WO2014023114A1 - 一种恒温箱及其温度控制方法 - Google Patents

一种恒温箱及其温度控制方法 Download PDF

Info

Publication number
WO2014023114A1
WO2014023114A1 PCT/CN2013/074833 CN2013074833W WO2014023114A1 WO 2014023114 A1 WO2014023114 A1 WO 2014023114A1 CN 2013074833 W CN2013074833 W CN 2013074833W WO 2014023114 A1 WO2014023114 A1 WO 2014023114A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heating
temperature sensor
preheating
zone
Prior art date
Application number
PCT/CN2013/074833
Other languages
English (en)
French (fr)
Inventor
侯兴凯
郑誉煌
黄飚
Original Assignee
深圳市麦迪聪医疗电子有限公司
梅州康立高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市麦迪聪医疗电子有限公司, 梅州康立高科技有限公司 filed Critical 深圳市麦迪聪医疗电子有限公司
Publication of WO2014023114A1 publication Critical patent/WO2014023114A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/185Means for temperature control using fluid heat transfer medium using a liquid as fluid

Definitions

  • the present invention belongs to the field of medical electronic devices, and in particular, to an oven and a temperature control method thereof.
  • the blood gas analyzer is an instrument for analyzing and evaluating the acid-base balance state and the oxygen supply state of human blood by quantitatively measuring the pH of the human blood and the exhaled breath, the partial pressure of carbon dioxide, and the partial pressure of oxygen.
  • the blood gas analyzer is tested in the 37.CTC environment, and the blood gas sample of the patient is input, and the corresponding test result is obtained.
  • Temperature has an effect on pH, PC0 2 and P0 2 in blood gas analysis, and can affect the calculated values. When the patient's body temperature deviates from 37. CTC, the measured value does not reflect the actual condition of the patient. Therefore, the temperature control of the blood gas analyzer's incubator is particularly critical.
  • An object of the present invention is to provide an oven and a temperature control method thereof, wherein the temperature inside the oven is constant by a heating device, a temperature detecting device and a sealing member, and the heating device and the temperature detecting device are controlled by the MCU to make the preheating zone
  • the temperature was maintained at 40.0 ° C to maintain the temperature of the heated zone between 36.9 ° C and 37.1 ° C.
  • the technical solution of the present invention is: an incubator comprising: a casing, a casing, and a sealing member distributed on the top and the bottom of the casing, the casing being provided with a first temperature sensor for measuring the exterior of the incubator
  • the ambient temperature is a heat insulation layer between the outer casing and the inner casing; the inner portion of the inner casing is divided into a preheating zone and a heating zone by the partition plate to prevent heat transfer between the preheating zone and the heating zone, and mutual influence; Passing through the preheating zone and the heating zone in sequence, the preheating zone has a preheating module and a fourth temperature sensor at the bottom, the preheating module is configured to heat the preheating zone, and the fourth temperature sensor detects the temperature of the preheating zone,
  • the heating zone has a heating module and a second temperature sensor connected to the heating module, the second temperature sensor detecting the heating module
  • the MCU is further connected to the first temperature sensor, the second temperature sensor, the third temperature sensor, the fourth temperature sensor,
  • the outer casing is connected to the leaflet.
  • the top plate and the bottom plate block a part of the heat dissipated, and the opposite shielding cover and the shielding plate are fastened to close the inner ring mouth; the left side plate and the right side plate are closed, and the inner ring is closed; the door cover is closed, and the temperature is fixed
  • the top of the box is completely sealed, and the rear cover is closed to seal the bottom of the incubator.
  • the sample to be tested enters the preheating zone along the liquid inlet pipe, flows from the preheating zone to the heating zone, and then flows out of the heating zone from the heating zone, and the MCU controls the heating of the preheating module, and the heat of the preheating module is transferred to the preheating zone.
  • the internal space is such that the temperature of the internal space of the preheating zone is maintained at 40.0 ° C, and the sample to be flowed into the heating zone is preheated to be as close as possible to the temperature of the heating zone, thereby reducing the influence of the sample on the internal temperature of the heating zone;
  • the fourth temperature sensor detects the internal ambient temperature of the preheating zone, and sends the detection result to the MCU through an electrical signal.
  • the MCU After receiving the electrical signal, the MCU performs an operation, and controls the heating time of the preheating module according to the operation result; MCU control The heating module heats up, the heat of the heating module is transferred to the internal space of the heating zone, and the internal ambient temperature of the heating zone is raised to 36.9 ° C to 37.1 ° C; the preheated sample flows into the heating zone, the temperature continues to change, and the temperature is constant.
  • the box detects the sample through the probe. After the sample is tested, it flows out of the incubator along the inlet pipe.
  • the second temperature sensor Detecting the temperature of the heating module, converting the detection result into an electrical signal and transmitting it to the MCU, the third temperature sensor detecting the internal ambient temperature of the heating zone, converting the detection result into an electrical signal and transmitting it to the MCU, and after receiving the electrical signal, the MCU performs an operation.
  • the heating time of the heating module is controlled according to the calculation result, and the internal ambient temperature of the heating zone is kept constant at 36.9 ° C to 37.1 ° C.
  • the preheating module of the preheating zone is heated under the control of the MCU, the internal ambient temperature of the preheating zone is increased, the fourth temperature sensor detects the internal ambient temperature of the preheating zone, and the detection result is sent by the electrical signal.
  • the MCU After receiving the electrical signal, the MCU performs an operation, and controls the heating time of the preheating module according to the operation result, so that the internal ambient temperature of the preheating zone is maintained at 40.0 ° C, which is convenient for preheating the sample flowing through the preheating zone.
  • the temperature of the heating zone is close to the internal temperature of the heating zone; the heating module of the heating zone is heated under the control of the MCU, the internal temperature of the heating zone is increased, and the temperature of the heating module is detected by the second temperature sensor, and the detection result is converted into an electrical signal transmission.
  • the MCU, the third temperature sensor detects the internal ambient temperature of the heating zone, and sends the detection result to the MCU through an electrical signal. After receiving the electrical signal, the MCU performs an operation, and controls the heating time of the heating module according to the operation result to make the heating zone
  • the internal ambient temperature is maintained in the range of 36.9 ° C to 37.1 ° C, and the preheated sample rapidly heats up in the heating zone, and Internal ambient temperature near the hot zone.
  • the temperature in the preheating zone of the tank is maintained at 40.0 ° C, and the temperature in the heating zone is maintained in the range of 36.9 ° C to 37.1 ° C to provide a better temperature environment for sample testing.
  • the preheating module includes a preheating block and a first heating resistor connected to the fourth temperature sensor through the preheating block, and the first heating resistor is connected to the MCU through a first PWM connection.
  • the fourth temperature sensor detects the internal ambient temperature of the preheating zone, and sends the detection result to the MCU through an electrical signal. After receiving the electrical signal, the MCU performs an operation, and according to the operation result, controls the heating of the first heating resistor through the first PWM.
  • the MCU controls the heating time of the first heating resistor by the first PWM to preheat
  • the internal ambient temperature of the zone is maintained at 40.0 ° C, which is convenient for preheating the sample flowing through the preheating zone to bring the temperature close to the internal ambient temperature of the heating zone.
  • the temperature of the heating zone is constant within the range of 36.9 ° C to 37.1 ° C. Creates favorable conditions to provide a better temperature environment for sample testing.
  • the heating module includes a heating module sequentially connected, a second heating resistor, and a relay, wherein the heating module is connected to the second temperature sensor, and the relay is connected to the MCU through a second PWM.
  • the second temperature sensor detects the temperature of the heating module, converts the detection result into an electrical signal and transmits it to the MCU, and the third temperature sensor detects the internal ambient temperature of the heating zone, and sends the detection result to the MCU through the electrical signal, and the MCU receives the electrical signal.
  • the MCU controls the heating time of the second heating resistor through the second PWM, the heat of the second heating resistor is transmitted to the heating module, and the heating module generates heat, so that the internal temperature of the heating zone rises;
  • the second PWM controls the heating time of the second heating resistor, keeping the internal ambient temperature of the heating zone in the range of 36.9 ° C to 37.1 ° C, providing a better temperature environment for sample detection.
  • the temperature relay is turned off, and the hardware ensures that the heating resistor stops heating, which protects the system.
  • the heat generating module includes a first heat generating block, an electrode backing plate, and a second heat generating block, and the first heat generating block and the second heat generating block are respectively attached to the electrode backing plate by thermal grease At the end, the fitting is fastened with screws.
