JP2011229329A - Permanent magnet motor - Google Patents

Permanent magnet motor Download PDF

Info

Publication number
JP2011229329A
JP2011229329A JP2010098676A JP2010098676A JP2011229329A JP 2011229329 A JP2011229329 A JP 2011229329A JP 2010098676 A JP2010098676 A JP 2010098676A JP 2010098676 A JP2010098676 A JP 2010098676A JP 2011229329 A JP2011229329 A JP 2011229329A
Authority
JP
Japan
Prior art keywords
rotor
sintered magnet
rare earth
heavy rare
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010098676A
Other languages
Japanese (ja)
Inventor
Tetsuya Miura
徹也 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010098676A priority Critical patent/JP2011229329A/en
Publication of JP2011229329A publication Critical patent/JP2011229329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To minimize the use of a heavy rare earth element by optimizing the use of the heavy rare earth element, and thereby to suppress the cost.SOLUTION: A permanent magnet motor comprises: a rotor having a permanent magnet embedded in a rotor core 100; and a stator arranged to face the rotor via a predetermined gap. The permanent magnet is a plurality of sintered magnet segments 10a and 10b obtained by dividing a sintered magnet 10, which is made by segregating a heavy rare earth element at a crystal grain boundary near a surface of the magnet 10, along a face perpendicular to a magnetization direction. The plurality of sintered magnet segments 10a and 10b is embedded in the rotor core 100 in such a manner that a surface having a relatively high concentration of the heavy rare earth element is arranged on an outer peripheral surface side of the rotor.

Description

本発明は永久磁石式モータに関し、特に、ロータに埋め込まれる、又はロータ表面に装着される永久磁石の保持力の改良に関する。   The present invention relates to a permanent magnet type motor, and more particularly to improvement of the holding force of a permanent magnet embedded in a rotor or mounted on a rotor surface.

電気自動車やハイブリッド自動車において、バッテリや駆動モータのコストをいかに低下させるかは極めて大きな課題である。モータ製造価格を低下させるためのアプローチの一つに、ロータ内部に埋めこまれる、又はロータ表面に装着される永久磁石の改善がある。例えば、ロータ内部に永久磁石が埋め込まれている場合、永久磁石のステータ側の側面にはステータ側から入ってくる外部磁界が磁石の内部に比して相対的に高いため、磁力を保持するために相対的に高い保持力が要求される。一方、磁石の内部においては、外部磁界が相対的に弱いことからその側面付近ほどの保持力は要求されないが、モータのトルク性能に寄与する磁束密度は相対的に高いことが必要である。保持力と磁束密度は、互いに相反する傾向にあり、両方の物理量を同時に満足し得る材料は比較的高価なものとなる。   In an electric vehicle or a hybrid vehicle, how to reduce the cost of a battery or a drive motor is a very big problem. One approach to lowering motor manufacturing costs is to improve the permanent magnets embedded within the rotor or mounted on the rotor surface. For example, when a permanent magnet is embedded in the rotor, the external magnetic field entering from the stator side is relatively higher than the inside of the magnet on the stator side surface of the permanent magnet. Therefore, a relatively high holding force is required. On the other hand, since the external magnetic field is relatively weak inside the magnet, the holding force as close to the side surface is not required, but the magnetic flux density contributing to the torque performance of the motor needs to be relatively high. The coercive force and the magnetic flux density tend to conflict with each other, and a material that can satisfy both physical quantities at the same time is relatively expensive.

特許文献1には、磁束密度が相対的に小さく、保持力が相対的に高い材料から成形された外部磁石と、磁束密度が相対的に大きく、保持力が相対的に低い材料から成形された内部磁石とから複合磁石を成形し、複合磁石をロータに埋め込む技術が開示されている。外部磁石には、ネオジウム(Nd)にジスプロシウム(Dy)を重希土類元素が添加された材料を用い、内部磁石にはNdを用いることが開示されている。   In Patent Document 1, an external magnet formed from a material having a relatively low magnetic flux density and a relatively high holding force, and a material formed from a material having a relatively large magnetic flux density and a relatively low holding force. A technique for forming a composite magnet from an internal magnet and embedding the composite magnet in a rotor is disclosed. It is disclosed that a material obtained by adding dysprosium (Dy) and heavy rare earth element to neodymium (Nd) is used for the outer magnet, and Nd is used for the inner magnet.

また、特許文献2には、ロータに埋め込まれる、又はロータの表面に装着される永久磁石セグメントのそれぞれがさらに分割された永久磁石の集合体で構成されるとともに、各分割された個々の永久磁石の表面近傍における保持力がそれぞれ分割された永久磁石内部の保持力よりも大きくなっている永久磁石式回転機用回転子が開示されている。また、分割された永久磁石がNd系希土類焼結磁石であること、Nd系希土類焼結磁石の表面から内部に向かっての保持力傾斜が、磁石表面から内部に向かってDy又はTbを拡散させたことによって製造されることが開示されている。   Further, in Patent Document 2, each of the permanent magnet segments embedded in the rotor or attached to the surface of the rotor is composed of an assembly of permanent magnets, and each of the divided permanent magnets. There is disclosed a rotor for a permanent magnet type rotating machine in which the holding force in the vicinity of the surface of the permanent magnet is larger than the holding force inside the divided permanent magnets. Further, the divided permanent magnet is an Nd-based rare earth sintered magnet, and the holding force gradient from the surface to the inside of the Nd-based rare earth sintered magnet diffuses Dy or Tb from the magnet surface to the inside. It is disclosed that it is manufactured.

特開2006−261433号公報JP 2006-261433 A 特開2009−254092号公報JP 2009-254092 A

ところで、Nd系焼結磁石は、耐熱性や保持力が一定以上あって優れた磁気特性を有しているが、ステータからの反磁界により減磁しやすいのはロータの外周近傍のみであり、ロータの内周部近傍は保持力をそれほど高くする必要はないところ、磁石表面から内部に向かってDy又はTbを拡散させて製造される永久磁石の集合体で永久磁石セグメントを構成するとロータの内周部近傍においても重希土類が偏析してしまうため、重希土類の使用が最適化されておらず、結果としてコストが増大してしまう。   By the way, the Nd-based sintered magnet has excellent heat resistance and holding power over a certain level and has excellent magnetic characteristics, but it is only near the outer periphery of the rotor that is easily demagnetized by the demagnetizing field from the stator. In the vicinity of the inner peripheral portion of the rotor, it is not necessary to increase the holding force so much. However, if a permanent magnet segment is composed of an assembly of permanent magnets manufactured by diffusing Dy or Tb from the magnet surface toward the inside, Since the heavy rare earth is segregated also in the vicinity of the peripheral portion, the use of the heavy rare earth is not optimized, resulting in an increase in cost.

本発明の目的は、重希土類の使用を最適化することで重希土類の使用を最小限に留め、これによりコストを抑制できる永久磁石式モータを提供することにある。   An object of the present invention is to provide a permanent magnet motor that can minimize the use of heavy rare earths by optimizing the use of heavy rare earths, thereby reducing costs.

本発明の永久磁石式モータは、永久磁石がロータコアに埋め込まれ、又はロータコア表面に装着されたロータと、前記ロータに対して所定の空隙を介して配置されたステータとを備え、前記永久磁石は、重希土類元素を表面近傍の結晶粒界に偏析させた焼結磁石を磁化方向に垂直な面で分割して得られる複数の焼結磁石セグメントであり、前記複数の焼結磁石セグメントは、それぞれ前記重希土類元素の濃度が相対的に高い面が前記ロータの外周面側に位置し、前記重希土類元素の濃度が相対的に低い面が前記ロータの内周面側に位置するように前記ロータコアに埋め込まれ、又はロータコア表面に装着されることを特徴とする。   A permanent magnet motor according to the present invention includes a rotor in which a permanent magnet is embedded in a rotor core or mounted on a rotor core surface, and a stator that is disposed with respect to the rotor via a predetermined gap. , A plurality of sintered magnet segments obtained by dividing a sintered magnet in which heavy rare earth elements are segregated at crystal grain boundaries near the surface on a plane perpendicular to the magnetization direction, and the plurality of sintered magnet segments are respectively The rotor core is configured such that a surface having a relatively high concentration of the heavy rare earth element is positioned on the outer peripheral surface side of the rotor and a surface having a relatively low concentration of the heavy rare earth element is positioned on the inner peripheral surface side of the rotor. Embedded in or mounted on the surface of the rotor core.

本発明の1つの実施形態では、前記永久磁石は、重希土類元素を表面近傍の結晶粒界に偏析させた焼結磁石を磁化方向に垂直な面で2等分して得られる複数の焼結磁石セグメントである。   In one embodiment of the present invention, the permanent magnet includes a plurality of sintered magnets obtained by dividing a sintered magnet obtained by segregating a heavy rare earth element into a grain boundary near the surface into two equal parts on a plane perpendicular to the magnetization direction. It is a magnet segment.

また、本発明の他の実施形態では、前記永久磁石は、重希土類元素を表面近傍の結晶粒界に偏析させた焼結磁石を磁化方向に垂直な面で4等分して得られる複数の焼結磁石セグメントである。   In another embodiment of the present invention, the permanent magnet includes a plurality of sintered magnets obtained by segregating a heavy rare earth element into a crystal grain boundary near the surface and dividing it into four equal parts in a plane perpendicular to the magnetization direction. It is a sintered magnet segment.

本発明によれば、重希土類の使用を最適化することで重希土類の使用を最小限に留め、これによりコストを抑制できる。   According to the present invention, the use of heavy rare earths can be minimized by optimizing the use of heavy rare earths, thereby reducing costs.

実施形態における永久磁石埋め込み工程説明図である。It is explanatory drawing of the permanent magnet embedding process in embodiment. 他の実施形態における永久磁石埋め込み工程説明図である。It is explanatory drawing of the permanent magnet embedding process in other embodiment.

以下、図面に基づき本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

1.モータの基本構成
まず、本実施形態におけるモータの基本構成について説明する。本実施形態のモータはIPM(Interior Permanent Magnet:内部磁石埋込型)モータであり、ロータ(回転子)とステータ(固定子)を備え、ロータは電磁鋼板を積層したロータコアに複数の永久磁石を埋め込まれて構成される。ロータの極数は任意である。ステータは、電磁鋼板を積層した構造で、各ティースにはコイルが巻回されている。ロータに埋め込まれる永久磁石は、Nd系希土類焼結磁石であり、母金属を粗粉砕、微粉砕、成形、焼結して製造され、磁石表面にDyやTbの酸化物粉末、DyやTbのフッ化物の粉末、DyやTbを含む合金粉末を塗布し、その後、磁石を焼結温度よりも低い温度で熱処理することにより粒界部にのみDyやTbを拡散させたものである。Dy等の重希土類が偏析(拡散浸漬)された焼結磁石は、ロータ内に形成された孔に挿入されて、IPMモータのロータが形成される。
1. First, the basic configuration of the motor in this embodiment will be described. The motor of this embodiment is an IPM (Internal Permanent Magnet) motor, and includes a rotor (rotor) and a stator (stator), and the rotor has a plurality of permanent magnets on a rotor core in which electromagnetic steel plates are laminated. Embedded and configured. The number of poles of the rotor is arbitrary. The stator has a structure in which electromagnetic steel plates are laminated, and a coil is wound around each tooth. The permanent magnet embedded in the rotor is an Nd-based rare earth sintered magnet, which is manufactured by roughly pulverizing, finely pulverizing, molding, and sintering a base metal, and a Dy or Tb oxide powder or Dy or Tb oxide powder on the magnet surface. An alloy powder containing fluoride powder and Dy and Tb is applied, and then the magnet is heat-treated at a temperature lower than the sintering temperature to diffuse Dy and Tb only in the grain boundary part. The sintered magnet on which heavy rare earth such as Dy is segregated (diffusion soaked) is inserted into a hole formed in the rotor to form the rotor of the IPM motor.

Dy等の重希土類が偏析(拡散浸漬)された焼結磁石では、特開2009−254092号公報に開示されているように、残留磁束密度の低減をほとんど伴わずに保持力が効率的に増大され、焼結磁石の保持力に分布が生じる。すなわち、磁化方向に平行な面において磁石表面近傍の保持力が磁石内部の保持力よりも相対的に高くなる。   With a sintered magnet in which heavy rare earth such as Dy is segregated (diffusion soaked), as disclosed in Japanese Patent Application Laid-Open No. 2009-254092, the holding power is efficiently increased with little reduction in residual magnetic flux density. As a result, a distribution occurs in the holding force of the sintered magnet. That is, the holding force in the vicinity of the magnet surface is relatively higher than the holding force inside the magnet in a plane parallel to the magnetization direction.

本実施形態では、Dy等の重希土類が偏析(拡散浸漬)された焼結磁石におけるこのような保持力分布を利用して、IPMモータのロータを形成する。   In this embodiment, the rotor of the IPM motor is formed by using such a holding force distribution in a sintered magnet in which heavy rare earth such as Dy is segregated (diffusion dipped).

2.ロータの製造方法
図1に、本実施形態におけるIPMモータのロータ製造方法を模式的に示す。図1(a)は、直方体形状のNd系重希土類焼結磁石10を磁化方向に平行な面で切断した断面図である。Dy等の重希土類が偏析(拡散浸漬)された焼結磁石、例えばNdFeB磁石は、磁化方向に平行な面において磁石表面近傍の重希土類元素の濃度が磁石内部の重希土類元素の濃度よりも相対的に高くなる。ここで、断面において、重希土類の濃度毎にa,b,c,dの4つのエリアに分割するものとする。もちろん、このような分割は便宜的なものにすぎず、実際の濃度は連続的に変化するものである。重希土類の濃度は、エリアa>エリアb>エリアc>エリアdである。
2. Method for Manufacturing Rotor FIG. 1 schematically shows a method for manufacturing a rotor for an IPM motor in this embodiment. FIG. 1A is a cross-sectional view of a rectangular parallelepiped Nd-based heavy rare earth sintered magnet 10 cut along a plane parallel to the magnetization direction. In sintered magnets in which heavy rare earth such as Dy is segregated (diffusion soaked), for example, NdFeB magnets, the concentration of heavy rare earth elements in the vicinity of the magnet surface in a plane parallel to the magnetization direction is more relative to the concentration of heavy rare earth elements in the magnet. Become expensive. Here, the cross section is divided into four areas a, b, c, and d for each heavy rare earth concentration. Of course, such division is merely for convenience, and the actual concentration changes continuously. The concentration of heavy rare earth is area a> area b> area c> area d.

