WO2013051271A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2013051271A1
WO2013051271A1 PCT/JP2012/006379 JP2012006379W WO2013051271A1 WO 2013051271 A1 WO2013051271 A1 WO 2013051271A1 JP 2012006379 W JP2012006379 W JP 2012006379W WO 2013051271 A1 WO2013051271 A1 WO 2013051271A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
oil
refrigeration
vane
Prior art date
Application number
PCT/JP2012/006379
Other languages
French (fr)
Japanese (ja)
Inventor
信吾 大八木
石田 貴規
佐藤 成広
健 苅野
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013051271A1 publication Critical patent/WO2013051271A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/40Properties
    • F04C2210/44Viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/16Wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication

Definitions

  • the present invention relates to a refrigeration system using a hydrofluoroolefin having carbon-carbon double bonds as a refrigerant.
  • FIGS. 4 to 6 A compressor and a refrigeration cycle apparatus using a conventional HFC-based refrigerant will be described with reference to FIGS. 4 to 6 (see, for example, Patent Documents 2 and 3).
  • FIG. 4 is a longitudinal sectional view of a rotary compressor used under the conventional HFC refrigerant described in Patent Document 2.
  • the stator 2 a of the motor 2 is fixed to the upper part of the closed container 1, and the compression mechanism 5 is fixed to the lower part of the closed container 1.
  • the compression mechanism 5 has a shaft 4 driven by the rotor 2 b of the motor 2.
  • a main bearing 7 is fixed to the upper end of the cylinder 6 of the compression mechanism 5 and a sub-bearing 8 is fixed to the lower end by a bolt or the like.
  • the piston 9 is inserted into the eccentric portion 4 a of the shaft 4 in the cylinder 6 to perform eccentric rotation.
  • R410A (a mixture of HFC32 and HFC125) is enclosed in the closed container 1 as a refrigerant.
  • a refrigerator oil 3 having polarity such as polyol ester (POE) or polyvinyl ether (PVE) is stored at the bottom of the closed container 1.
  • FIG. 5 is a cross-sectional view of a rotary compressor used under the conventional HFC refrigerant described in Patent Document 2. As shown in FIG. A piston 9 is inserted into the inner surface of the cylinder 6 and rotates with the rotation of the shaft 4. The refrigerant is sucked and compressed in the suction chamber 13 and the compression chamber 14 partitioned by the vanes 10.
  • the refrigerant is drawn into the suction chamber 13 from the suction port 12 provided in the cylinder 6. Further, the refrigerant in the compression chamber 14 is compressed along with the leftward rotation (in the direction of the arrow) of the piston 9 and is discharged into the sealed container 1 from the discharge port (not shown) through the discharge notch 15.
  • the refrigerant discharged into the closed container 1 passes through the gap of the motor 2 and is discharged from the discharge pipe 16 in the upper part of the closed container 1. At this time, the mist of the refrigerator oil 3 in the upper part of the closed container 1 also It is discharged.
  • This refrigeration cycle apparatus is provided with a rotary compressor 20 that sucks and compresses HFC refrigerant and discharges the refrigerant.
  • the rotary compressor 20 compresses the low temperature, low pressure refrigerant gas, discharges the high temperature, high pressure refrigerant gas, and sends it to the condenser 21.
  • the HFC refrigerant gas sent to the condenser 21 is discharged to the air as high temperature, high pressure refrigerant liquid while releasing its heat into air, and is sent to the expansion mechanism (for example, an expansion valve or capillary tube) 22.
  • the expansion mechanism for example, an expansion valve or capillary tube
  • the high temperature, high pressure refrigerant liquid passing through the expansion mechanism 22 becomes a low temperature, low pressure wet vapor by the throttling effect and is sent to the evaporator 23.
  • the refrigerant that has entered the evaporator 23 absorbs heat from the surroundings and evaporates, and the low-temperature, low-pressure refrigerant gas that has left the evaporator 23 is sucked into the rotary compressor 20. Thereafter, the above cycle is repeated.
  • the present invention solves the above-mentioned conventional problems, and optimizes the viscosity of a refrigerator oil in a refrigeration cycle to a viscosity suitable for a working refrigerant in an actual operating condition during compressor operation to generate a polymer.
  • An object of the present invention is to provide a refrigeration system capable of stably operating for a long period of time, suppressing damage in the system and preventing deterioration of the performance of the refrigeration cycle.
  • the present invention uses a single refrigerant of hydrofluoroolefin having carbon-carbon double bond as a working refrigerant, or mixes hydrofluorocarbon having no double bond with hydrofluoroolefin.
  • the system has a refrigerant circulation path in which the mixed refrigerant is used as the working refrigerant and the working refrigerant is circulated by the compressor, and the kinetic viscosity of the refrigerating machine oil during operation becomes 0.1 mm 2 / s or more and 100 mm 2 / s or less It contains refrigerant oil.
  • the refrigeration system of the present invention can maintain refrigeration oil excellent in wear resistance even when using a low GWP refrigerant having a property of easily generating a polymer.
  • a low GWP refrigerant having a property of easily generating a polymer.
  • the cycle diagram of the refrigeration system in the first embodiment of the present invention Longitudinal cross-sectional view of the rotary compressor in the refrigeration system of Embodiment 1
  • Cross-sectional view of a rotary compressor in the refrigeration system of Embodiment 1 Longitudinal sectional view of a rotary compressor in a conventional frozen bed
  • a single refrigerant of hydrofluoroolefin having double bond between carbon and carbon is used as a working refrigerant, or a mixed refrigerant obtained by mixing hydrofluoroolefin with hydrofluorocarbon having no double bond is used as working refrigerant.
  • the compressor has a refrigerant circulation path for circulating a working refrigerant by a compressor, and the compressor is filled with a refrigerator oil having a kinematic viscosity of 0.1 mm 2 / s or more and 100 mm 2 / s or less during operation. .
  • the refrigeration oil can be maintained in a state excellent in wear resistance, and the occurrence of high temperature and high pressure conditions at a local sliding point which is a generation factor of the polymer can be suppressed.
  • the polymer By preventing clogging of the circulation path by the polymer and achieving the operation stability, it is possible to prevent damage to each device in the refrigeration cycle and performance deterioration of the refrigeration cycle.
  • a second invention is to contain an acid scavenger in a refrigerator oil in the refrigeration apparatus of the first invention. According to this configuration, it is possible to prevent the deterioration of the refrigeration oil, to further suppress the decomposition of the refrigerant, to suppress the formation of a polymer, and to further improve the reliability of the refrigeration system.
  • a third aspect of the invention is to contain an anti-wear agent in refrigeration oil, particularly in the refrigeration system of the first or second aspect of the invention. According to this configuration, the generation of the polymer can be suppressed and the wear resistance can be improved by suppressing the occurrence of the high temperature and high pressure state at the sliding portion.
  • the compression mechanism portion of the compressor has a piston and a vane in a cylinder, and the vane is subjected to nitriding treatment.
  • a steel or a sintered alloy steel subjected to a sintering or quenching treatment is used. According to this configuration, while maintaining the wear resistance of the compression mechanism portion, the decomposition of the refrigerant and the refrigerator oil is suppressed, and the local temperature rise at the sliding portion between the vane and the piston is alleviated. By preventing the occurrence, long-term reliability of the compressor and the refrigeration cycle apparatus using the same can be ensured.
  • the sintered alloy steel is a high speed tool steel. According to this configuration, among the sintered alloy steels, the wear resistance can be further improved.
  • the compression mechanism portion of the compressor has a piston and a vane in a cylinder, and the vane has a ceramic or iron surface treated with a ceramic. It is what used the system base material. According to this configuration, it is possible to suppress the temperature rise due to the sliding friction between the severed tip end of the vane and the piston outer peripheral portion to alleviate the decomposition of the refrigerant, and additionally to maintain the polarity of the sliding portion surface. Since a uniform extreme pressure layer is formed on the sliding surface, the reliability of the sliding surface can be secured.
  • a seventh aspect of the invention is the refrigerator according to the first to sixth aspects of the invention, wherein the hydrofluoroolefin is mainly composed of a single refrigerant of tetrafluoropropene or trifluoropropene, or tetrafluoropropene or trifluoropropene as a main component, and the earth
  • the working refrigerant is a mixed refrigerant obtained by mixing two or three components so that the global warming potential is 5 or more and 750 or less. According to this configuration, it is possible to provide a highly reliable and highly efficient rotary compressor with a small environmental load.
  • the hydrofluoroolefin is mainly composed of tetrafluoropropene or trifluoropropene, difluoromethane and pentafluoroethane, and having a global warming potential of 5
  • the working refrigerant a mixed refrigerant obtained by mixing two components or three components so as to be 750 or less is used. According to this configuration, it is possible to provide a highly reliable and highly efficient rotary compressor.
  • the ninth invention is a refrigerator oil particularly used as a working refrigerant in the refrigerator according to the first to eighth inventions, as a refrigerator oil, polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycol or monoether thereof Or a synthetic oil mainly composed of a copolymer of polyvinyl ether, a polyol ester, or an oxygen-containing compound of polycarbonates, or a synthetic oil mainly composed of alkylbenzenes or ⁇ -olefins. According to this configuration, it is possible to provide a highly reliable and highly efficient rotary compressor.
  • FIG. 1 shows a cycle diagram of the refrigeration system in Embodiment 1 of the present invention.
  • the refrigeration system connects a compressor 120, a condenser 121, an expansion mechanism (for example, an expansion valve or capillary tube) 122, and an evaporator 123 through a circulation path to form a refrigeration cycle.
  • a compressor 120 a condenser 121
  • an expansion mechanism for example, an expansion valve or capillary tube
  • the compressor 120 compresses low temperature, low pressure refrigerant gas, discharges high temperature, high pressure refrigerant gas, and sends it to the condenser 121.
  • the refrigerant gas sent to the condenser 121 is sent to the expansion mechanism 122 as a high-temperature, high-pressure refrigerant liquid while releasing its heat into air.
  • the high-temperature, high-pressure refrigerant liquid passing through the expansion mechanism 122 becomes a low-temperature, low-pressure wet vapor by the throttling effect, and is sent to the evaporator 123.
  • the refrigerant that has entered the evaporator 123 absorbs heat from the surroundings and evaporates, and the low-temperature, low-pressure refrigerant gas that has left the evaporator 123 is sucked into the rotary compressor 120. Thereafter, the above cycle is repeated.
  • the hydrofluoroolefin refrigerant used in the refrigerator may be decomposed by oxidation in a high temperature environment to generate hydrogen fluoride, and simultaneously cause a polymerization reaction to form a polymer.
  • a motor unit 102 and a discharge portion 115, which will be described later, in the compressor 120 become high temperature, and the sliding portion becomes further high temperature.
