JP2008245450A - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
JP2008245450A
JP2008245450A JP2007083737A JP2007083737A JP2008245450A JP 2008245450 A JP2008245450 A JP 2008245450A JP 2007083737 A JP2007083737 A JP 2007083737A JP 2007083737 A JP2007083737 A JP 2007083737A JP 2008245450 A JP2008245450 A JP 2008245450A
Authority
JP
Japan
Prior art keywords
circuit
inverter
output
power
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007083737A
Other languages
Japanese (ja)
Other versions
JP5272319B2 (en
Inventor
Harukado Kobayashi
玄門 小林
Yoshiteru Ito
義照 伊藤
Masaru Obara
勝 小原
Yuji Sugihara
裕司 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007083737A priority Critical patent/JP5272319B2/en
Priority to CN2008100096808A priority patent/CN101277059B/en
Publication of JP2008245450A publication Critical patent/JP2008245450A/en
Application granted granted Critical
Publication of JP5272319B2 publication Critical patent/JP5272319B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control force factor improvement for a power conversion device through inverter output without the detection of input current. <P>SOLUTION: The power conversion device includes a reactor 2 of which the one edge is connected to an AC power supply 1; short-circuiting means 3 of which the one edge is connected to the other edge of the reactor 2; a rectification circuit 4, of which the one edge on AC input side is connected to the other edge of the reactor 2 and the multiple edges on the AC input side are connected to the other edge of the short-circuiting means 3; a zero-cross detection circuit 8 which detects zero-cross of the AC power supply 1, a control circuit 7 which controls the short-circuiting means 3, and an inverter circuit 10. Delay time 1 and shorting device operation time T2 are controlled by the control circuit 7, based on the output of the inverter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、インバータを用いた電力変換装置に関するものである。 The present invention relates to a power conversion device using an inverter.

特許文献1に記載の従来の力率改善型電力変換装置を、図5を用いて説明する。従来の電力変換装置300は図5に示すように、単相交流電源201の一方の出力端に一端が接続したリアクトル202と、そのリアクトル202を介して交流電源201を短絡する短絡手段203と、交流電源201に接続していない側の交流電源201の他端との間に入力電流検出回路230を介して接続した整流回路204と、整流回路204の直流出力の両端に直列接続した平滑コンデンサ206と、整流回路204の交流入力の一方と、交流電源201のゼロクロスを検出するゼロクロス信号292を基準タイミングとして短絡手段203を動作させる短絡パルス信号296を出力する制御回路207と、交流電源201から入力される入力電流Isを検出し、制御回路207に入力電流値298を出力する入力電流検出回路230と、平滑コンデンサ206の両端の電圧を検出し直流電圧値293を制御回路207に出力する直流電圧検出回路211とを備えている。また、電力変換装置300の直流出力に接続したインバータ回路210と電動機を内蔵した圧縮機220とを備えたモータ駆動部301を合わせて示す。   A conventional power factor improvement type power converter described in Patent Document 1 will be described with reference to FIG. As shown in FIG. 5, the conventional power conversion apparatus 300 includes a reactor 202 having one end connected to one output end of the single-phase AC power supply 201, and a short-circuit unit 203 that short-circuits the AC power supply 201 via the reactor 202. A rectifier circuit 204 connected via the input current detection circuit 230 between the other end of the AC power supply 201 not connected to the AC power supply 201 and a smoothing capacitor 206 connected in series to both ends of the DC output of the rectifier circuit 204. One of the AC inputs of the rectifier circuit 204, a control circuit 207 that outputs a short-circuit pulse signal 296 that operates the short-circuit means 203 using a zero-cross signal 292 that detects a zero-cross of the AC power supply 201 as a reference timing, and an input from the AC power supply 201 The input current detection circuit 23 detects the input current Is and outputs the input current value 298 to the control circuit 207. When, and a DC voltage detection circuit 211 which outputs a DC voltage value 293 detects the voltage across the smoothing capacitor 206 to the control circuit 207. In addition, a motor drive unit 301 including an inverter circuit 210 connected to a DC output of the power conversion device 300 and a compressor 220 incorporating a motor is also shown.