  • the heat of the second heating resistor is transmitted to the first heating block and the second heating block.
  • the first heating block and the second heating block are made of aluminum, and the heat transfer performance is good, and the heating zone is quickly heated after heating, because the MCU passes the
  • the two-way PWM controls the heating time of the second heating resistor, so that the internal temperature of the heating zone is maintained within the range of 36.9 ° C to 37.1 ° C, which provides a better temperature environment for sample detection.
  • the first temperature sensor, the second temperature sensor, the third temperature sensor, and the fourth temperature sensor all use temperature probes to collect temperature data, and the temperature probe has NTC.
  • the temperature probe collects the temperature information, converts the temperature information into an electrical signal and transmits it to the MCU, so that the MCU can control the working state of the first heating resistor and the second heating resistor in time, so that the internal ambient temperature of the preheating zone is maintained at 40.0 ° C, so that the heating The internal ambient temperature of the zone is maintained in the range of 36.9 ° C to 37.1 ° C, providing a better temperature environment for sample testing.
  • the third temperature sensor is fixed on the electrode plate to facilitate detecting the internal environment temperature of the heating zone.
  • Another technical solution of the present invention is a temperature control method for an oven, comprising the following steps:
  • U upper limit CoefficientLimitl + (37 ⁇ 0 -T electrode) *Coefficientl - T environment * 2.5; where CoefficientLimitl is in the range of 95 ⁇ 110, Coefficient is in the range of 1 ⁇ 5; CoefficientLimit is the limiting coefficient, Coefficient is the coefficient
  • the temperature of the preheating zone is controlled at 40.0 ° C, so that the incubator is not disturbed during operation.
  • the temperature control method of the above-mentioned oven, the first temperature sensor, the second temperature sensor, the third temperature sensor and the fourth temperature sensor are controlled by the MCU to detect the temperature, and the detection result is converted into an electric signal and transmitted to the MCU, and the MCU performs the operation. According to the operation result, the heating time of the first heating resistor and the second heating resistor is controlled, the internal ambient temperature of the preheating zone is maintained at 40.0 ° C, and the internal ambient temperature of the heating zone is maintained within the range of 36.9 ° C to 37.1 ° C. Provides a better temperature environment for sample testing.
  • the third temperature sensor detects the internal ambient temperature of the heating zone, that is, the electrode temperature T 3 ⁇ 4 pole, and ⁇ is the internal ambient temperature of the heating zone.
  • step S1 when the second PWM outputs a high level, the second heating resistor is energized, and the heat is generated, and the heat is increased by the heat conduction, so that the temperature of the first heating block and the second heating block rises, the first heating block and the first heating block
  • the two heating blocks increase the temperature of the heating zone by heat conduction; when the second PWM output is low, the second heating resistor does not generate heat, and the temperature of the first heating block and the second heating block decreases.
  • the second PWM controls the heating time of the second heating resistor according to the operation result, and maintains the internal temperature of the heating zone within the range of 36.9 ° C to 37.1 ° C to provide a better temperature environment for sample detection.
  • the fourth temperature sensor detects the temperature of the preheating zone. Since the first PWM controls the heating time of the first heating resistor according to the operation result, the internal ambient temperature of the preheating zone is maintained at 40.0 ° C, which is convenient for preheating the sample flowing through the preheating zone to make the temperature close to the heating zone.
  • the internal ambient temperature to avoid large fluctuations in the temperature of the sample box, creates favorable conditions for the constant temperature of the heating zone in the range of 36.9 ° C to 37.1 ° C, providing a better temperature environment for sample detection.
  • the sealing member seals the thermostatic box to prevent internal heat leakage;
  • the partition divides the inner tank into a preheating zone and a heating zone to avoid mutual interference;
  • the first temperature sensor is controlled by the MCU,
  • the second temperature sensor, the third temperature sensor and the fourth temperature sensor detect the temperature, convert the detection result into an electrical signal and transmit it to the MCU, and the MCU performs an operation, and controls the heating time of the first heating resistor and the second heating resistor according to the operation result, so that
  • the internal ambient temperature of the preheating zone is maintained at 40.0 °C, keeping the internal ambient temperature of the heating zone within the range of 36.9 ° C to 37.1 ° C, providing a better temperature environment for sample testing.
  • This incubator is simple to operate and inexpensive.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention
  • FIG. 2 is a schematic structural view of a liner partition opening a door cover according to another embodiment of the present invention.
  • FIG. 3 is a schematic view showing the internal structure of an incubator according to another embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a cover plate and a shield cover removed in another embodiment of the present invention.
  • Figure 5 is a schematic view showing the structure of the bottom cover removed in another embodiment of the present invention.
  • Figure 6 is a flow chart showing temperature control in an embodiment of the present invention
  • Figure 7 is a flow chart of temperature control in another embodiment of the present invention
  • Figure 8 is a statistical diagram of the amount of temperature control in another embodiment of the present invention.
  • the mark 1-first temperature sensor; 2-MCU; 3-baffle; 4-preheating zone; 401-first heating resistor; 5-heating zone; 501-electrode plate; Needle; 6-inlet pipe; 7-preheating module; 8-fourth temperature sensor; 9-preheating block; 10-heating module; 11-second temperature sensor; 12-third temperature sensor; PWM; 14-second PWM; 15-second heating resistor; 16-heating module; 17-relay; 18-first heating block; 19-second heating block; 20-left side plate; Board; 22-top board; 23-shield; 24-shield; 25-rear cover; 26-door cover.
  • Embodiment 1 Referring to Figures 1 to 5, the technical solution of the present invention is: an incubator comprising: a casing, a casing, and a sealing member distributed on the top and the bottom of the casing, the casing being provided with a first temperature sensor 1 , used to measure the external ambient temperature of the incubator, between the outer casing and the inner tank is a heat insulation layer; the inner inside of the inner tank is divided into a preheating zone 4 and a heating zone 5 by the partition 3, avoiding the preheating zone 4 and The heating zone 5 performs heat transfer and affects each other; the liquid inlet pipe 6 passes through the preheating zone 4 and the heating zone 5 in sequence, and the preheating zone 4 has a preheating module 7 and a fourth temperature sensor 8 at the bottom, and the preheating module 7 For heating the preheating zone 4, the fourth temperature sensor 8 detects the temperature of the preheating zone 4, the heating zone 5 has a heating module 10 and a second temperature sensor 11 connected to the heating module 10, the second temperature sensor 11 detecting
  • top plate 22 and the bottom plate block a part of the dissipated heat, and the opposite shielding cover 23 and the shielding plate 24 are fastened to close the inner ring opening; the left side plate 20 and the right side plate 21 are closed, and the inner ring is closed.
  • the sample to be tested enters the preheating zone 4 along the liquid inlet pipe 6, flows from the preheating zone 4 to the heating zone 5, and then flows out of the heating zone 5 to the incubator, and the MCU 2 controls the preheating module 7 to generate heat, the preheating module 7
  • the heat is transferred to the inner space of the preheating zone 4, so that the temperature of the inner space of the preheating zone 4 is maintained at 40.0 ° C
  • the sample to be flowed into the heating zone 5 is preheated so as to be as close as possible to the temperature of the heating zone 5, reducing the influence of the sample on the internal ambient temperature of the heating zone 5; at the same time, the fourth temperature sensor 8 detects the interior of the preheating zone 4.
  • the ambient temperature is sent to the MCU 2 through an electrical signal. After receiving the electrical signal, the MCU 2 performs an operation to control the heating time of the preheating module 7 according to the operation result; the MCU 2 controls the heating module 10 to generate heat, and the heat of the heating module 10 is transmitted to
  • the inner space of the heating zone 5 is such that the internal ambient temperature of the heating zone 5 is constant above 36.9 ° C; the preheated sample flows into the heating zone 5, the temperature continues to change, and the incubator detects the sample through the probe 502, and the sample passes through After the detection, the incubator flows out along the inlet pipe 6; when the incubator is in operation, the second temperature sensor 11 detects the temperature of the heating module 10, converts the detection result into an electric signal and transmits it to the MCU 2, and the third temperature sensor 12 detects the heating zone 5 The internal ambient temperature converts the detection result into an electrical signal and transmits it to the MCU2.
  • the MCU2 After receiving the electrical signal, the MCU2 performs an operation according to the operation. Heating time controlling the heating module 10, the internal ambient temperature of the heating zone 5 to above 36.9 ° C.
  • the preheating module 7 of the preheating zone 4 is heated under the control of the MCU2, the internal ambient temperature of the preheating zone 4 is increased, and the fourth temperature sensor 8 detects the internal ambient temperature of the preheating zone 4, and will detect The result is sent to the MCU2 through an electrical signal.