  • the hydrofluoroolefin refrigerant may undergo a polymerization reaction to form an oligomer and an organic solid polymer.
  • the refrigeration oil 103 (described later) during operation of the compressor 120 has a kinematic viscosity of 0.1 mm 2 / s or more and 100 mm 2 / s or less.
  • the refrigeration oil 103 is compatible with the working refrigerant, and the solubility in the refrigeration oil 103 changes depending on the pressure and temperature when the compressor 120 is operated. Since the kinematic viscosity of the refrigerator oil 103 changes according to the solubility of the working refrigerant, the actual viscosity during operation of the compressor 120 is secured. As a result, it is possible to maintain an accurate oil film strength corresponding to the pressure and temperature conditions in the actual operating range, without depending on the viscosity under the atmosphere. For this reason, generation
  • the kinematic viscosity of the refrigeration oil 103 is most reduced at startup. This is because a large amount of working refrigerant dissolves into the refrigerator oil 103 when the ambient temperature becomes low at the time of stop. In the confirmation experiment of the present invention, it was confirmed that the generation of a polymer does not occur if the actual oil viscosity at the start is 0.1 mm 2 / s or more.
  • the kinematic viscosity of the refrigerator oil 103 is increased, the reliability of the sliding portion is improved but the kinematic viscosity is increased. Accordingly, the high viscosity refrigerant oil 103 is stirred in the rotation and sliding portions of the compressor 120, and the pressure loss increases.
  • FIG. 2 shows a longitudinal sectional view of the rotary compressor according to the first embodiment of the present invention.
  • FIG. 2 and FIG. 3 described later the same components as those of the conventional refrigeration system shown in FIG. 4 and FIG.
  • the stator 102 a of the motor 102 is fixed to the upper part of the closed vessel 101, and the compressor rear part 105 is fixed to the lower part of the closed vessel 101.
  • the compression mechanism portion 105 has a shaft 104 driven by the rotor 102b.
  • the main bearing 107 is fixed to the upper end of the cylinder 106 of the compression mechanism portion 105, and the auxiliary bearing 108 is fixed to the lower end by a bolt or the like.
  • a piston 109 is inserted into the eccentric portion 104 a of the shaft 104 in the cylinder 106 to perform eccentric rotation.
  • a vane 110 is inserted into a vane groove 106 a of the cylinder 106, and a vane spring 111 is installed on a back surface portion 110 b of the vane 110. The tip 110 a of the vane 110 is urged to abut on the outer periphery of the piston 109.
  • HFO 1234yf refrigerant tetrafluoropropene (hereinafter, referred to as HFO 1234yf refrigerant), which is a kind of hydrofluoroolefin having a double bond between carbons, is enclosed in the closed container 101.
  • refrigeration oil 103 containing a base oil compatible with the HFO 1234yf refrigerant is stored.
  • a refrigerator oil 103 containing as a main component at least one of polyol ester, polyvinyl ether and polyalkylene glycol base oil.
  • refrigeration oil 103 containing as a main component only a polyol ester is used.
  • the polyol ester type refrigerator oil 103 is synthesized by the dehydration reaction of polyhydric alcohol and saturated or unsaturated fatty acid.
  • polyhydric alcohol neopentyl glycol, pentaerythritol, dipentaerythritol, etc. are used according to the viscosity of the refrigerator oil 103.
  • saturated fatty acid linear fatty acids such as hexanoic acid, heptanoic acid, nonanoic acid, decanoic acid, etc., or 2-methylhexanoic acid, 2-ethylhexanoic acid, 3,5,5-trimethylhexanoic acid, etc. Branched chain fatty acids are used.
  • polyol ester oils containing linear fatty acids have good sliding properties but poor hydrolyzability, and ester oils containing branched chain fatty acids have slightly poor sliding properties but are difficult to hydrolyze.
  • synthetic oil mainly composed of polyoxyalkylene glycols, polyvinyl ethers, or oxygen-containing compounds of polycarbonates, or synthetic oil mainly composed of alkylbenzenes or ⁇ -olefins may be used. it can.
  • the refrigeration oil 103 of the present embodiment includes various additives such as a sulfur-based extreme pressure additive, an antioxidant such as dibutyl-p-cresol, an acid scavenger such as an epoxy-containing compound, and an antifoamer. , Add singly or selectively.
  • Sulfur-based extreme pressure additives include sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dialkyl polysulfides, dibenzyl disulfides, oligomer polysulfides and the like. It is preferable that the number of crosslinking of sulfur of these sulfur-based extreme pressure additives is 3 or less.
  • the number of crosslinks of sulfur is 4 or more, sulfur is likely to be released into the refrigerator oil 103, which may corrode copper used in piping and the like in the refrigeration cycle, which is not preferable. Further, it is preferable to use a metal deactivator for the purpose of preventing sulfur copper corrosion.
  • benzotriazoles are used as the metal deactivator.
  • a phosphorus-based extreme pressure additive may be used to improve the extreme pressure effect. Phosphorus-based extreme pressure additives such as phosphoric acid esters such as tricresyl phosphate and triphenyl phosphate, phosphorous acid esters, amine salts of acidic phosphoric acid esters, etc. are used, but they are excellent in compatibility with refrigerator oil 103.
  • Acidic phosphoric acid esters such as tricresyl phosphate and triphenyl phosphate are most suitable. Since the phosphorus-based extreme pressure additive is effective from a load lower than that of the sulfur-based extreme pressure additive, using the sulfur-based extreme pressure additive and the phosphorus-based extreme pressure additive in combination can operate in a wide frequency range by inverter control. It is suitable for use in a compressor of a refrigeration cycle that is
  • the compressor used in the present embodiment is a general rotary compressor, in which the piston 109 eccentrically rotates in the cylinder 106 and sucks, compresses, and discharges the refrigerant while pushing the tip portion 110 a of the vane 110. is there. Therefore, a surface treatment film is formed on the tip end portion 110a of the vane 110 which is a sliding portion.
  • a surface treatment film is formed on the tip end portion 110a of the vane 110 which is a sliding portion.
  • CrN, DLC, TiN and the like can be mentioned.
  • the surface treatment film of the tip end portion 110a of the vane 110 has a polarity maintaining effect, and is constituted by dispersing, for example, graphite to which a benzene ring is connected.
  • the extreme pressure additive in the refrigerator oil 103 is adsorbed to form an extreme pressure layer. If the extreme pressure layer formed causes severe sliding conditions, for example, leaving it for half a day at a low outside air temperature of -10 ° C or less and starting with heating to start operation at maximum capacity, the lubricating oil in the sliding part seems to be insufficient become. However, as the extreme pressure layer is sufficiently formed on the sliding portion as in the present embodiment, abnormal wear of the sliding portion does not occur.
  • the HFO 1234yf refrigerant is drawn into the suction chamber 113 from the suction port 112 provided in the cylinder 106.
  • the compression chamber 114 is composed of the vane 110, the piston 109, the cylinder 106, etc.
  • the refrigerant in the compression chamber 114 is compressed along with the leftward rotation (in the arrow direction) of the piston 109 and is discharged through the discharge notch 115. It is discharged into the sealed container 101 from (not shown).
  • the refrigerant gas discharged into the closed container 101 is discharged from the discharge pipe 116 in the upper part of the closed container 101 through the gap of the motor 102, and the mist of the refrigerator oil 103 in the upper part of the closed container 101 is also discharged together Be done.
  • the sliding state of the contact sliding portion between the tip 110a of the vane 110 and the outer periphery of the piston 109 is the most severe.
  • a high pressure discharge pressure is applied to the back surface portion 110b of the vane 110, and a large force due to a pressure difference with the pressure in the cylinder 106 is acting. Therefore, the contact state between the tip 110a of the vane 110 and the outer periphery of the piston 109 is mixed lubrication or boundary lubrication, which is in a severe environment.
  • steel such as SKH (high-speed tool steel), SKD, SUS, SCM or the like which has been subjected to nitriding treatment is used as a base material of the vanes 110.
  • a sintered alloy steel that has been subjected to a sintering treatment or a quenching treatment may be used as a base material of the vane 110.
  • the sintered alloy steel is preferably a high speed tool steel (sintered high speed tool steel).
  • a surface treatment film made of a ceramic such as chromium nitride (hereinafter referred to as CrN) or diamond like carbon (hereinafter referred to as DLC) is applied to the surface of the tip portion 110a of the vane 110 by a PVD treatment method.
  • the surface hardness is about HV1500 to 2000, and the surface roughness of the tip 110a of the vane 110 which is a sliding surface is about 0.2 ⁇ m Ra.
  • ceramics may be used as the base of the vanes 110.
  • the base material of piston 109 contains 0.7 to 1.0 wt% of chromium (Cr), 0.2 to 0.4 wt% of molybdenum (Mo), and 0.2 to 0.4 wt% of nickel (Ni) Cast iron (hereinafter, cast iron containing Mo, Cr, and Ni is referred to as moniclo cast iron). Then, the base material of the piston 109 is subjected to quenching, subzero, tempering, cooling, etc., to make the surface hardness about 50 to 51 HRC. In addition, since microrecesses made of graphite are present on the outer periphery of the piston 109 which is a sliding surface, the surface roughness of the flat portion excluding the microrecesses is finished to about Ra 0.2 ⁇ m.
  • the tetrafluoropropene (HFO 1234 yf) used in the present embodiment reduces the temperature difference despite the non-azeotropic refrigerant mixture by mixing the hydrofluorocarbon (HFC 32 and HFC 125) having no double bond.
  • the behavior approaches that of a quasi-azeotropic mixed refrigerant. Therefore, the cooling performance and the cooling performance coefficient (COP) of the cooling device can also be improved.
  • tetrafluoropropene (HFO 1234 yf) is used alone, but trifluoro propene (HFO 1234ze) may be used alone.
  • GWP of the mixed refrigerant it is necessary to perform two-component mixing or three-component mixing so as to be 5 or more and 750 or less, preferably 350 or less.
  • HFO 1234yf In order to mix HFO 1234yf with HFC 32 to have GWP 350 or less, it is desirable that HFO 1234 yf be 48.5 wt% or more.
  • HFO 1234 yf In order to mix HFO 1234yf and HFC 125 to make GWP 750 or less, it is desirable that HFO 1234 yf be 78.7 wt% or more.
  • HFO1234yf in order to set it as GWP 350 or less, it is desirable for HFO1234yf to be 91.6 wt% or more.
  • HFO1234ze may be used instead of HFO1234yf, or a mixture of HFO1234yf and HFO1234ze may be used.
  • a polyol ester oil compatible with HFO 1234yf is used as the refrigerator oil 103.
  • refrigerator oil 103 composed of similarly compatible polyvinyl ether or polyalkylene glycol, it is possible to recover the refrigerator oil 103 that has been discharged to the refrigeration cycle to the compressor 120, and it is also reliable. It is possible to obtain a high-performance compressor 120.
  • the same refrigeration oil can be used as a refrigerant mixed with an HFC refrigerant, so that the same effect can be obtained.
  • the rotary compressor has been described as an example of the compressor, but it may be any other known type of compressor such as a scroll compressor.
  • the refrigeration apparatus may damage or deteriorate the refrigeration apparatus by using a refrigerator oil suitable for the refrigeration cycle even when using a low GWP refrigerant having a property of easily generating a polymer. And the performance deterioration of the refrigeration cycle can be suppressed. Therefore, the present invention can be applied to many applications such as air conditioners, car air conditioners, refrigerator-freezers, dehumidifiers, heat pump type drying and washing machines, heat pump type water heaters, beverage vending machines and the like.