ゼロクロス検出回路208は、交流電源201両端の電圧を入力し、交流電源201の交流電圧がゼロクロス点を通過し極性が変わるタイミングで立ち下がり信号、あるいは立ち上がり信号を出力するゼロクロス信号292を出力し、制御回路207へ入力される。   The zero-cross detection circuit 208 inputs the voltage across the AC power supply 201, and outputs a zero-cross signal 292 that outputs a falling signal or a rising signal when the AC voltage of the AC power supply 201 passes through the zero-crossing point and the polarity changes. Input to the control circuit 207.

制御回路207は、入力されたゼロクロス信号292の立ち上がりもしくは立下りを基準タイミングとして、そこから短絡手段203が短絡動作を開始するまでの期間である遅れ時間T1、および短絡する期間である動作時間T2を設定し、短絡パルス信号296を短絡手段203に出力する。遅れ時間T1および動作時間T2は制御回路207にあらかじめ記憶させたり、制御回路207で計算して求める。   The control circuit 207 uses the rising or falling edge of the input zero-cross signal 292 as a reference timing, the delay time T1 from which the short-circuit means 203 starts the short-circuit operation, and the operation time T2 that is the short-circuit period. And short circuit pulse signal 296 is output to short circuit means 203. The delay time T1 and the operation time T2 are previously stored in the control circuit 207 or calculated by the control circuit 207.

短絡手段203は、電力半導体スイッチング素子で構成されており、短絡パルス信号296に従ってリアクトル202を介して交流電源201を短絡する。この短絡開放動作によって交流電源201の力率を改善する。   The short-circuit means 203 is composed of a power semiconductor switching element, and short-circuits the AC power supply 201 via the reactor 202 according to the short-circuit pulse signal 296. The power factor of the AC power supply 201 is improved by this short-circuit opening operation.

本従来例の電力変換装置300は、交流電源201を電源半周期に1回もしくは複数回、リアクトル202を介して短絡する動作を行って、電源電流の通電角を広げ電源力率を改善しながら、交流電力を直流電力に変換する。   The power conversion device 300 of the conventional example performs an operation of short-circuiting the AC power supply 201 through the reactor 202 once or a plurality of times in a half cycle of the power supply, widening the conduction angle of the power supply current and improving the power supply power factor. , AC power is converted to DC power.

遅れ時間T1と動作時間T2は、入力電流を検出しある所定の区間内であれば遅れ時間T1と動作時間T2の和が等しくなるという関係を利用し、直流電圧Vdを一定になるように制御されるものである。また、入力電流に応じてそれぞれ遅れ時間T1と動作時間T2をそれぞれ関数を用いて独立に制御を行うというものである。
特開2006−180700号公報
The delay time T1 and the operation time T2 are controlled so as to make the DC voltage Vd constant by utilizing the relationship that the sum of the delay time T1 and the operation time T2 is equal if the input current is detected within a predetermined interval. It is what is done. In addition, the delay time T1 and the operation time T2 are independently controlled using functions according to the input current.
JP 2006-180700 A

前記従来技術では、遅れ時間T1と動作時間T2の決定に交流電源の入力電流を使用しており、入力電流を検出する必要があった。   In the prior art, the input current of the AC power source is used to determine the delay time T1 and the operation time T2, and it is necessary to detect the input current.

直流電圧とインバータ出力電流よりインバータ出力電力を演算で求め、遅れ時間T1と動作時間T2を決定することで、入力電流の検出を行うことなく電力変換装置の制御を行うものである。   By calculating the inverter output power from the DC voltage and the inverter output current, and determining the delay time T1 and the operation time T2, the power converter is controlled without detecting the input current.

(実施の形態1)
請求項1、請求項2、請求項4、請求項6に記載の電力変換装置を図1、図2、図3、図4を用いて説明する。
(Embodiment 1)
The power converters according to claims 1, 2, 4, and 6 will be described with reference to FIGS. 1, 2, 3, and 4. FIG.

図1は本発明をモータ駆動に利用したブロック図である。単相交流電源1に一端を接続したリアクトル2と、リアクトル2を介して交流電源1を短絡する短絡手段3と、リアクトル2の交流電源1に接続していない側と交流電源1の他端との間に接続した整流回路4と、整流回路4の直流出力の両端に並列接続した平滑コンデンサ6と、交流電源1のゼロクロスを検出するゼロクロス信号92を基準タイミングとして短絡手段3を動作させる短絡パルス信号96を出力する制御回路7と、制御回路7に内蔵されインバータの制御を行うインバータ駆動部12と、平滑コンデンサ6と並列に接続したインバータ回路10と、インバータ回路10から出力されるインバータ出力電流Io(以下Io)を検出し、インバータ駆動部12にインバータ出力電流値98を出力するインバータ出力電流検出回路9と、平滑コンデンサ6の両端の電圧Vd(以下Vd)を検出しインバータ駆動部12に直流電圧値93を出力する直流電圧検出回路11で構成され、インバータ駆動部12によって、インバータ出力電流値98に対応した出力によって駆動されるモータ20を接続している。   FIG. 1 is a block diagram in which the present invention is used for driving a motor. Reactor 2 having one end connected to single-phase AC power supply 1, short-circuit means 3 for short-circuiting AC power supply 1 via reactor 2, side not connected to AC power supply 1 of reactor 2, and the other end of AC power supply 1 A short-circuit pulse for operating the short-circuit means 3 with reference to a rectifier circuit 4 connected in between, a smoothing capacitor 6 connected in parallel to both ends of the DC output of the rectifier circuit 4, and a zero-cross signal 92 for detecting a zero-cross of the AC power supply 1 A control circuit 7 that outputs a signal 96; an inverter drive unit 12 that is built in the control circuit 7 and controls the inverter; an inverter circuit 10 that is connected in parallel to the smoothing capacitor 6; and an inverter output current that is output from the inverter circuit 10 An inverter output current detection circuit 9 that detects Io (hereinafter referred to as Io) and outputs an inverter output current value 98 to the inverter drive unit 12. The DC voltage detection circuit 11 detects the voltage Vd (hereinafter referred to as Vd) across the smoothing capacitor 6 and outputs a DC voltage value 93 to the inverter drive unit 12. The inverter drive unit 12 corresponds to the inverter output current value 98. The motor 20 driven by the output is connected.

図2に交流電源1の交流電圧とゼロクロス信号92と短絡パルス信号96の遅れ時間T1(以下T1)、動作時間T2(以下T2)との関係を示す。ゼロクロス検出回路8は、交流電源1の両端の電圧を入力し、交流電源1の交流電圧Va(以下Va)がゼロクロス点を通過し、極性が変わるタイミングで立ち上がり信号、あるいは立ち上がり信号を出力し、これはゼロクロス信号92として制御回路7へ入力される。制御回路7は、入力されたゼロクロス信号92の立ち上がり、あるいは立下りを基準として、そこから短絡手段3が動作するまでの期間である遅れ時間T1、および短絡している期間である動作時間T2として、短絡パルス信号96として短絡手段3へ出力する。短絡手段3はダイオードブリッジとIGBTなど半導体スイッチング素子で構成されており、短絡パルス信号96に従って交流電源1をリアクトル2を介して短絡することで、交流電源1の力率を改善する。   FIG. 2 shows the relationship between the AC voltage of the AC power source 1, the zero-cross signal 92, and the delay time T1 (hereinafter T1) and operation time T2 (hereinafter T2) of the short-circuit pulse signal 96. The zero-cross detection circuit 8 inputs the voltage across the AC power supply 1 and outputs a rising signal or a rising signal when the AC voltage Va (hereinafter referred to as Va) of the AC power supply 1 passes through the zero-cross point and the polarity changes. This is input to the control circuit 7 as a zero cross signal 92. The control circuit 7 uses, as a reference, the rising or falling edge of the input zero-cross signal 92 as a delay time T1 that is a period until the short-circuit means 3 operates and an operation time T2 that is a short-circuiting period. The short-circuit pulse signal 96 is output to the short-circuit means 3. The short-circuit means 3 is configured by a semiconductor switching element such as a diode bridge and IGBT, and improves the power factor of the AC power supply 1 by short-circuiting the AC power supply 1 via the reactor 2 according to the short-circuit pulse signal 96.

図3を用いてインバータ出力電力Wi(以下Wi)の算出方法を説明する。Wiはインバータの出力電圧Vo(以下Vo)とIoと位相差φの関数である。Voはインバータ駆動回路12によってモータ20の制御を行うために、Vdとインバータの駆動信号よりdq軸上のベクトル   A method for calculating the inverter output power Wi (hereinafter referred to as Wi) will be described with reference to FIG. Wi is a function of the output voltage Vo (hereinafter referred to as Vo) and Io of the inverter and the phase difference φ. In order to control the motor 20 by the inverter drive circuit 12, Vo is a vector on the dq axis from the drive signal of Vd and the inverter.

Figure 2008245450
として算出されている。dq軸はモータ制御において既知であるので説明を省略する。Ioはインバータ出力電流検出回路9のインバータ電流出力98にてインバータ駆動部12に入力され、同じくdq軸上のベクトル
Figure 2008245450
It is calculated as. Since the dq axis is known in motor control, the description thereof is omitted. Io is input to the inverter drive unit 12 at the inverter current output 98 of the inverter output current detection circuit 9, and is also a vector on the dq axis.

Figure 2008245450
として算出されている。また、位相差φはdq軸上でVoとIoの角度差で表され、図3に示すベクトル図となる。このとき電力Wiは、
Figure 2008245450
It is calculated as. Further, the phase difference φ is represented by an angular difference between Vo and Io on the dq axis, and becomes a vector diagram shown in FIG. At this time, the power Wi is

Figure 2008245450
と定義できる。右辺はベクトルの内積の計算式でもあるので、
Figure 2008245450
Can be defined. Since the right side is also the calculation formula for the inner product of vectors,

Figure 2008245450
となる。ここで、
Figure 2008245450
It becomes. here,

Figure 2008245450
Figure 2008245450

Figure 2008245450
と置き換えると、
Figure 2008245450
Is replaced by

Figure 2008245450
としてWiが計算される。
Figure 2008245450
Wi is calculated as follows.

次に、図4を用いてT1とT2の決定方法を説明する。図4はWiとT1、T2の力率最適点の関係をシミュレーションにて求めたものである。T1はWiに対して単調減少しており、T2はWiに対して単調増加することが分かる。つまりWiの変化に対しT1、T2を変化させることによって力率最適点での運転を行うことが出来る。通常Wiが増加するに従いVdが減少するため、Vdを一定に保つように制御を行うとT1、T2は図4の、T1のVdの補正を含む力率最適点150(以下T1a)、T2のVdの補正を含む力率最適点151(以下T2a)のように変化する。   Next, a method for determining T1 and T2 will be described with reference to FIG. FIG. 4 shows the relationship between Wi, T1, and T2 optimum power factor points obtained by simulation. It can be seen that T1 monotonically decreases with respect to Wi, and T2 monotonically increases with respect to Wi. That is, the operation at the power factor optimum point can be performed by changing T1 and T2 with respect to the change in Wi. Usually, Vd decreases as Wi increases. Therefore, when control is performed to keep Vd constant, T1 and T2 are power factor optimum points 150 (hereinafter referred to as T1a) including T1 Vd correction in FIG. It changes like a power factor optimum point 151 (hereinafter referred to as T2a) including the correction of Vd.

Wiの変化に対するT1の変化はT2より小さいため、より安定な制御を行うためにT1を図3で説明したWiの関数で制御し、T2はシミュレーションあるいは実測にて決定したT2aを制御装置7に予め記憶しておきWiの値に応じたT2aの値とすることで、T1、T2が力率最適点になるように制御できる。   Since the change in T1 with respect to the change in Wi is smaller than T2, T1 is controlled by the Wi function described with reference to FIG. 3 in order to perform more stable control, and T2 is determined by simulation or actual measurement. By storing in advance and setting the value of T2a according to the value of Wi, control can be performed so that T1 and T2 become power factor optimum points.

(実施の形態2)
請求項3、請求項5に記載の電力変換装置を説明する。回路構成、ゼロクロス信号とT1、T2との関係、T1の決定方法は実施の形態1と同様である。
(Embodiment 2)
The power conversion device according to claims 3 and 5 will be described. The circuit configuration, the relationship between the zero cross signal and T1, T2, and the method for determining T1 are the same as those in the first embodiment.

Vdを一定に保った運転をするとT1はWiに対して単調減少し、T2はWiに対して単調増加するという特性を持つ。つまりWiの変化に対しT1、T2を変化させることによって力率最適点での運転を行うことが出来る。図3で説明したWiの関数を用いT1を決定すれば、T2は既知のPI制御を行うことによって力率最適点になるように制御できる。   When operating with Vd kept constant, T1 monotonously decreases with respect to Wi, and T2 monotonously increases with respect to Wi. That is, the operation at the power factor optimum point can be performed by changing T1 and T2 with respect to the change in Wi. If T1 is determined using the Wi function described in FIG. 3, T2 can be controlled to be the power factor optimum point by performing known PI control.

なお、Io検出にはカレントトランスだけでなく、シャント抵抗を使用することでも同様の効果を得ることが出来る。   The same effect can be obtained by using not only a current transformer but also a shunt resistor for Io detection.

また、インバータ負荷が複数個あっても各出力電流を検知すれば、それを合算することで力率改善制御を行うことが出来る。また、インバータ負荷以外の回路の消費電力はインバータ負荷と比較して小さい場合無視して制御を行っても力率の低下は小さい。   Moreover, even if there are a plurality of inverter loads, if each output current is detected, the power factor improvement control can be performed by adding them. Further, even if the power consumption of the circuits other than the inverter load is smaller than that of the inverter load, the power factor is small even if the control is performed by ignoring it.

本発明の電力変換装置は、電力変換装置を用いて力率改善を行いインバータ負荷を持つ用途に幅広く適用できるものである。   The power converter of the present invention can be widely applied to applications having inverter loads by improving the power factor using the power converter.

本発明の実施の形態1、2における電力変換装置のブロック図The block diagram of the power converter device in Embodiment 1, 2 of this invention 本発明の交流電圧、ゼロクロス信号、短絡パルス出力のT1、T2を表した図Diagram showing T1, T2 of AC voltage, zero cross signal, short circuit pulse output of the present invention 本発明の実施の形態1、2におけるWiの計算式と内積の説明図Explanatory drawing of the calculation formula and inner product of Wi in Embodiments 1 and 2 of the present invention 本発明の実施の形態1,2におけるT1、T2とWiの関係を表した説明図Explanatory drawing showing the relationship between T1, T2 and Wi in Embodiments 1 and 2 of the present invention 従来の実施例における制御装置のブロック図Block diagram of a control device in a conventional embodiment

符号の説明Explanation of symbols

1 交流電源
2 リアクトル
3 短絡手段
4 整流回路
6 平滑コンデンサ
7 制御回路
8 ゼロクロス検出回路
9 インバータ出力電流検出手段
10 インバータ回路
11 直流電圧検出回路
12 インバータ駆動部
20 モータ
92 ゼロクロス信号
93 直流電圧値
96 短絡パルス信号
100 電力変換部
150 T2のVdの補正を含む力率最適点
151 T1のVdの補正を含む力率最適点
201 交流電源
202 リアクトル
203 短絡手段
204 整流回路
206 平滑コンデンサ
207 制御回路
208 ゼロクロス検出回路
210 インバータ回路
211 直流電圧検出回路
220 圧縮機
230 入力電流検出手段
291 交流電源波形
292 ゼロクロス信号
293 直流電圧
296 短絡パルス信号
298 入力電流値
300 電力変換装置
301 モータ駆動部
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Reactor 3 Short circuit means 4 Rectifier circuit 6 Smoothing capacitor 7 Control circuit 8 Zero cross detection circuit 9 Inverter output current detection means 10 Inverter circuit 11 DC voltage detection circuit 12 Inverter drive part 20 Motor 92 Zero cross signal 93 DC voltage value 96 Short circuit Pulse signal 100 Power conversion unit 150 Power factor optimum point including correction of Vd of T2 151 Power factor optimum point including correction of Vd of T1 201 AC power source 202 Reactor 203 Short-circuit means 204 Rectifier circuit 206 Smoothing capacitor 207 Control circuit 208 Zero cross detection Circuit 210 Inverter circuit 211 DC voltage detection circuit 220 Compressor 230 Input current detection means 291 AC power supply waveform 292 Zero cross signal 293 DC voltage 296 Short-circuit pulse signal 298 Input current value 300 Power conversion Location 301 motor driver

Claims (6)

交流電源に一端を接続したリアクトルと、前記リアクトルの他端に接続した交流電源短絡手段と、前記電源短絡手段と並列に接続された整流回路と、前記整流回路出力端に並列に接続された平滑コンデンサと、前記交流電源のゼロクロスを検出するゼロクロス検出回路と、前記平滑コンデンサの電圧を検出する電圧検出回路と、前記整流回路の出力端に入力端を接続したインバータ回路と、前記電源短絡手段と前記インバータ回路を制御する制御回路と、前記インバータ回路の出力端に接続したインバータ負荷に流れる電流を検出するインバータ出力電流検出回路とで構成され、前記交流電源のゼロクロスから短絡動作を開始するまでの遅れ時間T1と、短絡期間である動作時間T2を、前記ゼロクロス信号と前記電圧検出回路の出力と前記インバータ出力電流検出回路の出力とを用い制御することを特徴とする電力変換装置。 A reactor having one end connected to an AC power supply, an AC power supply short-circuit means connected to the other end of the reactor, a rectifier circuit connected in parallel with the power-supply short-circuit means, and a smoothing connected in parallel to the output terminal of the rectifier circuit A capacitor, a zero-cross detection circuit for detecting a zero-cross of the AC power supply, a voltage detection circuit for detecting a voltage of the smoothing capacitor, an inverter circuit having an input terminal connected to an output terminal of the rectifier circuit, and the power supply short-circuit means It is composed of a control circuit that controls the inverter circuit and an inverter output current detection circuit that detects a current flowing through an inverter load connected to the output terminal of the inverter circuit, from the zero crossing of the AC power supply until the short circuit operation is started. The delay time T1 and the operation time T2, which is a short circuit period, are set to the zero cross signal, the output of the voltage detection circuit, and the Power conversion device and controls using the output of the inverter output current detection circuit. 請求項1に記載の電力変換装置において、前記電圧検出回路の直流電圧出力と前記インバータ出力電流検出回路のインバータ出力電流出力と制御回路が出力しているインバータ駆動出力から算出した前記インバータ出力電力の関数で、前記遅れ時間T1を制御することを特徴とする電力変換装置。 2. The power conversion device according to claim 1, wherein the inverter output power calculated from the DC voltage output of the voltage detection circuit, the inverter output current output of the inverter output current detection circuit, and the inverter drive output output by the control circuit. A power conversion device, wherein the delay time T1 is controlled by a function. 請求項1に記載の電力変換装置において、目標との偏差を使用して前記動作時間T2を制御することを特徴とする電力変換装置。 The power conversion device according to claim 1, wherein the operation time T2 is controlled using a deviation from a target. 請求項1に記載の電力変換装置において、前記インバータと短絡手段の動作前に検出した停止時直流電圧出力と、前記インバータ出力電力と前記停止時直流電圧出力から求まる力率の最良点をモデリングした力率モデル値を用いて、前記動作時間T2を制御することを特徴とする電力変換装置。 The power conversion device according to claim 1, wherein the DC voltage output at the time of stop detected before the operation of the inverter and the short-circuit means, and the best point of the power factor obtained from the inverter output power and the DC voltage output at the time of stop are modeled. A power conversion device that controls the operation time T2 using a power factor model value. 請求項1に記載の電力変換装置において、前記遅れ時間T1の算出を請求項2の方法で行い、前記動作時間T2の算出を請求項3に記載の方法で制御することを特徴とする電力変換装置。 The power conversion device according to claim 1, wherein the delay time T1 is calculated by the method of claim 2, and the calculation of the operation time T2 is controlled by the method of claim 3. apparatus. 請求項1に記載の電力変換装置において、前記遅れ時間T1の算出を請求項2の方法で行い、前記動作時間T2の算出を請求項4に記載の方法で制御することを特徴とする電力変換装置。 The power conversion device according to claim 1, wherein the calculation of the delay time T1 is performed by the method of claim 2, and the calculation of the operation time T2 is controlled by the method of claim 4. apparatus.
JP2007083737A 2007-03-28 2007-03-28 Power converter Expired - Fee Related JP5272319B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007083737A JP5272319B2 (en) 2007-03-28 2007-03-28 Power converter
CN2008100096808A CN101277059B (en) 2007-03-28 2008-02-20 Electric power transformation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083737A JP5272319B2 (en) 2007-03-28 2007-03-28 Power converter

Publications (2)

Publication Number Publication Date
JP2008245450A true JP2008245450A (en) 2008-10-09
JP5272319B2 JP5272319B2 (en) 2013-08-28

Family

ID=39916114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083737A Expired - Fee Related JP5272319B2 (en) 2007-03-28 2007-03-28 Power converter

Country Status (2)

Country Link
JP (1) JP5272319B2 (en)
CN (1) CN101277059B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081116A (en) * 2009-12-01 2011-06-01 广芯电子技术(上海)有限公司 Adaptive digital method for detecting zero crossing point of alternating voltage
CN109980914A (en) * 2019-05-17 2019-07-05 广东美的制冷设备有限公司 Circuit of power factor correction and air conditioner
CN110011530A (en) * 2019-05-17 2019-07-12 广东美的制冷设备有限公司 Circuit of power factor correction and air conditioner
CN112913130A (en) * 2018-10-26 2021-06-04 住友电气工业株式会社 Voltage supply system and power supply constituting the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575423B2 (en) * 2009-05-25 2014-08-20 株式会社東芝 Motor drive device for washing machine
JP6605836B2 (en) * 2015-04-21 2019-11-13 東芝ライフスタイル株式会社 Motor drive device for washing machine
WO2017130357A1 (en) * 2016-01-28 2017-08-03 三菱電機株式会社 Power converter
CN108418414A (en) * 2018-03-26 2018-08-17 广汽丰田汽车有限公司 Circuit of power factor correction, device and method
CN109286349A (en) * 2018-06-28 2019-01-29 浙江绍兴苏泊尔生活电器有限公司 Motor control method, motor control circuit and food processor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312260A (en) * 2004-04-26 2005-11-04 Hitachi Home & Life Solutions Inc Device for driving rotating machine equipped with power factor improving circuit
JP2006174689A (en) * 2004-11-18 2006-06-29 Matsushita Electric Ind Co Ltd Dc power supply device
JP2007215385A (en) * 2006-02-13 2007-08-23 Mitsubishi Electric Corp Dc power supply

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050111204A (en) * 2004-05-21 2005-11-24 엘지전자 주식회사 Method for power factor compensation of inverter control circuit
CN1801589A (en) * 2005-10-12 2006-07-12 珠海格力电器股份有限公司 Direct-current power supply device and method for adjusting output power thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005312260A (en) * 2004-04-26 2005-11-04 Hitachi Home & Life Solutions Inc Device for driving rotating machine equipped with power factor improving circuit
JP2006174689A (en) * 2004-11-18 2006-06-29 Matsushita Electric Ind Co Ltd Dc power supply device
JP2007215385A (en) * 2006-02-13 2007-08-23 Mitsubishi Electric Corp Dc power supply

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081116A (en) * 2009-12-01 2011-06-01 广芯电子技术(上海)有限公司 Adaptive digital method for detecting zero crossing point of alternating voltage
CN112913130A (en) * 2018-10-26 2021-06-04 住友电气工业株式会社 Voltage supply system and power supply constituting the same
CN109980914A (en) * 2019-05-17 2019-07-05 广东美的制冷设备有限公司 Circuit of power factor correction and air conditioner
CN110011530A (en) * 2019-05-17 2019-07-12 广东美的制冷设备有限公司 Circuit of power factor correction and air conditioner

Also Published As

Publication number Publication date
CN101277059A (en) 2008-10-01
CN101277059B (en) 2010-11-10
JP5272319B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5272319B2 (en) Power converter
US9866156B2 (en) Motor control device and motor control method
JP6232935B2 (en) Power supply apparatus and abnormality determination method for power supply apparatus
EP3168974B1 (en) Power conversion device
JP2009118621A (en) Controller of multi-phase electric motor
JP6525364B2 (en) Power converter
JP2008104282A (en) Inverter device
WO2007114268A1 (en) Battery charging apparatus and delay angle control method in the same
JP2017534240A (en) Converter and method of operating the converter
JP6686685B2 (en) Power converter
JP5326913B2 (en) Power converter
WO2014033864A1 (en) Power source device and power source device control method
JP3848903B2 (en) Power converter
JP2003209976A (en) Pwm inverter and its current detecting method
WO2020059814A1 (en) Motor control device, motor system and inverter control method
JP2009118681A (en) Controller of multi-phase electric motor
JP5252476B2 (en) Control device for multiphase motor
JP5191152B2 (en) Motor drive device
JP2009183040A (en) Power conversion equipment
JP6501401B2 (en) Phase detection circuit and switching power supply
JP2021019458A (en) Motor controller and motor system
JP4248560B2 (en) Power converter
JP2007104779A (en) Method for current offset adjustment and power conversion equipment using the same
JP2007143352A (en) Power source voltage detection device of inverter
JP4349068B2 (en) Matrix converter system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

LAPS Cancellation because of no payment of annual fees