JP2014240702A - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
JP2014240702A
JP2014240702A JP2011221631A JP2011221631A JP2014240702A JP 2014240702 A JP2014240702 A JP 2014240702A JP 2011221631 A JP2011221631 A JP 2011221631A JP 2011221631 A JP2011221631 A JP 2011221631A JP 2014240702 A JP2014240702 A JP 2014240702A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration apparatus
compressor
vane
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011221631A
Other languages
Japanese (ja)
Inventor
信吾 大八木
Shingo Oyagi
信吾 大八木
石田 貴規
Takanori Ishida
貴規 石田
佐藤 成広
Narihiro Sato
成広 佐藤
健 苅野
Takeshi Karino
健 苅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011221631A priority Critical patent/JP2014240702A/en
Priority to PCT/JP2012/006379 priority patent/WO2013051271A1/en
Publication of JP2014240702A publication Critical patent/JP2014240702A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/40Properties
    • F04C2210/44Viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/16Wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration device that uses a refrigerant consisting principally of hydrofluoroolefin and that secures reliability and high efficiency by suppressing production of a polymer during a refrigeration cycle.SOLUTION: A refrigeration device includes a refrigerant circulation path in which a working refrigerant obtained by mixing hydrofluoroolefin having double bonds between carbon and carbon with a single refrigerant or with hydrofluoroolefin at least containing it without fail and not having double bonds is charged, which reaches a compressor 120 from the compressor via a condenser 121, an expansion mechanism 122, and an evaporator 123 so that the refrigerant is circulated. Refrigerator oil of the compressor 120 has a dynamic viscosity of 0.1 to 100 mm/s in operation. Consequently, polymer production is suppressed by avoiding a high-pressure, high-temperature state as a generation condition of a refrigerant polymer, and equipment in the refrigeration device can be prevented from deteriorating or breaking owing to the polymer.

Description

本発明は、炭素と炭素間に二重結合を有するハイドロフルオロオレフィンを冷媒として用いた冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus using a hydrofluoroolefin having a double bond between carbon as a refrigerant.

現在、世界規模で地球温暖化を防止する取り組みが盛んである。これに対して冷媒メーカー、冷凍機油メーカー及び空調機器メーカーは、安全でありながら地球温暖化係数(GWP)などのさらなる低減と改善を目指して、新冷媒及び新冷媒用冷凍機油の研究・開発が行われている。このような改善を目指した新冷媒として現在、HFO1234yfやHFO1234zeなどの不飽和フッ化炭化水素冷媒が採用される見込みがある(例えば、特許文献1参照)。   Currently, efforts are being made to prevent global warming on a global scale. In contrast, refrigerant manufacturers, refrigeration oil manufacturers, and air conditioning equipment manufacturers are researching and developing new refrigerants and refrigeration oils for new refrigerants with the aim of further reducing and improving the global warming potential (GWP), etc. Has been done. As a new refrigerant aiming at such an improvement, unsaturated fluorinated hydrocarbon refrigerants such as HFO1234yf and HFO1234ze are currently expected to be used (see, for example, Patent Document 1).

従来のHFC系冷媒を用いた圧縮機、冷凍サイクル装置を図4から図6を参照して説明する(例えば、特許文献2、3参照)
図4は、特許文献2に記載された従来のHFC系冷媒下で使用されるロータリ圧縮機の縦断面図である。
A conventional compressor and refrigeration cycle apparatus using an HFC refrigerant will be described with reference to FIGS. 4 to 6 (see, for example, Patent Documents 2 and 3).
FIG. 4 is a longitudinal sectional view of a rotary compressor used under the conventional HFC-based refrigerant described in Patent Document 2.

密閉容器1の上部にモータ2の固定子2aが固定され、その回転子2bで駆動されるシャフト4を有する圧縮機構部5が密閉容器1の下部に固定されている。圧縮機構部5のシリンダ6の上端に主軸受7、下端に副軸受8が、ボルト等で固定されている。シリンダ6内にはシャフト4の偏心部4aにピストン9が挿入され偏心回転を行う。   A stator 2 a of the motor 2 is fixed to the upper part of the sealed container 1, and a compression mechanism unit 5 having a shaft 4 driven by the rotor 2 b is fixed to the lower part of the sealed container 1. A main bearing 7 is fixed to the upper end of the cylinder 6 of the compression mechanism section 5 and a secondary bearing 8 is fixed to the lower end with bolts or the like. In the cylinder 6, a piston 9 is inserted into the eccentric portion 4 a of the shaft 4 to perform eccentric rotation.

また、密閉容器1内には冷媒としてR410A(HFC32とHFC125の混合物)が封入されており、密閉容器1の底部には冷媒との相溶性の観点から、例えばポリオールエステル(POE)またはポリビニルエーテル(PVE)のような、極性を有する冷凍機油3が溜められている。   In addition, R410A (mixture of HFC32 and HFC125) is sealed as a refrigerant in the sealed container 1, and from the viewpoint of compatibility with the refrigerant, for example, polyol ester (POE) or polyvinyl ether ( A refrigerating machine oil 3 having a polarity such as PVE) is stored.

図5は、特許文献2に記載された従来のHFC系冷媒下で使用されるロータリ圧縮機の横断面図である。シリンダ6の内面にピストン9が挿入されシャフト4の回転と共に回転し、ベーン10で仕切られた吸入室13および圧縮室14で冷媒を吸入および圧縮する構成になっている。   FIG. 5 is a cross-sectional view of a rotary compressor used under the conventional HFC-based refrigerant described in Patent Document 2. A piston 9 is inserted into the inner surface of the cylinder 6 and rotates with the rotation of the shaft 4. The refrigerant is sucked and compressed in the suction chamber 13 and the compression chamber 14 partitioned by the vane 10.

以上のように構成されたロータリ圧縮機について、以下その動作、作用を説明する。   About the rotary compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、シリンダ6に設けられた吸入口12より冷媒が吸入室13に吸入される。また、圧縮室14にある冷媒はピストン9の左方向の回転(矢印方向)とともに圧縮され、吐出切り欠き15を通って吐出口(図示せず)より密閉容器1内に吐出される。密閉容器1内に吐出された圧縮冷媒はモータ2のすき間を通って密閉容器1の上部にある吐出管16より吐出され、その際まわりにある冷凍機油3のミストも一緒に吐出される。   First, the refrigerant is sucked into the suction chamber 13 from the suction port 12 provided in the cylinder 6. Further, the refrigerant in the compression chamber 14 is compressed with the leftward rotation (in the direction of the arrow) of the piston 9, passes through the discharge notch 15, and is discharged into the sealed container 1 from the discharge port (not shown). The compressed refrigerant discharged into the hermetic container 1 passes through the gap of the motor 2 and is discharged from the discharge pipe 16 at the upper part of the hermetic container 1, and the mist of the refrigerating machine oil 3 around at that time is also discharged together.

次に、特許文献3に記載されたHFC系冷媒を吸入圧縮し、吐出するロータリ圧縮機20を配設した基本的な冷凍サイクル装置について図6を参照して説明する。   Next, a basic refrigeration cycle apparatus provided with a rotary compressor 20 that sucks and compresses the HFC refrigerant described in Patent Document 3 and discharges the refrigerant will be described with reference to FIG.

図6に示すように、ロータリ圧縮機20は、低温、低圧の冷媒ガスを圧縮し、高温、高圧の冷媒ガスを吐出して凝縮器21に送る。凝縮器21に送られたHFC系冷媒ガスは、その熱を空気中に放出しながら高温、高圧の冷媒液となり膨張機構(例えば、膨張弁、またはキャピラリチューブ)22に送られる。膨張機構22を通過する高温、高圧の冷媒液
は絞り効果により低温、低圧の湿り蒸気となり蒸発器23へ送られる。蒸発器23に入った冷媒は周囲から熱を吸収して蒸発し、蒸発器23を出た低温、低圧の冷媒ガスはロータリ圧縮機20に吸い込まれ、以下同じサイクルが繰り返される。
As shown in FIG. 6, the rotary compressor 20 compresses the low-temperature and low-pressure refrigerant gas, discharges the high-temperature and high-pressure refrigerant gas, and sends it to the condenser 21. The HFC-based refrigerant gas sent to the condenser 21 becomes a high-temperature and high-pressure refrigerant liquid while releasing its heat into the air, and is sent to an expansion mechanism (for example, an expansion valve or a capillary tube) 22. The high-temperature and high-pressure refrigerant liquid passing through the expansion mechanism 22 is sent to the evaporator 23 as low-temperature and low-pressure wet steam due to the throttling effect. The refrigerant that has entered the evaporator 23 absorbs heat from the surroundings and evaporates, and the low-temperature and low-pressure refrigerant gas that has exited the evaporator 23 is sucked into the rotary compressor 20, and the same cycle is repeated thereafter.

特開2010−2074号公報JP 2010-2074 A 特開平11−236890号公報JP 11-236890 A 特開平8−240362号公報JP-A-8-240362

しかしながら、近年検討されている不飽和フッ化炭化水素冷媒は低GWP値を特長のひとつとする反面、分子内に不飽和結合を有するため、HFC410Aをはじめとする従来の飽和フッ化炭化水素系冷媒と比較して反応性が高く、熱・化学的安定性に乏しい。したがって、圧縮機の摺動部分のように高温となる部分において発生したラジカルと反応する可能性がある。ラジカルと反応したハイドロフルオロオレフィンは分解してフッ化水素を放出したり、ハイドロフルオロオレフィンが複数個重合してオリゴマー化し、粘凋性の液体やさらに重合が進むと固体を形成したりする。確認実験の結果、エアコン信頼性試験において冷媒の重合物と推定される固形状の生成物が発生した。このような生成物が発生すると装置内の微少隙間へのかみこみ等、悪影響を及ぼす可能性が高い。   However, the unsaturated fluorinated hydrocarbon refrigerants that have been studied in recent years have one of the features of a low GWP value. However, since they have unsaturated bonds in the molecule, conventional saturated fluorinated hydrocarbon refrigerants such as HFC410A are used. Reactivity is high, and thermal and chemical stability is poor. Therefore, there is a possibility of reacting with radicals generated in a portion where the temperature is high, such as a sliding portion of the compressor. Hydrofluoroolefins that have reacted with radicals decompose to release hydrogen fluoride, or a plurality of hydrofluoroolefins are polymerized into oligomers to form viscous liquids or solids as polymerization proceeds further. As a result of the confirmation experiment, a solid product estimated to be a polymer of refrigerant was generated in the air conditioner reliability test. When such a product is generated, there is a high possibility of adverse effects such as biting into a minute gap in the apparatus.

本発明は、前記従来の課題を解決するもので、冷凍サイクル内の冷凍機油の粘度を作動冷媒に適した粘度を圧縮機運転中の実運転状態で最適とすることで、冷媒重合物の発生を抑制し、装置内の破損、および冷凍サイクルの性能低下を防止し、長期間に渡って安定的に動作可能な冷凍装置の提供を目的とする。   The present invention solves the above-mentioned conventional problems, and by optimizing the viscosity of the refrigeration oil in the refrigeration cycle to the viscosity suitable for the working refrigerant in the actual operation state during the compressor operation, the generation of the refrigerant polymer It is an object of the present invention to provide a refrigeration apparatus that can stably operate over a long period of time, preventing damage in the apparatus and deterioration of the performance of the refrigeration cycle.

前記従来の課題を解決するために本発明は、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンを単一冷媒、またはそれを少なくとも必ず含有し、2重結合を有しないハイドロフルオロカーボンと混合した作動冷媒を封入し、当該冷媒が圧縮機によって循環される冷媒循環経路を備え、前記圧縮機には運転時の冷凍機油の動粘度が0.1mm2/s以上100mm2/s以下となる冷凍機油を用いた構成としたものである。これにより、重合物の発生を抑制することができ、装置の破損、性能低下を防止することができる。 In order to solve the above-mentioned conventional problems, the present invention mixes a hydrofluoroolefin having a double bond between carbon and a single refrigerant, or a hydrofluorocarbon which always contains at least a double bond and does not have a double bond. the working refrigerant is sealed, includes a refrigerant circulation path in which the refrigerant is circulated by the compressor, the kinematic viscosity of the refrigerating machine oil at the time of operation to the compressor is equal to or less than 0.1 mm 2 / s or more 100 mm 2 / s refrigeration The machine oil is used. Thereby, generation | occurrence | production of a polymer can be suppressed and damage to an apparatus and a performance fall can be prevented.

本発明の冷凍装置は、冷媒重合物が発生しやすい性質の低GWP冷媒を使用する場合においても冷凍機油を耐摩耗性にすぐれた状態のままに維持できて、金属接触を起きにくくし、冷媒重合物の発生条件となる高圧、高温状態が起きるのを防ぐことで重合物生成を抑制し、装置の破損、及び性能低下を防止できる。これにより高効率、高信頼性を実現した冷凍装置の提供が可能となる。   The refrigerating apparatus of the present invention can maintain the refrigerating machine oil in a state of excellent wear resistance even when using a low GWP refrigerant having a property that a refrigerant polymer is easily generated. By preventing the occurrence of high pressure and high temperature, which are the conditions for generating the polymer, it is possible to suppress the production of the polymer, and to prevent damage to the apparatus and performance degradation. This makes it possible to provide a refrigeration apparatus that achieves high efficiency and high reliability.

本発明の実施の形態1における冷凍装置のサイクル図Cycle diagram of the refrigeration apparatus in Embodiment 1 of the present invention 同実施の形態1の冷凍装置におけるロータリ圧縮機の縦断面図Longitudinal sectional view of a rotary compressor in the refrigeration apparatus of Embodiment 1 同実施の形態1の冷凍装置におけるロータリ圧縮機の横断面図Cross section of rotary compressor in refrigerating apparatus of embodiment 1 従来の冷凍層におけるロータリ圧縮機の縦断面図A longitudinal sectional view of a rotary compressor in a conventional refrigeration layer 同従来のロータリ圧縮機の横断面図Cross-sectional view of the conventional rotary compressor 同従来の冷凍サイクル装置のサイクル図Cycle diagram of the conventional refrigeration cycle device

第1の発明は、炭素と炭素間に2重結合を有するハイドロフルオロオレフィンを単一冷媒、またはそれを少なくとも必ず含有し、2重結合を有しないハイドロフルオロカーボンと混合した作動冷媒を封入し、当該冷媒が圧縮機によって循環される冷媒循環回路を備え、前記圧縮機には運転時の冷凍機油の動粘度が0.1mm2/s以上100mm2/s以下である冷凍機油を用いた構成としてある。 According to a first aspect of the present invention, a hydrofluoric olefin having a double bond between carbon and a single refrigerant, or a working refrigerant mixed with a hydrofluorocarbon which always contains at least the double fluorocarbon is contained, includes a refrigerant circulation circuit which the refrigerant is circulated by a compressor, the said compressor is a configuration in which the kinematic viscosity of the refrigerating machine oil at the time of operation using the refrigerating machine oil is not more than 0.1 mm 2 / s or more 100 mm 2 / s .

この構成によれば冷凍機油を耐摩耗性にすぐれた状態のままに維持できて重合物の発生要因である極所的な摺動箇所での高温、高圧状態の発生を抑制することができ、重合物による循環経路の詰まりを防止し、動作安定性を実現することにより、冷凍サイクル内の各装置の破損、及び性能低下の防止が可能となる。   According to this configuration, the refrigerating machine oil can be maintained in a state with excellent wear resistance, and the occurrence of high temperature and high pressure conditions at the extreme sliding locations that are the generation factors of the polymer can be suppressed. By preventing clogging of the circulation path due to the polymer and realizing operational stability, it is possible to prevent damage to each device in the refrigeration cycle and performance degradation.

第2の発明は、第1の発明の冷凍装置において冷凍機油中に酸捕捉剤を含有することである。この構成によれば、冷凍機油の劣化を防ぎ、さらに冷媒の分解を抑制することができ、重合物の生成を抑制することができ、さらなる冷凍装置の信頼性向上が可能となる。   The second invention is that the refrigerating machine oil of the first invention contains an acid scavenger in the refrigerating machine oil. According to this configuration, deterioration of the refrigerating machine oil can be prevented, decomposition of the refrigerant can be suppressed, generation of a polymer can be suppressed, and the reliability of the refrigeration apparatus can be further improved.

第3の発明は、特に第1または2の発明の冷凍装置において、冷凍機油中に磨耗防止剤を含有することである。この構成によれば、摺動箇所での高温、高圧状態の発生を抑制することで重合物の生成を抑制しかつ耐磨耗特性を向上させることができる。   The third invention is to contain an antiwear agent in the refrigerating machine oil, particularly in the refrigeration apparatus of the first or second invention. According to this structure, generation | occurrence | production of a polymer can be suppressed by suppressing generation | occurrence | production of the high temperature and high pressure state in a sliding location, and an abrasion-resistant characteristic can be improved.

第4の発明は、特に第1の発明の冷凍装置において、圧縮機の圧縮機構部はシリンダ内にピストンとベーンとを有し、前記ベーンの原材料に、高速度工具鋼を用いて窒化処理、または焼結合金鋼を用いて焼結化および焼き入れ処理を行ったものである。この構成によれば、圧縮機構部の耐摩耗性を維持した上で、冷媒や冷凍機油の分解を抑制し、またベーンとピストンの摺動部での局所的な温度上昇を緩和し重合物の発生を防止することで、圧縮機及びそれを用いた冷凍サイクル装置の長期信頼性を確保することができる。加えて、ベーンを焼結化および焼き入れ処理することにより微細なマルテンサイト生地中にW,Mo,Cr,V系炭化物が分散した硬い組織を得ることができる。鋳鉄は安価であることから、量産性に優れた圧縮機とすることができる。   According to a fourth aspect of the present invention, in the refrigeration apparatus of the first aspect of the invention, the compression mechanism portion of the compressor has a piston and a vane in the cylinder, and the raw material of the vane is subjected to nitriding treatment using high-speed tool steel Alternatively, the sintered alloy steel is sintered and quenched. According to this configuration, while maintaining the wear resistance of the compression mechanism, the decomposition of the refrigerant and the refrigerating machine oil is suppressed, and the local temperature rise at the sliding portion of the vane and the piston is alleviated, and the polymer By preventing the occurrence, the long-term reliability of the compressor and the refrigeration cycle apparatus using the compressor can be ensured. In addition, a hard structure in which W, Mo, Cr, and V-based carbides are dispersed in a fine martensite dough can be obtained by sintering and quenching the vanes. Since cast iron is inexpensive, it can be a compressor with excellent mass productivity.

第5の発明は、特に第4の発明の冷凍装置の焼結合金鋼は高速度工具鋼であるものである。この構成によれば、焼結合金鋼の中でもより耐摩耗性が優れたものとすることができる。   In the fifth invention, particularly, the sintered alloy steel of the refrigeration apparatus of the fourth invention is a high-speed tool steel. According to this configuration, it is possible to make the wear resistance more excellent among the sintered alloy steels.

第6の発明は、特に第1から5いずれかの発明の冷凍装置において、圧縮機の圧縮機構部はシリンダ内にピストンとベーンとを有し、前記ベーンは、基材をセラミックス、あるいは基材を鉄系としてその表面にセラミックス表面処理したもので形成するものである。この構成によれば、摺動の厳しいベーン先端部とピストン外周部における摺動の摩擦による温度上昇を抑えて冷媒の分解を緩和でき、加えて摺動部分表面の極性を保持することができ、摺動面上での均一な極圧層を形成するため摺動面の信頼性を確保できる。   In a sixth aspect of the invention, in the refrigeration apparatus of any one of the first to fifth aspects of the invention, the compression mechanism portion of the compressor has a piston and a vane in the cylinder. Is made of iron-based ceramic surface treated. According to this configuration, it is possible to suppress the temperature rise due to sliding friction at the tip of the vane that is severely slid and the outer periphery of the piston, and to reduce the decomposition of the refrigerant, in addition, it is possible to maintain the polarity of the surface of the sliding portion, Since the uniform extreme pressure layer is formed on the sliding surface, the reliability of the sliding surface can be ensured.

第7の発明は、特に第1から6いずれかの発明の冷凍装置における作動冷媒を、ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンとし、単一冷媒、またはそれらを主成分とし、地球温暖化係数が5以上、750以下となるようにそれぞれ2成分混合もしくは3成分混合した混合冷媒を作動冷媒としたもので、環境負荷が小さく、効果的に高信頼性で高効率な回転式圧縮機を提供することができる。   According to a seventh aspect of the present invention, in particular, the working refrigerant in the refrigeration apparatus according to any one of the first to sixth aspects, the hydrofluoroolefin is tetrafluoropropene or trifluoropropene, a single refrigerant, or a main component thereof, and global warming A mixed refrigerant that is a mixture of two or three components so that the coefficient is 5 or more and 750 or less is used as a working refrigerant, and a rotary compressor that has low environmental impact, is highly reliable, and is highly efficient. Can be provided.

第8の発明は、特に第1から8いずれかの発明の冷凍装置における作動冷媒を、ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンを主成分と
し、ジフルオロメタンとペンタフルオロエタンを、地球温暖化係数が5以上、750以下となるようにそれぞれ2成分混合もしくは3成分混合した混合冷媒を作動冷媒としたもので、効果的に高信頼性で高効率な回転式圧縮機を提供することができる。
The eighth invention is the working refrigerant in the refrigeration apparatus of any one of the first to eighth inventions, the hydrofluoroolefin is mainly composed of tetrafluoropropene or trifluoropropene, difluoromethane and pentafluoroethane, and global warming. A refrigerant mixture obtained by mixing two or three components so that the coefficient is 5 or more and 750 or less is used as a working refrigerant, and a highly reliable and highly efficient rotary compressor can be provided effectively. .

第9の発明は、特に第1から6いずれかの発明の冷凍装置における作動冷媒に用いる冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類およびポリカーボネート類の含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油としたもので、効果的に高信頼性で高効率な回転式圧縮機を提供することができる。   According to a ninth aspect of the present invention, there are provided polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or monoethers thereof and polyvinyl ethers as refrigeration oils used as working refrigerants in the refrigeration apparatus according to any one of the first to sixth aspects of the invention. Synthetic oils based on oxygenated compounds such as copolymers, polyol esters and polycarbonates, or synthetic oils based on alkylbenzenes and α-olefins as the main component. An efficient rotary compressor can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷凍装置のサイクル図を示すものである。なお図1において、図6の従来の冷凍装置と同じ構成要素については100番台の同じ番号を使い、説明を省略する。
(Embodiment 1)
FIG. 1 shows a cycle diagram of the refrigeration apparatus in Embodiment 1 of the present invention. In FIG. 1, the same components as those in the conventional refrigeration apparatus of FIG.

図1において、冷凍装置は、圧縮機120と、凝縮器121と、膨張機構(例えば、膨張弁、またはキャピラリチューブ)122と、蒸発器123とを循環経路でつなぎ冷凍サイクルを構成している。   In FIG. 1, the refrigeration apparatus forms a refrigeration cycle by connecting a compressor 120, a condenser 121, an expansion mechanism (for example, an expansion valve or capillary tube) 122, and an evaporator 123 through a circulation path.

圧縮機120は、低温、低圧の冷媒ガスを圧縮し、高温、高圧の冷媒ガスを吐出して凝縮器121に送る。凝縮器121に送られた冷媒ガスは、その熱を空気中に放出しながら高温、高圧の冷媒液となり膨張機構122に送られる。膨張機構122を通過する高温、高圧の冷媒液は絞り効果により低温、低圧の湿り蒸気となり蒸発器123へ送られる。蒸発器123に入った冷媒は周囲から熱を吸収して蒸発し、蒸発器123を出た低温、低圧の冷媒ガスはロータリ圧縮機120に吸い込まれ、以下同じサイクルが繰り返される。   The compressor 120 compresses the low-temperature and low-pressure refrigerant gas, discharges the high-temperature and high-pressure refrigerant gas, and sends it to the condenser 121. The refrigerant gas sent to the condenser 121 becomes a high-temperature and high-pressure refrigerant liquid and is sent to the expansion mechanism 122 while releasing the heat into the air. The high-temperature and high-pressure refrigerant liquid that passes through the expansion mechanism 122 becomes low-temperature and low-pressure wet steam due to the throttling effect, and is sent to the evaporator 123. The refrigerant entering the evaporator 123 absorbs heat from the surroundings and evaporates, and the low-temperature and low-pressure refrigerant gas exiting the evaporator 123 is sucked into the rotary compressor 120, and the same cycle is repeated thereafter.

冷凍装置に使用するハイドロフルオロオレフィン冷媒は、高温環境で酸化により分解してフッ化水素を生じ、同時に重合反応を起こして重合物を形成する場合がある。   The hydrofluoroolefin refrigerant used in the refrigeration apparatus may be decomposed by oxidation in a high-temperature environment to generate hydrogen fluoride, and at the same time undergo a polymerization reaction to form a polymer.

冷凍装置内では圧縮機120内の後述するモータ部102および吐出部分115が最も高温になる部分であり、また摺動部がさらに高温になる。このような高温となる部分において、前述のようにハイドロフルオロオレフィン冷媒は重合反応を起こし、オリゴマー、有機固体重合物を形成することがある。   In the refrigeration apparatus, a motor part 102 and a discharge part 115 (to be described later) in the compressor 120 are the highest temperature parts, and the sliding part is further heated. As described above, the hydrofluoroolefin refrigerant may cause a polymerization reaction to form an oligomer or an organic solid polymer at such a high temperature portion.

本実施の形態では、圧縮機120の運転時の冷凍機油103(後述する)はその動粘度が0.1mm2/s以上100mm2/s以下のものである。冷凍機油103は作動冷媒に対して相溶性をもち、圧縮機120の運転時の圧力と温度により冷凍機油103に対する溶解度は変化する。作動冷媒の溶解度によって冷凍機油103の動粘度は変化するため、圧縮機120の運転時の実動粘度を確保することによって、大気雰囲気下での粘度に依存せず、実際の運転範囲における圧力、温度条件に対応した、正確な油膜強度を保つことができる。このため、摺動部における高温の発生を抑制することができ、高信頼性を維持することができる。 In the present embodiment, the refrigerating machine oil 103 (described later) during operation of the compressor 120 has a kinematic viscosity of 0.1 mm 2 / s to 100 mm 2 / s. The refrigerating machine oil 103 is compatible with the working refrigerant, and the solubility in the refrigerating machine oil 103 varies depending on the pressure and temperature when the compressor 120 is operated. Since the kinematic viscosity of the refrigerating machine oil 103 changes depending on the solubility of the working refrigerant, by ensuring the actual kinematic viscosity at the time of operation of the compressor 120, the pressure in the actual operation range does not depend on the viscosity in the air atmosphere, Accurate oil film strength corresponding to temperature conditions can be maintained. For this reason, generation | occurrence | production of the high temperature in a sliding part can be suppressed, and high reliability can be maintained.

一般的に冷凍装置では、起動時に冷凍機油103の動粘度が最も低下する。これは停止時に雰囲気温度が低温となったとき冷凍機油103に作動冷媒が多量に溶け込むためである。本発明の確認実験において、この起動時の実オイル粘度が0.1mm2/s以上であ
れば冷媒重合物の発生が起きないことが確認された。冷凍機油103の動粘度を上昇させると摺動部の信頼性は向上するが動粘度が上がるに伴い、圧縮機120の回転、摺動部分において高粘度の冷凍機油103を攪拌することとなり、そのことによる損失が増加する。確認実験において一般的な冷凍装置性能測定を実施し、冷凍機油103の動粘度が100mm2/s以上となる冷凍機油103を使用した場合、圧縮機120への必要投入電力が従来の冷凍機油103より10%以上増えることが確認された。このことから性能面での影響が大きくなり、動粘度が100mm2/s以上となるものを冷凍機油103として活用することは実用的ではない。
Generally, in the refrigeration apparatus, the kinematic viscosity of the refrigerating machine oil 103 is the lowest when starting. This is because a large amount of working refrigerant dissolves in the refrigerating machine oil 103 when the ambient temperature becomes low during the stop. In the confirmation experiment of the present invention, it was confirmed that no refrigerant polymer was generated if the actual oil viscosity at the start-up was 0.1 mm 2 / s or more. Increasing the kinematic viscosity of the refrigerating machine oil 103 improves the reliability of the sliding part, but as the kinematic viscosity rises, the high-viscosity refrigerating machine oil 103 is agitated at the rotation and sliding part of the compressor 120. Loss due to When a general refrigeration device performance measurement is performed in the confirmation experiment and the refrigeration oil 103 with a kinematic viscosity of the refrigeration oil 103 of 100 mm 2 / s or more is used, the required input power to the compressor 120 is less than the conventional refrigeration oil 103. It was confirmed that it increased by more than 10%. For this reason, it is impractical to use a refrigerating machine oil 103 that has a great influence on performance and has a kinematic viscosity of 100 mm 2 / s or more.

図2は、本発明の実施の形態1におけるロータリ圧縮機の縦断面図を示している。なおこの図2および後述する図3においても、図4、図5に示す従来の冷凍装置と同じ構成要素については100番台を附記して説明する。   FIG. 2 shows a longitudinal sectional view of the rotary compressor according to Embodiment 1 of the present invention. In FIG. 2 and FIG. 3 to be described later, the same components as those of the conventional refrigeration apparatus shown in FIGS.

密閉容器101の上部にモータ102の固定子102aが固定され、回転子102bで駆動されるシャフト104を有する圧縮機構部105が密閉容器101の下部に固定されている。圧縮機構部105のシリンダ106の上端に主軸受107、下端に副軸受108が、ボルト等で固定されている。シリンダ106内にはシャフト104の偏心部104aにピストン109が挿入され偏心回転を行う。シリンダ106のベーン溝106aにベーン110が挿入され、ベーン110の背面部110bにはベーンバネ111が設置されており、ベーン110の先端部110aをピストン109の外周に当接するように付勢している。   The stator 102a of the motor 102 is fixed to the upper part of the hermetic container 101, and the compression mechanism part 105 having the shaft 104 driven by the rotor 102b is fixed to the lower part of the hermetic container 101. A main bearing 107 is fixed to the upper end of the cylinder 106 of the compression mechanism 105, and a secondary bearing 108 is fixed to the lower end with bolts or the like. In the cylinder 106, the piston 109 is inserted into the eccentric portion 104a of the shaft 104 and rotates eccentrically. A vane 110 is inserted into the vane groove 106 a of the cylinder 106, and a vane spring 111 is installed on the back surface portion 110 b of the vane 110, and urges the tip portion 110 a of the vane 110 to abut the outer periphery of the piston 109. .

また、密閉容器101内には炭素間に二重結合を有するハイドロフルオロオレフィンの一種であるテトラフルオロプロペン(以下、HFO1234yf冷媒と称す)が封入されている。密閉容器101の底部には、HFO1234yf冷媒と相溶性のある基油を含む冷凍機油103が溜められている。本実施の形態ではポリオールエステル、ポリビニルエーテル、ポリアルキレングリコールの基油のうち少なくとも1種類を主成分とする冷凍機油103を用いることが可能である。本実施の形態の冷凍機油103にはこの3種類のうちポリオールエステルだけを主成分とする冷凍機油103が用いられている。   Further, in the sealed container 101, tetrafluoropropene (hereinafter referred to as HFO1234yf refrigerant), which is a kind of hydrofluoroolefin having a double bond between carbons, is enclosed. Refrigerating machine oil 103 containing a base oil compatible with the HFO1234yf refrigerant is stored at the bottom of the sealed container 101. In the present embodiment, it is possible to use a refrigerating machine oil 103 mainly composed of at least one base oil of polyol ester, polyvinyl ether, or polyalkylene glycol. The refrigerating machine oil 103 according to the present embodiment uses the refrigerating machine oil 103 mainly composed of only the polyol ester among these three types.

ここで、ポリオールエステル系冷凍機油103は多価アルコールと飽和または不飽和脂肪酸との脱水反応により合成される。多価アルコールとしては、ネオペンチルグリコール、ペンタエリスリトール、ジペンタエリスリトールなどが冷凍機油103の粘度に合わせて用いられる。また一方の飽和脂肪酸としては、ヘキサン酸、ヘプタン酸、ノナン酸、デカン酸などの直鎖の脂肪酸ならびに2−メチルヘキサン酸、2−エチルヘキサン酸、3,5,5−トリメチルヘキサン酸などの分岐鎖の脂肪酸が用いられる。直鎖脂肪酸を含むポリオールエステル油は摺動特性が良好だが加水分解性に劣り、分岐鎖脂肪酸を含むエステル油は摺動特性が若干劣るものの加水分解しにくいという特長を有している点に留意すべきである。   Here, the polyol ester refrigerating machine oil 103 is synthesized by a dehydration reaction between a polyhydric alcohol and a saturated or unsaturated fatty acid. As the polyhydric alcohol, neopentyl glycol, pentaerythritol, dipentaerythritol and the like are used according to the viscosity of the refrigerating machine oil 103. One saturated fatty acid includes straight-chain fatty acids such as hexanoic acid, heptanoic acid, nonanoic acid, and decanoic acid, and branched such as 2-methylhexanoic acid, 2-ethylhexanoic acid, and 3,5,5-trimethylhexanoic acid. Chain fatty acids are used. Note that polyol ester oils containing linear fatty acids have good sliding properties but poor hydrolyzability, and ester oils containing branched chain fatty acids have the advantage of being difficult to hydrolyze, although they have slightly poor sliding properties. Should.

また、本実施の形態の冷凍機油103には硫黄系極圧添加剤および、ジブチル−p−クレゾールなどの酸化防止剤や含エポキシ化合物などの酸捕捉剤および消泡剤などの各種の添加剤が選択的に加えられる。硫黄系極圧添加剤としては硫化油脂、硫化脂肪酸、硫化エステル、硫化オレフィン、ジアルキルポリスルフィド、ジベンジルジスルフィド、オリゴマポリスルフィドなどが挙げられる。これらの硫黄系極圧添加剤の硫黄架橋数は3以下であることが好ましい。硫黄の架橋長が4以上になると冷凍機油103中に硫黄を放出しやすくなるため冷凍サイクル内の配管等に使用されている銅を腐食する可能性があり好ましくない。また硫黄の銅配管腐食を防止する目的で金属不活性化剤を使用するのが好ましい。本実施の形態では金属不活性化剤としてベンゾトリアゾール類を用いている。極圧効果を向上させるためにはリン系極圧添加剤を使用してもよい。リン系極圧添加剤はトリクレ
ジルフォスフェートやトリフェニルフォスフェートなどのリン酸エステル、亜リン酸エステル、酸性リン酸エステルのアミン塩などが用いられるが、冷凍機油103との相溶性に優れたトリクレジルフォスフェートやトリフェニルフォスフェートなどの酸性リン酸エステルが最適である。リン系極圧添加剤は硫黄系極圧添加剤よりも低い荷重から効果が出るため、硫黄系極圧添加剤とリン系極圧添加剤を併用することは、インバータ制御により広い周波数範囲で運転される冷凍サイクルの圧縮機での使用に最適である。
The refrigerating machine oil 103 of the present embodiment includes various additives such as a sulfur-based extreme pressure additive, an antioxidant such as dibutyl-p-cresol, an acid scavenger such as an epoxy-containing compound, and an antifoaming agent. Selectively added. Examples of sulfur-based extreme pressure additives include sulfurized fats and oils, sulfurized fatty acids, sulfurized esters, sulfurized olefins, dialkyl polysulfides, dibenzyl disulfides, oligomer polysulfides, and the like. These sulfur-based extreme pressure additives preferably have 3 or less sulfur bridges. If the sulfur cross-linking length is 4 or more, sulfur is likely to be released into the refrigerating machine oil 103, which may undesirably corrode copper used in piping or the like in the refrigeration cycle. It is also preferable to use a metal deactivator for the purpose of preventing sulfur copper pipe corrosion. In the present embodiment, benzotriazoles are used as a metal deactivator. In order to improve the extreme pressure effect, a phosphorus-based extreme pressure additive may be used. Phosphorus extreme pressure additives include phosphate esters such as tricresyl phosphate and triphenyl phosphate, phosphite esters, amine salts of acidic phosphate esters, etc., but excellent compatibility with refrigerating machine oil 103 Acid phosphates such as tricresyl phosphate and triphenyl phosphate are optimal. Phosphorus extreme pressure additives are effective at lower loads than sulfur extreme pressure additives, so using sulfur extreme pressure additives and phosphorus extreme pressure additives in a wide frequency range with inverter control Ideal for use in compressors of refrigeration cycles.

本実施の形態で使用する圧縮機は一般的なロータリ圧縮機であって、シリンダ106内をピストン109が偏心回転し、ベーン110先端を押しながら冷媒を吸入・圧縮・吐出するものである。そのため摺動部となるベーン110の先端は表面処理膜が形成されている。具体的にはCrNやDLC、TiNなどがあげられる。ベーン110先端の表面処理膜は極性保持効果を有するものであり、例えばベンゼン環がつながったグラファイトなどが分散して構成されている。冷凍機油103が近づくとその極性に誘起されて表面処理膜で分極が起き、極性を示す。その結果、冷凍機油103内の極圧添加剤が吸着されてさらに極圧層が形成されるものである。形成された極圧層により過酷な摺動条件、たとえば−10℃以下の低外気温時に半日放置した後に暖房で起動し最大能力で運転開始するような場合、摺動部の潤滑油が不足気味になるが、本実施の形態のように摺動部に充分に極圧層が形成されていることによって摺動部の異常摩耗が生じることがない。   The compressor used in the present embodiment is a general rotary compressor, in which a piston 109 is eccentrically rotated in a cylinder 106 and sucks, compresses, and discharges refrigerant while pushing the vane 110 tip. For this reason, a surface treatment film is formed at the tip of the vane 110 that becomes the sliding portion. Specifically, CrN, DLC, TiN, etc. are mentioned. The surface treatment film at the tip of the vane 110 has a polarity maintaining effect, and is formed by dispersing, for example, graphite having connected benzene rings. When the refrigerating machine oil 103 approaches, the polarity is induced in the surface treatment film by being induced by the polarity, and shows the polarity. As a result, the extreme pressure additive in the refrigerating machine oil 103 is adsorbed to further form an extreme pressure layer. When the extreme pressure layer formed causes severe sliding conditions, for example, when left for half a day at a low outside temperature of −10 ° C. or less and then starts up with heating and starts operating at maximum capacity, the lubricating oil in the sliding part is insufficient. However, since the extreme pressure layer is sufficiently formed in the sliding portion as in the present embodiment, abnormal wear of the sliding portion does not occur.

以上のように構成されたロータリ圧縮機について、以下その動作、作用について図3を用いて説明する。    The operation and action of the rotary compressor configured as described above will be described below with reference to FIG.

まず、シリンダ106に設けられた吸入口112よりHFO1234yf冷媒が吸入室113に吸入される。また、ベーン110とピストン109とシリンダ106などで構成される圧縮室114にある冷媒はピストン109の左方向の回転(矢印方向)とともに圧縮され、吐出切り欠き115を通って吐出口(図示せず)より密閉容器101内に吐出される。密閉容器101内に吐出された冷媒ガスはモータ102のすき間を通って密閉容器101の上部にある吐出管116より吐出され、その際まわりにある冷凍機油103のミストも一緒に吐出される。   First, the HFO 1234yf refrigerant is sucked into the suction chamber 113 from the suction port 112 provided in the cylinder 106. In addition, the refrigerant in the compression chamber 114 composed of the vane 110, the piston 109, the cylinder 106, and the like is compressed with the rotation of the piston 109 in the left direction (arrow direction), passes through the discharge notch 115, and discharge port (not shown). ) Is discharged into the sealed container 101. The refrigerant gas discharged into the hermetic container 101 passes through the gap of the motor 102 and is discharged from the discharge pipe 116 at the upper part of the hermetic container 101, and the mist of the refrigerating machine oil 103 around at that time is also discharged together.

ロータリ圧縮機構の構成上、摺動状態が最も厳しいところはベーン110の先端110aとピストン109の外周との接触摺動部位である。ベーン110の背部110bにはベーンバネ111以外に高圧の吐出圧力がかかりシリンダ106内の圧力との差圧による大きな力が働いているため、ベーン110の先端部110aとピストン109の外周との接触状態は混合潤滑あるいは境界潤滑となり、厳しい環境下にある。   In the configuration of the rotary compression mechanism, the place where the sliding state is most severe is a contact sliding portion between the tip 110a of the vane 110 and the outer periphery of the piston 109. Since a high discharge pressure is applied to the back portion 110b of the vane 110 in addition to the vane spring 111 and a large force due to a differential pressure with respect to the pressure in the cylinder 106 is acting, the contact state between the tip portion 110a of the vane 110 and the outer periphery of the piston 109 Becomes mixed lubrication or boundary lubrication and is in a harsh environment.

ここで、ベーン110の基材にはSKH(高速度工具鋼)、SKD、SUS、SCMなどの鋼を用いて窒化処理を行ない、ベーン110の先端部110aの表面に窒化クロム(以下、CrNと称す)あるいはダイヤモンドライクカーボン(以下、DLCと称す)などのセラミックスからなる表面処理膜をPVD処理法にて施している。表面硬さはHV1500〜2000程度で、摺動面であるベーン110の先端部110aの面粗さはRa0.2μm程度である。   Here, the base material of the vane 110 is subjected to nitriding treatment using steel such as SKH (high speed tool steel), SKD, SUS, or SCM, and chromium nitride (hereinafter referred to as CrN) is applied to the surface of the tip 110a of the vane 110. A surface treatment film made of ceramics such as diamond-like carbon (hereinafter referred to as DLC) is applied by a PVD treatment method. The surface hardness is about HV 1500 to 2000, and the surface roughness of the tip 110a of the vane 110 that is the sliding surface is about Ra 0.2 μm.

一方、ピストン109の基材にクロム(Cr)を0.7〜1.0wt%、モリブデン(Mo)を0.2〜0.4wt%、ニッケル(Ni)を0.2〜0.4wt%含有してなる鋳鉄(以下、Mo、Cr、Niを含有する鋳鉄をモニクロ鋳鉄と称する)を用い、焼入れ、サブゼロ、焼戻し、放冷などにより表面硬さをHRC50〜51程度としている。また、摺動面であるピストン109の外周には、グラファイトによる微小凹部が存在するので、微小凹部を除いた平坦部分の面粗さをRa0.2μm程度に仕上げている。   On the other hand, the base material of the piston 109 contains 0.7 to 1.0 wt% of chromium (Cr), 0.2 to 0.4 wt% of molybdenum (Mo), and 0.2 to 0.4 wt% of nickel (Ni). Cast iron (hereinafter, cast iron containing Mo, Cr, and Ni is referred to as monichro cast iron), and the surface hardness is set to about HRC 50 to 51 by quenching, sub-zero, tempering, standing to cool, and the like. Further, since there are fine concave portions made of graphite on the outer periphery of the piston 109 which is a sliding surface, the surface roughness of the flat portion excluding the fine concave portions is finished to about Ra 0.2 μm.

尚、本実施の形態で用いたテトラフルオロプロペン(HFO1234yf)は、二重結合を有さないハイドロフルオロカーボン(HFC32、HFC125)を混合させることで、非共沸混合冷媒にも関わらず温度差を小さくできて擬似共沸混合冷媒に挙動が近づくため、冷却装置の冷却性能や冷却性能係数(COP)も改善することができる。本実施の形態では、HFO1234yf冷媒単体で用いたが、混合冷媒を用いても同様の効果が得られる。   Note that the tetrafluoropropene (HFO1234yf) used in the present embodiment has a small temperature difference in spite of non-azeotropic refrigerant mixture by mixing hydrofluorocarbons (HFC32, HFC125) having no double bond. Since the behavior approaches that of the pseudo azeotropic refrigerant mixture, the cooling performance and the cooling performance coefficient (COP) of the cooling device can be improved. In this embodiment, the HFO1234yf refrigerant is used alone, but the same effect can be obtained even if a mixed refrigerant is used.

ここで、混合冷媒のGWPについては、5以上で750以下、望ましくは350以下となるように、それぞれ2成分混合もしくは3成分混合させる必要がある。HFO1234yfとHFC32とを混合してGWP350以下とするためにはHFO1234yfが48.5wt%以上とすることが望ましい。また、HFO1234yfとHFC125とを混合してGWP750以下とするためにはHFO1234yfが78.7wt%以上、さらにGWP350以下とするためにはHFO1234yfが91.6wt%以上とすることが望ましい。これによって、万一回収されない冷媒が大気に放出されても地球温暖化に対しその影響を極少に保つことができる。   Here, the GWP of the mixed refrigerant needs to be two-component mixed or three-component mixed so as to be 5 or more and 750 or less, preferably 350 or less. In order to mix HFO1234yf and HFC32 to make GWP 350 or less, it is desirable that HFO1234yf be 48.5 wt% or more. Further, in order to mix HFO1234yf and HFC125 to make GWP750 or less, it is desirable that HFO1234yf be 78.7 wt% or more, and in order to make GWP350 or less, HFO1234yf is 91.6 wt% or more. As a result, even if a refrigerant that cannot be recovered is released into the atmosphere, the effect on global warming can be kept to a minimum.

また、本実施の形態では、冷凍機油103としてHFO1234yfと相溶性のあるポリオールエステル油を用いたが、同様に相溶性のあるポリビニルエーテル、あるいはポリアルキレングリコールからなる冷凍機油103を使用しても、冷凍サイクルに出て行った冷凍機油103を圧縮機120に回収することができ、同様に信頼性の高い圧縮機120を得ることができる。また、HFC冷媒との混合冷媒としても、上記の冷凍機油は相溶性があるので、同様な効果が得られる。   In the present embodiment, polyol ester oil compatible with HFO1234yf is used as the refrigerator oil 103, but similarly, the refrigerator oil 103 made of polyvinyl ether or polyalkylene glycol having compatibility is used. The refrigerating machine oil 103 that has gone out to the refrigerating cycle can be recovered in the compressor 120, and similarly, the highly reliable compressor 120 can be obtained. Moreover, since the above refrigerating machine oil is compatible as a mixed refrigerant with the HFC refrigerant, the same effect can be obtained.

また、本実施の形態では、圧縮機としてロータリ圧縮機を例にして説明したが、これは例えばスクロール圧縮機等、すでに知られている他のどのようなタイプの圧縮機であってもよいものである。   In this embodiment, a rotary compressor is described as an example of the compressor. However, this may be any other known type of compressor such as a scroll compressor. It is.

以上のように、本発明にかかる冷凍装置は、冷媒重合物が発生しやすい性質の低GWP冷媒を使用する場合においても、冷凍サイクルに適切な冷凍機油を使用することで、冷凍装置の破損、劣化、及び性能低下を抑えることが可能となり、空調機、カーエアコン、冷凍冷蔵庫、除湿機、ヒートポンプ式乾燥洗濯機、ヒートポンプ式給湯器、飲料用自動販売機等多くの用途に適用できる。   As described above, the refrigeration apparatus according to the present invention uses a refrigerator oil suitable for the refrigeration cycle even when using a low GWP refrigerant having a property that a refrigerant polymer is easily generated. It is possible to suppress deterioration and performance degradation, and it can be applied to many uses such as air conditioners, car air conditioners, refrigerators, dehumidifiers, heat pump dryers, heat pump water heaters, and beverage vending machines.

103 冷凍機油
105 圧縮機構部
106 シリンダ
109 ピストン
110 ベーン
120 圧縮機
121 凝縮器
122 膨張機構
123 蒸発器
DESCRIPTION OF SYMBOLS 103 Refrigerating machine oil 105 Compression mechanism part 106 Cylinder 109 Piston 110 Vane 120 Compressor 121 Condenser 122 Expansion mechanism 123 Evaporator

Claims (9)

炭素と炭素間に2重結合を有するハイドロフルオロオレフィンを単一冷媒、またはそれを少なくとも必ず含有し、2重結合を有しないハイドロフルオロカーボンと混合した作動冷媒を封入し、当該冷媒が圧縮機によって循環される冷媒循環経路を備え、前記圧縮機には運転時の冷凍機油の動粘度が0.1mm2/s以上100mm2/s以下となる冷凍機油が用いられていることを特徴とする冷凍装置。 A single refrigerant containing hydrofluoroolefin having a double bond between carbon and carbon or at least a working refrigerant mixed with hydrofluorocarbon having no double bond is enclosed, and the refrigerant is circulated by a compressor. includes a refrigerant circulation pathway, refrigeration system, characterized in that the said compressor being used is refrigerating machine oil refrigerating machine oil kinematic viscosity of 0.1 mm 2 / s or more 100 mm 2 / s or less of the time of operation . 冷凍機油中に酸捕捉剤を含有したことを特徴とする請求項1記載の冷凍装置。 The refrigerating apparatus according to claim 1, wherein an acid scavenger is contained in the refrigerating machine oil. 冷凍機油中に磨耗防止剤を含有したことを特徴とする請求項1または2記載の冷凍装置。 The refrigeration apparatus according to claim 1 or 2, wherein an antiwear agent is contained in the refrigerating machine oil. 圧縮機の圧縮機構部はシリンダ内にピストンとベーンとを有し、前記ベーンの原材料に、高速度工具鋼を用いて窒化処理、または焼結合金鋼を用いて焼結化および焼き入れ処理を行ったことを特徴とする請求項1から3のいずれか1項記載の冷凍装置。 The compression mechanism of the compressor has a piston and a vane in the cylinder, and the raw material of the vane is subjected to nitriding treatment using high-speed tool steel or sintering and quenching treatment using sintered alloy steel. The refrigeration apparatus according to any one of claims 1 to 3, wherein the refrigeration apparatus is performed. ベーンの焼結合金鋼は高速度工具鋼であることを特徴とする請求項4記載の冷凍装置。 5. The refrigeration apparatus according to claim 4, wherein the sintered alloy steel of the vane is a high speed tool steel. 圧縮機の圧縮機構部はシリンダ内にピストンとベーンとを有し、前記ベーンは、基材をセラミックス、あるいは基材を鉄系としてその表面にセラミックス表面処理したもので形成したことを特徴とする請求項1から3のいずれか1項記載の冷凍装置。 The compression mechanism portion of the compressor has a piston and a vane in a cylinder, and the vane is formed of a ceramic as a base material or a ceramic surface-treated surface of a base material made of iron. The refrigeration apparatus according to any one of claims 1 to 3. ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンとし、単一冷媒、またはそれらを主成分とし、地球温暖化係数が5以上、750以下となるようにそれぞれ2成分混合もしくは3成分混合した混合冷媒を作動冷媒としたことを特徴とする請求項1から6のいずれか1項記載の冷凍装置。 Hydrofluoroolefin is tetrafluoropropene or trifluoropropene, and is a single refrigerant or a mixed refrigerant in which two or three components are mixed so that their main component is a global warming potential of 5 or more and 750 or less. The refrigeration apparatus according to any one of claims 1 to 6, wherein the refrigeration apparatus is a working refrigerant. ハイドロフルオロオレフィンはテトラフルオロプロペンまたはトリフルオロプロペンを主成分とし、ジフルオロメタンとペンタフルオロエタンを、地球温暖化係数が5以上、750以下となるようにそれぞれ2成分混合もしくは3成分混合した混合冷媒を作動冷媒としたことを特徴とする請求項1から7のいずれか1項記載の冷凍装置。 Hydrofluoroolefin is a mixed refrigerant in which tetrafluoropropene or trifluoropropene is the main component and difluoromethane and pentafluoroethane are mixed in two or three components so that the global warming potential is 5 or more and 750 or less. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is a working refrigerant. 冷凍機油として、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類およびポリカーボネート類の含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油としたことを特徴とする請求項1から8のいずれか1項記載の冷凍装置。 Is it a synthetic oil mainly composed of polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, polyol esters, and oxygenates of polycarbonates as refrigeration oils? The refrigeration apparatus according to any one of claims 1 to 8, wherein the refrigeration apparatus is a synthetic oil mainly composed of alkylbenzenes or α-olefins.
JP2011221631A 2011-10-06 2011-10-06 Refrigeration device Pending JP2014240702A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011221631A JP2014240702A (en) 2011-10-06 2011-10-06 Refrigeration device
PCT/JP2012/006379 WO2013051271A1 (en) 2011-10-06 2012-10-04 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221631A JP2014240702A (en) 2011-10-06 2011-10-06 Refrigeration device

Publications (1)

Publication Number Publication Date
JP2014240702A true JP2014240702A (en) 2014-12-25

Family

ID=48043451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221631A Pending JP2014240702A (en) 2011-10-06 2011-10-06 Refrigeration device

Country Status (2)

Country Link
JP (1) JP2014240702A (en)
WO (1) WO2013051271A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126591A1 (en) * 2016-01-19 2017-07-27 横浜ゴム株式会社 Rubber composition and hose
JP2019534936A (en) * 2016-10-10 2019-12-05 アルケマ フランス Use of compositions based on tetrafluoropropene
JP2021073404A (en) * 2018-06-27 2021-05-13 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール Hermetic refrigerant compressor and freezing/refrigerating device using the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101841869B1 (en) * 2014-03-14 2018-05-04 미쓰비시덴키 가부시키가이샤 Refrigeration cycle device
JP6180619B2 (en) * 2014-03-14 2017-08-16 三菱電機株式会社 Compressor and refrigeration cycle apparatus
WO2015140876A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Refrigeration cycle device
JP6105511B2 (en) * 2014-04-10 2017-03-29 三菱電機株式会社 Heat pump equipment
US10458410B2 (en) 2014-12-04 2019-10-29 Guangdong Meizhi Compressor Co., Ltd. Low-backpressure rotary compressor
CN114777216A (en) * 2016-03-28 2022-07-22 三菱电机株式会社 Outdoor machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241263B2 (en) * 2008-02-15 2013-07-17 出光興産株式会社 Lubricating oil composition for refrigerator
JP2011047329A (en) * 2009-08-27 2011-03-10 Panasonic Corp Rotary compressor
JP2011052032A (en) * 2009-08-31 2011-03-17 Hitachi Appliances Inc Refrigeration air-condition unit using 2,3,3,3-tetrafluoropropene
JP2011085275A (en) * 2009-10-13 2011-04-28 Panasonic Corp Refrigerating device
JP5525877B2 (en) * 2010-03-17 2014-06-18 Jx日鉱日石エネルギー株式会社 Refrigerator oil and working fluid composition for refrigerator
JP5220148B2 (en) * 2011-03-16 2013-06-26 三菱電機株式会社 Refrigeration cycle equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126591A1 (en) * 2016-01-19 2017-07-27 横浜ゴム株式会社 Rubber composition and hose
CN108473738A (en) * 2016-01-19 2018-08-31 横滨橡胶株式会社 rubber composition and hose
JPWO2017126591A1 (en) * 2016-01-19 2018-11-15 横浜ゴム株式会社 Rubber composition and hose
JP2019534936A (en) * 2016-10-10 2019-12-05 アルケマ フランス Use of compositions based on tetrafluoropropene
JP2021073404A (en) * 2018-06-27 2021-05-13 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール Hermetic refrigerant compressor and freezing/refrigerating device using the same
JPWO2020004382A1 (en) * 2018-06-27 2021-08-05 パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール Sealed refrigerant compressor and freezing / refrigerating equipment using it

Also Published As

Publication number Publication date
WO2013051271A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP2014240702A (en) Refrigeration device
JP6011861B2 (en) Compressor and refrigeration cycle apparatus using the same
DK2267309T3 (en) CHILLING UNIT
JP5842987B2 (en) Refrigeration equipment
US8939742B2 (en) Compressor with steel and cast iron sliding materials
TWI414594B (en) Refrigerating machine oil composition
JP5339788B2 (en) Compressor and refrigeration cycle equipment
TWI640617B (en) Working fluids comprising fluorinated olefins/fluorinated saturated hydrocarbon blends and polyol esters
US20120131947A1 (en) Refrigeration cycle apparatus
JP2012012532A (en) Compressor and refrigerating cycle equipment
CN101305084A (en) Refrigerating machine oil composition
WO2018083981A1 (en) Electric compressor and refrigeration/air–conditioning device
KR100201207B1 (en) Compressor for a refrigerator
JP2018087528A (en) Hermetic type compressor and freezing cycle device
JP5671695B2 (en) Refrigeration equipment
WO2008142829A1 (en) Hermetic compressor and refrigeration system
WO2024127577A1 (en) Refrigeration cycle device and compressor
US20230384002A1 (en) Refrigerant compressor with wear sleeve and lubricant blends for handling debris-laden fluids
US20230383760A1 (en) Refrigerant compressor with wear sleeve and lubricant blends for handling debris-laden fluids
EP2547969A1 (en) Refrigeration cycle apparatus
JP2012087801A (en) Hermetic compressor
JPH10102079A (en) Lubricating oil composition
CN101541935B (en) Refrigerant compressor
JP2020180618A (en) Hermetic type compressor and refrigeration cycle device
CN111237166A (en) Compressor and refrigerating device