JP6736019B2 - Refrigerator, method for manufacturing refrigerator, and method for improving COP - Google Patents

Refrigerator, method for manufacturing refrigerator, and method for improving COP Download PDF

Info

Publication number
JP6736019B2
JP6736019B2 JP2016021550A JP2016021550A JP6736019B2 JP 6736019 B2 JP6736019 B2 JP 6736019B2 JP 2016021550 A JP2016021550 A JP 2016021550A JP 2016021550 A JP2016021550 A JP 2016021550A JP 6736019 B2 JP6736019 B2 JP 6736019B2
Authority
JP
Japan
Prior art keywords
refrigerant
viscosity
refrigerating machine
machine oil
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016021550A
Other languages
Japanese (ja)
Other versions
JP2017141974A (en
Inventor
健太郎 山口
健太郎 山口
武 大城戸
武 大城戸
英俊 尾形
英俊 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Eneos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos Corp filed Critical Eneos Corp
Priority to JP2016021550A priority Critical patent/JP6736019B2/en
Priority to CN201710060845.3A priority patent/CN107044739B/en
Priority to CN202010661049.7A priority patent/CN111895672B/en
Publication of JP2017141974A publication Critical patent/JP2017141974A/en
Application granted granted Critical
Publication of JP6736019B2 publication Critical patent/JP6736019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/02Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
    • C10M2211/022Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Description

本発明は、冷凍機、冷凍機の製造方法及びCOPの向上方法に関する。 The present invention relates to a refrigerator, a refrigerator manufacturing method, and a COP improving method.

冷凍機は、圧縮機、凝縮器、膨張機構、蒸発器等を有する冷媒循環システムを備えている。冷媒循環システムでは、液体が気化する際に周囲から熱を奪う現象が利用されており、気化した冷媒の圧縮機での圧縮及び昇温、凝縮器での放熱凝縮による冷媒の液化、膨張機構での減圧膨張、並びに、蒸発器での冷媒の気化を含むサイクルが繰り返される。 The refrigerator includes a refrigerant circulation system including a compressor, a condenser, an expansion mechanism, an evaporator, and the like. In the refrigerant circulation system, the phenomenon that heat is taken from the surroundings when the liquid is vaporized is used, and the vaporized refrigerant is compressed and heated by the compressor, and the refrigerant is liquefied by heat radiation condensation in the condenser. The cycle including decompression expansion of the above and vaporization of the refrigerant in the evaporator is repeated.

このような冷凍機の性能を評価する指標として、成績係数(COP:Coefficient of Performance)がしばしば使用される。COPは、冷媒循環システムを運転する際などに消費されるエネルギーに対する冷房能力(冷凍能力とも呼ばれる)の比(冷房能力/消費エネルギー)を表す。近年、冷凍機のCOPの更なる向上が望まれており、例えば特許文献1には、冷凍機のCOPを向上し得る膨張機一体型圧縮機が開示されている。 A coefficient of performance (COP) is often used as an index for evaluating the performance of such a refrigerator. COP represents a ratio (cooling capacity/consumed energy) of cooling capacity (also called refrigerating capacity) to energy consumed when operating the refrigerant circulation system. In recent years, further improvement of the COP of the refrigerator has been desired, and for example, Patent Literature 1 discloses an expander-integrated compressor capable of improving the COP of the refrigerator.

特開2015−94259号公報JP, 2005-94259, A

本発明は、COPに優れる冷凍機及びその製造方法、並びにCOPの向上方法を提供することを目的とする。 An object of the present invention is to provide a refrigerator having excellent COP, a method for manufacturing the same, and a method for improving COP.

本発明は、圧縮機と、凝縮器と、膨張機構と、蒸発器とを有する冷媒循環システムを備え、冷媒循環システム内に冷媒と冷凍機油とが充填されている冷凍機であって、冷媒と冷凍機油とからなる作動流体は、温度80℃、絶対圧力3.4MPaの条件において2〜4mm/sの冷媒溶解粘度を示す、冷凍機を提供する。 The present invention is a refrigerator that includes a refrigerant circulation system having a compressor, a condenser, an expansion mechanism, and an evaporator, and is a refrigerator in which refrigerant and refrigeration oil are filled in the refrigerant circulation system. A working fluid composed of refrigerating machine oil provides a refrigerating machine showing a refrigerant dissolution viscosity of 2 to 4 mm2/s under conditions of a temperature of 80°C and an absolute pressure of 3.4 MPa.

この冷凍機では、冷媒循環システムに充填されている冷媒と冷凍機油とが、作動流体として特定の冷媒溶解粘度を示すことによって、COPを向上させることが可能となる。すなわち、本発明者らの検討によれば、作動流体の冷媒溶解粘度が低すぎると、シール性の低下等に起因して冷凍能力又は冷房能力が低下してしまい、一方、作動流体の冷媒溶解粘度が高すぎると、撹拌抵抗又は冷凍機の起動時の抵抗の増大等に伴い、消費エネルギーが増大してしまい、また、冷凍能力又は冷房能力が低下してしまうことが判明した。そして、本発明者らは、温度80℃、絶対圧力3.4MPaの条件において2〜4mm/sの冷媒溶解粘度を示す作動流体を用いることによって、消費エネルギーの抑制と冷凍能力又は冷房能力の向上とのバランスを確保でき、COPの向上が可能となることを見出した。 In this refrigerating machine, the refrigerant and refrigerating machine oil with which the refrigerant circulating system is filled exhibit a specific refrigerant melt viscosity as a working fluid, whereby the COP can be improved. That is, according to the study by the present inventors, if the refrigerant dissolution viscosity of the working fluid is too low, the refrigerating capacity or the cooling capacity will decrease due to the deterioration of the sealability, while the working fluid melts the refrigerant. It has been found that if the viscosity is too high, energy consumption increases due to an increase in stirring resistance or resistance at the time of starting the refrigerator, and the refrigerating capacity or the cooling capacity decreases. Then, the inventors of the present invention suppress the consumption energy and reduce the refrigerating capacity or the cooling capacity by using a working fluid having a refrigerant dissolution viscosity of 2 to 4 mm 2 /s under the conditions of a temperature of 80° C. and an absolute pressure of 3.4 MPa. It has been found that a balance with improvement can be secured and COP can be improved.

また、本発明は、圧縮機と、凝縮器と、膨張機構と、蒸発器とを有する冷媒循環システムを備える冷凍機の製造方法であって、冷媒循環システム内に冷媒と冷凍機油とを充填する工程を備え、冷媒と冷凍機油とからなる作動流体は、温度80℃、絶対圧力3.4MPaの条件において2〜4mm/sの冷媒溶解粘度を示す、冷凍機の製造方法を提供する。 Further, the present invention is a method of manufacturing a refrigerator including a refrigerant circulation system having a compressor, a condenser, an expansion mechanism, and an evaporator, wherein the refrigerant circulation system is filled with a refrigerant and refrigerating machine oil. A working fluid comprising a refrigerant and refrigerating machine oil is provided, which has a step and exhibits a refrigerant dissolution viscosity of 2 to 4 mm2/s under conditions of a temperature of 80°C and an absolute pressure of 3.4 MPa.

また、本発明は、圧縮機と、凝縮器と、膨張機構と、蒸発器とを有する冷媒循環システムを備え、冷媒循環システム内に冷媒と冷凍機油とが充填されている冷凍機のCOPを向上させる方法であって、冷媒と冷凍機油とからなる作動流体として、温度80℃、絶対圧力3.4MPaの条件において2〜4mm/sの冷媒溶解粘度を示す作動流体を使用することによりCOPを向上させる方法を提供する。 Further, the present invention includes a refrigerant circulation system having a compressor, a condenser, an expansion mechanism, and an evaporator, and improves the COP of a refrigerator in which the refrigerant circulation system is filled with a refrigerant and refrigerating machine oil. COP by using a working fluid having a refrigerant dissolution viscosity of 2 to 4 mm 2 /s under the conditions of a temperature of 80° C. and an absolute pressure of 3.4 MPa as a working fluid composed of a refrigerant and refrigerating machine oil. Provide a way to improve.

本発明によれば、COPに優れる冷凍機及びその製造方法、並びにCOPの向上方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the refrigerator excellent in COP, its manufacturing method, and the improvement method of COP can be provided.

冷凍機の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of a refrigerator. 冷媒溶解粘度とCOPとの関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a refrigerant|coolant melt viscosity and COP.

以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、冷凍機の一実施形態を示す模式図である。図1に示すように、冷凍機10は、圧縮機(冷媒圧縮機)1と、凝縮器(ガスクーラー)2と、膨張機構3(キャピラリ、膨張弁等)と、蒸発器(熱交換器)4とが流路5で順次接続された冷媒循環システム6を少なくとも備えている。 FIG. 1 is a schematic diagram showing an embodiment of a refrigerator. As shown in FIG. 1, a refrigerator 10 includes a compressor (refrigerant compressor) 1, a condenser (gas cooler) 2, an expansion mechanism 3 (capillary, expansion valve, etc.), and an evaporator (heat exchanger). At least a refrigerant circulation system 6 in which 4 and 4 are sequentially connected by a flow path 5 is provided.

冷媒循環システム6においては、まず、圧縮機1から流路5内に吐出された高温(通常70〜120℃)の冷媒が、凝縮器2にて高密度の流体(超臨界流体等)となる。続いて、冷媒は、膨張機構3が有する狭い流路を通ることによって液化し、さらに蒸発器4にて気化して低温(通常−40〜0℃)となる。冷凍機10による冷房は、冷媒が蒸発器4において気化する際に周囲から熱を奪う現象を利用している。 In the refrigerant circulation system 6, first, the high-temperature (usually 70 to 120° C.) refrigerant discharged from the compressor 1 into the flow path 5 becomes a high-density fluid (supercritical fluid or the like) in the condenser 2. .. Subsequently, the refrigerant is liquefied by passing through the narrow flow path of the expansion mechanism 3, and further vaporized by the evaporator 4 to have a low temperature (usually −40 to 0° C.). The cooling by the refrigerator 10 uses a phenomenon that heat is taken from the surroundings when the refrigerant is vaporized in the evaporator 4.

圧縮機1内においては、高温(通常70〜120℃)条件下で、少量の冷媒と多量の冷凍機油とが共存する。圧縮機1から流路5に吐出される冷媒は、気体状であり、少量(通常1〜10体積%)の冷凍機油をミストとして含んでいるが、このミスト状の冷凍機油中には少量の冷媒が溶解している(図1中の点a)。 In the compressor 1, a small amount of refrigerant and a large amount of refrigerating machine oil coexist under high temperature (usually 70 to 120° C.) conditions. The refrigerant discharged from the compressor 1 to the flow path 5 is in a gaseous state and contains a small amount (usually 1 to 10% by volume) of refrigerating machine oil as a mist. The refrigerant is dissolved (point a in FIG. 1).

凝縮器2内においては、気体状の冷媒が圧縮されて高密度の流体となり、比較的高温(通常50〜70℃)条件下で、多量の冷媒と少量の冷凍機油とが共存する(図1中の点b)。さらに、多量の冷媒と少量の冷凍機油との混合物は、膨張機構3、蒸発器4に順次送られて急激に低温(通常−40〜0℃)となり(図1中の点c,d)、再び圧縮機1に戻される。 In the condenser 2, the gaseous refrigerant is compressed into a high-density fluid, and a large amount of refrigerant and a small amount of refrigerating machine oil coexist under a relatively high temperature (usually 50 to 70° C.) condition (FIG. 1). Middle point b). Further, a mixture of a large amount of refrigerant and a small amount of refrigerating machine oil is sequentially sent to the expansion mechanism 3 and the evaporator 4 and suddenly becomes a low temperature (usually -40 to 0° C.) (points c and d in FIG. 1), It is returned to the compressor 1 again.

このような冷凍機10としては、自動車用エアコン、除湿器、冷蔵庫、冷凍冷蔵倉庫、自動販売機、ショーケース、化学プラント等における冷却装置、住宅用エアコンディショナー、パッケージエアコンディショナー、給湯用ヒートポンプ等が挙げられる。 Examples of the refrigerator 10 include an automobile air conditioner, a dehumidifier, a refrigerator, a refrigerating/freezing warehouse, a vending machine, a showcase, a cooling device in a chemical plant, a residential air conditioner, a package air conditioner, a hot water supply heat pump, and the like. Can be mentioned.

冷媒循環システム6には、上述のとおり、冷媒と冷凍機油とが充填されている。冷媒及び冷凍機油は、冷媒と冷凍機油とからなる作動流体が温度80℃、絶対圧力3.4MPaの条件において2〜4mm/sの冷媒溶解粘度を示すようにそれぞれ適宜選択されればよい。 As described above, the refrigerant circulation system 6 is filled with the refrigerant and the refrigerating machine oil. The refrigerant and the refrigerating machine oil may be appropriately selected so that the working fluid including the refrigerant and the refrigerating machine oil exhibits a refrigerant dissolution viscosity of 2 to 4 mm 2 /s under the conditions of a temperature of 80° C. and an absolute pressure of 3.4 MPa.

冷媒としては、飽和フッ化炭化水素(HFC)冷媒、不飽和フッ化炭化水素(HFO)冷媒、炭化水素冷媒、パーフルオロエーテル類等の含フッ素エーテル系冷媒、ビス(トリフルオロメチル)サルファイド冷媒、3フッ化ヨウ化メタン冷媒、及び、アンモニア(R717)、二酸化炭素(R744)等の自然系冷媒が挙げられる。 As the refrigerant, a saturated fluorohydrocarbon (HFC) refrigerant, an unsaturated fluorohydrocarbon (HFO) refrigerant, a hydrocarbon refrigerant, a fluorine-containing ether-based refrigerant such as perfluoroethers, a bis(trifluoromethyl)sulfide refrigerant, Examples include trifluoroiodomethane refrigerants and natural refrigerants such as ammonia (R717) and carbon dioxide (R744).

飽和フッ化炭化水素冷媒としては、好ましくは炭素数1〜3、より好ましくは1〜2の飽和フッ化炭化水素が用いられる。飽和フッ化炭化水素冷媒は、例えば、ジフルオロメタン(R32)、トリフルオロメタン(R23)、ペンタフルオロエタン(R125)、1,1,2,2−テトラフルオロエタン(R134)、1,1,1,2−テトラフルオロエタン(R134a)、1,1,1−トリフルオロエタン(R143a)、1,1−ジフルオロエタン(R152a)、フルオロエタン(R161)、1,1,1,2,3,3,3−ヘプタフルオロプロパン(R227ea)、1,1,1,2,3,3−ヘキサフルオロプロパン(R236ea)、1,1,1,3,3,3−ヘキサフルオロプロパン(R236fa)、1,1,1,3,3−ペンタフルオロプロパン(R245fa)、及び1,1,1,3,3−ペンタフルオロブタン(R365mfc)のいずれかの1種又は2種以上の混合物であってよい。 The saturated fluorohydrocarbon refrigerant is preferably a saturated fluorohydrocarbon having 1 to 3 carbon atoms, and more preferably 1 to 2 carbon atoms. The saturated fluorohydrocarbon refrigerant is, for example, difluoromethane (R32), trifluoromethane (R23), pentafluoroethane (R125), 1,1,2,2-tetrafluoroethane (R134), 1,1,1, 2-tetrafluoroethane (R134a), 1,1,1-trifluoroethane (R143a), 1,1-difluoroethane (R152a), fluoroethane (R161), 1,1,1,2,3,3,3 -Heptafluoropropane (R227ea), 1,1,1,2,3,3-hexafluoropropane (R236ea), 1,1,1,3,3,3-hexafluoropropane (R236fa), 1,1, It may be any one of 1,3,3-pentafluoropropane (R245fa) and 1,1,1,3,3-pentafluorobutane (R365mfc), or a mixture of two or more thereof.

飽和フッ化炭化水素冷媒としては、例えばR32単独;R23単独;R134a単独;R125単独;R134a/R32=60〜80質量%/40〜20質量%の混合物;R32/R125=40〜70質量%/60〜30質量%の混合物;R125/R143a=40〜60質量%/60〜40質量%の混合物;R134a/R32/R125=60質量%/30質量%/10質量%の混合物;R134a/R32/R125=40〜70質量%/15〜35質量%/5〜40質量%の混合物;R125/R134a/R143a=35〜55質量%/1〜15質量%/40〜60質量%の混合物などが特に好ましい例として挙げられる。さらに具体的には、R134a/R32=70/30質量%の混合物;R32/R125=60/40質量%の混合物;R32/R125=50/50質量%の混合物(R410A);R32/R125=45/55質量%の混合物(R410B);R125/R143a=50/50質量%の混合物(R507C);R32/R125/R134a=30/10/60質量%の混合物;R32/R125/R134a=23/25/52質量%の混合物(R407C);R32/R125/R134a=25/15/60質量%の混合物(R407E);R125/R134a/R143a=44/4/52質量%の混合物(R404A)などが好ましく用いられる。 Examples of the saturated fluorohydrocarbon refrigerant include R32 alone; R23 alone; R134a alone; R125 alone; R134a/R32=60 to 80 mass%/40 to 20 mass% mixture; R32/R125=40 to 70 mass%/ 60 to 30 mass% mixture; R125/R143a=40 to 60 mass%/60 to 40 mass% mixture; R134a/R32/R125=60 mass%/30 mass%/10 mass% mixture; R134a/R32/ R125=40 to 70% by mass/15 to 35% by mass/5 to 40% by mass; R125/R134a/R143a=35 to 55% by mass/1 to 15% by mass/40 to 60% by mass. As a preferable example. More specifically, a mixture of R134a/R32=70/30% by mass; a mixture of R32/R125=60/40% by mass; a mixture of R32/R125=50/50% by mass (R410A); R32/R125=45 R55/55 mass% mixture (R410B); R125/R143a=50/50 mass% mixture (R507C); R32/R125/R134a=30/10/60 mass% mixture; R32/R125/R134a=23/25 /52 mass% mixture (R407C); R32/R125/R134a=25/15/60 mass% mixture (R407E); R125/R134a/R143a=44/4/52 mass% mixture (R404A) and the like are preferable. Used.

不飽和フッ化炭化水素冷媒としては、フッ素数が3のフルオロエチレン及びフッ素数が3〜5のフルオロプロペンが挙げられる。不飽和フッ化炭化水素冷媒は、例えば、1,1,2−トリフルオロエチレン(HFO−1123)、1,2,3,3,3−ペンタフルオロプロペン(HFO−1225ye)、1,3,3,3−テトラフルオロプロペン(HFO−1234ze)、2,3,3,3−テトラフルオロプロペン(HFO−1234yf)、1,2,3,3−テトラフルオロプロペン(HFO−1234ye)、及び3,3,3−トリフルオロプロペン(HFO−1243zf)のいずれかの1種又は2種以上の混合物であってよい。 Examples of unsaturated fluorohydrocarbon refrigerants include fluoroethylene having a fluorine number of 3 and fluoropropene having a fluorine number of 3 to 5. The unsaturated fluorohydrocarbon refrigerants are, for example, 1,1,2-trifluoroethylene (HFO-1123), 1,2,3,3,3-pentafluoropropene (HFO-1225ye), 1,3,3. ,3-Tetrafluoropropene (HFO-1234ze), 2,3,3,3-tetrafluoropropene (HFO-1234yf), 1,2,3,3-tetrafluoropropene (HFO-1234ye), and 3,3. , 3-trifluoropropene (HFO-1243zf), or a mixture of two or more thereof.

炭化水素冷媒としては、炭素数1〜5の炭化水素が挙げられる。炭化水素冷媒は、例えば、メタン、エチレン、エタン、プロピレン、プロパン(R290)、シクロプロパン、ノルマルブタン、イソブタン、シクロブタン、メチルシクロプロパン、2−メチルブタン、及びノルマルペンタンのいずれかの1種又は2種以上の混合物であってよい。 Examples of the hydrocarbon refrigerant include hydrocarbons having 1 to 5 carbon atoms. The hydrocarbon refrigerant is, for example, one or two of methane, ethylene, ethane, propylene, propane (R290), cyclopropane, normal butane, isobutane, cyclobutane, methylcyclopropane, 2-methylbutane, and normal pentane. It may be a mixture of the above.

冷媒は、80℃以上及び3.4MPa以上の高温高圧条件を得やすい観点から、好ましくはジフルオロメタン(R32)を含有し、より好ましくはジフルオロメタン(R32)及びペンタフルオロエタン(R125)を含有している。冷媒は、ジフルオロメタン、又はジフルオロメタン及びペンタフルオロエタンに加えて、上記の冷媒を更に含有していてよい。ジフルオロメタン、又はジフルオロメタン及びペンタフルオロエタンと共に用いられる冷媒は、好ましくは、1,1,1,2−テトラフルオロエタン(R134a)、2,3,3,3−テトラフルオロプロペン(HFO1234yf)、1,3,3,3−テトラフルオロプロペン(HFO1234ze(E)若しくは(Z))、トリフルオロエチレン(HFO1123)であってよい。 The refrigerant preferably contains difluoromethane (R32), more preferably difluoromethane (R32) and pentafluoroethane (R125), from the viewpoint of easily obtaining high-temperature and high-pressure conditions of 80° C. or higher and 3.4 MPa or higher. ing. The refrigerant may further contain the above-mentioned refrigerants in addition to difluoromethane or difluoromethane and pentafluoroethane. The refrigerant used with difluoromethane or difluoromethane and pentafluoroethane is preferably 1,1,1,2-tetrafluoroethane (R134a), 2,3,3,3-tetrafluoropropene (HFO1234yf), 1 , 3,3,3-tetrafluoropropene (HFO1234ze(E) or (Z)) or trifluoroethylene (HFO1123).

ジフルオロメタン、又はジフルオロメタン及びペンタフルオロエタンと共に用いられる冷媒の含有量は、冷媒全量基準で、例えば80質量%以下であってよく、好ましくは30〜60質量%であってよい。 The content of the refrigerant used with difluoromethane or difluoromethane and pentafluoroethane may be, for example, 80% by mass or less, and preferably 30 to 60% by mass, based on the total amount of the refrigerant.

これらの中でも、冷媒としては、質量比(R32/R125/R134a)が23/25/52であるR32とR125とR134aとの混合冷媒(R407C)、質量比(R32/R125/HFO1234yf/R134a)が24.3/24.7/25.3/25.7であるR32とR125とHFO1234yfとR134aとの混合冷媒(R449A)、質量比(R32/R125/HFO1234yf/R134a/HFO1234ze(E))が26/26/20/21/7であるR32とR125とHFO1234yfとR134aとHFO1234ze(E)との混合冷媒(R448A)が好適に用いられる。 Among these, as the refrigerant, a mixed refrigerant (R407C) of R32, R125 and R134a having a mass ratio (R32/R125/R134a) of 23/25/52, and a mass ratio (R32/R125/HFO1234yf/R134a) are used. The mixed refrigerant (R449A) of R32, R125, HFO1234yf and R134a, which is 24.3/24.7/25.3/25.7, and the mass ratio (R32/R125/HFO1234yf/R134a/HFO1234ze(E)) are 26. A mixed refrigerant (R448A) of R26, R125, HFO1234yf, R134a, and HFO1234ze(E), which is /26/20/21/7, is preferably used.

冷媒は、より好ましくは、ジフルオロメタン及びペンタフルオロエタンからなっている。冷媒中のジフルオロメタン(R32)とペンタフルオロエタン(R125)との質量比(R32/R125)は、例えば40/60〜70/30であってよい。このような冷媒としては、質量比(R32/R125)が60/40である冷媒、質量比(R32/R125)が50/50である冷媒(R410A)、及び質量比(R32/R125)が45/55である冷媒(R410B)が好適に用いられ、R410Aが特に好適に用いられる。 The refrigerant more preferably consists of difluoromethane and pentafluoroethane. The mass ratio (R32/R125) of difluoromethane (R32) and pentafluoroethane (R125) in the refrigerant may be, for example, 40/60 to 70/30. Examples of such a refrigerant include a refrigerant having a mass ratio (R32/R125) of 60/40, a refrigerant having a mass ratio (R32/R125) of 50/50 (R410A), and a mass ratio (R32/R125) of 45. A refrigerant (R410B) of /55 is preferably used, and R410A is particularly preferably used.

冷凍機油は、冷媒と混合された状態(作動流体)の温度80℃、絶対圧力3.4MPa)における冷媒溶解粘度が2〜4mm/sとなるような冷凍機油であればよい。冷凍機油は、冷凍機油そのものの粘度に加えて、冷媒と冷凍機油との相溶性(溶解性)が冷凍機油の種類によって異なることを考慮して選定される必要がある。つまり、冷凍機油そのものの粘度と、冷媒に対する相溶性(溶解性)との両方において適切な冷凍機油を選定することにより、作動流体の冷媒溶解粘度が上記範囲内となる。 The refrigerating machine oil may be a refrigerating machine oil having a refrigerant dissolution viscosity of 2 to 4 mm 2 /s in a state (working fluid) mixed with a refrigerant at a temperature of 80° C. and an absolute pressure of 3.4 MPa. The refrigerating machine oil must be selected in consideration of the viscosity of the refrigerating machine oil itself and the fact that the compatibility (solubility) between the refrigerant and the refrigerating machine oil varies depending on the type of the refrigerating machine oil. That is, by selecting an appropriate refrigerating machine oil in terms of both the viscosity of the refrigerating machine oil itself and the compatibility (solubility) with the refrigerant, the refrigerant dissolving viscosity of the working fluid falls within the above range.

冷凍機油の40℃における動粘度は、好ましくは2mm/s以上、より好ましくは10mm/s以上、更に好ましくは20mm/s以上であり、また、好ましくは125mm/s以下、より好ましくは100mm/s以下、更に好ましくは80mm/s以下である。 Kinematic viscosity at 40 ° C. of the refrigerating machine oil is preferably 2 mm 2 / s or more, more preferably 10 mm 2 / s or more, more preferably at 20 mm 2 / s or more, and preferably not more than 125 mm 2 / s, more preferably Is 100 mm 2 /s or less, more preferably 80 mm 2 /s or less.

冷凍機油の100℃における動粘度は、好ましくは1mm/s以上、より好ましくは2mm/s以上、更に好ましくは3mm/s以上であり、また、好ましくは11mm/s以下、より好ましくは10mm/s以下、更に好ましくは9mm/s以下である。 The kinematic viscosity of the refrigerating machine oil at 100° C. is preferably 1 mm 2 /s or more, more preferably 2 mm 2 /s or more, further preferably 3 mm 2 /s or more, and preferably 11 mm 2 /s or less, more preferably Is 10 mm 2 /s or less, more preferably 9 mm 2 /s or less.

本発明における動粘度は、JIS K−2283:1993に準拠して測定される動粘度を意味する。 The kinematic viscosity in the present invention means the kinematic viscosity measured according to JIS K-2283:1993.

冷凍機油の冷媒溶解前後の粘度低下率(以下、単に「粘度低下率」ともいう)は、下記式(1)に従って算出される。
粘度低下率(%)=(動粘度−冷媒溶解粘度)/動粘度×100 …(1)
式(1)中、動粘度は冷凍機油の80℃における動粘度(mm/s)を意味し、冷媒溶解粘度は冷媒と冷凍機油とからなる作動流体の温度80℃、絶対圧力3.4MPaにおける冷媒溶解粘度(mm/s)を意味する。
The viscosity reduction rate before and after the refrigerating machine oil is dissolved in the refrigerant (hereinafter, also simply referred to as “viscosity reduction rate”) is calculated according to the following equation (1).
Viscosity decrease rate (%)=(kinematic viscosity-refrigerant dissolution viscosity)/kinematic viscosity×100 (1)
In the formula (1), the kinematic viscosity means the kinematic viscosity (mm 2 /s) of the refrigerating machine oil at 80° C., and the refrigerant dissolution viscosity is the working fluid temperature consisting of the refrigerant and the refrigerating machine oil at 80° C. and the absolute pressure of 3.4 MPa. Means the refrigerant dissolution viscosity (mm 2 /s).

粘度低下率が大きいほど冷凍機油に対して冷媒が溶け込みやすくなるが、冷凍機油が冷媒に溶け込みすぎると潤滑性が低下する傾向にあるため、冷凍機油の粘度低下率は、潤滑性に優れる観点から、好ましくは85%以下、より好ましくは80%以下である。冷凍機油の粘度低下率の下限値は、特に制限されないが、粘度低下率が小さいほど冷凍機油に対して冷媒が溶解しにくくなるため、相溶性の観点からは、60%以上、70%以上又は75%以上であってよい。 The larger the viscosity decrease rate, the more easily the refrigerant dissolves in the refrigerating machine oil, but if the refrigerating machine oil dissolves in the refrigerant too much, the lubricity tends to decrease, so the viscosity decreasing rate of the refrigerating machine oil is from the viewpoint of excellent lubricity. , Preferably 85% or less, more preferably 80% or less. The lower limit of the viscosity reduction rate of the refrigerating machine oil is not particularly limited, but the smaller the viscosity reduction rate, the more difficult the refrigerant is to dissolve in the refrigerating machine oil, so from the viewpoint of compatibility, 60% or more, 70% or more, or It may be 75% or more.

冷凍機油の流動点は、好ましくは−10℃以下、より好ましくは−20℃以下であってよい。本発明における流動点は、JIS K2269−1987に準拠して測定された流動点を意味する。 The pour point of the refrigerating machine oil may be preferably -10°C or lower, more preferably -20°C or lower. The pour point in the present invention means the pour point measured according to JIS K2269-1987.

上記のような特性を有する冷凍機油は、潤滑油基油と、必要に応じて添加剤とを含有している。潤滑油基油は、例えば炭化水素油又は含酸素油であってよい。炭化水素油としては、鉱油、オレフィン重合体、ナフタレン化合物、アルキルベンゼン等が挙げられる。含酸素油としては、モノエステル、ジエステル、ポリオールエステル、コンプレックスエステル等のエステル油、ポリアルキレングリコール、ポリビニルエーテル、ポリフェニルエーテル、パーフルオロエーテル等のエーテル油が挙げられる。含酸素油は、ポリオールエステル、ポリアルキレングリコール及びポリビニルエーテルから選ばれる少なくとも1種を主成分とすることが好ましく、ポリオールエステル又はポリビニルエーテルを主成分とすることがより好ましい。潤滑油基油の含有量は、冷凍機油全量基準で、80質量%以上、90質量%以上又は95質量%以上であってよい。 The refrigerating machine oil having the above characteristics contains a lubricating base oil and, if necessary, an additive. The lubricating base oil may be, for example, a hydrocarbon oil or an oxygenated oil. Examples of hydrocarbon oils include mineral oils, olefin polymers, naphthalene compounds and alkylbenzenes. Examples of the oxygen-containing oil include ester oils such as monoester, diester, polyol ester and complex ester, and ether oils such as polyalkylene glycol, polyvinyl ether, polyphenyl ether and perfluoroether. The oxygen-containing oil preferably contains at least one selected from polyol ester, polyalkylene glycol and polyvinyl ether as a main component, and more preferably contains a polyol ester or polyvinyl ether as a main component. The content of the lubricating base oil may be 80% by mass or more, 90% by mass or more, or 95% by mass or more based on the total amount of the refrigerating machine oil.

添加剤としては、エポキシ化合物、カルボジイミド化合物等の酸捕捉剤、フェノール化合物、アミン化合物等の酸化防止剤、リン化合物、硫黄化合物等の極圧剤、エステル化合物等の油性剤、シリコーン化合物等の消泡剤、ベンゾトリアゾール化合物等の金属不活性化剤、リン化合物等の摩耗防止剤、ポリ(メタ)アクリレート化合物等の粘度指数向上剤などが挙げられる。添加剤の含有量は、冷凍機油全量基準で、5質量%以下又は2質量%以下であってよい。 Examples of additives include acid scavengers such as epoxy compounds and carbodiimide compounds, antioxidants such as phenol compounds and amine compounds, extreme pressure agents such as phosphorus compounds and sulfur compounds, oiliness agents such as ester compounds, and deodorizers such as silicone compounds. Examples thereof include foaming agents, metal deactivators such as benzotriazole compounds, antiwear agents such as phosphorus compounds, and viscosity index improvers such as poly(meth)acrylate compounds. The content of the additive may be 5% by mass or less or 2% by mass or less based on the total amount of the refrigerating machine oil.

作動流体における冷凍機油の含有量は、冷媒100質量部に対して、1〜500質量部であってよく、2〜400質量部であってもよい。 The content of the refrigerating machine oil in the working fluid may be 1 to 500 parts by mass, or 2 to 400 parts by mass with respect to 100 parts by mass of the refrigerant.

作動流体の温度80℃、絶対圧力3.4MPaにおける冷媒溶解粘度は、2〜4mm/sであり、好ましくは、2〜3.9mm/s、2〜3.8mm/s、2〜3.6mm/s、2.1〜4mm/s、2.1〜3.9mm/s、2.1〜3.8mm/s、2.1〜3.6mm/s、2.2〜4mm/s、2.2〜3.9mm/s、2.2〜3.8mm/s、2.2〜3.6mm/s、2.4〜4mm/s、2.4〜3.9mm/s、2.4〜3.8mm/s、又は2.4〜3.6mm/sである。 The refrigerant dissolution viscosity at a working fluid temperature of 80° C. and an absolute pressure of 3.4 MPa is 2 to 4 mm 2 /s, preferably 2 to 3.9 mm 2 /s, 2 to 3.8 mm 2 /s, 2 3.6mm 2 /s,2.1~4mm 2 /s,2.1~3.9mm 2 /s,2.1~3.8mm 2 /s,2.1~3.6mm 2 / s, 2 .2~4mm 2 /s,2.2~3.9mm 2 /s,2.2~3.8mm 2 /s,2.2~3.6mm 2 /s,2.4~4mm 2 / s, 2.4~3.9mm 2 /s,2.4~3.8mm 2 / s, or a 2.4~3.6mm 2 / s.

作動流体の冷媒溶解粘度は、以下の手順に従って測定される。まず、振動式粘度計を収容した200mLの耐圧容器に、冷媒循環システム6内に充填されている冷凍機油100gを入れ、容器内を真空脱気した後、冷媒を加えて作動流体を調製する。このとき、温度80℃、絶対圧力3.4MPaの条件となるように、冷媒の圧力及び耐圧容器の温度を調整する。そして、容器内の作動流体の粘度を測定する。 The refrigerant dissolution viscosity of the working fluid is measured according to the following procedure. First, 100 g of refrigerating machine oil filled in the refrigerant circulation system 6 is placed in a 200 mL pressure-resistant container containing a vibrating viscometer, and the inside of the container is vacuum deaerated, and then a refrigerant is added to prepare a working fluid. At this time, the pressure of the refrigerant and the temperature of the pressure vessel are adjusted so that the temperature is 80° C. and the absolute pressure is 3.4 MPa. Then, the viscosity of the working fluid in the container is measured.

冷凍機10は、例えば、作動流体が温度80℃、絶対圧力3.4MPaの条件において2〜4mm/sの冷媒溶解粘度を示すような冷媒と冷凍機油とを、冷媒循環システム6内に充填する工程(充填工程)を備える製造方法により製造される。充填工程においては、冷媒及び冷凍機油をそれぞれ別個に冷媒循環システム6に充填してよい。充填工程以外の工程は、公知の冷凍機の製造方法と同様であってよい。 The refrigerator 10 is, for example, filled in the refrigerant circulation system 6 with a refrigerant and a refrigerating machine oil that have a working fluid temperature of 80° C. and a refrigerant dissolution viscosity of 2 to 4 mm 2 /s under an absolute pressure of 3.4 MPa. It is manufactured by a manufacturing method including a step (filling step). In the filling step, the refrigerant circulation system 6 may be filled with the refrigerant and the refrigerating machine oil separately. The steps other than the filling step may be the same as the known refrigerator manufacturing method.

以上説明した冷凍機10では、作動流体が温度80℃、絶対圧力3.4MPaの条件において2〜4mm/sの冷媒溶解粘度を示すような冷媒と冷凍機油とが冷媒循環システム6内に充填されていることによって、消費エネルギーの抑制と冷凍能力又は冷房能力の向上とのバランスを確保でき、COPの向上が可能となる。COPを向上させることが可能となる。 In the refrigerator 10 described above, the refrigerant circulation system 6 is filled with the refrigerant and the refrigerating machine oil in which the working fluid has a refrigerant dissolution viscosity of 2 to 4 mm 2 /s under the conditions of a temperature of 80° C. and an absolute pressure of 3.4 MPa. By doing so, it is possible to secure a balance between suppression of energy consumption and improvement of refrigerating capacity or cooling capacity, and it is possible to improve COP. It becomes possible to improve COP.

ここで、冷凍機10のCOPは、下記式(2)に従って算出される。冷凍機10のCOPは、下記式(3)に従って算出することもできる。
COP=冷房能力(冷却量)[W]/消費エネルギー[W] …(2)
COP=(h−h)×G/P …(3)
式(3)中、hは蒸発器(熱交換器)4の出口エンタルピ[J/kg]を表し、hは蒸発器(熱交換器)4の入口エンタルピ[J/kg]を表し、Gは冷媒循環システム6を循環する冷媒の質量流量[kg/s]を表し、Pは冷媒循環システム6を駆動するモータ(図示せず)の動力(消費電力)[W]を表す。
Here, the COP of the refrigerator 10 is calculated according to the following equation (2). The COP of the refrigerator 10 can also be calculated according to the following formula (3).
COP=cooling capacity (cooling amount) [W]/energy consumption [W] (2)
COP=(h 1 −h 2 )×G/P (3)
In the formula (3), h 1 represents an outlet enthalpy [J/kg] of the evaporator (heat exchanger) 4, and h 2 represents an inlet enthalpy [J/kg] of the evaporator (heat exchanger) 4, G represents the mass flow rate [kg/s] of the refrigerant circulating in the refrigerant circulation system 6, and P represents the power (power consumption) [W] of the motor (not shown) that drives the refrigerant circulation system 6.

図2は、冷媒としてジフルオロメタンを含む混合冷媒(例えばR410A)を用い、冷凍機油として上記の好ましい動粘度を有する冷凍機油を用いたときの、作動流体の冷媒溶解粘度と冷凍機10のCOPとの関係の一例を示すグラフである。図2に示すように、作動流体の冷媒溶解粘度が2mm/s未満になると、シール性の低下等に起因して冷凍能力又は冷房能力が低下してしまい、所望のCOPが得られなくなる。一方、作動流体の冷媒溶解粘度が4mm/sを超えると、撹拌抵抗又は冷凍機の起動時の抵抗の増大等に伴い、消費エネルギーが増大してしまい、また、冷凍能力又は冷房能力が低下してしまうため、所望のCOPが得られなくなる。したがって、冷媒循環システム6内に充填される冷媒と冷凍機油とからなる作動流体は、温度80℃、絶対圧力3.4MPaの条件において2〜4mm/sの冷媒溶解粘度を示すことが必要であり、この場合、消費エネルギーの抑制と冷凍能力又は冷房能力の向上とを両立でき、優れたCOPが実現可能となる。特に、冷媒溶解前後の粘度低下率が70〜80%の冷凍機油は、冷凍機油と冷媒との相溶性及び潤滑性の両立もしやすく、好ましいものであった。 FIG. 2 shows the refrigerant dissolution viscosity of the working fluid and the COP of the refrigerator 10 when a mixed refrigerant containing difluoromethane (for example, R410A) is used as the refrigerant and a refrigerator oil having the above-mentioned preferable kinematic viscosity is used as the refrigerator oil. It is a graph which shows an example of the relationship of. As shown in FIG. 2, when the refrigerant dissolution viscosity of the working fluid is less than 2 mm 2 /s, the refrigerating capacity or the cooling capacity is deteriorated due to the deterioration of the sealability and the desired COP cannot be obtained. On the other hand, if the refrigerant dissolution viscosity of the working fluid exceeds 4 mm 2 /s, energy consumption will increase due to an increase in stirring resistance or resistance at the time of starting the refrigerator, and the refrigerating capacity or cooling capacity will decrease. Therefore, the desired COP cannot be obtained. Therefore, the working fluid composed of the refrigerant and the refrigerating machine oil filled in the refrigerant circulation system 6 needs to exhibit a refrigerant dissolution viscosity of 2 to 4 mm 2 /s under the conditions of a temperature of 80° C. and an absolute pressure of 3.4 MPa. In this case, both suppression of energy consumption and improvement of refrigerating capacity or cooling capacity can be achieved, and an excellent COP can be realized. In particular, the refrigerating machine oil having a viscosity reduction rate of 70 to 80% before and after the dissolution of the refrigerant was preferable because compatibility and lubricity of the refrigerating machine oil and the refrigerant were easily compatible with each other.

1…圧縮機、2…凝縮器、3…膨張機構、4…蒸発器、5…流路、6…冷媒循環システム、10…冷凍機。 1... Compressor, 2... Condenser, 3... Expansion mechanism, 4... Evaporator, 5... Flow path, 6... Refrigerant circulation system, 10... Refrigerator.

Claims (3)

圧縮機と、凝縮器と、膨張機構と、蒸発器とを有する冷媒循環システムを備え、前記冷媒循環システム内に冷媒と冷凍機油とが充填されている冷凍機であって、
前記冷凍機油の100℃における動粘度が3mm /s以上9mm /s以下であり、
前記冷媒と前記冷凍機油とからなる作動流体は、温度80℃、絶対圧力3.4MPaの条件において2.4〜3.6mm /sの冷媒溶解粘度を示し、
下記式(1)に従って算出される前記冷凍機油の冷媒溶解前後の粘度低下率が85%以下である、冷凍機。
粘度低下率(%)=(動粘度−冷媒溶解粘度)/動粘度×100 …(1)
[式(1)中、動粘度は前記冷凍機油の80℃における動粘度(mm /s)を意味し、冷媒溶解粘度は前記作動流体の温度80℃、絶対圧力3.4MPaにおける冷媒溶解粘度(mm /s)を意味する。]
A refrigerator having a compressor, a condenser, an expansion mechanism, and a refrigerant circulation system having an evaporator, wherein the refrigerant circulation system is filled with a refrigerant and refrigerating machine oil,
The refrigerating machine oil has a kinematic viscosity at 100° C. of 3 mm 2 /s or more and 9 mm 2 /s or less,
Working fluid consisting of the refrigerating machine oil and the refrigerant, the temperature 80 ° C., shows the refrigerant solution viscosity of 2.4~3.6mm 2 / s at the conditions of absolute pressure 3.4 MPa,
The refrigerator in which the viscosity reduction rate of the refrigerator oil before and after the refrigerant is dissolved is 85% or less, which is calculated according to the following formula (1) .
Viscosity decrease rate (%)=(kinematic viscosity-refrigerant dissolution viscosity)/kinematic viscosity×100 (1)
[In the formula (1), the kinematic viscosity means the kinematic viscosity (mm 2 /s) of the refrigerating machine oil at 80° C. , and the refrigerant dissolution viscosity is the refrigerant dissolution viscosity at a working fluid temperature of 80° C. and an absolute pressure of 3.4 MPa. It means (mm 2 /s). ]
圧縮機と、凝縮器と、膨張機構と、蒸発器とを有する冷媒循環システムを備える冷凍機の製造方法であって、
前記冷媒循環システム内に冷媒と冷凍機油とを充填する工程を備え、
前記冷凍機油の100℃における動粘度が3mm /s以上9mm /s以下であり、
前記冷媒と前記冷凍機油とからなる作動流体は、温度80℃、絶対圧力3.4MPaの条件において2.4〜3.6mm /sの冷媒溶解粘度を示し、
下記式(1)に従って算出される前記冷凍機油の冷媒溶解前後の粘度低下率が85%以下である、冷凍機の製造方法。
粘度低下率(%)=(動粘度−冷媒溶解粘度)/動粘度×100 …(1)
[式(1)中、動粘度は前記冷凍機油の80℃における動粘度(mm /s)を意味し、冷媒溶解粘度は前記作動流体の温度80℃、絶対圧力3.4MPaにおける冷媒溶解粘度(mm /s)を意味する。]
A compressor, a condenser, an expansion mechanism, a method of manufacturing a refrigerator including a refrigerant circulation system having an evaporator,
A step of filling the refrigerant circulation system with a refrigerant and refrigerating machine oil;
The refrigerating machine oil has a kinematic viscosity at 100° C. of 3 mm 2 /s or more and 9 mm 2 /s or less,
Working fluid consisting of the refrigerating machine oil and the refrigerant, the temperature 80 ° C., shows the refrigerant solution viscosity of 2.4~3.6mm 2 / s at the conditions of absolute pressure 3.4 MPa,
A method of manufacturing a refrigerator, wherein a viscosity reduction rate of the refrigerator oil before and after dissolution of a refrigerant is 85% or less calculated according to the following formula (1) .
Viscosity decrease rate (%)=(kinematic viscosity-refrigerant dissolution viscosity)/kinematic viscosity×100 (1)
[In the formula (1), the kinematic viscosity means the kinematic viscosity (mm 2 /s) of the refrigerating machine oil at 80° C. , and the refrigerant dissolution viscosity is the refrigerant dissolution viscosity at a working fluid temperature of 80° C. and an absolute pressure of 3.4 MPa. It means (mm 2 /s). ]
圧縮機と、凝縮器と、膨張機構と、蒸発器とを有する冷媒循環システムを備え、前記冷媒循環システム内に冷媒と冷凍機油とが充填されている冷凍機のCOPを向上させる方法であって、
前記冷媒と前記冷凍機油とからなる作動流体として、温度80℃、絶対圧力3.4MPaの条件において2.4〜3.6mm /sの冷媒溶解粘度を示す作動流体を使用し、
前記冷凍機油として、100℃における動粘度が3mm /s以上9mm /s以下であり、かつ、下記式(1)に従って算出される冷媒溶解前後の粘度低下率が85%以下である冷凍機油を使用することにより前記COPを向上させる方法。
粘度低下率(%)=(動粘度−冷媒溶解粘度)/動粘度×100 …(1)
[式(1)中、動粘度は前記冷凍機油の80℃における動粘度(mm /s)を意味し、冷媒溶解粘度は前記作動流体の温度80℃、絶対圧力3.4MPaにおける冷媒溶解粘度(mm /s)を意味する。]
A method for improving the COP of a refrigerator, which comprises a refrigerant circulation system having a compressor, a condenser, an expansion mechanism, and an evaporator, and in which the refrigerant circulation system is filled with a refrigerant and refrigerating machine oil. ,
As a working fluid composed of the refrigerant and the refrigerating machine oil, a working fluid having a refrigerant dissolution viscosity of 2.4 to 3.6 mm 2 /s at a temperature of 80° C. and an absolute pressure of 3.4 MPa is used .
As the refrigerating machine oil, a refrigerating machine oil having a kinematic viscosity at 100° C. of 3 mm 2 /s or more and 9 mm 2 /s or less and a viscosity decrease rate before and after melting of a refrigerant calculated according to the following formula (1) is 85% or less. how to improve the COP by using.
Viscosity decrease rate (%)=(kinematic viscosity-refrigerant dissolution viscosity)/kinematic viscosity×100 (1)
[In the formula (1), the kinematic viscosity means the kinematic viscosity (mm 2 /s) of the refrigerating machine oil at 80° C. , and the refrigerant dissolution viscosity is the refrigerant dissolution viscosity at a working fluid temperature of 80° C. and an absolute pressure of 3.4 MPa. It means (mm 2 /s). ]
JP2016021550A 2016-02-08 2016-02-08 Refrigerator, method for manufacturing refrigerator, and method for improving COP Active JP6736019B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016021550A JP6736019B2 (en) 2016-02-08 2016-02-08 Refrigerator, method for manufacturing refrigerator, and method for improving COP
CN201710060845.3A CN107044739B (en) 2016-02-08 2017-01-25 Refrigerator, method for manufacturing refrigerator, and method for improving COP
CN202010661049.7A CN111895672B (en) 2016-02-08 2017-01-25 Refrigerator, working fluid for refrigerator, and refrigerator oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016021550A JP6736019B2 (en) 2016-02-08 2016-02-08 Refrigerator, method for manufacturing refrigerator, and method for improving COP

Publications (2)

Publication Number Publication Date
JP2017141974A JP2017141974A (en) 2017-08-17
JP6736019B2 true JP6736019B2 (en) 2020-08-05

Family

ID=59543928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016021550A Active JP6736019B2 (en) 2016-02-08 2016-02-08 Refrigerator, method for manufacturing refrigerator, and method for improving COP

Country Status (2)

Country Link
JP (1) JP6736019B2 (en)
CN (2) CN107044739B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102481126B1 (en) 2018-04-02 2022-12-26 에네오스 가부시키가이샤 Refrigeration machines, refrigeration oils and working fluid compositions for refrigeration machines
KR20210124247A (en) * 2019-02-14 2021-10-14 이데미쓰 고산 가부시키가이샤 composition for refrigerator
CN112760080B (en) * 2020-12-29 2022-01-28 珠海格力电器股份有限公司 Mixed refrigerant and air conditioning system
WO2023210504A1 (en) * 2022-04-26 2023-11-02 パナソニックIpマネジメント株式会社 Air conditioner
JP2024088181A (en) * 2022-12-20 2024-07-02 三菱重工業株式会社 Refrigeration equipment

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410994B2 (en) * 1990-11-16 2003-05-26 株式会社日立製作所 Refrigeration equipment
JP2001289171A (en) * 2000-04-06 2001-10-19 Mitsubishi Electric Corp Refrigerant compressor
US20040209789A1 (en) * 2002-12-19 2004-10-21 Andrew Swallow Alkylbenzene/polyol ester blends for use in air conditioning systems
JP3685180B2 (en) * 2003-04-14 2005-08-17 ダイキン工業株式会社 Hermetic compressor
EP2743325A3 (en) * 2009-02-26 2014-09-10 Daikin Industries, Ltd. Method for evaluating a refrigerant composition comprising hydrofluoropropene with low global warming potential
KR101792643B1 (en) * 2009-08-28 2017-11-02 제이엑스티지 에네루기 가부시키가이샤 Refrigerant oil for freezers and operating fluid composition for freezers
JP5550391B2 (en) * 2010-03-12 2014-07-16 Jx日鉱日石エネルギー株式会社 Working fluid composition for refrigerator
US8961811B2 (en) * 2010-04-15 2015-02-24 E I Du Pont De Nemours And Company Compositions comprising E-1,2-difluoroethylene and uses thereof
WO2012086518A1 (en) * 2010-12-20 2012-06-28 日立アプライアンス株式会社 Compressor for refrigeration and air-conditioning, and refrigerating and air-conditioning apparatus
JP6115565B2 (en) * 2012-03-23 2017-04-19 Khネオケム株式会社 Mixed ester
JP6195429B2 (en) * 2012-03-29 2017-09-13 Jxtgエネルギー株式会社 Working fluid composition for refrigerator and refrigerator oil
JP2014037928A (en) * 2012-08-17 2014-02-27 Toshiba Carrier Corp Refrigeration cycle device
US9719001B2 (en) * 2013-03-25 2017-08-01 Jx Nippon Oil & Energy Corporation Working fluid composition for refrigerator
CN103509520A (en) * 2013-08-01 2014-01-15 广东美芝制冷设备有限公司 Composition and compressor and refrigeration equipment using the composition
US10077229B2 (en) * 2013-09-20 2018-09-18 Moresco Corporation Ether-containing monoester compound and use thereof
JP2017502155A (en) * 2014-01-10 2017-01-19 ザ ルブリゾル コーポレイションThe Lubrizol Corporation Lubricant for low global warming potential cooling system

Also Published As

Publication number Publication date
CN107044739B (en) 2020-08-04
JP2017141974A (en) 2017-08-17
CN111895672A (en) 2020-11-06
CN107044739A (en) 2017-08-15
CN111895672B (en) 2022-02-25

Similar Documents

Publication Publication Date Title
JP6093387B2 (en) Compositions and methods for cooling
JP6120879B2 (en) Heat transfer composition with improved miscibility with lubricating oil
US9725631B2 (en) Heat transfer compositions and methods
JP2023153215A (en) Working medium for heat cycle system and heat cycle system
JP6326061B2 (en) Low GWP heat transfer composition
JP6736019B2 (en) Refrigerator, method for manufacturing refrigerator, and method for improving COP
WO2015125876A1 (en) Composition for heat cycle system, and heat cycle system
JP2020079416A (en) Refrigerant-containing composition, heat transfer medium, and heat cycle system
JP2013530265A5 (en)
JP6062061B2 (en) Low GWP heat transfer composition
JP2015180724A (en) Working medium for heat cycle, and heat cycle system
US20160024361A1 (en) Heat transfer compositions and methods
BR112014019568B1 (en) HEAT TRANSFER COMPOSITION, HEAT TRANSFER SYSTEM, AND METHOD TO REPLACE AN EXISTING HEAT TRANSFER FLUID
CN113348222A (en) Composition containing trans-1, 2-difluoroethylene
US20160017199A1 (en) Systems for efficient heating and/or cooling and having low climate change impact
CN113316625A (en) Cis-1, 2-difluoroethylene-containing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200626

R150 Certificate of patent or registration of utility model

Ref document number: 6736019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250