このような焼結磁石10を単にロータに形成された孔に挿入して埋め込む構成とした場合、ロータ内周側においても重希土類の濃度が高い領域が存在することとなる。ロータ内周側では反磁界が相対的に弱いので大きな保持力は必要ではないところ、このようにロータ内周側において重希土類の濃度を高くするのは無駄であり、重希土類の有効活用が図られずコスト増加を招く。   When such a sintered magnet 10 is simply inserted into a hole formed in the rotor and embedded, a region with a high concentration of heavy rare earth exists also on the inner peripheral side of the rotor. Since the demagnetizing field is relatively weak on the inner circumference side of the rotor, a large holding force is not required.In this way, it is useless to increase the concentration of heavy rare earth on the inner circumference side of the rotor. This increases the cost.

そこで、図1(b)に示すように、直方体形状の焼結磁石10を、磁化方向に垂直な平面で2等分して焼結磁石セグメント10aと焼結磁石セグメント10bに分割する。図において、磁化方向が紙面の上下方向であるとすると、紙面に対して垂直方向の面で焼結磁石10を2等分する。具体的には、焼結磁石10を磁化方向に垂直な面で切断し、砥石、切削刃、ワイヤーソー等を用いて切削加工する。2等分して得られるそれぞれの焼結磁石セグメント10a,10bは、共に重希土類の濃度が互いに異なるエリアa,b,c,dを備える。例えば、焼結磁石セグメント10aは、表面にエリアaが存在し、裏面にいくに従ってエリアb、エリアc、エリアdの各エリアが重層的に存在する。一方、焼結磁石セグメント10bは、表面にエリアdが存在し、裏面にいくに従ってエリアc、エリアb、エリアaの各エリアが重層的に存在する。それぞれの焼結磁石セグメント10a,10bのサイズは、例えば長さ20mm、幅5mmである。そして、このようにして2等分して得られた焼結磁石セグメント10a,10bを、それぞれロータコアに形成された孔に挿入する。   Therefore, as shown in FIG. 1B, the rectangular parallelepiped sintered magnet 10 is divided into two equal parts by a plane perpendicular to the magnetization direction and divided into a sintered magnet segment 10a and a sintered magnet segment 10b. In the figure, assuming that the magnetization direction is the vertical direction of the paper surface, the sintered magnet 10 is divided into two equal parts on a surface perpendicular to the paper surface. Specifically, the sintered magnet 10 is cut along a plane perpendicular to the magnetization direction and cut using a grindstone, a cutting blade, a wire saw, or the like. Each of the sintered magnet segments 10a and 10b obtained by dividing into two halves includes areas a, b, c and d having different heavy rare earth concentrations. For example, the sintered magnet segment 10a has an area a on the front surface, and an area b, an area c, and an area d in a multilayered manner as it goes to the back surface. On the other hand, the sintered magnet segment 10b has an area d on the front surface, and the areas c, area b, and area a exist in multiple layers as it goes to the back surface. The size of each sintered magnet segment 10a, 10b is, for example, 20 mm long and 5 mm wide. Then, the sintered magnet segments 10a and 10b obtained by dividing into two in this way are inserted into holes formed in the rotor core.

図1(c)に、ロータの1極あたりの構成を示す。図1(c)に示すように、ロータコア100に形成された2個の孔102にそれぞれ焼結磁石セグメント10a,10bを挿入する。この際、エリアaがロータコア100の外周側、エリアdがロータコア100の内周側に位置するように挿入する。すなわち、焼結磁石セグメント10aを孔102に挿入する場合には、焼結磁石セグメント10aにおけるエリアa側の面がロータコア100の外周側に、エリアd側の面がロータコア100の内周側に位置するように、焼結磁石セグメント10aの向きを調整して孔102に挿入する。焼結磁石セグメント10bも同様であり、焼結磁石セグメント10bにおけるエリアa側の面がロータコア100の外周側に、エリアd側の面がロータコア100の内周側に位置するように、焼結磁石セグメント10bの向きを調整して孔102に挿入する。   FIG. 1 (c) shows a configuration per pole of the rotor. As shown in FIG. 1C, the sintered magnet segments 10a and 10b are inserted into the two holes 102 formed in the rotor core 100, respectively. At this time, the insertion is performed so that the area a is positioned on the outer peripheral side of the rotor core 100 and the area d is positioned on the inner peripheral side of the rotor core 100. That is, when the sintered magnet segment 10 a is inserted into the hole 102, the area a side surface of the sintered magnet segment 10 a is positioned on the outer peripheral side of the rotor core 100, and the area d side surface is positioned on the inner peripheral side of the rotor core 100. Thus, the direction of the sintered magnet segment 10 a is adjusted and inserted into the hole 102. The same applies to the sintered magnet segment 10b, and the sintered magnet segment 10b has a surface on the area a side positioned on the outer peripheral side of the rotor core 100 and a surface on the area d side positioned on the inner peripheral side of the rotor core 100. The direction of the segment 10 b is adjusted and inserted into the hole 102.

このように焼結磁石セグメント10a,10bをそれぞれロータコア100の孔102に挿入することで、重希土類の濃度が相対的に高いエリアaがロータ外周近傍に位置し、重希土類の濃度が相対的に低いエリアdがロータ内周近傍に位置するようになる。従って、反磁界が強いロータ外周近傍において重希土類の濃度を相対的に高くして保持力を大きくする一方、反磁界が弱いロータ内周近傍において重希土類の濃度を相対的に低くして重希土類の無駄を排除することができる。   By inserting the sintered magnet segments 10a and 10b into the holes 102 of the rotor core 100 in this way, the area a having a relatively high heavy rare earth concentration is positioned near the rotor outer periphery, and the heavy rare earth concentration is relatively high. The low area d is located in the vicinity of the inner periphery of the rotor. Accordingly, the concentration of heavy rare earth is relatively increased near the rotor outer periphery where the demagnetizing field is strong to increase the holding force, while the concentration of heavy rare earth is relatively decreased near the inner periphery of the rotor where the demagnetizing field is weak. Can be wasted.

3.ロータの他の製造方法
図2に、他の実施形態におけるIPMモータのロータ製造方法を模式的に示す。図2(a)は、直方体形状の焼結磁石10を磁化方向に平行な面で切断した断面図であり、図1(a)と同様である。重希土類が偏析(拡散浸漬)された焼結磁石は、磁化方向に平行な面において磁石表面近傍の重希土類元素の濃度が磁石内部の重希土類元素の濃度よりも相対的に高くなる。断面において、重希土類の濃度毎にa,b,c,dの4つのエリアに分割するものとする。重希土類の濃度は、エリアa>エリアb>エリアc>エリアdである。
3. Other Method for Manufacturing Rotor FIG. 2 schematically shows a method for manufacturing a rotor for an IPM motor according to another embodiment. 2A is a cross-sectional view of the rectangular parallelepiped sintered magnet 10 cut along a plane parallel to the magnetization direction, and is the same as FIG. In a sintered magnet in which heavy rare earth is segregated (diffusion soaked), the concentration of heavy rare earth elements in the vicinity of the magnet surface is relatively higher than the concentration of heavy rare earth elements inside the magnet in a plane parallel to the magnetization direction. In the cross section, each heavy rare earth concentration is divided into four areas a, b, c, and d. The concentration of heavy rare earth is area a> area b> area c> area d.

次に、図2(b)に示すように、直方体形状の焼結磁石10を、磁化方向に垂直な平面で4等分して焼結磁石セグメント10aと焼結磁石セグメント10bと焼結磁石セグメント10cと焼結磁石セグメント10dに分割する。焼結磁石セグメント10a,10dは共にエリアa,b,cを重層的に備え、焼結磁石セグメント10b,10cは共にエリアa,b,c,dを重層的に備える。   Next, as shown in FIG. 2B, the rectangular parallelepiped sintered magnet 10 is divided into four equal parts by a plane perpendicular to the magnetization direction, and the sintered magnet segment 10a, the sintered magnet segment 10b, and the sintered magnet segment are divided. 10c and sintered magnet segment 10d. The sintered magnet segments 10a and 10d are both provided with areas a, b and c in a multilayered manner, and the sintered magnet segments 10b and 10c are both provided with areas a, b, c and d in a multilayered manner.

図2(c)に、ロータ1極あたりの構成を示す。図2(c)に示すように、ロータコア100に2層にわたって形成された合計4個の孔102にそれぞれ焼結磁石セグメント10a,10b,10c,10dを挿入する。ロータ外周側の孔102には焼結磁石セグメント10a,10dを挿入し、ロータ内周側の孔102には焼結磁石セグメント10b,10cを挿入する。この際、エリアaがロータコア100の外周側、エリアcあるいはエリアdがロータコア100の内周側に位置するように挿入する。すなわち、焼結磁石セグメント10aを外周側の孔102に挿入する場合には、焼結磁石セグメント10aにおけるエリアa側の面がロータコア100の外周側に、エリアc側の面がロータコア100の内周側に位置するように、焼結磁石セグメント10aの向きを調整して孔102に挿入する。焼結磁石セグメント10dも同様であり、焼結磁石セグメント10dにおけるエリアa側の面がロータコア100の外周側に、エリアc側の面がロータコア100の内周側に位置するように、焼結磁石セグメント10bの向きを調整して孔102に挿入する。また、焼結磁石セグメント10bを内周側の孔102に挿入する場合には、焼結磁石セグメント10bにおけるエリアa側の面がロータコア100の外周側に、エリアd側の面がロータコア100の内周側に位置するように、焼結磁石セグメント10bの向きを調整して孔102に挿入する。焼結磁石セグメント10cも同様であり、焼結磁石セグメント10cにおけるエリアa側の面がロータコア100の外周側に、エリアd側の面がロータコア100の内周側に位置するように、焼結磁石セグメント10cの向きを調整して孔102に挿入する。   FIG. 2C shows a configuration per rotor pole. As shown in FIG. 2C, the sintered magnet segments 10a, 10b, 10c, and 10d are inserted into a total of four holes 102 formed in two layers in the rotor core 100, respectively. The sintered magnet segments 10a and 10d are inserted into the holes 102 on the outer peripheral side of the rotor, and the sintered magnet segments 10b and 10c are inserted into the holes 102 on the inner peripheral side of the rotor. At this time, the insertion is performed so that the area a is positioned on the outer peripheral side of the rotor core 100 and the area c or the area d is positioned on the inner peripheral side of the rotor core 100. That is, when the sintered magnet segment 10a is inserted into the hole 102 on the outer peripheral side, the surface on the area a side in the sintered magnet segment 10a is on the outer peripheral side of the rotor core 100, and the surface on the area c side is the inner periphery of the rotor core 100. The direction of the sintered magnet segment 10 a is adjusted so as to be positioned on the side, and is inserted into the hole 102. The same applies to the sintered magnet segment 10d, and the sintered magnet segment 10d is positioned so that the area a side surface is positioned on the outer peripheral side of the rotor core 100 and the area c side surface is positioned on the inner peripheral side of the rotor core 100. The direction of the segment 10 b is adjusted and inserted into the hole 102. Further, when the sintered magnet segment 10b is inserted into the hole 102 on the inner peripheral side, the surface on the area a side in the sintered magnet segment 10b is on the outer peripheral side of the rotor core 100, and the surface on the area d side is on the inner side of the rotor core 100. The direction of the sintered magnet segment 10b is adjusted so as to be positioned on the peripheral side, and is inserted into the hole 102. The same applies to the sintered magnet segment 10c, and the sintered magnet segment 10c has a surface on the area a side positioned on the outer peripheral side of the rotor core 100 and a surface on the area d side positioned on the inner peripheral side of the rotor core 100. The direction of the segment 10 c is adjusted and inserted into the hole 102.

このように焼結磁石セグメント10a,10b,10c,10dをそれぞれロータコア100の孔102に挿入することで、重希土類の濃度が相対的に高いエリアaがロータ外周近傍に位置し、重希土類の濃度が相対的に低いエリアdがロータ内周近傍に位置するようになる。従って、反磁界が強いロータ外周近傍において重希土類の濃度を相対的に高くして保持力を大きくする一方、反磁界が弱いロータ内周近傍において重希土類の濃度を相対的に低くして重希土類の無駄を排除することができる。   Thus, by inserting the sintered magnet segments 10a, 10b, 10c, and 10d into the holes 102 of the rotor core 100, the area a having a relatively high heavy rare earth concentration is located in the vicinity of the outer periphery of the rotor. An area d having a relatively low value is positioned in the vicinity of the inner periphery of the rotor. Accordingly, the concentration of heavy rare earth is relatively increased near the rotor outer periphery where the demagnetizing field is strong to increase the holding force, while the concentration of heavy rare earth is relatively decreased near the inner periphery of the rotor where the demagnetizing field is weak. Can be wasted.

以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、種々の変更が可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, A various change is possible.

例えば、本実施形態では、ロータ内部に磁石を埋め込むIPMモータについて例示してが、ロータの表面に永久磁石を装着するモータにおいても同様に適用することができる。すなわち、図1(b)のように2等分して得られた焼結磁石セグメント10a,10bをそれぞれロータの表面に装着する際に、エリアaがロータ外周近傍に位置し、エリアdがロータ内周側に位置するように向きを調整して装着する。   For example, in this embodiment, an IPM motor in which a magnet is embedded in the rotor is illustrated, but the present invention can be similarly applied to a motor in which a permanent magnet is mounted on the surface of the rotor. That is, when the sintered magnet segments 10a and 10b obtained by dividing into two parts as shown in FIG. 1B are mounted on the surface of the rotor, the area a is located in the vicinity of the rotor outer periphery and the area d is the rotor. Adjust the orientation so that it is located on the inner circumference side.

また、本実施形態では、重希土類を表面近傍の粒界に偏析(拡散浸漬)させた焼結磁石において、重希土類の濃度が相対的に高い面をロータ外周側に位置するように配置するものであり、重希土類の濃度が相対的に高い面における重希土類の濃度値は、ステータの反磁界で減磁しない程度の大きさの保持力が得られる程度でよく、そして、重希土類の濃度が相対的に低い面における濃度、すなわち分割前の焼結磁石の内部における濃度は、反磁界が弱いロータ内周側に位置するので従来よりも低い濃度でよく、この意味において重希土類元素の使用量を削減することが可能である。   Further, in this embodiment, in a sintered magnet in which heavy rare earth is segregated (diffusion soaked) at grain boundaries near the surface, a surface having a relatively high heavy rare earth concentration is positioned on the outer periphery side of the rotor. The concentration value of the heavy rare earth on the surface where the concentration of heavy rare earth is relatively high may be such that a holding force large enough not to demagnetize by the demagnetizing field of the stator is obtained, and the concentration of heavy rare earth is The concentration on the relatively low surface, that is, the concentration inside the sintered magnet before the division, is located on the inner circumference side of the rotor where the demagnetizing field is weak, so it may be lower than the conventional concentration. In this sense, the amount of heavy rare earth elements used Can be reduced.

また、本実施形態では、図1において直方体形状の焼結磁石10を磁化方向に垂直な面で2等分しているが、「2等分」とは必ずしも厳密に2等分を意味するものではなく、略2等分を意味するものであり、焼結磁石セグメント10aと焼結磁石セグメント10bとが互いに実質的に同一視できる程度に分割すればよい。   Further, in the present embodiment, the rectangular parallelepiped sintered magnet 10 is divided into two equal parts in a plane perpendicular to the magnetization direction in FIG. 1, but “two equal parts” does not necessarily mean strictly equal to two equal parts. Rather, it means approximately bisected, and the sintered magnet segment 10a and the sintered magnet segment 10b may be divided so that they can be substantially identical to each other.

また、図2ではロータの2層構造に対応して直方体形状の焼結磁石10を磁化方向に垂直な面で4等分しているが、ロータが3層構造の場合には磁化方向に垂直な面で6等分すればよく、以下同様にn層の場合には2n等分すればよい。   In FIG. 2, the rectangular parallelepiped sintered magnet 10 is divided into four equal parts in a plane perpendicular to the magnetization direction corresponding to the two-layer structure of the rotor. However, when the rotor has a three-layer structure, it is perpendicular to the magnetization direction. In this case, it may be divided into 6 equal parts. Similarly, in the case of n layers, it may be divided into 2n equal parts.

また、本実施形態では、直方体形状の焼結磁石10を等分割して得られる焼結磁石を焼結磁石セグメントと称しているが、焼結磁石セグメントの形状は必ずしも直方体形状である必要はなく、ロータの曲率に応じた曲面を有していてもよい。   In the present embodiment, the sintered magnet obtained by equally dividing the rectangular parallelepiped sintered magnet 10 is referred to as a sintered magnet segment. However, the shape of the sintered magnet segment is not necessarily a rectangular parallelepiped shape. The curved surface may correspond to the curvature of the rotor.

10 焼結磁石 10a〜10d 焼結磁石セグメント、100 ロータコア、102 孔。   10 Sintered magnets 10a to 10d Sintered magnet segment, 100 rotor core, 102 holes.

Claims (3)

永久磁石がロータコアに埋め込まれ、又はロータコア表面に装着されたロータと、
前記ロータに対して所定の空隙を介して配置されたステータと、
を備え、
前記永久磁石は、重希土類元素を表面近傍の結晶粒界に偏析させた焼結磁石を磁化方向に垂直な面で分割して得られる複数の焼結磁石セグメントであり、
前記複数の焼結磁石セグメントは、それぞれ前記重希土類元素の濃度が相対的に高い面が前記ロータの外周面側に位置し、前記重希土類元素の濃度が相対的に低い面が前記ロータの内周面側に位置するように前記ロータコアに埋め込まれ、又はロータコア表面に装着される
ことを特徴とする永久磁石式モータ。
A rotor with a permanent magnet embedded in the rotor core or mounted on the surface of the rotor core;
A stator disposed via a predetermined gap with respect to the rotor;
With
The permanent magnet is a plurality of sintered magnet segments obtained by dividing a sintered magnet obtained by segregating heavy rare earth elements into crystal grain boundaries in the vicinity of the surface along a plane perpendicular to the magnetization direction,
Each of the plurality of sintered magnet segments has a surface having a relatively high concentration of the heavy rare earth element located on the outer peripheral surface side of the rotor, and a surface having a relatively low concentration of the heavy rare earth element is an inner surface of the rotor. The permanent magnet motor is embedded in the rotor core or mounted on the surface of the rotor core so as to be positioned on the circumferential surface side.
請求項1記載のモータにおいて、
前記永久磁石は、重希土類元素を表面近傍の結晶粒界に偏析させた焼結磁石を磁化方向に垂直な面で2等分して得られる複数の焼結磁石セグメントであることを特徴とする永久磁石式モータ。
The motor according to claim 1, wherein
The permanent magnet is a plurality of sintered magnet segments obtained by dividing a sintered magnet obtained by segregating heavy rare earth elements into a grain boundary near the surface into two equal parts on a plane perpendicular to the magnetization direction. Permanent magnet motor.
請求項1記載のモータにおいて、
前記永久磁石は、重希土類元素を表面近傍の結晶粒界に偏析させた焼結磁石を磁化方向に垂直な面で4等分して得られる複数の焼結磁石セグメントであることを特徴とする永久磁石式モータ。
The motor according to claim 1, wherein
The permanent magnet is a plurality of sintered magnet segments obtained by dividing a sintered magnet obtained by segregating heavy rare earth elements into crystal grain boundaries near the surface into four equal parts on a plane perpendicular to the magnetization direction. Permanent magnet motor.
JP2010098676A 2010-04-22 2010-04-22 Permanent magnet motor Pending JP2011229329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098676A JP2011229329A (en) 2010-04-22 2010-04-22 Permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098676A JP2011229329A (en) 2010-04-22 2010-04-22 Permanent magnet motor

Publications (1)

Publication Number Publication Date
JP2011229329A true JP2011229329A (en) 2011-11-10

Family

ID=45044062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098676A Pending JP2011229329A (en) 2010-04-22 2010-04-22 Permanent magnet motor

Country Status (1)

Country Link
JP (1) JP2011229329A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140007980A1 (en) * 2012-07-09 2014-01-09 Toyota Jidosha Kabushiki Kaisha Permanent magnet and manufacturing method therefor
WO2014038607A1 (en) * 2012-09-06 2014-03-13 三菱電機株式会社 Production method for permanent magnet, production device for permanent magnet, permanent magnet, rotating electrical device, and permanent magnet for rotating electrical device
JP2014147151A (en) * 2013-01-25 2014-08-14 Aichi Elec Co Permanent magnet motor
KR20150027136A (en) * 2012-06-02 2015-03-11 폭스바겐 악티엔 게젤샤프트 Rotor for an electric motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135529A (en) * 2008-12-04 2010-06-17 Shin-Etsu Chemical Co Ltd Nd BASED SINTERED MAGNET, AND METHOD OF MANUFACTURING THE SAME

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135529A (en) * 2008-12-04 2010-06-17 Shin-Etsu Chemical Co Ltd Nd BASED SINTERED MAGNET, AND METHOD OF MANUFACTURING THE SAME

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150027136A (en) * 2012-06-02 2015-03-11 폭스바겐 악티엔 게젤샤프트 Rotor for an electric motor
KR101686314B1 (en) * 2012-06-02 2016-12-13 폭스바겐 악티엔 게젤샤프트 Rotor for an electric motor
US20140007980A1 (en) * 2012-07-09 2014-01-09 Toyota Jidosha Kabushiki Kaisha Permanent magnet and manufacturing method therefor
US9928956B2 (en) * 2012-07-09 2018-03-27 Toyota Jidosha Kabushiki Kaisha Permanent magnet and manufacturing method therefor
WO2014038607A1 (en) * 2012-09-06 2014-03-13 三菱電機株式会社 Production method for permanent magnet, production device for permanent magnet, permanent magnet, rotating electrical device, and permanent magnet for rotating electrical device
US10020098B2 (en) 2012-09-06 2018-07-10 Mitsubishi Electric Corporation Production method for permanent magnet, and production device for permanent magnet
JP2014147151A (en) * 2013-01-25 2014-08-14 Aichi Elec Co Permanent magnet motor

Similar Documents

Publication Publication Date Title
US8987965B2 (en) Rotor and permanent magnet rotating machine
CN103117609B (en) Rotor and permanent magnet type rotator
US9608485B2 (en) Rotor for rotating electrical machine, rotating electric machine, and method for producing rotor for rotating electrical machine with magnet having surfaces tilted with respect to magnet insertion hole
KR101575353B1 (en) Rotor having embedded permanent magnet
JP5382012B2 (en) Rotor for rotating electrical machine and method for manufacturing the same
JP2010119190A (en) Rotor for magnet-embedded motors and magnet-embedded motor
TW201349713A (en) Composite torque rotating electric machine
JP2016174461A (en) Rotor
JP2009268204A (en) Rotor for ipm motor, and ipm motor
JP2013126281A (en) Method for manufacturing field element, and end plate for field element
JP2010213516A (en) Permanent magnet type rotating machine and method for manufacturing permanent magnet for rotor
JP2015119617A (en) Embedded type permanent magnet synchronous motor
KR101984411B1 (en) Rotary electric-machine rotor
JP2011229329A (en) Permanent magnet motor
JP2009232525A (en) Rotor for ipm motor and ipm motor
JP6481642B2 (en) Manufacturing method of rotor
JP5989878B2 (en) Rotor and spoke type IPM permanent magnet rotating machine
JP6457166B2 (en) Permanent magnet motor
JP6239825B2 (en) Permanent magnet and method for manufacturing permanent magnet
CN107046352B (en) Internal permanent magnet motor
JP2018098936A (en) Magnet unit
KR101367222B1 (en) Permanent magnet syschronous motor
JP5197551B2 (en) Permanent magnet rotating electric machine
JP2019083679A (en) Permanent magnet and motor
JP7243117B2 (en) permanent magnets and motors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107