  • the MCU2 After receiving the electrical signal, the MCU2 performs an operation, and controls the heating time of the preheating module 7 according to the operation result, so that the internal ambient temperature of the preheating zone 4 is maintained at 40.0 ° C, which is convenient for the flow through
  • the sample of the hot zone 4 is preheated to bring the temperature close to the internal ambient temperature of the heating zone 5; the heating module 10 of the heating zone 5 is heated under the control of the MCU 2, the internal ambient temperature of the heating zone 5 is raised, and the second temperature sensor 11 detects The temperature of the heating module 10 is converted into an electrical signal and transmitted to the MCU 2.
  • the third temperature sensor 12 detects the internal ambient temperature of the heating zone 5 and sends the detection result to the MCU 2 through an electrical signal.
  • the MCU 2 After receiving the electrical signal, the MCU 2 performs the electrical signal.
  • the operation controls the heating time of the heating module 10 according to the calculation result, the internal ambient temperature of the heating zone 5 is above 36.9 ° C, and the preheated sample rapidly heats up in the heating zone 5 .
  • the internal temperature of the heating zone 5 is close to ambient.
  • the temperature of the preheating zone 4 in the incubator is kept at 40.0 °C, and the temperature of the heating zone 5 is above 36.9 °C, which provides a better temperature environment for sample detection.
  • the second temperature sensor 11 detects the temperature of the heating module 10, converts the detection result into an electrical signal and transmits it to the MCU 2, and the third temperature sensor 12 Detecting the internal ambient temperature of the heating zone 5, converting the detection result into an electrical signal and transmitting it to the MCU 2.
  • the MCU 2 After receiving the electrical signal, the MCU 2 performs an operation, and controls the heating time of the heating module 10 according to the operation result, and the internal ambient temperature of the heating zone 5 is 37.1. Below °C.
  • the second temperature sensor 11 detects the temperature of the heating module 10, converts the detection result into an electrical signal and transmits it to the MCU 2, and third.
  • the temperature sensor 12 detects the internal ambient temperature of the heating zone 5, converts the detection result into an electrical signal and transmits it to the MCU 2.
  • the MCU 2 After receiving the electrical signal, the MCU 2 performs an operation, and controls the heating time of the heating module 10 according to the calculation result, and the inside of the heating zone 5 is controlled.
  • the ambient temperature is constant at 37. CTC.
  • Embodiment 2 differs from Embodiment 1 in that the preheating module 7 includes a preheating block 9 and passes through The preheating block 9 is connected to the first heating resistor 401 of the fourth temperature sensor 8, and the first heating resistor 401 is connected to the MCU 2 via the first path PWM13.
  • the fourth temperature sensor 8 detects the internal ambient temperature of the preheating zone 4, and sends the detection result to the MCU2 through an electrical signal. After receiving the electrical signal, the MCU2 performs an operation, and according to the operation result, the MCU2 controls the first heating through the first PWM13.
  • the MCU 2 controls the first heating by the first PWM13.
  • the heating time of the resistor 401 is such that the internal ambient temperature of the preheating zone 4 is maintained at 40.0 ° C, which facilitates preheating the sample flowing through the preheating zone 4 to bring the temperature close to the internal ambient temperature of the heating zone 5, which is the heating zone 5
  • the constant temperature range of 36.9 ° C to 37.1 ° C creates favorable conditions for a better temperature environment for sample testing.
  • Embodiment 3 is different from Embodiments 1 to 2, wherein the heating module 10 includes a heat generating module 16, a second heat generating resistor 15, and a relay 17, which are sequentially connected, and the heat generating module 16 is connected to the heat generating module 16
  • the second temperature sensor 11 is connected to the MCU 2 via the second PWM 14 .
  • the second temperature sensor 11 detects the temperature of the heating module 10, converts the detection result into an electrical signal and transmits it to the MCU 2, and the third temperature sensor 12 detects the internal ambient temperature of the heating zone 5, and sends the detection result to the MCU 2 through the electrical signal, and the MCU 2 receives After the electric signal is applied, the operation is performed.
  • the MCU 2 controls the heating time of the second heating resistor 15 through the second PWM 14 , and the heat of the second heating resistor 15 is transmitted to the heating module 16 , and the heating module 16 generates heat, so that the heating region 5
  • the internal ambient temperature rises; since the MCU2 controls the heating time of the second heating resistor 15 through the second PWM14, the internal ambient temperature of the heating zone 5 is maintained in the range of 36.9 ° C to 37.1 ° C, which provides better sample detection.
  • Temperature environment When the temperature is too high, the temperature relay 17 is turned off, and the hardware ensures that the heating resistor stops heating, which protects the system.
  • the heat generating module 16 includes a first heat generating block 18, an electrode backing plate 501, and a second heat generating block 19, the first The heat generating block 18 and the second heat generating block 19 are respectively attached to both ends of the electrode supporting plate 501 by thermal grease, and the bonding portion is fastened with a screw.
  • the heat of the second heating resistor 15 is transmitted to the first heating block 18 and the second heating block 19.
  • the first heating block 18 and the second heating block 19 are made of aluminum, and have good heat transfer performance, and are quickly heated to the heating zone 5 after heating.
  • the MCU2 controls the heating time of the second heating resistor 15 through the second PWM14, the internal ambient temperature of the heating zone 5 is maintained in the range of 36.9 ° C to 37.1 ° C, which provides a better temperature environment for sample detection.
  • Embodiment 5 referring to FIGS. 1 to 5, the first temperature sensor 1, the second temperature sensor 11, the third temperature sensor 12, and the fourth temperature sensor 8 all use temperature probes to collect temperature data, and the temperature probe has NTC.
  • the temperature probe collects the temperature information, converts the temperature information into an electrical signal and transmits it to the MCU2, so that the MCU2 can control the working state of the first heating resistor 401 and the second heating resistor 15 in time, so that the internal ambient temperature of the preheating zone 4 is maintained at 40.0 °C. , to maintain the internal ambient temperature of the heating zone 5 in the range of 36.9 ° C to 37.1 ° C, providing a better temperature environment for sample detection.
  • the third The temperature sensor 12 is fixed to the electrode pad 501 for detecting the internal ambient temperature of the heating zone 5.
  • Embodiment 6 see FIGS. 6 to 8, a temperature control method of the incubator, respectively, the incubator is placed at 10 ° C, 13 ° C, 16 ° C, 19 ° C, 22 ° C, 19 ° C, 22 ° C, 25 ° C, 28 ° C and 31 ° C environment to do the experiment, the analysis of the oven temperature control method, the steps are as follows:
  • U upper limit CoefficientLimitl + (37 ⁇ 0 -T electrode) *Coefficientl - T environment * 2.5; where CoefficientLimitl is in the range of 95 ⁇ 110, Coefficient is in the range of 1 ⁇ 5; CoefficientLimit is the limiting coefficient, Coefficient is the coefficient
  • the temperature control method of the above-mentioned oven, the first temperature sensor 1, the second temperature sensor 11, the third temperature sensor 12, and the fourth temperature sensor 8 are controlled by the MCU 2 to detect the temperature, and the detection result is converted into an electric signal and transmitted to the MCU 2
  • the MCU 2 performs an operation, and controls the heat generation time of the first heating resistor 401 and the second heating resistor 15 according to the calculation result, so that the internal ambient temperature of the preheating zone 4 is maintained at 40.0 ° C, and the internal ambient temperature of the heating zone 5 is maintained at 36.9.
  • a temperature range of °C to 37.1 °C provides a better temperature environment for sample testing.
  • step S1 the third temperature sensor 12 detects the internal ambient temperature of the heating zone 5, that is, the electrode temperature T, T « is the internal ambient temperature of the heating zone; and when the second PWM14 outputs a high level, the second heating resistor 15 is energized, generates heat, heat is heated, and the temperature of the second heat generating block 19 rises.
  • the second heat generating block 19 raises the temperature of the heating zone 5 by heat conduction; when the second PWM14 outputs a low level, the circuit is disconnected, and the second heating resistor 15 Without heating, the temperature on the second heating block 19 drops.
  • the MCU2 controls the heating time of the second heating resistor 15 through the second PWM14, so that the internal ambient temperature of the heating zone 5 is maintained within the range of 36.9 ° C to 37.1 ° C to provide a better temperature environment for sample detection.
  • step S5 the fourth temperature sensor 8 detects the temperature of the preheating zone 4. Since the MCU 2 controls the heating time of the first heating resistor 401 through the first PWM13, the internal ambient temperature of the preheating zone 4 is maintained at 40.0 ° C, which facilitates preheating the sample flowing through the preheating zone 4 to bring the temperature closer to heating.
  • the internal ambient temperature of Zone 5 avoids large fluctuations in the temperature of the sample compartment, creating favorable conditions for the constant temperature of the heating zone 5 in the range of 36.9 ° C to 37.1 ° C, providing a better temperature environment for sample detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

一种恒温箱及其温度控制方法。该恒温箱包括:外壳、内胆以及分布于该外壳顶部和底部的密封部件,所述外壳上装有第一温度传感器(1),所述外壳与内胆之间是隔热层;所述内胆内部被隔板(3)分为预热区(4)和加热区(5),进液管道(6)依次通过预热区(4)和加热区(5),所述预热区(4)底部有预热模块(7)和第四温度传感器(8),所述加热区(5)有加热模块(10)和连接加热模块(10)的第二温度传感器(11);所述外壳上还有MCU(2),该MCU(2)同时连接四路温度传感器、预热模块(7)以及加热模块(10)。该温度控制方法通过设定一个控制量U,并根据电极温度T电源与设定温度T的差值对U进行修正,使恒温箱中预热区(4)和加热区(5)的温度保持恒定,为样品检测提供更佳的温度环境。

Description

一种恒温箱及其温度控制方法 技术领域
[0001] 本发明属于医疗电子设备领域, 特别涉及一种恒温箱及其温度控制方法。
背景技术
[0002] 血气分析仪是通过对人体血液及呼出气的酸碱度、 二氧化碳分压、 氧分压进行定量测 定来分析和评价人体血液酸碱平衡状态和输氧状态的仪器。 血气分析仪是在 37.CTC环境下进 行检测, 输人患者的血气样品, 得出相应检测结果。 温度对血气分析中 pH、 PC02、 P02均有 影响, 且可影响到相关计算值。 当患者体温偏离 37.CTC时, 测量值就不能反映患者的实际状 况, 因此, 血气分析仪的恒温箱的温度控制尤为关键。
[0003] 国内外现有的血气分析仪, 以著名的麦迪卡 MEDICA 为例, 其样品温度控制精度是 37.0°C ± 0.2°C,恒温控制精度有待于进一步提高,并且国外的血气分析仪价格往往都很昂贵。
[0004] 已有的温度控制方法多采用传统的 PID控制算法, 其运算简单、 调整方便, 在过程控 制中, 这种控制算法仍占据相当重要的地位。但 PID控制的效果如何, 在很大程度上是取决于 控制器参数的正确整定。为此, 人们提出了各种不同的参数整定方法, 如误差积分最小、 固定 衰减比、 极点配置等方法。 这些方法主要是用经典控制理论中的一些设计方法或者依靠现场 试验方法来进行 PID控制器参数的计算与整定。 显然, 这就要求操作人员具有较高的理论基 础和现场调试经验。而且, 被控对象模型参数难以确定以及系统性能稳定性较差, 则需频繁地 进行参数整定, 这必将影响系统的正常运行。 因此, 急需一种操作简单、 价格合理、 结果更 准确的恒温箱及温度控制方法。
发明内容
[0005] 本发明的目的是提供一种恒温箱及其温度控制方法, 通过加热装置、 温度检测装置和 密封部件使恒温箱内部温度恒定, 通过 MCU控制加热装置和温度检测装置, 使预热区温度 保持在 40.0°C, 使加热区的温度保持在 36.9°C到 37.1 °C之间。
[0006] 本发明的技术方案是: 一种恒温箱, 包括: 外壳、 内胆以及分布于该外壳顶部和底部 的密封部件, 所述外壳上装有第一温度传感器, 用来测量恒温箱的外部环境温度, 所述外壳 与内胆之间是隔热层; 所述内胆内部被隔板分为预热区和加热区, 避免预热区和加热区进行 热传递, 相互影响; 进液管道依次通过预热区和加热区, 所述预热区底部有预热模块和第四 温度传感器, 所述预热模块用于加热预热区, 所述第四温度传感器检测预热区的温度, 所述 加热区有加热模块和连接该加热模块的第二温度传感器, 该第二温度传感器检测加热模块的 温度; 所述外壳上还有 MCU, 该 MCU同时连接第一温度传感器、 第二温度传感器、 第三温 度传感器、第四温度传感器、预热模块以及加热模块,所述第三温度传感器位于所述加热区, 检测电极温度即加热区内部环境的温度; 第一温度传感器、 第二温度传感器、 第三温度传感 器以及第四温度传感器将检测点的温度值转化为电信号, 传递给 MCU,MCU收到电信号后进 行运算, 然后分别控制预热模块和加热模块是否发热; 所述密封部件包括左侧板、 右侧板、 顶板、 屏蔽罩、 屏蔽板、 后盖板以及门盖, 所述左侧板和右侧板在内胆顶部相对设置, 所述 顶板和顶板上方的屏蔽罩位于内胆顶部, 所述后盖板位于外壳底部, 所述屏蔽板和门盖在外 壳顶部的同一侧与所述外壳活页连接。 顶板和底板阻挡了一部分散发的热量, 相对设置的屏 蔽罩和屏蔽板扣合, 封住内胆口; 关上左侧板和右侧板, 将内胆口在封闭一层; 盖上门盖, 恒温箱顶部完全密封, 盖上后盖板, 将恒温箱底部密封。 待检测的样品沿着进液管道进入预 热区, 从预热区流到加热区, 然后从加热区流出恒温箱, MCU控制预热模块发热, 该预热模 块的热量传递到预热区的内部空间, 使预热区的内部空间的温度保持在 40.0°C, 将要流进加 热区的样品进行预热,使其尽量接近加热区的温度,降低样品对加热区内部环境温度的影响; 与此同时, 第四温度传感器检测预热区的内部环境温度, 并将检测结果通过电信号发送给 MCU, MCU接收到电信号后, 进行运算, 根据运算结果控制预热模块的发热时间; MCU控 制加热模块发热, 加热模块的热量传递到加热区的内部空间, 将加热区的内部环境温度升至 36.9°C到 37.1 °C范围内; 预热过的样品流进加热区, 温度继续变化, 恒温箱通过探针对样品 进行检测, 样品经过检测后, 沿着进液管道流出恒温箱; 恒温箱工作时, 第二温度传感器检 测加热模块的温度, 将检测结果转化为电信号传递给 MCU, 第三温度传感器检测加热区的内 部环境温度, 将检测结果转化为电信号传递给 MCU, MCU接收到电信号后, 进行运算, 根据 运算结果控制加热模块的加热时间, 将加热区的内部环境温度恒定在 36.9°C到 37.1 °C。 本技 术方案中, 预热区的预热模块在 MCU 的控制下发热, 预热区的内部环境温度升高, 第四温 度传感器检测预热区的内部环境温度, 并将检测结果通过电信号发送给 MCU, MCU接收到 电信号后, 进行运算, 根据运算结果控制预热模块的发热时间, 使预热区的内部环境温度保 持在 40.0°C, 便于将流经预热区的样品预热, 使其温度接近加热区的内部环境温度; 加热区 的加热模块在 MCU 的控制下发热, 加热区的内部环境温度升高, 第二温度传感器检测加热 模块的温度, 将检测结果转化为电信号传递给 MCU, 第三温度传感器检测加热区的内部环境 温度, 并将检测结果通过电信号发送给 MCU, MCU接收到电信号后, 进行运算, 根据运算 结果控制加热模块的发热时间, 使加热区的内部环境温度保持在 36.9°C到 37.1 °C范围内, 经 过预热的样品在加热区迅速升温, 和加热区的内部环境温度接近。 在 MCU 的控制下, 恒温 箱中预热区的温度保持在 40.0°C, 加热区的温度保持在 36.9°C到 37.1 °C范围内, 为样品检测 提供更佳的温度环境。
[0007] 进一步地, 所述预热模块包括预加热块和通过该预加热块连接所述第四温度传感器的 第一发热电阻, 该第一发热电阻通过第一路 PWM连接连接所述 MCU。第四温度传感器检测 预热区的内部环境温度, 并将检测结果通过电信号发送给 MCU, MCU接收到电信号后, 进 行运算, 根据运算结果, 通过第一路 PWM控制第一发热电阻的发热时间, 第一发热电阻的 热量传递到预加热块, 铝制的预加热块发热, 使预热区的内部环境温度上升; MCU通过第 一路 PWM控制第一发热电阻的发热时间, 使预热区的内部环境温度保持在 40.0°C, 便于将 流经预热区的样品预热,使其温度接近加热区的内部环境温度,为加热区的温度恒定在 36.9°C 到 37.1 °C范围内创造了有利条件, 为样品检测提供更佳的温度环境。
[0008] 进一步地, 所述加热模块包括依次连接的发热模块、 第二发热电阻以及继电器, 所述 发热模块连接所述第二温度传感器, 所述继电器通过第二路 PWM连接所述 MCU。第二温度 传感器检测加热模块的温度, 将检测结果转化为电信号传递给 MCU, 第三温度传感器检测加 热区的内部环境温度, 并将检测结果通过电信号发送给 MCU, MCU接收到电信号后, 进行 运算, 根据运算结果, MCU通过第二路 PWM控制第二发热电阻的发热时间, 第二发热电阻 的热量传递到发热模块, 发热模块发热, 使加热区的内部环境温度上升; 由于 MCU通过第 二路 PWM控制第二发热电阻的发热时间, 使加热区的内部环境温度保持在 36.9°C到 37.1 °C 范围内, 为样品检测提供更佳的温度环境。 当温度过高时, 温度继电器断开, 硬件确保加热 电阻停止加热, 起到对系统的保护作用。
[0009] 进一步地, 所述发热模块包括第一发热块、 电极靠板以及第二发热块, 所述第一发热 块和第二发热块通过导热硅脂分别贴在所述电极靠板的两端, 贴合处用螺钉紧固。 第二发热 电阻的热量传递到第一发热块和第二发热块上, 第一发热块和第二发热块是铝制的, 热传递 性能好, 发热后快速给加热区加热, 由于 MCU通过第二路 PWM控制第二发热电阻的发热 时间, 使加热区的内部环境温度保持在 36.9°C到 37.1 °C范围内, 为样品检测提供更佳的温度 环境。
[0010] 进一步地, 第一温度传感器、 第二温度传感器、 第三温度传感器以及第四温度传感器 都采用温度探头采集温度数据, 所述温度探头上有 NTC。 温度探头采集温度信息, 将温度信 息转化为电信号传递给 MCU,便于 MCU及时控制第一发热电阻和第二发热电阻的工作状态, 使预热区的内部环境温度保持在 40.0°C, 使加热区的内部环境温度保持在 36.9°C到 37.1 °C范 围内, 为样品检测提供更佳的温度环境。 [0011] 进一步地,所述第三温度传感器固定在电极靠板上,便于检测加热区的内部环境温度。
[0012] 本发明的另一技术方案是一种恒温箱的温度控制方法, 包括如下步骤:
51、 设定一个控制量 U, 该控制量控制第二路 PWM在一个周期内输出高电平的时间,计算实 时的电极温度 T电极与设定温度 T ¾的差值 A Τ,Τ ¾取 37.0°C, g卩 A Τ= 37.0 °C- T电极;
52、 当 2°C A T时, U的函数为:
U= K* (37.0°C - T 电极) + 20, 其中, 8 Κ 10;
53、 当 -0.2°C A T<2°C时, U的初始值设为 25, U' 为 U的上一次取值; 每秒获取一次 T 电 极, 每 5秒取一次 T 的平均值, 前 5秒 T 的平均值为 , 后 5秒 T 的平均值为 T2; 各 区间内 U的取值如下:
当 A T > 0.3 °C时, U= U, +1;
当 OK A T<0°C且 T2<T1时, U=U' +4;
当 OK A T<0°C且 Τ2=Τ1 时, U=U, +1;
当 0.3°C A T<0°C且 T2>T1时, U=U' ;
当 A T=0°C且 Τ2<Τ1时, U=U, +5;
当 Δ T=0°C且 T2=T1时, U=U,;
当 A T=0°C且 T2>T1时, U=U, -5;
当 -0.3°C A T<0°C且 T2<T1时, U=U,;
当 -0.3°C A T<0°C且 T2=T1时, U=U, -1;
当 -0.3°C A T<0°C且 T2>T1时, U=U, -4;
当 -0.3°C< A T时, U=U, -1;
54、 对 U进行修正, 使 U在上下限范围内; 分别在 10°C、 13°C、 16°C、 19°C、 22°C、 19°C、 22°C、 25°C、 28°C以及 31 °C的环境下做实验, 得出 U在不同温度下的上下限范围; U的上限 函数为:
U上限 = CoefficientLimitl +(37·0 -T 电极) *Coefficientl - T环境 * 2.5; 其中, CoefficientLimitl取 值范围是 95~110, Coefficient取值范围是: 1~5; CoefficientLimit表示限定系数, Coefficient 表示系数; U的下限函数为: U下限 = CoefficientLimit2 +(37·0 -T电极) *Coefficient2 - T环境 * 2.5; 其中, CoefficientLimit2取值范围是 78~87, Coefficient2取值范围是: 1~3; CoefficientLimit 表示限定系数, Coefficient表示系数; 以及
55、 通过与步骤 SI至 S4相同的方法, 将预热区的温度控制在 40.0°C, 使得恒温箱工作时不 受干扰。 [0013] 上述恒温箱的温度控制方法, 通过 MCU控制第一温度传感器、 第二温度传感器、 第 三温度传感器以及第四温度传感器检测温度, 将检测结果转化为电信号传递给 MCU, MCU 进行运算, 根据运算结果控制第一发热电阻和第二发热电阻的发热时间, 使预热区的内部环 境温度保持在 40.0°C, 使加热区的内部环境温度保持在 36.9°C到 37.1 °C范围内, 为样品检测 提供更佳的温度环境。
[0014] 进一步地, 步骤 S1中, 第三温度传感器检测加热区的内部环境温度, 即电极温度 T ¾ 极, τ 即为加热区的内部环境温度。
[0015] 进一步地, 步骤 S1中, 第二路 PWM输出高电平时, 第二发热电阻通电, 发热, 热量 通过热传导使得第一发热块和第二发热块上温度上升, 第一发热块和第二发热块通过热传导 使加热区的温度上升; 第二路 PWM输出低电平时, 第二发热电阻不发热, 第一发热块和第 二发热块上温度下降。 第二路 PWM根据运算结果控制第二发热电阻的发热时间, 使加热区 的内部环境温度保持在 36.9°C到 37.1 °C范围内, 为样品检测提供更佳的温度环境。
[0016] 进一步地, 步骤 S5中, 第四温度传感器检测预热区的温度。 由于第一路 PWM根据运 算结果控制第一发热电阻的发热时间, 使预热区的内部环境温度保持在 40.0°C, 便于将流经 预热区的样品预热, 使其温度接近加热区的内部环境温度, 避免样品箱温度受到较大波动, 为加热区的温度恒定在 36.9°C到 37.1 °C范围内创造了有利条件, 为样品检测提供更佳的温度 环境。
[0017] 本发明的有益效果是: 密封部件对恒温箱密封, 防止内部热量外漏; 隔板将内胆分为 预热区和加热区, 避免了相互干扰; 通过 MCU控制第一温度传感器、 第二温度传感器、 第 三温度传感器以及第四温度传感器检测温度, 将检测结果转化为电信号传递给 MCU, MCU 进行运算, 根据运算结果控制第一发热电阻和第二发热电阻的发热时间, 使预热区的内部环 境温度保持在 40.0°C, 使加热区的内部环境温度保持在 36.9°C到 37.1 °C范围内, 为样品检测 提供更佳的温度环境。 这种恒温箱操作简单, 价格便宜。
附图说明
[0018] 图 1是本发明一个实施例的结构示意图;
图 2是本发明另一个实施例中打开门盖的内胆分区的结构示意图;
图 3是本发明另一个实施例中恒温箱的内部结构示意图;
图 4是本发明另一个实施例中去掉后盖板和屏蔽罩的结构示意图;
图 5是本发明另一个实施例中去掉底盖的结构示意图;
图 6是本发明一个实施例中的温度控制流程图; 图 7是本发明另一个实施例中的温度控制流程图;
图 8是本发明另一个实施例中的温度控制量的统计图。
[0019] 图中标记: 1-第一温度传感器; 2-MCU; 3-隔板; 4-预热区; 401-第一发热电阻; 5- 加热区; 501-电极靠板; 502-探针; 6-进液管道; 7-预热模块; 8-第四温度传感器; 9-预加热 块; 10-加热模块; 11-第二温度传感器; 12-第三温度传感器; 13-第一路 PWM; 14-第二路 PWM; 15-第二发热电阻; 16-发热模块; 17-继电器; 18-第一发热块; 19-第二发热块; 20-左侧板; 21-右侧板; 22-顶板; 23-屏蔽罩; 24-屏蔽板; 25-后盖板; 26-门盖。
具体实施方式
[0020] 下面结合附图, 对本发明的较优的实施例作进一步的详细说明:
实施例 1, 参见图 1至 5, 本发明的技术方案是: 一种恒温箱, 包括: 外壳、 内胆以及分布于 该外壳顶部和底部的密封部件, 所述外壳上装有第一温度传感器 1, 用来测量恒温箱的外部 环境温度,所述外壳与内胆之间是隔热层;所述内胆内部被隔板 3分为预热区 4和加热区 5, 避免预热区 4和加热区 5进行热传递,相互影响;进液管道 6依次通过预热区 4和加热区 5, 所述预热区 4底部有预热模块 7和第四温度传感器 8, 所述预热模块 7用于加热预热区 4, 所 述第四温度传感器 8检测预热区 4的温度, 所述加热区 5有加热模块 10和连接该加热模块 10的第二温度传感器 11, 该第二温度传感器 11检测加热模块 10的温度; 所述外壳上还有 MCU2, 该 MCU2同时连接第一温度传感器 1、 第二温度传感器 11、 第三温度传感器 12、 第 四温度传感器 8、 预热模块 7以及加热模块 10, 所述第三温度传感器 12位于所述加热区 5, 检测电极温度即加热区 5内部环境的温度; 第一温度传感器 1、 第二温度传感器 11、 第三温 度传感器 12以及第四温度传感器 8将检测点的温度值转化为电信号, 传递给 MCU2,MCU2 收到电信号后进行运算, 然后分别控制预热模块 7和加热模块 10是否发热; 所述密封部件包 括左侧板 20、 右侧板 21、 顶板 22、 屏蔽罩 23、 屏蔽板 24、 后盖板 25以及门盖 26, 所述左 侧板 20和右侧板 21在内胆顶部相对设置,所述顶板 22和顶板 22上方的屏蔽罩 23位于内胆 顶部, 所述后盖板 25位于外壳底部, 所述屏蔽板 24和门盖 26在外壳顶部的同一侧与所述外 壳活页连接。
[0021] 顶板 22和底板阻挡了一部分散发的热量, 相对设置的屏蔽罩 23和屏蔽板 24扣合, 封住内胆口; 关上左侧板 20和右侧板 21, 将内胆口在封闭一层; 盖上门盖 26, 恒温箱顶部 完全密封,盖上后盖板 25,将恒温箱底部密封。待检测的样品沿着进液管道 6进入预热区 4, 从预热区 4流到加热区 5, 然后从加热区 5流出恒温箱, MCU2控制预热模块 7发热, 该预 热模块 7的热量传递到预热区 4的内部空间, 使预热区 4的内部空间的温度保持在 40.0°C, 将要流进加热区 5的样品进行预热, 使其尽量接近加热区 5的温度, 降低样品对加热区 5内 部环境温度的影响; 与此同时, 第四温度传感器 8检测预热区 4的内部环境温度, 并将检测 结果通过电信号发送给 MCU2, MCU2接收到电信号后, 进行运算, 根据运算结果控制预热 模块 7的发热时间; MCU2控制加热模块 10发热, 加热模块 10的热量传递到加热区 5的内 部空间, 使加热区 5的内部环境温度恒定在 36.9°C以上; 预热过的样品流进加热区 5, 温度 继续变化, 恒温箱通过探针 502对样品进行检测, 样品经过检测后, 沿着进液管道 6流出恒 温箱; 恒温箱工作时, 第二温度传感器 11检测加热模块 10的温度, 将检测结果转化为电信 号传递给 MCU2, 第三温度传感器 12检测加热区 5的内部环境温度, 将检测结果转化为电信 号传递给 MCU2, MCU2接收到电信号后, 进行运算, 根据运算结果控制加热模块 10的加热 时间, 使加热区 5的内部环境温度在 36.9°C以上。 本技术方案中, 预热区 4的预热模块 7在 MCU2的控制下发热, 预热区 4的内部环境温度升高, 第四温度传感器 8检测预热区 4的内 部环境温度, 并将检测结果通过电信号发送给 MCU2, MCU2接收到电信号后, 进行运算, 根据运算结果控制预热模块 7的发热时间, 使预热区 4的内部环境温度保持在 40.0°C, 便于 将流经预热区 4的样品预热, 使其温度接近加热区 5的内部环境温度; 加热区 5的加热模块 10在 MCU2的控制下发热, 加热区 5的内部环境温度升高, 第二温度传感器 11检测加热模 块 10的温度, 将检测结果转化为电信号传递给 MCU2, 第三温度传感器 12检测加热区 5的 内部环境温度,并将检测结果通过电信号发送给 MCU2, MCU2接收到电信号后,进行运算, 根据运算结果控制加热模块 10的发热时间, 加热区 5的内部环境温度在 36.9°C以上, 经过预 热的样品在加热区 5迅速升温, 和加热区 5的内部环境温度接近。 在 MCU2的控制下, 恒温 箱中预热区 4的温度保持在 40.0°C, 加热区 5的温度在 36.9°C以上, 为样品检测提供更佳的 温度环境。
[0022] 参见图 1至 5, 与实施例 1不同的是, 恒温箱工作时, 第二温度传感器 11检测加热模 块 10的温度, 将检测结果转化为电信号传递给 MCU2, 第三温度传感器 12检测加热区 5的 内部环境温度, 将检测结果转化为电信号传递给 MCU2, MCU2接收到电信号后, 进行运算, 根据运算结果控制加热模块 10的加热时间, 加热区 5的内部环境温度在 37.1 °C以下。
[0023] 优选地, 参见图 1至 5, 与实施例 1不同的是, 恒温箱工作时, 第二温度传感器 11检 测加热模块 10的温度, 将检测结果转化为电信号传递给 MCU2, 第三温度传感器 12检测加 热区 5的内部环境温度,将检测结果转化为电信号传递给 MCU2, MCU2接收到电信号后,进 行运算,根据运算结果控制加热模块 10的加热时间,将加热区 5的内部环境温度恒定在 37.CTC。
[0024] 实施例 2, 参照图 3和 7, 和实施例 1不同的是, 预热模块 7包括预加热块 9和通过 该预加热块 9连接所述第四温度传感器 8的第一发热电阻 401, 该第一发热电阻 401通过第 一路 PWM13连接连接所述 MCU2。 第四温度传感器 8检测预热区 4的内部环境温度, 并将 检测结果通过电信号发送给 MCU2, MCU2接收到电信号后,进行运算,根据运算结果, MCU2 通过第一路 PWM13控制第一发热电阻 401的发热时间, 第一发热电阻 401的热量传递到预 加热块 9,铝制的预加热块 9发热,使预热区 4的内部环境温度上升; MCU2通过第一路 PWM13 控制第一发热电阻 401的发热时间, 使预热区 4的内部环境温度保持在 40.0°C, 便于将流经 预热区 4的样品预热,使其温度接近加热区 5的内部环境温度,为加热区 5的温度恒定在 36.9°C 到 37.1 °C范围内创造了有利条件, 为样品检测提供更佳的温度环境。
[0025] 实施例 3, 参见图 7, 与实施例 1至 2不同的是, 所述加热模块 10包括依次连接的发 热模块 16、第二发热电阻 15以及继电器 17,所述发热模块 16连接所述第二温度传感器 11, 所述继电器 17通过第二路 PWM14连接所述 MCU2。第二温度传感器 11检测加热模块 10的 温度, 将检测结果转化为电信号传递给 MCU2, 第三温度传感器 12检测加热区 5的内部环境 温度, 并将检测结果通过电信号发送给 MCU2, MCU2接收到电信号后, 进行运算, 根据运 算结果, MCU2通过第二路 PWM14控制第二发热电阻 15的发热时间, 第二发热电阻 15的 热量传递到发热模块 16, 发热模块 16发热, 使加热区 5的内部环境温度上升; 由于 MCU2 通过第二路 PWM14控制第二发热电阻 15的发热时间,使加热区 5的内部环境温度保持在 36.9°C 到 37.1 °C范围内, 为样品检测提供更佳的温度环境。 当温度过高时, 温度继电器 17断开, 硬 件确保加热电阻停止加热, 起到对系统的保护作用。
[0026] 实施例 4, 参见图 2至 7, 与实施例 1至 3不同的是, 所述发热模块 16包括第一发热 块 18、 电极靠板 501以及第二发热块 19, 所述第一发热块 18和第二发热块 19通过导热硅脂 分别贴在所述电极靠板 501的两端, 贴合处用螺钉紧固。第二发热电阻 15的热量传递到第一 发热块 18和第二发热块 19上, 第一发热块 18和第二发热块 19是铝制的, 热传递性能好, 发热后快速给加热区 5加热, 由于 MCU2通过第二路 PWM14控制第二发热电阻 15的发热 时间, 使加热区 5的内部环境温度保持在 36.9°C到 37.1 °C范围内, 为样品检测提供更佳的温 度环境。
[0027] 实施例 5, 参见图 1至 5, 第一温度传感器 1、 第二温度传感器 11、 第三温度传感器 12以及第四温度传感器 8都采用温度探头采集温度数据, 所述温度探头上有 NTC。温度探头 采集温度信息, 将温度信息转化为电信号传递给 MCU2, 便于 MCU2及时控制第一发热电阻 401和第二发热电阻 15的工作状态, 使预热区 4的内部环境温度保持在 40.0°C, 使加热区 5 的内部环境温度保持在 36.9°C到 37.1 °C范围内, 为样品检测提供更佳的温度环境。 所述第三 温度传感器 12固定在电极靠板 501上, 便于检测加热区 5的内部环境温度。
[0028] 实施例 6,参见图 6至 8,一种恒温箱的温度控制方法,分别将恒温箱置于 10°C、 13°C、 16°C、 19°C、 22°C、 19°C、 22°C、 25°C、 28°C以及 31 °C的环境下做实验, 分析后得出该恒温 箱温度控制方法, 步骤如下:
51、 设定一个控制量 U, 该控制量控制第二路 PWM14在一个周期内输出高电平的时间,计算 实时的电极温度 T电极与设定温度 T ¾的差值 A Τ,Τ ¾取 37.0°C, g卩 A Τ= 37.0 °C- T电极;
52、 当 2°C A T时, U的函数为:
U= K* (37.0°C - T 电极) + 20, 其中, 8 Κ 10;
53、 当 -0.2°C A T<2°C时, U的初始值设为 25, U' 为 U的上一次取值; 每秒获取一次 T ¾ 极, 每 5秒取一次 T 的平均值, 前 5秒 T 的平均值为 1 , 后 5秒 T 的平均值为 T2; 各 区间内 U的取值如下:
当 A T > 0.3 °C时, U= U, +1;
当 OK A T<0°C且 T2<T1时, U=U' +4;
当 OK A T<0°C且 Τ2=Τ1 时, U=U, +1;
当 0.3°C A T<0°C且 T2>T1时, U=U' ;
当 A T=0°C且 Τ2<Τ1时, U=U, +5;
当 Δ T=0°C且 T2=T1时, U=U,;
当 A T=0°C且 T2>T1时, U=U, -5;
当 -0.3°C A T<0°C且 T2<T1时, U=U,;
当 -0.3°C A T<0°C且 T2=T1时, U=U, -1;
当 -0.3°C A T<0°C且 T2>T1时, U=U, -4;
当 -0.3°C< A T时, U=U, -1;
54、 对 U进行修正, 使 U在上下限范围内; 分别在 10°C、 13°C、 16°C、 19°C、 22°C、 19°C、 22°C、 25°C、 28°C以及 31 °C的环境下做实验, 得出 U在不同温度下的上下限范围; U的上限 函数为:
U上限 = CoefficientLimitl +(37·0 -T 电极) *Coefficientl - T环境 * 2.5; 其中, CoefficientLimitl取 值范围是 95~110, Coefficient取值范围是: 1~5; CoefficientLimit表示限定系数, Coefficient 表示系数; U的下限函数为: U下限 = CoefficientLimit2 +(37·0 -T电极) *Coefficient2 - T环境 * 2.5; 其中, CoefficientLimit2取值范围是 78~87, Coefficient2取值范围是: 1~3; CoefficientLimit 表示限定系数, Coefficient表示系数; 以及 S5、 通过与步骤 SI至 S4相同的方法, 将预热区 4的温度控制在 40.0°C, 使得恒温箱工作时 不受干扰。
[0029] 上述恒温箱的温度控制方法,通过 MCU2控制第一温度传感器 1、第二温度传感器 11、 第三温度传感器 12以及第四温度传感器 8检测温度,将检测结果转化为电信号传递给 MCU2, MCU2进行运算, 根据运算结果控制第一发热电阻 401和第二发热电阻 15的发热时间, 使预 热区 4的内部环境温度保持在 40.0°C, 使加热区 5的内部环境温度保持在 36.9°C到 37.1 °C范 围内, 为样品检测提供更佳的温度环境。
[0030] 步骤 S1中, 第三温度传感器 12检测加热区 5的内部环境温度, 即电极温度 T , T «即为加热区的内部环境温度;第二路 PWM14输出高电平时,第二发热电阻 15通电,发热, 热量通过热传导第二发热块 19上温度上升, 第二发热块 19通过热传导使加热区 5的温度上 升; 第二路 PWM14输出低电平时, 电路断开, 第二发热电阻 15不发热, 第二发热块 19上 温度下降。 MCU2通过第二路 PWM14控制第二发热电阻 15的发热时间, 使加热区 5的内部 环境温度保持在 36.9°C到 37.1 °C范围内, 为样品检测提供更佳的温度环境。
[0031] 步骤 S5中,第四温度传感器 8检测预热区 4的温度。由于 MCU2通过第一路 PWM13 控制第一发热电阻 401的发热时间, 使预热区 4的内部环境温度保持在 40.0°C, 便于将流经 预热区 4的样品预热, 使其温度接近加热区 5的内部环境温度, 避免样品箱温度受到较大波 动, 为加热区 5的温度恒定在 36.9°C到 37.1 °C范围内创造了有利条件, 为样品检测提供更佳 的温度环境。
[0032] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定本发 明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通技术人员来说, 在不脱离 本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims

权利要求书
1. 一种恒温箱, 其特征在于, 包括: 外壳、 内胆以及分布于该外壳顶部和底部的密封部件, 所述外壳上装有第一温度传感器, 所述外壳与内胆之间是隔热层; 所述内胆内部被隔板分为 预热区和加热区, 进液管道依次通过预热区和加热区, 所述预热区底部有预热模块和第四温 度传感器,所述加热区有加热模块和连接该加热模块的第二温度传感器;所述外壳上还有 MCU, 该 MCU同时连接第一温度传感器、 第二温度传感器、 第三温度传感器、 第四温度传感器、 预 热模块以及加热模块, 所述第三温度传感器位于所述加热区; 所述密封部件包括左侧板、 右 侧板、顶板、屏蔽罩、屏蔽板、后盖板以及门盖, 所述左侧板和右侧板在内胆顶部相对设置, 所述顶板和顶板上方的屏蔽罩位于内胆顶部, 所述后盖板位于外壳底部, 所述屏蔽板和门盖 在外壳顶部的同一侧与所述外壳活页连接。
2. 根据权利要求 1所述的恒温箱, 其特征在于: 所述预热模块包括预加热块和通过该预加热 块连接所述第四温度传感器的第一发热电阻, 该第一发热电阻通过第一路 P丽连接连接所述 MCU。
3. 根据权利要求 1所述的恒温箱, 其特征在于: 所述加热模块包括依次连接的发热模块、第 二发热电阻以及继电器,所述发热模块连接所述第二温度传感器,所述继电器通过第二路 P丽 连接所述 MCU。
4. 根据权利要求 3所述的恒温箱, 其特征在于: 所述发热模块包括第一发热块、 电极靠板以 及第二发热块, 所述第一发热块和第二发热块通过导热硅脂分别贴在所述电极靠板的两端, 贴合处用螺钉紧固。
5. 根据权利要求 4所述的恒温箱, 其特征在于: 第一温度传感器、 第二温度传感器、 第三温 度传感器以及第四温度传感器都采用温度探头采集温度数据, 所述温度探头上有 NTC。
6. 根据权利要求 5所述的恒温箱, 其特征在于: 所述第三温度传感器固定在电极靠板上。
7. 根据权利要求 6所述的恒温箱的温度控制方法, 其特征在于: 包括如下步骤:
51、 设定一个控制量 U, 该控制量控制第二路 PWM在一个周期内输出高电平的时间,计算实时 的电极温度 T电极与设定温度 T ¾的差值 A Τ, T ¾取 37. 0°C, 即 A T= 37. 0°C_ T
52、 当 2°C A T时, U的函数为:
U= K* ( 37. 0°C - T电极) + 20, 其中, 8 Κ 10;
53、当 -0. 2°C A T〈2°C时, U的初始值设为 25, U' 为 U的上一次取值;每秒获取一次 T 每 5秒取一次 T 的平均值, 前 5秒 T 的平均值为 1\, 后 5秒 T «的平均值为 T2; 各区 间内 u的取值如下:
当 ΔΤ > 0.3 °C时, U= U, +1;
当 0.3°C AT〈0°C且 T2〈T1时, U=U, +4;
当 0.3°C AT〈0°C且 Τ2=Τ1时, U=U, +1;
当 0.3°C AT〈0°C且 T2〉T1时, U=U, ;
当 AT=0°C且 Τ2〈Τ1时, U=U, +5;
当 AT=0°C且 T2=T1时, U=U' ;
当 AT=0°C且 Τ2〉Τ1时, U=U, -5;
当 -0.3°C AT〈0°C且 T2〈T1时, U=U, ;
当 -0.3°C AT〈0°C且 T2=T1时, U=U, -1;
当 -0.3°C AT〈0°C且 T2〉T1时, U=U, -4;
当- 0.3°C〈AT时, U=U, -1;
54、 对 U进行修正, 使 U在上下限范围内; 以及
55、 通过与步骤 SI至 S4相同的方法, 将预热区的温度控制在 40.0°C, 使得恒温箱工作时不 受干扰。
8. 根据权利要求 7所述的恒温箱的温度控制方法, 其特征在于: 步骤 S1中, 第三温度传感 器检测加热区的内部环境温度, 即电极温度 T
9. 根据权利要求 8所述的恒温箱的温度控制方法, 其特征在于: 步骤 S1中, 第二路 P丽输 出高电平时, 第二发热电阻通电, 发热; 输出低电平时, 电路断开, 第二发热电阻不发热。
10. 根据权利要求 9所述的恒温箱的温度控制方法, 其特征在于: 步骤 S5中, 第四温度传感 器检测预热区的温度。
PCT/CN2013/074833 2012-08-10 2013-04-26 一种恒温箱及其温度控制方法 WO2014023114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210283922.9 2012-08-10
CN201210283922.9A CN102789249B (zh) 2012-08-10 2012-08-10 一种恒温箱及其温度控制方法

Publications (1)

Publication Number Publication Date
WO2014023114A1 true WO2014023114A1 (zh) 2014-02-13

Family

ID=47154667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074833 WO2014023114A1 (zh) 2012-08-10 2013-04-26 一种恒温箱及其温度控制方法

Country Status (2)

Country Link
CN (1) CN102789249B (zh)
WO (1) WO2014023114A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911094A (zh) * 2016-06-23 2016-08-31 哈尔滨工业大学 微/纳米孔隙材料高温传热的测量装置及高温传热实验方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789249B (zh) * 2012-08-10 2014-11-26 深圳市麦迪聪医疗电子有限公司 一种恒温箱及其温度控制方法
CN105573371B (zh) * 2015-12-17 2018-06-12 江苏泓润生物质能科技有限公司 一种高精度温控箱精准温控方法
CN107560996B (zh) * 2017-02-21 2020-05-08 深圳雷杜生命科学股份有限公司 一种粒子分析仪及其恒温反应系统
CN110179441A (zh) * 2019-05-30 2019-08-30 王晓杰 一种医用微型探测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09128062A (ja) * 1995-10-27 1997-05-16 Hitachi Ltd パルス幅変調方式温度制御装置
GB2339895A (en) * 1998-07-22 2000-02-09 Kenneth John Stout A portable compartment for an automated guided vehicle (AGV)
CN200950229Y (zh) * 2006-04-25 2007-09-19 光宝科技股份有限公司 可控制温度与气流的恒温箱
US20080314999A1 (en) * 2007-06-19 2008-12-25 Honeywell International Inc. Water heater stacking detection and control
CN101339439A (zh) * 2008-05-15 2009-01-07 秦一涛 用于分布式光纤温度传感器系统的恒温控制装置及方法
CN101813612A (zh) * 2009-02-25 2010-08-25 深圳迈瑞生物医疗电子股份有限公司 粒子分析仪及其温度控制方法
CN102789249A (zh) * 2012-08-10 2012-11-21 深圳市麦迪聪医疗电子有限公司 一种恒温箱及其温度控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110170A (en) * 1976-04-28 1978-08-29 Kirschman Fred C Home water distiller
US4361540A (en) * 1980-05-05 1982-11-30 Instrumentation Laboratory Inc. Analysis system
CN101750504B (zh) * 2008-12-05 2013-11-27 深圳迈瑞生物医疗电子股份有限公司 生化分析仪的液体温度控制系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09128062A (ja) * 1995-10-27 1997-05-16 Hitachi Ltd パルス幅変調方式温度制御装置
GB2339895A (en) * 1998-07-22 2000-02-09 Kenneth John Stout A portable compartment for an automated guided vehicle (AGV)
CN200950229Y (zh) * 2006-04-25 2007-09-19 光宝科技股份有限公司 可控制温度与气流的恒温箱
US20080314999A1 (en) * 2007-06-19 2008-12-25 Honeywell International Inc. Water heater stacking detection and control
CN101339439A (zh) * 2008-05-15 2009-01-07 秦一涛 用于分布式光纤温度传感器系统的恒温控制装置及方法
CN101813612A (zh) * 2009-02-25 2010-08-25 深圳迈瑞生物医疗电子股份有限公司 粒子分析仪及其温度控制方法
CN102789249A (zh) * 2012-08-10 2012-11-21 深圳市麦迪聪医疗电子有限公司 一种恒温箱及其温度控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911094A (zh) * 2016-06-23 2016-08-31 哈尔滨工业大学 微/纳米孔隙材料高温传热的测量装置及高温传热实验方法
CN105911094B (zh) * 2016-06-23 2018-11-02 哈尔滨工业大学 微/纳米孔隙材料高温传热的测量装置及高温传热实验方法

Also Published As

Publication number Publication date
CN102789249A (zh) 2012-11-21
CN102789249B (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2014023114A1 (zh) 一种恒温箱及其温度控制方法
US11666720B2 (en) Flow path sensing for flow therapy apparatus
TWI272385B (en) Gas identification system
Imhof et al. Closed‐chamber transepidermal water loss measurement: microclimate, calibration and performance
CN106770738B (zh) 一种二氧化碳浓度修正的呼出气多组分检测仪及检测方法
CN108534346B (zh) 一种燃气热水器控制方法及燃气热水器
CN108245759A (zh) 呼吸湿化治疗仪温湿度输出控制系统及方法
CN103558881B (zh) 一种加热检测管道中血液的方法及装置
CN101968509A (zh) 大功率变流器的电力电子器件能量损耗的测量方法
CN104677522A (zh) 一体化温度变送器现场自动校准系统及方法
CN110375883A (zh) 基于主动热流控制的体温计及其测温方法
RU2013127642A (ru) Спектральный анализ текучего неоднородного вещества в среднем инфракрасном диапазоне
CN206161182U (zh) 一种电子元器件测试恒温系统
CN107569758A (zh) 一种多功能呼吸内科用氧气管保温装置
CN207689940U (zh) 血小板聚集仪恒温装置
CN101078698B (zh) 围护结构整体隔热性能的主动式检测方法
CN102538886B (zh) 一种可抗环境温度干扰的管外捆绑式热脉冲气体流量计
CN208598374U (zh) 食道pH导管恒温校准装置
CN101339439B (zh) 用于分布式光纤温度传感器系统的恒温控制装置及方法
CN212658340U (zh) 一种三槽一体式红外体温计检测装置
CN203785982U (zh) 一种蒸汽检测装置
CN203705378U (zh) 一种气体比定压热容测定仪
CN205670056U (zh) 反应釜反应温度测试装置
CN206192930U (zh) 一种水循环体模
CN207488852U (zh) 一种气体恒温装置及检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828534

Country of ref document: EP

Kind code of ref document: A1