WO2014027642A1 - Gas sensor and gas sensor unit - Google Patents

Gas sensor and gas sensor unit Download PDF

Info

Publication number
WO2014027642A1
WO2014027642A1 PCT/JP2013/071810 JP2013071810W WO2014027642A1 WO 2014027642 A1 WO2014027642 A1 WO 2014027642A1 JP 2013071810 W JP2013071810 W JP 2013071810W WO 2014027642 A1 WO2014027642 A1 WO 2014027642A1
Authority
WO
WIPO (PCT)
Prior art keywords
enclosure
gas sensor
glaze layer
rear end
ceramic
Prior art date
Application number
PCT/JP2013/071810
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 浅野
昌弘 浅井
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2013553712A priority Critical patent/JPWO2014027642A1/en
Priority to CN201380043797.7A priority patent/CN104583766A/en
Publication of WO2014027642A1 publication Critical patent/WO2014027642A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes

Definitions

  • the present invention relates to a gas sensor and a gas sensor unit having a gas detection element mainly made of ceramic.
  • gas sensors having a gas detection element made of ceramic or the like have been proposed.
  • gas sensors include a sensor that is attached to an exhaust pipe of an internal combustion engine and detects the oxygen concentration in the exhaust gas.
  • Patent Document 1 discloses a gas sensor in which the rear end side of the gas detection element is covered with a ceramic enclosure, and the ceramic enclosure outside the exhaust pipe is covered with a metal cylinder.
  • Patent Document 2 heat dissipation is improved by dividing a metal cylinder and providing a gap between the two, and dissipating heat through a ceramic enclosure exposed from the gap portion of the metal cylinder.
  • a gas sensor is disclosed.
  • Patent Document 3 by forming a glaze layer on the exposed portion of the ceramic enclosure, even if the ceramic enclosure gets wet while the vehicle is running, the ceramic enclosure is cracked or damaged by the thermal shock.
  • a gas sensor that suppresses occurrence is disclosed.
  • the ceramic enclosure P1 has a shape in which a flange-like large-diameter portion P3 is provided on the distal end side of the cylindrical small-diameter portion P2, that is, the small-diameter portion P2 and the diameter.
  • the outer surface of the boundary part with the most part P3 has a concave shape (since there is a concave part P4)
  • the glaze layer P5 on the ceramic enclosure P1 for example, spraying a glaze material or using a drum When applied, the glaze material accumulates in the concave portion P4 due to surface tension, and as a result, a thick glaze layer P5 is formed in the concave portion P4.
  • the ceramic enclosure P1 provided with the glaze layer P5 is fixed to the metal shell P7 by caulking through a metal packing P6 disposed on the outer surface of the concave portion P4 and the large diameter portion P3.
  • the packing P6 when the packing P6 is pushed and moved inward (ie, on the ceramic enclosure P1 side) during caulking, if the thick glaze layer P5 exists on the ceramic enclosure P1, the glaze layer P5 can withstand the load. It sometimes cracked.
  • the output of the gas sensor may be abnormal, or the gas sensor may break down.
  • the present invention in one aspect is a gas sensor including a gas detection element, a metal shell, and a ceramic enclosure.
  • the gas detection element extends in the axial direction, and the tip side is exposed to the gas to be measured.
  • the metal shell surrounds the periphery of the gas detection element.
  • the ceramic enclosure is a cylinder made of an insulating ceramic, surrounds the rear end side of the gas detection element, and protrudes from the rear end of the metal shell with the rear end side of the gas detection element interposed through a metal packing. And are fastened and fixed to the metal shell.
  • the ceramic enclosure has an enclosure body including an enclosure exposed part and an enclosure covering part.
  • the enclosure exposed portion is exposed to the outside on the rear end side from the rear end of the metal shell.
  • the enclosure covering portion is covered with the metal shell on the front end side with respect to the rear end of the metal shell.
  • the enclosure body has a glaze layer on its outer surface.
  • the glaze layer on the envelope covering portion has a recess that is recessed radially inward from the glaze layer on the envelope exposed portion.
  • the metal packing abuts at least a portion of the glaze layer other than the recess.
  • the envelope body includes a glaze layer on its outer surface, and the glaze layer on the envelope covering portion is a recess recessed inward in the radial direction from the glaze layer on the envelope exposed portion.
  • the glaze layer is recessed and thinned radially inward on the enclosure covering portion, and the glaze is accumulated and the glaze layer is not thick as in the prior art. It is difficult to hit the glaze layer on the enclosure cover.
  • the metal packing abuts on the glaze layer, it is configured not to abut on the concave portion of the glaze layer but on a portion other than the concave portion (such as around the concave portion). Therefore, when the ceramic enclosure provided with the glaze layer is caulked and fixed by the metal shell through the metal packing, even when a pressing force by caulking is applied (inward from the outside in the radial direction) In particular, no force is directly applied to the concave portion of the glaze layer on the enclosure covering portion.
  • the glaze layer on the enclosure covering portion is formed thinner (to be dented) than the glaze layer on the enclosure exposed portion, the metal packing is on the inside during caulking. Even if it is pushed and moved to make contact with a portion other than the concave portion of the glaze layer on the enclosure covering portion, the glaze layer is difficult to break because the load applied to the glaze layer is small.
  • the glaze layer is not easily cracked or broken, and thus the ceramic enclosure itself can be prevented from being damaged. As a result, it is possible to reduce the risk of an abnormality or failure in the output of the gas sensor.
  • the glaze layer on the exposed part of the enclosure can be particularly thickened. Therefore, even when the enclosure exposed portion (specifically, the glaze layer on the surface) is covered with water, the ceramic enclosure can be effectively prevented from being damaged by the thermal shock.
  • the surface shape of the recess has a radius of curvature of 1.0 mm or less.
  • the invention of this aspect defines a preferable shape of the recess. If the radius of curvature is within this range, the occurrence of cracks and the like in the glaze layer can be effectively suppressed.
  • the thickness of the glaze layer in the recess is in the range of 1 to 10 ⁇ m.
  • the invention of this aspect exemplifies a preferable thickness in the recess. If it is the glaze thickness of this range, generation
  • the thickness of the glaze layer means that it is within the range including the maximum and minimum thicknesses, not the average thickness.
  • the thickness in the concave portion indicates the thickness in the radial direction in a cross section obtained by breaking the ceramic enclosure perpendicularly to the axial direction.
  • the thickness of the glaze layer on the surrounding body exposed portion is in the range of 15 to 100 ⁇ m.
  • the invention of this aspect exemplifies a preferable thickness in the glaze layer of the enclosure exposed portion. If the thickness of the glaze is within this range, it is possible to reduce the thermal shock caused by water exposure and to effectively suppress the occurrence of cracks in the ceramic enclosure.
  • the present invention in still another aspect is a gas sensor unit including a gas sensor and a gas sensor cap.
  • the gas sensor has a gas detection element, a metal shell, a ceramic enclosure, and a terminal member.
  • the gas detection element extends in the axial direction, and the tip side is exposed to the gas to be measured.
  • the metal shell surrounds the gas detection element.
  • the ceramic enclosure is a cylinder made of an insulating ceramic, surrounds the rear end side of the gas detection element, and protrudes from the rear end of the metal shell with the rear end side of the gas detection element interposed through a metal packing. And are fastened and fixed to the metal shell.
  • the terminal member is connected to an inner electrode formed on the inner peripheral surface of the gas detection element, and outputs an output signal from the gas detection element to the outside.
  • the gas sensor cap has a cap terminal and an insulating part.
  • the cap terminal has a cylindrical shape, is connected to the terminal member of the gas sensor, and transmits the output signal to an external device.
  • the insulating portion covers the cap terminal and the rear end side of the ceramic enclosure and is made of an insulating elastic body.
  • This gas sensor unit uses any of the gas sensors described above as a gas sensor.
  • the gas sensor unit of this aspect is obtained by attaching a gas sensor cap to any of the gas sensors described above.
  • the exposed portion of the ceramic enclosure (specifically, the glaze layer on the surface) is exposed to the outside between the gas sensor and the gas sensor cap. So heat dissipation is excellent. Moreover, since the glaze layer is formed on the surface of the ceramic enclosure, it has high thermal shock resistance even when it is wet. Furthermore, since any one of the gas sensors described above is used as the gas sensor, the glaze layer and the ceramic enclosure are not easily damaged, and thus have high durability.
  • FIG. 4A is an explanatory view showing a state in which the glaze slurry is sprayed on the outer surface of the ceramic envelope in the manufacturing method of the glaze ceramic envelope
  • FIG. 4B is a diagram of the ceramic envelope in the manufacturing method of the glaze ceramic envelope.
  • FIG. 4C is an explanatory view showing a state in which the glaze material layer is formed on the outer surface
  • 4C is an explanatory view showing a state in which the glaze material layer is air blown and excess glaze slurry is removed in the manufacturing method of the glaze ceramic enclosure. It is. It is sectional drawing which shows the state which fractured
  • the lower side of FIG. 1 is the front end side of the gas sensor and the upper side is the rear end side.
  • the gas sensor 1 of this embodiment includes a gas detection element 3, an outer electrode 5, an inner electrode 7, a ceramic enclosure 9, a terminal member 11, and a casing 13.
  • the casing 13 has a metal shell 15 and a protector 17.
  • the metal shell 15 is made of SUS430 and has a substantially cylindrical shape. Inside the metal shell 15, an inner peripheral receiving portion 21 for supporting the flange portion 19 of the gas detection element 3 is provided.
  • a screw part 25 for attaching the gas sensor 1 to the exhaust pipe 23 (see FIG. 6) is formed outside the metal shell 15, and the screw part 25 is connected to the exhaust pipe 23 at the rear end side of the screw part 25.
  • a hexagonal portion 27 for screwing is provided around.
  • the protector 17 is a metal, substantially cylindrical cylinder, and has a vent hole 29 for introducing the exhaust gas in the exhaust pipe 23 into the gas sensor 1.
  • the gas detection element 3 is made of a solid electrolyte having oxygen ion conductivity, and is fixed in a state of being inserted into the metal shell 15.
  • the gas detection element 3 has a substantially cylindrical shape with the tip 31 closed and extending in the axis A direction. Further, the outer periphery of the gas detection element 3 is provided with a flange portion 19 protruding outward in the radial direction, and between the front end surface of the flange portion 19 and the surface of the inner periphery receiving portion 21 of the metal shell 15.
  • a first packing 33 made of metal is disposed.
  • the solid electrolyte constituting the gas detecting element 3 for example, ZrO 2 in which Y 2 O 3 or CaO is dissolved is representative, but oxidation of other alkaline earth metals or rare earth metals is typical.
  • a solid solution of the product and ZrO 2 may be used.
  • HfO 2 may be contained therein.
  • the outer electrode 5 is a porous Pt or Pt alloy, and is provided so as to cover the outer surface 35 of the tip 31 of the gas detection element 3.
  • the outer electrode 5 is provided up to the distal end surface of the flange portion 19 and is electrically connected to the metal shell 15 via the first packing 33.
  • the inner electrode 7 is also a porous Pt or Pt alloy, and is provided so as to cover the inner surface 37 of the gas detection element 3.
  • the ceramic enclosure 9 is made of an insulating ceramic (specifically, alumina) and has a substantially cylindrical shape.
  • the ceramic enclosure 9 has a cylindrical large-diameter portion 39 protruding radially outward on the front end side, and a cylindrical small-diameter portion 41 located on the rear end side of the large-diameter portion 39. Between the large portion 39 and the small-diameter portion 41, a rear end-facing tapered surface 43 facing the rear end side in the axis A direction is formed.
  • a glaze layer 47 (see FIG. 2) is formed on the outer surface 45 in the radial direction of the rear end-facing tapered surface 43 and the small-diameter portion 41 of the large-diameter portion 39, as will be described in detail later.
  • the ceramic enclosure 9 in which the glaze layer 47 is formed on the outer surface is referred to as a glaze ceramic enclosure 10.
  • the large diameter portion 39 of the ceramic enclosure 9 surrounds the periphery of the rear end side of the gas detection element 3 and is interposed between the gas detection element 3 and the metal shell 15 together with the ceramic powder 49 formed from talc. ing.
  • a second metal packing (metal packing) 53 that is a caulking ring is disposed on the rear end side of the rear end-facing tapered surface 43, and the caulking portion 55 located at the rear end of the metal shell 15 is disposed on the inner side.
  • the second packing 53 is pressed toward the taper surface 43 toward the rear end of the ceramic enclosure 9 (specifically, the glaze layer 47), and the ceramic enclosure 9 is caulked and fixed to the metal shell 15. .
  • the second packing 53 is an annular metal packing made of, for example, SUS430 and having a radius (radius of an inner peripheral portion) of 5 mm.
  • the cross section of the second packing 53 (cross section along the axis center) is circular, and the radius of the cross section is, for example, 0.4 mm.
  • the terminal member 11 is made of, for example, Inconel 750 (English Inconel, trade name), has a substantially cylindrical shape, and includes an output-side terminal portion 57, an element-side terminal portion 59, and a connecting portion 61 that connects the two. .
  • the output side terminal portion 57 has a substantially C-shaped cross section perpendicular to the axial direction, and the cap terminal 65 (see FIG. 5) of the cap terminal member 63 is inserted and connected to the inside. In addition, it is configured to elastically expand its diameter.
  • the element side terminal portion 59 has a cylindrical shape with a substantially C-shaped cross section orthogonal to the axial direction.
  • the element-side terminal portion 59 is inserted into the gas detection element 3 while being elastically reduced in diameter, and is electrically connected to the inner electrode 7.
  • the glaze ceramic enclosure 10 which is a main part of the present embodiment will be described in detail based on FIGS. 2 and 3. 2, the glaze ceramic enclosure 10 includes a ceramic enclosure 9 and a glaze layer 47 formed on a part of the outer surface thereof.
  • the ceramic enclosure 9 includes a small-diameter portion 41 on the rear end side and a large-diameter portion 39 on the front end side, and an enclosure corner portion 67 that connects between the small-diameter portion 41 and the large-diameter portion 39.
  • an annular recess 71 that is cut out in an annular shape is formed at the boundary between the outer peripheral surface 69 of the large-diameter portion 39 and the taper surface 43 facing the rear end.
  • the glaze layer 47 is formed from the outer surface of the ceramic enclosure 9 by the envelope corner portion 67 from the tapered surface 43 toward the rear end of the large diameter portion 39. It is formed over the rear end of the outer surface 45 of the small-diameter portion 41.
  • the portion exposed to the outside above (backward) the upper end (rear end) of the metal shell 15 corresponds to the enclosure exposed portion 9 ⁇ / b> A (see FIG. 6).
  • the portion below the upper end (up to the intersection of the annular recess 71 and the large diameter portion 39) corresponds to the enclosure covering portion 9B.
  • the enclosure body 9C is composed of the enclosure exposure part 9A and the enclosure cover 9B.
  • the upper end to the upper end of the enclosure corner portion 67 is referred to as an upper enclosure covering portion 9b.
  • This glaze layer 47 is, for example, SiO 2 : 77.5 wt%, Al 2 O 3 : 12.1 wt%, MgO: 3.4 wt%, K 2 O: 5.4 wt%, Na 2 O: 1.4 wt% , CaO: 0.1 wt%, Fe 2 O 3 : 0.1 wt%.
  • the thickness of the glaze layer 47 is not uniform, and the glaze layer 47 is radially inward on the outer surface of the envelope covering portion 9B (especially on the outer surface of the envelope corner portion 67).
  • the concave portion 73 is formed so that the thickness of the glaze layer 47 on the envelope covering portion 9B is smaller than the thickness of the glaze layer 47 on the envelope exposed portion 9A.
  • the concave portion 73 of the glaze layer 47 becomes The shape is such that it completely enters the glaze layer 47 on the surrounding body exposed portion 9A.
  • the thickness of the glaze layer 47 on the outer surface 45 on the enclosure exposed portion 9A is, for example, 20 ⁇ m within the range of 15 to 100 ⁇ m, but the thickness of the glaze layer 47 in the recess 73 is thinner than 1 to 10 ⁇ m. Within range.
  • the thickness of the glaze layer 47 gradually decreases as it goes from the concave portion 73 toward the distal end side (downward in FIG. 3). Furthermore, the curvature radius of the outer surface of the recess 73 is 1.0 mm or less, for example, 0.6 mm.
  • the range of the surrounding corner portion 67 is, as viewed in a cross section along the axis A as shown in FIG. 3, the outer surface 45 of the linear small-diameter portion 41 and the linear rear end-facing tapered surface 43.
  • the concave portion 73 is thinner on the outer surface of the surrounding corner portion 67 than the thickness of the glaze layer 47 on the surrounding body exposed portion 9A, and has a diameter. It has a concave part that curves inward.
  • the second packing 53 is disposed on the glaze layer 47 on the tapered surface 43 facing the rear end of the large diameter portion 39, and the second packing 53 is a caulking portion 55 of the metal shell 15. Is crimped inside.
  • the second packing 53 is disposed apart from the recess 73. That is, since the second packing 53 is not in contact with the concave portion 73, the concave portion 73 on the enclosure covering portion 9 ⁇ / b> B is applied even when a pressing force is applied by the inner portion 15 of the metal shell 15. On the other hand, no direct pressure is applied.
  • Method for producing ceramic enclosure 9 In the case of manufacturing the ceramic enclosure 9, first, an insulating ceramic powder such as alumina is blended at a predetermined ratio, and this is molded by known press molding or extrusion molding, whereby the original shape of the ceramic enclosure 9 is obtained. Make a molded body to become. In some cases, the molded body may be cut in a cutting process.
  • this molded body is fired at a predetermined temperature to produce a ceramic enclosure 9.
  • Method for forming the glaze layer 47 Next, a method for forming the glaze layer 47 will be described with reference to FIGS. 4A-4C.
  • the glaze material of the above-mentioned components is dissolved in water or a solvent to prepare a glaze slurry.
  • the glaze slurry is sprayed from the spray nozzle 81 onto the outer surface of the ceramic enclosure 9.
  • a glaze material layer 83 is formed on the outer surface of the ceramic enclosure 9, specifically, the outer surface 45 of the small-diameter portion 41 and the tapered surface 43 facing the rear end. At this time, the thickness of the glaze material layer 83 increases on the surrounding corner portion 67 due to the surface tension.
  • the glaze material layer 83 is air blown to remove excess glaze slurry from above the enclosure corners 67 and the like.
  • the air nozzle 85 jets air along the surface of the taper surface 43 toward the rear end, removes the surface portion of the glaze slurry on the taper surface 43 toward the rear end, and removes excess from the corner portion 67 of the enclosure body. Remove the glaze slurry.
  • the thickness of the glaze material layer 83 on the rear end-facing tapered surface 43 and the glaze material layer 83 on the enclosure corner portion 67 are made thinner than the thickness of the glaze material layer 83 on the small-diameter portion 41.
  • the glaze material layer 83 has a concave shape (the shape of the concave portion 73) on the outer surface of the enclosure corner portion 67.
  • the glaze layer 47 having the shape of the present embodiment is formed by firing at a predetermined temperature.
  • the glaze ceramic enclosure 10 is produced.
  • the ceramic enclosure 9 can be immersed in a water tank containing a glaze slurry, or the ceramic enclosure 9 can be brought into contact with a rotating body on which the glaze slurry is applied. And a method of rotating the rotating body.
  • a method for forming another glaze layer the following methods may be mentioned.
  • a casing 13 in which a metal shell 15 and a protector 17 are integrated is prepared.
  • the gas detection element 3 provided with the outer electrode 5 and the inner electrode 7 is inserted into the casing 13 together with the first packing 33.
  • a predetermined amount of ceramic powder 49 is filled in the gap portion between the metal shell 15 and the gas detection element 3 on the rear end side of the flange portion 19 of the gas detection element 3.
  • the glaze ceramic enclosure 10 (produced through the above-described process) is inserted so as to be interposed between the gas detection element 3 and the metal shell 15, and the tip surface is brought into contact with the ceramic powder 49.
  • the second packing 53 is interposed between the crimped portion 55 of the metal shell 15 and the glaze ceramic enclosure 10 by crimping the rear end side of the metal shell 15 to form the crimped portion 55.
  • the above-mentioned components are fixed together.
  • the terminal member 11 is inserted inside the glaze ceramic enclosure 10 and the gas detection element 3.
  • the element-side terminal portion 59 is inserted into the gas detection element 3 while being elastically reduced in diameter, and is electrically connected to the inner electrode 7.
  • the output side terminal portion 57 is disposed inside and in contact with the glaze ceramic enclosure 10.
  • the gas sensor cap 91 includes a cap terminal member 63, an insulating portion 93 that covers the cap terminal member 63, and a lead wire 95.
  • the cap terminal member 63 is made of, for example, SUS310S, and includes a substantially cylindrical cap terminal 65 and a caulking portion 99 for caulking and connecting the lead wire 95.
  • the cap terminal 65 has rigidity to expand the diameter of the output side terminal portion 57 without being deformed itself when inserted into the output side terminal portion 57 of the gas sensor 1 and connected thereto.
  • One end of the lead wire 95 is crimped by a crimping portion 99 of the cap terminal member 63 and is electrically connected to the cap terminal 65. For this reason, the output signal from the gas detection element 3 of the gas sensor 1 can be transmitted to the external device through the lead wire 95.
  • the insulating part 93 is formed into a hollow shape using a fluorine-based rubber, and the insulating part 93 has a close contact part 97.
  • the gas sensor cap 91 is configured in such a manner that a cap terminal member 63 is disposed coaxially with the close contact portion 97 in an insulating portion 93 and a lead wire 95 connected to the cap terminal member 63 extends from the insertion port 101 to the outside. Has been.
  • the gas sensor unit 111 has a gas sensor cap 91 fitted on the rear end side of the gas sensor 1 and is attached to the exhaust pipe 23 in order to detect the oxygen concentration in the exhaust gas of the internal combustion engine. Used.
  • the gas sensor 1 is screwed to the exhaust pipe 23 in such a manner that the front end side including the protector 17 is located in the exhaust pipe 23 and the rear end side portion of the metal shell 15 is exposed to the outside.
  • the outer electrode 5 electrically connected to the metal shell 15 is grounded through the metal shell 15.
  • the gas sensor cap 91 is attached to the gas sensor 1 such that the cap terminal 65 of the gas sensor cap 91 is inserted into the output side terminal portion 57 of the gas sensor 1.
  • this exposed part is the enclosure exposed part (water covered part) 9A.
  • the ceramic enclosure 9 extends from the outer surface 45 in the radial direction of the small-diameter portion 41 to the tapered surface 43 toward the rear end of the large-diameter portion 39 via the outer surface of the enclosure corner portion 67.
  • the glaze layer 47 is formed, and the glaze layer 47 on the enclosure covering portion 9B has a recess 73 that is recessed radially inward so as to be smaller than the thickness on the enclosure exposed portion 9A.
  • the concave portion 73 (for example, the concave portion on the surrounding corner portion 67) 73 of the glaze layer 47 is recessed radially inward. Therefore, it cannot be visually recognized.
  • the glaze layer 47 is recessed inwardly on the envelope corner portion 67 or the like to form a recess 73, and the glaze layer 47 is accumulated in the envelope corner portion 67 as in the conventional case. Since it is not thick, it is difficult for the second packing 53 to hit the concave portion 73 such as on the surrounding corner portion 67.
  • the glaze layer 47 on the enclosure covering portion 9B is formed thin (to be recessed), the second packing 53 is pushed and moved inward (axial center side) during caulking. In this case, even if contact is made at a part other than the recess 73, the glaze layer 47 is difficult to break because the load applied to the glaze layer 47 is small.
  • the glaze layer 47 is not easily cracked or broken, and therefore the damage of the ceramic enclosure 9 itself can be suppressed. As a result, it is possible to reduce the risk of abnormality or failure in the output of the gas sensor 1 or the like.
  • the surface shape of the recess 73 has a radius of curvature of 1.0 mm or less. If the radius of curvature is within this range, the occurrence of cracks and the like in the glaze layer 47 can be effectively prevented.
  • the thickness of the concave portion 73 of the glaze layer 47 is in the range of 1 to 10 ⁇ m. If it is the glaze thickness of this range, generation
  • the thickness of the glaze layer 47 on the enclosure exposed portion 9A is in the range of 15 to 100 ⁇ m at any part. If the thickness of the glaze is within this range, it is possible to reduce the thermal shock caused by water exposure and to effectively suppress the occurrence of cracks and the like in the ceramic enclosure 9.
  • the gas sensor unit 111 is obtained by attaching the gas sensor cap 91 to the gas sensor 1 described above.
  • the enclosure exposed portion 9A of the ceramic enclosure 9 is exposed to the outside between the gas sensor 1 and the gas sensor cap 91.
  • the property is excellent.
  • the glaze layer 47 is formed on the surface of the ceramic enclosure 9, it has high thermal shock resistance even when it is wet.
  • the gas sensor 1 having the above-described structure is used as the gas sensor 1, the glaze layer 47 and the ceramic enclosure 9 are not easily damaged, and thus have high durability.
  • the second packing 53 corresponds to an example of a metal packing.
  • the thickness of the glaze layer 47 was examined.
  • the glaze thickness is a dimension in a direction perpendicular to the axial direction. The result is shown in the invention example of FIG.
  • the thickness of the glaze layer 47 on the upper envelope covering portion 9b is smaller than the thickness of the glaze layer 47 on the envelope exposed portion 9A. (That is, the recess 73 is formed). Therefore, as described above, it can be seen that the occurrence of cracks in the glaze layer 47 can be suppressed.
  • the thickness of the glaze layer on the upper envelope covering portion is larger than the thickness of the glaze layer on the envelope exposed portion.
  • the gas sensor 1 having the same structure as that of the above embodiment is manufactured, and the shape of the concave portion 73 of the glaze layer 47 is adjusted by adjusting the air blow when forming the glaze layer 47. That is, the radius (R) of the recess 73 was changed. Except for the recess 73, the second packing 53 and the like are the same as in the above embodiment.
  • gas sensors of sample Nos. 1 to 7 (radius R of the recess 73 is 0.4 to 1.0 mm) were manufactured as examples of the present invention.
  • sample Nos. 8 to 12 gas sensors (the radius R of the recesses was 1.1 to 1.5 mm) were produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

Provided are a gas sensor and a gas sensor unit that are able, even if a ceramic enclosure provided with a glaze layer on the outer surface thereof is secured to a main fitting, to resist cracking and breakage of the glaze layer. The gas sensor is provided with a gas detection element, a main fitting, and a ceramic enclosure. The ceramic enclosure has an enclosure trunk section provided with an enclosure-exposing section and an enclosure-covering section. The enclosure trunk section has on the outer surface thereof a glaze layer. The glaze layer on the enclosure-covering section has a recessed section that is recessed further inward in the radial direction than the glaze layer on the enclosure-exposing section. Metal packing is in contact with at least portions of the glaze layer other than the recessed section.

Description

ガスセンサ及びガスセンサユニットGas sensor and gas sensor unit 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2012年8月17日に日本国特許庁に出願された日本国特許出願第2012-181169号に基づく優先権を主張するものであり、日本国特許出願第2012-181169号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2012-181169 filed with the Japan Patent Office on August 17, 2012, and is based on Japanese Patent Application No. 2012-181169. The entire contents are incorporated into this international application.
 本発明は、主としてセラミックからなるガス検出素子を有するガスセンサ及びガスセンサユニットに関する。 The present invention relates to a gas sensor and a gas sensor unit having a gas detection element mainly made of ceramic.
 従来、セラミック等からなるガス検出素子を有するガスセンサとして、様々なものが提案されている。これらのガスセンサとしては、内燃機関の排気管に取付けられて、排気中の酸素濃度を検知するものが挙げられる。 Conventionally, various gas sensors having a gas detection element made of ceramic or the like have been proposed. Examples of these gas sensors include a sensor that is attached to an exhaust pipe of an internal combustion engine and detects the oxygen concentration in the exhaust gas.
 例えば、下記特許文献1には、ガス検出素子の後端側をセラミック包囲体で覆うとともに、排気管の外部のセラミック包囲体を、金属製の筒体で被覆したガスセンサが開示されている。 For example, Patent Document 1 below discloses a gas sensor in which the rear end side of the gas detection element is covered with a ceramic enclosure, and the ceramic enclosure outside the exhaust pipe is covered with a metal cylinder.
 また、下記特許文献2には、金属製の筒体を分割して両者の間に間隙を設け、金属製の筒体の間隙部分から露出するセラミック包囲体を通じて放熱することによって、放熱性を改善したガスセンサが開示されている。 Further, in Patent Document 2 below, heat dissipation is improved by dividing a metal cylinder and providing a gap between the two, and dissipating heat through a ceramic enclosure exposed from the gap portion of the metal cylinder. A gas sensor is disclosed.
 更に、下記特許文献3には、セラミック包囲体の露出部分に釉薬層を形成することで、車両走行中にセラミック包囲体が被水しても、その熱衝撃によりセラミック包囲体に亀裂や破損が発生することを抑制するガスセンサが開示されている。 Further, in Patent Document 3 below, by forming a glaze layer on the exposed portion of the ceramic enclosure, even if the ceramic enclosure gets wet while the vehicle is running, the ceramic enclosure is cracked or damaged by the thermal shock. A gas sensor that suppresses occurrence is disclosed.
特開2001-50928号公報JP 2001-50928 A 特公平6-60883号公報Japanese Patent Publication No. 6-60883 特開2005-201888号公報JP 2005-201888 A
 しかしながら、上述したように、セラミック包囲体に釉薬層を設けた場合でも、下記の様な問題があり、一層の改善が求められていた。
 具体的には、図9に例示するように、セラミック包囲体P1は、筒状の径小部P2の先端側にフランジ状の径大部P3が設けられた形状、即ち径小部P2と径大部P3との境界部分の外表面が凹んだ形状であるので(凹状部分P4があるので)、セラミック包囲体P1上に釉薬層P5を形成する場合に、例えば釉薬材料を噴霧やドラムを用いて塗布すると、表面張力によって凹状部分P4に釉薬材料が溜まり、結果として、凹状部分P4に厚みの大きな釉薬層P5が形成される。
However, as described above, even when the glaze layer is provided on the ceramic enclosure, there are the following problems, and further improvement has been demanded.
Specifically, as illustrated in FIG. 9, the ceramic enclosure P1 has a shape in which a flange-like large-diameter portion P3 is provided on the distal end side of the cylindrical small-diameter portion P2, that is, the small-diameter portion P2 and the diameter. Since the outer surface of the boundary part with the most part P3 has a concave shape (since there is a concave part P4), when forming the glaze layer P5 on the ceramic enclosure P1, for example, spraying a glaze material or using a drum When applied, the glaze material accumulates in the concave portion P4 due to surface tension, and as a result, a thick glaze layer P5 is formed in the concave portion P4.
 しかも、この釉薬層P5を備えたセラミック包囲体P1は、凹状部分P4及び径大部P3の外表面に配置された金属製のパッキンP6を介して主体金具P7に加締めによって固定される。 Moreover, the ceramic enclosure P1 provided with the glaze layer P5 is fixed to the metal shell P7 by caulking through a metal packing P6 disposed on the outer surface of the concave portion P4 and the large diameter portion P3.
 従って、釉薬層P5の厚みが大きな部分に金属製のパッキンP6が当接することにより、この加締めによる押圧力が釉薬層P5に加わると、クラックや破損が発生することがあり、場合によっては、そのクラック等がセラミック包囲体にまで到ることがあった。 Therefore, when the metal packing P6 abuts on the portion where the thickness of the glaze layer P5 is large, if the pressing force by this caulking is applied to the glaze layer P5, cracks or breakage may occur. The crack or the like sometimes reached the ceramic enclosure.
 特に、加締め時において、パッキンP6が内側(即ちセラミック包囲体P1側)に押されて移動した場合に、セラミック包囲体P1上に厚い釉薬層P5が存在すると、釉薬層P5が荷重に耐えきれずに割れることがあった。 In particular, when the packing P6 is pushed and moved inward (ie, on the ceramic enclosure P1 side) during caulking, if the thick glaze layer P5 exists on the ceramic enclosure P1, the glaze layer P5 can withstand the load. It sometimes cracked.
 その結果、ガスセンサの出力に異常が生じたり、ガスセンサが故障する恐れがあった。
 本発明の一側面においては、外表面に釉薬層を備えたセラミック包囲体を主体金具に固定した場合でも、釉薬層にクラックや破損が生じることを抑制できるガスセンサ及びガスセンサユニットを提供することが望ましい。
As a result, the output of the gas sensor may be abnormal, or the gas sensor may break down.
In one aspect of the present invention, it is desirable to provide a gas sensor and a gas sensor unit that can suppress the occurrence of cracks or breakage in the glaze layer even when the ceramic enclosure having the glaze layer on the outer surface is fixed to the metal shell. .
 (1)1つの局面における本発明は、ガス検出素子と、主体金具と、セラミック包囲体と、を備えるガスセンサである。
 ガス検出素子は、軸線方向に向かって延び、先端側が被測定ガスに晒される。主体金具は、ガス検出素子の周囲を取り囲む。セラミック包囲体は、絶縁性セラミックからなる筒状であり、前記ガス検出素子の後端側の周囲を取り囲み、自身の後端側を主体金具の後端より突出させる形態で、金属製パッキンを介して当該主体金具に加締め固定される。
(1) The present invention in one aspect is a gas sensor including a gas detection element, a metal shell, and a ceramic enclosure.
The gas detection element extends in the axial direction, and the tip side is exposed to the gas to be measured. The metal shell surrounds the periphery of the gas detection element. The ceramic enclosure is a cylinder made of an insulating ceramic, surrounds the rear end side of the gas detection element, and protrudes from the rear end of the metal shell with the rear end side of the gas detection element interposed through a metal packing. And are fastened and fixed to the metal shell.
 前記セラミック包囲体は、包囲体露出部と包囲体被覆部とを備える包囲体胴部を有する。包囲体露出部は、前記主体金具の後端より後端側で外部に露出する。包囲体被覆部は、前記主体金具の後端よりも先端側で該主体金具に覆われる。 The ceramic enclosure has an enclosure body including an enclosure exposed part and an enclosure covering part. The enclosure exposed portion is exposed to the outside on the rear end side from the rear end of the metal shell. The enclosure covering portion is covered with the metal shell on the front end side with respect to the rear end of the metal shell.
 前記包囲体胴部は、自身の外表面に釉薬層を備える。前記包囲体被覆部上における前記釉薬層は、前記包囲体露出部上における前記釉薬層よりも径方向内側に凹んだ凹部を有する。前記金属製パッキンは、少なくとも前記釉薬層のうち、前記凹部以外の部位で当接する。 The enclosure body has a glaze layer on its outer surface. The glaze layer on the envelope covering portion has a recess that is recessed radially inward from the glaze layer on the envelope exposed portion. The metal packing abuts at least a portion of the glaze layer other than the recess.
 本局面の発明では、包囲体胴部は、自身の外表面に釉薬層を備えるとともに、包囲体被覆部上における釉薬層は、包囲体露出部上における釉薬層よりも径方向内側に凹んだ凹部を有している。 In the invention of this aspect, the envelope body includes a glaze layer on its outer surface, and the glaze layer on the envelope covering portion is a recess recessed inward in the radial direction from the glaze layer on the envelope exposed portion. have.
 つまり、本局面の発明では、釉薬層は包囲体被覆部上において径方向内側に凹んで薄くなっており、従来の様に、釉薬が溜まって釉薬層が厚くなっていないので、金属製パッキンが包囲体被覆部上の釉薬層に当たり難くなっている。 That is, in the invention of this aspect, the glaze layer is recessed and thinned radially inward on the enclosure covering portion, and the glaze is accumulated and the glaze layer is not thick as in the prior art. It is difficult to hit the glaze layer on the enclosure cover.
 すなわち、金属製パッキンが釉薬層に当接する場合には、釉薬層の凹部で当接するのではなく、凹部以外の部位(凹部の周囲等)で当接するように構成されている。
 従って、釉薬層を備えたセラミック包囲体を、金属製パッキンを介して主体金具によって加締め固定する際に、加締めによる押圧力が(径方向外側より内側に向けて)加えられた場合でも、特に包囲体被覆部上の釉薬層の凹部には直接に力がかからない。
That is, when the metal packing abuts on the glaze layer, it is configured not to abut on the concave portion of the glaze layer but on a portion other than the concave portion (such as around the concave portion).
Therefore, when the ceramic enclosure provided with the glaze layer is caulked and fixed by the metal shell through the metal packing, even when a pressing force by caulking is applied (inward from the outside in the radial direction) In particular, no force is directly applied to the concave portion of the glaze layer on the enclosure covering portion.
 また、本局面の発明では、包囲体被覆部上の釉薬層が前記包囲体露出部上における前記釉薬層よりも薄く(凹むように)形成されているため、加締め時に金属製パッキンが内側に押されて移動して、包囲体被覆部上の釉薬層のうち、凹部以外の部位にて接触したとしても、釉薬層にかかる荷重が少ないので、釉薬層が割れにくい。 Moreover, in the invention of this aspect, since the glaze layer on the enclosure covering portion is formed thinner (to be dented) than the glaze layer on the enclosure exposed portion, the metal packing is on the inside during caulking. Even if it is pushed and moved to make contact with a portion other than the concave portion of the glaze layer on the enclosure covering portion, the glaze layer is difficult to break because the load applied to the glaze layer is small.
 そのため、釉薬層にクラックや破損が生じにくく、よって、セラミック包囲体自身の損傷も抑制できる。その結果、ガスセンサの出力等に異常が生じたり、故障してしまう危険性を低減することができる。 Therefore, the glaze layer is not easily cracked or broken, and thus the ceramic enclosure itself can be prevented from being damaged. As a result, it is possible to reduce the risk of an abnormality or failure in the output of the gas sensor.
 また、本局面の発明では、凹部を設けることにより、釉薬層全体を薄くする必要がないので、特に包囲体露出部上の釉薬層を厚くすることができる。これにより、包囲体露出部(詳しくはその表面の釉薬層)に被水した場合にでも、その熱衝撃によるセラミック包囲体の破損を効果的に抑制することができる。 Further, in the invention of this aspect, it is not necessary to make the entire glaze layer thin by providing the concave portion, so that the glaze layer on the exposed part of the enclosure can be particularly thickened. Thereby, even when the enclosure exposed portion (specifically, the glaze layer on the surface) is covered with water, the ceramic enclosure can be effectively prevented from being damaged by the thermal shock.
 (2)他の局面における本発明は、前記凹部の表面形状は、1.0mm以下の曲率半径を有する。
 本局面の発明は、凹部の好ましい形状を規定している。この範囲の曲率半径であれば、釉薬層のクラック等の発生を効果的に抑制することができる。
(2) In the present invention in another aspect, the surface shape of the recess has a radius of curvature of 1.0 mm or less.
The invention of this aspect defines a preferable shape of the recess. If the radius of curvature is within this range, the occurrence of cracks and the like in the glaze layer can be effectively suppressed.
 (3)さらに別の局面における本発明は、前記凹部における前記釉薬層の厚みは、1~10μmの範囲内である。
 本局面の発明は、凹部における好ましい厚みを例示している。この範囲の釉薬厚みであれば、釉薬層などのクラック等の発生を効果的に抑制することができる。
(3) In another aspect of the present invention, the thickness of the glaze layer in the recess is in the range of 1 to 10 μm.
The invention of this aspect exemplifies a preferable thickness in the recess. If it is the glaze thickness of this range, generation | occurrence | production of the crack of a glaze layer etc. can be suppressed effectively.
 なお、この釉薬層の厚みとは、平均厚みではなく、最大・最小の厚みを含めて、その範囲内に収まることを意味している。
 ここで、凹部における厚みは、セラミック包囲体を軸線方向に対して垂直に破断した断面における径方向の厚みを示している。
Note that the thickness of the glaze layer means that it is within the range including the maximum and minimum thicknesses, not the average thickness.
Here, the thickness in the concave portion indicates the thickness in the radial direction in a cross section obtained by breaking the ceramic enclosure perpendicularly to the axial direction.
 (4)さらに別の局面における本発明は、前記包囲体露出部上における前記釉薬層の厚みは、15~100μmの範囲内である。
 本局面の発明は、包囲体露出部の釉薬層における好ましい厚みを例示している。この範囲の釉薬厚みであれば、被水による熱衝撃を緩和して、セラミック包囲体のクラック等の発生を効果的に抑制することができる。
(4) In the present invention in yet another aspect, the thickness of the glaze layer on the surrounding body exposed portion is in the range of 15 to 100 μm.
The invention of this aspect exemplifies a preferable thickness in the glaze layer of the enclosure exposed portion. If the thickness of the glaze is within this range, it is possible to reduce the thermal shock caused by water exposure and to effectively suppress the occurrence of cracks in the ceramic enclosure.
 なお、この釉薬層の厚みとは、平均厚みではなく、最大・最小の厚みを含めて、その範囲内に収まることを意味している。
 (5)さらに別の局面における本発明は、ガスセンサと、ガスセンサキャップと、を備えるガスセンサユニットである。
Note that the thickness of the glaze layer means that it is within the range including the maximum and minimum thicknesses, not the average thickness.
(5) The present invention in still another aspect is a gas sensor unit including a gas sensor and a gas sensor cap.
 ガスセンサは、ガス検出素子と、主体金具と、セラミック包囲体と、端子部材と、を有する。ガス検出素子は、軸線方向に向かって延び、先端側が被測定ガスに晒される。主体金具は、前記ガス検出素子の周囲を取り囲む。セラミック包囲体は、絶縁性セラミックからなる筒状であり、前記ガス検出素子の後端側の周囲を取り囲み、自身の後端側を主体金具の後端より突出させる形態で、金属製パッキンを介して当該主体金具に加締め固定される。端子部材は、前記ガス検出素子の内周面に形成した内側電極と接続し前記ガス検出素子からの出力信号を外部に出力する。 The gas sensor has a gas detection element, a metal shell, a ceramic enclosure, and a terminal member. The gas detection element extends in the axial direction, and the tip side is exposed to the gas to be measured. The metal shell surrounds the gas detection element. The ceramic enclosure is a cylinder made of an insulating ceramic, surrounds the rear end side of the gas detection element, and protrudes from the rear end of the metal shell with the rear end side of the gas detection element interposed through a metal packing. And are fastened and fixed to the metal shell. The terminal member is connected to an inner electrode formed on the inner peripheral surface of the gas detection element, and outputs an output signal from the gas detection element to the outside.
 ガスセンサキャップは、キャップ端子と、絶縁部と、を有する。キャップ端子は、筒状であり、前記ガスセンサの前記端子部材と接続し、前記出力信号を外部装置に送信する。絶縁部は、キャップ端子と前記セラミック包囲体の後端側を被覆し、絶縁性の弾性体からなる。 The gas sensor cap has a cap terminal and an insulating part. The cap terminal has a cylindrical shape, is connected to the terminal member of the gas sensor, and transmits the output signal to an external device. The insulating portion covers the cap terminal and the rear end side of the ceramic enclosure and is made of an insulating elastic body.
 このガスセンサユニットは、ガスセンサとして、上述のいずれかのガスセンサを用いる。
 本局面のガスセンサユニットは、上述したいずれかのガスセンサにガスセンサキャップを取り付けたものである。
This gas sensor unit uses any of the gas sensors described above as a gas sensor.
The gas sensor unit of this aspect is obtained by attaching a gas sensor cap to any of the gas sensors described above.
 このガスセンサユニットは、排気管等に取り付けられて使用された場合に、ガスセンサとガスセンサキャップとの間にて、セラミック包囲体の包囲体露出部(詳しくはその表面の釉薬層)が外部に露出するので、放熱性が優れている。また、セラミック包囲体の表面には釉薬層が形成されているので、被水した場合でも高い耐熱衝撃性を有している。更に、ガスセンサとして、上述したいずれかのガスセンサを使用するので、釉薬層やセラミック包囲体が破損し難く、よって、高い耐久性を有している。 When the gas sensor unit is used by being attached to an exhaust pipe or the like, the exposed portion of the ceramic enclosure (specifically, the glaze layer on the surface) is exposed to the outside between the gas sensor and the gas sensor cap. So heat dissipation is excellent. Moreover, since the glaze layer is formed on the surface of the ceramic enclosure, it has high thermal shock resistance even when it is wet. Furthermore, since any one of the gas sensors described above is used as the gas sensor, the glaze layer and the ceramic enclosure are not easily damaged, and thus have high durability.
実施形態にかかるガスセンサを、軸方向に沿って破断した状態を示す断面図である。It is sectional drawing which shows the state which fractured | ruptured the gas sensor concerning embodiment along the axial direction. ガスセンサに用いられる釉薬セラミック包囲体を、軸方向に沿って一部を破断した状態を示す部分断面図である。It is a fragmentary sectional view which shows the state which fractured | ruptured the glaze ceramic enclosure used for a gas sensor along the axial direction. 図1のB部分を拡大して示す説明図である。It is explanatory drawing which expands and shows the B section of FIG. 図4Aは、釉薬セラミック包囲体の製造方法のうち釉薬スラリーをセラミック包囲体の外表面に噴霧する状態を示す説明図であり、図4Bは、釉薬セラミック包囲体の製造方法のうちセラミック包囲体の外表面上に釉薬材料層が形成された状態を示す説明図であり、図4Cは、釉薬セラミック包囲体の製造方法のうち釉薬材料層をエアブローし余分な釉薬スラリーを除去する状態を示す説明図である。FIG. 4A is an explanatory view showing a state in which the glaze slurry is sprayed on the outer surface of the ceramic envelope in the manufacturing method of the glaze ceramic envelope, and FIG. 4B is a diagram of the ceramic envelope in the manufacturing method of the glaze ceramic envelope. FIG. 4C is an explanatory view showing a state in which the glaze material layer is formed on the outer surface, and FIG. 4C is an explanatory view showing a state in which the glaze material layer is air blown and excess glaze slurry is removed in the manufacturing method of the glaze ceramic enclosure. It is. 実施形態にかかるガスセンサキャップを、軸方向に沿って破断した状態を示す断面図である。It is sectional drawing which shows the state which fractured | ruptured the gas sensor cap concerning embodiment along an axial direction. 実施形態にかかるガスセンサユニットを、使用に供したときの様子を示す説明図である。It is explanatory drawing which shows a mode when the gas sensor unit concerning embodiment is used. セラミック包囲体上の釉薬層の厚みの測定位置などを示す説明図である。It is explanatory drawing which shows the measurement position etc. of the thickness of the glaze layer on a ceramic enclosure. セラミック包囲体上の釉薬層の厚みを、軸方向に沿って調べた測定結果を示すグラフである。It is a graph which shows the measurement result which investigated the thickness of the glaze layer on a ceramic enclosure along the axial direction. 従来技術を示す説明図である。It is explanatory drawing which shows a prior art.
 1…ガスセンサ
 3…ガス検出素子
 9…セラミック包囲体
 10…釉薬セラミック包囲体
 15…主体金具
 39…径大部
 41…径小部
 47…釉薬層
 53…第2パッキン(金属製パッキン)
 65…キャップ端子
 67…包囲体角部
 73…凹部
 91…ガスセンサキャップ
 111…ガスセンサユニット
 9A…包囲体露出部(被水部)
 9B…包囲体被覆部
 9b…上包囲体被覆部
 9C…包囲体胴部
DESCRIPTION OF SYMBOLS 1 ... Gas sensor 3 ... Gas detection element 9 ... Ceramic enclosure 10 ... Glaze ceramic enclosure 15 ... Main metal fitting 39 ... Large diameter part 41 ... Small diameter part 47 ... Glaze layer 53 ... 2nd packing (metal packing)
65 ... Cap terminal 67 ... Enveloping body corner portion 73 ... Recessed portion 91 ... Gas sensor cap 111 ... Gas sensor unit 9A ... Enveloping body exposed portion (water covered portion)
9B: Enclosure cover 9b: Upper envelope cover 9C: Enclosure body
 以下、本発明のガスセンサの実施の形態について説明する。
[実施形態]
 a)まず、本実施形態のガスセンサの全体構成について、図1に基づいて説明する。
Hereinafter, embodiments of the gas sensor of the present invention will be described.
[Embodiment]
a) First, the whole structure of the gas sensor of this embodiment is demonstrated based on FIG.
 なお、図1の下方をガスセンサの先端側とし、上方を後端側として説明する。
 図1に示す様に、本実施形態のガスセンサ1は、ガス検出素子3、外側電極5、内側電極7、セラミック包囲体9、端子部材11、ケーシング13を有する。
In the following description, the lower side of FIG. 1 is the front end side of the gas sensor and the upper side is the rear end side.
As shown in FIG. 1, the gas sensor 1 of this embodiment includes a gas detection element 3, an outer electrode 5, an inner electrode 7, a ceramic enclosure 9, a terminal member 11, and a casing 13.
 このうち、前記ケーシング13は、主体金具15及びプロテクタ17を有している。
 主体金具15はSUS430からなり、略円筒状に形成されている。主体金具15の内部には、ガス検出素子3の鍔部19を支持するための内周受け部21が周設されている。主体金具15の外側には、ガスセンサ1を排気管23(図6参照)に取付けるためのネジ部25が形成されており、このネジ部25の後端側には、ネジ部25を排気管23に螺挿するための六角部27が周設されている。
Among these, the casing 13 has a metal shell 15 and a protector 17.
The metal shell 15 is made of SUS430 and has a substantially cylindrical shape. Inside the metal shell 15, an inner peripheral receiving portion 21 for supporting the flange portion 19 of the gas detection element 3 is provided. A screw part 25 for attaching the gas sensor 1 to the exhaust pipe 23 (see FIG. 6) is formed outside the metal shell 15, and the screw part 25 is connected to the exhaust pipe 23 at the rear end side of the screw part 25. A hexagonal portion 27 for screwing is provided around.
 一方、プロテクタ17は、金属製、略円筒状の筒体で、排気管23内の排気をガスセンサ1の内部に導入するための通気孔29を有している。
 前記ガス検出素子3は、酸素イオン伝導性を有する固体電解質からなり、主体金具15内に貫挿された状態で固定されている。このガス検出素子3は、先端部31が閉塞されて軸線A方向に延びる略円筒形状を有している。また、ガス検出素子3の外周には、径方向外向きに突出した鍔部19が設けられており、この鍔部19の先端面と主体金具15の内周受け部21の表面との間に金属製の第1パッキン33が配置されている。
On the other hand, the protector 17 is a metal, substantially cylindrical cylinder, and has a vent hole 29 for introducing the exhaust gas in the exhaust pipe 23 into the gas sensor 1.
The gas detection element 3 is made of a solid electrolyte having oxygen ion conductivity, and is fixed in a state of being inserted into the metal shell 15. The gas detection element 3 has a substantially cylindrical shape with the tip 31 closed and extending in the axis A direction. Further, the outer periphery of the gas detection element 3 is provided with a flange portion 19 protruding outward in the radial direction, and between the front end surface of the flange portion 19 and the surface of the inner periphery receiving portion 21 of the metal shell 15. A first packing 33 made of metal is disposed.
 なお、ガス検出素子3を構成する固体電解質としては、例えば、Y23またはCaOを固溶かさせたZrO2が代表的なものであるが、それ以外のアルカリ土類金属または希土類金属の酸化物とZrO2との固溶体を使用しても良い。さらには、これにHfO2が含有させていても良い。 As the solid electrolyte constituting the gas detecting element 3, for example, ZrO 2 in which Y 2 O 3 or CaO is dissolved is representative, but oxidation of other alkaline earth metals or rare earth metals is typical. A solid solution of the product and ZrO 2 may be used. Furthermore, HfO 2 may be contained therein.
 前記外側電極5は、PtあるいはPt合金を多孔質に形成したもので、ガス検出素子3の先端部31の外側面35を被覆するように設けられている。なお、この外側電極5は、鍔部19の先端面まで設けられており、第1パッキン33を介して主体金具15に電気的に接続される。 The outer electrode 5 is a porous Pt or Pt alloy, and is provided so as to cover the outer surface 35 of the tip 31 of the gas detection element 3. The outer electrode 5 is provided up to the distal end surface of the flange portion 19 and is electrically connected to the metal shell 15 via the first packing 33.
 一方、前記内側電極7も、PtあるいはPt合金を多孔質に形成したものであり、ガス検出素子3の内側面37を被覆するように設けられている。
 前記セラミック包囲体9は、絶縁性セラミック(具体的には、アルミナ)からなり、略円筒形状を有している。このセラミック包囲体9は、先端側に径方向外側に突出する筒状の径大部39と、径大部39よりも後端側に位置する筒状の径小部41とを有し、径大部39と径小部41との間には、軸線A方向後端側に向く後端向きテーパ面43が形成されている。
On the other hand, the inner electrode 7 is also a porous Pt or Pt alloy, and is provided so as to cover the inner surface 37 of the gas detection element 3.
The ceramic enclosure 9 is made of an insulating ceramic (specifically, alumina) and has a substantially cylindrical shape. The ceramic enclosure 9 has a cylindrical large-diameter portion 39 protruding radially outward on the front end side, and a cylindrical small-diameter portion 41 located on the rear end side of the large-diameter portion 39. Between the large portion 39 and the small-diameter portion 41, a rear end-facing tapered surface 43 facing the rear end side in the axis A direction is formed.
 また、径大部39の後端向きテーパ面43及び径小部41の径方向の外表面45には、後に詳述するように、釉薬層47(図2参照)が形成されている。なお、外表面に釉薬層47が形成されたセラミック包囲体9を、釉薬セラミック包囲体10と称する。 Further, a glaze layer 47 (see FIG. 2) is formed on the outer surface 45 in the radial direction of the rear end-facing tapered surface 43 and the small-diameter portion 41 of the large-diameter portion 39, as will be described in detail later. The ceramic enclosure 9 in which the glaze layer 47 is formed on the outer surface is referred to as a glaze ceramic enclosure 10.
 このセラミック包囲体9の径大部39は、ガス検出素子3の後端側周囲を取り囲む形態で、タルクから形成されたセラミック粉末49と共に、ガス検出素子3と主体金具15との間に介在している。 The large diameter portion 39 of the ceramic enclosure 9 surrounds the periphery of the rear end side of the gas detection element 3 and is interposed between the gas detection element 3 and the metal shell 15 together with the ceramic powder 49 formed from talc. ing.
 更に、後端向きテーパ面43の後端側には加締めリングである金属製の第2パッキン(金属製パッキン)53が配置され、主体金具15の後端に位置する加締め部55を内側に加締めることにより、第2パッキン53がセラミック包囲体9の後端向きテーパ面43(詳しくは釉薬層47)に向かって押圧され、セラミック包囲体9が主体金具15に加締め固定されている。 Further, a second metal packing (metal packing) 53 that is a caulking ring is disposed on the rear end side of the rear end-facing tapered surface 43, and the caulking portion 55 located at the rear end of the metal shell 15 is disposed on the inner side. , The second packing 53 is pressed toward the taper surface 43 toward the rear end of the ceramic enclosure 9 (specifically, the glaze layer 47), and the ceramic enclosure 9 is caulked and fixed to the metal shell 15. .
 なお、第2パッキン53は、例えばSUS430からなり、その半径(内周部分の半径)が5mmの円環状の金属パッキンである。また、第2パッキン53の断面(軸中心に沿った断面)は円形であり、その断面の半径は例えば0.4mmである。 Note that the second packing 53 is an annular metal packing made of, for example, SUS430 and having a radius (radius of an inner peripheral portion) of 5 mm. The cross section of the second packing 53 (cross section along the axis center) is circular, and the radius of the cross section is, for example, 0.4 mm.
 前記端子部材11は、例えばインコネル750(英インコネル社、商標名)からなり、略筒形状で、出力側端子部57、素子側端子部59、及び両者を連結する連結部61を有している。 The terminal member 11 is made of, for example, Inconel 750 (English Inconel, trade name), has a substantially cylindrical shape, and includes an output-side terminal portion 57, an element-side terminal portion 59, and a connecting portion 61 that connects the two. .
 このうち、出力側端子部57は、軸線方向に直交する断面が略C字形状の筒状で、キャップ端子部材63のキャップ端子65(図5参照)を自身の内側に挿入して接続したときに、弾性的に拡径するように構成されている。 Among these, the output side terminal portion 57 has a substantially C-shaped cross section perpendicular to the axial direction, and the cap terminal 65 (see FIG. 5) of the cap terminal member 63 is inserted and connected to the inside. In addition, it is configured to elastically expand its diameter.
 一方、素子側端子部59は、軸線方向に直行する断面が略C字形状の筒形状を有している。この素子側端子部59は、弾性的に縮径しつつガス検出素子3内に挿入されて、内側電極7と電気的に接続している。 On the other hand, the element side terminal portion 59 has a cylindrical shape with a substantially C-shaped cross section orthogonal to the axial direction. The element-side terminal portion 59 is inserted into the gas detection element 3 while being elastically reduced in diameter, and is electrically connected to the inner electrode 7.
 b)次に、本実施形態の要部である釉薬セラミック包囲体10について、図2及び図3に基づいて詳細に説明する。
 図2に一部を破断し拡大して示す様に、釉薬セラミック包囲体10は、セラミック包囲体9と、その外表面の一部に形成された釉薬層47とを備える。
b) Next, the glaze ceramic enclosure 10 which is a main part of the present embodiment will be described in detail based on FIGS. 2 and 3.
2, the glaze ceramic enclosure 10 includes a ceramic enclosure 9 and a glaze layer 47 formed on a part of the outer surface thereof.
 詳しくは、セラミック包囲体9は、後端側の径小部41と先端側の径大部39とを備えるとともに、径小部41と径大部39との間を繋ぐ包囲体角部67を備えている。
 また、径大部39の外周面69と後端向きテーパ面43との境界部分には、環状に切り欠かかれた環状凹部71が形成されている。
Specifically, the ceramic enclosure 9 includes a small-diameter portion 41 on the rear end side and a large-diameter portion 39 on the front end side, and an enclosure corner portion 67 that connects between the small-diameter portion 41 and the large-diameter portion 39. I have.
Further, an annular recess 71 that is cut out in an annular shape is formed at the boundary between the outer peripheral surface 69 of the large-diameter portion 39 and the taper surface 43 facing the rear end.
 更に、図3に図1のB部を拡大して示す様に、釉薬層47は、セラミック包囲体9の外表面うち、径大部39の後端向きテーパ面43から包囲体角部67を介して径小部41の外表面45の後端までにわたって形成されている。 Further, as shown in FIG. 3 in which the portion B of FIG. 1 is enlarged, the glaze layer 47 is formed from the outer surface of the ceramic enclosure 9 by the envelope corner portion 67 from the tapered surface 43 toward the rear end of the large diameter portion 39. It is formed over the rear end of the outer surface 45 of the small-diameter portion 41.
 また、図3に示すセラミック包囲体9において、主体金具15の上端(後端)より上方(後方)で外部に露出する部分が包囲体露出部9A(図6参照)に該当し、主体金具15の上端より下方の部分(環状凹部71と径大部39との交点まで)が包囲体被覆部9Bに該当する。なお、包囲体露出部9Aと包囲体被覆部9Bから包囲体胴部9Cが構成されている。また、ここでは、包囲体被覆部9Bのうち、その上端から包囲体角部67の上端までを、上包囲体被覆部9bと称する。 Further, in the ceramic enclosure 9 shown in FIG. 3, the portion exposed to the outside above (backward) the upper end (rear end) of the metal shell 15 corresponds to the enclosure exposed portion 9 </ b> A (see FIG. 6). The portion below the upper end (up to the intersection of the annular recess 71 and the large diameter portion 39) corresponds to the enclosure covering portion 9B. The enclosure body 9C is composed of the enclosure exposure part 9A and the enclosure cover 9B. Here, in the enclosure covering portion 9B, the upper end to the upper end of the enclosure corner portion 67 is referred to as an upper enclosure covering portion 9b.
 この釉薬層47は、例えば、SiO2:77.5wt%、Al23:12.1wt%、MgO:3.4wt%、K2O:5.4wt%、Na2O:1.4wt%、CaO:0.1wt%、Fe23:0.1wt%を含有する釉薬から形成されている。 This glaze layer 47 is, for example, SiO 2 : 77.5 wt%, Al 2 O 3 : 12.1 wt%, MgO: 3.4 wt%, K 2 O: 5.4 wt%, Na 2 O: 1.4 wt% , CaO: 0.1 wt%, Fe 2 O 3 : 0.1 wt%.
 特に、本実施形態では、釉薬層47の厚みは均一ではなく、釉薬層47は、包囲体被覆部9Bの外表面上において(特に包囲体角部67の外表面上において)、径方向内側に滑らかに凹んでおり、これによって、包囲体被覆部9B上の釉薬層47の厚みが、包囲体露出部9A上の釉薬層47の厚みよりも小さな凹部73が形成されている。 In particular, in this embodiment, the thickness of the glaze layer 47 is not uniform, and the glaze layer 47 is radially inward on the outer surface of the envelope covering portion 9B (especially on the outer surface of the envelope corner portion 67). The concave portion 73 is formed so that the thickness of the glaze layer 47 on the envelope covering portion 9B is smaller than the thickness of the glaze layer 47 on the envelope exposed portion 9A.
 つまり、径小部41上における釉薬層47の外表面(径小部41の先端側から包囲体角部67の先端部分まで)を軸線Aに沿ってトレースした場合、釉薬層47の凹部73は、包囲体露出部9A上の釉薬層47より完全に内側に入り込んでいる形状となっている。 That is, when the outer surface of the glaze layer 47 on the small diameter portion 41 (from the distal end side of the small diameter portion 41 to the distal end portion of the enclosure corner portion 67) is traced along the axis A, the concave portion 73 of the glaze layer 47 becomes The shape is such that it completely enters the glaze layer 47 on the surrounding body exposed portion 9A.
 詳しくは、包囲体露出部9A上の外表面45上の釉薬層47の厚みは15~100μmの範囲内の例えば20μmであるが、凹部73における釉薬層47の厚みはそれより薄く1~10μmの範囲内である。 Specifically, the thickness of the glaze layer 47 on the outer surface 45 on the enclosure exposed portion 9A is, for example, 20 μm within the range of 15 to 100 μm, but the thickness of the glaze layer 47 in the recess 73 is thinner than 1 to 10 μm. Within range.
 なお、釉薬層47の厚みは、凹部73より先端側(図3下方)にゆくほど徐々に薄くなっている。
 更に、凹部73の外表面の曲率半径は1.0mm以下の例えば0.6mmである。
Note that the thickness of the glaze layer 47 gradually decreases as it goes from the concave portion 73 toward the distal end side (downward in FIG. 3).
Furthermore, the curvature radius of the outer surface of the recess 73 is 1.0 mm or less, for example, 0.6 mm.
 ここで、包囲体角部67の範囲は、図3の様な軸線Aに沿った断面にて見た場合、直線状の径小部41の外表面45と直線状の後端向きテーパ面43との間を滑らかに繋ぐR形状部分を示しており、一方、凹部73は、その包囲体角部67の外表面上にて、包囲体露出部9A上の釉薬層47の厚みより薄く、径方向内側に湾曲する凹状部分を有している。 Here, the range of the surrounding corner portion 67 is, as viewed in a cross section along the axis A as shown in FIG. 3, the outer surface 45 of the linear small-diameter portion 41 and the linear rear end-facing tapered surface 43. On the other hand, the concave portion 73 is thinner on the outer surface of the surrounding corner portion 67 than the thickness of the glaze layer 47 on the surrounding body exposed portion 9A, and has a diameter. It has a concave part that curves inward.
 なお、同図に示すように、径大部39の後端向きテーパ面43上の釉薬層47上に、第2パッキン53が配置され、第2パッキン53は、主体金具15の加締め部55によって内側に加締められている。 As shown in the figure, the second packing 53 is disposed on the glaze layer 47 on the tapered surface 43 facing the rear end of the large diameter portion 39, and the second packing 53 is a caulking portion 55 of the metal shell 15. Is crimped inside.
 このとき、第2パッキン53は、凹部73と離間して配置されている。つまり、第2パッキン53は、凹部73と当接していないので、主体金具15の加締め部55によって内側に加締められて押圧力が加えられた場合でも、包囲体被覆部9B上の凹部73に対して直接には押圧力が加わっていない。 At this time, the second packing 53 is disposed apart from the recess 73. That is, since the second packing 53 is not in contact with the concave portion 73, the concave portion 73 on the enclosure covering portion 9 </ b> B is applied even when a pressing force is applied by the inner portion 15 of the metal shell 15. On the other hand, no direct pressure is applied.
 c)次に、本実施形態のガスセンサ1の製造方法を説明する。
(セラミック包囲体9の作製方法)
 セラミック包囲体9を製造する場合には、まず、アルミナ等の絶縁性セラミック粉末を、所定の比率で配合し、これを公知のプレス成形や押出し成形により成形することにより、セラミック包囲体9の原形となる成形体を作る。なお、場合によっては切削工程にて成形体を切削してもよい。
c) Next, the manufacturing method of the gas sensor 1 of this embodiment is demonstrated.
(Method for producing ceramic enclosure 9)
In the case of manufacturing the ceramic enclosure 9, first, an insulating ceramic powder such as alumina is blended at a predetermined ratio, and this is molded by known press molding or extrusion molding, whereby the original shape of the ceramic enclosure 9 is obtained. Make a molded body to become. In some cases, the molded body may be cut in a cutting process.
 その後、この成形体を所定温度にて焼成することにより、セラミック包囲体9を作製する。
(釉薬層47の形成方法)
 次に、釉薬層47の形成方法について、図4A-4Cに基づいて説明する。
Thereafter, this molded body is fired at a predetermined temperature to produce a ceramic enclosure 9.
(Method for forming the glaze layer 47)
Next, a method for forming the glaze layer 47 will be described with reference to FIGS. 4A-4C.
 まず、上述した成分の釉薬材料を水又は溶媒中に溶かし込んで、釉薬スラリーを作製する。
 次に、図4Aに示す様に、その釉薬スラリーを、噴霧ノズル81からセラミック包囲体9の外表面に噴霧する。これによって、図4Bに示す様に、セラミック包囲体9の外表面、詳しくは、径小部41の外表面45及び後端向きテーパ面43上に釉薬材料層83を形成する。この際、表面張力によって、釉薬材料層83は包囲体角部67上で厚みが大きくなる。
First, the glaze material of the above-mentioned components is dissolved in water or a solvent to prepare a glaze slurry.
Next, as shown in FIG. 4A, the glaze slurry is sprayed from the spray nozzle 81 onto the outer surface of the ceramic enclosure 9. As a result, as shown in FIG. 4B, a glaze material layer 83 is formed on the outer surface of the ceramic enclosure 9, specifically, the outer surface 45 of the small-diameter portion 41 and the tapered surface 43 facing the rear end. At this time, the thickness of the glaze material layer 83 increases on the surrounding corner portion 67 due to the surface tension.
 次に、図4Cに示す様に、釉薬材料層83をエアブローし、包囲体角部67などの上から余分な釉薬スラリーを除去する。詳しくは、エアノズル85によって、後端向きテーパ面43の表面に沿って空気を噴射し、後端向きテーパ面43上の釉薬スラリーの表面部分を除去するとともに、包囲体角部67上から余分な釉薬スラリーを除去する。 Next, as shown in FIG. 4C, the glaze material layer 83 is air blown to remove excess glaze slurry from above the enclosure corners 67 and the like. Specifically, the air nozzle 85 jets air along the surface of the taper surface 43 toward the rear end, removes the surface portion of the glaze slurry on the taper surface 43 toward the rear end, and removes excess from the corner portion 67 of the enclosure body. Remove the glaze slurry.
 これによって、径小部41上の釉薬材料層83の厚みよりも、後端向きテーパ面43上の釉薬材料層83及び包囲体角部67上の釉薬材料層83の厚みを薄くする。その結果、包囲体角部67の外表面では、釉薬材料層83が凹んだ形状(凹部73の形状)となる。 Thus, the thickness of the glaze material layer 83 on the rear end-facing tapered surface 43 and the glaze material layer 83 on the enclosure corner portion 67 are made thinner than the thickness of the glaze material layer 83 on the small-diameter portion 41. As a result, the glaze material layer 83 has a concave shape (the shape of the concave portion 73) on the outer surface of the enclosure corner portion 67.
 次に、釉薬材料層83を乾燥させた後に、所定温度で焼成し、本実施形態の形状を有する釉薬層47を形成する。これにより、釉薬セラミック包囲体10が作製される。
 なお、前記噴霧による塗布方法以外に、釉薬スラリーが入った水槽にセラミック包囲体9を漬ける方法や、釉薬スラリーが表面に塗布された回転体にセラミック包囲体9を接触させつつ、セラミック包囲体9と回転体を回転させる方法等がある。
Next, after the glaze material layer 83 is dried, the glaze layer 47 having the shape of the present embodiment is formed by firing at a predetermined temperature. Thereby, the glaze ceramic enclosure 10 is produced.
In addition to the application method by spraying, the ceramic enclosure 9 can be immersed in a water tank containing a glaze slurry, or the ceramic enclosure 9 can be brought into contact with a rotating body on which the glaze slurry is applied. And a method of rotating the rotating body.
 更に、他の釉薬層の形成方法としては、下記の様な方法が挙げられる。
 ・釉薬スラリーによって釉薬材料層83を形成した後に、吸水性を有するスポンジ等の物質を利用して、包囲体角部67上から余分な釉薬スラリーを吸い取る方法。
Furthermore, as a method for forming another glaze layer, the following methods may be mentioned.
A method in which, after forming the glaze material layer 83 with a glaze slurry, a substance such as a sponge having water absorbency is used to absorb excess glaze slurry from the corners 67 of the enclosure.
 ・釉薬スラリーによって釉薬材料層83を形成した後に、刷毛等により、機械的に包囲体角部67上から余分な釉薬スラリーを除去する方法。
 ・釉薬スラリーによって釉薬材料層83を形成するのではなく、シート状(フィルム状)の釉薬材料を用いて、セラミック包囲体9上に釉薬材料層83を形成する方法。その際には、包囲体角部67上の釉薬材料層83の厚みを薄くする。
(ガスセンサ1全体の製造方法)
 次に、ガスセンサ1全体の製造方法について説明する。
A method in which, after forming the glaze material layer 83 with a glaze slurry, the excess glaze slurry is mechanically removed from the top of the enclosure corner 67 by a brush or the like.
A method of forming the glaze material layer 83 on the ceramic enclosure 9 by using a sheet-like (film-like) glaze material instead of forming the glaze material layer 83 by the glaze slurry. In that case, the thickness of the glaze material layer 83 on the enclosure corner | angular part 67 is made thin.
(Method for manufacturing the entire gas sensor 1)
Next, a method for manufacturing the entire gas sensor 1 will be described.
 図1に示すように、主体金具15とプロテクタ17とを一体にしたケーシング13を用意する。
 次に、外側電極5及び内側電極7が設けられたガス検出素子3を第1パッキン33と共にケーシング13の内部に挿入する。
As shown in FIG. 1, a casing 13 in which a metal shell 15 and a protector 17 are integrated is prepared.
Next, the gas detection element 3 provided with the outer electrode 5 and the inner electrode 7 is inserted into the casing 13 together with the first packing 33.
 次に、ガス検出素子3の鍔部19の後端側において、主体金具15とガス検出素子3との間隙部分に、セラミック粉末49を所定量充填する。
 次に、(上述したプロセスを経て作製した)釉薬セラミック包囲体10を、ガス検出素子3と主体金具15との間に介在するように挿入し、先端面をセラミック粉末49に当接させる。
Next, a predetermined amount of ceramic powder 49 is filled in the gap portion between the metal shell 15 and the gas detection element 3 on the rear end side of the flange portion 19 of the gas detection element 3.
Next, the glaze ceramic enclosure 10 (produced through the above-described process) is inserted so as to be interposed between the gas detection element 3 and the metal shell 15, and the tip surface is brought into contact with the ceramic powder 49.
 次に、主体金具15の後端側を加締め、加締め部55を形成することで、主体金具15の加締め部55と釉薬セラミック包囲体10との間に第2パッキン53を介在させて、上記構成部品を一体に固定する。 Next, the second packing 53 is interposed between the crimped portion 55 of the metal shell 15 and the glaze ceramic enclosure 10 by crimping the rear end side of the metal shell 15 to form the crimped portion 55. The above-mentioned components are fixed together.
 最後に、端子部材11を釉薬セラミック包囲体10及びガス検出素子3の内側に挿入する。具体的には、素子側端子部59を弾性的に縮径しつつガス検出素子3内に挿入して、内側電極7と電気的に接続させる。これと共に、出力側端子部57を釉薬セラミック包囲体10の内側に配置し当接させる。 Finally, the terminal member 11 is inserted inside the glaze ceramic enclosure 10 and the gas detection element 3. Specifically, the element-side terminal portion 59 is inserted into the gas detection element 3 while being elastically reduced in diameter, and is electrically connected to the inner electrode 7. At the same time, the output side terminal portion 57 is disposed inside and in contact with the glaze ceramic enclosure 10.
 このようにして、ガスセンサ1が完成する。
 d)次に、ガスセンサ1の後端側に嵌めるガスセンサキャップについて、図5に基づいて説明する。
In this way, the gas sensor 1 is completed.
d) Next, a gas sensor cap fitted to the rear end side of the gas sensor 1 will be described with reference to FIG.
 図5に示す様に、ガスセンサキャップ91は、キャップ端子部材63、キャップ端子部材63を被覆する絶縁部93、及びリード線95を有している。
 キャップ端子部材63は、例えばSUS310Sからなり、略円筒形状のキャップ端子65と、リード線95を加締めて接続させる加締め部99とを有している。このうち、キャップ端子65は、ガスセンサ1の出力側端子部57内に挿入されて接続したときに、自身は変形することなく、出力側端子部57を拡径させる剛性を有している。
As shown in FIG. 5, the gas sensor cap 91 includes a cap terminal member 63, an insulating portion 93 that covers the cap terminal member 63, and a lead wire 95.
The cap terminal member 63 is made of, for example, SUS310S, and includes a substantially cylindrical cap terminal 65 and a caulking portion 99 for caulking and connecting the lead wire 95. Among these, the cap terminal 65 has rigidity to expand the diameter of the output side terminal portion 57 without being deformed itself when inserted into the output side terminal portion 57 of the gas sensor 1 and connected thereto.
 リード線95は、その一端がキャップ端子部材63の加締め部99に加締められてキャップ端子65と電気的に接続している。このため、リード線95を通じて、ガスセンサ1のガス検出素子3からの出力信号を、外部装置に送信することが可能となる。 One end of the lead wire 95 is crimped by a crimping portion 99 of the cap terminal member 63 and is electrically connected to the cap terminal 65. For this reason, the output signal from the gas detection element 3 of the gas sensor 1 can be transmitted to the external device through the lead wire 95.
 絶縁部93は、フッ素系のゴムを用いて中空状に成形してなり、絶縁部93には、密着部97を有している。
 このガスセンサキャップ91は、絶縁部93内に、キャップ端子部材63が密着部97と同軸に配置され、キャップ端子部材63に接続されたリード線95が挿入口101から外部に延出する形態で構成されている。
The insulating part 93 is formed into a hollow shape using a fluorine-based rubber, and the insulating part 93 has a close contact part 97.
The gas sensor cap 91 is configured in such a manner that a cap terminal member 63 is disposed coaxially with the close contact portion 97 in an insulating portion 93 and a lead wire 95 connected to the cap terminal member 63 extends from the insertion port 101 to the outside. Has been.
 e)次に、ガスセンサ1及びガスセンサキャップ91を備えたガスセンサユニットについて、図6に基づいて説明する。
 図6に示す様に、ガスセンサユニット111は、ガスセンサ1の後端側にガスセンサキャップ91を外嵌させたものであり、内燃機関の排気中の酸素濃度を検知するために、排気管23に取り付けられて使用される。
e) Next, a gas sensor unit including the gas sensor 1 and the gas sensor cap 91 will be described with reference to FIG.
As shown in FIG. 6, the gas sensor unit 111 has a gas sensor cap 91 fitted on the rear end side of the gas sensor 1 and is attached to the exhaust pipe 23 in order to detect the oxygen concentration in the exhaust gas of the internal combustion engine. Used.
 具体的には、ガスセンサ1は、プロテクタ17を含む先端側が排気管23内に位置し、主体金具15のネジ部25より後端側の部分が外部に露出する形態で排気管23に螺着される。なお、このとき、主体金具15と電気的に接続している外側電極5が、主体金具15を通じてボディアースされる。 Specifically, the gas sensor 1 is screwed to the exhaust pipe 23 in such a manner that the front end side including the protector 17 is located in the exhaust pipe 23 and the rear end side portion of the metal shell 15 is exposed to the outside. The At this time, the outer electrode 5 electrically connected to the metal shell 15 is grounded through the metal shell 15.
 次に、ガスセンサキャップ91のキャップ端子65をガスセンサ1の出力側端子部57の内側に挿入するようにして、ガスセンサキャップ91をガスセンサ1に取付ける。
 このとき、ガスセンサキャップ91の下端と主体金具15との間には隙間(S)がありこの隙間部分にて、釉薬セラミック包囲体10の外周面(詳しくは釉薬層47の外周面)が、外部に露出する。なお、この露出部分が、包囲体露出部(被水部)9Aである。
Next, the gas sensor cap 91 is attached to the gas sensor 1 such that the cap terminal 65 of the gas sensor cap 91 is inserted into the output side terminal portion 57 of the gas sensor 1.
At this time, there is a gap (S) between the lower end of the gas sensor cap 91 and the metal shell 15, and the outer peripheral surface of the glaze ceramic enclosure 10 (specifically, the outer peripheral surface of the glaze layer 47) is outside the gap portion. Exposed to. In addition, this exposed part is the enclosure exposed part (water covered part) 9A.
 f)次に、本実施形態の効果を説明する。
 ・本実施形態のガスセンサ1では、セラミック包囲体9は、径小部41の径方向の外表面45から包囲体角部67の外表面を介して径大部39の後端向きテーパ面43にわたって釉薬層47が形成されており、包囲体被覆部9B上における釉薬層47は、包囲体露出部9A上における厚みより小さくなるように、径方向内側に凹んだ凹部73を有している。
f) Next, the effect of this embodiment will be described.
In the gas sensor 1 of the present embodiment, the ceramic enclosure 9 extends from the outer surface 45 in the radial direction of the small-diameter portion 41 to the tapered surface 43 toward the rear end of the large-diameter portion 39 via the outer surface of the enclosure corner portion 67. The glaze layer 47 is formed, and the glaze layer 47 on the enclosure covering portion 9B has a recess 73 that is recessed radially inward so as to be smaller than the thickness on the enclosure exposed portion 9A.
 換言すると、包囲体露出部9A上における釉薬層47の外表面を軸線方向に沿って視認した場合、釉薬層47の凹部(例えば包囲体角部67上の凹部)73は、径方向内側に凹んでいるため、視認することができない。 In other words, when the outer surface of the glaze layer 47 on the surrounding body exposed portion 9A is viewed along the axial direction, the concave portion 73 (for example, the concave portion on the surrounding corner portion 67) 73 of the glaze layer 47 is recessed radially inward. Therefore, it cannot be visually recognized.
 つまり、本実施形態では、釉薬層47は包囲体角部67上などにおいて内側に凹んで凹部73を成しており、従来の様に、包囲体角部67に釉薬が溜まって釉薬層47が厚くなっていないので、第2パッキン53が包囲体角部67上などの凹部73に当たり難くなっている。 That is, in the present embodiment, the glaze layer 47 is recessed inwardly on the envelope corner portion 67 or the like to form a recess 73, and the glaze layer 47 is accumulated in the envelope corner portion 67 as in the conventional case. Since it is not thick, it is difficult for the second packing 53 to hit the concave portion 73 such as on the surrounding corner portion 67.
 従って、釉薬セラミック包囲体10を、第2パッキン53を介して主体金具15によって加締め固定する際に、加締めによる押圧力が径方向外側から加えられた場合でも、特に包囲体角部67上の凹部73に対して直接には力がかからない。 Accordingly, when the glaze ceramic enclosure 10 is caulked and fixed by the metal shell 15 via the second packing 53, even when a pressing force due to caulking is applied from the outside in the radial direction, especially on the enclosure corner portion 67. No force is directly applied to the recess 73 of the.
 また、本実施形態では、包囲体被覆部9B上の釉薬層47が薄く(凹むように)形成されているため、加締め時に第2パッキン53が内側(軸中心側)に押されて移動した場合に、凹部73以外の部位で接触したとしても、釉薬層47にかかる荷重が少ないので、釉薬層47が割れにくい。 Moreover, in this embodiment, since the glaze layer 47 on the enclosure covering portion 9B is formed thin (to be recessed), the second packing 53 is pushed and moved inward (axial center side) during caulking. In this case, even if contact is made at a part other than the recess 73, the glaze layer 47 is difficult to break because the load applied to the glaze layer 47 is small.
 そのため、釉薬層47にクラックや破損が生じにくく、よって、セラミック包囲体9自身の損傷も抑制できる。その結果、ガスセンサ1の出力等に異常が生じたり、故障してしまう危険性を低減することができる。 Therefore, the glaze layer 47 is not easily cracked or broken, and therefore the damage of the ceramic enclosure 9 itself can be suppressed. As a result, it is possible to reduce the risk of abnormality or failure in the output of the gas sensor 1 or the like.
 ・また、本実施形態では、凹部73を設けることにより、釉薬層47全体を薄くする必要がない。よって、包囲体露出部9Aにおける釉薬層47を厚くすることにより、包囲体露出部9Aが被水した場合にでも、その熱衝撃によるセラミック包囲体9の破損を効果的に抑制することができる。 In addition, in this embodiment, it is not necessary to make the entire glaze layer 47 thin by providing the recess 73. Therefore, by increasing the thickness of the glaze layer 47 in the enclosure exposed part 9A, even when the enclosure exposed part 9A is wet, damage to the ceramic enclosure 9 due to the thermal shock can be effectively suppressed.
 ・本実施形態では、凹部73の表面形状は、1.0mm以下の曲率半径を有する。この範囲の曲率半径であれば、釉薬層47のクラック等の発生を効果的に防止することができる。 In the present embodiment, the surface shape of the recess 73 has a radius of curvature of 1.0 mm or less. If the radius of curvature is within this range, the occurrence of cracks and the like in the glaze layer 47 can be effectively prevented.
 ・本実施形態では、釉薬層47の凹部73における厚みは、1~10μmの範囲内である。この範囲の釉薬厚みであれば、釉薬層47のクラック等の発生を効果的に抑制することができる。 In the present embodiment, the thickness of the concave portion 73 of the glaze layer 47 is in the range of 1 to 10 μm. If it is the glaze thickness of this range, generation | occurrence | production of the crack etc. of the glaze layer 47 can be suppressed effectively.
 ・本実施形態では、包囲体露出部9A上の釉薬層47の厚みは、どの部分でも、15~100μmの範囲内である。この範囲の釉薬厚みであれば、被水による熱衝撃を緩和して、セラミック包囲体9のクラック等の発生を効果的に抑制することができる。 In this embodiment, the thickness of the glaze layer 47 on the enclosure exposed portion 9A is in the range of 15 to 100 μm at any part. If the thickness of the glaze is within this range, it is possible to reduce the thermal shock caused by water exposure and to effectively suppress the occurrence of cracks and the like in the ceramic enclosure 9.
 ・本実施形態のガスセンサユニットは、ガスセンサユニット111は、上述したガスセンサ1にガスセンサキャップ91を取り付けたものである。
 このガスセンサユニット111は、排気管23等に取り付けられて使用された場合に、ガスセンサ1とガスセンサキャップ91との間にて、セラミック包囲体9の包囲体露出部9Aが外部に露出するので、放熱性が優れている。また、セラミック包囲体9の表面には釉薬層47が形成されているので、被水した場合でも高い耐熱衝撃性を有している。更に、ガスセンサ1として、上述した構造のガスセンサ1を使用するので、釉薬層47やセラミック包囲体9が破損し難く、よって、高い耐久性を有している。
In the gas sensor unit of the present embodiment, the gas sensor unit 111 is obtained by attaching the gas sensor cap 91 to the gas sensor 1 described above.
When the gas sensor unit 111 is attached to the exhaust pipe 23 or the like and used, the enclosure exposed portion 9A of the ceramic enclosure 9 is exposed to the outside between the gas sensor 1 and the gas sensor cap 91. The property is excellent. In addition, since the glaze layer 47 is formed on the surface of the ceramic enclosure 9, it has high thermal shock resistance even when it is wet. Furthermore, since the gas sensor 1 having the above-described structure is used as the gas sensor 1, the glaze layer 47 and the ceramic enclosure 9 are not easily damaged, and thus have high durability.
 [特許請求の範囲との対応関係]
 ここで、特許請求の範囲と本実施形態とにおける文言の対応関係について説明する。
 第2パッキン53が金属製パッキンの一例に相当する。
[Correspondence with Claims]
Here, the correspondence of the words in the claims and the present embodiment will be described.
The second packing 53 corresponds to an example of a metal packing.
 本発明の効果を確認するために、以下の測定及び実験を行った。
(寸法測定)
 前記実施形態のガスセンサ1の釉薬セラミック包囲体10、即ちエアブロー工法を利用して釉薬層47の形状を調整した釉薬セラミック包囲体10について、各部の寸法を測定した。
In order to confirm the effect of the present invention, the following measurements and experiments were performed.
(Dimension measurement)
The dimensions of each part of the glaze ceramic envelope 10 of the gas sensor 1 of the embodiment, that is, the glaze ceramic envelope 10 in which the shape of the glaze layer 47 was adjusted using an air blow method, were measured.
 具体的には、釉薬セラミック包囲体10の先端(鍔下端)から後端にかけての各位置(図7に示す包囲体角部67、上包囲体被覆部9b、包囲体露出部9Aの範囲)において、釉薬層47の厚み(釉薬厚み)を調べた。なお、釉薬厚みは、軸方向に垂直な方向における寸法である。その結果を図8の発明例に示す。 Specifically, at each position from the front end (bottom lower end) to the rear end of the glaze ceramic enclosure 10 (range of the enclosure corner 67, the upper enclosure covering portion 9b, and the enclosure exposed portion 9A shown in FIG. 7). The thickness of the glaze layer 47 (glaze thickness) was examined. The glaze thickness is a dimension in a direction perpendicular to the axial direction. The result is shown in the invention example of FIG.
 また、比較例として、釉薬層の形成方法のみ従来工法(エアブローを実施しない方法)とし、他は前記実施形態と同様にして釉薬セラミック包囲体を作製し、同様に釉薬厚みを測定した。その結果を図8の従来例に示す。 Moreover, as a comparative example, only the method for forming the glaze layer was the conventional method (method in which air blowing was not performed), and a glaze ceramic enclosure was prepared in the same manner as in the previous embodiment, and the thickness of the glaze was measured in the same manner. The result is shown in the conventional example of FIG.
 前記図8から明らかな様に、本実施形態のガスセンサにおいては、包囲体露出部9A上の釉薬層47の厚みよりも、上包囲体被覆部9b上の釉薬層47の厚みが小さくなっていること(即ち凹部73が形成されていること)が分かる。よって、上述した様に、釉薬層47におけるクラックの発生を抑制できることが分かる。 As is apparent from FIG. 8, in the gas sensor of this embodiment, the thickness of the glaze layer 47 on the upper envelope covering portion 9b is smaller than the thickness of the glaze layer 47 on the envelope exposed portion 9A. (That is, the recess 73 is formed). Therefore, as described above, it can be seen that the occurrence of cracks in the glaze layer 47 can be suppressed.
 なお、比較例では、包囲体露出部上の釉薬層の厚みよりも、上包囲体被覆部上の釉薬層の厚みが大きくなっていることが分かる。
 (実験例)
 本実験例では、実験に用いる試料として、前記実施形態と同様な構造のガスセンサ1を作製するとともに、釉薬層47を形成する際のエアブローを調節することにより、釉薬層47の凹部73の形状、即ち凹部73の半径(R)を変更した。なお、凹部73以外は、第2パッキン53など前記実施形態と同様である。
In the comparative example, it can be seen that the thickness of the glaze layer on the upper envelope covering portion is larger than the thickness of the glaze layer on the envelope exposed portion.
(Experimental example)
In this experimental example, as the sample used for the experiment, the gas sensor 1 having the same structure as that of the above embodiment is manufactured, and the shape of the concave portion 73 of the glaze layer 47 is adjusted by adjusting the air blow when forming the glaze layer 47. That is, the radius (R) of the recess 73 was changed. Except for the recess 73, the second packing 53 and the like are the same as in the above embodiment.
 具体的には、下記表1に示す様に、本発明例として、試料No.1~7のガスセンサ(凹部73の半径Rが0.4~1.0mm)を作製した。また、比較例として、試料No.8~12のガスセンサ(凹部の半径Rが1.1~1.5mm)を作製した。 Specifically, as shown in Table 1 below, gas sensors of sample Nos. 1 to 7 (radius R of the recess 73 is 0.4 to 1.0 mm) were manufactured as examples of the present invention. As a comparative example, sample Nos. 8 to 12 gas sensors (the radius R of the recesses was 1.1 to 1.5 mm) were produced.
 実験では、主体金具15の加締めを行い、この加締めによって、セラミック包囲体にクラックが発生したか否かを調べた。
 その結果を下記表1に記す。表1の○はスリーブ割れが無いことを示し、×はスリーブ割れがあることを示している。なお、スリーブ割れとは、釉薬セラミック包囲体10における割れのことである。
In the experiment, the metal shell 15 was caulked, and it was examined whether or not a crack occurred in the ceramic enclosure by the caulking.
The results are shown in Table 1 below. “◯” in Table 1 indicates that there is no sleeve crack, and “×” indicates that there is a sleeve crack. The sleeve crack is a crack in the glaze ceramic enclosure 10.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1から明らかな様に、本発明例では、凹部73の半径R(R寸法)が0.4~1.0mmの範囲であるので、スリーブ割れが発生しなかった。それに対して、比較例では、凹部のR寸法は1.1~1.5mmであるので、スリーブ割れが発生した。 As is apparent from Table 1, in the example of the present invention, since the radius R (R dimension) of the concave portion 73 is in the range of 0.4 to 1.0 mm, no sleeve cracking occurred. On the other hand, in the comparative example, since the R dimension of the recess is 1.1 to 1.5 mm, a sleeve crack occurred.
 尚、本発明は、以上詳述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。 The present invention is not limited to the embodiment described in detail above, and various modifications may be made without departing from the gist of the present invention.

Claims (5)

  1.  軸線方向に向かって延び、先端側が被測定ガスに晒されるガス検出素子と、
     前記ガス検出素子の周囲を取り囲む主体金具と、
     絶縁性セラミックからなる筒状で、前記ガス検出素子の後端側の周囲を取り囲み、自身の後端側を主体金具の後端より突出させる形態で、金属製パッキンを介して当該主体金具に加締め固定されるセラミック包囲体と、
     を備えるとともに、
     前記セラミック包囲体は、前記主体金具の後端より後端側で外部に露出する包囲体露出部と、前記主体金具の後端よりも先端側で該主体金具に覆われる包囲体被覆部と、を備える包囲体胴部を有しており、
     前記包囲体胴部は、自身の外表面に釉薬層を備え、
     前記包囲体被覆部上における前記釉薬層は、前記包囲体露出部上における前記釉薬層よりも径方向内側に凹んだ凹部を有し、
     前記金属製パッキンは、少なくとも前記釉薬層のうち、前記凹部以外の部位で当接するガスセンサ。
    A gas detection element extending in the axial direction and having the tip side exposed to the gas to be measured;
    A metal shell surrounding the periphery of the gas detection element;
    A cylindrical shape made of an insulating ceramic that surrounds the rear end side of the gas detection element and projects the rear end side of the gas detection element from the rear end of the metal shell. A ceramic enclosure to be fastened and fixed;
    With
    The ceramic enclosure is an enclosure exposed portion exposed to the outside on the rear end side from the rear end of the metallic shell, and an enclosure covering portion covered by the metallic shell on the front side of the rear end of the metallic shell, An enclosure body comprising
    The enclosure body includes a glaze layer on its outer surface,
    The glaze layer on the enclosure covering portion has a recess recessed inward in the radial direction from the glaze layer on the enclosure exposed portion,
    The metal packing is a gas sensor that contacts at least a portion of the glaze layer other than the concave portion.
  2.  前記凹部の表面形状は、1.0mm以下の曲率半径を有する請求項1に記載のガスセンサ。 The gas sensor according to claim 1, wherein the surface shape of the recess has a radius of curvature of 1.0 mm or less.
  3.  前記凹部における前記釉薬層の厚みは、1~10μmの範囲内である請求項1又は2に記載のガスセンサ。 The gas sensor according to claim 1 or 2, wherein the thickness of the glaze layer in the recess is in the range of 1 to 10 µm.
  4.  前記包囲体露出部上における前記釉薬層の厚みは、15~100μmの範囲内である請求項1~3のいずれか1項に記載のガスセンサ。 The gas sensor according to any one of claims 1 to 3, wherein a thickness of the glaze layer on the enclosure exposed portion is in a range of 15 to 100 µm.
  5.  軸線方向に向かって延び、先端側が被測定ガスに晒されるガス検出素子と、前記ガス検出素子の周囲を取り囲む主体金具と、絶縁性セラミックからなる筒状で、前記ガス検出素子の後端側の周囲を取り囲み、自身の後端側を主体金具の後端より突出させる形態で、金属製パッキンを介して当該主体金具に加締め固定されるセラミック包囲体と、前記ガス検出素子の内周面に形成した内側電極と接続し前記ガス検出素子からの出力信号を外部に出力する端子部材と、を有するガスセンサと、
     前記ガスセンサの前記端子部材と接続し、前記出力信号を外部装置に送信する筒状のキャップ端子と、当該キャップ端子と前記セラミック包囲体の後端側を被覆し、絶縁性の弾性体からなる絶縁部とを有するガスセンサキャップと、
     を備え、
     前記ガスセンサとして、請求項1~4のいずれか1項に記載のガスセンサを用いるガスセンサユニット。
    A gas detection element that extends in the axial direction and whose front end is exposed to the gas to be measured, a metal shell that surrounds the periphery of the gas detection element, and a cylinder made of an insulating ceramic, Surrounding the periphery, in a form that protrudes the rear end side of itself from the rear end of the metal shell, a ceramic enclosure that is caulked and fixed to the metal shell via a metal packing, and an inner peripheral surface of the gas detection element A gas sensor having a terminal member connected to the formed inner electrode and outputting an output signal from the gas detection element to the outside;
    A cylindrical cap terminal that is connected to the terminal member of the gas sensor and transmits the output signal to an external device, and an insulating elastic body that covers the cap terminal and the rear end side of the ceramic enclosure. A gas sensor cap having a portion;
    With
    A gas sensor unit using the gas sensor according to any one of claims 1 to 4 as the gas sensor.
PCT/JP2013/071810 2012-08-17 2013-08-12 Gas sensor and gas sensor unit WO2014027642A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013553712A JPWO2014027642A1 (en) 2012-08-17 2013-08-12 Gas sensor and gas sensor unit
CN201380043797.7A CN104583766A (en) 2012-08-17 2013-08-12 Gas sensor and gas sensor unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-181169 2012-08-17
JP2012181169 2012-08-17

Publications (1)

Publication Number Publication Date
WO2014027642A1 true WO2014027642A1 (en) 2014-02-20

Family

ID=50685594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071810 WO2014027642A1 (en) 2012-08-17 2013-08-12 Gas sensor and gas sensor unit

Country Status (3)

Country Link
JP (1) JPWO2014027642A1 (en)
CN (1) CN104583766A (en)
WO (1) WO2014027642A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269834B2 (en) * 2019-08-28 2023-05-09 京セラ株式会社 gas detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201888A (en) * 2003-12-18 2005-07-28 Ngk Spark Plug Co Ltd Gas sensor and gas sensor unit
JP2007107935A (en) * 2005-10-11 2007-04-26 Ngk Spark Plug Co Ltd Sensor unit and sensor cap
JP2012112739A (en) * 2010-11-24 2012-06-14 Ngk Spark Plug Co Ltd Gas sensor, gas sensor manufacturing method, and gas sensor unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201888A (en) * 2003-12-18 2005-07-28 Ngk Spark Plug Co Ltd Gas sensor and gas sensor unit
JP2007107935A (en) * 2005-10-11 2007-04-26 Ngk Spark Plug Co Ltd Sensor unit and sensor cap
JP2012112739A (en) * 2010-11-24 2012-06-14 Ngk Spark Plug Co Ltd Gas sensor, gas sensor manufacturing method, and gas sensor unit

Also Published As

Publication number Publication date
CN104583766A (en) 2015-04-29
JPWO2014027642A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP5260748B2 (en) Spark plug
US9354142B2 (en) Gas sensor
JP2006234632A (en) Temperature sensor
CN112105925B (en) Gas sensor
US9912126B2 (en) Spark plug insulator containing mullite and spark plug including same
WO2014027642A1 (en) Gas sensor and gas sensor unit
JP6158283B2 (en) Spark plug
JP5820883B2 (en) Gas sensor
JP4465253B2 (en) Gas sensor and gas sensor unit
JP5947726B2 (en) Gas sensor
JP2019078712A (en) Gas sensor
JP5798203B2 (en) Spark plug
JP5934691B2 (en) Gas sensor
JP5934638B2 (en) Gas sensor
JP2007280668A (en) Spark plug
JP5099786B2 (en) Gas sensor
JP5767196B2 (en) Gas sensor
WO2023067855A1 (en) Gas sensor
JP7445577B2 (en) gas sensor
JP6026904B2 (en) Gas sensor and manufacturing method thereof
JP5662280B2 (en) Gas sensor
JP2005024396A (en) Gas sensor
JP2006098248A (en) Gas sensor
JP2017133923A (en) Gas sensor
JP2015111065A (en) Gas sensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013553712

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879540

Country of ref document: EP

Kind code of ref document: A1