Abstract

A refrigeration device configured so as to be equipped with a refrigerant circulation path in which a refrigerant circulates from a compressor (120) and returns to the compressor (120) via a condenser (121), an expansion mechanism (122), and an evaporator (123), with a single refrigerant composed of a hydrofluoroolefin having a carbon double bond used as the working refrigerant, or a mixed refrigerant for which a hydrofluorocarbon having no double bonds is mixed in a hydrofluoroolefin used as the working refrigerant, and with a kinetic viscosity of 0.1 mm2/s - 100 mm2/s for the refrigerant oil when the compressor (120) is operating. Thus, it is possible to provide a refrigeration device with which the generation of polymer substances can be suppressed by preventing the occurrence of a high-pressure, high-temperature state which is a condition in which polymers are generated, thereby preventing deterioration and damage to mechanisms in the refrigeration device due to polymer substances, and with which reliability and high efficiency are ensured.

Description

冷凍装置Refrigeration system
 本発明は、炭素と炭素間に二重結合を有するハイドロフルオロオレフィンを冷媒として用いた冷凍装置に関するものである。 The present invention relates to a refrigeration system using a hydrofluoroolefin having carbon-carbon double bonds as a refrigerant.
 現在、世界規模で地球温暖化を防止する取り組みが盛んである。これに対して冷媒メーカー、冷凍機油メーカー及び空調機器メーカーは、安全でありながら地球温暖化係数(GWP)などのさらなる低減と改善を目指して、新冷媒及び新冷媒用冷凍機油の研究・開発を行っている。このような改善を目指した新冷媒として現在、テトラフルオロプロペン(HFO1234yf)やトリフルオロプロペン(HFO1234ze)などの不飽和フッ化炭化水素冷媒が採用される見込みがある(例えば、特許文献1参照)。 Currently, efforts to prevent global warming on a global scale are popular. On the other hand, refrigerant manufacturers, refrigeration oil manufacturers and air conditioner manufacturers are researching and developing new refrigerants and refrigerant oils for new refrigerants with the aim of further reducing and improving the global warming potential (GWP) while being safe. Is going. Currently, unsaturated fluorohydrocarbon refrigerants such as tetrafluoropropene (HFO 1234yf) and trifluoropropene (HFO 1234ze) are expected to be adopted as new refrigerants aiming at such improvement (see, for example, Patent Document 1).
 従来のHFC系冷媒を用いた圧縮機、冷凍サイクル装置を図4から図6を参照して説明する(例えば、特許文献2、3参照) A compressor and a refrigeration cycle apparatus using a conventional HFC-based refrigerant will be described with reference to FIGS. 4 to 6 (see, for example, Patent Documents 2 and 3).
 図4は、特許文献2に記載された従来のHFC系冷媒下で使用されるロータリ圧縮機の縦断面図である。
 密閉容器1の上部にモータ2の固定子2aが固定され、密閉容器1の下部に圧縮機構部5が固定されている。圧縮機構部5はモータ2の回転子2bで駆動されるシャフト4を有する。圧縮機構部5のシリンダ6の上端に主軸受7、下端に副軸受8が、ボルト等で固定されている。シリンダ6内にはシャフト4の偏心部4aにピストン9が挿入され偏心回転を行う。
 また、密閉容器1内には冷媒としてR410A(HFC32とHFC125の混合物)が封入されている。密閉容器1の底部には冷媒との相溶性の観点から、例えばポリオールエステル(POE)又はポリビニルエーテル(PVE)のような、極性を有する冷凍機油3が溜められている。
FIG. 4 is a longitudinal sectional view of a rotary compressor used under the conventional HFC refrigerant described in Patent Document 2. As shown in FIG.
The stator 2 a of the motor 2 is fixed to the upper part of the closed container 1, and the compression mechanism 5 is fixed to the lower part of the closed container 1. The compression mechanism 5 has a shaft 4 driven by the rotor 2 b of the motor 2. A main bearing 7 is fixed to the upper end of the cylinder 6 of the compression mechanism 5 and a sub-bearing 8 is fixed to the lower end by a bolt or the like. The piston 9 is inserted into the eccentric portion 4 a of the shaft 4 in the cylinder 6 to perform eccentric rotation.
Further, R410A (a mixture of HFC32 and HFC125) is enclosed in the closed container 1 as a refrigerant. From the viewpoint of compatibility with the refrigerant, a refrigerator oil 3 having polarity such as polyol ester (POE) or polyvinyl ether (PVE) is stored at the bottom of the closed container 1.
 図5は、特許文献2に記載された従来のHFC系冷媒下で使用されるロータリ圧縮機の横断面図である。ピストン9が、シリンダ6の内面に挿入され、シャフト4の回転と共に回転する。ベーン10で仕切られた吸入室13および圧縮室14で冷媒を吸入および圧縮する。 FIG. 5 is a cross-sectional view of a rotary compressor used under the conventional HFC refrigerant described in Patent Document 2. As shown in FIG. A piston 9 is inserted into the inner surface of the cylinder 6 and rotates with the rotation of the shaft 4. The refrigerant is sucked and compressed in the suction chamber 13 and the compression chamber 14 partitioned by the vanes 10.
 以上のように構成されたロータリ圧縮機について、以下その動作、作用を説明する。
 まず、シリンダ6に設けられた吸入口12より冷媒が吸入室13に吸入される。また、圧縮室14にある冷媒はピストン9の左方向の回転(矢印方向)とともに圧縮され、吐出切り欠き15を通って吐出口(図示せず)より密閉容器1内に吐出される。密閉容器1内に吐出された冷媒はモータ2のすき間を通って密閉容器1の上部にある吐出管16より吐出され、その際密閉容器1の上部にある冷凍機油3のミストも冷媒と一緒に吐出される。
The operation and action of the rotary compressor configured as described above will be described below.
First, the refrigerant is drawn into the suction chamber 13 from the suction port 12 provided in the cylinder 6. Further, the refrigerant in the compression chamber 14 is compressed along with the leftward rotation (in the direction of the arrow) of the piston 9 and is discharged into the sealed container 1 from the discharge port (not shown) through the discharge notch 15. The refrigerant discharged into the closed container 1 passes through the gap of the motor 2 and is discharged from the discharge pipe 16 in the upper part of the closed container 1. At this time, the mist of the refrigerator oil 3 in the upper part of the closed container 1 also It is discharged.
 次に、特許文献3に記載された基本的な冷凍サイクル装置について図6を参照して説明する。この冷凍サイクル装置は、HFC系冷媒を吸入圧縮し、吐出するロータリ圧縮機20を配設する。 図6に示すように、ロータリ圧縮機20は、低温、低圧の冷媒ガスを圧縮し、高温、高圧の冷媒ガスを吐出して凝縮器21に送る。凝縮器21に送られたHFC系冷媒ガスは、その熱を空気中に放出しながら高温、高圧の冷媒液となり膨張機構(例えば、膨張弁、又はキャピラリチューブ)22に送られる。膨張機構22を通過する高温、高圧の冷媒液は絞り効果により低温、低圧の湿り蒸気となり蒸発器23へ送られる。蒸発器23に入った冷媒は周囲から熱を吸収して蒸発し、蒸発器23を出た低温、低圧の冷媒ガスはロータリ圧縮機20に吸い込まれる。その後、上述のサイクルが繰り返される。 Next, the basic refrigeration cycle apparatus described in Patent Document 3 will be described with reference to FIG. This refrigeration cycle apparatus is provided with a rotary compressor 20 that sucks and compresses HFC refrigerant and discharges the refrigerant. As shown in FIG. 6, the rotary compressor 20 compresses the low temperature, low pressure refrigerant gas, discharges the high temperature, high pressure refrigerant gas, and sends it to the condenser 21. The HFC refrigerant gas sent to the condenser 21 is discharged to the air as high temperature, high pressure refrigerant liquid while releasing its heat into air, and is sent to the expansion mechanism (for example, an expansion valve or capillary tube) 22. The high temperature, high pressure refrigerant liquid passing through the expansion mechanism 22 becomes a low temperature, low pressure wet vapor by the throttling effect and is sent to the evaporator 23. The refrigerant that has entered the evaporator 23 absorbs heat from the surroundings and evaporates, and the low-temperature, low-pressure refrigerant gas that has left the evaporator 23 is sucked into the rotary compressor 20. Thereafter, the above cycle is repeated.
特開2010-2074号公報Unexamined-Japanese-Patent No. 2010-2074 特開平11-236890号公報Japanese Patent Application Laid-Open No. 11-236890 特開平8-240362号公報JP-A-8-240362
 しかしながら、近年検討されている不飽和フッ化炭化水素冷媒は低GWP値を特長の一つとする反面、分子内に不飽和結合を有する。そのため、HFC410Aをはじめとする従来の飽和フッ化炭化水素系冷媒と比較して反応性が高く、熱・化学的安定性に乏しい。したがって、圧縮機の摺動部分のように高温となる部分において発生したラジカルと反応する可能性がある。
 ラジカルと反応したハイドロフルオロオレフィンは分解してフッ化水素を放出する。また、ハイドロフルオロオレフィンが複数個重合してオリゴマー化し、粘凋性の液体やさらに重合が進むと固体を形成する。確認実験の結果、エアコン信頼性試験において冷媒の重合物と推定される固形状の生成物が発生した。このような生成物が発生すると装置内の微少隙間へのかみこみ等、悪影響を及ぼす可能性が高い。
However, unsaturated fluorocarbon refrigerants, which have been studied in recent years, have low GWP values as one of their features, but have unsaturated bonds in their molecules. Therefore, the reactivity is higher and the thermal and chemical stability is poor compared to conventional saturated fluorinated hydrocarbon refrigerants such as HFC410A. Therefore, there is a possibility of reacting with radicals generated in the high temperature portion such as the sliding portion of the compressor.
The hydrofluoroolefin reacted with the radical is decomposed to release hydrogen fluoride. Further, a plurality of hydrofluoroolefins are polymerized to form oligomers, and a viscous liquid or a solid is formed when the polymerization further proceeds. As a result of the verification experiment, a solid product was generated which was presumed to be a polymer of the refrigerant in the air conditioning reliability test. If such a product is generated, there is a high possibility of adverse effects such as biting into a minute gap in the apparatus.
 本発明は、前記従来の課題を解決するもので、冷凍サイクル内の冷凍機油の粘度を作動冷媒に適した粘度を圧縮機運転中の実運転状態で最適とすることで、重合物の発生を抑制し、装置内の破損、および冷凍サイクルの性能低下を防止し、長期間に渡って安定的に動作可能な冷凍装置の提供を目的とする。 The present invention solves the above-mentioned conventional problems, and optimizes the viscosity of a refrigerator oil in a refrigeration cycle to a viscosity suitable for a working refrigerant in an actual operating condition during compressor operation to generate a polymer. An object of the present invention is to provide a refrigeration system capable of stably operating for a long period of time, suppressing damage in the system and preventing deterioration of the performance of the refrigeration cycle.
 前記従来の課題を解決するために本発明は、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンの単一冷媒を作動冷媒とし、又はハイドロフルオロオレフィンに2重結合を有しないハイドロフルオロカーボンを混合した混合冷媒を作動冷媒とし、作動冷媒を圧縮機によって循環する冷媒循環経路を備え、圧縮機には、運転時の冷凍機油の動粘度が0.1mm2/s以上100mm2/s以下となる冷凍機油を封入しているものである。これにより、重合物の発生を抑制することができ、装置の破損、冷凍サイクルの性能低下を防止することができる。 In order to solve the above-mentioned conventional problems, the present invention uses a single refrigerant of hydrofluoroolefin having carbon-carbon double bond as a working refrigerant, or mixes hydrofluorocarbon having no double bond with hydrofluoroolefin. The system has a refrigerant circulation path in which the mixed refrigerant is used as the working refrigerant and the working refrigerant is circulated by the compressor, and the kinetic viscosity of the refrigerating machine oil during operation becomes 0.1 mm 2 / s or more and 100 mm 2 / s or less It contains refrigerant oil. Thereby, generation | occurrence | production of a polymer can be suppressed and the failure | damage of an apparatus and the performance fall of a refrigerating cycle can be prevented.
 本発明の冷凍装置は、重合物が発生しやすい性質の低GWP冷媒を使用する場合においても、冷凍機油を耐摩耗性にすぐれた状態のままに維持できる。金属接触を起きにくくし、重合物の発生条件となる高圧、高温状態が起きるのを防ぐことで重合物生成を抑制し、装置の破損、及び冷凍サイクルの性能低下を防止できる。これにより高効率、高信頼性を実現した冷凍装置の提供が可能となる。 The refrigeration system of the present invention can maintain refrigeration oil excellent in wear resistance even when using a low GWP refrigerant having a property of easily generating a polymer. By making metal contact unlikely to occur and preventing the occurrence of high pressure and high temperature conditions, which are the generation conditions of the polymer, it is possible to suppress the formation of the polymer and to prevent the breakage of the device and the deterioration of the performance of the refrigeration cycle. This makes it possible to provide a refrigeration system that achieves high efficiency and high reliability.
本発明の実施の形態1における冷凍装置のサイクル図The cycle diagram of the refrigeration system in the first embodiment of the present invention 同実施の形態1の冷凍装置におけるロータリ圧縮機の縦断面図Longitudinal cross-sectional view of the rotary compressor in the refrigeration system of Embodiment 1 同実施の形態1の冷凍装置におけるロータリ圧縮機の横断面図Cross-sectional view of a rotary compressor in the refrigeration system of Embodiment 1 従来の冷凍層におけるロータリ圧縮機の縦断面図Longitudinal sectional view of a rotary compressor in a conventional frozen bed 同従来のロータリ圧縮機の横断面図Cross-sectional view of the same conventional rotary compressor 同従来の冷凍サイクル装置のサイクル図Cycle diagram of the same conventional refrigeration cycle device
 103 冷凍機油
 105 圧縮機構部
 106 シリンダ
 109 ピストン
 110 ベーン
 120 圧縮機
 121 凝縮器
 122 膨張機構
 123 蒸発器
103 refrigerator oil 105 compression mechanism unit 106 cylinder 109 piston 110 vane 120 compressor 121 condenser 122 expansion mechanism 123 evaporator
 第1の発明は、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンの単一冷媒を作動冷媒とし、又はハイドロフルオロオレフィンに2重結合を有しないハイドロフルオロカーボンを混合した混合冷媒を作動冷媒とし、作動冷媒を圧縮機によって循環する冷媒循環経路を備え、圧縮機には、運転時の冷凍機油の動粘度が0.1mm2/s以上100mm2/s以下となる冷凍機油を封入している。この構成によれば冷凍機油を耐摩耗性にすぐれた状態のままに維持できて重合物の発生要因である極所的な摺動箇所での高温、高圧状態の発生を抑制することができ、重合物による循環経路の詰まりを防止し、動作安定性を実現することにより、冷凍サイクル内の各装置の破損、及び冷凍サイクルの性能低下の防止が可能となる。 In the first invention, a single refrigerant of hydrofluoroolefin having double bond between carbon and carbon is used as a working refrigerant, or a mixed refrigerant obtained by mixing hydrofluoroolefin with hydrofluorocarbon having no double bond is used as working refrigerant. The compressor has a refrigerant circulation path for circulating a working refrigerant by a compressor, and the compressor is filled with a refrigerator oil having a kinematic viscosity of 0.1 mm 2 / s or more and 100 mm 2 / s or less during operation. . According to this configuration, the refrigeration oil can be maintained in a state excellent in wear resistance, and the occurrence of high temperature and high pressure conditions at a local sliding point which is a generation factor of the polymer can be suppressed. By preventing clogging of the circulation path by the polymer and achieving the operation stability, it is possible to prevent damage to each device in the refrigeration cycle and performance deterioration of the refrigeration cycle.
 第2の発明は、第1の発明の冷凍装置において冷凍機油中に酸捕捉剤を含有することである。この構成によれば、冷凍機油の劣化を防ぎ、さらに冷媒の分解を抑制することができ、重合物の生成を抑制することができ、さらなる冷凍装置の信頼性向上が可能となる。 A second invention is to contain an acid scavenger in a refrigerator oil in the refrigeration apparatus of the first invention. According to this configuration, it is possible to prevent the deterioration of the refrigeration oil, to further suppress the decomposition of the refrigerant, to suppress the formation of a polymer, and to further improve the reliability of the refrigeration system.
 第3の発明は、特に第1又は第2の発明の冷凍装置において、冷凍機油中に磨耗防止剤を含有することである。この構成によれば、摺動箇所での高温、高圧状態の発生を抑制することで重合物の生成を抑制しかつ耐磨耗特性を向上させることができる。 A third aspect of the invention is to contain an anti-wear agent in refrigeration oil, particularly in the refrigeration system of the first or second aspect of the invention. According to this configuration, the generation of the polymer can be suppressed and the wear resistance can be improved by suppressing the occurrence of the high temperature and high pressure state at the sliding portion.
 第4の発明は、特に第1から第3の発明の冷凍装置において、圧縮機の圧縮機構部は、シリンダ内にピストンとベーンとを有し、ベーンには、窒化処理を行った高速度工具鋼、又は焼結化又は焼き入れ処理を行った焼結合金鋼を用いたものである。この構成によれば、圧縮機構部の耐摩耗性を維持した上で、冷媒や冷凍機油の分解を抑制し、またベーンとピストンの摺動部での局所的な温度上昇を緩和し重合物の発生を防止することで、圧縮機及びそれを用いた冷凍サイクル装置の長期信頼性を確保することができる。加えて、ベーンを焼結化および焼き入れ処理することにより、微細なマルテンサイト生地中にW,Mo,Cr,V系炭化物が分散した硬い組織を得ることができる。鋳鉄は安価であることから、量産性に優れた圧縮機とすることができる。 According to a fourth aspect of the invention, in the refrigeration apparatus according to the first to third aspects of the invention, the compression mechanism portion of the compressor has a piston and a vane in a cylinder, and the vane is subjected to nitriding treatment. A steel or a sintered alloy steel subjected to a sintering or quenching treatment is used. According to this configuration, while maintaining the wear resistance of the compression mechanism portion, the decomposition of the refrigerant and the refrigerator oil is suppressed, and the local temperature rise at the sliding portion between the vane and the piston is alleviated. By preventing the occurrence, long-term reliability of the compressor and the refrigeration cycle apparatus using the same can be ensured. In addition, by sintering and quenching the vane, it is possible to obtain a hard structure in which W, Mo, Cr, and V-based carbides are dispersed in a fine martensitic material. Since cast iron is inexpensive, the compressor can be made excellent in mass productivity.
 第5の発明は、特に第4の発明の冷凍装置において、焼結合金鋼は高速度工具鋼である。この構成によれば、焼結合金鋼の中でもより耐摩耗性が優れたものとすることができる。 According to a fifth invention, in the refrigeration system of the fourth invention, the sintered alloy steel is a high speed tool steel. According to this configuration, among the sintered alloy steels, the wear resistance can be further improved.
 第6の発明は、特に第1から第3の発明の冷凍装置において、圧縮機の圧縮機構部はシリンダ内にピストンとベーンとを有し、ベーンには、セラミックス、又は表面をセラミックス処理した鉄系基材を用いたものである。この構成によれば、摺動の厳しいベーン先端部とピストン外周部における摺動の摩擦による温度上昇を抑えて冷媒の分解を緩和でき、加えて摺動部分表面の極性を保持することができ、摺動面上での均一な極圧層を形成するため摺動面の信頼性を確保できる。 According to a sixth aspect of the invention, in the refrigeration apparatus according to the first to third aspects of the invention, the compression mechanism portion of the compressor has a piston and a vane in a cylinder, and the vane has a ceramic or iron surface treated with a ceramic. It is what used the system base material. According to this configuration, it is possible to suppress the temperature rise due to the sliding friction between the severed tip end of the vane and the piston outer peripheral portion to alleviate the decomposition of the refrigerant, and additionally to maintain the polarity of the sliding portion surface. Since a uniform extreme pressure layer is formed on the sliding surface, the reliability of the sliding surface can be secured.
 第7の発明は、特に第1から第6の発明の冷凍装置において、ハイドロフルオロオレフィンは、テトラフルオロプロペン若しくはトリフルオロプロペンの単一冷媒、又はテトラフルオロプロペン若しくはトリフルオロプロペンを主成分とし、地球温暖化係数が5以上、750以下となるようにそれぞれ2成分混合もしくは3成分混合した混合冷媒を作動冷媒としたものである。この構成によれば、環境負荷が小さく、効果的に高信頼性で高効率な回転式圧縮機を提供することができる。 A seventh aspect of the invention is the refrigerator according to the first to sixth aspects of the invention, wherein the hydrofluoroolefin is mainly composed of a single refrigerant of tetrafluoropropene or trifluoropropene, or tetrafluoropropene or trifluoropropene as a main component, and the earth The working refrigerant is a mixed refrigerant obtained by mixing two or three components so that the global warming potential is 5 or more and 750 or less. According to this configuration, it is possible to provide a highly reliable and highly efficient rotary compressor with a small environmental load.
 第8の発明は、特に第1から第6の発明の冷凍装置において、ハイドロフルオロオレフィンは、テトラフルオロプロペン又はトリフルオロプロペンを主成分とし、ジフルオロメタンとペンタフルオロエタンを、地球温暖化係数が5以上、750以下となるようにそれぞれ2成分混合もしくは3成分混合した混合冷媒を作動冷媒としたものである。この構成によれば、効果的に高信頼性で高効率な回転式圧縮機を提供することができる。 In an eighth invention according to the refrigeration apparatus of the first to sixth inventions, the hydrofluoroolefin is mainly composed of tetrafluoropropene or trifluoropropene, difluoromethane and pentafluoroethane, and having a global warming potential of 5 As the working refrigerant, a mixed refrigerant obtained by mixing two components or three components so as to be 750 or less is used. According to this configuration, it is possible to provide a highly reliable and highly efficient rotary compressor.
 第9の発明は、特に第1から第8の発明の冷凍装置における作動冷媒に用いる冷凍機油として、冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコール若しくはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、又はポリカーボネート類の含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油としたものである。この構成によれば、効果的に高信頼性で高効率な回転式圧縮機を提供することができる。 The ninth invention is a refrigerator oil particularly used as a working refrigerant in the refrigerator according to the first to eighth inventions, as a refrigerator oil, polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycol or monoether thereof Or a synthetic oil mainly composed of a copolymer of polyvinyl ether, a polyol ester, or an oxygen-containing compound of polycarbonates, or a synthetic oil mainly composed of alkylbenzenes or α-olefins. According to this configuration, it is possible to provide a highly reliable and highly efficient rotary compressor.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.
 (実施の形態1)
 図1は、本発明の実施の形態1における冷凍装置のサイクル図を示すものである。なお図1において、図6の従来の冷凍装置と同じ構成要素については100番台の同じ番号を使い、説明を省略する。
Embodiment 1
FIG. 1 shows a cycle diagram of the refrigeration system in Embodiment 1 of the present invention. The same reference numerals in FIG. 1 as those in the conventional refrigeration system in FIG.
 図1において、冷凍装置は、圧縮機120と、凝縮器121と、膨張機構(例えば、膨張弁、又はキャピラリチューブ)122と、蒸発器123とを循環経路で接続して冷凍サイクルを構成している。 In FIG. 1, the refrigeration system connects a compressor 120, a condenser 121, an expansion mechanism (for example, an expansion valve or capillary tube) 122, and an evaporator 123 through a circulation path to form a refrigeration cycle. There is.
 圧縮機120は、低温、低圧の冷媒ガスを圧縮し、高温、高圧の冷媒ガスを吐出して凝縮器121に送る。凝縮器121に送られた冷媒ガスは、その熱を空気中に放出しながら高温、高圧の冷媒液となり膨張機構122に送られる。膨張機構122を通過する高温、高圧の冷媒液は絞り効果により低温、低圧の湿り蒸気となり蒸発器123へ送られる。蒸発器123に入った冷媒は周囲から熱を吸収して蒸発し、蒸発器123を出た低温、低圧の冷媒ガスはロータリ圧縮機120に吸い込まれる。その後、上述のサイクルが繰り返される。 The compressor 120 compresses low temperature, low pressure refrigerant gas, discharges high temperature, high pressure refrigerant gas, and sends it to the condenser 121. The refrigerant gas sent to the condenser 121 is sent to the expansion mechanism 122 as a high-temperature, high-pressure refrigerant liquid while releasing its heat into air. The high-temperature, high-pressure refrigerant liquid passing through the expansion mechanism 122 becomes a low-temperature, low-pressure wet vapor by the throttling effect, and is sent to the evaporator 123. The refrigerant that has entered the evaporator 123 absorbs heat from the surroundings and evaporates, and the low-temperature, low-pressure refrigerant gas that has left the evaporator 123 is sucked into the rotary compressor 120. Thereafter, the above cycle is repeated.
 冷凍装置に使用するハイドロフルオロオレフィン冷媒は、高温環境で酸化により分解してフッ化水素を生じ、同時に重合反応を起こして重合物を形成する場合がある。 The hydrofluoroolefin refrigerant used in the refrigerator may be decomposed by oxidation in a high temperature environment to generate hydrogen fluoride, and simultaneously cause a polymerization reaction to form a polymer.
 冷凍装置内では圧縮機120内の後述するモータ部102および吐出部分115が高温になり、摺動部がさらに高温になる。このような高温となる部分において、前述のようにハイドロフルオロオレフィン冷媒は重合反応を起こし、オリゴマー、有機固体重合物を形成することがある。 In the refrigeration apparatus, a motor unit 102 and a discharge portion 115, which will be described later, in the compressor 120 become high temperature, and the sliding portion becomes further high temperature. At such high temperature portions, as described above, the hydrofluoroolefin refrigerant may undergo a polymerization reaction to form an oligomer and an organic solid polymer.
 本実施の形態では、圧縮機120の運転時の冷凍機油103(後述する)はその動粘度が0.1mm2/s以上100mm2/s以下のものである。冷凍機油103は作動冷媒に対して相溶性をもち、圧縮機120の運転時の圧力と温度により冷凍機油103に対する溶解度は変化する。作動冷媒の溶解度によって冷凍機油103の動粘度は変化するため、圧縮機120の運転時の実動粘度を確保する。その結果、大気雰囲気下での粘度に依存せず、実際の運転範囲における圧力、温度条件に対応した、正確な油膜強度を保つことができる。このため、摺動部における高温の発生を抑制することができ、高信頼性を維持することができる。 In the present embodiment, the refrigeration oil 103 (described later) during operation of the compressor 120 has a kinematic viscosity of 0.1 mm 2 / s or more and 100 mm 2 / s or less. The refrigeration oil 103 is compatible with the working refrigerant, and the solubility in the refrigeration oil 103 changes depending on the pressure and temperature when the compressor 120 is operated. Since the kinematic viscosity of the refrigerator oil 103 changes according to the solubility of the working refrigerant, the actual viscosity during operation of the compressor 120 is secured. As a result, it is possible to maintain an accurate oil film strength corresponding to the pressure and temperature conditions in the actual operating range, without depending on the viscosity under the atmosphere. For this reason, generation | occurrence | production of the high temperature in a sliding part can be suppressed, and high reliability can be maintained.
 一般的に冷凍装置では、起動時に冷凍機油103の動粘度が最も低下する。これは停止時に雰囲気温度が低温となったとき冷凍機油103に作動冷媒が多量に溶け込むためである。本発明の確認実験において、この起動時の実オイル粘度が0.1mm2/s以上であれば重合物の発生が起きないことが確認された。冷凍機油103の動粘度を上昇させると摺動部の信頼性は向上するが動粘度が上がる。それに伴い、圧縮機120の回転、摺動部分において高粘度の冷凍機油103を攪拌することとなり、圧力損失が増加する。確認実験において一般的な冷凍装置性能測定を実施し、冷凍機油103の動粘度が100mm2/sより大きな冷凍機油103を使用した場合、圧縮機120への必要投入電力が従来の冷凍機油103より10%以上増えることが確認された。このことから性能面での影響が大きくなり、動粘度が100mm2/s以下となるものを冷凍機油103として活用することが実用的である。 Generally, in the refrigeration system, the kinematic viscosity of the refrigeration oil 103 is most reduced at startup. This is because a large amount of working refrigerant dissolves into the refrigerator oil 103 when the ambient temperature becomes low at the time of stop. In the confirmation experiment of the present invention, it was confirmed that the generation of a polymer does not occur if the actual oil viscosity at the start is 0.1 mm 2 / s or more. When the kinematic viscosity of the refrigerator oil 103 is increased, the reliability of the sliding portion is improved but the kinematic viscosity is increased. Accordingly, the high viscosity refrigerant oil 103 is stirred in the rotation and sliding portions of the compressor 120, and the pressure loss increases. When a typical refrigeration system performance measurement is performed in the confirmation experiment and the kinetic viscosity of the refrigeration oil 103 is greater than 100 mm 2 / s, the required input power to the compressor 120 is higher than that of the conventional refrigeration oil 103 It was confirmed to increase by 10% or more. From this, the influence in terms of performance becomes large, and it is practical to use one having a kinematic viscosity of 100 mm 2 / s or less as the refrigerator oil 103.
 図2は、本発明の実施の形態1におけるロータリ圧縮機の縦断面図を示している。なおこの図2および後述する図3においても、図4、図5に示す従来の冷凍装置と同じ構成要素については100番台を附記して説明する。 FIG. 2 shows a longitudinal sectional view of the rotary compressor according to the first embodiment of the present invention. In FIG. 2 and FIG. 3 described later, the same components as those of the conventional refrigeration system shown in FIG. 4 and FIG.
 密閉容器101の上部にモータ102の固定子102aが固定され、密閉容器101の下部に圧縮機後部105が固定されている。圧縮機構部105は回転子102bで駆動されるシャフト104を有する。圧縮機構部105のシリンダ106の上端に主軸受107、下端に副軸受108が、ボルト等で固定されている。シリンダ106内にはシャフト104の偏心部104aにピストン109が挿入され偏心回転を行う。シリンダ106のベーン溝106aにベーン110が挿入され、ベーン110の背面部110bにはベーンバネ111が設置されている。ベーン110の先端部110aをピストン109の外周に当接するように付勢している。 The stator 102 a of the motor 102 is fixed to the upper part of the closed vessel 101, and the compressor rear part 105 is fixed to the lower part of the closed vessel 101. The compression mechanism portion 105 has a shaft 104 driven by the rotor 102b. The main bearing 107 is fixed to the upper end of the cylinder 106 of the compression mechanism portion 105, and the auxiliary bearing 108 is fixed to the lower end by a bolt or the like. A piston 109 is inserted into the eccentric portion 104 a of the shaft 104 in the cylinder 106 to perform eccentric rotation. A vane 110 is inserted into a vane groove 106 a of the cylinder 106, and a vane spring 111 is installed on a back surface portion 110 b of the vane 110. The tip 110 a of the vane 110 is urged to abut on the outer periphery of the piston 109.
 また、密閉容器101内には炭素間に二重結合を有するハイドロフルオロオレフィンの一種であるテトラフルオロプロペン(以下、HFO1234yf冷媒と称す)が封入されている。密閉容器101の底部には、HFO1234yf冷媒と相溶性のある基油を含む冷凍機油103が溜められている。本実施の形態ではポリオールエステル、ポリビニルエーテル、ポリアルキレングリコールの基油のうち少なくとも1種類を主成分とする冷凍機油103を用いることが可能である。本実施の形態の冷凍機油103にはこの3種類のうちポリオールエステルだけを主成分とする冷凍機油103が用いられている。 Further, tetrafluoropropene (hereinafter, referred to as HFO 1234yf refrigerant), which is a kind of hydrofluoroolefin having a double bond between carbons, is enclosed in the closed container 101. At the bottom of the closed vessel 101, refrigeration oil 103 containing a base oil compatible with the HFO 1234yf refrigerant is stored. In the present embodiment, it is possible to use a refrigerator oil 103 containing as a main component at least one of polyol ester, polyvinyl ether and polyalkylene glycol base oil. Of the three types of refrigeration oil 103 of the present embodiment, refrigeration oil 103 containing as a main component only a polyol ester is used.
 ここで、ポリオールエステル系冷凍機油103は多価アルコールと飽和又は不飽和脂肪酸との脱水反応により合成される。多価アルコールとしては、ネオペンチルグリコール、ペンタエリスリトール、ジペンタエリスリトールなどが冷凍機油103の粘度に合わせて用いられる。また一方の飽和脂肪酸としては、ヘキサン酸、ヘプタン酸、ノナン酸、デカン酸などの直鎖の脂肪酸、又は2-メチルヘキサン酸、2-エチルヘキサン酸、3,5,5-トリメチルヘキサン酸などの分岐鎖の脂肪酸が用いられる。直鎖脂肪酸を含むポリオールエステル油は摺動特性が良好だが加水分解性に劣り、分岐鎖脂肪酸を含むエステル油は摺動特性が若干劣るものの加水分解しにくいという特長に留意すべきである。
 なお、冷凍機油としては、ポリオキシアルキレングリコール類、ポリビニルエーテル類、又はポリカーボネート類の含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油を用いることができる。
Here, the polyol ester type refrigerator oil 103 is synthesized by the dehydration reaction of polyhydric alcohol and saturated or unsaturated fatty acid. As the polyhydric alcohol, neopentyl glycol, pentaerythritol, dipentaerythritol, etc. are used according to the viscosity of the refrigerator oil 103. As one saturated fatty acid, linear fatty acids such as hexanoic acid, heptanoic acid, nonanoic acid, decanoic acid, etc., or 2-methylhexanoic acid, 2-ethylhexanoic acid, 3,5,5-trimethylhexanoic acid, etc. Branched chain fatty acids are used. It should be noted that polyol ester oils containing linear fatty acids have good sliding properties but poor hydrolyzability, and ester oils containing branched chain fatty acids have slightly poor sliding properties but are difficult to hydrolyze.
As the refrigeration oil, synthetic oil mainly composed of polyoxyalkylene glycols, polyvinyl ethers, or oxygen-containing compounds of polycarbonates, or synthetic oil mainly composed of alkylbenzenes or α-olefins may be used. it can.
 また、本実施の形態の冷凍機油103には硫黄系極圧添加剤、ジブチル-p-クレゾールなどの酸化防止剤、含エポキシ化合物などの酸捕捉剤、及び消泡剤などの各種の添加剤を、単一で又は選択的に加える。硫黄系極圧添加剤としては硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジアルキルポリスルフィド、ジベンジルジスルフィド、オリゴマポリスルフィドなどが挙げられる。これらの硫黄系極圧添加剤の硫黄の架橋数は3以下であることが好ましい。硫黄の架橋数が4以上になると冷凍機油103中に硫黄を放出しやすくなるため冷凍サイクル内の配管等に使用されている銅を腐食する可能性があり好ましくない。また硫黄の銅配管腐食を防止する目的で金属不活性化剤を使用するのが好ましい。本実施の形態では金属不活性化剤としてベンゾトリアゾール類を用いている。極圧効果を向上させるためにはリン系極圧添加剤を使用してもよい。リン系極圧添加剤はトリクレジルフォスフェートやトリフェニルフォスフェートなどのリン酸エステル、亜リン酸エステル、酸性リン酸エステルのアミン塩などが用いられるが、冷凍機油103との相溶性に優れたトリクレジルフォスフェートやトリフェニルフォスフェートなどの酸性リン酸エステルが最適である。リン系極圧添加剤は硫黄系極圧添加剤よりも低い荷重から効果が出るため、硫黄系極圧添加剤とリン系極圧添加剤を併用することは、インバータ制御により広い周波数範囲で運転される冷凍サイクルの圧縮機での使用に最適である。 Further, the refrigeration oil 103 of the present embodiment includes various additives such as a sulfur-based extreme pressure additive, an antioxidant such as dibutyl-p-cresol, an acid scavenger such as an epoxy-containing compound, and an antifoamer. , Add singly or selectively. Sulfur-based extreme pressure additives include sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dialkyl polysulfides, dibenzyl disulfides, oligomer polysulfides and the like. It is preferable that the number of crosslinking of sulfur of these sulfur-based extreme pressure additives is 3 or less. If the number of crosslinks of sulfur is 4 or more, sulfur is likely to be released into the refrigerator oil 103, which may corrode copper used in piping and the like in the refrigeration cycle, which is not preferable. Further, it is preferable to use a metal deactivator for the purpose of preventing sulfur copper corrosion. In this embodiment, benzotriazoles are used as the metal deactivator. A phosphorus-based extreme pressure additive may be used to improve the extreme pressure effect. Phosphorus-based extreme pressure additives such as phosphoric acid esters such as tricresyl phosphate and triphenyl phosphate, phosphorous acid esters, amine salts of acidic phosphoric acid esters, etc. are used, but they are excellent in compatibility with refrigerator oil 103. Acidic phosphoric acid esters such as tricresyl phosphate and triphenyl phosphate are most suitable. Since the phosphorus-based extreme pressure additive is effective from a load lower than that of the sulfur-based extreme pressure additive, using the sulfur-based extreme pressure additive and the phosphorus-based extreme pressure additive in combination can operate in a wide frequency range by inverter control. It is suitable for use in a compressor of a refrigeration cycle that is
 本実施の形態で使用する圧縮機は一般的なロータリ圧縮機であって、シリンダ106内をピストン109が偏心回転し、ベーン110の先端部110aを押しながら冷媒を吸入・圧縮・吐出するものである。そのため摺動部となるベーン110の先端部110aは表面処理膜が形成されている。具体的にはCrNやDLC、TiNなどがあげられる。ベーン110先端部110aの表面処理膜は極性保持効果を有するものであり、例えばベンゼン環がつながったグラファイトなどが分散して構成されている。冷凍機油103が近づくとその極性に誘起されて表面処理膜で分極が起き、極性を示す。その結果、冷凍機油103内の極圧添加剤が吸着されてさらに極圧層が形成されるものである。形成された極圧層により過酷な摺動条件、たとえば-10℃以下の低外気温時に半日放置した後に暖房で起動し最大能力で運転開始するような場合、摺動部の潤滑油が不足気味になる。しかし、本実施の形態のように摺動部に充分に極圧層が形成されていることによって摺動部の異常摩耗が生じることがない。 The compressor used in the present embodiment is a general rotary compressor, in which the piston 109 eccentrically rotates in the cylinder 106 and sucks, compresses, and discharges the refrigerant while pushing the tip portion 110 a of the vane 110. is there. Therefore, a surface treatment film is formed on the tip end portion 110a of the vane 110 which is a sliding portion. Specifically, CrN, DLC, TiN and the like can be mentioned. The surface treatment film of the tip end portion 110a of the vane 110 has a polarity maintaining effect, and is constituted by dispersing, for example, graphite to which a benzene ring is connected. When the refrigerator oil 103 approaches, the polarity is induced by the polarity, polarization occurs in the surface treatment film, and the polarity is exhibited. As a result, the extreme pressure additive in the refrigerator oil 103 is adsorbed to form an extreme pressure layer. If the extreme pressure layer formed causes severe sliding conditions, for example, leaving it for half a day at a low outside air temperature of -10 ° C or less and starting with heating to start operation at maximum capacity, the lubricating oil in the sliding part seems to be insufficient become. However, as the extreme pressure layer is sufficiently formed on the sliding portion as in the present embodiment, abnormal wear of the sliding portion does not occur.
 以上のように構成されたロータリ圧縮機について、以下その動作、作用について図3を用いて説明する。 The operation and operation of the rotary compressor configured as described above will be described below with reference to FIG.
 まず、シリンダ106に設けられた吸入口112よりHFO1234yf冷媒が吸入室113に吸入される。また、圧縮室114はベーン110とピストン109とシリンダ106などで構成され、圧縮室114にある冷媒はピストン109の左方向の回転(矢印方向)とともに圧縮され、吐出切り欠き115を通って吐出口(図示せず)より密閉容器101内に吐出される。密閉容器101内に吐出された冷媒ガスはモータ102のすき間を通って密閉容器101の上部にある吐出管116より吐出され、その際密閉容器101の上部にある冷凍機油103のミストも一緒に吐出される。 First, the HFO 1234yf refrigerant is drawn into the suction chamber 113 from the suction port 112 provided in the cylinder 106. The compression chamber 114 is composed of the vane 110, the piston 109, the cylinder 106, etc. The refrigerant in the compression chamber 114 is compressed along with the leftward rotation (in the arrow direction) of the piston 109 and is discharged through the discharge notch 115. It is discharged into the sealed container 101 from (not shown). The refrigerant gas discharged into the closed container 101 is discharged from the discharge pipe 116 in the upper part of the closed container 101 through the gap of the motor 102, and the mist of the refrigerator oil 103 in the upper part of the closed container 101 is also discharged together Be done.
 ロータリ圧縮機構の構成上、ベーン110の先端部110aとピストン109の外周との接触摺動部位の摺動状態が最も厳しい。ベーン110の背面部110bにはベーンバネ111以外に高圧の吐出圧力がかかり、シリンダ106内の圧力との差圧による大きな力が働いている。そのため、ベーン110の先端部110aとピストン109の外周との接触状態は混合潤滑あるいは境界潤滑となり、厳しい環境下にある。 In terms of the configuration of the rotary compression mechanism, the sliding state of the contact sliding portion between the tip 110a of the vane 110 and the outer periphery of the piston 109 is the most severe. Besides the vane spring 111, a high pressure discharge pressure is applied to the back surface portion 110b of the vane 110, and a large force due to a pressure difference with the pressure in the cylinder 106 is acting. Therefore, the contact state between the tip 110a of the vane 110 and the outer periphery of the piston 109 is mixed lubrication or boundary lubrication, which is in a severe environment.
 ここで、ベーン110の基材には、窒化処理を行ったSKH(高速度工具鋼)、SKD、SUS、SCMなどの鋼を用いる。また、ベーン110の基材には、焼結化又は焼き入れ処理を行った焼結合金鋼を用いてもよい。ここで、焼結合金鋼は、高速度工具鋼(焼結高速度工具鋼)であることが好ましい。
 ベーン110の先端部110aの表面には窒化クロム(以下、CrNと称す)あるいはダイヤモンドライクカーボン(以下、DLCと称す)などのセラミックスからなる表面処理膜をPVD処理法にて施している。表面硬さはHV1500~2000程度で、摺動面であるベーン110の先端部110aの面粗さはRa0.2μm程度である。なお、ベーン110の基材としてセラミックスを用いてもよい。
Here, steel such as SKH (high-speed tool steel), SKD, SUS, SCM or the like which has been subjected to nitriding treatment is used as a base material of the vanes 110. Moreover, as a base material of the vane 110, a sintered alloy steel that has been subjected to a sintering treatment or a quenching treatment may be used. Here, the sintered alloy steel is preferably a high speed tool steel (sintered high speed tool steel).
A surface treatment film made of a ceramic such as chromium nitride (hereinafter referred to as CrN) or diamond like carbon (hereinafter referred to as DLC) is applied to the surface of the tip portion 110a of the vane 110 by a PVD treatment method. The surface hardness is about HV1500 to 2000, and the surface roughness of the tip 110a of the vane 110 which is a sliding surface is about 0.2 μm Ra. Alternatively, ceramics may be used as the base of the vanes 110.
 一方、ピストン109の基材にクロム(Cr)を0.7~1.0wt%、モリブデン(Mo)を0.2~0.4wt%、ニッケル(Ni)を0.2~0.4wt%含有してなる鋳鉄(以下、Mo、Cr、Niを含有する鋳鉄をモニクロ鋳鉄と称する)を用いる。そして、ピストン109の基材を焼入れ、サブゼロ、焼戻し、放冷などを行い、表面硬さをHRC50~51程度とする。また、摺動面であるピストン109の外周には、グラファイトによる微小凹部が存在するので、微小凹部を除いた平坦部分の面粗さをRa0.2μm程度に仕上げている。 On the other hand, the base material of piston 109 contains 0.7 to 1.0 wt% of chromium (Cr), 0.2 to 0.4 wt% of molybdenum (Mo), and 0.2 to 0.4 wt% of nickel (Ni) Cast iron (hereinafter, cast iron containing Mo, Cr, and Ni is referred to as moniclo cast iron). Then, the base material of the piston 109 is subjected to quenching, subzero, tempering, cooling, etc., to make the surface hardness about 50 to 51 HRC. In addition, since microrecesses made of graphite are present on the outer periphery of the piston 109 which is a sliding surface, the surface roughness of the flat portion excluding the microrecesses is finished to about Ra 0.2 μm.
 尚、本実施の形態で用いたテトラフルオロプロペン(HFO1234yf)は、二重結合を有さないハイドロフルオロカーボン(HFC32、HFC125)を混合させることで、非共沸混合冷媒にも関わらず温度差を小さくできて擬似共沸混合冷媒に挙動が近づく。そのため、冷却装置の冷却性能や冷却性能係数(COP)も改善することができる。本実施の形態では、テトラフルオロプロペン(HFO1234yf)を単体として用いたが、トリフルオロプロペン(HFO1234ze)を単体で用いてもよい。 The tetrafluoropropene (HFO 1234 yf) used in the present embodiment reduces the temperature difference despite the non-azeotropic refrigerant mixture by mixing the hydrofluorocarbon (HFC 32 and HFC 125) having no double bond. The behavior approaches that of a quasi-azeotropic mixed refrigerant. Therefore, the cooling performance and the cooling performance coefficient (COP) of the cooling device can also be improved. In the present embodiment, tetrafluoropropene (HFO 1234 yf) is used alone, but trifluoro propene (HFO 1234ze) may be used alone.
 ここで、混合冷媒のGWPについては、5以上で750以下、望ましくは350以下となるように、それぞれ2成分混合もしくは3成分混合させる必要がある。HFO1234yfとHFC32とを混合してGWP350以下とするためにはHFO1234yfが48.5wt%以上とすることが望ましい。また、HFO1234yfとHFC125とを混合してGWP750以下とするためには、HFO1234yfが78.7wt%以上とすることが望ましい。さらにGWP350以下とするためには、HFO1234yfが91.6wt%以上とすることが望ましい。これによって、万一回収されない冷媒が大気に放出されても地球温暖化に対しその影響を極少に保つことができる。
 なお、HFO1234yfの代わりにHFO1234zeを用いてもよく、またHFO1234yfとHFO1234zeを混合したものを用いてもよい。
Here, with respect to GWP of the mixed refrigerant, it is necessary to perform two-component mixing or three-component mixing so as to be 5 or more and 750 or less, preferably 350 or less. In order to mix HFO 1234yf with HFC 32 to have GWP 350 or less, it is desirable that HFO 1234 yf be 48.5 wt% or more. Moreover, in order to mix HFO 1234yf and HFC 125 to make GWP 750 or less, it is desirable that HFO 1234 yf be 78.7 wt% or more. Furthermore, in order to set it as GWP 350 or less, it is desirable for HFO1234yf to be 91.6 wt% or more. By this, even if the refrigerant which is not recovered is released to the atmosphere, its influence on global warming can be kept minimal.
Note that HFO1234ze may be used instead of HFO1234yf, or a mixture of HFO1234yf and HFO1234ze may be used.
 また、本実施の形態では、冷凍機油103としてHFO1234yfと相溶性のあるポリオールエステル油を用いた。しかし、同様に相溶性のあるポリビニルエーテル、あるいはポリアルキレングリコールからなる冷凍機油103を使用しても、冷凍サイクルに出て行った冷凍機油103を圧縮機120に回収することができ、同様に信頼性の高い圧縮機120を得ることができる。また、HFC冷媒との混合冷媒としても、上記の冷凍機油は相溶性があるので、同様な効果が得られる。 In the present embodiment, a polyol ester oil compatible with HFO 1234yf is used as the refrigerator oil 103. However, even using refrigerator oil 103 composed of similarly compatible polyvinyl ether or polyalkylene glycol, it is possible to recover the refrigerator oil 103 that has been discharged to the refrigeration cycle to the compressor 120, and it is also reliable. It is possible to obtain a high-performance compressor 120. In addition, the same refrigeration oil can be used as a refrigerant mixed with an HFC refrigerant, so that the same effect can be obtained.
 また、本実施の形態では、圧縮機としてロータリ圧縮機を例にして説明したが、これは例えばスクロール圧縮機等、すでに知られている他のどのようなタイプの圧縮機であってもよい。 Further, in the present embodiment, the rotary compressor has been described as an example of the compressor, but it may be any other known type of compressor such as a scroll compressor.
 以上のように、本発明にかかる冷凍装置は、重合物が発生しやすい性質の低GWP冷媒を使用する場合においても、冷凍サイクルに適切な冷凍機油を使用することで、冷凍装置の破損、劣化、及び冷凍サイクルの性能低下を抑えることが可能となる。従って、空調機、カーエアコン、冷凍冷蔵庫、除湿機、ヒートポンプ式乾燥洗濯機、ヒートポンプ式給湯器、飲料用自動販売機等多くの用途に適用できる。 As described above, the refrigeration apparatus according to the present invention may damage or deteriorate the refrigeration apparatus by using a refrigerator oil suitable for the refrigeration cycle even when using a low GWP refrigerant having a property of easily generating a polymer. And the performance deterioration of the refrigeration cycle can be suppressed. Therefore, the present invention can be applied to many applications such as air conditioners, car air conditioners, refrigerator-freezers, dehumidifiers, heat pump type drying and washing machines, heat pump type water heaters, beverage vending machines and the like.

Claims (9)

  1.  炭素と炭素間に2重結合を有するハイドロフルオロオレフィンの単一冷媒を作動冷媒とし、又は前記ハイドロフルオロオレフィンに2重結合を有しないハイドロフルオロカーボンを混合した混合冷媒を作動冷媒とし、前記作動冷媒を圧縮機によって循環する冷媒循環経路を備え、前記圧縮機には、運転時の冷凍機油の動粘度が0.1mm2/s以上100mm2/s以下となる冷凍機油を封入していることを特徴とする冷凍装置。 A single refrigerant of hydrofluoroolefin having a double bond between carbon and carbon is used as a working refrigerant, or a mixed refrigerant obtained by mixing a hydrofluorocarbon having no double bond with the hydrofluoroolefin is used as a working refrigerant, and The compressor is provided with a refrigerant circulation path, and the compressor is filled with a refrigerator oil having a kinetic viscosity of 0.1 mm 2 / s or more and 100 mm 2 / s or less during operation. And refrigeration equipment.
  2.  前記冷凍機油中に酸捕捉剤を含有したことを特徴とする請求項1記載の冷凍装置。 The freezing apparatus according to claim 1, wherein an acid scavenger is contained in the refrigerating machine oil.
  3.  前記冷凍機油中に磨耗防止剤を含有したことを特徴とする請求項1又は請求項2記載の冷凍装置。 The antifreeze agent was contained in the said refrigerating machine oil, The freezing apparatus of Claim 1 or Claim 2 characterized by the above-mentioned.
  4.  前記圧縮機の圧縮機構部は、シリンダ内にピストンとベーンとを有し、前記ベーンには、窒化処理を行った高速度工具鋼、又は焼結化又は焼き入れ処理を行った焼結合金鋼を用いたことを特徴とする請求項1から請求項3のいずれかに記載の冷凍装置。 The compression mechanism portion of the compressor has a piston and a vane in a cylinder, and the vane is a high speed tool steel subjected to nitriding treatment, or a sintered alloy steel subjected to sintering or quenching treatment The refrigerator according to any one of claims 1 to 3, characterized in that
  5.  前記焼結合金鋼が高速度工具鋼であることを特徴とする請求項4記載の冷凍装置。 The refrigeration apparatus according to claim 4, wherein the sintered alloy steel is a high speed tool steel.
  6.  前記圧縮機の圧縮機構部はシリンダ内にピストンとベーンとを有し、前記ベーンには、セラミックス、又は表面をセラミックス処理した鉄系基材を用いたことを特徴とする請求項1から請求項3のいずれかに記載の冷凍装置。 The compression mechanism portion of the compressor has a piston and a vane in a cylinder, and the vane uses a ceramic or an iron-based substrate whose surface is treated with a ceramic. The freezing apparatus in any one of 3.
  7.  前記ハイドロフルオロオレフィンは、テトラフルオロプロペン若しくはトリフルオロプロペンの単一冷媒、又は前記テトラフルオロプロペン若しくは前記トリフルオロプロペンを主成分とし、地球温暖化係数が5以上、750以下となるようにそれぞれ2成分混合もしくは3成分混合した混合冷媒を作動冷媒としたことを特徴とする請求項1から請求項6のいずれかに記載の冷凍装置。 The hydrofluoroolefin is mainly composed of a single refrigerant of tetrafluoropropene or trifluoropropene, or the tetrafluoropropene or the trifluoropropene as a main component, and each component is a two component so that the global warming potential is 5 or more and 750 or less. The refrigeration system according to any one of claims 1 to 6, wherein a mixed refrigerant obtained by mixing or three components is used as a working refrigerant.
  8.  前記ハイドロフルオロオレフィンは、テトラフルオロプロペン又はトリフルオロプロペンを主成分とし、ジフルオロメタンとペンタフルオロエタンを、地球温暖化係数が5以上、750以下となるようにそれぞれ2成分混合もしくは3成分混合した混合冷媒を作動冷媒としたことを特徴とする請求項1から請求項6のいずれかに記載の冷凍装置。 The hydrofluoroolefin contains tetrafluoropropene or trifluoropropene as a main component, and is a mixture of difluoromethane and pentafluoroethane mixed in two or three components so that the global warming potential is 5 or more and 750 or less. The refrigeration apparatus according to any one of claims 1 to 6, wherein the refrigerant is a working refrigerant.
  9.  前記冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコール若しくはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類、又はポリカーボネート類の含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油としたことを特徴とする請求項1から請求項8のいずれかに記載の冷凍装置。 Synthesis as the main component of the refrigeration oil is polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or copolymers of monoethers thereof and polyvinyl ethers, polyol esters, or oxygen-containing compounds of polycarbonates The refrigeration apparatus according to any one of claims 1 to 8, wherein the oil is an oil, or a synthetic oil containing an alkylbenzene or an alpha-olefin as a main component.
PCT/JP2012/006379 2011-10-06 2012-10-04 Refrigeration device WO2013051271A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011221631A JP2014240702A (en) 2011-10-06 2011-10-06 Refrigeration device
JP2011-221631 2011-10-06

Publications (1)

Publication Number Publication Date
WO2013051271A1 true WO2013051271A1 (en) 2013-04-11

Family

ID=48043451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006379 WO2013051271A1 (en) 2011-10-06 2012-10-04 Refrigeration device

Country Status (2)

Country Link
JP (1) JP2014240702A (en)
WO (1) WO2013051271A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136979A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigeration cycle device
WO2015140876A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
WO2016086396A1 (en) * 2014-12-04 2016-06-09 广东美芝制冷设备有限公司 Low-backpressure rotary compressor
CN106460847A (en) * 2014-03-14 2017-02-22 三菱电机株式会社 Compressor and refrigeration cycle device
EP3130869A4 (en) * 2014-04-10 2017-12-13 Mitsubishi Electric Corporation Heat pump device
EP3438573A4 (en) * 2016-03-28 2019-04-03 Mitsubishi Electric Corporation Outdoor unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017126591A1 (en) * 2016-01-19 2018-11-15 横浜ゴム株式会社 Rubber composition and hose
FR3057271B1 (en) * 2016-10-10 2020-01-17 Arkema France USE OF TETRAFLUOROPROPENE COMPOSITIONS
US20210123426A1 (en) * 2018-06-27 2021-04-29 Panasonic Appliances Refrigeration Devices Singapore Hermetic refrigerant compressor and refrigerator-freezer using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191212A (en) * 2008-02-15 2009-08-27 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerating machine
JP2011047329A (en) * 2009-08-27 2011-03-10 Panasonic Corp Rotary compressor
JP2011052032A (en) * 2009-08-31 2011-03-17 Hitachi Appliances Inc Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene
JP2011085275A (en) * 2009-10-13 2011-04-28 Panasonic Corp Refrigerating device
JP2011117725A (en) * 2011-03-16 2011-06-16 Mitsubishi Electric Corp Refrigerating cycle device
CN102191114A (en) * 2010-03-17 2011-09-21 吉坤日矿日石能源株式会社 Refrigerating machine oil and working fluid composition for refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191212A (en) * 2008-02-15 2009-08-27 Idemitsu Kosan Co Ltd Lubricating oil composition for refrigerating machine
JP2011047329A (en) * 2009-08-27 2011-03-10 Panasonic Corp Rotary compressor
JP2011052032A (en) * 2009-08-31 2011-03-17 Hitachi Appliances Inc Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene
JP2011085275A (en) * 2009-10-13 2011-04-28 Panasonic Corp Refrigerating device
CN102191114A (en) * 2010-03-17 2011-09-21 吉坤日矿日石能源株式会社 Refrigerating machine oil and working fluid composition for refrigerator
JP2011117725A (en) * 2011-03-16 2011-06-16 Mitsubishi Electric Corp Refrigerating cycle device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106460847B (en) * 2014-03-14 2018-12-04 三菱电机株式会社 Compressor and refrigerating circulatory device
CN106104174A (en) * 2014-03-14 2016-11-09 三菱电机株式会社 Freezing cycle device
CN106460847A (en) * 2014-03-14 2017-02-22 三菱电机株式会社 Compressor and refrigeration cycle device
JPWO2015136979A1 (en) * 2014-03-14 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
JP2018112396A (en) * 2014-03-14 2018-07-19 三菱電機株式会社 Refrigeration cycle device
WO2015136979A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigeration cycle device
CN106104174B (en) * 2014-03-14 2019-05-03 三菱电机株式会社 Freezing cycle device
WO2015140876A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
JPWO2015140876A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
EP3130869A4 (en) * 2014-04-10 2017-12-13 Mitsubishi Electric Corporation Heat pump device
WO2016086396A1 (en) * 2014-12-04 2016-06-09 广东美芝制冷设备有限公司 Low-backpressure rotary compressor
US10458410B2 (en) 2014-12-04 2019-10-29 Guangdong Meizhi Compressor Co., Ltd. Low-backpressure rotary compressor
EP3438573A4 (en) * 2016-03-28 2019-04-03 Mitsubishi Electric Corporation Outdoor unit

Also Published As

Publication number Publication date
JP2014240702A (en) 2014-12-25

Similar Documents

Publication Publication Date Title
WO2013051271A1 (en) Refrigeration device
JP6011861B2 (en) Compressor and refrigeration cycle apparatus using the same
US8939742B2 (en) Compressor with steel and cast iron sliding materials
EP2267309B1 (en) Refrigerating apparatus
JP5842987B2 (en) Refrigeration equipment
KR101497179B1 (en) Lubricant composition for refrigerating machines
WO2012001842A1 (en) Compressor and refrigeration cycle device using same
JP5339788B2 (en) Compressor and refrigeration cycle equipment
US20120131947A1 (en) Refrigeration cycle apparatus
JP2010203759A (en) Freezer
JP2011043276A (en) Refrigerating device
KR100201207B1 (en) Compressor for a refrigerator
WO2018083981A1 (en) Electric compressor and refrigeration/air–conditioning device
JP2009222033A (en) Refrigerating apparatus
JP5671695B2 (en) Refrigeration equipment
WO2008142829A1 (en) Hermetic compressor and refrigeration system
EP2531785B1 (en) Refrigeration apparatus
WO2011114555A1 (en) Refrigeration cycle apparatus
JP2012087801A (en) Hermetic compressor
JP6651664B1 (en) Method for producing lubricating composition, lubricating composition produced thereby, and compressor and refrigeration system using the same
CN107964444A (en) A kind of refrigerated machine oil composition, fluid composition, compressor and refrigeration plant
JPH10102079A (en) Lubricating oil composition
CN111237166A (en) Compressor and refrigerating device
JP2020180618A (en) Hermetic type compressor and refrigeration cycle device
JP2016130589A (en) Freezer and hermetic electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12838924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP