WO2014029895A1 - Architecturally integrated thermo-active air-conditioning system using air and including multiple energy sources - Google Patents

Architecturally integrated thermo-active air-conditioning system using air and including multiple energy sources Download PDF

Info

Publication number
WO2014029895A1
WO2014029895A1 PCT/ES2013/000190 ES2013000190W WO2014029895A1 WO 2014029895 A1 WO2014029895 A1 WO 2014029895A1 ES 2013000190 W ES2013000190 W ES 2013000190W WO 2014029895 A1 WO2014029895 A1 WO 2014029895A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
conditioning system
air conditioning
thermoactive
energy sources
Prior art date
Application number
PCT/ES2013/000190
Other languages
Spanish (es)
French (fr)
Inventor
Jesus CASTELLANOS ORTEGA
Adolfo Castellanos Ortega
Original Assignee
Castellanos Ortega Jesus
Adolfo Castellanos Ortega
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Castellanos Ortega Jesus, Adolfo Castellanos Ortega filed Critical Castellanos Ortega Jesus
Publication of WO2014029895A1 publication Critical patent/WO2014029895A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/10Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through heat-exchange ducts in the walls, floor or ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F5/005Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using energy from the ground by air circulation, e.g. "Canadian well"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/55Solar heat collectors using working fluids the working fluids being conveyed between plates with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/69Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of shingles or tiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/10Heat storage materials, e.g. phase change materials or static water enclosed in a space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/005Hot-air central heating systems; Exhaust gas central heating systems combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S2020/10Solar modules layout; Modular arrangements
    • F24S2020/13Overlaying arrangements similar to roof tiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention is part of the bioclimatic and air conditioning sector in general as well as the production and storage of renewable energy applied to construction.
  • the air conditioning of buildings is obtained by different techniques that involve a greater or lesser contribution of external energy from various sources: electricity, solar, biomass, fossil fuels, gas, geothermal energy, etc.
  • thermoactive floor slabs For the use of heat, radiant floors are proving to be the system that provides more comfort, both for heating and for cooling the environment. This has led to the creation of the concept of so-called thermoactive floor slabs, TABS in English (Thermo-active building systems). They consist of floor slabs that house pipes, usually made of plastic material, through which hot or cold water is passed, depending on whether it is winter or summer. The great thermal inertia of the concrete, makes the temperature very stable in the enclosures in which it is used, in contrast to those in which the ambient air is directly heated, either with radiators or heat pumps.
  • Water is usually used as a carrier element due to its high specific heat and, therefore, the small diameters of its ducts. Its disadvantages: corrosion, calcification, leaks that can cause great damages, cost of the pumps, space and duration of the accumulators, when there are them. Complications that arise when integrating different heat or cold production systems in the same installation, and perhaps technically the most important, its limited range of use between 0 and 100 °. As for combining several systems in a circuit, they are usually only done with solar thermal panels by water on deck with a single support system for heating or air conditioning production: heat pump, (geothermal or aerothermal), fuel, gas or biomass boiler, or, recently, gas microcogeneration apparatus.
  • the system proposed in this patent application consists of a closed circuit of air ducts, moved by simple fans, which includes:
  • a floor, slab or technical floor characterized by integrating air passage ducts, in the form of a maze. Its mission is, thanks to its great thermal inertia, to serve as heat or cold storage, while also damping the high temperatures that air can reach in chimneys or boilers. Simultaneously it is the thermal emitter, by radiation.
  • a solar cover characterized by integrating air ducts under glass sheets, which can take any measure, color and shape to completely blend in with the outer elements of the roof: slate pieces or flat tiles, for example .
  • b.- Geothermal collector characterized in that the closed circuit air is passed through a moisture drain, built in direct contact with the surrounding terrain, under the subsoil slab or behind the basement walls. In this way, the air takes the temperature of the land that is usually stable throughout the year (from 10 to 18 ° C), so it serves to cool the thermal slabs in summer.
  • FIG. 2 Detail of the solar roof seen from its upper part, where the veneered sheet, the duct and the practicable cover (19) are appreciated, as well as the integration of the glasses with the slate (scratched to better understand the difference with Glass).
  • Figure 4. Typical slab-vault slab, seen from one of its ends, in which the openings for connection with the vertical and distribution ducts are shown.
  • the hollow may be in its upper or lower face and may consist of elbow tubes.
  • Figure 6. Example of a "labyrinth" plant or air path under the floor in a room with attached bathroom (to the left of the image). The feet of the vertical ducts made on site are appreciated.
  • Slab or active floor slabs On the insulation (1), a concrete or ceramic compression slab or layer (2) is placed. In addition to support, it has the function of storing heat Thanks to its mass. On this, partitions (3) and lids of any material are raised, to generate air ducts with a labyrinth arrangement, arranged so that it can control, depending on its route, the heat or cold of various rooms separately. For this, both the dimensioning of the ducts and the placement of fans (4) and hatches (19 in figure 2) that are operated from the outside that regulate the air flow will be used.
  • the surface of the material (5) of the upper face of the duct will be airtight. It may be the floor covering itself, for example wood or marble flooring. In other cases, it will support the coating and may receive a new compression layer that, with its additional mass, will increase the storage capacity of the system.
  • the system to be used will depend on the users of the different levels being different (apartments, flats or condominiums) or the same (chalets, villas or townhouses).
  • the gaps of the joists-vaults may be used to transmit the air and store the heat
  • the distribution ducts may take the forms of false beams located at each end of the joists. Isolation between floors can be dispensed with. ( Figure 4).
  • Complete roof or solar panels for hot air production characterized by being constituted by two complementary elements: a sheet metal (6) of the type used for roofs of industrial buildings. It is fixed on the outside, glass or transparent plastic (7) or translucent that cover it, leaving free the space between the rails that forms the sheet to circulate air in its interstices, which is heated as it passes through it, due to the effect of solar radiation.
  • the sheet will have one or several perforations in its lower part (8) through which the air coming from the closed circuit will enter, and other holes in the upper part (9) for its exit. These will be carried out in such a way that they do not harm the use as a roof enclosure and waterproofing of the slabs.
  • glass of dimensions and shades of color such that they can be combined without any frame separation, with slate plates (10) or tiles, for
  • the sheet to be used will comprise a sandwich type element with three layers, the upper one will be the one already mentioned with longitudinal freckled reliefs, the intermediate one will be an insulator resistant to high temperatures, such as rock wool or glass wool (12 ) and the lower one, which could be decorative: in veneer, wood, plasterboard or others.
  • the roof enclosure integrates: waterproofing, insulation, ceiling decoration and, thanks to the superior glass cover we propose, the production of hot air (or cold at summer nights, if needed lower the floor temperature).
  • Geothermal collector This involves modifying the construction elements that remain in direct contact with the land surrounding the building (13): supports of the lower slab (14) of the hearth and basement walls. Instead of gravel or the usual plastic drains, we propose bricks (15) or blocks with holes like those of the patent ES 2346616. Its objective will be the thermal transmission, by simple contact, of the natural temperature of the land (normally between 10 to 18 ° to one meter deep) to the air that circulates in its holes. This will normally be used to cool the circuit, usually in summer. It may be connected directly to the closed circuit or indirectly in an independent and open circuit that feeds an exchanger or the outdoor unit of a heat pump to improve its thermal efficiency (COP).
  • COP thermal efficiency
  • the Soil moisture in contact with the external collection elements is an advantage, because it improves thermal transmission.
  • the air ducts (11) will be connected to the lower and upper perforations of the solar cover. These may be additionally provided with a trapdoor (19 in figure 2) manually or mechanically operated to open the circuit when excessive heat occurs, as well as an outlet for an air-water exchanger that allows the production of domestic hot water (DHW) .
  • DHW domestic hot water
  • the vertical ducts can be made with other construction elements such as plasterboard or ceramic partition walls with a vertical hole. Since they are air ducts, any support system such as stoves (16) can be integrated with the chimney jacket by double concentric tube, indoor air conditioning units (17) preferably with fan coil and free cooling (18), cogeneration boilers, and any other present or future device that heats or cools the air or uses it as a carrier fluid.
  • the economic advantage is that they are usually lower cost systems than those that use water or liquids and the possible leaks in the system are not important.
  • the entire system can be controlled by fans and dampers, manually or automatically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Building Environments (AREA)

Abstract

The invention relates to an architecturally-integrated thermo-active air-conditioning system using air and including multiple energy sources, characterised in that it includes the following elements in a closed circuit: 1. thermo-active top slabs and slabs (3, 5) through which the conditioned air passes, the temperature thereof being transmitted to the mass of the concrete, which, owing to its thermal inertia, acts simultaneously as an energy storage means and a radiant heated floor; 2. as well as one or more of the following elements, namely 2.a. solar panels (7) for producing hot air, designed to blend in with the roof slates or tiles (10), 2.b. drains (15) in the subsoil or basement walls, modified to collect the stable temperature of the earth (13) surrounding the building; 3. ducts for conveying the air through the fans which, optionally, include other auxiliary devices, such as fans (4), probes, exchangers, chimneys (16), heat pumps (17, 18), boilers, etc.

Description

SISTEMA DE CLIMATIZACION TERMOACTIVO POR AIRE CON FUENTES ENERGETICAS MULTIPLES E INTEGRACION ARQUITECTONICA.  AIR THERMOACTIVE AIR CONDITIONING SYSTEM WITH MULTIPLE ENERGETIC SOURCES AND ARCHITECTURAL INTEGRATION.
Sector de la técnica. Technical sector
La invención se encuadra en el sector de la bioclimática y climatización en general así como en la producción y almacenamiento de energías renovables aplicadas a la construcción.  The invention is part of the bioclimatic and air conditioning sector in general as well as the production and storage of renewable energy applied to construction.
Estado de la técnica. State of the art
La climatización de los edificios se obtiene por distintas técnicas que implican un mayor o menor aporte de energía exterior procedente de diversas fuentes: electricidad, solar, biomasa, combustibles fósiles, gas, geotermia, etc.  The air conditioning of buildings is obtained by different techniques that involve a greater or lesser contribution of external energy from various sources: electricity, solar, biomass, fossil fuels, gas, geothermal energy, etc.
Las placas solares, fotovoltaicas o térmicas, se imponen en cubiertas y fachadas, geotermia, cogeneración, biomasa o bombas de calor son sistemas de producción de energía cada vez más frecuentes. En cuanto al almacenamiento, destacan las baterías para la energía eléctrica y los acumuladores de agua caliente para ACS y, muy raramente, para calefacción.  Solar panels, photovoltaic or thermal, are imposed on roofs and facades, geothermal, cogeneration, biomass or heat pumps are increasingly frequent energy production systems. As for storage, batteries for electric power and hot water accumulators for DHW and, very rarely, for heating stand out.
Para el uso del calor, los suelos radiantes están demostrando ser el sistema que proporciona más confort, tanto para calefacción como para enfriamiento del ambiente. Esto ha llevado a la creación del concepto de los llamados forjados termoactivos, TABS en inglés (Thermo-active building systems). Consisten en forjados que alojan en su interior tubos, generalmente de material plástico, por los que se hace pasar agua caliente o fría según sea invierno o verano. La gran inercia térmica del hormigón, hace que la temperatura se mantenga muy estable en los recintos en que se utiliza, en contraste con aquéllos en los que se calienta directamente el aire del ambiente, bien con radiadores o bombas de calor.  For the use of heat, radiant floors are proving to be the system that provides more comfort, both for heating and for cooling the environment. This has led to the creation of the concept of so-called thermoactive floor slabs, TABS in English (Thermo-active building systems). They consist of floor slabs that house pipes, usually made of plastic material, through which hot or cold water is passed, depending on whether it is winter or summer. The great thermal inertia of the concrete, makes the temperature very stable in the enclosures in which it is used, in contrast to those in which the ambient air is directly heated, either with radiators or heat pumps.
Se suele utilizar el agua como elemento portador por su alto calor específico y, por tanto, los pequeños diámetros de sus conductos. Sus inconvenientes: corrosión, calcificación, fugas que pueden causar grandes daños, coste de las bombas, espacio y duración de los acumuladores, cuando los hay. Complicaciones que se presentan a la hora de integrar en una misma instalación distintos sistemas de producción de calor o frío y quizás técnicamente la más importante, su rango de utilización limitado entre los 0 y 100°. En cuanto a combinar varios sistemas en un circuito solo se suelen hacer con las placas solares térmicas por agua en cubierta con un solo sistema de apoyo para producción de calefacción o climatización: bomba de calor, (de geotermia o aerotermia), caldera de fuel, gas o biomasa, o, recientemente, aparato de microcogeneración por gas. Water is usually used as a carrier element due to its high specific heat and, therefore, the small diameters of its ducts. Its disadvantages: corrosion, calcification, leaks that can cause great damages, cost of the pumps, space and duration of the accumulators, when there are them. Complications that arise when integrating different heat or cold production systems in the same installation, and perhaps technically the most important, its limited range of use between 0 and 100 °. As for combining several systems in a circuit, they are usually only done with solar thermal panels by water on deck with a single support system for heating or air conditioning production: heat pump, (geothermal or aerothermal), fuel, gas or biomass boiler, or, recently, gas microcogeneration apparatus.
Para resolver los problemas asociados al agua o a los fluidos portadores de frío o calor, proponemos un sistema que puede integrarse y mimetizarse en la estructura de cualquier edificio, y que utiliza el aire en todas las fases del ciclo térmico de la climatización: Producción y distribución del frió o del calor y el almacenamiento en los materiales de construcción. Consiste en un circuito cerrado para paso de aire al que pueden acoplarse las placas solares y la variante de drenaje para geotermia que presentamos en esta solicitud de patente, además de alguno o varios de los sistemas de producción de aire frío o caliente para climatización conocidos actualmente. To solve the problems associated with water or fluids carrying cold or heat, we propose a system that can be integrated and mimicked in the structure of any building, and that uses air in all phases of the thermal cycle of air conditioning: Production and distribution of cold or heat and storage in building materials. It consists of a closed circuit for air passage to which the solar panels and the geothermal drainage variant that we present in this patent application can be coupled, in addition to some or several of the production systems of cold or hot air conditioning currently known .
Descripción. Description.
El sistema propuesto en esta solicitud de patente consiste en un circuito cerrado de conductos para aire, movido por simples ventiladores, que incluye:  The system proposed in this patent application consists of a closed circuit of air ducts, moved by simple fans, which includes:
1. - Un forjado, losa o suelo técnico, caracterizado por integrar conductos para el paso del aire, en forma de laberinto. Su misión es, gracias a su gran inercia térmica, servir de almacenamiento de calor o frío, a la vez que amortiguar las altas temperaturas que puede alcanzar el aire en chimeneas o calderas. Simultáneamente es el emisor térmico, por radiación. 1. - A floor, slab or technical floor, characterized by integrating air passage ducts, in the form of a maze. Its mission is, thanks to its great thermal inertia, to serve as heat or cold storage, while also damping the high temperatures that air can reach in chimneys or boilers. Simultaneously it is the thermal emitter, by radiation.
2. a.- Una cubierta solar caracterizada por integrar ductos para el aire bajo unas láminas de vidrio, que puede adoptar cualquier medida, color y forma para mimetizarse completamente con los elementos exteriores de la cubierta: piezas de pizarra o tejas planas, por ejemplo.  2. a.- A solar cover characterized by integrating air ducts under glass sheets, which can take any measure, color and shape to completely blend in with the outer elements of the roof: slate pieces or flat tiles, for example .
2. b.- Captador geotérmico, caracterizado porque el aire del circuito cerrado se hace pasar por un drenaje de humedades, construido en contacto directo con el terreno circundante, bajo la losa del subsuelo o tras los muros del sótano. De esta forma, el aire toma la temperatura del terreno que suele ser estable a lo largo del año (de 10 a 18° C), por lo que sirve para refrescar los forjados termoactivos en verano.  2. b.- Geothermal collector, characterized in that the closed circuit air is passed through a moisture drain, built in direct contact with the surrounding terrain, under the subsoil slab or behind the basement walls. In this way, the air takes the temperature of the land that is usually stable throughout the year (from 10 to 18 ° C), so it serves to cool the thermal slabs in summer.
3. - Ventiladores v ductos verticales caracterizados porque permitirán conectar, como apoyo, otros elementos de producción de aire caliente o frío, tales como bombas de calor, chimeneas, estufas, calefactores eléctricos, calderas (de gas, de biomasa, o de cogeneración), además de intercambiadores aire/agua para la producción de ACS. Nuestro sistema, resuelve los dos problemas asociados al uso del aire para climatización: 3. - Vertical fans and ducts characterized in that they will allow to connect, as support, other hot or cold air production elements, such as heat pumps, chimneys, stoves, electric heaters, boilers (gas, biomass, or cogeneration) , in addition to air / water exchangers for the production of ACS. Our system solves the two problems associated with the use of air for air conditioning:
1. - Posibilidad de contaminación por hongos, bacterias, insectos, polvo, humedades, etc.: Para ello, el movimiento se realiza en circuito cerrado. Este es el aspecto diferenciador sobre la utilización típica de aparatos de aire acondicionado o calefactores eléctricos.  1. - Possibility of contamination by fungi, bacteria, insects, dust, humidity, etc .: For this, the movement is carried out in a closed circuit. This is the differentiating aspect of the typical use of air conditioners or electric heaters.
2. - El escaso calor específico del aire, que lo hace poco apropiado para almacenamiento térmico, así como las grandes diferencias de temperaturas máximas que aportan los sistemas de producción de calor de apoyo mencionados (Desde -16° a 450° C). En el sistema que proponemos, el calor o el frío pasa a las losas y forjados del edificio, las cuales, gracias a su enorme masa e inercia térmica, atemperan el calor de radiación a temperaturas normales de uso (de 15 a 28° C) y son los que asumen la función de almacenamiento y difusión del frío o del calor.  2. - The low specific heat of the air, which makes it unsuitable for thermal storage, as well as the large differences in maximum temperatures provided by the mentioned support heat production systems (From -16 ° to 450 ° C). In the system that we propose, heat or cold passes to the slabs and floors of the building, which, thanks to its enormous mass and thermal inertia, temper the heat of radiation at normal temperatures of use (from 15 to 28 ° C) and they are those that assume the function of storage and diffusion of cold or heat.
Breve descripción de los dibujos. Brief description of the drawings.
Figura 1.- Descripción de realización preferida.  Figure 1.- Description of preferred embodiment.
Figura 2.- Detalle de la cubierta solar vista desde su parte superior, donde se aprecian la chapa grecada, el ducto y la tapa practicable (19), así como la integración de los vidrios con la pizarra (rayada para mejor comprender la diferencia con el vidrio).  Figure 2.- Detail of the solar roof seen from its upper part, where the veneered sheet, the duct and the practicable cover (19) are appreciated, as well as the integration of the glasses with the slate (scratched to better understand the difference with Glass).
Figura 3.- Detalle de la cubierta solar vista desde su parte más baja.  Figure 3.- Detail of the solar cover seen from its lowest part.
Figura 4.- Forjado típico de vigueta-bovedilla, visto desde uno de sus extremos, en el que se muestran las aberturas para conexión con los ductos verticales y de reparto. El hueco puede estar en su cara superior o inferior y puede estar constituido por tubos en codo.  Figure 4.- Typical slab-vault slab, seen from one of its ends, in which the openings for connection with the vertical and distribution ducts are shown. The hollow may be in its upper or lower face and may consist of elbow tubes.
Figura 5.- Detalle de acoplamiento de chimenea en el sistema de ductos.  Figure 5.- Detail of chimney coupling in the duct system.
Figura 6.- Ejemplo de planta de "laberinto" o recorrido del aire bajo el suelo en una habitación con baño adosado (a la izquierda de la imagen). Se aprecian los pies de los conductos verticales realizados en obra. Figure 6.- Example of a "labyrinth" plant or air path under the floor in a room with attached bathroom (to the left of the image). The feet of the vertical ducts made on site are appreciated.
Descripción de realización preferida Description of Preferred Embodiment
1.- Almacenamiento y radiación de la energía térmica: Losa o forjados activos por aire: Sobre el aislamiento (1 ), se coloca una losa o capa de compresión de hormigón o cerámico (2). Además de soporte, tiene la función de almacenar el calor gracias a su masa. Sobre esta se levantan tabiquillos (3) y tapas de cualquier material, para generar ductos al aire con disposición de laberinto, dispuestos de forma que permita controlar, según sea su recorrido, el calor o frió de diversas estancias de forma separada. Para ello se utilizará tanto el dimensionamiento de los conductos como la colocación de ventiladores (4) y trampillas (19 en figura 2) accionadas desde el exterior que regulen el caudal del aire. La superficie del material (5) de la cara superior del conducto será hermética. Podrá ser el propio recubrimiento del suelo, por ejemplo tarima de madera o mármol. En otros casos, servirá para soportar el recubrimiento y podrá recibir una nueva capa de compresión que, con su masa adicional, aumentará la capacidad de almacenamiento del sistema. 1.- Storage and radiation of thermal energy: Slab or active floor slabs: On the insulation (1), a concrete or ceramic compression slab or layer (2) is placed. In addition to support, it has the function of storing heat Thanks to its mass. On this, partitions (3) and lids of any material are raised, to generate air ducts with a labyrinth arrangement, arranged so that it can control, depending on its route, the heat or cold of various rooms separately. For this, both the dimensioning of the ducts and the placement of fans (4) and hatches (19 in figure 2) that are operated from the outside that regulate the air flow will be used. The surface of the material (5) of the upper face of the duct will be airtight. It may be the floor covering itself, for example wood or marble flooring. In other cases, it will support the coating and may receive a new compression layer that, with its additional mass, will increase the storage capacity of the system.
Para los forjados de pisos intermedios, el sistema a utilizar dependerá de que los usuarios de los distintos niveles sean diferentes (apartamentos, pisos o condominios) o el mismo, (chalets, villas o adosados).  For intermediate floor slabs, the system to be used will depend on the users of the different levels being different (apartments, flats or condominiums) or the same (chalets, villas or townhouses).
1. - En el caso de apartamentos, todo el sistema ha de ser parecido al ya descrito, contando con un aislamiento (1 ) que proteja al usuario del piso inferior, situado sobre el forjado, equivalente a la losa (14) que vemos en el dibujo. Hacia arriba el esquema se repite. Cuando no se pueda disponer de espacio bajo el forjado, ni de mucha altura para recrecer el suelo, se elegirán aislamientos extrafinos sobre los que se ejecutarán los laberintos por medio de rastreles que substituirán a los tabiquillos (3), los cuales recibirán el recubrimiento de suelo. Alternativamente, se pueden utilizar ladrillos huecos cerámicos tumbados, dispuestos en forma de laberinto. En el caso de que este no disponga de alturas superiores a los 3 cm., será necesario establecer conductos previos y posteriores de reparto a las salidas del suelo y un proyecto que calcule cuidadosamente los flujos y el trabajo de los ventiladores correspondientes.  1. - In the case of apartments, the entire system must be similar to the one already described, with an insulation (1) that protects the user from the lower floor, located on the floor, equivalent to the slab (14) that we see in the drawing. Upwards the scheme is repeated. When space under the floor is not available, nor is it too high to recreate the floor, extra-thin insulations will be chosen on which the labyrinths will be executed by means of battens that will replace the tabs (3), which will receive the coating of ground. Alternatively, lying hollow ceramic bricks, arranged in the form of a maze, can be used. In the event that it does not have heights greater than 3 cm., It will be necessary to establish prior and subsequent distribution ducts to the floor exits and a project that carefully calculates the flows and work of the corresponding fans.
2.- En el caso de edificios de dos o más niveles que correspondan a un mismo usuario, se podrán utilizar los huecos de las viguetas-bovedillas para transmitir el aire y almacenar el calor, los ductos de distribución podrán adoptar las formas de falsas vigas situadas a cada extremo de las viguetas. Se puede prescindir del aislamiento entre pisos. (Figura 4). 2.- In the case of buildings of two or more levels that correspond to the same user, the gaps of the joists-vaults may be used to transmit the air and store the heat, the distribution ducts may take the forms of false beams located at each end of the joists. Isolation between floors can be dispensed with. (Figure 4).
Producción de energía térmica: Thermal energy production:
2. a.- Captador de energía solar para producción de calor.  2. a.- Solar energy collector for heat production.
Cubierta completa o placas solares para producción de aire caliente caracterizadas por estar constituidas por dos elementos complementarios: una chapa grecada (6) del tipo utilizado para cubiertas de naves industriales. A ella se fijan en su parte exterior, vidrios o plásticos transparentes (7) o translúcidos que la cubran, dejando libre el espacio entre los carriles que forma la chapa para hacer circular aire en sus intersticios, el cual se va calentando a su paso por el mismo, por efecto de la radiación solar. Para su funcionamiento como captador solar, la chapa tendrá una o varias perforaciones en su parte inferior (8) por donde entrará el aire procedente del circuito cerrado, y otros huecos en la parte superior (9) para su salida. Estos se realizarán de forma que no perjudiquen el uso como cerramiento de cubierta e impermeabilización de las placas grecadas. En la realización preferida y para conseguir su integración arquitectónica, se propone el uso de vidrios de dimensiones y tonos de color tales que permitan combinarlos sin separación de marco alguno, con placas de pizarra (10) o tejas, para lo Complete roof or solar panels for hot air production characterized by being constituted by two complementary elements: a sheet metal (6) of the type used for roofs of industrial buildings. It is fixed on the outside, glass or transparent plastic (7) or translucent that cover it, leaving free the space between the rails that forms the sheet to circulate air in its interstices, which is heated as it passes through it, due to the effect of solar radiation. For its operation as a solar collector, the sheet will have one or several perforations in its lower part (8) through which the air coming from the closed circuit will enter, and other holes in the upper part (9) for its exit. These will be carried out in such a way that they do not harm the use as a roof enclosure and waterproofing of the slabs. In the preferred embodiment and in order to achieve its architectural integration, it is proposed to use glass of dimensions and shades of color such that they can be combined without any frame separation, with slate plates (10) or tiles, for
cual se pueden utilizar las fijaciones y soporte habituales de las mismas. which can be used the usual fixings and support of the same.
Para su uso optimizado, la chapa a utilizar compondrá un elemento de tipo sándwich con tres capas, la superior será la ya mencionada con relieves grecados longitudinales, la intermedia será un aislante resistente a altas temperaturas, como la lana de roca o de vidrio (12) y la inferior, que podría ser decorativa: en chapa, madera, cartón-yeso u otros. De esta forma en el cerramiento de cubierta se integran: la impermeabilización, el aislamiento, la decoración del techo y, gracias a la cobertura superior de vidrio que proponemos, la producción de aire caliente (o frío por las noches de verano, si se necesita bajar la temperatura del forjado). For optimized use, the sheet to be used will comprise a sandwich type element with three layers, the upper one will be the one already mentioned with longitudinal freckled reliefs, the intermediate one will be an insulator resistant to high temperatures, such as rock wool or glass wool (12 ) and the lower one, which could be decorative: in veneer, wood, plasterboard or others. In this way the roof enclosure integrates: waterproofing, insulation, ceiling decoration and, thanks to the superior glass cover we propose, the production of hot air (or cold at summer nights, if needed lower the floor temperature).
2.b.- Geotermia, para enfriar o refrescar el espacio habitado: 2.b.- Geothermal energy, to cool or cool the inhabited space:
Captador geotérmico: Se trata de modificar los elementos constructivos que quedan en contacto directo con el terreno circundante a la edificación (13): apoyos de la losa inferior (14) de solera y muros de sótanos. En lugar de grava o los drenajes plásticos habituales, proponemos ladrillos (15) o bloques con huecos como los de la patente ES 2346616. Su objetivo será la transmisión térmica, por simple contacto, de la temperatura natural del terreno (normalmente entre 10 a 18° a un metro de profundidad) al aire que circule en sus huecos. Este será utilizado, normalmente, para enfriar el circuito, generalmente en verano. Podrá estar conectado directamente al circuito cerrado o indirectamente en circuito independiente y abierto que alimente un intercambiador o la unidad exterior de una bomba de calor para mejorar su rendimiento térmico (COP). Gracias a que el aire no pasa jamás al interior del espacio habitable, se elimina el inconveniente habitual de otros sistemas de captación geotérmica por aire, como el pozo provenzal o canadiense, afectados por problemas de condensaciones y proliferación de hongos o bacterias. En nuestra invención, la humedad del terreno en contacto con los elementos de captación exteriores es una ventaja, porque mejora la transmisión térmica. Geothermal collector: This involves modifying the construction elements that remain in direct contact with the land surrounding the building (13): supports of the lower slab (14) of the hearth and basement walls. Instead of gravel or the usual plastic drains, we propose bricks (15) or blocks with holes like those of the patent ES 2346616. Its objective will be the thermal transmission, by simple contact, of the natural temperature of the land (normally between 10 to 18 ° to one meter deep) to the air that circulates in its holes. This will normally be used to cool the circuit, usually in summer. It may be connected directly to the closed circuit or indirectly in an independent and open circuit that feeds an exchanger or the outdoor unit of a heat pump to improve its thermal efficiency (COP). Thanks to the fact that the air never passes inside the habitable space, the usual inconvenience of other systems of geothermal collection by air, such as the Provencal or Canadian well, affected by problems of condensation and proliferation of fungi or bacteria is eliminated. In our invention, the Soil moisture in contact with the external collection elements is an advantage, because it improves thermal transmission.
3.- Distribución vertical de la energía térmica e inclusión de elementos de apoyo: A las perforaciones inferiores y superiores de la cubierta solar se les conectará los conductos de aire (11 ). Estos podrán ir dotados adicionalmente de una trampilla (19 en figura 2) accionada manual o mecánicamente para abrir el circuito cuando se produzca un exceso de calor, así como salida para un intercambiador aire-agua que permita la producción de agua caliente sanitaria (ACS). 3.- Vertical distribution of thermal energy and inclusion of support elements: The air ducts (11) will be connected to the lower and upper perforations of the solar cover. These may be additionally provided with a trapdoor (19 in figure 2) manually or mechanically operated to open the circuit when excessive heat occurs, as well as an outlet for an air-water exchanger that allows the production of domestic hot water (DHW) .
Alternativamente los ductos verticales podrán hacerse con otros elementos constructivos como placas de cartón-yeso o tabiquería cerámica con hueco vertical. Al tratarse de conductos de aire, se les pueden integrar cualquier sistema de apoyo como estufas (16) con el encamisado de la chimenea por doble tubo concéntrico, unidades interiores de aire acondicionado (17) preferiblemente con fan coil y free cooling (18), calderas de cogeneración, y cualquier otro dispositivo presente o futuro que caliente o enfríe el aire o lo utilice como fluido portador. La ventaja económica es que suelen ser sistemas de coste inferior a los que utilizan el agua o líquidos y las posibles fugas en el sistema carecen de importancia. Todo el sistema puede ser controlado por medio de ventiladores y compuertas, de forma manual o automatizada. Alternatively, the vertical ducts can be made with other construction elements such as plasterboard or ceramic partition walls with a vertical hole. Since they are air ducts, any support system such as stoves (16) can be integrated with the chimney jacket by double concentric tube, indoor air conditioning units (17) preferably with fan coil and free cooling (18), cogeneration boilers, and any other present or future device that heats or cools the air or uses it as a carrier fluid. The economic advantage is that they are usually lower cost systems than those that use water or liquids and the possible leaks in the system are not important. The entire system can be controlled by fans and dampers, manually or automatically.

Claims

Reivindicaciones Claims
1. - Sistema de climatización termoactivo por aire con fuentes energéticas múltiples e integración arquitectónica caracterizado porque el aire se mueve, con la ayuda de ventiladores, por un circuito cerrado que incluye el paso bajo el suelo, en contacto con losas o forjados, para que estos actúen como elementos de almacenamiento y radiación del calor o frío contenidos en el aire. 1. - Thermoactive air conditioning system with multiple energy sources and architectural integration characterized in that the air moves, with the help of fans, through a closed circuit that includes the passage under the ground, in contact with slabs or floors, so that these act as storage and radiation elements of heat or cold contained in the air.
2. - Sistema de climatización termoactivo por aire según reivindicación 1 caracterizado porque el conducto del aire bajo el suelo tiene forma de laberinto para garantizar el reparto uniforme del calor.  2. - Thermoactive air conditioning system according to claim 1, characterized in that the air duct under the floor has a labyrinth shape to guarantee uniform heat distribution.
3. - Sistema de climatización termoactivo por aire, según reivindicación 1 , con fuentes energéticas múltiples e integración arquitectónica caracterizado porque se utilizan los huecos interiores del forjado para pasar el aire y almacenar calor, dotándolos de unos pasos para el aire en sus extremos.  3. - Thermoactive air conditioning system, according to claim 1, with multiple energy sources and architectural integration characterized in that the interior gaps of the floor are used to pass the air and store heat, providing them with air passages at their ends.
4. - Sistema de climatización termoactivo por aire con fuentes energéticas múltiples e integración arquitectónica, según reivindicaciones 1 , 2 y 3, caracterizado por una cubierta captadora de energía térmica solar que comprende una chapa grecada, la cual recibe en su cara exterior unas placas de vidrio, de tamaño y forma similar al resto de los elementos de cubierta, pizarra, placa o teja, para convertirse en captador de energía térmica a través del aire que se hace fluir por los huecos que quedan entre la placa y el vidrio.  4. - Thermoactive air conditioning system with multiple energy sources and architectural integration, according to claims 1, 2 and 3, characterized by a solar thermal energy collector cover comprising a sheet metal, which receives on its outer face plates of glass, of similar size and shape to the rest of the roof, slate, plate or tile elements, to become a thermal energy collector through the air that flows through the gaps between the plate and the glass.
5. - Sistema de climatización termoactivo según reivindicación n° 4 caracterizado porque las chapa grecada presenta un aislamiento resistente a altas temperaturas adherido a su cara inferior y unas perforaciones en sus extremos que permiten el paso del aire, sin dañar la capacidad impermeabilizante de la chapa.  5. - Thermoactive air conditioning system according to claim 4 characterized in that the sheet metal has a high temperature resistant insulation adhered to its lower face and perforations at its ends that allow the passage of air, without damaging the waterproofing capacity of the sheet .
6. - Sistema de climatización termoactivo por aire con fuentes energéticas múltiples e integración arquitectónica, según reivindicaciones 1 , 2 y 3, caracterizado porque el circuito de aire pasa por debajo de la losa de suelo o tras los muros de contención de sótano, en contacto directo con el terreno circundante, para captar su energía geotérmica, a la par que los conductos que constituyen esa parte del circuito realizan la función de drenaje de las posibles humedades del subsuelo.  6. - Thermoactive air conditioning system with multiple energy sources and architectural integration, according to claims 1, 2 and 3, characterized in that the air circuit passes under the floor slab or after the basement retaining walls, in contact directly with the surrounding terrain, to capture its geothermal energy, while the conduits that constitute that part of the circuit perform the function of draining the possible subsoil humidities.
7. - Sistema de climatización termoactivo por aire según reivindicaciones 1 y 2, caracterizado porque los ductos del circuito pueden admitir aportaciones de aire caliente o frío conectando otros sistemas comunes en climatización, tales como bombas de calor, chimeneas, estufas, o calderas del tipo que sean, incluidas las de 7. - Thermoactive air conditioning system according to claims 1 and 2, characterized in that the ducts of the circuit can accept contributions of hot or cold air by connecting other common systems in air conditioning, such as heat pumps, fireplaces, stoves, or boilers of any kind, including those of
PCT/ES2013/000190 2012-08-24 2013-08-09 Architecturally integrated thermo-active air-conditioning system using air and including multiple energy sources WO2014029895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP2012000858 2012-08-24
ES201200858A ES2451167B1 (en) 2012-08-24 2012-08-24 Thermoactive air conditioning system with multiple energy sources and architectural integration

Publications (1)

Publication Number Publication Date
WO2014029895A1 true WO2014029895A1 (en) 2014-02-27

Family

ID=50149481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/000190 WO2014029895A1 (en) 2012-08-24 2013-08-09 Architecturally integrated thermo-active air-conditioning system using air and including multiple energy sources

Country Status (2)

Country Link
ES (1) ES2451167B1 (en)
WO (1) WO2014029895A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545026A (en) * 2015-12-16 2016-05-04 青岛智享专利技术开发有限公司 Automatic heating plant
CN107289493A (en) * 2017-07-13 2017-10-24 天津中德应用技术大学 Heating system of solar energy foor and its method of work, heat Calculation method
CN111720906A (en) * 2020-06-24 2020-09-29 深圳市佰邦建筑设计顾问有限公司 Solar heat supply and tunnel wind combined system
CN112726925A (en) * 2020-12-26 2021-04-30 杭州均正建筑设计有限公司 Ancient building roof structure
CN115875849A (en) * 2022-11-29 2023-03-31 重庆交通大学 High-high heat utilization system in alpine region

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006856A (en) * 1974-03-27 1977-02-08 Aktiebolaget Svenska Flaktfabriken Arrangement for utilizing solar energy for heating buildings
US4281639A (en) * 1980-01-31 1981-08-04 Kuronen Seppo K Solar heating system
US4290415A (en) * 1979-03-17 1981-09-22 Tadao Tatsumi Building for cold districts
JPS57192731A (en) * 1981-05-20 1982-11-26 Misawa Homes Co Ltd Ventialting system for hot air type floor heater
US4404960A (en) * 1979-04-17 1983-09-20 Karsten Laing Roof skin forming a heat sink
FR2570734A1 (en) * 1984-09-21 1986-03-28 Ortiz Antoine Methods for the thermal insulation of buildings and buildings constructed according to these methods
DE4103010A1 (en) * 1991-02-01 1991-09-19 Ulrich Schmidt Heat recovery system in building - involves forming cavities surrounding building through which air or liq. heated by sun is circulated
WO1992017664A1 (en) * 1991-04-04 1992-10-15 Legabeam Norge As Temperature regulation of various building parts of houses
WO1997021962A1 (en) * 1995-12-11 1997-06-19 Annette Pelzer Device for controlling the temperature in building closing components with terrestrial heat and/or solar power
US20090308566A1 (en) * 2006-07-31 2009-12-17 Pavel Simka System for collecting and delivering solar and geothermal heat energy with thermoelectric generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006856A (en) * 1974-03-27 1977-02-08 Aktiebolaget Svenska Flaktfabriken Arrangement for utilizing solar energy for heating buildings
US4290415A (en) * 1979-03-17 1981-09-22 Tadao Tatsumi Building for cold districts
US4404960A (en) * 1979-04-17 1983-09-20 Karsten Laing Roof skin forming a heat sink
US4281639A (en) * 1980-01-31 1981-08-04 Kuronen Seppo K Solar heating system
JPS57192731A (en) * 1981-05-20 1982-11-26 Misawa Homes Co Ltd Ventialting system for hot air type floor heater
FR2570734A1 (en) * 1984-09-21 1986-03-28 Ortiz Antoine Methods for the thermal insulation of buildings and buildings constructed according to these methods
DE4103010A1 (en) * 1991-02-01 1991-09-19 Ulrich Schmidt Heat recovery system in building - involves forming cavities surrounding building through which air or liq. heated by sun is circulated
WO1992017664A1 (en) * 1991-04-04 1992-10-15 Legabeam Norge As Temperature regulation of various building parts of houses
WO1997021962A1 (en) * 1995-12-11 1997-06-19 Annette Pelzer Device for controlling the temperature in building closing components with terrestrial heat and/or solar power
US20090308566A1 (en) * 2006-07-31 2009-12-17 Pavel Simka System for collecting and delivering solar and geothermal heat energy with thermoelectric generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 1991-282584 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545026A (en) * 2015-12-16 2016-05-04 青岛智享专利技术开发有限公司 Automatic heating plant
CN107490199A (en) * 2015-12-16 2017-12-19 青岛智享专利技术开发有限公司 Solar energy heating is from warming oneself factory building
CN107490199B (en) * 2015-12-16 2019-03-15 青岛智享专利技术开发有限公司 Solar energy heating is from warming oneself workshop
CN107289493A (en) * 2017-07-13 2017-10-24 天津中德应用技术大学 Heating system of solar energy foor and its method of work, heat Calculation method
CN111720906A (en) * 2020-06-24 2020-09-29 深圳市佰邦建筑设计顾问有限公司 Solar heat supply and tunnel wind combined system
CN111720906B (en) * 2020-06-24 2021-04-27 深圳市佰邦建筑设计顾问有限公司 Solar heat supply and tunnel wind combined system
CN112726925A (en) * 2020-12-26 2021-04-30 杭州均正建筑设计有限公司 Ancient building roof structure
CN112726925B (en) * 2020-12-26 2022-05-17 杭州均正建筑设计有限公司 Ancient building roof structure
CN115875849A (en) * 2022-11-29 2023-03-31 重庆交通大学 High-high heat utilization system in alpine region
CN115875849B (en) * 2022-11-29 2024-04-26 重庆交通大学 High and middle ground heat utilization system in alpine region

Also Published As

Publication number Publication date
ES2451167A1 (en) 2014-03-26
ES2451167B1 (en) 2015-01-19

Similar Documents

Publication Publication Date Title
Samuel et al. Passive alternatives to mechanical air conditioning of building: A review
JP6250530B2 (en) Thermal energy system for heating inside a building or construction material or for maintaining thermal equilibrium
ES2451167B1 (en) Thermoactive air conditioning system with multiple energy sources and architectural integration
JP2009127921A (en) Cold taking-in system
WO2011033325A1 (en) Cooling, heating, surface-radiating and air exchanging building system with low energy consumption for energy-saving houses with increased passive quality
Hastings Solar air systems-built examples
US4144999A (en) System and structure for conditioning air
US8776467B2 (en) Climate positive building envelope for housing
Tawil et al. Review on solar space heating-cooling in Libyan residential buildings
WO2007013115A1 (en) Element covering the roof and relative system capable of producing energy by solar radiation
JP5351210B2 (en) Thermal storage air conditioning system
JP3562527B1 (en) Geothermal air conditioning system
JP3848652B2 (en) Solar system house
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
JP5833064B2 (en) Thermal storage air conditioning system
Tabriz et al. Review of architectural day lighting analysis of photovoltaic panels of BIPV with zero energy emission approach
Naraghi Energy dynamics of green buildings
RU76946U1 (en) BUILDING "ECODOM-2"
US20120305214A1 (en) Geothermal Heating and Cooling Ventilation System
Bhatia Alternatives to Active HVAC systems
JPH07189352A (en) House
RONGEN Passivhaus EnerPHit and EnerPHit+ ic case studies
Udagawa et al. Study on Renovation to Solar Houses with Air Collector Part 1 House T–Renovation to the Net Zero Energy House
KR20240081036A (en) Exterior solar and solar power generation systems
D'Alterio Energy efficiency in building rehabilitation: construction solutions, materials and energy certification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830349

Country of ref document: EP

Kind code of ref document: A1