WO2014026449A1 - 触摸感应器、内嵌式触摸液晶显示面板、液晶显示器 - Google Patents

触摸感应器、内嵌式触摸液晶显示面板、液晶显示器 Download PDF

Info

Publication number
WO2014026449A1
WO2014026449A1 PCT/CN2012/085853 CN2012085853W WO2014026449A1 WO 2014026449 A1 WO2014026449 A1 WO 2014026449A1 CN 2012085853 W CN2012085853 W CN 2012085853W WO 2014026449 A1 WO2014026449 A1 WO 2014026449A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrodes
touch sensor
liquid crystal
sensing
Prior art date
Application number
PCT/CN2012/085853
Other languages
English (en)
French (fr)
Inventor
姚绮君
王丽花
Original Assignee
上海天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海天马微电子有限公司 filed Critical 上海天马微电子有限公司
Priority to EP12877080.7A priority Critical patent/EP2735948B1/en
Priority to KR1020177005870A priority patent/KR101758756B1/ko
Priority to KR1020137030599A priority patent/KR20140061314A/ko
Priority to US14/050,186 priority patent/US9618782B2/en
Publication of WO2014026449A1 publication Critical patent/WO2014026449A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to the field of touch liquid crystal display technologies, and in particular, to a touch sensor, an in-cell touch liquid crystal display panel, and a liquid crystal display. Background technique
  • touch screens are increasingly used in a variety of electronic products, such as cell phones, tablets, music players, and the like.
  • the touch screen acts as an interface for user interaction, such as resistive, capacitive, surface acoustic wave, infrared, and so on.
  • the capacitive touch screen has the advantages of long life, high transmittance and support for multi-touch compared with the resistive touch screen, and mutual capacitance touch sensing is an emerging technology in the capacitive touch rhinoceros, which is suitable for noise. It has a good suppression of the parasitic capacitance to the ground and can achieve multi-touch, so it has become the main direction of the manufacturers of various capacitive touch screen chips.
  • FIG. 1 is a schematic cross-sectional structural view of a liquid crystal display panel of an existing in-cell mutual capacitance touch screen.
  • the liquid crystal display panel includes: an array substrate 11 and a color filter substrate 13 disposed opposite to each other, wherein the array substrate 11 includes a thin film field effect transistor (TFT) array and a pixel electrode array; a liquid crystal layer 12 between the array substrate 11 and the color filter substrate 13; a touch sensing electrode structure 14 formed on the color filter substrate 13, wherein the touch sensing electrode structure 14 includes a plurality of driving electrodes and a plurality of A matrix structure formed by crossing the sensing electrodes, a mutual capacitance is formed between the driving electrodes and the sensing electrodes, and a black matrix 15 formed on the touch sensing electrode structure 14 is formed.
  • TFT thin film field effect transistor
  • liquid crystal display panels are somewhat different in structure, for example, an In-Plane-Switching (IPS) type liquid crystal panel or a Fringe Field Switching (FFS) type liquid crystal panel, the common electrode is located at In the TFT array and the pixel electrode array layer 11; for a twisted nematic (TN) type liquid crystal panel or a vertical alignment (VA) type liquid crystal panel, the common electrode is the color filter substrate 13 portion.
  • a glass substrate (not shown in Fig. 1) is usually formed on the outside of the TFT array and the pixel electrode array 11 and the black matrix 15, respectively.
  • the touch sensing electrode structure 14 is The driving electrode and the sensing electrode are blank areas, which result in uneven distribution of light transmittance of the liquid crystal display panel, which affects the display effect.
  • FIG. 2 is an equivalent circuit diagram of an in-cell mutual capacitance touch screen. Referring to FIG.
  • the equivalent circuit includes a signal source 141, a driving electrode resistor 142, a mutual capacitance 143 between the driving electrode and the sensing electrode, a sensing electrode resistance 144, and a detecting circuit 145.
  • a parasitic capacitance Cd is formed between the driving electrode and the common electrode, and a parasitic capacitance Cs is formed between the sensing electrode and the common electrode, which introduces noise into the liquid crystal display panel, mainly including two aspects.
  • the signal current portion of the driving line input is shunted by Cd.
  • the other part is coupled to the signal receiving end through Cs.
  • the capacitance values of Cd and Cs are constantly changed by the liquid crystal molecules in the liquid crystal layer, so that the coupled signal is also constantly changing to form noise.
  • the common electrode is usually indium tin oxide.
  • the (ITO) material has a large electrical resistance, and the inherent noise present on the common electrode is directly coupled to the signal receiving end through Cs. The introduction of noise affects the detection of the touch screen sensing signal, that is, the liquid crystal display panel cannot accurately detect the user's finger touch, and thus cannot respond to the finger touch response in time. Summary of the invention
  • the problem solved by the present invention is that the liquid crystal display panel with the in-cell mutual capacitance touch screen has better light transmittance and higher screen brightness.
  • an embodiment of the present invention provides a touch sensor including a plurality of driving electrodes and a plurality of sensing electrodes crossing the plurality of driving electrodes, and a mutual capacitance is formed between the driving electrodes and the sensing electrodes;
  • a remaining area other than the driving electrode and the sensing electrode is further provided with a plurality of dummy electrodes, and the dummy electrode, the driving electrode and the sensing electrode are located in the same layer.
  • the embodiment of the present invention further provides an in-cell touch liquid crystal display panel, including a first substrate and an array substrate disposed opposite to each other, and a liquid crystal layer disposed between the first substrate and the array substrate; A transparent substrate, a black matrix, the touch sensor, and a color film layer.
  • the embodiment of the invention further provides a liquid crystal display comprising the above-mentioned embedded touch liquid crystal display panel.
  • the transmittance distribution of the liquid crystal display panel is uniform, the display effect is better, and multiple
  • the dummy electrode is located in the same layer as the driving electrode and the sensing electrode, so that the entire liquid crystal panel has good light transmittance and high screen brightness. It can also reduce the parasitic capacitance between the touch sensor and the array substrate while ensuring a sufficiently large mutual capacitance to make the touch sensing signal easy to detect, and also eliminate the static electricity generated by the liquid crystal display panel due to finger touch.
  • 1 is a cross-sectional structural view of a liquid crystal display panel of an in-cell mutual capacitance touch panel in the prior art
  • 2 is a schematic diagram of an equivalent circuit of an embedded mutual capacitance touch screen in the prior art
  • FIG. 3A is a schematic diagram of a schematic structure of a driving electrode in a touch sensor according to an embodiment of the present application.
  • FIG. 3B is a schematic diagram of a schematic structure of a sensing electrode in a touch sensor according to an embodiment of the present application.
  • FIG. 3C is a top view of a touch sensor including a driving electrode and a sensing electrode according to an embodiment of the present application
  • FIG. 3D is a top view of another touch sensor including a driving electrode and a sensing electrode according to an embodiment of the present application
  • 4 is a partial structural diagram of a touch sensor provided by an embodiment of the present application
  • FIG. 4A is a schematic cross-sectional view along the a-a direction of the partial structure of the touch sensor shown in FIG. 4;
  • 4B is a schematic cross-sectional view along the b-b direction of the partial structure of the touch sensor shown in FIG. 4;
  • FIG. 5 is a cross-sectional structural diagram of an in-cell touch liquid crystal display panel provided by an embodiment of the present application. detailed description
  • the inventors have researched and provided a touch sensor, an in-cell touch liquid crystal display panel, and a liquid crystal display.
  • the technical solution enables the liquid crystal display panel with the embedded mutual capacitance touch screen to have better light transmittance and higher screen brightness; and reduce the parasitic between the touch sensor and the liquid crystal panel except the driving electrode and the sensing electrode.
  • the capacitor a large enough mutual capacitance is ensured to make the touch sensing signal easy to detect, and the static electricity generated by the finger touch of the liquid crystal display panel is also eliminated.
  • FIG. 3A is a schematic diagram of a schematic structure of a driving electrode in a touch sensor.
  • a plurality of parallel driving electrodes 2A are included, and the driving structure of the driving electrodes 2 ⁇ has a diamond shape.
  • the graphical structure of the sensing electrodes in the touch sensor is shown.
  • a plurality of parallel sensing electrodes 22' are included, and the sensing electrode 22' has a diamond structure.
  • the graphic structure of the driving electrode and the sensing electrode may also be other common patterns, such as a rectangular shape, a strip shape, etc., and the graphic structures of the driving electrode and the sensing electrode may also be different graphics.
  • the pattern structure of the driving electrodes is rectangular, and the pattern structure of the sensing electrodes is strip-shaped.
  • each driving electrode (or sensing electrode) It is divided into a plurality of segments by a plurality of sensing electrodes (or driving electrodes).
  • each of the driving electrodes 21' is divided into a plurality of segments by the plurality of sensing electrodes 22.
  • the plurality of segments of the same driving electrode need to pass through the bridge (as shown by the thick line segment 25 in FIG. 3C). 'Showed' is electrically connected to each other, and the sensing electrode 22' is still intact.
  • FIG. 3C each driving electrode (or sensing electrode) It is divided into a plurality of segments by a plurality of sensing electrodes (or driving electrodes).
  • the plurality of segments of the same driving electrode need to pass through the bridge (as shown by the thick line segment 25 in FIG. 3C). 'Showed' is electrically connected to each other, and the sensing electrode 22' is still intact.
  • each of the sensing electrodes 22' is divided into a plurality of segments by a plurality of driving electrodes 2, in which case a plurality of segments of the same sensing electrode are also required to pass through the bridge (such as the thick segment 25 in FIG. 3D).
  • 'Showed' is electrically connected to each other, and the drive electrode 2 is still intact.
  • a mutual capacitance is formed between the plurality of driving electrodes 21' and the plurality of sensing electrodes 22', and at the driving electrodes 2
  • a blank area is provided in the layer where the sensing electrode 22' is located, except for the area occupied by the plurality of driving electrodes 21' and the plurality of sensing electrodes 22'.
  • a dummy electrode is disposed in the blank area 23'. Adjacent dummy electrodes are electrically connected across the bridge (as shown by thin line segments 24' in Figures 3C and 3D) in a direction parallel to the drive electrodes or preferably parallel to the sense electrodes 22'.
  • the dummy electrode fills the blank area 23', which can compensate for the transmittance of the blank area in the existing touch sensor due to the absence of the electrode and the transmittance of the area where the driving electrode and the sensing electrode are located.
  • the difference between the light transmittance is evenly distributed, so that the screen of the finally produced liquid crystal display is uniform.
  • the touch sensor provided by the present invention is described below in a specific embodiment.
  • FIG. 4 is a partial schematic structural view of a specific embodiment of a touch sensor of the present invention.
  • the driving electrode 21 and the sensing electrode 22 respectively have a first pattern structure and a second pattern structure that match each other.
  • the first graphic structure and the second graphic structure are in a matching branch shape, and the first graphic structure presented by each of the driving electrodes 21 is in the shape of a branch, each of which is
  • the second pattern structure of the sensing electrode 22 is branched, and the two branch-like branch portions (such as the portion of the width d in FIG. 4) can be inlaid, that is, the matched branch shape.
  • the touch sensor includes a plurality of driving electrodes 21 and a plurality of sensing electrodes 22 crossing the plurality of driving electrodes 21.
  • each sensing electrode 22 is driven by a plurality of driving electrodes 21
  • the plurality of segments are connected by a bridge.
  • the touch sensor further includes a first bridge 25, and the plurality of segments of the same sensing electrode 22 pass through.
  • the first bridges 25 are electrically connected, and an insulating layer is also disposed on the layer where the driving electrodes or the sensing electrodes are located to ensure insulation between the first bridges 25 and the driving electrodes 21.
  • FIG. 1 the touch sensor
  • FIG. 4A is a schematic cross- sectional view along the aa direction in the partial structure of the touch sensor shown in FIG. 4.
  • the sensing electrode 22 is divided into two segments by the driving electrode 21, and the two sensing electrodes are electrically connected by the first bridge 25, and further, the layer of the driving electrode 21 or the sensing electrode 22 is disposed.
  • the positions of the driving electrode 21 and the sensing electrode 22 may be interchanged, that is, the position where the driving electrode 21 is located in FIG. 4 may be set as the sensing electrode 22, and the position of the sensing electrode 22 is located. It can also be provided as the drive electrode 21. Therefore, when each of the driving electrodes 21 is divided into a plurality of segments by the Donor sensing electrodes 22, the plurality of segments of the same driving electrode 21 are electrically connected through the first 3 bridges 25, and also the driving electrodes or the sensing electrodes are also required.
  • An insulating layer is disposed on the layer to ensure insulation between the first bridge 25 and the sensing electrode 22.
  • the position of the first span bridge 25 is actually at the intersection of the plurality of drive electrodes 21 and the plurality of sense electrodes 22.
  • the multiple-segment driving electrodes or the multi-segment sensing electrodes are connected to each other by a cross-bridge. Other electrical connections may be used by those skilled in the art, and details are not described herein again.
  • a plurality of dummy electrodes 23 are disposed in the remaining area of the touch sensor except the drive electrode 21 and the sensing electrode 22.
  • the plurality of driving electrodes 21 and the plurality of sensing electrodes 22 are located in the same layer, and the remaining area refers to an area in the layer except the plurality of driving electrodes 21 and the plurality of sensing electrodes 22. All blank areas except.
  • the present embodiment as shown in FIG.
  • the remaining area is a sub-blank area including a plurality of sub-negative driving electrodes 21 adjacent in the horizontal direction, for example, the virtual electrode 23 in the figure Area, understandable, in the layer where the entire drive and sense electrodes are located There are a plurality of such sub-blank areas.
  • the positions of the driving electrode and the sensing electrode are interchangeable, that is, the position where the driving electrode 21 is located in FIG. 4 may be set as the sensing electrode, and the position where the sensing electrode 22 is located may also be set as the driving electrode.
  • the remaining area is a sub-blank area including a plurality of two sensing electrodes adjacent in the horizontal direction.
  • the dummy electrode 23 and the sensing electrode 22 of the driving electrode 21 are located in the same layer, it is not necessary to additionally add an additional layer in the touch sensor for setting the dummy electrode. The problem of a decrease in light transmittance due to the addition of an additional layer is avoided, so that the resulting liquid crystal display panel has better light transmittance and a higher screen brightness.
  • the dummy electrode 23 is provided in the touch sensor, the inventors have found that when the dummy electrode 23 is subjected to electrostatic induction by a finger touch, the flip state of the liquid crystal molecules in the liquid crystal layer is changed, which affects the display effect. Therefore, in another embodiment, the virtual electrode 23 is grounded or fixed at a fixed level to eliminate the effects of static electricity.
  • the range of the fixed level is -20V or more and +20V or less, that is, not less than -20V and not more than +20V.
  • the touch sensor further includes a second bridge 24, preferably, in the direction along the sensing electrode 22, between the adjacent virtual electrodes 23 through the second
  • the bridge 24 is electrically connected, and the second bridge 24 and the drive electrode 21 are insulated by the aforementioned insulating layer.
  • a cross-sectional view along the b-b direction in the partial structure of the touch sensor shown in Fig. 4 is shown in conjunction with Fig. 4B.
  • adjacent dummy electrodes 23 are electrically connected in the direction of the sensing electrode through the second bridge 24, and the second bridge 24 and the driving electrode 21 pass through the insulating layer 26 before. insulation.
  • a uniform insulating layer may be formed on the layer where the driving electrode 21 and the sensing electrode 22 are located, and then the sensing electrode that needs to be electrically connected is further disposed on the insulating layer. Or punching a hole at the driving electrode, and forming a first bridge connecting the sensing electrode or the driving electrode through the via hole, and passing the adjacent dummy electrode through the second method preferably in the direction of the sensing electrode.
  • the bridge is electrically connected, and preferably the first bridge and the second bridge are also located in the same layer, so that process steps can be reduced and manufacturing efficiency can be improved during the process of manufacturing.
  • the adjacent dummy electrodes 23 may be electrically connected through the second bridge 24 in the direction along the driving electrode 21, and the second bridge 24 and the driving may be The electrode 21 and the sensing electrode 22 are insulated by the aforementioned insulating layer.
  • the positions of the driving electrodes 21 and the sensing electrodes 22 in FIG. 4 may be interchanged, that is, the sensing electrodes are disposed at the position of the driving electrodes 21 as shown in FIG. 4, and the sensing electrodes are provided.
  • the driving electrode is disposed at a position of 22, and the position of the dummy electrode 23 is unchanged, but in this case, the dummy electrode 23 is surrounded by the sensing electrode, along the driving electrode or preferably in the direction along the sensing electrode,
  • the adjacent dummy electrodes 23 are electrically connected by the second bridge 24, and the second bridge 24 and the sensing electrodes, or the sensing electrodes and the driving electrodes, are insulated by the foregoing insulating layer.
  • the insulating layer may be located between the layer where the driving electrode and the sensing electrode are located and the color film layer (not shown in FIG. 4) in the conventional liquid crystal display panel structure, or may be located at the driving electrode and the sensing electrode.
  • the layer is between the black matrix (not shown in Figure 4).
  • the virtual electrodes are not limited to being connected by a bridge, and those skilled in the art may also use other electrical connections, for example. For example, in the embodiment of the present invention, only the electrical connection between the adjacent virtual electrodes is required, and the specific circuit connection does not affect the essence of the present invention, and details are not described herein again.
  • the second cross-bridge 24 can shield between the driving electrode or the sensing electrode and the common electrode (not shown in FIG. 4), and cut off the parasitic loop between the driving electrode, the common electrode and the sensing electrode, and weaken the liquid crystal layer. Noise caused by changes in parasitic loop current caused by flipping of liquid crystal molecules.
  • a mutual capacitance is formed between the intersecting driving electrodes 21 and the sensing electrodes 22, and the magnitude of the mutual capacitance is proportional to the size of the driving electrodes and the sensing electrodes, and also intersects the driving electrodes and the sensing electrodes.
  • the length of the edge is proportional.
  • the larger the area of the driving electrode and the sensing electrode is the larger the parasitic capacitance is, and the influence of the parasitic capacitance can be suppressed by reducing the area of the driving electrode and the sensing electrode, but this also weakens to some extent.
  • Mutual capacitance it is not easy to detect changes in the touch signal. Then, the inventors considered that while reducing the area of the driving electrode and the sensing electrode, the reduction in the mutual capacitance due to the reduction in area was compensated by increasing the edge length at which the driving electrode and the sensing electrode intersect.
  • the driving electrode is disposed in a first graphic structure
  • the sensing electrode is disposed in a second graphic structure
  • a shape of the first graphic structure matches a shape of the second graphic structure.
  • the area of the drive and sense electrodes is simultaneously reduced by the intersection of the two shaped drive electrodes and the sense electrodes.
  • the shape characteristic of the branch shape it is possible to increase the edge length at the intersection of the driving electrode and the sensing electrode while reducing the area of the driving electrode and the sensing electrode, and the more the number of branch-like branches, the longer the edge length.
  • the width of the branch portion of the driving electrode and the branch portion of the sensing electrode are both greater than 0.2 mm.
  • the width of the branch portion of the drive electrode or the branch portion of the sense electrode is greater than 0.2 mm.
  • the width d identified in the figure is the width of the drive electrode or the branch portion of the sense electrode. In the region of the first bridge 25 and the second bridge 24, since these regions are only the intersection of the driving electrode 21 and the sensing electrode 22, and do not affect the receiving strength of the touch signal, it is not required in the above-mentioned cross-bridge region. Its width is greater than 0.2 mm.
  • the branch shape of the driving electrode 21 and the branch shape of the sensing electrode 22 as shown in Fig. 4 are only schematic views, and are not limited to the shape of the branch.
  • the first graphic structure and the second graphic structure are not limited to being matched to each other, or may be other matching shapes, for example, a matching L-shaped graphic structure, etc., Let me repeat.
  • a parasitic capacitance formed between the sensing electrode and other electrodes of the liquid crystal display panel other than the driving electrode and the sensing electrode has a greater influence on the touch sensor signal, and therefore, in this embodiment, Preferably, the area of the sensing electrode is smaller than the area of the driving electrode, and the dummy electrode is surrounded by two adjacent driving electrodes, and in the direction of the sensing electrode, adjacent virtual electrodes are connected by a bridge (eg, Figure 4).
  • the dummy electrode is adjacent to the two sensing electrodes. Surrounding, and preferably still in the direction of the sensing electrode, adjacent virtual electrodes are connected by a bridge.
  • the material of the driving electrode, the sensing electrode, and the dummy electrode may be indium tin oxide or indium zinc oxide, but the practical application is not limited thereto.
  • the embodiment of the present invention further provides an in-cell touch liquid crystal display panel, which can avoid increasing the thickness and weight of the entire display module compared with the external touch liquid crystal display panel.
  • FIG. 5 is a schematic structural view of a specific embodiment of an in-cell touch liquid crystal display panel of the present invention.
  • the in-cell touch liquid crystal display panel includes a first substrate 31 and an array reverse 32 disposed opposite to each other, and a liquid crystal layer 33 disposed between the first substrate 31 and the array substrate 32.
  • the first substrate 31 includes a first transparent substrate 311, a black matrix 312, any one of the touch sensors 313 and the color film layer 314 as described above in the direction of the array substrate 32.
  • the touch sensor 313 and the color film layer 314 are sequentially disposed on a surface of the first transparent substrate 311 facing the liquid crystal layer 33.
  • the array substrate 32 includes a second transparent substrate 321 and a TFT array and a pixel array 322 in this order in a direction facing the first substrate 31.
  • the position of the touch sensor 313 and the color film layer 314 may be interchanged, that is, the touch sensor 313 may be located between the color film layer 314 and the liquid crystal layer 33.
  • an IPS type liquid crystal panel or an FFS type liquid crystal panel disposed on the TFT array and the pixel electrode array 322 is mainly provided for a common electrode (not shown in FIG. 5), and for a TN type liquid crystal panel or The VA type liquid crystal panel, the in-cell touch liquid crystal display panel of the present invention further comprises a common electrode layer.
  • the first substrate 31 further includes a common electrode layer (not shown in FIG.
  • the electrode layer is disposed on a surface of the color film layer 314 facing the liquid crystal layer 33, and is used to supply an electric field to the liquid crystal layer 33 in cooperation with the pixel electrode on the array substrate 32.
  • the driving electrode, the sensing electrode and the dummy electrode may be the same transparent conductive material, such as indium tin oxide or indium zinc oxide; a composite material of a transparent conductive material, the metal is arranged in a grid shape and the metal mesh is blocked by a black matrix, for example, a black matrix is perpendicular to the direction of the in-cell touch liquid crystal display panel The metal meshes are coincident such that the in-cell touch liquid crystal display panel is still transparent as a whole.
  • the embodiment of the present invention further provides a liquid crystal display comprising the in-cell touch liquid crystal display panel according to any one of the above embodiments provided by the present invention.
  • the transmittance distribution of the liquid crystal display panel is uniform, the display effect is better, and multiple The dummy electrode is located in the same layer as the driving electrode and the sensing electrode, so that the entire liquid crystal panel has good light transmittance and high screen brightness.
  • the ground electrode or the fixed level is adopted for the set virtual electrode, so that the static sound caused by the finger touch can be eliminated, and the inverted state of the liquid crystal molecules in the liquid crystal layer is effectively prevented by the virtual electrode being subjected to electrostatic induction.
  • the driving electrode and the sensing electrode are arranged in a shape matching pattern, preferably the driving electrode and the sensing The electrodes are arranged in a shape-matching branch shape, so that while reducing the area of the driving electrode and the sensing electrode to suppress parasitic capacitance, the edge length of the driving electrode and the sensing electrode at the intersection can be increased due to the characteristics of the branched structure.
  • the reduction in mutual capacitance due to the reduction in area is compensated, making the touch sensitive signal easy to detect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Quality & Reliability (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)

Abstract

一种触摸感应器(313),其包括多条驱动电极(21)和与所述多条驱动电极(21)交叉的多条感应电极(22),驱动电极(21)和感应电极(22)之间形成互电容;在矩阵结构中,除驱动电极(21)和感应电极(22)外的剩余区域还设置有多个虚拟电极(23),且虚拟电极(23)、驱动电极(21)和感应电极(22)位于同一层中。还提供了一种内嵌式触摸液晶显示面板和液晶显示器。带有内嵌式触摸屏的液晶显示面板的透光性更好,屏幕亮度更高;降低触摸感应器(313)和液晶面板中除驱动电极(21)和感应电极(22)之外的其他电极间的寄生电容的同时,保证足够大的互电容以使触摸感应信号易于检测,还消除了液晶显示面板因手指触碰产生的静电影响。

Description

触摸感应器、 内嵌式触摸液晶显示面板、 液晶显示器 本申请要求在 2012年 08月 17 日提交中国专利局、 申请号为 201210293260.3、 发明 名称为"触摸感应器、 内嵌式触摸液晶显示面板、 液晶显示器"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及触摸液晶显示器技术领域, 特别涉及触摸感应器、 内嵌式触摸液晶显示面 板、 液晶显示器。 背景技术
现如今, 触摸屏越来越多地应用于各种电子产品中, 例如, 手机、 平板电脑、 音乐播 放器等。 触摸屏作为一种用户交互操作的界面, 有电阻式、 电容式、 表面声波式、 红外式 等等。 在触摸屏技术中, 电容式触摸屏相比电阻式触摸屏具有寿命长, 透光率高, 可以支 持多点触摸等优点, 而互电容触摸感应是电容式触摸犀中一种新兴的技术, 它对噪声和对 地寄生电容有很好的抑制作用, 并且可以实现多点触摸, 因此已经成为各电容式触摸屏芯 片厂商主攻的方向。
如图 1所示的是现有的内嵌式互电容触摸屏的液晶显示面板的剖面结构示意图。 请参 考图 1 , 所述液晶显示面板包括: 相对设置的阵列基板 11和彩膜基板 13 , 其中所述阵列基 板 11包括薄膜场效应晶体管(Thin Film Transistor, TFT )阵列和像素电极阵列; 位于所 述阵列基板 11和所述彩膜基板 13之间的液晶层 12; 形成于所述彩膜基板 13上的触摸感 应电极结构 14, 其中所述触摸感应电极结构 14包括由多条驱动电极和多条感应电极交叉 形成的矩阵结构, 所述驱动电极和感应电极之间形成互电容; 形成于所述触摸感应电极结 构 14上的黑矩阵 15。 另外, 不同类型的液晶显示面板在结构上有些不同, 例如对于平面 方向转换(In-Plane-Switching, IPS )型液晶面板或者边缘场开关( Fringe Field Switching, FFS )型液晶面板,公共电极位于所述 TFT阵列和像素电极阵列层 11内; 而对于扭曲向列 ( Twisted Nematic, TN )型液晶面板或者垂直对准( Vertical Aligment, VA )型液晶面板, 公共电极则是所述彩膜基板 13的一部分。 在实际应用中, 通常在 TFT阵列和像素电极阵 列 11和黑矩阵 15的外側还分别形成有玻璃基板(图 1中未示出)。现有的内嵌式互电容触 摸屏中, 由于为了减小驱动电极和感应电极与液晶面板中其他电极间的寄生电容, 尽量减 小驱动电极和感应电极的面积, 因此在触摸感应电极结构 14 中的驱动电极和感应电极之 外都是空白区域, 从而导致液晶显示面板的透光率分布不均匀, 影响显示效果。
另夕卜,由于内嵌式互电容触摸屏中的驱动电极和感应电极与液晶显示器( Liquid Crystal Display, LCD ) 的除驱动电极和感应电极之外的其他电极距离很近, 例如像素电极、 公 共电极等, 从而在内嵌式互电容触摸屏中的驱动电极与所述其他电极(以公共电极为例) 之间、 以及内嵌式互电容触摸屏中的感应电极与所述其他电极(以公共电极为例)之间形 成寄生电容。 如图 2所示的是内嵌式互电容触摸屏的等效电路示意图。 请参考图 2, 等效 电路包括信号源 141、 驱动电极电阻 142、 驱动电极与感应电极之间的互电容 143、 感应电 极电阻 144、 检测电路 145。 驱动电极和公共电极间形成寄生电容 Cd, 感应电极和公共电 极间形成寄生电容 Cs, 这将在液晶显示面板中引入噪声, 主要包括两方面, 一方面是驱动 线输入的信号电流部分被 Cd分流, 另一部分通过 Cs耦合到信号接收端, Cd和 Cs的电容 值受到液晶层中液晶分子翻转的影响不断变化, 使得耦合信号也不断变化, 形成噪声; 另 一方面, 公共电极通常为氧化铟锡(ITO )材料, 其电阻较大, 公共电极上存在的固有噪 声通过 Cs直接耦合到信号接收端。 噪声的引入影响了触摸屏感应信号的检测, 也就是液 晶显示面板无法准确地检测使用者的手指触摸, 进而无法及时地对手指触摸响应反馈。 发明内容
本发明解决的问题是使得带有内嵌式互电容触摸屏的液晶显示面板的透光性更好, 屏 幕亮度更高。
为解决上述问题, 本发明实施例提供了一种触摸感应器, 包括多条驱动电极和与所述 多条驱动电极交叉的多条感应电极, 所述驱动电极和感应电极之间形成互电容; 在所述矩 阵结构中, 除所述驱动电极和感应电极外的剩余区域还设置有多个虚拟电极, 且所述虚拟 电极、 所述驱动电极和所述感应电极位于同一层中。
本发明实施例还提供了一种内嵌式触摸液晶显示面板, 包括相对设置的第一基板和阵 列基板以及设置于第一基板和阵列基板之间的液晶层; 所述第一基板包括第一透明基板、 黑矩阵、 所述触摸感应器和彩膜层。
本发明实施例还提供了一种液晶显示器, 包括上述内嵌式触摸液晶显示面板。
与现有技术相比, 本发明技术方案具有以下有益效果:
由于在触摸感应器中除驱动电极和感应电极外的剩余区域设置多个虚拟电极, 从而填 补了现有的空白区域, 使得液晶显示面板的透光率分布均匀, 显示效果更好, 并且多个虚 拟电极与驱动电极和感应电极位于同一层中, 因此使得整个液晶面板的透光性好、 屏幕亮 度高。 还可以降低触摸感应器和阵列基板间的寄生电容的同时, 保证足够大的互电容以使 触摸感应信号易于检测, 还消除了液晶显示面板因手指触碰产生的静电影响。 附图说明
图 1是现有技术中内嵌式互电容触摸屏的液晶显示面板的剖面结构示意图; 图 2是现有技术中嵌式互电容触摸屏的等效电路示意图;
图 3A是本申请中实施例提供的一种触摸感应器中驱动电极的图形结构示意图;
图 3B是本申请中实施例提供的一种触摸感应器中感应电极的图形结构示意图;
图 3C是本申请中实施例提供的一种包括驱动电极和感应电极的触摸感应器的俯视图; 图 3D是本申请中实施例提供的另一种包括驱动电极和感应电极的触摸感应器的俯视图; 图 4是本申请中实施例提供的一种触摸感应器的局部结构示意图;
图 4A所示的是图 4所示的触摸感应器的局部结构中沿 a-a方向的剖面示意图;
图 4B所示的是图 4所示的触摸感应器的局部结构中沿 b-b方向的剖面示意图;
图 5是本申请中实施例提供的一种内嵌式触摸液晶显示面板的剖面结构示意图。 具体实施方式
针对现有技术的问题, 发明人经过研究, 提供了一种触摸感应器、 内嵌式触摸液晶显示面板、 液晶 显示器。 本技术方案使得带有内嵌式互电容触摸屏的液晶显示面板的透光性更好, 屏幕亮度更高; 降低 触摸感应器和液晶面板中除驱动电极和感应电极之外的其他电极间的寄生电容的同时,保证足够大的互 电容以使触摸感应信号易于检测, 还消除了液晶显示面板因手指触碰产生的静电影响。
为使本发明的上述目的、特征和优点能够更为明显易懂, 下面结合附图对本发明的具体实施方式做 详细的说明。
在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其 它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。 因此本发明不受下面公 开的具体实施方式的限制。
如图 3A所示的是触摸感应器中驱动电极的图形结构示意图。 请参考图 3A, 包括多条平行的驱动 电极 2Γ , 所述驱动电极 2Γ的图形结构呈菱形。 如图 3B所示的是触摸感应器中感应电极的图形结构示 意图。 请参考图 3B, 包括多条平行的感应电极 22', 所述感应电极 22'的图形结构呈菱形。 需要说明的 是, 在实际应用中, 驱动电极和感应电极的图形结构也可以是其他常见的图形, 例如矩形、 条状型等, 并且驱动电极和感应电极的图形结构还可以分别为不同的图形, 例如,驱动电极的图形结构呈矩形、 而 感应电极的图形结构呈条状型。
在本发明实施例中,由于多奈驱动电极和多条感应电极相交叉,且驱动电极和感应电极位于同一层, 因此, 在所述触摸感应器中, 每一条驱动电极(或者感应电极)会被多条感应电极(或者驱动电极)分 割成多段。如图 3C所示的是每一条驱动电极 21 '被多条感应电极 22,分割成多段的情况,在这种情况下, 同一条驱动电极的多段需要通过跨桥(如图 3C中粗线段 25 '所示)相互电连接, 而感应电极 22'仍为完 好的一整条。 如图 3D所示的是每一条感应电极 22'被多条驱动电极 2Γ分割成多段的情况, 在这种情况 下, 同一奈感应电极的多段也需要通过跨桥(如图 3D中粗线段 25'所示)相互电连接, 而驱动电极 2Γ 仍为完好的一整条。 在图 3C和图 3D所示的两种包括驱动电极和感应电极的触摸感应器中,多条驱动电极 21 '和多条感 应电极 22'之间形成互电容, 而在所述驱动电极 2Γ和感应电极 22'所在层内, 除所述多条驱动电极 21' 和多条感应电极 22'占据的区域外为空白区域, 在本发明实施例中, 在所述空白区域 23'内设置虚拟电 极, 在平行于驱动电极或者优选地平行于感应电极 22'的方向上, 相邻的虚拟电极间通过跨桥(如图 3C 和图 3D中细线段 24'所示)电连接。 优选地, 所述虚拟电极填满所述空白区域 23', 这样可以弥补现有 触摸感应器中的空白区域因没有电极而形成的透光率与驱动电极和感应电极所在区域的透光率之间的 差异, 使得透光率均匀分布, 从而使得最终制成的液晶显示器的屏幕显示均匀。
下面以一个具体实施例描述本发明提供的触摸感应器。
如图 4所示的是本发明的一种触摸感应器的具体实施例的局部结构示意图。本实施例中,驱动电极 21和感应电极 22分别具有互匹配的第一图形结构和第二图形结构。 优选地如图 4所示, 所述第一图形 结构与所述第二图形结构为相匹配的枝杈状, 如每条所述驱动电极 21呈现的第一图形结构为枝杈状, 每条所述感应电极 22呈现的第二图形结构为枝杈状, 且两种枝杈状的枝杈部分(如图 4中标识宽度 d 的部分)可以镶嵌, 也就是所说的相匹配的枝杈状。
请参考图 4, 所述触摸感应器包括多奈驱动电极 21、 与所述多条驱动电极 21交叉的多条感应电极 22, 在本实施例中, 每条感应电极 22被多条驱动电极 21分割的多段都通过跨桥相连接, 具体地, 每一 条感应电极 22被多条驱动电极 21分割成多段时, 所述触摸感应器还包括第一跨桥 25 , 同一条感应电 极 22的多段通过所述第一跨桥 25电连接,同时还需要在所述驱动电极或感应电极所在层上设置一绝缘 层, 以保证第一跨桥 25与驱动电极 21之间绝缘。 具体地, 参考图 4A所示的是图 4所示的触摸感应器 的局部结构中沿 a-a方向的剖面示意图。 如图 4A所示, 感应电极 22被驱动电极 21分割成两段, 两段 感应电极之间通过第一跨桥 25电连接, 进一步地, 在所述驱动电极 21或感应电极 22所在层上设置有 一层绝缘层 26, 该绝缘层 26以保证所述第一跨桥 25与驱动电极 21之间绝缘。
由于在本实施例中,所述驱动电极 21和所述感应电极 22的位置可以互换, 即如图 4中的驱动电极 21所在的位置可以设置为感应电极 22, 而感应电极 22所在的位置也可以设置为驱动电极 21。 因此, 当每一条驱动电极 21被多奈感应电极 22分割成多段时, 同一条驱动电极 21的多段通过所述第一 3争桥 25电连接, 同样也需要在所述驱动电极或感应电极所在层上设置一绝缘层以保证所述第一跨桥 25与感 应电极 22之间绝缘。 可以看出, 实际上所迷第一跨桥 25的位置在多条驱动电极 21和多条感应电极 22 的交叉处。 在实际应用中, 并不限于通过跨桥分别连接多段驱动电极或多段感应电极, 本领域技术人员 还可以利用其他的电连接方式, 在此不再贅述。
与现有技术不同的是,如图 4所示,在触摸感应器中除驱动电极 21和感应电极 22之外的剩余区域 内还设置有多个虚拟电极 23。 在本实施例中, 多条驱动电极 21和多条感应电极 22位于同一层内, 所 述剩余区域是指,在所述层中除被多条驱动电极 21和多条感应电极 22占据的区域以外的所有空白区域。 在本实施例中, 如图 4所示, 所述剩余区域是包括多个由在水平方向上相邻的两奈驱动电极 21所包围 的子空白区域, 例如图示中的虚拟电极 23所占区域, 可以理解, 在整个驱动电极和感应电极所在层内 具有多个这样的子空白区域。 在其他实施例中, 由于驱动电极和感应电极的位置可以互换, 即如图 4 中的驱动电极 21所在的位置可以设置为感应电极, 而感应电极 22所在的位置也可以设置为驱动电极。 相应地,所述剩余区域就是包括多个由水平方向上相邻的两条感应电极所包围的子空白区域。通过在所 述剩余区域内设置多个虚拟电极,可以弥补现有触摸感应器中由于在除驱动电极和感应电极外的剩余区 域内因没有电极而形成的透光率与驱动电极和感应电极所在区域的透光率之间的差异,使得透光率均匀 分布, 从而使得最终制成的液晶显示器的屏幕显示均匀。 进一步地, 在本实施例中, 由于所述虚拟电极 23与所述驱动电极 21 所述感应电极 22位于同一层内,这样就不需要为了设置虚拟电极而在触摸感应 器内额外增加附加层,避免了因增加附加层带来的透光率降低的问题,从而使得制成的液晶显示面板的 透光性更好, 屏幕亮度高。
由于在触摸感应器中设置了虚拟电极 23,发明人发现当所述虚拟电极 23受到手指触摸引起的静电 感应后会改变液晶层内液晶分子的翻转状态, 影响显示效果。 因此, 在另一实施例中, 对所述虚拟电极 23采取接地或者接固定电平的方式来消除静电影响。 优选地, 所述固定电平的范围是大于等于 -20V且 小于等于 +20V, 即不小于 -20V且不大于 +20V。
在本实施例中, 如图 4所示, 所述触摸感应器还包括第二跨桥 24, 优选地, 在沿感应电极 22的方 向上, 相邻的虚拟电极 23之间通过所述第二跨桥 24电连接, 且所述第二跨桥 24和所述驱动电极 21 之间通过前述绝缘层绝缘。具体地,结合参考图 4B所示的是图 4所示的触摸感应器的局部结构中沿 b-b 方向的剖面示意图。 如图 4B所示, 相邻的虚拟电极 23之间在沿感应电极方向上通过第二跨桥 24电连 接, 且所述第二跨桥 24和所述驱动电极 21之前通过所述绝缘层 26绝缘。 需要说明的是, 在实际工艺 中,也可以在所述驱动电极 21和所述感应电极 22所在层上形成统一的一层绝缘层, 然后再在所述绝缘 层上将需要电连接的感应电极或驱动电极处打过孔,并通过所述过孔形成电连接感应电极或者驱动电极 的第一跨桥、 以及将相邻的虚拟电极通过同样的方法优选地在沿感应电极的方向通过第二跨桥电连接, 且优选地所述第一跨桥和第二跨桥也位于同一层,这样在工艺制作过程中可以减少工艺步骤,提高制造 效率。
作为本实施例的一个变形,也可以在沿驱动电极 21的方向上,相邻的虚拟电极 23之间通过所述第 二跨桥 24电连接, 且所述第二跨桥 24和所述驱动电极 21以及感应电极 22之间通过前述绝缘层绝缘。 由于在本实施例中, 图 4中所述驱动电极 21和所述感应电极 22的位置可以互换,也就是在如图 4所示 的驱动电极 21的位置上设置感应电极, 而在感应电极 22的位置上设置驱动电极, 虚拟电极 23的位置 不变, 但在这种情况下, 所述虚拟电极 23是被感应电极所包围, 在沿驱动电极或者优选地在沿感应电 极的方向上, 相邻的虚拟电极 23之间通过所述第二跨桥 24电连接, 且所述第二跨桥 24和感应电极, 或者感应电极和驱动电极之间通过前述绝缘层绝缘。
其中, 所述绝缘层可以位于所述驱动电极和感应电极所在层与常规液晶显示面板结构中的彩膜层 (图 4中未示出)之间, 也可以位于所述驱动电极和感应电极所在层与黑矩阵(图 4中未示出)之间。 在实际应用中, 并不限于通过跨桥来连接虛拟电极, 本领域技术人员还可以利用其他的电连接方式, 例 如通过电路连接等, 由于在本发明实施例中, 相邻的虚拟电极之间只需要电导通即可, 具体采用何种电 路连接并不影响本发明的实质, 在此不再赘述。 通过所述第二跨桥 24可以在驱动电极或感应电极与公 共电极(图 4中未示出)间起到屏蔽作用, 切断驱动电极、 公共电极和感应电极间的寄生回路, 减弱液 晶层内液晶分子的翻转造成的寄生回路电流变化产生的噪声。
本领域技术人员理解,相交叉的驱动电极 21和感应电极 22之间形成互电容, 所述互电容的大小与 驱动电极和感应电极的面积大小成正比,也与驱动电极与感应电极相交处的边缘长度成正比。根据现有 技术的问题, 由于驱动电极和感应电极的面积越大引起的寄生电容越大,通过減小驱动电极和感应电极 的面积可以抑制寄生电容的影响, 但这在一定程度上也减弱了互电容, 不易于检测触摸信号的变化。 那 么,发明人考虑在减小驱动电极和感应电极的面积的同时,通过增大驱动电极与感应电极相交处的边缘 长度来补偿由于面积减小所引起的互电容的减小。
因此, 在本实施例中, 设置所述驱动电极呈第一图形结构, 设置所述感应电极呈第二图形结构, 且 所述第一图形结构的形状与所述第二图形结构的形状相匹配。通过两种形状相匹配的驱动电极和感应电 极相互交叉来同时減小驱动电极和感应电极的面积。根据枝杈状的形状特征,可以实现在减小驱动电极 和感应电极的面积的同时, 增大驱动电极和感应电极相交处的边缘长度, 且枝杈状的枝杈数目越多, 边 缘长度也越长。
进一步地, 在本实施例中, 为了保证触摸感应器能够接收到信号强度足够大的触摸信号, 所述驱动 电极的枝杈部分和所述感应电极的枝杈部分宽度都大于 0.2毫米, 也可以所述驱动电极的枝杈部分或者 所述感应电极的枝杈部分宽度都大于 0.2毫米。 继续参考图 4, 如图中标识的宽度 d即为所述驱动电极 或所述感应电极的枝杈部分的宽度。 而在第一跨桥 25和第二跨桥 24的区域, 由于这些区域仅是驱动电 极 21和感应电极 22的交叉处,并不影响触摸信号的接收强度, 因此在上述跨桥区域并不要求其宽度大 于 0.2毫米。 本领域技术人员理解, 根据对触摸感应器的接收信号强度的不同要求, 相应地可以对枝杈 部分设置不同的宽度要求, 这并不影响本发明的实质。
需要说明的是, 如图 4所示的所迷驱动电极 21的枝杈状和所述感应电极 22的枝杈状仅是示意图, 并非对枝杈状的形状作限定。进一步地, 所述第一图形结构和所述第二图形结构也不局限于是相匹配的 枝杈状, 也可以是其他相匹配的形状, 例如, 相匹配的 L形状的图形结构等, 在此不再赘述。
在所述触摸感应器中,由感应电极与液晶显示面板中除驱动电极和感应电极之外的其他电极之间形 成的寄生电容对触摸感应器信号影响更大, 因此, 在本实施例中, 优选地, 所述感应电极的面积小于所 述驱动电极的面积, 且虚拟电极被相邻两条驱动电极所包围, 并在沿感应电极方向上, 相邻的虚拟电极 通过跨桥相连接(如图 4所示)。 在其他实施例中, 由于所述驱动电极 21和所述感应电极 22的位置可 以互换, 而虚拟电极 23的位置不变, 在这种情况下, 虚拟电极是被相邻两条感应电极所包围, 并优选 地仍在沿感应电极方向上, 相邻的虚拟电极通过跨桥相连接。
在本实施例中,所述驱动电极、所述感应电极以及所述虚拟电极的材料可以采用氧化铟锡或氧化铟 锌, 但实际应用中并不限于此。 基于上述提供的触摸感应器,本发明实施例还提供了一种内嵌式触摸液晶显示面板, 与外挂式的触 摸液晶显示面板相比, 能够避免增加整个显示模组的厚度和重量。如图 5所示的是本发明的一种内嵌式 触摸液晶显示面板的具体实施例的结构示意图。
请参考图 5 , 所述内嵌式触摸液晶显示面板包括相对设置的第一基板 31和阵列 反 32以及设置于 第一基板 31和阵列基板 32之间的液晶层 33。 其中, 所述第一基板 31沿其面向阵列基板 32方向依次 包括第一透明基板 311、 黑矩阵 312、 如前文所述的任意一种触摸感应器 313以及彩膜层 314。 优选地, 所述黑矩阵 312. 所述触摸感应器 313、 彩膜层 314依次设置于所述第一透明基板 311面向所述液晶层 33的表面上。 所述阵列基板 32沿其面向第一基板 31的方向依次包括第二透明基板 321和 TFT阵列和 像素阵列 322。 在其他实施例中, 所述触摸感应器 313与所迷彩膜层 314的位置可以互换, 即所述触摸 感应器 313可以位于所述彩膜层 314与所述液晶层 33之间。
上述内嵌式触摸液晶显示面板中, 主要针对公共电极(图 5中未示出)设置在 TFT阵列和像素电 极阵列 322上的 IPS型液晶面板或者 FFS型液晶面板, 而对于 TN型液晶面板或者 VA型液晶面板, 本 发明所述内嵌式触摸液晶显示面板还包括一公共电极层。 具体地, 作为本发明另一实施例, 所述第一基 板 31还包括位于所述彩膜层 314面向所述液晶层 33的表面上的公共电极层 (图 5中未示出), 即公共 电极层设置在彩膜层 314面向液晶层 33—侧的表面上, 用于配合阵列基板 32上的像素电极向液晶层 33提供电场。
进一步地, 在所述触摸感应器 313中, 所述驱动电极、 所述感应电极和所述虚拟电极可以是同种透 明导电材料, 例如是氧化铟锡或者氧化铟锌; 也可以是包括金属和所迷透明导电材料的复合材料, 所述 金属呈网格状排布且所述金属网格被黑矩阵遮挡,例如, 黑矩阵在垂直于所述内嵌式触摸液晶显示面板 的方向上与所述金属网格重合, 使得从整体上看, 所述内嵌式触摸液晶显示面板仍旧是透明的。
本发明实施例还提供了一种液晶显示器,所述液晶显示器包括本发明提供的上述任一种实施例所述 内嵌式触摸液晶显示面板。
综上, 本发明技术方案至少具有以下有益效果:
由于在触摸感应器中除驱动电极和感应电极外的剩余区域设置多个虚拟电极,从而填补了现有的空 白区域, 使得液晶显示面板的透光率分布均匀,显示效果更好, 并且多个虛拟电极与驱动电极和感应电 极位于同一层中, 因此使得整个液晶面板的透光性好、 屏幕亮度高。
进一步地,对于设置的虚拟电极采用接地或者接固定电平的方式,可以消除手指触摸引起的静电影 响, 有效地避免了虚拟电极因受到静电感应后改变液晶层内液晶分子的翻转状态。
进一步地, 为了保证触摸感应器的互电容足够大的 J^ 上减小寄生电容, 在具体实施例中, 将驱动 电极和感应电极设置成形状相匹配的图形结构,优选地将驱动电极和感应电极设置成形状相匹配的枝杈 状, 这样在减小驱动电极和感应电极的面积以抑制寄生电容的同时, 由于枝杈状结构的特点, 能够增大 驱动电极和感应电极在相交处的边缘长度从而补偿了由于面积减小所引起的互电容的减小,使得触摸感 应信号易于检测。 尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念, 则可对这 些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围 的所有变更和修改。
显然 , 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些 改动和变型在内。

Claims

权利 要求
I、 一种触摸感应器, 包括多条驱动电极和与所述多条驱动电极交叉的多条感应电极, 所述驱动电 极和感应电极之间形成互电容; 其特征在于,在除所述驱动电极和感应电极外的剩余区域还设置有多个 虚拟电极, 且所述虚拟电极、 所述驱动电极和所述感应电极位于同一层中。
2、 根据权利要求 1所述的触摸感应器, 其特征在于, 所述虚拟电极接地或者接固定电平。
3、 根据权利要求 1所述的触摸感应器, 其特征在于, 所述驱动电极呈第一图形结构, 所述感应电 极呈第二图形结构; 且所述第一图形结构的形状与所述第二图形结构的形状相匹配。
4、 根据权利要求 3所述的触摸感应器, 其特征在于, 所述第一图形结构与所迷第二图形结构为相 匹配的枝杈 Ψϊ。
5、 根据权利要求 4所述的触摸感应器, 其特征在于, 所述驱动电极和 /或所述感应电极的枝杈部分 的宽度大于 0.2毫米。
6、 根据权利要求 1所述的触摸感应器, 其特征在于, 所述感应电极的面积小于所述驱动电极的面 积。
7、 根据权利要求 1所述的触摸感器, 其特征在于, 所述虚拟电极被多条驱动电极或多条感应电极 所包围。
8、 根据权利要求 7所述的触摸感应器, 其特征在于, 每一条所述感应电极被所迷多条驱动电极分 割成多段,所述触摸感应器还包括第一跨桥和一绝缘层, 同一条感应电极的多段通过所述第一跨桥电连 接, 所述第一跨桥和所述驱动电极通过所述绝缘层绝缘。
9、 根据权利要求 7所述的触摸感应器, 其特征在于, 每一条所述驱动电极被所迷多条感应电极分 割成多段,所述触摸感应器还包括第一跨桥和一绝缘层, 同一条驱动电极的多段通过所述第一跨桥电连 接, 所述第一跨桥和所述感应电极通过所述绝缘层绝缘。
10、 根据权利要求 8所迷的触摸感应器, 其特征在于, 所述触摸感应器还包括第二跨桥, 相邻的所 述虚拟电极之间通过所述第二跨桥电连接, 所述第二跨桥和所述驱动电极之间通过所述绝缘层绝缘。
II、 根据权利要求 9所述的触摸感应器, 其特征在于, 所述触摸感应器还包括第二跨桥, 相邻的所 述虚拟电极之间通过所述第二跨桥电连接, 所述第二跨桥和所述感应电极之间通过所述绝缘层绝缘。
12. 根据权利要求 8-11 中任意一项权利要求所述的触摸感应器, 其特征在于, 所述绝缘层位于所 述驱动电极和感应电极所在层与彩膜层之间。
13、 根据权利要求 8-11 中任意一项权利要求所述的触摸感应器, 其特征在于, 所述绝缘层位于所 述驱动电极和感应电极所在层与黑矩阵之间。
14、 根据权利要求 2所述的触摸感应器, 其特征在于, 所述固定电平不小于 -20V且不大于 +20V。
15、 根据权利要求 1 所述的触摸感应器, 其特征在于, 所述驱动电极和 /或感应电极的材料采用氧 化铟锡或氧化铟锌。
16、根据权利要求 1所述的触摸感应器, 其特征在于, 所述虚拟电极的材料采用氧化钼锡或氧化铟 锌。
17、 一种内嵌式触摸液晶显示面板, 其特征在于, 包括相对设置的第一基板和阵列基板、 以及设置 于第一基板和阵列基板之间的液晶层; 所述第一基板包括第一透明基板、 黑矩阵、 如权利要求 1-11任 一项所述的触摸感应器、 彩膜层。
18、 根据权利要求 17所述的显示面板, 其特征在于, 所述触摸感应器中的驱动电极、 感应电极和 虚拟电极均包括金属网格和透明导电层的复合结构, 所述金属网格被黑矩阵遮挡。
19、 根据权利要求 17所述的内嵌式触摸液晶显示面板, 其特征在于, 所述黑矩阵、 所述触摸感应 器、 彩膜层依次设置于所述第一透明基板面向所述液晶层的表面上。
20、 根据权利要求 17所述的内嵌式触摸液晶显示面板, 其特征在于, 所述第一基板还包括位于所 述彩膜层面向所述液晶层的表面上的公共电极层。
21、 一种液晶显示器, 包括: 权利要求 17-20任一项所述的内嵌式触摸液晶显示面板。
PCT/CN2012/085853 2012-08-17 2012-12-04 触摸感应器、内嵌式触摸液晶显示面板、液晶显示器 WO2014026449A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12877080.7A EP2735948B1 (en) 2012-08-17 2012-12-04 Touch inductor, embedded touch liquid crystal display panel, and liquid crystal display
KR1020177005870A KR101758756B1 (ko) 2012-08-17 2012-12-04 터치 센서, 내장형 터치 액정 디스플레이 패널 및 액정 디스플레이
KR1020137030599A KR20140061314A (ko) 2012-08-17 2012-12-04 터치 센서, 내장형 터치 액정 디스플레이 패널 및 액정 디스플레이
US14/050,186 US9618782B2 (en) 2012-08-17 2013-10-09 Touch sensor, in-cell touch liquid crystal display panel and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210293260.3 2012-08-17
CN201210293260.3A CN103294294B (zh) 2012-08-17 2012-08-17 触摸感应器、内嵌式触摸液晶显示面板、液晶显示器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/050,186 Continuation US9618782B2 (en) 2012-08-17 2013-10-09 Touch sensor, in-cell touch liquid crystal display panel and liquid crystal display

Publications (1)

Publication Number Publication Date
WO2014026449A1 true WO2014026449A1 (zh) 2014-02-20

Family

ID=49095290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085853 WO2014026449A1 (zh) 2012-08-17 2012-12-04 触摸感应器、内嵌式触摸液晶显示面板、液晶显示器

Country Status (4)

Country Link
EP (1) EP2735948B1 (zh)
KR (2) KR20140061314A (zh)
CN (1) CN103294294B (zh)
WO (1) WO2014026449A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113157142A (zh) * 2021-05-25 2021-07-23 京东方科技集团股份有限公司 一种触控显示面板和显示装置
CN114442835A (zh) * 2021-07-29 2022-05-06 荣耀终端有限公司 显示面板及其制造方法、电子设备

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103677473A (zh) * 2013-12-05 2014-03-26 京东方科技集团股份有限公司 一种面板的制备方法
CN103677412B (zh) 2013-12-09 2016-08-31 合肥京东方光电科技有限公司 一种内嵌式触摸屏及其驱动方法
CN105022525B (zh) * 2014-04-28 2020-01-31 联咏科技股份有限公司 触控面板模块及其静电宣泄方法
CN104035638B (zh) * 2014-05-27 2017-02-15 上海天马微电子有限公司 触控电极结构、触控面板、显示装置和定位触控点的方法
CN104035621B (zh) * 2014-06-24 2017-12-05 昆山龙腾光电有限公司 触控显示装置及其制作方法
CN104166476A (zh) * 2014-07-28 2014-11-26 京东方科技集团股份有限公司 触控显示面板及其控制方法、触控显示装置
CN105302351A (zh) * 2014-07-29 2016-02-03 南京瀚宇彩欣科技有限责任公司 抗扰触控显示面板
TWI550494B (zh) * 2014-09-05 2016-09-21 晨星半導體股份有限公司 內嵌式觸控顯示面板
CN104714707B (zh) 2014-11-28 2018-04-27 上海天马微电子有限公司 电磁电容一体触摸屏、触摸显示面板和触摸显示装置
CN104536626B (zh) * 2014-12-22 2017-07-18 深圳市华星光电技术有限公司 一种触控面板以及显示装置
CN104503643B (zh) * 2014-12-25 2017-10-10 上海天马微电子有限公司 一种触控结构、触控检测方法及触摸显示装置
CN106354299B (zh) * 2016-08-17 2019-04-26 京东方科技集团股份有限公司 一种触控基板及其制备方法、触控显示装置
CN106325598B (zh) * 2016-08-19 2024-05-31 合肥京东方光电科技有限公司 触控显示面板及其制作方法、显示装置
CN106354309B (zh) * 2016-08-29 2023-10-20 漳州中科智谷科技有限公司 一种触控面板及显示装置
CN106502454B (zh) 2016-10-21 2019-09-10 昆山龙腾光电有限公司 触控显示面板及其制造方法
CN106896961B (zh) * 2017-03-01 2020-01-10 厦门天马微电子有限公司 触控显示面板和触控显示装置
KR102427622B1 (ko) * 2017-06-01 2022-08-01 엘지디스플레이 주식회사 터치표시장치 및 터치패널
CN110308829B (zh) 2018-03-27 2023-06-20 群创光电股份有限公司 触控显示装置
CN108415615B (zh) * 2018-04-28 2020-07-28 京东方科技集团股份有限公司 金属网格、触摸屏和显示装置
US10725600B2 (en) * 2018-06-20 2020-07-28 Sharp Kabushiki Kaisha Position input device and display device with position input function
US11243624B2 (en) 2018-09-12 2022-02-08 Samsung Display Co., Ltd. Input sensing unit and display apparatus including the same
KR102414056B1 (ko) 2018-09-19 2022-06-28 삼성디스플레이 주식회사 터치 감지 유닛 및 이를 포함하는 표시장치
CN111562858B (zh) * 2020-04-28 2024-04-09 京东方科技集团股份有限公司 触控显示模组、显示装置及触控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080245582A1 (en) * 2007-03-29 2008-10-09 Bytheway Jared G Floating capacitive couplers used to enhance signal coupling in a capacitive touchpad
CN101943975A (zh) * 2009-07-09 2011-01-12 敦泰科技有限公司 超薄型互电容触摸屏及组合式超薄型触摸屏
CN101984391A (zh) * 2010-10-13 2011-03-09 友达光电股份有限公司 触控面板及其修补方法
JP2011113504A (ja) * 2009-11-30 2011-06-09 Casio Computer Co Ltd タッチパネル入力装置、タッチパネルの駆動装置、タッチパネルの駆動方法及びシステムディスプレイ
CN102200866A (zh) * 2010-03-24 2011-09-28 上海天马微电子有限公司 互电容触摸感应装置及其检测方法、触摸显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009672B1 (ko) * 2008-09-12 2011-01-19 엘지디스플레이 주식회사 터치 패널 내장형 액정 표시 장치
CN101393502B (zh) * 2008-10-31 2012-03-07 敦泰科技有限公司 互电容式触摸屏及组合式互电容触摸屏
CN101788875A (zh) * 2009-01-23 2010-07-28 义强科技股份有限公司 电容式触控面板装置
US20100214247A1 (en) * 2009-02-20 2010-08-26 Acrosense Technology Co., Ltd. Capacitive Touch Panel
TWM374618U (en) * 2009-02-20 2010-02-21 Acrosense Technology Co Ltd A capacitive touch panel includes a substrate and a patterned conductive layer formed on the substrate.
EP2450778B1 (en) * 2009-06-30 2019-04-17 Kyocera Corporation Coordinate input device and display device having coordinate input function
TWI435292B (zh) * 2010-06-17 2014-04-21 Au Optronics Corp 感測式顯示裝置
CN102116954A (zh) * 2011-03-17 2011-07-06 信利半导体有限公司 电容式触摸屏显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080245582A1 (en) * 2007-03-29 2008-10-09 Bytheway Jared G Floating capacitive couplers used to enhance signal coupling in a capacitive touchpad
CN101943975A (zh) * 2009-07-09 2011-01-12 敦泰科技有限公司 超薄型互电容触摸屏及组合式超薄型触摸屏
JP2011113504A (ja) * 2009-11-30 2011-06-09 Casio Computer Co Ltd タッチパネル入力装置、タッチパネルの駆動装置、タッチパネルの駆動方法及びシステムディスプレイ
CN102200866A (zh) * 2010-03-24 2011-09-28 上海天马微电子有限公司 互电容触摸感应装置及其检测方法、触摸显示装置
CN101984391A (zh) * 2010-10-13 2011-03-09 友达光电股份有限公司 触控面板及其修补方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113157142A (zh) * 2021-05-25 2021-07-23 京东方科技集团股份有限公司 一种触控显示面板和显示装置
CN113157142B (zh) * 2021-05-25 2024-04-19 京东方科技集团股份有限公司 一种触控显示面板和显示装置
CN114442835A (zh) * 2021-07-29 2022-05-06 荣耀终端有限公司 显示面板及其制造方法、电子设备

Also Published As

Publication number Publication date
CN103294294B (zh) 2018-01-19
KR20140061314A (ko) 2014-05-21
KR20170029016A (ko) 2017-03-14
EP2735948A1 (en) 2014-05-28
EP2735948A4 (en) 2015-04-22
CN103294294A (zh) 2013-09-11
KR101758756B1 (ko) 2017-07-17
EP2735948B1 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
WO2014026449A1 (zh) 触摸感应器、内嵌式触摸液晶显示面板、液晶显示器
EP2743806B1 (en) Touch control liquid crystal display device
US9529482B2 (en) Capacitive in-cell touch screen and display device
CN105138184B (zh) 一种内嵌触摸液晶面板及其阵列基板
US10013086B2 (en) In cell touch panel and method for driving the same, and display device
CN103279245B (zh) 触控显示装置
US9618782B2 (en) Touch sensor, in-cell touch liquid crystal display panel and liquid crystal display
JP5154316B2 (ja) タッチパネル
TWI537635B (zh) 整合型觸控螢幕
CN103164058B (zh) 触摸屏、彩色滤光片基板、液晶显示器
WO2015180347A1 (zh) 一种阵列基板及其制备方法、内嵌式触摸屏及显示装置
WO2014044049A1 (zh) 触控式液晶显示装置
US9557594B2 (en) Liquid-crystal display screen with touch-control function and manufacturing method thereof and electronic apparatus
CN103823601A (zh) 一种内嵌式触摸屏及显示装置
CN102937845A (zh) 一种内嵌式触摸屏及显示装置
WO2017161693A1 (zh) 触控基板及显示装置
CN103336635A (zh) 一种电容式内嵌触摸屏及显示装置
TW201405207A (zh) 彩色濾光片基板及觸控式液晶顯示屏
CN203643969U (zh) 一种触控基板、触摸屏及显示装置
WO2020113750A1 (zh) 一种显示屏及电子装置
WO2015100774A1 (zh) 互容式触控面板及液晶显示装置
JP2013148941A (ja) 静電容量式タッチパネル及びその生産方法
JP5373938B2 (ja) 表示装置
TWI662461B (zh) 觸控顯示裝置
CN106648214B (zh) 图像显示系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137030599

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012877080

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE