法は切欠部3の形成方向には限定されない。 In the embodiment of FIG. 1, the notch 3 is formed in a direction orthogonal to the central axis O. However, the rotor structure and the rotor manufacturing method according to the present invention are not limited to the direction in which the notch 3 is formed.
 図6に示すように、切欠部3の方向を中心軸Oと平行に設定することも可能である。また、図7に示すように、切欠部3の方向を中心軸Oに対して斜めに設定することも可能である。 As shown in FIG. 6, it is possible to set the direction of the notch 3 parallel to the central axis O. Further, as shown in FIG. 7, the direction of the notch 3 can be set obliquely with respect to the central axis O.
 以上の各実施形態においては、切欠部3をレーザの照射により形成しており、切欠部3には保磁力低下部に加えて熱影響部が形成される。この発明は、このように保磁力低下部に加えて熱影響部が形成される切欠部3を有するロータの耐減磁性能の低下防止に著しい効果を発揮する。しかしながら、切削などで切欠部を形成したロータにこの発明を適用した場合も、保磁力低下部がもたらすロータの耐減磁性能の低下防止に好ましい効果が得られる。 In each of the above embodiments, the notch 3 is formed by laser irradiation, and a heat affected zone is formed in the notch 3 in addition to the coercive force lowering portion. In this way, the present invention exerts a remarkable effect in preventing the demagnetization resistance of the rotor having the notched portion 3 in which the heat affected zone is formed in addition to the coercive force lowered portion. However, even when the present invention is applied to a rotor in which a notch portion is formed by cutting or the like, a favorable effect can be obtained in preventing a decrease in the anti-demagnetization performance of the rotor caused by the coercive force reduction portion.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本願は2012年8月21日に日本国特許庁に出願された特願2012-182715号に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-182715 filed with the Japan Patent Office on August 21, 2012, the entire contents of which are incorporated herein by reference.

Claims (8)

  1.  ステータの内側に配置され、中心軸と中心軸と並行に形成されたロータスロットとを有する永久磁石型回転電機のロータ構造において、
    ステータの内側に配置される、中心軸と中心軸と並行に形成されたロータスロットとを有するロータコアと、
    ロータスロットに隣接して配置された複数の永久磁石片からなる永久磁石複合体と、を備え、
    ロータスロット内の永久磁石複合体は第1面と、第1面よりステータから遠い位置にある第2面と、第2面に存在する切欠部と、を有する、永久磁石式回転電機のロータ構造。
    In the rotor structure of a permanent magnet type rotating electrical machine, which is disposed inside the stator and has a central axis and a rotor slot formed in parallel with the central axis,
    A rotor core having a central axis and a rotor slot formed in parallel with the central axis, disposed inside the stator;
    A permanent magnet composite composed of a plurality of permanent magnet pieces arranged adjacent to the rotor slot,
    The permanent magnet composite in the rotor slot has a first surface, a second surface farther from the stator than the first surface, and a rotor structure of a permanent magnet type rotating electrical machine having a notch portion present on the second surface. .
  2.  切欠部が中心軸に向けて配置された、請求項1の永久磁石式回転電機のロータ構造。 The rotor structure of the permanent magnet type rotating electric machine according to claim 1, wherein the notch is arranged toward the central axis.
  3.  複数の永久磁石片は、あらかじめ切欠部を形成した永久磁石を切欠部で割断することで生成される請求項1または2の永久磁石式回転電機のロータ構造。 The rotor structure of a permanent magnet type rotating electric machine according to claim 1 or 2, wherein the plurality of permanent magnet pieces are generated by cleaving a permanent magnet having a notch portion formed beforehand at the notch portion.
  4.  ステータの内側に配置され、中心軸と中心軸と並行に形成されたロータスロットとを有する永久磁石型回転電機のロータの製造方法において、
    複数の永久磁石片をロータスロット内に隣接して配置することで、第1面と、ステータから第1面より遠い位置にある第2面と、第2面に存在する切欠部とを有する永久磁石複合体をロータスロット内に形成する、永久磁石型回転電機のロータの製造方法。
    In a method of manufacturing a rotor of a permanent magnet type rotating electrical machine, which is disposed inside a stator and has a central axis and a rotor slot formed in parallel with the central axis,
    By arranging a plurality of permanent magnet pieces adjacent to each other in the rotor slot, the permanent magnet has a first surface, a second surface farther from the stator than the first surface, and a notch portion present on the second surface. A method for manufacturing a rotor of a permanent magnet type rotating electrical machine, wherein a magnet composite is formed in a rotor slot.
  5.  切欠部が中心軸を向くように複数の永久磁石片をロータスロット内に隣接して配置する、請求項4の永久磁石式回転電機のロータ製造方法。 The method for manufacturing a rotor of a permanent magnet type rotating electrical machine according to claim 4, wherein the plurality of permanent magnet pieces are arranged adjacent to each other in the rotor slot so that the notch portion faces the central axis.
  6.  あらかじめ切欠部を形成した永久磁石を切欠部で割断することで複数の永久磁石片を生成する、請求項4の永久磁石式回転電機のロータ製造方法。 The method for manufacturing a rotor of a permanent magnet type rotating electric machine according to claim 4, wherein a plurality of permanent magnet pieces are generated by cleaving a permanent magnet having a notch formed in advance at the notch.
  7.  切欠部を、熱エネルギーを利用して形成する、請求項6の永久磁石式回転電機のロータ製造方法。 The method for manufacturing a rotor of a permanent magnet type rotating electric machine according to claim 6, wherein the notch is formed by using thermal energy.
  8.  切欠部をレーザ照射により形成する、請求項6の永久磁石式回転電機のロータ製造方法。
     
    The rotor manufacturing method for a permanent magnet type rotating electrical machine according to claim 6, wherein the notch is formed by laser irradiation.
PCT/JP2013/071457 2012-08-21 2013-08-08 Rotor structure and rotor manufacturing method for permanent magnet type rotating electrical machine WO2014030547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-182715 2012-08-21
JP2012182715 2012-08-21

Publications (1)

Publication Number Publication Date
WO2014030547A1 true WO2014030547A1 (en) 2014-02-27

Family

ID=50149856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071457 WO2014030547A1 (en) 2012-08-21 2013-08-08 Rotor structure and rotor manufacturing method for permanent magnet type rotating electrical machine

Country Status (1)

Country Link
WO (1) WO2014030547A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3457535A1 (en) * 2017-09-15 2019-03-20 Siemens Gamesa Renewable Energy A/S Permanent magnet for a permanent magnet machine
WO2024042731A1 (en) 2022-08-25 2024-02-29 株式会社 東芝 Interior magnet rotor and interior magnet rotating electric machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013209A1 (en) * 2009-07-29 2011-02-03 トヨタ自動車株式会社 Apparatus for handling magnet and method for handling magnet
JP2011125105A (en) * 2009-12-09 2011-06-23 Toyota Motor Corp Motor with cleft magnet and method of manufacturing the same
WO2012105006A1 (en) * 2011-02-02 2012-08-09 トヨタ自動車株式会社 Permanent magnet, motor rotor or stator, dynamo-electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013209A1 (en) * 2009-07-29 2011-02-03 トヨタ自動車株式会社 Apparatus for handling magnet and method for handling magnet
JP2011125105A (en) * 2009-12-09 2011-06-23 Toyota Motor Corp Motor with cleft magnet and method of manufacturing the same
WO2012105006A1 (en) * 2011-02-02 2012-08-09 トヨタ自動車株式会社 Permanent magnet, motor rotor or stator, dynamo-electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3457535A1 (en) * 2017-09-15 2019-03-20 Siemens Gamesa Renewable Energy A/S Permanent magnet for a permanent magnet machine
CN109510329A (en) * 2017-09-15 2019-03-22 西门子歌美飒可再生能源公司 Permanent magnet for permanent magnet motor
US11004586B2 (en) 2017-09-15 2021-05-11 Siemens Gamesa Renewable Energy A/S Permanent magnet for a permanent magnet machine
CN109510329B (en) * 2017-09-15 2021-11-02 西门子歌美飒可再生能源公司 Permanent magnet for permanent magnet motor and method for manufacturing same
WO2024042731A1 (en) 2022-08-25 2024-02-29 株式会社 東芝 Interior magnet rotor and interior magnet rotating electric machine

Similar Documents

Publication Publication Date Title
JP5962632B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP4660406B2 (en) Rotating electric machine
JP5288698B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP6331506B2 (en) Rotor structure of rotating electrical machine
US9923436B2 (en) Rotor for a rotary electric machine
US20120200186A1 (en) Rotor for electric rotating machine
JP6083467B2 (en) Permanent magnet embedded rotary electric machine
JP2014075892A (en) Rotor of rotary electric machine
JP2013099222A (en) Rotor and rotary electric machine
WO2019215853A1 (en) Rotor structure of rotating electric machine
JP6315086B2 (en) Permanent magnet embedded rotary electric machine
WO2015045517A1 (en) Magnetic induction motor
JP2013042596A (en) Permanent magnet type rotary electric machine and manufacturing method therefor
RU2695078C1 (en) Electrical steel plate with printed jumper
JP2009261162A (en) Split stator core
WO2014030547A1 (en) Rotor structure and rotor manufacturing method for permanent magnet type rotating electrical machine
JP7166066B2 (en) Rotating electric machine
JP2005094845A (en) Rotor of permanent magnet type rotary electric machine
JP2014225935A (en) Permanent magnet type rotary electric machine
JP5672149B2 (en) Rotating electric machine rotor and rotating electric machine using the same
JP2011229329A (en) Permanent magnet motor
JP2009296841A (en) Rotary electric machine
JP2006136130A (en) Permanent-magnet type rotating electric machine, manufacturing method for permanent magnet for use therein, and manufacturing method therefor using the method for permanent magnet
JP6350964B2 (en) Rotor core, rotor using the rotor core, and method of manufacturing rotor core
JP2010130884A (en) Rotating electric machine and method for manufacturing rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP