WO2014027438A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2014027438A1
WO2014027438A1 PCT/JP2013/004239 JP2013004239W WO2014027438A1 WO 2014027438 A1 WO2014027438 A1 WO 2014027438A1 JP 2013004239 W JP2013004239 W JP 2013004239W WO 2014027438 A1 WO2014027438 A1 WO 2014027438A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature side
low
high temperature
compressor
cylinder chamber
Prior art date
Application number
PCT/JP2013/004239
Other languages
French (fr)
Japanese (ja)
Inventor
平山 卓也
哲永 渡辺
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN201380044192.XA priority Critical patent/CN104583688B/en
Publication of WO2014027438A1 publication Critical patent/WO2014027438A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/40Properties
    • F04C2210/44Viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Definitions

  • FIG. 3 is an explanatory diagram in plan view showing the compression mechanism 27 of the compressor 11 on the low temperature side.
  • the basic structure of the compression mechanism 27 is the same as that of the compression mechanism 16 of the high temperature side compressor 4 shown in FIG.
  • the compression mechanism unit 27 includes a low temperature side cylinder 29, a rotating shaft 30, an eccentric portion 31, a low temperature side roller 32, a low temperature side blade 34, and a spring 35.
  • a cylinder chamber 28 is formed inside the cylinder 29.
  • the rotary shaft 30 is inserted into the cylinder chamber 28 and is provided to be rotatable around the axis.
  • the eccentric portion 31 is provided on the rotating shaft 30 and is disposed in the cylinder chamber 28.
  • the roller 32 is fitted on the outer periphery of the eccentric portion 31 and rotates eccentrically in the cylinder chamber 28 as the rotary shaft 30 rotates.
  • the blade 34 is slidably accommodated in a blade groove 33 formed in the cylinder 29.
  • the tip of the blade 34 is in contact with the outer peripheral surface of the roller 32.
  • the spring 35 is housed in the inner part of the blade groove 33 and biases the blade 34 toward the roller 32.
  • Table 2 shows the durability test results of the blades under the operating conditions of the high-temperature side refrigeration cycle 1 using the blades subjected to DLC treatment on the blade sliding surfaces and the blades subjected to diffusion permeation treatment by nitriding treatment.
  • the blade durability test results and the compressor performance (COP) test results under the operating conditions of the low temperature side refrigeration cycle 2 are shown.

Abstract

This refrigeration cycle device comprises: a high-temperature refrigeration cycle (1) having a high-temperature compressor (4); and a low-temperature refrigeration cycle (2) having a low-temperature compressor (11). Refrigerant that does not contain chlorine is used as the refrigerant, high-temperature lubricating oil used by the high-temperature compressor (4) and low-temperature lubricating oil used by the low-temperature compressor (11) are compatible with the refrigerant, and the viscosity-pressure coefficient of the high-temperature lubricating oil at 40°C is higher than the viscosity-pressure coefficient of the low-temperature lubricating oil at 40°C.

Description

冷凍サイクル装置Refrigeration cycle equipment 関連出願の引用Citation of related application
 本出願は、2012年8月17日に出願した日本国特許出願第2012-181188号による優先権の利益に基礎をおき、かつ、その利益を求めており、その内容全体が引用によりここに包含される。 This application is based on and seeks the benefit of priority based on Japanese Patent Application No. 2012-181188 filed on Aug. 17, 2012, the entire contents of which are incorporated herein by reference. Is done.
  ここで説明する実施形態は、全般的に、二元冷凍サイクルを構成する高温側冷凍サイクルと低温側冷凍サイクルとを備えた冷凍サイクル装置に関する。 Embodiments described herein generally relate to a refrigeration cycle apparatus including a high temperature side refrigeration cycle and a low temperature side refrigeration cycle that constitute a binary refrigeration cycle.
 二元冷凍サイクルを構成する高温側冷凍サイクルと低温側冷凍サイクルとを備えた冷凍サイクル装置としては、例えば、日本国特開平8-189714号公報に記載された装置が知られている。 As a refrigeration cycle apparatus including a high temperature side refrigeration cycle and a low temperature side refrigeration cycle constituting a binary refrigeration cycle, for example, an apparatus described in Japanese Patent Application Laid-Open No. 8-189714 is known.
 この特許公報に記載された二元式の冷凍サイクル装置では、高温側冷凍サイクルの圧縮機と低温側冷凍サイクルの圧縮機とにおいて、冷媒に対して非相溶性の潤滑油を使用している。圧縮機において冷媒に対して非相溶性の潤滑油を使用すると、圧縮機から冷媒と共に流出した潤滑油の圧縮機への戻り性が低下する。そこで、上記特許公報に記載の冷凍サイクル装置では、各冷凍サイクルにおける冷媒配管の長さを短くして潤滑油の戻り性を良くするとともに、高温側冷凍サイクルと低温側冷凍サイクルとの間で熱交換を行うための熱媒を循環させる熱媒循環路を冷媒配管とは別個に設けている。 In the binary refrigeration cycle apparatus described in this patent publication, lubricating oil that is incompatible with the refrigerant is used in the compressor of the high temperature side refrigeration cycle and the compressor of the low temperature side refrigeration cycle. When lubricating oil that is incompatible with the refrigerant is used in the compressor, the returnability of the lubricating oil that has flowed out of the compressor together with the refrigerant to the compressor is reduced. Therefore, in the refrigeration cycle apparatus described in the above patent publication, the length of the refrigerant pipe in each refrigeration cycle is shortened to improve the returnability of the lubricating oil, and heat is generated between the high temperature side refrigeration cycle and the low temperature side refrigeration cycle. A heat medium circulation path for circulating a heat medium for exchange is provided separately from the refrigerant pipe.
特開平8-189714号公報JP-A-8-189714
 上記特許公報に記載されたように、冷媒に対して非相溶性の潤滑油を使用するとともに熱媒循環路を設けた場合には、システムが複雑化、大型化し、コストが増大する。 As described in the above-mentioned patent gazette, when a lubricating oil that is incompatible with the refrigerant is used and a heat medium circulation path is provided, the system becomes complicated and large, and the cost increases.
 一方、冷媒に対して相溶性を有する潤滑油を用いた場合には、高温側冷凍サイクルの圧縮機では、潤滑油が高温による粘度低下及び高圧による冷媒溶け込み量の増加による希釈により粘度が大きく低下し、摺動部の耐摩耗性が低下する。 On the other hand, in the case of using a lubricating oil that is compatible with the refrigerant, in the compressor of the high temperature side refrigeration cycle, the viscosity of the lubricating oil is greatly reduced due to a decrease in viscosity due to high temperature and dilution due to an increase in refrigerant penetration due to high pressure. In addition, the wear resistance of the sliding portion is reduced.
 近年、オゾン層保護の見地から塩素を含まない冷媒の使用が求められているが、耐荷重性を付与するための極圧添加剤としての機能を有する塩素を含まない冷媒を使用することにより摺動部の耐摩耗性がさらに低下する。 In recent years, from the viewpoint of ozone layer protection, the use of a refrigerant that does not contain chlorine has been demanded, but by using a refrigerant that does not contain chlorine and has a function as an extreme pressure additive for imparting load bearing capability, The wear resistance of the moving part is further reduced.
 本発明の実施形態は、高温側冷凍サイクルの高温側圧縮機と低温側冷凍サイクルの低温側圧縮機とにおいて塩素を含まない冷媒を使用し且つ冷媒に対して相溶性を有する潤滑油を使用した場合に、高温側圧縮機の摺動部の耐摩耗性を向上させるとともに、低温側圧縮機の摺動部の摺動抵抗を小さくして摺動損失を低減させることができる冷凍サイクル装置を提供する。 The embodiment of the present invention uses a refrigerant that does not contain chlorine in the high-temperature side compressor of the high-temperature side refrigeration cycle and the low-temperature side compressor of the low-temperature side refrigeration cycle, and uses a lubricating oil that is compatible with the refrigerant. Provide a refrigeration cycle apparatus that can improve the wear resistance of the sliding portion of the high temperature side compressor and reduce the sliding loss by reducing the sliding resistance of the sliding portion of the low temperature side compressor. To do.
 実施形態の冷凍サイクル装置は、高温側の圧縮機と、被加熱流体を加熱する高温側の凝縮器と、高温側の膨張装置と、中間熱交換器の高温側流路とが高温側の冷媒配管を介して連通され、高温側の冷媒配管に沿って冷媒が循環する高温側の冷凍サイクルと、低温側の圧縮機と、中間熱交換器の低温側流路と、低温側の膨張装置と、低温側の蒸発器とが低温側の冷媒配管を介して連通され、低温側の冷媒配管に沿って冷媒が循環する低温側の冷凍サイクルとを備え、高温側の冷凍サイクルと低温側の冷凍サイクルとを同一の筐体に搭載した冷凍サイクル装置において、冷媒として塩素を含まない冷媒が使用され、高温側の圧縮機で使用される高温側の潤滑油と低温側の圧縮機で使用される低温側の潤滑油とは冷媒に対して相溶性を有し、高温側の潤滑油の40℃における粘度圧力係数が低温側の潤滑油の40℃における粘度圧力係数より高い。 The refrigeration cycle apparatus according to the embodiment includes a high temperature side refrigerant, a high temperature side condenser that heats a fluid to be heated, a high temperature side expansion device, and a high temperature side flow path of an intermediate heat exchanger. A high temperature side refrigeration cycle in which the refrigerant circulates along the high temperature side refrigerant piping, a low temperature side compressor, a low temperature side flow path of the intermediate heat exchanger, and a low temperature side expansion device. And a low-temperature side refrigeration cycle in which a refrigerant is circulated along a low-temperature side refrigerant pipe. In a refrigeration cycle device in which the cycle is mounted in the same housing, a refrigerant that does not contain chlorine is used as a refrigerant, and it is used in a high-temperature side lubricating oil and a low-temperature side compressor that are used in a high-temperature side compressor. Low temperature side lubricating oil has compatibility with refrigerant and high temperature The viscosity-pressure coefficient at 40 ° C. of the lubricating oil is higher than the viscosity-pressure coefficient at 40 ° C. of the lubricating oil of low temperature side.
第1の実施形態による冷凍サイクル装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the refrigerating-cycle apparatus by 1st Embodiment. 前記冷凍サイクル装置の高温側圧縮機の圧縮機構部を拡大して示す平面視の説明図である。It is explanatory drawing of the planar view which expands and shows the compression mechanism part of the high temperature side compressor of the said refrigeration cycle apparatus. 前記冷凍サイクル装置の低温側圧縮機の圧縮機構部を拡大して示す平面視の説明図である。It is explanatory drawing of the planar view which expands and shows the compression mechanism part of the low temperature side compressor of the said refrigeration cycle apparatus. 第2の実施形態による冷凍サイクル装置の高温側圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the high temperature side compressor of the refrigerating-cycle apparatus by 2nd Embodiment. 第2の実施形態による冷凍サイクル装置の低温側圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the low temperature side compressor of the refrigerating-cycle apparatus by 2nd Embodiment.
実施形態Embodiment
 以下に、複数の実施形態について、図面を参照しながら説明する。図面において、同一の符号は、同一または類似部分を示している。第1の実施形態の冷凍サイクル装置について、図1乃至図6に基づいて説明する。図1は、温水を生成するために使用される冷凍サイクル装置の全体構成を示している。この冷凍サイクル装置は、二元冷凍サイクルを構成する高温側冷凍サイクル1と、低温側冷凍サイクル2とを有する。これらの高温側冷凍サイクル1と低温側冷凍サイクル2とは、同一の筐体3に搭載されている。 Hereinafter, a plurality of embodiments will be described with reference to the drawings. In the drawings, the same reference numerals indicate the same or similar parts. The refrigeration cycle apparatus according to the first embodiment will be described with reference to FIGS. 1 to 6. FIG. 1 shows an overall configuration of a refrigeration cycle apparatus used for generating hot water. This refrigeration cycle apparatus has a high temperature side refrigeration cycle 1 and a low temperature side refrigeration cycle 2 that constitute a binary refrigeration cycle. The high temperature side refrigeration cycle 1 and the low temperature side refrigeration cycle 2 are mounted in the same casing 3.
 高温側冷凍サイクル1は、冷媒を圧縮するロータリ型の高温側の圧縮機4と、冷媒を凝縮する高温側の凝縮器5と、冷媒を減圧する高温側の膨張装置6と、熱交換を行う中間熱交換器7によって構成されている。これらの圧縮機4、凝縮器5、膨張装置6、および中間熱交換器7内の高温側の流路7aが高温側の冷媒配管8を介して連通され、この冷媒配管8に沿って冷媒が循環する。中間熱交換器7は、高温側冷凍サイクル1においては、高温側の流路7a内を流れる冷媒を蒸発させる蒸発器として機能する。凝縮器5内には、被加熱流体である水が流れる流体流路9が配管され、この流体流路9の途中には、水を流すポンプ10が設けられている。 The high temperature side refrigeration cycle 1 performs heat exchange with a rotary type high temperature side compressor 4 that compresses the refrigerant, a high temperature side condenser 5 that condenses the refrigerant, and a high temperature side expansion device 6 that decompresses the refrigerant. The intermediate heat exchanger 7 is used. The compressor 4, the condenser 5, the expansion device 6, and the high-temperature side flow path 7 a in the intermediate heat exchanger 7 are communicated with each other via a high-temperature side refrigerant pipe 8, and the refrigerant is along the refrigerant pipe 8. Circulate. In the high temperature side refrigeration cycle 1, the intermediate heat exchanger 7 functions as an evaporator that evaporates the refrigerant flowing in the high temperature side flow path 7a. In the condenser 5, a fluid flow path 9 through which water as a fluid to be heated flows is piped, and a pump 10 for flowing water is provided in the middle of the fluid flow path 9.
 低温側冷凍サイクル2は、冷媒を圧縮するロータリ型の低温側の圧縮機11と、前記中間熱交換器7と、冷媒を減圧する低温側の膨張装置12と、冷媒を蒸発させる低温側の蒸発器13によって構成されている。これらの圧縮機11、中間熱交換器7内の低温側流路7b、膨張装置12、および低温側蒸発器13とが低温側の冷媒配管14を介して連通され、この冷媒配管14に沿って冷媒が循環する。中間熱交換器7は、低温側冷凍サイクル2においては、低温側の流路7b内を流れる冷媒を凝縮する凝縮器として機能する。蒸発器13に対向する位置には、この蒸発器13に対して送風を行う送風ファン15が設けられている。 The low temperature side refrigeration cycle 2 includes a rotary low temperature side compressor 11 that compresses refrigerant, the intermediate heat exchanger 7, a low temperature side expansion device 12 that decompresses the refrigerant, and a low temperature side evaporation that evaporates the refrigerant. The device 13 is configured. The compressor 11, the low-temperature side flow path 7 b in the intermediate heat exchanger 7, the expansion device 12, and the low-temperature side evaporator 13 are communicated with each other via a low-temperature side refrigerant pipe 14. The refrigerant circulates. In the low temperature side refrigeration cycle 2, the intermediate heat exchanger 7 functions as a condenser that condenses the refrigerant flowing in the low temperature side flow path 7b. A blower fan 15 that blows air to the evaporator 13 is provided at a position facing the evaporator 13.
 図2は、高温側の圧縮機4の圧縮機構部16を示す平面視の説明図である。圧縮機構部16は、高温側のシリンダ18、回転軸19、偏心部20、高温側のローラ21、高温側のブレード23、スプリング24とを備えている。シリンダ18は、内部にシリンダ室17が形成される。回転軸19は、シリンダ室17に挿通され、軸心回りに回転可能に設けられる。偏心部20は、回転軸19に設けられ、シリンダ室17内に配置される。ローラ21は、偏心部20の外周に嵌合され、回転軸19の回転に伴いシリンダ室17内で偏心回転する。ブレード23は、シリンダ18に形成されたブレード溝22内に摺動可能に収容される。ブレード23の先端部は、ローラ21の外周面に当接される。スプリング24は、ブレード溝22の奥部に収容され、ブレード23をローラ21側に付勢する。 FIG. 2 is an explanatory diagram in a plan view showing the compression mechanism 16 of the compressor 4 on the high temperature side. The compression mechanism portion 16 includes a high temperature side cylinder 18, a rotating shaft 19, an eccentric portion 20, a high temperature side roller 21, a high temperature side blade 23, and a spring 24. The cylinder chamber 17 is formed inside the cylinder 18. The rotating shaft 19 is inserted into the cylinder chamber 17 and is provided to be rotatable around an axis. The eccentric portion 20 is provided on the rotating shaft 19 and is disposed in the cylinder chamber 17. The roller 21 is fitted to the outer periphery of the eccentric portion 20 and rotates eccentrically in the cylinder chamber 17 as the rotary shaft 19 rotates. The blade 23 is slidably accommodated in a blade groove 22 formed in the cylinder 18. The tip of the blade 23 is in contact with the outer peripheral surface of the roller 21. The spring 24 is housed in the inner part of the blade groove 22 and biases the blade 23 toward the roller 21.
 シリンダ室17内は、先端部をローラ21の外周面に当接させたブレード23により、吸込室17aと圧縮室17bとに区画されている。高温側シリンダ18には、圧縮機4の駆動時に冷媒を吸込室17aに吸込む吸込通路25が形成されている。さらに、圧縮室17bで圧縮された冷媒を吐出する吐出通路は、回転軸19を軸支する図示しない軸受部材に形成されている。 The inside of the cylinder chamber 17 is divided into a suction chamber 17a and a compression chamber 17b by a blade 23 whose tip is in contact with the outer peripheral surface of the roller 21. The high temperature side cylinder 18 is formed with a suction passage 25 for sucking the refrigerant into the suction chamber 17a when the compressor 4 is driven. Further, the discharge passage for discharging the refrigerant compressed in the compression chamber 17 b is formed in a bearing member (not shown) that supports the rotating shaft 19.
 図3は、低温側の圧縮機11の圧縮機構部27を示す平面視の説明図である。この圧縮機構部27の基本的構成は、図2に示した高温側の圧縮機4の圧縮機構部16と同じである。圧縮機構部27は、低温側のシリンダ29、回転軸30、偏心部31、低温側のローラ32、低温側のブレード34、スプリング35とを備えている。シリンダ29は、内部にシリンダ室28が形成される。回転軸30は、シリンダ室28に挿通され、軸心回りに回転可能に設けられる。偏心部31は、回転軸30に設けられ、シリンダ室28内に配置される。ローラ32は、偏心部31の外周に嵌合され、回転軸30の回転に伴いシリンダ室28内で偏心回転する。ブレード34は、シリンダ29に形成されたブレード溝33内に摺動可能に収容される。ブレード34の先端部は、ローラ32の外周面に当接される。スプリング35は、ブレード溝33の奥部に収容され、ブレード34をローラ32側に付勢する。 FIG. 3 is an explanatory diagram in plan view showing the compression mechanism 27 of the compressor 11 on the low temperature side. The basic structure of the compression mechanism 27 is the same as that of the compression mechanism 16 of the high temperature side compressor 4 shown in FIG. The compression mechanism unit 27 includes a low temperature side cylinder 29, a rotating shaft 30, an eccentric portion 31, a low temperature side roller 32, a low temperature side blade 34, and a spring 35. A cylinder chamber 28 is formed inside the cylinder 29. The rotary shaft 30 is inserted into the cylinder chamber 28 and is provided to be rotatable around the axis. The eccentric portion 31 is provided on the rotating shaft 30 and is disposed in the cylinder chamber 28. The roller 32 is fitted on the outer periphery of the eccentric portion 31 and rotates eccentrically in the cylinder chamber 28 as the rotary shaft 30 rotates. The blade 34 is slidably accommodated in a blade groove 33 formed in the cylinder 29. The tip of the blade 34 is in contact with the outer peripheral surface of the roller 32. The spring 35 is housed in the inner part of the blade groove 33 and biases the blade 34 toward the roller 32.
 シリンダ室28内は、先端部をローラ32の外周面に当接させた低温側ブレード34により、吸込室28aと圧縮室28bとに区画される。シリンダ29には、側圧縮機11の駆動時に冷媒を吸込室28aに吸込む吸込通路36が形成されている。さらに、圧縮室28bで圧縮された冷媒を吐出する吐出通路が、回転軸30を軸支する図示しない軸受部材に形成されている。 The inside of the cylinder chamber 28 is partitioned into a suction chamber 28a and a compression chamber 28b by a low temperature side blade 34 whose tip is in contact with the outer peripheral surface of the roller 32. The cylinder 29 is formed with a suction passage 36 for sucking refrigerant into the suction chamber 28a when the side compressor 11 is driven. Further, a discharge passage for discharging the refrigerant compressed in the compression chamber 28 b is formed in a bearing member (not shown) that supports the rotating shaft 30.
 高温側の冷凍サイクル1と低温側の冷凍サイクル2とにおいて使用される冷媒、並びに、圧縮機4、11において使用される潤滑油について説明する。 The refrigerant used in the refrigeration cycle 1 on the high temperature side and the refrigeration cycle 2 on the low temperature side, and the lubricating oil used in the compressors 4 and 11 will be described.
 前記冷媒は、冷凍サイクル1と冷凍サイクル2とにおいて、共に、塩素を含まないHFC(ハイドロフルオロカーボン)系の冷媒が使用される。HFC系の冷媒としては、HFC-134a、HFC-32、HFC-152a、HFC-125、HFC-143aのような単一冷媒や、HFC-32とHFC-125とを混合して得られるR410Aのような混合冷媒を使用することできる。 As the refrigerant, in both the refrigeration cycle 1 and the refrigeration cycle 2, an HFC (hydrofluorocarbon) refrigerant that does not contain chlorine is used. HFC-based refrigerants include single refrigerants such as HFC-134a, HFC-32, HFC-152a, HFC-125, and HFC-143a, and R410A obtained by mixing HFC-32 and HFC-125. Such a mixed refrigerant can be used.
 前記潤滑油は、高温側の圧縮機4では、潤滑油であるPVE(ポリビニルエーテル)が使用される。低温側の圧縮機11では、潤滑油であるPOE(ポリオールエステル)が使用される。これらのPVEとPOEとは、共に、HFC系の冷媒に対して相溶性を有する。PVEの40℃における粘度圧力係数“α”はと、POEの40℃における粘度圧力係数“α”より高い。 As the lubricating oil, in the compressor 4 on the high temperature side, PVE (polyvinyl ether) which is a lubricating oil is used. In the compressor 11 on the low temperature side, POE (polyol ester) which is a lubricating oil is used. Both of these PVE and POE are compatible with the HFC refrigerant. The viscosity pressure coefficient “α” of PVE at 40 ° C. is higher than the viscosity pressure coefficient “α” of POE at 40 ° C.
 潤滑油の粘度については、“η=η0exp(αp)”の式に示される性質がある(ASME Pressure-viscosity Report、ASME、1953を参照)。“η”は任意の圧力“p”における潤滑油の粘度、“η0”は大気圧における潤滑油の粘度、“α”は潤滑油の粘度圧力係数である。 As for the viscosity of the lubricating oil, there is a property represented by the formula “η = η 0 exp (αp)” (see ASME Pressure-viscosity Report, ASME, 1953). “Η” is the viscosity of the lubricating oil at an arbitrary pressure “p”, “η 0 ” is the viscosity of the lubricating oil at atmospheric pressure, and “α” is the viscosity pressure coefficient of the lubricating oil.
 潤滑油の粘度“η”は、圧力“p”に対して指数関数的に増加するため、混合潤滑状態や境界潤滑状態となって高い面圧を受ける摺動部では、潤滑油の粘度は局部的に高くなる。 Since the viscosity “η” of the lubricating oil increases exponentially with respect to the pressure “p”, the lubricating oil has a local viscosity at the sliding portion that receives a high surface pressure in a mixed lubrication state or boundary lubrication state. Become expensive.
 混合潤滑状態や境界潤滑状態の摺動部において、耐摩耗性を向上させる方法として、日本機械学会論文集C編.64-624.論文No.97-1425)には、粘度圧力係数“α”の高い潤滑油の効果が記載されている。この効果として、粘度圧力係数“α”が高い潤滑油は、摺動部において局部的に粘度が極めて高く、所謂固化膜を形成しやすく、この固化膜により摩擦面が保護される。さらに、前記日本機械学会論文集C編の前記論文には、潤滑油の粘度圧力係数“α”が高い程、摺動部の摩擦係数が高くなり、摺動損失が大きくなることが記載されている。 As a method to improve wear resistance in sliding parts with mixed lubrication or boundary lubrication, the Japan Society of Mechanical Engineers, Proceedings C. 64-624. Paper No. 97-1425) describes the effect of a lubricating oil having a high viscosity pressure coefficient “α”. As an effect, the lubricating oil having a high viscosity pressure coefficient “α” has a very high viscosity locally at the sliding portion, so that a so-called solidified film is easily formed, and the friction surface is protected by the solidified film. Further, the paper of the Japan Society of Mechanical Engineers, Journal C, states that the higher the viscosity pressure coefficient “α” of the lubricating oil, the higher the friction coefficient of the sliding portion and the higher the sliding loss. Yes.
 前記特許公報には、PVEは、HFC系の冷媒に対して相溶性を有する潤滑油のなかでも、粘度圧力係数“α”が高く、摩擦係数も高いことが記載されている。 The patent publication describes that PVE has a high viscosity pressure coefficient “α” and a high friction coefficient among lubricating oils that are compatible with HFC refrigerants.
 前記特許公報及び日本機械学会論文集C編,63-612,No.96-1427には、POEは、HFC系冷媒に対し相溶性を有する潤滑油のなかでも、特に低温度域における摩擦係数が低く、また、摩擦面に強固な吸着膜を形成することで耐摩耗性に優れていることが記載されている。しかし、この論文には、前記吸着膜が、転移温度(150℃付近)以上になると消失して、前記摩擦面の耐摩耗性が急激に悪化することが記載されている。 The above-mentioned patent gazette and the Japan Society of Mechanical Engineers Journal C, 63-612, No. In 96-1427, POE has a low friction coefficient especially in a low temperature range among lubricating oils that are compatible with HFC refrigerants, and forms a strong adsorbing film on the friction surface to provide wear resistance. It is described that it is excellent in property. However, this paper describes that the adsorption film disappears when the temperature exceeds a transition temperature (around 150 ° C.), and the wear resistance of the friction surface deteriorates rapidly.
 表1は、粘度圧力係数“α”が異なる2種類の潤滑油を用いて行った、高温側冷凍サイクル1の運転条件での圧縮機の耐久試験結果と、低温側冷凍サイクル2の運転条件での圧縮機の耐久試験結果及び性能(COP)試験結果を示す説明図である。上記潤滑油は、それぞれ、40℃における粘度圧力係数が15.1GPa-1である高温側の潤滑油(PVE)、及び、40℃における粘度圧力係数が10.3GPa-1である低温側の潤滑油(POE)である。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the result of the endurance test of the compressor under the operating conditions of the high temperature side refrigeration cycle 1 and the operating conditions of the low temperature side refrigeration cycle 2 performed using two types of lubricants having different viscosity pressure coefficients “α”. It is explanatory drawing which shows the endurance test result and performance (COP) test result of a compressor of. The lubricating oil, respectively, viscosity-pressure coefficient at 40 ° C. is 15.1GPa -1 hot side of the lubricating oil (PVE), and, on the low temperature side viscosity-pressure coefficient is 10.3GPa -1 at 40 ° C. lubrication Oil (POE).
Figure JPOXMLDOC01-appb-T000001
 高温側の冷凍サイクル1の運転条件として、凝縮温度を95℃、蒸発温度を35℃、圧縮機の運転周波数を60rpsに設定した。低温側の冷凍サイクル2の運転条件として、凝縮温度を45℃、蒸発温度を5℃、圧縮機の運転周波数を60rpsに設定した。 As operating conditions of the refrigeration cycle 1 on the high temperature side, the condensing temperature was set to 95 ° C., the evaporation temperature was set to 35 ° C., and the operating frequency of the compressor was set to 60 rps. As operating conditions of the refrigeration cycle 2 on the low temperature side, the condensation temperature was set to 45 ° C., the evaporation temperature was set to 5 ° C., and the operating frequency of the compressor was set to 60 rps.
 表1によれば、高温側の冷凍サイクル1の前記運転条件で圧縮機を運転したときに、粘度圧力係数“α”が高い前記高温側の潤滑油(PVE)を用いた場合は、圧縮機の耐久試験結果が良好(OK)である。これに対し、粘度圧力係数“α”が低い前記低温側の潤滑油(POE)を用いた場合は、圧縮機に摩耗が発生して、耐久試験結果が非良好(NG)であることが分かる。 According to Table 1, when the compressor was operated under the operating conditions of the high temperature side refrigeration cycle 1, when the high temperature side lubricating oil (PVE) having a high viscosity pressure coefficient “α” was used, the compressor The durability test result is good (OK). On the other hand, when the low temperature side lubricating oil (POE) having a low viscosity pressure coefficient “α” is used, the compressor is worn and the durability test result is not good (NG). .
 一方、低温側冷凍サイクル2の前記運転条件で前記圧縮機を運転したときに、粘度圧力係数“α”が高い前記高温側の潤滑油(PVE)と粘度圧力係数“α”が低い前記低温側の潤滑油(POE)とのいずれを用いても、圧縮機の耐久試験結果は良好(OK)である。性能(COP)試験結果としては、粘度圧力係数“α”が低い前記低温側の潤滑油(POE)を用いた場合の方が、粘度圧力係数“α”が高い前記高温側の潤滑油(PVE)を用いた場合よりも良好であることが分かる。 On the other hand, when the compressor is operated under the operating conditions of the low temperature side refrigeration cycle 2, the high temperature side lubricating oil (PVE) having a high viscosity pressure coefficient “α” and the low temperature side having a low viscosity pressure coefficient “α”. The result of the durability test of the compressor is good (OK) using any of these lubricants (POE). As a result of the performance (COP) test, when the low temperature side lubricating oil (POE) having a low viscosity pressure coefficient “α” is used, the high temperature side lubricating oil (PVE) having a high viscosity pressure coefficient “α” is used. It can be seen that it is better than the case of using ().
 高温側の潤滑油と低温側の潤滑油への耐荷重添加剤の付加について説明する。潤滑油に耐荷重添加剤を付加することにより、混合潤滑状態や境界潤滑状態における摺動部の耐摩耗性を高めることが可能となる。しかしその反面、耐荷重添加剤を付加することにより低温析出物が生じ易くなり、低温析出物が生じた場合には、冷媒や潤滑油が流れる流路の内径が狭くなり、場合によっては流路が閉塞される場合がある。 The addition of load-bearing additives to the high temperature side lubricating oil and the low temperature side lubricating oil will be described. By adding a load resistance additive to the lubricating oil, it is possible to increase the wear resistance of the sliding portion in the mixed lubrication state or the boundary lubrication state. However, the addition of a load-bearing additive facilitates the formation of low-temperature precipitates. When low-temperature precipitates are generated, the inner diameter of the flow path through which the refrigerant or lubricating oil flows becomes narrower. May be blocked.
 そこで、高温側の潤滑油と低温側の潤滑油に耐荷重添加剤を付加する場合、付加する耐荷重添加剤の重量比率を、高温側の潤滑油>低温側の潤滑油≧0の関係に設定している。 Therefore, when a load bearing additive is added to the high temperature side lubricating oil and the low temperature side lubricating oil, the weight ratio of the load bearing additive to be added is such that the high temperature side lubricating oil> the low temperature side lubricating oil ≧ 0. It is set.
 耐荷重添加剤の代表的なものとしては、リン酸エステル類を含むものが挙げられる。具体的には、トルクレジルホスフェート(TCP)、トリフェニルホスフェート(TPP)のリン酸エステル、トリクレジルホスファイト、トリフェニルホスファイトの亜リン酸エステル、酸性リン酸エステル、酸性亜リン酸エステルなどがある。さらには、チオリン酸塩(ジアルキルジチオリン酸亜鉛;ZnDTP)、高級脂肪酸、高級アルコール、有機モリブデン化合物も耐荷重添加剤として用いることが可能である。 As a representative load-bearing additive, one containing a phosphate ester can be mentioned. Specifically, Torque Resil Phosphate (TCP), Triphenyl Phosphate (TPP) Phosphate Ester, Tricresyl Phosphite, Triphenyl Phosphite Phosphite, Acid Phosphate, Acid Phosphite and so on. Furthermore, thiophosphate (zinc dialkyldithiophosphate; ZnDTP), higher fatty acids, higher alcohols, and organic molybdenum compounds can also be used as load-bearing additives.
 高温側のブレード23と低温側のブレード34のそれぞれのブレード摺動面の処理について説明する。高温側のブレード23が摺動する場合に他の部材と当接又は接触するブレード23のブレード摺動面には、高温側ブレード23の母材より硬度を高めるための拡散浸透処理、例えば、窒化処理による拡散浸透処理が施されている。 The treatment of the blade sliding surfaces of the high temperature side blade 23 and the low temperature side blade 34 will be described. When the high temperature side blade 23 slides, the blade sliding surface of the blade 23 that comes into contact with or comes into contact with other members has diffusion diffusion treatment for increasing the hardness of the base material of the high temperature side blade 23, for example, nitriding Diffusion permeation treatment is applied.
 一方、低温側のブレード34が摺動する場合に他の部材と当接又は接触するブレード34のブレード摺動面には、低温側のブレード34の母材より摩擦係数の低い被膜処理、例えば、DLC(ダイヤモンドライクカーボン)処理が施されている。 On the other hand, when the blade 34 on the low temperature side slides, the blade sliding surface of the blade 34 that comes into contact with or comes into contact with other members is coated with a coating having a lower coefficient of friction than the base material of the blade 34 on the low temperature side, for example, DLC (diamond-like carbon) treatment is performed.
 表2は、ブレード摺動面にDLC処理を施したブレードと、窒化処理による拡散浸透処理を施したブレードとを用いて行った、高温側冷凍サイクル1の運転条件でのブレードの耐久試験結果と、低温側冷凍サイクル2の運転条件でのブレードの耐久試験結果及び圧縮機の性能(COP)試験結果とを示す。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the durability test results of the blades under the operating conditions of the high-temperature side refrigeration cycle 1 using the blades subjected to DLC treatment on the blade sliding surfaces and the blades subjected to diffusion permeation treatment by nitriding treatment. The blade durability test results and the compressor performance (COP) test results under the operating conditions of the low temperature side refrigeration cycle 2 are shown.
Figure JPOXMLDOC01-appb-T000002
 高温側の冷凍サイクル1の運転条件としては、前記表1を用いて説明した試験と同様に、凝縮温度を95℃、蒸発温度を35℃、圧縮機の運転周波数を60rpsに設定した。低温側の冷凍サイクル2の運転条件は、前記表1を用いて説明した試験と同様に、凝縮温度を45℃、蒸発温度を5℃、圧縮機の運転周波数を60rpsに設定した。 As the operating conditions of the refrigeration cycle 1 on the high temperature side, the condensation temperature was set to 95 ° C., the evaporation temperature was set to 35 ° C., and the operating frequency of the compressor was set to 60 rps, as in the test described using Table 1 above. The operating conditions of the refrigeration cycle 2 on the low temperature side were set to a condensation temperature of 45 ° C., an evaporation temperature of 5 ° C., and a compressor operating frequency of 60 rps, as in the test described using Table 1 above.
 表2によれば、高温側の冷凍サイクル1の運転条件では、ブレード摺動面に窒化処理を施した場合には、ブレードの耐久試験の試験結果が良好(OK)である。これに対し、DLC処理を施した場合には処理部分に剥離が発生して耐久試験が非良好(NG)であることが分かる。 According to Table 2, under the operating conditions of the refrigeration cycle 1 on the high temperature side, when the blade sliding surface is subjected to nitriding treatment, the test result of the blade durability test is good (OK). On the other hand, when the DLC process is performed, peeling occurs in the processed part, and it can be seen that the durability test is not good (NG).
 一方、低温側の冷凍サイクル2の運転条件では、ブレード摺動面に窒化処理を施した場合とDLC処理を施した場合とのいずれにおいても、ブレードの耐久試験結果が良好(OK)である。性能(COP)試験結果は、DLC処理を施した場合の方が、ブレード摺動面に窒化処理を施した場合よりも、良好であることが分かる。 On the other hand, under the operating conditions of the refrigeration cycle 2 on the low temperature side, the blade durability test result is good (OK) both when the blade sliding surface is subjected to nitriding treatment and when subjected to DLC treatment. It can be seen that the performance (COP) test results are better when the DLC treatment is performed than when the blade sliding surface is nitrided.
 表3は、ブレード摺動面に窒化処理による拡散浸透処理を施した場合に窒化処理表面に発生するポーラス層の厚みを変化させた場合のブレード耐久試験の結果を示す。この耐久試験は、高温側の冷凍サイクル1の高圧縮比運転と高圧力運転とを行った場合についての耐久試験である。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the results of the blade durability test when the thickness of the porous layer generated on the nitriding surface is changed when the blade sliding surface is subjected to diffusion permeation treatment by nitriding treatment. This endurance test is an endurance test when a high compression ratio operation and a high pressure operation of the refrigeration cycle 1 on the high temperature side are performed.
Figure JPOXMLDOC01-appb-T000003
 前記高圧縮比運転とは、高温側の冷凍サイクル1の使用条件範囲の中で、最も圧縮比の高い条件における運転である。前記高圧力運転とは、高温側の冷凍サイクル1の使用条件範囲の中で、低圧と高圧が共に最も高い条件における運転である。 The high compression ratio operation is an operation under the condition with the highest compression ratio in the use condition range of the refrigeration cycle 1 on the high temperature side. The high pressure operation is an operation under a condition where the low pressure and the high pressure are the highest in the use condition range of the refrigeration cycle 1 on the high temperature side.
 前記高温側の冷凍サイクル1の前記高圧縮比運転では、凝縮温度を90℃、蒸発温度を10℃、圧縮機の運転周波数を60rpsに設定した。 In the high compression ratio operation of the high temperature side refrigeration cycle 1, the condensation temperature was set to 90 ° C., the evaporation temperature was set to 10 ° C., and the operation frequency of the compressor was set to 60 rps.
 前記高温側冷凍サイクル1の前記高圧力運転では、凝縮温度を95℃、蒸発温度を35℃、圧縮機の運転周波数を60rpsに設定した。 In the high pressure operation of the high temperature side refrigeration cycle 1, the condensation temperature was set to 95 ° C., the evaporation temperature was set to 35 ° C., and the operation frequency of the compressor was set to 60 rps.
 表3によれば、ポーラス層の厚みを1μm以下とすることにより、前記高圧縮比運転と前記高圧力運転とのいずれの場合においても、耐久試験結果が良好(OK)になることが分かる。ポーラス層の厚みが1μmを越える場合には、ポーラス層において一部剥離や剥離が発生することが分かる。 According to Table 3, it can be seen that by setting the thickness of the porous layer to 1 μm or less, the durability test result is good (OK) in both the high compression ratio operation and the high pressure operation. When the thickness of the porous layer exceeds 1 μm, it can be seen that partial peeling or peeling occurs in the porous layer.
 上述した前記冷凍サイクル装置では、低温側の圧縮機11が駆動されることによる低温側の冷凍サイクル2の運転と、高温側の圧縮機4が駆動されることによる高温側の冷凍サイクル1の運転とが行われる。さらに、ポンプ10が駆動されることにより流体流路9内を水が流れ、この水は高温側の凝縮器5において冷媒から放熱される熱で暖められて温水となり、この温水は外部の温水を必要とする箇所に供給される。 In the refrigeration cycle apparatus described above, the operation of the low temperature side refrigeration cycle 2 by driving the low temperature side compressor 11 and the operation of the high temperature side refrigeration cycle 1 by driving the high temperature side compressor 4. And done. Further, when the pump 10 is driven, water flows through the fluid flow path 9, and this water is warmed by the heat radiated from the refrigerant in the condenser 5 on the high temperature side to become warm water. Supplied where needed.
 低温側の冷凍サイクル2と高温側の冷凍サイクル1とが運転されることにより、中間熱交換器7において熱交換が行われる。その結果、高温側の冷凍サイクル1の冷媒が、低温側の冷凍サイクル2の冷媒から放熱された熱で暖められる。このような熱交換により、高温側の冷凍サイクル1では、高温側の圧縮機4に吸込まれる冷媒の温度が高くなり、高温側の圧縮機4のシリンダ室17内の温度と圧力は、低温側の圧縮機11のシリンダ室28内の温度と圧力に比べて高くなる。したがって、高温側の凝縮器5から放熱される熱量が多くなり、温水の生成が促進される。 Heat exchange is performed in the intermediate heat exchanger 7 by operating the refrigeration cycle 2 on the low temperature side and the refrigeration cycle 1 on the high temperature side. As a result, the refrigerant of the refrigeration cycle 1 on the high temperature side is warmed by the heat radiated from the refrigerant of the refrigeration cycle 2 on the low temperature side. By such heat exchange, in the high temperature side refrigeration cycle 1, the temperature of the refrigerant sucked into the high temperature side compressor 4 becomes high, and the temperature and pressure in the cylinder chamber 17 of the high temperature side compressor 4 are low. It becomes higher than the temperature and pressure in the cylinder chamber 28 of the compressor 11 on the side. Therefore, the amount of heat dissipated from the high-temperature side condenser 5 increases, and the generation of hot water is promoted.
 この場合、高温側の圧縮機4で使用する高温側の潤滑油として、40℃における粘度圧力係数“α”が15.1GPa-1である高い粘度圧力係数のPVEが使用されている。このPVEを使用することにより、高温側の圧縮機4のシリンダ室17内の温度と圧力が上昇しても、表1に示したように、高温側の圧縮機4の耐久性が向上する。 In this case, a high viscosity pressure coefficient PVE having a viscosity pressure coefficient “α” of 15.1 GPa −1 at 40 ° C. is used as the high temperature side lubricating oil used in the high temperature side compressor 4. By using this PVE, even if the temperature and pressure in the cylinder chamber 17 of the high temperature side compressor 4 are increased, the durability of the high temperature side compressor 4 is improved as shown in Table 1.
 さらに、低温側の圧縮機11で使用する低温側の潤滑油として、40℃における粘度圧力係数“α”が10.3GPa-1であるPOEが使用されている。このPOEを使用することにより、表1に示したように、低温側の圧縮機11で耐久性が確保されるとともに、性能(COP)試験結果がPVEを用いた場合より良好になる。 Further, POE having a viscosity pressure coefficient “α” of 10.3 GPa −1 at 40 ° C. is used as the low temperature side lubricating oil used in the low temperature side compressor 11. By using this POE, as shown in Table 1, durability is ensured by the compressor 11 on the low temperature side, and the performance (COP) test results are better than when PVE is used.
 本実施形態では、高温側潤滑油(PVE)と低温側潤滑油(POE)に付加する耐荷重添加剤の重量比率を、高温側の潤滑油>低温側の潤滑油≧0の関係に設定している。したがって、高温側の圧縮機4は摺動環境が厳しいが、高温側の圧縮機4使用する高温側の潤滑油については、耐荷重添加剤の付加量を多くすることにより、高温側圧縮機4の耐摩耗性を向上させることができる。加えて、この高温側の圧縮機4及び高温側の冷凍サイクル1は低温になり難いため、耐荷重添加剤の付加量を多くしても、低温析出物の発生を抑制することができる。その結果、低温析出物の析出に伴う高温側の冷凍サイクル1の信頼性や性能の低下を防止することができる。一方、低温側の圧縮機11は摺動環境が厳しくなく低温になり易い。したがって、低温側の圧縮機11の低温側の潤滑油については、耐荷重添加剤の付加量を少なくし、又は、耐荷重添加剤を付加しないようにする。その結果、耐荷重添加剤を付加することによる低温析出物の発生を抑制することができ、低温側の冷凍サイクル2の性能を維持することができる。 In this embodiment, the weight ratio of the load-bearing additive added to the high temperature side lubricating oil (PVE) and the low temperature side lubricating oil (POE) is set such that the high temperature side lubricating oil> the low temperature side lubricating oil ≧ 0. ing. Therefore, although the high temperature side compressor 4 has a severe sliding environment, the high temperature side compressor 4 can be used for the high temperature side lubricating oil used by the high temperature side compressor 4 by increasing the load-adding additive. The wear resistance of can be improved. In addition, since the high temperature side compressor 4 and the high temperature side refrigeration cycle 1 are unlikely to become low temperature, generation of low temperature precipitates can be suppressed even when the load-bearing additive is added in an increased amount. As a result, it is possible to prevent deterioration in reliability and performance of the refrigeration cycle 1 on the high temperature side accompanying precipitation of low temperature precipitates. On the other hand, the compressor 11 on the low temperature side does not have a severe sliding environment and tends to become low temperature. Therefore, with respect to the lubricating oil on the low temperature side of the compressor 11 on the low temperature side, the addition amount of the load resistance additive is reduced or the load resistance additive is not added. As a result, it is possible to suppress the generation of low-temperature precipitates due to the addition of the load-bearing additive, and the performance of the refrigeration cycle 2 on the low-temperature side can be maintained.
 本実施形態では、表2に示したように、高温側の圧縮機4のブレード23の表面に窒化処理による拡散浸透処理を施すことにより、ブレード23の耐久性を向上させることができる。一方、低温側の圧縮機11のブレードの表面にDLC処理を施すことにより、ブレード34の耐久性を向上させることができるとともに、低温側圧縮機11の性能(COP)を向上させることができる。 In this embodiment, as shown in Table 2, the durability of the blade 23 can be improved by subjecting the surface of the blade 23 of the compressor 4 on the high temperature side to diffusion diffusion treatment by nitriding. On the other hand, by subjecting the blade surface of the low temperature side compressor 11 to DLC treatment, the durability of the blade 34 can be improved and the performance (COP) of the low temperature side compressor 11 can be improved.
 さらに、本実施形態では、高温側ブレード23の摺動面に窒化処理による拡散浸透処理を施した場合に窒化処理表面に発生するポーラス層の厚みを、表3に示したように1μm以下としている。これにより、ポーラス層の一部剥離や剥離を防止することができ、高温側圧縮機4の性能及び信頼性を高めることができる。 Furthermore, in the present embodiment, the thickness of the porous layer generated on the nitriding surface when the sliding surface of the high temperature side blade 23 is subjected to diffusion permeation treatment by nitriding treatment is 1 μm or less as shown in Table 3. . Thereby, partial peeling and peeling of the porous layer can be prevented, and the performance and reliability of the high temperature side compressor 4 can be improved.
 本発明の第2の実施形態による冷凍サイクル装置を説明する。この冷凍サイクル装置は、高温側及び低温側の圧縮機を除き第1の実施形態による冷凍サイクル装置と同様である。これらの圧縮機の構造につて図4A及び4Bに基づいて説明する。 A refrigeration cycle apparatus according to a second embodiment of the present invention will be described. This refrigeration cycle apparatus is the same as the refrigeration cycle apparatus according to the first embodiment except for the high temperature side and low temperature side compressors. The structure of these compressors will be described with reference to FIGS. 4A and 4B.
 図4Aは、第2の実施形態における高温側の冷凍サイクルの高温側の圧縮機4Aを示す縦断面図である。図4Bは、第2の実施形態における低温側の冷凍サイクルの低温側圧縮機11Aを示す縦断面図である。高温側の圧縮機4Aのシリンダ室17、17の各々の室内においては、2枚の高温側のブレード23a、23bが使用される。低温側の圧縮機11Aのシリンダ28、28の各々の室内においては、1枚の低温側ブレード34が使用される。 FIG. 4A is a longitudinal sectional view showing a high-temperature side compressor 4A of the high-temperature side refrigeration cycle in the second embodiment. FIG. 4B is a longitudinal sectional view showing a low temperature side compressor 11A of the low temperature side refrigeration cycle in the second embodiment. In each of the cylinder chambers 17 and 17 of the high-temperature compressor 4A, two high- temperature blades 23a and 23b are used. In each of the cylinders 28 and 28 of the compressor 11A on the low temperature side, a single low temperature side blade 34 is used.
 以下に詳しく説明する。高温側圧縮機4Aの圧縮機構部16Aは、一対の高温側のシリンダ18、18と、回転軸19と、偏心部20、20と、高温側のローラ21、21と、高温側のブレード23a、23a、23b、23bと、スプリング24とを備えている。シリンダ18、18の内部には、それぞれ、高温側シリンダ室17、17が形成される。回転軸19は、シリンダ室17、17に挿通され、軸心回りに回転可能に設けられる。偏心部20、20は、回転軸19に設けられ、それぞれシリンダ室17、17内に配置される。ローラ21、21は、それぞれ偏心部20、20の外周に嵌合され、回転軸19の回転に伴いシリンダ室17、17内で偏心回転する。ブレード23a、23a、23b、23bは、前記ローラ21、21に対し摺動可能に設けられる。これらの複数のブレードの先端部は、ローラ21、21の外周面に当接されることによりシリンダ室17、17内を吸込室と圧縮室とに仕切る。スプリング24は、ブレード23a、23a、23b、23bをローラ21、21側に付勢する。 The details will be described below. The compression mechanism portion 16A of the high temperature side compressor 4A includes a pair of high temperature side cylinders 18 and 18, a rotating shaft 19, eccentric portions 20 and 20, high temperature side rollers 21 and 21, a high temperature side blade 23a, 23a, 23b, 23b and a spring 24 are provided. High temperature side cylinder chambers 17 and 17 are formed in the cylinders 18 and 18, respectively. The rotary shaft 19 is inserted into the cylinder chambers 17 and 17 and is provided so as to be rotatable around the axis. The eccentric parts 20 and 20 are provided on the rotary shaft 19 and are disposed in the cylinder chambers 17 and 17, respectively. The rollers 21 and 21 are fitted to the outer circumferences of the eccentric portions 20 and 20, respectively, and eccentrically rotate in the cylinder chambers 17 and 17 as the rotary shaft 19 rotates. The blades 23a, 23a, 23b, and 23b are provided to be slidable with respect to the rollers 21 and 21. The tip portions of the plurality of blades are in contact with the outer peripheral surfaces of the rollers 21 and 21, thereby partitioning the cylinder chambers 17 and 17 into a suction chamber and a compression chamber. The spring 24 urges the blades 23a, 23a, 23b, and 23b toward the rollers 21 and 21.
 低温側圧縮機11Aの圧縮機構部27Aは、一対の低温側のシリンダ29、29と、回転軸30と、偏心部31、31と、低温側のローラ32、32と、低温側ブレード34、34と、スプリング35とを備えている。シリンダ29、29の内部には、それぞれシリンダ室28、28が形成される。回転軸30は、シリンダ室28、28に挿通され、軸心回りに回転可能に設けられる。偏心部31、31は、回転軸30に設けられ、それぞれシリンダ室28、28内に配置される。ローラ32、31は、それぞれ偏心部31、31の外周に嵌合され、回転軸30の回転に伴いシリンダ室28、28内で偏心回転する。ブレード34、34は、前記ローラ32、32に対し摺動可能に設けられる。ブレード34、34のそれぞれの先端部は、低温側ローラ32、32の外周面に当接されることによりシリンダ室28、28内を吸込室と圧縮室とに仕切る。スプリング35は、ブレード34、34をローラ32、32側に付勢する。 The compression mechanism portion 27A of the low temperature side compressor 11A includes a pair of low temperature side cylinders 29, 29, a rotating shaft 30, eccentric portions 31, 31, low temperature side rollers 32, 32, and low temperature side blades 34, 34. And a spring 35. Cylinder chambers 28 and 28 are formed in the cylinders 29 and 29, respectively. The rotary shaft 30 is inserted into the cylinder chambers 28 and 28 and is provided to be rotatable around the axis. The eccentric parts 31, 31 are provided on the rotary shaft 30 and are disposed in the cylinder chambers 28, 28, respectively. The rollers 32 and 31 are fitted to the outer circumferences of the eccentric portions 31 and 31, respectively, and rotate eccentrically in the cylinder chambers 28 and 28 as the rotary shaft 30 rotates. The blades 34 and 34 are provided so as to be slidable with respect to the rollers 32 and 32. The tip portions of the blades 34, 34 are in contact with the outer peripheral surfaces of the low temperature side rollers 32, 32, thereby partitioning the cylinder chambers 28, 28 into a suction chamber and a compression chamber. The spring 35 urges the blades 34 and 34 toward the rollers 32 and 32.
 本実施形態の冷凍サイクル装置では、低温側のシリンダ室28、28の各々の室内に、1枚のブレード34が設けられている。高温側のシリンダ室17、17の各々の室内に、2枚のブレード23a、23bが設けられている。高温側のブレード23a、23a、23b、23bは、回転軸19の軸方向に沿って2枚ずつに分けられている。 In the refrigeration cycle apparatus of the present embodiment, one blade 34 is provided in each of the low-temperature side cylinder chambers 28 and 28. Two blades 23 a and 23 b are provided in each of the high- temperature cylinder chambers 17 and 17. The high temperature side blades 23 a, 23 a, 23 b and 23 b are divided into two pieces along the axial direction of the rotary shaft 19.
 このような構成において、高温側の圧縮機4Aと低温側の圧縮機11Aにおいて、冷媒の圧力により回転軸19、30が撓みを生じると、高温側のローラ21、21の外周面に対して高温側のブレード23a、23a、23b、23bが局部的に当接することになる。加えて、低温側のローラ32、32の外周面に対しては、低温側のブレード34、34が局部的に当接することになる。その結果、前記複数のブレードにおける当接している部分の面圧が上昇する。 In such a configuration, in the high temperature side compressor 4A and the low temperature side compressor 11A, if the rotary shafts 19 and 30 bend due to the pressure of the refrigerant, the outer peripheral surfaces of the high temperature side rollers 21 and 21 are hot. The blades 23a, 23a, 23b, and 23b on the side will abut locally. In addition, the low temperature side blades 34 and 34 are locally in contact with the outer peripheral surfaces of the low temperature side rollers 32 and 32. As a result, the surface pressure of the abutting portions of the plurality of blades increases.
 高温側の圧縮機4Aの方が低温側の圧縮機11Aよりも冷媒の圧力が高くなるため、回転軸30に比べて回転軸19の撓み量が大きくなりやすい。しかし、高温側の圧縮機4Aでは、高温側のブレード23a、23a、23b、23bが2つずつに分けられてそれぞれがシリンダ18、18内に配置されているため、高温側のブレード23a、23a、23b、23bの1枚当たりの高温側のローラ21、21の一つとの当接部の面圧を低く抑えることができる。したがって、耐摩耗性を向上させることができ、高温側の圧縮機4Aの性能及び信頼性を高めることができる。 The refrigerant pressure of the high temperature side compressor 4 </ b> A is higher than that of the low temperature side compressor 11 </ b> A, so that the amount of deflection of the rotary shaft 19 is likely to be larger than that of the rotary shaft 30. However, in the high temperature side compressor 4A, the high temperature side blades 23a, 23a, 23b, and 23b are divided into two parts and are disposed in the cylinders 18 and 18, respectively. , 23b, 23b, the surface pressure of the contact portion with one of the high temperature side rollers 21, 21 can be kept low. Therefore, wear resistance can be improved, and the performance and reliability of the compressor 4A on the high temperature side can be improved.
 一方、低温側の圧縮機11Aの回転軸30が撓みを生じても、その撓み量は高温側の圧縮機4Aの回転軸19の撓み量より小さい。したがって、回転軸30が撓みを生じて低温側のブレード34、34がローラ32、32に局部的に当接することになっても、低温側ブレード34、34と低温側ローラ32、32の当接部の面圧が低く抑えられる。低温側の圧縮機11Aでは、シリンダ29、29の各々当り1枚のブレード34を使用することにより、前記冷凍サイクル装置の部品数を低減し、コストの上昇を抑えることができる。 On the other hand, even if the rotating shaft 30 of the compressor 11A on the low temperature side bends, the amount of bending is smaller than the amount of bending of the rotating shaft 19 of the compressor 4A on the high temperature side. Therefore, even if the rotating shaft 30 is bent and the low temperature side blades 34 and 34 are locally in contact with the rollers 32 and 32, the low temperature side blades 34 and 34 and the low temperature side rollers 32 and 32 are in contact with each other. The surface pressure of the part is kept low. In the compressor 11A on the low temperature side, by using one blade 34 for each of the cylinders 29, 29, the number of parts of the refrigeration cycle apparatus can be reduced, and an increase in cost can be suppressed.
 本実施形態では、高温側の圧縮機4Aにおいて、シリンダ18、18の各々当り2枚の高温側ブレード23a、23bを設け、低温側の圧縮機11Aでは、シリンダ29、29の各々当り1枚の低温側ブレード34を設けている。ブレードの枚数はこれらに限られるものではなく、高温側の圧縮機4Aのブレードの枚数と低温側の圧縮機11Aのブレードの枚数をそれぞれ更に多くして、高温側の圧縮機4Aで使用するブレードの枚数を、低温側の圧縮機11Aで使用するブレードの枚数より多くなるようにしてもよい。 In this embodiment, the high temperature side compressor 4A is provided with two high temperature side blades 23a and 23b for each of the cylinders 18 and 18, and the low temperature side compressor 11A is provided with one piece for each of the cylinders 29 and 29. A low temperature side blade 34 is provided. The number of blades is not limited to these, and the number of blades of the high-temperature side compressor 4A and the number of blades of the low-temperature side compressor 11A are further increased so that the blades used in the high-temperature side compressor 4A are used. May be larger than the number of blades used in the compressor 11A on the low temperature side.
 以上説明した複数の実施形態による冷凍サイクル装置は、高温側の冷凍サイクル1と低温側の冷凍サイクル2を有する。冷凍サイクル1は、高温側の圧縮機4、4Aと、被加熱流体を加熱する高温側の凝縮器5と、高温側の膨張装置6と、高温側の流路7aを有する中間熱交換器7とを備える。これらの要素は高温側の冷媒配管8を介して連通され、冷媒が高温側冷媒配管8に沿って循環する。低温側の冷凍サイクル2は、低温側の圧縮機11、11Aと、前記中間熱交換器7と、低温側の膨張装置12と、低温側の蒸発器13とを備える。前記中間熱交換器7は低温側の流路7bを有する。これらの要素は低温側の冷媒配管14を介して連通され、冷媒が低温側の冷媒配管14に沿って循環する。前記冷媒として塩素を含まない冷媒が使用される。高温側圧縮機4で使用される高温側の潤滑油と低温側の圧縮機11で使用される低温側の潤滑油とは、前記冷媒に対して相溶性を有する。前記高温側の潤滑油の40℃における粘度圧力係数は、前記低温側の潤滑油の40℃における粘度圧力係数より高くなっている。したがって、高温かつ高圧下の希釈により前記潤滑油の粘度が大きく低下しやすい高温側に圧縮機4、4Aにおいて、粘度圧力係数が高い前記潤滑油を使用することにより、混合潤滑あるいは境界潤滑になりやすい前記複数のブレードの摺動部の耐摩耗性を向上させることができる。一方、低温側の圧縮機11、11Aは、比較的低温、低圧であり、前記低温側の潤滑油の粘度は低下し難い。この低温側圧縮機11においては、粘度圧力係数が低い潤滑油を用いることにより、前記複数のブレードの複数の摺動部の耐摩耗性を維持することができると共に、前記複数の摺動部における摺動損失を低減させることができる。 The refrigeration cycle apparatus according to the plurality of embodiments described above has a refrigeration cycle 1 on a high temperature side and a refrigeration cycle 2 on a low temperature side. The refrigeration cycle 1 includes a high- temperature compressor 4, 4A, a high-temperature condenser 5 that heats a fluid to be heated, a high-temperature expansion device 6, and an intermediate heat exchanger 7 having a high-temperature channel 7a. With. These elements communicate with each other via the high temperature side refrigerant pipe 8, and the refrigerant circulates along the high temperature side refrigerant pipe 8. The low temperature side refrigeration cycle 2 includes low temperature side compressors 11, 11 </ b> A, the intermediate heat exchanger 7, a low temperature side expansion device 12, and a low temperature side evaporator 13. The intermediate heat exchanger 7 has a flow path 7b on the low temperature side. These elements communicate with each other via a low temperature side refrigerant pipe 14, and the refrigerant circulates along the low temperature side refrigerant pipe 14. A refrigerant not containing chlorine is used as the refrigerant. The high temperature side lubricating oil used in the high temperature side compressor 4 and the low temperature side lubricating oil used in the low temperature side compressor 11 are compatible with the refrigerant. The viscosity pressure coefficient at 40 ° C. of the high temperature side lubricating oil is higher than the viscosity pressure coefficient at 40 ° C. of the low temperature side lubricating oil. Therefore, by using the lubricating oil having a high viscosity pressure coefficient in the compressors 4 and 4A on the high temperature side where the viscosity of the lubricating oil is likely to greatly decrease due to dilution at high temperature and high pressure, mixed lubrication or boundary lubrication is achieved. It is easy to improve the wear resistance of the sliding portions of the plurality of blades. On the other hand, the low temperature side compressors 11 and 11A are relatively low temperature and low pressure, and the viscosity of the low temperature side lubricating oil is difficult to decrease. In this low temperature side compressor 11, by using a lubricating oil having a low viscosity pressure coefficient, it is possible to maintain the wear resistance of the plurality of sliding portions of the plurality of blades, and in the plurality of sliding portions. Sliding loss can be reduced.
 以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 1…高温側の冷凍サイクル、2…低温側の冷凍サイクル、3…筐体、4…高温側の圧縮機、4A…高温側の圧縮機、5…高温側の凝縮器、6…高温側の膨張装置、7…中間熱交換器、7a…高温側の流路、7b…低温側の流路、8…高温側の冷媒配管、11…低温側の圧縮機、11A…低温側の圧縮機、12…低温側の膨張装置、13…低温側の蒸発器、14…低温側の冷媒配管、17…高温側のシリンダ室、17a…吸込室、17b…圧縮室、21…高温側のローラ、23…高温側のブレード、23a、23b…高温側のブレード、28…低温側のシリンダ室、28a…吸込室、28b…圧縮室、31…回転軸、32…低温側のローラ、34…低温側のブレード DESCRIPTION OF SYMBOLS 1 ... High temperature side refrigeration cycle, 2 ... Low temperature side refrigeration cycle, 3 ... Housing, 4 ... High temperature side compressor, 4A ... High temperature side compressor, 5 ... High temperature side condenser, 6 ... High temperature side condenser Expansion device, 7 ... Intermediate heat exchanger, 7a ... High temperature side flow path, 7b ... Low temperature side flow path, 8 ... High temperature side refrigerant piping, 11 ... Low temperature side compressor, 11A ... Low temperature side compressor, DESCRIPTION OF SYMBOLS 12 ... Low temperature side expansion apparatus, 13 ... Low temperature side evaporator, 14 ... Low temperature side refrigerant piping, 17 ... High temperature side cylinder chamber, 17a ... Suction chamber, 17b ... Compression chamber, 21 ... High temperature side roller, 23 ... high temperature side blades, 23a, 23b ... high temperature side blades, 28 ... low temperature side cylinder chamber, 28a ... suction chamber, 28b ... compression chamber, 31 ... rotating shaft, 32 ... low temperature side roller, 34 ... low temperature side roller blade

Claims (8)

  1.  高温側の圧縮機と、被加熱流体を加熱する高温側の凝縮器と、高温側の膨張装置と、中間熱交換器の高温側の流路とが高温側の冷媒配管を介して連通され、前記高温側の冷媒配管に沿って冷媒が循環する高温側の冷凍サイクルと、
     低温側の圧縮機と、前記中間熱交換器の低温側の流路と、低温側の膨張装置と、低温側の蒸発器とが低温側の冷媒配管を介して連通され、前記低温側の冷媒配管に沿って冷媒が循環する低温側の冷凍サイクルとを備え、
     前記高温側の冷凍サイクルと前記低温側の冷凍サイクルとを同一の筐体内に搭載した冷凍サイクル装置であって、
     前記冷媒として塩素を含まない冷媒が使用され、
     前記高温側の圧縮機で使用される高温側の潤滑油と、前記低温側の圧縮機で使用される低温側の潤滑油とは、前記冷媒に対して相溶性を有し、
     前記高温側の潤滑油の40℃における粘度圧力係数が前記低温側の潤滑油の40℃における粘度圧力係数より高い冷凍サイクル装置。
    The high temperature side compressor, the high temperature side condenser that heats the fluid to be heated, the high temperature side expansion device, and the high temperature side flow path of the intermediate heat exchanger are communicated with each other via a high temperature side refrigerant pipe. A high temperature side refrigeration cycle in which the refrigerant circulates along the high temperature side refrigerant piping;
    A low temperature side compressor, a low temperature side flow path of the intermediate heat exchanger, a low temperature side expansion device, and a low temperature side evaporator communicate with each other via a low temperature side refrigerant pipe, and the low temperature side refrigerant A low-temperature refrigeration cycle in which refrigerant circulates along the piping,
    A refrigeration cycle apparatus in which the refrigeration cycle on the high temperature side and the refrigeration cycle on the low temperature side are mounted in the same housing,
    A refrigerant not containing chlorine is used as the refrigerant,
    The high temperature side lubricating oil used in the high temperature side compressor and the low temperature side lubricating oil used in the low temperature side compressor have compatibility with the refrigerant,
    The refrigeration cycle apparatus in which the viscosity pressure coefficient at 40 ° C. of the high temperature side lubricating oil is higher than the viscosity pressure coefficient at 40 ° C. of the low temperature side lubricating oil.
  2.  前記冷媒はハイドロフルオロカーボン系冷媒であり、前記高温側の潤滑油がポリビニルエーテルであり、前記低温側の潤滑油がポリオールエステルである請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the refrigerant is a hydrofluorocarbon refrigerant, the high-temperature side lubricating oil is polyvinyl ether, and the low-temperature side lubricating oil is a polyol ester.
  3.  前記高温側の潤滑油と前記低温側の潤滑油とに対して付加する耐荷重添加剤の重量比率が、前記高温側の潤滑油の耐荷重添加剤の重量比率>前記低温側の潤滑油の耐荷重添加剤の重量比率≧0の関係にある請求項1又は2に記載の冷凍サイクル装置。 The weight ratio of the load bearing additive added to the high temperature side lubricating oil and the low temperature side lubricating oil is the weight ratio of the load bearing additive of the high temperature side lubricating oil> the low temperature side lubricating oil. The refrigeration cycle apparatus according to claim 1, wherein the weight ratio of the load-bearing additive is in a relationship of ≧ 0.
  4.  前記高温側の圧縮機は、高温側のシリンダ室と、この高温側のシリンダ室内を吸込室と圧縮室とに区画する摺動可能な高温側のブレードとを備えたロータリ型の圧縮機であり、前記低温側の圧縮機は、低温側のシリンダ室と、この低温側のシリンダ室を吸込室と圧縮室とに区画する摺動可能な低温側のブレードとを備えたロータリ型の圧縮機であり、前記高温側のブレードの摺動面には母材より硬度を高くする拡散浸透処理が施され、前記低温側のブレードの摺動面には母材より摩擦係数を低くする被膜処理が施されている請求項1又は2に記載の冷凍サイクル装置。 The high temperature side compressor is a rotary type compressor including a high temperature side cylinder chamber and a slidable high temperature side blade that divides the high temperature side cylinder chamber into a suction chamber and a compression chamber. The low temperature side compressor is a rotary type compressor having a low temperature side cylinder chamber and a slidable low temperature side blade that divides the low temperature side cylinder chamber into a suction chamber and a compression chamber. The sliding surface of the high temperature side blade is subjected to a diffusion penetration treatment that makes the hardness higher than that of the base material, and the sliding surface of the low temperature side blade is subjected to a coating treatment that lowers the friction coefficient than that of the base material. The refrigeration cycle apparatus according to claim 1 or 2.
  5.  前記高温側の圧縮機は、高温側のシリンダ室と、この高温側のシリンダ室内を吸込室と圧縮室とに区画する摺動可能な高温側のブレードとを備えたロータリ型の圧縮機であり、前記低温側の圧縮機は、低温側のシリンダ室と、この低温側のシリンダ室を吸込室と圧縮室とに区画する摺動可能な低温側のブレードとを備えたロータリ型の圧縮機であり、前記高温側のブレードの摺動面には母材より硬度を高くする拡散浸透処理が施され、前記低温側のブレードの摺動面には母材より摩擦係数を低くする被膜処理が施されている請求項3に記載の冷凍サイクル装置。 The high temperature side compressor is a rotary type compressor including a high temperature side cylinder chamber and a slidable high temperature side blade that divides the high temperature side cylinder chamber into a suction chamber and a compression chamber. The low temperature side compressor is a rotary type compressor having a low temperature side cylinder chamber and a slidable low temperature side blade that divides the low temperature side cylinder chamber into a suction chamber and a compression chamber. The sliding surface of the high temperature side blade is subjected to a diffusion penetration treatment that makes the hardness higher than that of the base material, and the sliding surface of the low temperature side blade is subjected to a coating treatment that lowers the friction coefficient than that of the base material. The refrigeration cycle apparatus according to claim 3.
  6.  前記高温側の圧縮機は、高温側のシリンダ室と、この高温側のシリンダ室を挿通する回転軸と、この回転軸に嵌合されて前記高温側のシリンダ室内で偏心回転する高温側のローラと、先端部を前記高温側のローラの外周面に当接させて前記高温側のシリンダ室を吸込室と圧縮室とに区画する摺動可能な少なくとも2枚の高温側のブレードとを備えたロータリ型の圧縮機であり、前記低温側の圧縮機は、低温側のシリンダ室と、この低温側のシリンダ室を挿通する回転軸と、この回転軸に嵌合されて前記低温の側シリンダ室内で偏心回転する低温側のローラと、先端部をこの低温側のローラの外周面に当接させて前記低温側のシリンダ室内を吸込室と圧縮室とに区画する摺動可能な少なくとも1枚の低温側のブレードとを備えたロータリ型の圧縮機であり、前記高温側の圧縮機の高温側のブレードの枚数が前記低温側の圧縮機の低温側のブレードの枚数より多い請求項1又は2に記載の冷凍サイクル装置。 The high temperature side compressor includes a high temperature side cylinder chamber, a rotating shaft that passes through the high temperature side cylinder chamber, and a high temperature side roller that is fitted to the rotating shaft and rotates eccentrically in the high temperature side cylinder chamber. And at least two slidable high-temperature side blades that divide the high-temperature side cylinder chamber into a suction chamber and a compression chamber by bringing the tip portion into contact with the outer peripheral surface of the high-temperature side roller. The low-temperature side compressor includes a low-temperature side cylinder chamber, a rotary shaft that passes through the low-temperature side cylinder chamber, and a low-temperature side cylinder chamber that is fitted to the rotary shaft and is inserted into the low-temperature side cylinder chamber. And at least one slidable member that separates the low-temperature side cylinder chamber into a suction chamber and a compression chamber by bringing the tip portion into contact with the outer peripheral surface of the low-temperature side roller. Rotary type with low temperature blades A compressor, the refrigeration cycle apparatus according More often claim 1 or 2 number of the cold side of the blade of the hot side of the compressor of the high-temperature side of the blade compressor the number is the cold side of the.
  7.  前記高温側の圧縮機は、高温側のシリンダ室と、この高温側のシリンダ室を挿通する回転軸と、この回転軸に嵌合されて前記高温側のシリンダ室内で偏心回転する高温側のローラと、先端部を前記高温側のローラの外周面に当接させて前記高温側のシリンダ室を吸込室と圧縮室とに区画する摺動可能な少なくとも2枚の高温側のブレードとを備えたロータリ型の圧縮機であり、前記低温側の圧縮機は、低温側のシリンダ室と、この低温側のシリンダ室を挿通する回転軸と、この回転軸に嵌合されて前記低温の側シリンダ室内で偏心回転する低温側のローラと、先端部をこの低温側のローラの外周面に当接させて前記低温側のシリンダ室内を吸込室と圧縮室とに区画する摺動可能な少なくとも1枚の低温側のブレードとを備えたロータリ型の圧縮機であり、前記高温側の圧縮機の高温側のブレードの枚数が前記低温側の圧縮機の低温側のブレードの枚数より多い請求項3に記載の冷凍サイクル装置。 The high temperature side compressor includes a high temperature side cylinder chamber, a rotating shaft that passes through the high temperature side cylinder chamber, and a high temperature side roller that is fitted to the rotating shaft and rotates eccentrically in the high temperature side cylinder chamber. And at least two slidable high-temperature side blades that divide the high-temperature side cylinder chamber into a suction chamber and a compression chamber by bringing the tip portion into contact with the outer peripheral surface of the high-temperature side roller. The low-temperature side compressor includes a low-temperature side cylinder chamber, a rotary shaft that passes through the low-temperature side cylinder chamber, and a low-temperature side cylinder chamber that is fitted to the rotary shaft and is inserted into the low-temperature side cylinder chamber. And at least one slidable member that separates the low-temperature side cylinder chamber into a suction chamber and a compression chamber by bringing the tip portion into contact with the outer peripheral surface of the low-temperature side roller. Rotary type with low temperature blades A compressor, the refrigeration cycle apparatus according to claim 3 greater than the number of the cold side of the blade of the hot side of the compressor of the high-temperature side of the blade compressor the number is the cold side of the.
  8.  前記高温側の圧縮機は、高温側のシリンダ室と、この高温側のシリンダ室を挿通する回転軸と、この回転軸に嵌合されて前記高温側のシリンダ室内で偏心回転する高温側のローラと、先端部を前記高温側のローラの外周面に当接させて前記高温側のシリンダ室を吸込室と圧縮室とに区画する摺動可能な少なくとも2枚の高温側のブレードとを備えたロータリ型の圧縮機であり、前記低温側の圧縮機は、低温側のシリンダ室と、この低温側のシリンダ室を挿通する回転軸と、この回転軸に嵌合されて前記低温の側シリンダ室内で偏心回転する低温側のローラと、先端部をこの低温側のローラの外周面に当接させて前記低温側のシリンダ室内を吸込室と圧縮室とに区画する摺動可能な少なくとも1枚の低温側のブレードとを備えたロータリ型の圧縮機であり、前記高温側の圧縮機の高温側のブレードの枚数が前記低温側の圧縮機の低温側のブレードの枚数より多い請求項4に記載の冷凍サイクル装置。 The high temperature side compressor includes a high temperature side cylinder chamber, a rotating shaft that passes through the high temperature side cylinder chamber, and a high temperature side roller that is fitted to the rotating shaft and rotates eccentrically in the high temperature side cylinder chamber. And at least two slidable high-temperature side blades that divide the high-temperature side cylinder chamber into a suction chamber and a compression chamber by bringing the tip portion into contact with the outer peripheral surface of the high-temperature side roller. The low-temperature side compressor includes a low-temperature side cylinder chamber, a rotary shaft that passes through the low-temperature side cylinder chamber, and a low-temperature side cylinder chamber that is fitted to the rotary shaft and is inserted into the low-temperature side cylinder chamber. And at least one slidable member that separates the low-temperature side cylinder chamber into a suction chamber and a compression chamber by bringing the tip portion into contact with the outer peripheral surface of the low-temperature side roller. Rotary type with low temperature blades A compressor, the refrigeration cycle apparatus according More often claim 4 number of the cold side of the blade of the hot side of the compressor of the high-temperature side of the blade compressor the number is the cold side of the.
PCT/JP2013/004239 2012-08-17 2013-07-09 Refrigeration cycle device WO2014027438A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380044192.XA CN104583688B (en) 2012-08-17 2013-07-09 Freezing cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-181188 2012-08-17
JP2012181188A JP2014037928A (en) 2012-08-17 2012-08-17 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2014027438A1 true WO2014027438A1 (en) 2014-02-20

Family

ID=50286202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004239 WO2014027438A1 (en) 2012-08-17 2013-07-09 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP2014037928A (en)
CN (1) CN104583688B (en)
WO (1) WO2014027438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010634A1 (en) * 2014-07-18 2016-01-21 The Chemours Company Fc, Llc Use of 1,1,2,2-tetrafluoroethane in high temperature heat pumps

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522345B2 (en) * 2015-01-13 2019-05-29 日立ジョンソンコントロールズ空調株式会社 Refrigerating apparatus and sealed electric compressor
WO2016185546A1 (en) * 2015-05-18 2016-11-24 三菱電機株式会社 Compressor
JP6736019B2 (en) * 2016-02-08 2020-08-05 Eneos株式会社 Refrigerator, method for manufacturing refrigerator, and method for improving COP
JP6834389B2 (en) * 2016-11-16 2021-02-24 株式会社富士通ゼネラル Rotary compressor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1796535A (en) * 1927-09-26 1931-03-17 Walter G E Rolaff Blade construction for compressors of the rotary type
FR2034144A1 (en) * 1969-02-11 1970-12-11 Bonneau Roland
US4514154A (en) * 1981-07-16 1985-04-30 Concezio Mazzagatti Self-sealing abutment
JPH0682106A (en) * 1992-09-03 1994-03-22 Daikin Ind Ltd Dual refrigerating apparatus
JPH09302372A (en) * 1996-05-10 1997-11-25 Kao Corp Refrigerator oil composition
US5733112A (en) * 1993-12-08 1998-03-31 Samsung Electronics Co., Ltd. Rotary compressor having a roller mounted eccentrically in a cylindrical chamber of a rotatable cylinder
JP2001081486A (en) * 1999-09-14 2001-03-27 Ishikawajima Harima Heavy Ind Co Ltd Lubricating oil
JP2004231987A (en) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp Nitrided parts, cooling medium compressor and freezing air-conditioner
JP2006170487A (en) * 2004-12-14 2006-06-29 Sanyo Electric Co Ltd Refrigeration unit
JP2010151048A (en) * 2008-12-25 2010-07-08 Toshiba Carrier Corp Rotary type fluid machine and refrigeration cycle device
WO2012086518A1 (en) * 2010-12-20 2012-06-28 日立アプライアンス株式会社 Compressor for refrigeration and air-conditioning, and refrigerating and air-conditioning apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2967574B2 (en) * 1990-11-16 1999-10-25 株式会社日立製作所 Refrigeration equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1796535A (en) * 1927-09-26 1931-03-17 Walter G E Rolaff Blade construction for compressors of the rotary type
FR2034144A1 (en) * 1969-02-11 1970-12-11 Bonneau Roland
US4514154A (en) * 1981-07-16 1985-04-30 Concezio Mazzagatti Self-sealing abutment
JPH0682106A (en) * 1992-09-03 1994-03-22 Daikin Ind Ltd Dual refrigerating apparatus
US5733112A (en) * 1993-12-08 1998-03-31 Samsung Electronics Co., Ltd. Rotary compressor having a roller mounted eccentrically in a cylindrical chamber of a rotatable cylinder
JPH09302372A (en) * 1996-05-10 1997-11-25 Kao Corp Refrigerator oil composition
JP2001081486A (en) * 1999-09-14 2001-03-27 Ishikawajima Harima Heavy Ind Co Ltd Lubricating oil
JP2004231987A (en) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp Nitrided parts, cooling medium compressor and freezing air-conditioner
JP2006170487A (en) * 2004-12-14 2006-06-29 Sanyo Electric Co Ltd Refrigeration unit
JP2010151048A (en) * 2008-12-25 2010-07-08 Toshiba Carrier Corp Rotary type fluid machine and refrigeration cycle device
WO2012086518A1 (en) * 2010-12-20 2012-06-28 日立アプライアンス株式会社 Compressor for refrigeration and air-conditioning, and refrigerating and air-conditioning apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHINJI TANAKA, ROTARY-SHIKI REIBAI ASSHUKUKI NO JUNKATSU TOKUSEI: VANE SENTANBU NO KONGO JUNKATSU TOKUSEI, 26 March 1999 (1999-03-26), Retrieved from the Internet <URL:http://tdl.libra.titech.ac.jp/z3950/gakuipdf/1668280/166828003.PDF> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010634A1 (en) * 2014-07-18 2016-01-21 The Chemours Company Fc, Llc Use of 1,1,2,2-tetrafluoroethane in high temperature heat pumps

Also Published As

Publication number Publication date
CN104583688A (en) 2015-04-29
JP2014037928A (en) 2014-02-27
CN104583688B (en) 2016-09-21

Similar Documents

Publication Publication Date Title
WO2014027438A1 (en) Refrigeration cycle device
JP6583390B2 (en) Refrigeration equipment
JP6011861B2 (en) Compressor and refrigeration cycle apparatus using the same
US10527050B2 (en) Refrigerant lube system
US11085680B2 (en) Lubricant blends to reduce refrigerant solubility
WO2013051271A1 (en) Refrigeration device
JP2011001897A (en) Compressor
JP2018087528A (en) Hermetic type compressor and freezing cycle device
WO2017145278A1 (en) Refrigeration device
JP2006017339A (en) Refrigeration cycle
CN1916419A (en) Compressor
CN105829715B (en) Compressor assembly and lubricating system for movable part
WO2017146100A1 (en) Refrigeration device
JP2010197012A (en) Compressor
JP2005155460A (en) Compressor
JP6251632B2 (en) Hermetic compressor and refrigeration cycle apparatus
TW201839283A (en) Back to back bearing sealing systems
CN107964444A (en) A kind of refrigerated machine oil composition, fluid composition, compressor and refrigeration plant
JP2018131969A (en) Slide member in refrigerant compressor and refrigerant compressor with the member
JPWO2020195490A1 (en) Sealed compressor and refrigeration cycle device
WO2016185546A1 (en) Compressor
JP2010236542A (en) Compressor
JP2005220959A (en) Retainer for thrust needle bearing, thrust needle bearing, and compressor for car air conditioner
JPH04136494A (en) Refrigerant compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13879556

Country of ref document: EP

Kind code of ref document: A1