WO2014030259A1 - Voltage control apparatus - Google Patents

Voltage control apparatus Download PDF

Info

Publication number
WO2014030259A1
WO2014030259A1 PCT/JP2012/071488 JP2012071488W WO2014030259A1 WO 2014030259 A1 WO2014030259 A1 WO 2014030259A1 JP 2012071488 W JP2012071488 W JP 2012071488W WO 2014030259 A1 WO2014030259 A1 WO 2014030259A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase
conduction
zero
interphase
Prior art date
Application number
PCT/JP2012/071488
Other languages
French (fr)
Japanese (ja)
Inventor
範久 小林
Original Assignee
Beetech株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beetech株式会社 filed Critical Beetech株式会社
Priority to PCT/JP2012/071488 priority Critical patent/WO2014030259A1/en
Publication of WO2014030259A1 publication Critical patent/WO2014030259A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a voltage control apparatus that performs multi-phase AC voltage control.
  • Patent Document 1 Although there are various methods for controlling the voltage of the polyphase alternating current, one described in Patent Document 1 is known as an example of a conventional voltage control device.
  • Patent Document 1 when a zero-cross point of voltage is detected, an AC switch is turned on in synchronization with the zero-cross point to supply power to the load, and the output of the load current effective value integrating circuit is increased.
  • a cycle control device for the output power of an AC generator that turns off an AC switch when it is equal to or greater than a first threshold and then resumes power supply when an integral value is equal to or less than a second threshold.
  • the output voltage of the generator is detected, and if the output voltage is equal to or lower than a predetermined reference voltage, the output of the conduction command is stopped and the AC switch is turned off. It is described that it is good.
  • an AC switch that uses a pair of thyristors connected in reverse parallel is an adjustment circuit that simply conducts or cuts off the supply of power.
  • the voltage must be adjusted within a range in which the output voltage is reduced, and the output voltage is not further increased and supplied to the load. Therefore, there is a demand for a voltage control device that can boost the input multiphase AC voltage and stably supply a high voltage.
  • an object of the present invention is to provide a voltage control device capable of boosting an input multiphase AC voltage and stably supplying a high voltage.
  • the voltage control device includes a zero-cross detection unit that measures a zero-cross point of a multiphase AC voltage, and one phase where the zero-cross point is detected by the zero-cross point as a reference phase, and has the same polarity as the one phase.
  • the voltage adjusting means instructs the interphase conduction means to conduct the phase between the reference phase and the conducted phase, thereby outputting the total voltage of the reference phase and the conducted phase.
  • the voltage adjustment means starts conduction between phases by the interphase conduction means from the zero-cross point of the reference phase within a period from the zero-cross point of the reference phase until the phase to be conducted has the same polarity as the reference phase.
  • the conduction between the phases by the interphase conduction means can be started from a position where the phase angle is shifted from the zero cross point of the reference phase. By doing so, when the voltage to the load is insufficient, the phases can be conducted and boosted to a desired voltage.
  • a voltage measuring unit that measures a voltage obtained by rectifying the multi-phase alternating current is provided, and the voltage adjusting unit determines a period during which the phase conduction is performed based on the measured voltage from the voltage measuring unit and the set instruction voltage.
  • control proportional control (Proportional Control), integral control (Integral Control), differential control (Derivative Control)
  • a stable high voltage can be supplied to the load.
  • the interphase conduction means conducts the phase between the MOS transistors, and the voltage adjustment means indicates the interphase conduction to the gate of the MOS transistor as a switch signal. Therefore, the size can be reduced and the cost can be reduced.
  • the total voltage of the reference phase and the conductive phase can be output within a period in which the conductive phase has the same polarity as that of the reference phase. Therefore, the input multiphase AC voltage is boosted. Thus, a high voltage can be stably supplied.
  • FIG. 1 It is a figure which shows the structure of the voltage control apparatus which concerns on embodiment of this invention. It is a figure which shows an example of the interphase conduction
  • FIG. 2C is a diagram showing a switch circuit for conducting between RTs. It is a flowchart for demonstrating the voltage control method of the voltage adjustment means of the voltage control apparatus shown in FIG. (A) And (B) is a wave form chart for explaining adjustment of duty ratio of conduction between phases.
  • FIG. 5B is a waveform diagram showing a case where the phase angle is shifted beyond the zero-cross point of the phase to be conducted in the interphase conduction period. It is a figure which shows the voltage adjustment means to perform PID control.
  • the voltage control apparatus 10 includes a zero-cross detection unit 20, a voltage measurement unit 30, a rotation measurement unit 40, a voltage adjustment unit 50, an interphase conduction unit 60, and an operation panel 70.
  • the zero-cross detection means 20 detects a zero-cross point indicating when the T-phase alternating current passes through 0 V among the three phases, and notifies the voltage adjustment means 50 of the zero-cross point.
  • the zero-cross point of the T phase is detected.
  • the zero-cross points of all three phases may be detected in the R phase or the S phase.
  • the zero cross detection means 20 can detect the zero cross point by a program operated by a computer by converting the AC voltage into digital data by AD conversion.
  • the voltage measuring means 30 measures a DC voltage obtained by rectifying the three-phase AC by the rectifier RC.
  • This voltage measuring means 30 can use an AD converter, and is output to the voltage adjusting means 50 as digital data.
  • the rotation measuring means 40 has a function of notifying the voltage adjusting means 50 of a timing signal for measuring the rotation angle and speed of the rotor of the generator G.
  • a rotary encoder is used as the rotation measuring means 40, and a counter value is output as a timing signal.
  • the voltage adjustment means 50 conducts PID control based on the measured voltage from the voltage measurement means 30 and the set voltage input from the operation panel 70, thereby conducting a period in which the phases are conducted between the phases by the phase-to-phase conduction means 60 (below). This is referred to as the interphase conduction period.) And the voltage is adjusted.
  • This conduction control is made to function by operating a voltage control program on a computer.
  • the voltage adjusting unit 50 and the zero cross detecting unit 20 are separate blocks. However, whether or not the digital data from the AD converter of the zero cross detecting unit 20 indicates 0V is determined by the voltage.
  • the detection function portion of the zero cross detection means 20 and the voltage adjustment means 50 may be integrally configured so that the zero cross point is detected by making a determination in the voltage control program operated by the adjustment means 50.
  • the interphase conduction means 60 has a function of individually conducting each of the R phase and the S phase, the S phase and the T phase, and the T phase and the R phase according to an instruction from the voltage adjustment means 50.
  • the interphase conduction means 60 may be, for example, the circuit shown in FIG.
  • FIGS. 2A to 2C The switch means 61 shown in FIGS. 2A to 2C is constituted by three identical switch circuits 61.
  • FIG. 2 (A) is for conducting the R phase and the S phase
  • FIG. 2 (B) is for conducting the S phase and the T phase
  • FIG. 2 (C) is a diagram illustrating the R phase and the T phase. Is made conductive. Since FIGS. 2A to 2C are the same as described above, only FIG. 2A will be described.
  • the terminal T1 connected to the R phase is connected to the drain (D) of the nMOS transistor N1.
  • the source (S) of the nMOS transistor N1 is connected to the drain (D) of the nMOS transistor N2.
  • the source (S) of the nMOS transistor N2 is connected to a terminal T2 connected to the S phase.
  • the gates (G) of the nMOS transistors N1 and N2 are connected to a terminal that outputs an instruction (switch signal) of interphase conduction of the voltage adjusting means 50.
  • the nMOS transistors N1 and N2 are turned on and off by this switch signal.
  • the switch circuit 61 further includes a resistor R and a diode D1 connected in parallel to each of the terminals T1 and T2, and a capacitor C connected in series to the resistor R and the diode D1.
  • the connection point of the two capacitors C is connected to the connection point between the source of the nMOS transistor N1 and the drain of the nMOS transistor N2, and is connected to the frame ground of the generator G. Spike noise is removed by these resistor R, capacitor C, and diode D1.
  • the operation panel 70 is used when a set voltage is input to the voltage adjusting means 50, and is formed of a keyboard and a display panel.
  • the generator G is a permanent magnet generator that generates a three-phase alternating current whose phases are shifted by 120 ° (2 ⁇ / 3).
  • the generator G can also be used as a Landell generator.
  • the field rectifier RC is a three-phase bridge rectifier that outputs a direct current by full-wave rectifying a three-phase alternating current.
  • the voltage adjustment means 50 calculates the rotation speed of the generator G based on the timing signal from the rotation measurement means 40, and determines whether or not the rotation speed is equal to or greater than a predetermined value (step S10). If the rotational speed of the generator G is greater than or equal to a predetermined value in step S10, the zero cross detection means 20 reads the T-phase voltage value and determines whether or not the zero cross point is reached (step S20). If it is not the zero cross point, the process proceeds to step S50.
  • step S20 If the zero-cross point is detected when the T-phase voltage value is monitored in step S20, the voltage adjusting means 50 measures the time after the zero-cross point is detected by the counter value of the rotation measuring means 40. The counter value is reset (step S30). Further, since the zero cross point is detected in step S20, the detection of the zero cross point by the zero cross detecting means 20 is stopped and the process proceeds to step S50 (step S40). If the rotation speed of the generator G is less than the predetermined value in step S10, the interphase conduction means 60 is set in a non-operating state (open state) (step S70). Then, the process proceeds to step S50.
  • step S50 reading of the counter value of the rotation measuring means 40 is started.
  • the voltage adjusting unit 50 reads the voltage value from the voltage measuring unit 30 (step S80).
  • the voltage adjusting means 50 performs an operation for calculating the interphase conduction period.
  • the interphase conduction period will be described with reference to FIGS.
  • the conduction from the zero cross point as shown in FIG. 4A, for example, if the T phase is a reference phase, the S phase, which is another phase having the same polarity as the T phase, is the conduction phase.
  • Conduction is performed within a period in which the T phase and the S phase have the same polarity. That is, the STs are electrically connected within a period from the zero cross point P1 at which the T phase becomes a positive voltage to the zero cross point P2 until the S phase becomes from a positive voltage to a negative voltage.
  • the RSs are electrically connected within a period from the zero cross point P2 at which the S phase becomes negative voltage to the zero cross point P3 until the R phase becomes from negative voltage to positive voltage. Further, the RTs are made to conduct in a period from the zero cross point P3 where the R phase becomes a positive voltage to the zero cross point P4 until the T phase becomes a positive voltage and a negative voltage.
  • the ST is electrically connected during a period from the zero cross point P4 where the T phase becomes a negative voltage to the zero cross point P5 until the S phase changes from a negative voltage to a positive voltage.
  • the RSs are electrically connected within a period from the zero cross point P5 at which the S phase becomes a positive voltage to the zero cross point P6 until the R phase becomes a positive voltage to a negative voltage.
  • the RT is made to conduct in the period from the zero cross point P6 where the R phase becomes a negative voltage to the zero cross point P7 until the T phase becomes a positive voltage from the negative voltage.
  • the voltage adjusting means 50 first conducts the phases having the same polarity, so that the voltage of one phase and the voltage of the other phase are added and output to the rectifier RC. It becomes a state where a high voltage is output from the machine G.
  • This interphase conduction is a period (duty ratio) of a maximum of 16.67% for one conduction per cycle. This is because when the maximum conduction period is exceeded, the next interphase conduction timing overlaps. Therefore, it is necessary to suppress it to 16.67% or less at maximum in one conduction. Theoretically, however, the maximum conduction period of phase-to-phase conduction can be set between the start of the zero crossing point and 16.67%. It is desirable to shorten the duty ratio.
  • the maximum conduction period (first threshold) is set to about 12% (maximum duty ratio) per cycle in order to provide a margin.
  • the maximum duty ratio can be appropriately adjusted according to the circuit configuration of the voltage control device 10, the program configuration that functions as the voltage adjusting means 50, the condition of the load L, and the like.
  • the voltage control device 10 shifts the phase angle while maintaining the width of the interphase conduction period in addition to the adjustment of the duty ratio.
  • This phase angle shift will be described with reference to FIG.
  • the interphase conduction period is delayed from the zero cross points P1 to P6.
  • the conduction timing between the phases between RS, ST, and RT is similarly shifted.
  • the voltage control apparatus 10 can determine the shift of the phase angle of the interphase conduction period according to the degree of boosting. By shifting the phase angle of the interphase conduction period in this way, the voltage of one phase and the voltage of the other phase are added, so that a high voltage can be output to the rectifier RC.
  • the voltage adjusting means 50 calculates an output voltage for bringing the measurement voltage close to the command voltage.
  • the voltage adjusting means 50 calculates the output voltage value by PID control.
  • the subtractor 51 subtracts the measured voltage V 2 measured by the voltage measuring means 30 from the command voltage V 1 set by the operation panel 70. Then, an output voltage value is calculated by PID control by the calculation unit 52 from the difference between the command voltage V1 and the measured voltage V2.
  • the limiter 53 sets the output voltage value as the upper limit value or the lower limit value when the output voltage value exceeds the upper limit value or the lower limit value. Then, it is output from the limiter 53 as the output voltage Vo. In this way, the PID control is performed by negatively feeding back the measured voltage V2 in order to bring the output voltage Vo close to the command voltage V1, so that control with a small adjustment range of the voltage can be performed, so that a stable high voltage is supplied to the load L. can do.
  • the voltage adjusting means 50 determines the duty ratio and the phase angle according to the output voltage Vo. For example, when the instruction voltage V1 is 250V and the measurement voltage V2 is 150V, the voltage adjusting means 50 increases the voltage that increases by feeding back the measurement voltage V2 by PID control in order to boost the difference of 100V. While monitoring, the duty ratio for the interphase conduction period and the phase angle shift amount for shifting the interphase conduction period are determined (step S90).
  • the phase-to-phase conduction period can be adjusted based on the duty ratio for phase-to-phase conduction from the zero-cross point, or adjusted based on the phase angle by shifting the phase angle. If the desired voltage (indicated voltage V2) can be ensured only by the duty ratio adjustment.
  • the adjustment based on the phase angle may not be performed or may be performed simultaneously.
  • the voltage adjusting means 50 determines the half-phase timing of the T phase based on the timing signal from the rotation measuring means 40 read in step S50 (step S100). If it is the timing of the half cycle of the T phase in step S100, the timing of the R phase and the S phase at which the zero cross point occurs every 60 ° is calculated, and the respective zero cross points are calculated (step S110). ). As a result, the zero-cross point of each phase, which is a reference for the timing of conducting the interphase conduction to the interphase conduction means 60, is known. If the half-phase timing of the T phase cannot be determined from the timing signal from the rotation measuring means 40, each zero cross point cannot be calculated, and the process proceeds to step S130.
  • step S120 From the duty ratio of the interphase conduction period calculated in step S90 and the phase angle shift for shifting the interphase conduction period, the actual time for starting the interphase conduction (interphase conduction start time) and the real time for ending the interphase conduction.
  • the duty amount and the phase angle amount are determined (step S120).
  • step S130 since the elapsed time from the zero cross point is determined from the counter value read in step S50, the current phase is in the interphase conduction period from the interphase conduction start time and the interphase conduction end time calculated in step S120. It is determined whether or not (step S130). If it is not during the interphase conduction period, the voltage adjusting means 50 outputs the switch signal OFF indicating the conduction release instruction to the switch circuit 61 (see FIG. 2), and returns to Step S10 (Step S140).
  • step S130 If it is determined in step S130 that the inter-phase conduction period is within, the voltage adjusting unit 50 outputs a conduction instruction (switch signal ON) to the switch circuit 61 of the inter-phase conduction unit 60 corresponding to the phase to be conducted ( Step S150).
  • switch signal ON switch signal ON
  • the switch signal of the voltage adjusting means 50 is turned on, the nMOS transistors N1 and N2 are turned on in the switch circuit 61 shown in FIG. 2, and a current flows between the terminals T1 and T2.
  • a current flows from the terminal T1 to the terminal T2 via the nMOS transistors N1 and N2, and is connected to the terminal T2.
  • the other phase is higher in voltage than one phase connected to the terminal T1
  • a current flows from the terminal T2 to the terminal T1 through the nMOS transistors N2 and N1.
  • the MOS transistor is a symmetric element, by outputting a switch signal instructing conduction to the gate, the drain-source is made conductive regardless of whether the drain or source voltage is high. Can do.
  • the switch circuit 61 conducts the phases. Since the switch circuit 61 is configured by a MOS transistor, phase-to-phase conduction can be achieved with a simple circuit configuration, so that the size can be reduced and the cost can be reduced.
  • the switch circuit 61 is provided with a circuit for removing noise (diode D1, resistor R, capacitor C), but may be omitted. In that case, only one of the nMOS transistors N1 and N2 needs to be provided. After conducting the interphase conduction, the process proceeds to step S10, and these processes are repeated.
  • the phase is conducted from the zero cross point (adjustment by duty ratio), or the timing at which the phase is conducted from the zero cross point is shifted (adjustment by phase angle). Then, by outputting the added two-phase voltage added to the load L, a high voltage can be stably supplied to the load L.
  • three-phase alternating current has been described as an example.
  • the present invention is not limited to a multi-phase alternating current that can be conducted in a period in which one phase and the other phase have the same polarity.
  • the boosted voltage can be supplied to the load when applied.
  • the example in which the three-phase alternating current from the generator G is boosted has been described, but another generation source may be used.
  • the voltage control device of the present invention can be applied as long as polyphase alternating current is used.
  • the voltage control device of the present invention is suitable for installation in a facility or mounting in a refrigerator / refrigerator vehicle.

Abstract

Provided is a voltage control apparatus that can step up the voltage of an inputted polyphase alternating current and stably supply high voltage. The voltage control apparatus (10) is provided with: a zero-crossing detection means (20) that measures zero-crossing points of a three-phase AC voltage; a voltage adjustment means (50) that gives instructions to connect the phase in which a zero-crossing point is detected, phase T for example, to phase R having the same polarity as phase T; and an inter-phase connection means (60) that connects each of the phases with each other according to instructions from the voltage adjustment means (50). The voltage adjustment means (50) starts inter-phase connections from the zero-crossing points or from points in time obtained by shifting a phase angle from the zero-crossing points and determine the starting time, period length, and shift amount for inter-phase connection periods by executing PID control while monitoring the voltage measured by a voltage measurement means (30).

Description

電圧制御装置Voltage control device
 本発明は、多相交流の電圧制御を行う電圧制御装置に関するものである。 The present invention relates to a voltage control apparatus that performs multi-phase AC voltage control.
 多相交流の電圧制御の方法としては、様々であるが、従来の電圧制御装置の一例として、特許文献1に記載されたものが知られている。
 この特許文献1には、電圧のゼロクロス点を検出すると、ゼロクロス点に同期して交流スイッチを導通させて負荷に電力を供給して、負荷電流実効値積分回路の出力を増加させ、その値が第1の閾値以上となると、交流スイッチをオフ状態とし、その後積分値が、第2の閾値以下になると、電力供給を再開する交流発電機の出力電力のサイクル制御装置が記載されている。
 また、この特許文献1には、発電機の出力電圧を検出し、この出力電圧が予め定めた基準電圧以下であれば導通指令の出力を停止して、交流スイッチをオフ状態とするようにしてもよいことが記載されている。
Although there are various methods for controlling the voltage of the polyphase alternating current, one described in Patent Document 1 is known as an example of a conventional voltage control device.
In Patent Document 1, when a zero-cross point of voltage is detected, an AC switch is turned on in synchronization with the zero-cross point to supply power to the load, and the output of the load current effective value integrating circuit is increased. There is described a cycle control device for the output power of an AC generator that turns off an AC switch when it is equal to or greater than a first threshold and then resumes power supply when an integral value is equal to or less than a second threshold.
In Patent Document 1, the output voltage of the generator is detected, and if the output voltage is equal to or lower than a predetermined reference voltage, the output of the conduction command is stopped and the AC switch is turned off. It is described that it is good.
特開2003-199399号公報JP 2003-199399 A
 しかし、特許文献1では、交流スイッチとして、一対のサイリスタを逆並列接続したものを使用しており、単に電力の供給を導通または遮断しているだけの調整回路であるため、発電機からの出力を低下させる範囲で電圧を調整するしかなく、負荷に対して出力電圧を更に高めて供給するようなものではない。従って、入力される多相交流の電圧を昇圧して、高電圧を安定的に供給できる電圧制御装置が望まれている。 However, in Patent Document 1, an AC switch that uses a pair of thyristors connected in reverse parallel is an adjustment circuit that simply conducts or cuts off the supply of power. The voltage must be adjusted within a range in which the output voltage is reduced, and the output voltage is not further increased and supplied to the load. Therefore, there is a demand for a voltage control device that can boost the input multiphase AC voltage and stably supply a high voltage.
 そこで本発明は、入力される多相交流の電圧を昇圧して、高電圧を安定的に供給できる電圧制御装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a voltage control device capable of boosting an input multiphase AC voltage and stably supplying a high voltage.
 本発明の電圧制御装置は、多相交流電圧のゼロクロス点を測定するゼロクロス検出手段と、前記ゼロクロス検出手段がゼロクロス点を検出した一の相を基準相とし、該一の相と同極性の他の相を被導通相として、基準相と被導通相との相間の導通を指示する電圧調整手段と、前記電圧調整手段からの指示により各相間を導通させる相間導通手段とを備えたことを特徴とする。
 本発明では、電圧調整手段が、基準相と被導通相との相間導通を相間導通手段に指示することにより、基準相と被導通相との合計電圧を出力させることができる。
The voltage control device according to the present invention includes a zero-cross detection unit that measures a zero-cross point of a multiphase AC voltage, and one phase where the zero-cross point is detected by the zero-cross point as a reference phase, and has the same polarity as the one phase. A voltage adjusting means for instructing conduction between the reference phase and the to-be-conducted phase, and an interphase conducting means for conducting between the phases in accordance with an instruction from the voltage adjusting means. And
In the present invention, the voltage adjusting means instructs the interphase conduction means to conduct the phase between the reference phase and the conducted phase, thereby outputting the total voltage of the reference phase and the conducted phase.
 前記電圧調整手段は、前記相間導通手段による相間の導通を、基準相のゼロクロス点から被導通相が基準相と同極性であるまでの期間内で、基準相のゼロクロス点から開始したり、また、前記相間導通手段による相間の導通を、基準相のゼロクロス点から位相角をシフトさせた位置から開始したりすることができる。そうすることで、負荷への電圧が不足するときに、相間を導通させ所望とする電圧に昇圧させることができる。 The voltage adjustment means starts conduction between phases by the interphase conduction means from the zero-cross point of the reference phase within a period from the zero-cross point of the reference phase until the phase to be conducted has the same polarity as the reference phase. The conduction between the phases by the interphase conduction means can be started from a position where the phase angle is shifted from the zero cross point of the reference phase. By doing so, when the voltage to the load is insufficient, the phases can be conducted and boosted to a desired voltage.
 また、多相交流が整流された電圧を測定する電圧測定手段を備え、前記電圧調整手段は、前記電圧測定手段からの測定電圧と、設定された指示電圧とに基づいて相間導通する期間をPID制御(比例制御(Proportional Control)、積分制御(Integral Control)、微分制御(Derivative Control))により決定することにより、安定した高電圧を負荷へ供給することができる。 In addition, a voltage measuring unit that measures a voltage obtained by rectifying the multi-phase alternating current is provided, and the voltage adjusting unit determines a period during which the phase conduction is performed based on the measured voltage from the voltage measuring unit and the set instruction voltage. By determining by control (proportional control (Proportional Control), integral control (Integral Control), differential control (Derivative Control)), a stable high voltage can be supplied to the load.
 前記相間導通手段は、相間をMOSトランジスタにより導通させるものであり、前記電圧調整手段は、前記MOSトランジスタのゲートへ相間の導通をスイッチ信号として指示するものとすると、簡易な回路構成で相間導通を図ることができるので、小型化が可能であり、コスト抑制を図ることができる。 The interphase conduction means conducts the phase between the MOS transistors, and the voltage adjustment means indicates the interphase conduction to the gate of the MOS transistor as a switch signal. Therefore, the size can be reduced and the cost can be reduced.
 本発明によれば、被導通相が基準相と同極性である期間内で、基準相と被導通相との合計電圧を出力させることができるので、入力される多相交流の電圧を昇圧して、高電圧を安定的に供給できる。 According to the present invention, the total voltage of the reference phase and the conductive phase can be output within a period in which the conductive phase has the same polarity as that of the reference phase. Therefore, the input multiphase AC voltage is boosted. Thus, a high voltage can be stably supplied.
本発明の実施の形態に係る電圧制御装置の構成を示す図である。It is a figure which shows the structure of the voltage control apparatus which concerns on embodiment of this invention. 図1に示す電圧制御装置の相間導通手段の一例を示す図であり、(A)はRS間を導通させるためのスイッチ回路を示す図、(B)はST間を導通させるためのスイッチ回路を示す図、(C)はRT間を導通させるためのスイッチ回路を示す図である。It is a figure which shows an example of the interphase conduction | electrical_connection means of the voltage control apparatus shown in FIG. 1, (A) is a figure which shows the switch circuit for electrically connecting between RS, (B) is the switch circuit for electrically connecting between ST. FIG. 2C is a diagram showing a switch circuit for conducting between RTs. 図1に示す電圧制御装置の電圧調整手段の電圧制御方法を説明するためのフローチャートである。It is a flowchart for demonstrating the voltage control method of the voltage adjustment means of the voltage control apparatus shown in FIG. (A)および(B)は、相間導通のデューティ比の調整を説明するための波形図である。(A) And (B) is a wave form chart for explaining adjustment of duty ratio of conduction between phases. 相間導通の位相角の調整を説明するための波形図であり、(A)は相間導通期間が基準相のゼロクロス点から被導通相が基準相と同極性であるまでの期間内とした場合を示す波形図、(B)は相間導通期間が被導通相のゼロクロス点を超えて位相角をシフトした場合を示す波形図である。It is a waveform diagram for explaining the adjustment of the phase angle of phase-to-phase conduction, (A) is a case where the phase-to-phase conduction period is within the period from the zero cross point of the reference phase until the phase to be conducted is the same polarity as the reference phase FIG. 5B is a waveform diagram showing a case where the phase angle is shifted beyond the zero-cross point of the phase to be conducted in the interphase conduction period. PID制御する電圧調整手段を示す図である。It is a figure which shows the voltage adjustment means to perform PID control.
 10 電圧制御装置
 20 ゼロクロス検出手段
 30 電圧測定手段
 40 回転測定手段
 50 電圧調整手段
 51 減算器
 52 演算部
 53 リミッタ
 60 相間導通手段
 61 スイッチ回路
 D1 ダイオード
 N1,N2 nMOSトラジスタ
 T1,T2 端子
 R 抵抗
 C コンデンサ
 70 操作盤
DESCRIPTION OF SYMBOLS 10 Voltage control apparatus 20 Zero cross detection means 30 Voltage measurement means 40 Rotation measurement means 50 Voltage adjustment means 51 Subtractor 52 Operation part 53 Limiter 60 Interphase conduction means 61 Switch circuit D1 Diode N1, N2 nMOS transistor T1, T2 terminal R Resistance C Capacitor 70 Operation panel
 本発明の実施の形態に係る電圧制御装置を図面に基づいて説明する。図1に示すように、本実施の形態では、発電機Gからの三相交流を、整流器RCを介して負荷Lに供給する場合を説明する。
 電圧制御装置10は、ゼロクロス検出手段20と、電圧測定手段30と、回転測定手段40と、電圧調整手段50と、相間導通手段60と、操作盤70とを備えている。
A voltage control apparatus according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, in the present embodiment, a case will be described in which three-phase alternating current from the generator G is supplied to the load L via the rectifier RC.
The voltage control apparatus 10 includes a zero-cross detection unit 20, a voltage measurement unit 30, a rotation measurement unit 40, a voltage adjustment unit 50, an interphase conduction unit 60, and an operation panel 70.
 ゼロクロス検出手段20は、三相のうちT相の交流が0Vを通過する時を示すゼロクロス点を検出して電圧調整手段50へ通知するものである。本実施の形態では、T相のゼロクロス点を検知しているが、R相でも、またはS相でも、更に三相全てのゼロクロス点を検出するようにしてもよい。ゼロクロス検出手段20は、交流電圧をAD変換によりデジタルデータに変換することで、コンピュータに動作させたプログラムによりゼロクロス点を検出することができる。 The zero-cross detection means 20 detects a zero-cross point indicating when the T-phase alternating current passes through 0 V among the three phases, and notifies the voltage adjustment means 50 of the zero-cross point. In the present embodiment, the zero-cross point of the T phase is detected. However, the zero-cross points of all three phases may be detected in the R phase or the S phase. The zero cross detection means 20 can detect the zero cross point by a program operated by a computer by converting the AC voltage into digital data by AD conversion.
 電圧測定手段30は、三相交流が整流器RCにより整流された直流の電圧を測定するものである。この電圧測定手段30は、AD変換器を使用することができ、デジタルデータとして電圧調整手段50へ出力される。
 回転測定手段40は、発電機Gのロータの回転角度、速度を測定するためのタイミング信号を電圧調整手段50へ通知する機能を有している。本実施の形態では、回転測定手段40として、ロータリーエンコーダを使用しており、タイミング信号としてはカウンタ値が出力される。
The voltage measuring means 30 measures a DC voltage obtained by rectifying the three-phase AC by the rectifier RC. This voltage measuring means 30 can use an AD converter, and is output to the voltage adjusting means 50 as digital data.
The rotation measuring means 40 has a function of notifying the voltage adjusting means 50 of a timing signal for measuring the rotation angle and speed of the rotor of the generator G. In this embodiment, a rotary encoder is used as the rotation measuring means 40, and a counter value is output as a timing signal.
 電圧調整手段50は、電圧測定手段30からの測定された電圧と、操作盤70から入力された設定電圧とに基づいてPID制御を行うことで、相間導通手段60による相間を導通する期間(以下、これを相間導通期間と称す。)を演算して電圧調整するものである。この導通制御は、コンピュータに電圧制御プログラムを動作させることで機能させている。なお、本実施の形態では、電圧調整手段50とゼロクロス検出手段20とは別ブロックとしているが、ゼロクロス検出手段20のAD変換器からのデジタルデータが0Vを示すものであるか否かを、電圧調整手段50にて動作させる電圧制御プログラム内で判断させてゼロクロス点を検出するようにして、ゼロクロス検出手段20の検出機能部分と、電圧調整手段50とを一体的に構成してもよい。 The voltage adjustment means 50 conducts PID control based on the measured voltage from the voltage measurement means 30 and the set voltage input from the operation panel 70, thereby conducting a period in which the phases are conducted between the phases by the phase-to-phase conduction means 60 (below). This is referred to as the interphase conduction period.) And the voltage is adjusted. This conduction control is made to function by operating a voltage control program on a computer. In the present embodiment, the voltage adjusting unit 50 and the zero cross detecting unit 20 are separate blocks. However, whether or not the digital data from the AD converter of the zero cross detecting unit 20 indicates 0V is determined by the voltage. The detection function portion of the zero cross detection means 20 and the voltage adjustment means 50 may be integrally configured so that the zero cross point is detected by making a determination in the voltage control program operated by the adjustment means 50.
 相間導通手段60は、電圧調整手段50からの指示により、R相とS相、S相とT相、T相とR相のそれぞれを個別に導通させる機能を有する。相間導通手段60は例えば、図2に示す回路とすることができる。 The interphase conduction means 60 has a function of individually conducting each of the R phase and the S phase, the S phase and the T phase, and the T phase and the R phase according to an instruction from the voltage adjustment means 50. The interphase conduction means 60 may be, for example, the circuit shown in FIG.
 ここで、相間導通手段60の一例について図2に基づいて説明する。
 図2(A)~同図(C)に示すスイッチ手段61は、3つの同じスイッチ回路61により構成されている。図2(A)はR相とS相とを導通させるものであり、図2(B)はS相とT相とを導通させるものであり、図2(C)はR相とT相とを導通させるものである。このように図2(A)~(C)は同じであるため、図2(A)のみを説明する。
Here, an example of the interphase conduction means 60 will be described with reference to FIG.
The switch means 61 shown in FIGS. 2A to 2C is constituted by three identical switch circuits 61. FIG. 2 (A) is for conducting the R phase and the S phase, FIG. 2 (B) is for conducting the S phase and the T phase, and FIG. 2 (C) is a diagram illustrating the R phase and the T phase. Is made conductive. Since FIGS. 2A to 2C are the same as described above, only FIG. 2A will be described.
 スイッチ回路61は、R相に接続される端子T1がnMOSトランジスタN1のドレイン(D)に接続されている。nMOSトランジスタN1のソース(S)は、nMOSトランジスタN2のドレイン(D)に接続されている。nMOSトランジスタN2のソース(S)は、S相に接続される端子T2に接続されている。nMOSトランジスタN1,N2のゲート(G)は電圧調整手段50の相間導通の指示(スイッチ信号)を出力する端子に接続されている。このスイッチ信号によりnMOSトランジスタN1,N2はオンしたりオフしたりする。 In the switch circuit 61, the terminal T1 connected to the R phase is connected to the drain (D) of the nMOS transistor N1. The source (S) of the nMOS transistor N1 is connected to the drain (D) of the nMOS transistor N2. The source (S) of the nMOS transistor N2 is connected to a terminal T2 connected to the S phase. The gates (G) of the nMOS transistors N1 and N2 are connected to a terminal that outputs an instruction (switch signal) of interphase conduction of the voltage adjusting means 50. The nMOS transistors N1 and N2 are turned on and off by this switch signal.
 更に、スイッチ回路61は、端子T1,T2のそれぞれに、並列接続された抵抗RおよびダイオードD1と、この抵抗RおよびダイオードD1に直列接続されたコンデンサCとを備えている。2つのコンデンサCの接続点は、nMOSトランジスタN1のソースとnMOSトラジスタN2のドレインとの接続点に接続され、発電機Gのフレームグランドと接続されている。これらの抵抗R,コンデンサC,ダイオードD1によりスパイク性のノイズを除去する。 The switch circuit 61 further includes a resistor R and a diode D1 connected in parallel to each of the terminals T1 and T2, and a capacitor C connected in series to the resistor R and the diode D1. The connection point of the two capacitors C is connected to the connection point between the source of the nMOS transistor N1 and the drain of the nMOS transistor N2, and is connected to the frame ground of the generator G. Spike noise is removed by these resistor R, capacitor C, and diode D1.
 図1に戻って、操作盤70は、電圧調整手段50に設定電圧を入力する際に使用されるもので、キーボートと表示盤とから形成されている。
 発電機Gは、それぞれの位相が120°(2π/3)ずつずれた三相交流を発電する永久磁石式発電機である。なお、この発電機Gはランデル型発電機でも使用することができる。界磁整流器RCは、三相交流を全波整流して直流を出力する三相ブリッジ整流器である。
Returning to FIG. 1, the operation panel 70 is used when a set voltage is input to the voltage adjusting means 50, and is formed of a keyboard and a display panel.
The generator G is a permanent magnet generator that generates a three-phase alternating current whose phases are shifted by 120 ° (2π / 3). The generator G can also be used as a Landell generator. The field rectifier RC is a three-phase bridge rectifier that outputs a direct current by full-wave rectifying a three-phase alternating current.
 以上のように構成された本発明の実施の形態に係る電圧制御装置10の動作および使用状態について、図面に基づいて説明する。なお、操作盤70により予め希望電圧値(指令電圧)が入力されているものとする。 The operation and use state of the voltage control apparatus 10 according to the embodiment of the present invention configured as described above will be described with reference to the drawings. It is assumed that a desired voltage value (command voltage) has been input from the operation panel 70 in advance.
 まず、電圧調整手段50は、回転測定手段40からのタイミング信号により発電機Gの回転数を算出して、回転数が所定以上となったか否かを判定する(ステップS10)。
 ステップS10にて発電機Gの回転数が所定以上であれば、ゼロクロス検出手段20はT相の電圧値を読み込み、ゼロクロス点か否かを判定する(ステップS20)。ゼロクロス点でなければステップS50へ移行する。
First, the voltage adjustment means 50 calculates the rotation speed of the generator G based on the timing signal from the rotation measurement means 40, and determines whether or not the rotation speed is equal to or greater than a predetermined value (step S10).
If the rotational speed of the generator G is greater than or equal to a predetermined value in step S10, the zero cross detection means 20 reads the T-phase voltage value and determines whether or not the zero cross point is reached (step S20). If it is not the zero cross point, the process proceeds to step S50.
 ステップS20にてT相の電圧値を監視したときにゼロクロス点であった場合、電圧調整手段50は、ゼロクロス点が検出されてからの時間を回転測定手段40のカウンタ値により計測するために、カウンタ値をリセットする(ステップS30)。また、ステップS20にてゼロクロス点が検出されたので、ゼロクロス検出手段20によるゼロクロス点の検出を停止してステップS50へ移行する(ステップS40)。
 ステップS10にて発電機Gの回転数が所定未満であれば、相間導通手段60を非作動状態(開放状態)とする(ステップS70)。そして、ステップS50へ移行する。
If the zero-cross point is detected when the T-phase voltage value is monitored in step S20, the voltage adjusting means 50 measures the time after the zero-cross point is detected by the counter value of the rotation measuring means 40. The counter value is reset (step S30). Further, since the zero cross point is detected in step S20, the detection of the zero cross point by the zero cross detecting means 20 is stopped and the process proceeds to step S50 (step S40).
If the rotation speed of the generator G is less than the predetermined value in step S10, the interphase conduction means 60 is set in a non-operating state (open state) (step S70). Then, the process proceeds to step S50.
 ステップS50では、回転測定手段40のカウンタ値の読み込みを開始する。次に、電圧調整手段50は、電圧測定手段30から電圧値を読み込む(ステップS80) In step S50, reading of the counter value of the rotation measuring means 40 is started. Next, the voltage adjusting unit 50 reads the voltage value from the voltage measuring unit 30 (step S80).
 次に、電圧調整手段50は相間導通期間を算出するための演算を行う。ここで、相間導通期間について、図4から図6に基づいて説明する。
 まず、ゼロクロス点からの導通であるが、図4(A)に示すように、例えば、T相を基準相とすると、このT相と同極性の他の相であるS相が被導通相となる。T相とS相とが同極性となる期間内で導通させる。つまり、T相がプラス電圧となるゼロクロス点P1からS相がプラス電圧からマイナス電圧となるまでのゼロクロス点P2までの間の期間内でST間を導通させる。同様にして、S相がマイナス電圧となるゼロクロス点P2からR相がマイナス電圧からプラス電圧となるまでのゼロクロス点P3までの間の期間内でRS間を導通させる。また、R相がプラス電圧となるゼロクロス点P3からT相がプラス電圧からマイナス電圧となるまでのゼロクロス点P4までの間の期間内でRT間を導通させる。
Next, the voltage adjusting means 50 performs an operation for calculating the interphase conduction period. Here, the interphase conduction period will be described with reference to FIGS.
First, the conduction from the zero cross point, as shown in FIG. 4A, for example, if the T phase is a reference phase, the S phase, which is another phase having the same polarity as the T phase, is the conduction phase. Become. Conduction is performed within a period in which the T phase and the S phase have the same polarity. That is, the STs are electrically connected within a period from the zero cross point P1 at which the T phase becomes a positive voltage to the zero cross point P2 until the S phase becomes from a positive voltage to a negative voltage. Similarly, the RSs are electrically connected within a period from the zero cross point P2 at which the S phase becomes negative voltage to the zero cross point P3 until the R phase becomes from negative voltage to positive voltage. Further, the RTs are made to conduct in a period from the zero cross point P3 where the R phase becomes a positive voltage to the zero cross point P4 until the T phase becomes a positive voltage and a negative voltage.
 次のサイクルでは、T相がマイナス電圧となるゼロクロス点P4からS相がマイナス電圧からプラス電圧となるまでのゼロクロス点P5までの間の期間でST間を導通させる。また、S相がプラス電圧となるゼロクロス点P5からR相がプラス電圧からマイナス電圧となるまでのゼロクロス点P6までの間の期間内でRS間を導通させる。更に、R相がマイナス電圧となるゼロクロス点P6からT相がマイナス電圧からプラス電圧となるまでのゼロクロス点P7までの間の期間内でRT間を導通させる。
 このように、電圧調整手段50は、まず、同極性の状態の相間を導通させることで、一方の相の電圧と他方の相の電圧が加算されて、整流器RCに出力されるので、あたかも発電機Gから高電圧が出力されたような状態となる。
In the next cycle, the ST is electrically connected during a period from the zero cross point P4 where the T phase becomes a negative voltage to the zero cross point P5 until the S phase changes from a negative voltage to a positive voltage. Further, the RSs are electrically connected within a period from the zero cross point P5 at which the S phase becomes a positive voltage to the zero cross point P6 until the R phase becomes a positive voltage to a negative voltage. Further, the RT is made to conduct in the period from the zero cross point P6 where the R phase becomes a negative voltage to the zero cross point P7 until the T phase becomes a positive voltage from the negative voltage.
In this way, the voltage adjusting means 50 first conducts the phases having the same polarity, so that the voltage of one phase and the voltage of the other phase are added and output to the rectifier RC. It becomes a state where a high voltage is output from the machine G.
 この相間導通は、一回の導通が1サイクルに対して最大16.67%の期間(デューティ比)となる。これは、最大導通期間を超えると、次の相間導通のタイミングと重なってしまうためである。従って、一回の導通で最大で16.67%以下に抑える必要がある。しかし、理論上は、相間導通の最大導通期間を、ゼロクロス点から開始して16.67%となるまでの間に設定することができるが、実際は相間導通するための時間の遅延などを考慮すると、デューティ比を短くするのが望ましい。 This interphase conduction is a period (duty ratio) of a maximum of 16.67% for one conduction per cycle. This is because when the maximum conduction period is exceeded, the next interphase conduction timing overlaps. Therefore, it is necessary to suppress it to 16.67% or less at maximum in one conduction. Theoretically, however, the maximum conduction period of phase-to-phase conduction can be set between the start of the zero crossing point and 16.67%. It is desirable to shorten the duty ratio.
 従って、図4(B)に示すように、本実施の形態では、最大導通期間(第1の閾値)を、余裕を持たせるために1サイクルあたり約12%(最大デューティ比)としている。なお、この最大デューティ比は、電圧制御装置10の回路構成、電圧調整手段50として機能するプログラム構成、負荷Lの条件などにより適宜調整することができる。 Therefore, as shown in FIG. 4B, in this embodiment, the maximum conduction period (first threshold) is set to about 12% (maximum duty ratio) per cycle in order to provide a margin. The maximum duty ratio can be appropriately adjusted according to the circuit configuration of the voltage control device 10, the program configuration that functions as the voltage adjusting means 50, the condition of the load L, and the like.
 この最大デューティ比で昇圧の度合いが不足するときには、電圧制御装置10は、デューティ比の調整の他に、相間導通期間の幅を維持したまま位相角をシフトさせる。この位相角のシフトについて、図5に基づいて説明する。
 図5(A)に示すように、相間導通期間をゼロクロス点P1~P6から遅延させる。相間導通期間を遅延させるときには、RS間、ST間、RT間の各相間の導通のタイミングを同様にシフトする。そうすることで、図5(B)に示すように、相間導通期間が次のゼロクロス点を超えても、他の相間導通のタイミングと重なってしまうことはない。従って、電圧制御装置10は昇圧の度合いに応じて相間導通期間の位相角のシフトを決定することができる。
 このように相間導通期間の位相角をシフトさせることで、一方の相の電圧と他方の相の電圧が加算されるので、整流器RCに高電圧を出力することができる。
When the degree of boosting is insufficient at the maximum duty ratio, the voltage control device 10 shifts the phase angle while maintaining the width of the interphase conduction period in addition to the adjustment of the duty ratio. This phase angle shift will be described with reference to FIG.
As shown in FIG. 5A, the interphase conduction period is delayed from the zero cross points P1 to P6. When delaying the interphase conduction period, the conduction timing between the phases between RS, ST, and RT is similarly shifted. By doing so, as shown in FIG. 5B, even if the interphase conduction period exceeds the next zero cross point, there is no overlap with other interphase conduction timings. Therefore, the voltage control apparatus 10 can determine the shift of the phase angle of the interphase conduction period according to the degree of boosting.
By shifting the phase angle of the interphase conduction period in this way, the voltage of one phase and the voltage of the other phase are added, so that a high voltage can be output to the rectifier RC.
 このようにデューティ比と位相角との調整を行う電圧調整手段50の制御方法について、図6に基づいて説明する。まず、電圧調整手段50は、測定電圧を指令電圧に近づけるための出力電圧を算出する。電圧調整手段50は、出力電圧値をPID制御により演算している。 A control method of the voltage adjusting means 50 for adjusting the duty ratio and the phase angle in this way will be described with reference to FIG. First, the voltage adjusting means 50 calculates an output voltage for bringing the measurement voltage close to the command voltage. The voltage adjusting means 50 calculates the output voltage value by PID control.
 電圧調整手段50では、操作盤70により設定された指令電圧V1から電圧測定手段30により測定された測定電圧V2を減算器51により減算する。そして、指令電圧V1と測定電圧V2との差分から演算部52によるPID制御により出力電圧値を算出する。そして、リミッタ53は、この出力電圧値が上限値または下限値を超えている場合には、出力電圧値を上限値または下限値とする。そして、リミッタ53から出力電圧Voとして出力される。
 このように出力電圧Voを指令電圧V1に近づけるために測定電圧V2を負帰還させてPID制御することで、電圧の調整幅の少ない制御を行うことができるので安定した高電圧を負荷Lに供給することができる。
In the voltage adjusting means 50, the subtractor 51 subtracts the measured voltage V 2 measured by the voltage measuring means 30 from the command voltage V 1 set by the operation panel 70. Then, an output voltage value is calculated by PID control by the calculation unit 52 from the difference between the command voltage V1 and the measured voltage V2. The limiter 53 sets the output voltage value as the upper limit value or the lower limit value when the output voltage value exceeds the upper limit value or the lower limit value. Then, it is output from the limiter 53 as the output voltage Vo.
In this way, the PID control is performed by negatively feeding back the measured voltage V2 in order to bring the output voltage Vo close to the command voltage V1, so that control with a small adjustment range of the voltage can be performed, so that a stable high voltage is supplied to the load L. can do.
 このように出力電圧Voが算出されると、電圧調整手段50はこの出力電圧Voに応じてデューティ比の決定と位相角の決定を行う。例えば、指示電圧V1が250Vで、測定電圧V2が150Vであった場合には、電圧調整手段50は差分の100Vを昇圧するためにPID制御により、測定電圧V2をフィードバックすることで上昇する電圧を監視しながら、相間導通期間となるデューティ比と、相間導通期間をずらす位相角のシフト量とを決定していく(ステップS90)。
 なお、相間導通期間は、ゼロクロス点から相間導通するデューティ比による調整と、位相角のシフトにより位相角による調整とがあるが、デューティ比による調整だけ所望とする電圧(指示電圧V2)が確保できれば、位相角による調整は行わなくてもよいし、同時に調整するようにしてもよい。
When the output voltage Vo is thus calculated, the voltage adjusting means 50 determines the duty ratio and the phase angle according to the output voltage Vo. For example, when the instruction voltage V1 is 250V and the measurement voltage V2 is 150V, the voltage adjusting means 50 increases the voltage that increases by feeding back the measurement voltage V2 by PID control in order to boost the difference of 100V. While monitoring, the duty ratio for the interphase conduction period and the phase angle shift amount for shifting the interphase conduction period are determined (step S90).
The phase-to-phase conduction period can be adjusted based on the duty ratio for phase-to-phase conduction from the zero-cross point, or adjusted based on the phase angle by shifting the phase angle. If the desired voltage (indicated voltage V2) can be ensured only by the duty ratio adjustment. The adjustment based on the phase angle may not be performed or may be performed simultaneously.
 次に、電圧調整手段50は、ステップS50にて読み込んだ回転測定手段40からのタイミング信号によりT相の半周期タイミングを判定する(ステップS100)。ステップS100にてT相の半周期のタイミングであった場合には、60°ごとにゼロクロス点が発生するR相とS相とのタイミングを算出して、それぞれのゼロクロス点を算出する(ステップS110)。これにより相間導通手段60に相間導通させるタイミングの基準となる各相のゼロクロス点がわかる。なお、回転測定手段40からのタイミング信号によりT相の半周期タイミングが判定できないときには、各ゼロクロス点の算出ができないためステップS130へ移行する。 Next, the voltage adjusting means 50 determines the half-phase timing of the T phase based on the timing signal from the rotation measuring means 40 read in step S50 (step S100). If it is the timing of the half cycle of the T phase in step S100, the timing of the R phase and the S phase at which the zero cross point occurs every 60 ° is calculated, and the respective zero cross points are calculated (step S110). ). As a result, the zero-cross point of each phase, which is a reference for the timing of conducting the interphase conduction to the interphase conduction means 60, is known. If the half-phase timing of the T phase cannot be determined from the timing signal from the rotation measuring means 40, each zero cross point cannot be calculated, and the process proceeds to step S130.
 次に、ステップS90にて算出した相間導通期間のデューティ比と相間導通期間をずらす位相角のシフトとから、相間導通を開始する実時間(相間導通開始時間)と、相間導通を終了する実時間(相間導通終了時間)とを算出することで、デューティ量と位相角量を決める(ステップS120)。
 次に、ステップS50にて読み込まれたカウンタ値によりゼロクロス点からの経過時間が判るので、ステップS120にて算出された相間導通開始時間と、相間導通終了時間とから、現在が、相間導通期間中であるか否かを判定する(ステップS130)。相間導通期間中でなければ、電圧調整手段50は、スイッチ回路61(図2参照)への導通解除の指示を示すスイッチ信号のオフを出力してステップS10へ戻る(ステップS140)。
Next, from the duty ratio of the interphase conduction period calculated in step S90 and the phase angle shift for shifting the interphase conduction period, the actual time for starting the interphase conduction (interphase conduction start time) and the real time for ending the interphase conduction. By calculating (interphase conduction end time), the duty amount and the phase angle amount are determined (step S120).
Next, since the elapsed time from the zero cross point is determined from the counter value read in step S50, the current phase is in the interphase conduction period from the interphase conduction start time and the interphase conduction end time calculated in step S120. It is determined whether or not (step S130). If it is not during the interphase conduction period, the voltage adjusting means 50 outputs the switch signal OFF indicating the conduction release instruction to the switch circuit 61 (see FIG. 2), and returns to Step S10 (Step S140).
 ステップS130にて、相間導通期間内との判定であれば、電圧調整手段50は、導通させる相間に対応する相間導通手段60のスイッチ回路61へ導通の指示(スイッチ信号のオン)を出力する(ステップS150)。
 この電圧調整手段50のスイッチ信号のオンにより、図2に示すスイッチ回路61はnMOSトランジスタN1,N2がオンとなることで、端子T1,T2間に電流が流れる。
If it is determined in step S130 that the inter-phase conduction period is within, the voltage adjusting unit 50 outputs a conduction instruction (switch signal ON) to the switch circuit 61 of the inter-phase conduction unit 60 corresponding to the phase to be conducted ( Step S150).
When the switch signal of the voltage adjusting means 50 is turned on, the nMOS transistors N1 and N2 are turned on in the switch circuit 61 shown in FIG. 2, and a current flows between the terminals T1 and T2.
 例えば、端子T1に接続された一方の相が、端子T2に接続された他方の相より電圧が高ければ、端子T1からnMOSトラジスタN1,N2を介して端子T2へ電流が流れ、端子T2に接続された他方の相が、端子T1に接続された一方の相より電圧が高ければ、端子T2からnMOSトラジスタN2,N1を介して端子T1へ電流が流れる。このように、MOSトランジスタは対称型素子であるため、ゲートへ導通を指示するスイッチ信号を出力することで、ドレイン、ソースのいずれの電圧が高くても、ドレイン-ソース間を導通状態とすることができる。 For example, if one phase connected to the terminal T1 has a higher voltage than the other phase connected to the terminal T2, a current flows from the terminal T1 to the terminal T2 via the nMOS transistors N1 and N2, and is connected to the terminal T2. If the other phase is higher in voltage than one phase connected to the terminal T1, a current flows from the terminal T2 to the terminal T1 through the nMOS transistors N2 and N1. As described above, since the MOS transistor is a symmetric element, by outputting a switch signal instructing conduction to the gate, the drain-source is made conductive regardless of whether the drain or source voltage is high. Can do.
 このようにしてスイッチ回路61により相間が導通する。スイッチ回路61をMOSトランジスタにより構成したことにより、簡易な回路構成で相間導通を図ることができるので、小型化が可能であり、コスト抑制を図ることができる。
 なお、本実施の形態では、スイッチ回路61にノイズ除去用の回路(ダイオードD1,抵抗R,コンデンサC)を設けているが、省略することも可能である。その場合には、nMOSトラジスタN1,N2はいずれか一方のみを設けていればよい。
 相間導通をさせた後は、ステップS10へ移行して、これらの処理を繰り返す。
In this way, the switch circuit 61 conducts the phases. Since the switch circuit 61 is configured by a MOS transistor, phase-to-phase conduction can be achieved with a simple circuit configuration, so that the size can be reduced and the cost can be reduced.
In the present embodiment, the switch circuit 61 is provided with a circuit for removing noise (diode D1, resistor R, capacitor C), but may be omitted. In that case, only one of the nMOS transistors N1 and N2 needs to be provided.
After conducting the interphase conduction, the process proceeds to step S10, and these processes are repeated.
 このように、本実施の形態に係る電圧制御装置によれば、ゼロクロス点から相間を導通したり(デューティ比による調整)、ゼロクロス点から相間導通させるタイミングをシフトしたり(位相角による調整)して、導通した2相の加算された電圧を負荷Lに出力することで、負荷Lに高電圧を安定的に供給することができる。 As described above, according to the voltage control device according to the present embodiment, the phase is conducted from the zero cross point (adjustment by duty ratio), or the timing at which the phase is conducted from the zero cross point is shifted (adjustment by phase angle). Then, by outputting the added two-phase voltage added to the load L, a high voltage can be stably supplied to the load L.
 以上、本発明の実施の形態では、三相交流を例に説明したが、一の相と他の相とが同極性となる期間に導通させることができる多相交流であれば、本発明を適用して負荷に昇圧した電圧を供給することができる。
 また、本実施の形態では、発電機Gからの三相交流を昇圧する例を説明したが、発生源は他のものでもよい。
As described above, in the embodiment of the present invention, three-phase alternating current has been described as an example. However, the present invention is not limited to a multi-phase alternating current that can be conducted in a period in which one phase and the other phase have the same polarity. The boosted voltage can be supplied to the load when applied.
Further, in the present embodiment, the example in which the three-phase alternating current from the generator G is boosted has been described, but another generation source may be used.
 本発明の電圧制御装置は、多相交流が使用されるものであれば適用できる。特に、本発明の電圧制御装置は、施設に設置したり、冷凍・冷蔵車に搭載したりするのに好適である。 The voltage control device of the present invention can be applied as long as polyphase alternating current is used. In particular, the voltage control device of the present invention is suitable for installation in a facility or mounting in a refrigerator / refrigerator vehicle.

Claims (5)

  1.  多相交流電圧のゼロクロス点を測定するゼロクロス検出手段と、
     前記ゼロクロス検出手段がゼロクロス点を検出した一の相を基準相とし、該一の相と同極性の他の相を被導通相として、基準相と被導通相との相間の導通を指示する電圧調整手段と、
     前記電圧調整手段からの指示により各相間を導通させる相間導通手段とを備えたことを特徴とする電圧制御装置。
    Zero-cross detection means for measuring the zero-cross point of the polyphase AC voltage;
    The voltage indicating the conduction between the reference phase and the phase to be conducted, with the one phase where the zero cross point is detected as the reference phase and the other phase having the same polarity as the one phase as the conduction phase Adjustment means;
    A voltage control apparatus comprising: interphase conduction means for conducting between the phases in accordance with an instruction from the voltage adjustment means.
  2.  前記電圧調整手段は、前記相間導通手段による相間の導通を、基準相のゼロクロス点から被導通相が基準相と同極性であるまでの期間内で、基準相のゼロクロス点から開始する請求項1記載の電圧制御装置。 The voltage adjusting means starts conduction between phases by the interphase conduction means from a zero cross point of a reference phase within a period from a zero cross point of the reference phase to a phase to be conducted having the same polarity as the reference phase. The voltage control apparatus as described.
  3.  前記電圧調整手段は、前記相間導通手段による相間の導通を、基準相のゼロクロス点から位相角をシフトさせた位置から開始する請求項1または2記載の電圧制御装置。 The voltage control device according to claim 1 or 2, wherein the voltage adjusting means starts conduction between phases by the interphase conduction means from a position where a phase angle is shifted from a zero cross point of a reference phase.
  4.  多相交流が整流された電圧を測定する電圧測定手段を備え、
     前記電圧調整手段は、前記電圧測定手段からの測定電圧と、設定された指示電圧とに基づいて相間導通する期間をPID制御により決定する請求項1記載の電圧制御装置。
    A voltage measuring means for measuring a voltage obtained by rectifying the polyphase alternating current;
    The voltage control device according to claim 1, wherein the voltage adjusting unit determines a period for conducting phase-to-phase based on a measured voltage from the voltage measuring unit and a set instruction voltage by PID control.
  5.  前記相間導通手段は、相間をMOSトランジスタにより導通させるものであり、
     前記電圧調整手段は、前記MOSトランジスタのゲートへ相間導通をスイッチ信号として指示するものである請求項1記載の電圧制御装置。
    The interphase conduction means conducts the phase by a MOS transistor,
    2. The voltage control apparatus according to claim 1, wherein the voltage adjusting means instructs the gate of the MOS transistor as a switch signal to conduct between phases.
PCT/JP2012/071488 2012-08-24 2012-08-24 Voltage control apparatus WO2014030259A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071488 WO2014030259A1 (en) 2012-08-24 2012-08-24 Voltage control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/071488 WO2014030259A1 (en) 2012-08-24 2012-08-24 Voltage control apparatus

Publications (1)

Publication Number Publication Date
WO2014030259A1 true WO2014030259A1 (en) 2014-02-27

Family

ID=50149592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071488 WO2014030259A1 (en) 2012-08-24 2012-08-24 Voltage control apparatus

Country Status (1)

Country Link
WO (1) WO2014030259A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177166A (en) * 1985-01-31 1986-08-08 Mitsubishi Electric Corp 3-phase/3-phase power converter
JP2002291230A (en) * 2001-03-28 2002-10-04 Mitsubishi Electric Corp Three phase voltage regulator
JP2012182873A (en) * 2011-02-28 2012-09-20 Beetech Co Ltd Voltage controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177166A (en) * 1985-01-31 1986-08-08 Mitsubishi Electric Corp 3-phase/3-phase power converter
JP2002291230A (en) * 2001-03-28 2002-10-04 Mitsubishi Electric Corp Three phase voltage regulator
JP2012182873A (en) * 2011-02-28 2012-09-20 Beetech Co Ltd Voltage controller

Similar Documents

Publication Publication Date Title
US10992242B2 (en) Motor driving control device and control method of motor driving control device
WO2013035534A1 (en) Control device for switching power supply circuit, and heat pump unit
JP6525364B2 (en) Power converter
JP6217369B2 (en) Motor control device and motor control method
JP2015171215A5 (en)
JP2014155408A5 (en)
JP2008104282A (en) Inverter device
JP2008245450A (en) Power conversion device
WO2014024460A1 (en) Motor control apparatus
JPWO2018078837A1 (en) Motor drive
US8183805B2 (en) System for controlling the steady-state rotation of a synchronous electric motor
JP2015080294A (en) Control device for pwm converter, dead time compensation method thereof, control device for pwm inverter and dead time compensation method thereof
JP6282338B2 (en) Power conversion device and power conversion method
JP2012182873A (en) Voltage controller
WO2014030259A1 (en) Voltage control apparatus
CN106953556B (en) Sensorless three-phase motor driving system and method thereof
RU2426218C2 (en) Method to control electric motor operation
JP2020048360A (en) Motor control device, motor system, and inverter control method
JP6677905B2 (en) Abnormality detection device and power supply device
JP2010110179A (en) Rectifying circuit
JP2012191728A (en) Control device of motor
US20200091845A1 (en) Rotor position estimation device, motor control device, and recording medium
EP3206298A1 (en) Power conversion device, method of controlling same, and electric power steering control device
JP6065816B2 (en) Inverter device
JP2015047022A (en) Inverter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12883105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTSPURDUANT TO RULE 112(1) EPC

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12883105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP