WO2014021640A1 - 그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 이를 포함하는 소자 - Google Patents

그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 이를 포함하는 소자 Download PDF

Info

Publication number
WO2014021640A1
WO2014021640A1 PCT/KR2013/006903 KR2013006903W WO2014021640A1 WO 2014021640 A1 WO2014021640 A1 WO 2014021640A1 KR 2013006903 W KR2013006903 W KR 2013006903W WO 2014021640 A1 WO2014021640 A1 WO 2014021640A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
doping
doped
bidirectional
self
Prior art date
Application number
PCT/KR2013/006903
Other languages
English (en)
French (fr)
Inventor
홍병희
김영수
박재성
Original Assignee
서울대학교산학협력단
그래핀스퀘어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 그래핀스퀘어 주식회사 filed Critical 서울대학교산학협력단
Publication of WO2014021640A1 publication Critical patent/WO2014021640A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a bidirectional doping method of graphene, a bidirectionally doped graphene, and a device including the bidirectionally doped graphene.
  • Graphene is a material consisting only of carbon having a two-dimensional honeycomb structure, and is a new material excellent in electrical, mechanical, and optical properties.
  • graphene is actively studied in the natural sciences and engineering fields. The advantage is that it is very easy to process dimensional nanopatterns.
  • the graphene not only can control semiconductor-conductor properties, but also can manufacture a wide range of functional devices such as sensors and memories using a variety of chemical bonds of carbon.
  • research into transparent electrodes, solar cells, and pressure sensors in displays that can be applied to life using the graphene has been actively conducted. Since the modification of the electrical properties of graphene is essential for such applications, active research is underway.
  • Korean Patent Laid-Open No. 2012-0064980 discloses a method for preparing graphene doped with nitrogen and a graphene doped with nitrogen produced thereby.
  • previous studies on chemical doping have been found to improve the dilock voltage by up to 120 V in device measurement.
  • the present application provides a device comprising a bidirectional doping method of graphene, a bidirectionally doped graphene, and the bidirectionally doped graphene.
  • a first aspect of the present disclosure is directed to forming a layer of self-assembled monolayers (SAMs) on a substrate; Transferring graphene onto the self-assembled monolayer; And doping the graphene by a dopant, thereby providing a bidirectional doping method of graphene.
  • SAMs self-assembled monolayers
  • the second aspect of the present disclosure can provide bidirectional doped graphene, one side doped with a self-assembled monolayer and the other side n-doped with an n-dopant.
  • the third aspect of the present disclosure may provide an electrode including graphene doped on both sides according to the second aspect of the present disclosure.
  • a fourth aspect of the present disclosure may provide a device including graphene doped on both sides according to the second aspect of the present disclosure.
  • a fifth aspect of the present disclosure may provide an organic light emitting diode comprising an electrode according to the third aspect of the present disclosure.
  • a sixth aspect of the present disclosure may provide a solar cell including an electrode according to the third aspect of the present disclosure.
  • bidirectional doped graphene may be prepared by doping not only one side of graphene but both sides thereof.
  • the bidirectional doped graphene has excellent electrical properties by modifying its electrical properties, and thus has applicability to various devices.
  • FIGS. 1A to 1D are cross-sectional views illustrating each step of the bidirectional doping method of graphene according to one embodiment of the present application.
  • FIG. 2 is a schematic diagram of a bidirectional doped graphene device in accordance with an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a bidirectional doped graphene device in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a graph showing the field effect transistor characteristics of bidirectional doped graphene according to an embodiment of the present application.
  • FIG. 5 is a graph illustrating a de-lock voltage distribution and a charge density distribution of a bidirectional doped graphene device according to an exemplary embodiment of the present disclosure.
  • Figure 6 is a graph showing the distribution of the sheet resistance of the bi-doped graphene according to an embodiment of the present application.
  • FIG. 7 is a graph showing the dependence of the position of the G-peak and the 2D / G ratio of the Raman spectrum of bidirectional doped graphene according to an embodiment of the present disclosure.
  • the term "combination of these" included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
  • a first aspect of the present disclosure is directed to forming a layer of self-assembled monolayers (SAMs) on a substrate; Transferring graphene onto the self-assembled monolayer; And doping the graphene by a dopant, thereby providing a bidirectional doping method of graphene.
  • SAMs self-assembled monolayers
  • FIG. 1A to 1D are cross-sectional views illustrating each step of the bidirectional doping method of graphene according to one embodiment of the present application
  • FIG. 2 is a schematic view of bidirectional doped graphene according to one embodiment of the present application.
  • a substrate 110 is prepared on a base 105 (FIG. 1A), and a self-assembled monolayer 130 is formed on the substrate (FIG. 1B).
  • the base 105 may include silicon (Si), and the substrate may include silicon oxide (SiO 2 ), but may not be limited thereto.
  • the self-assembled monolayer may include an ionic or polar terminal group, but may not be limited thereto.
  • the polar end group may include an amine group, but may not be limited thereto.
  • the self-assembled monolayer may include, but is not limited to, 3-aminopropyltrimethoxysilane (APTMS), 3-aminopropyltriethoxysilane (APTES), 3-aminopropylmethyldiethoxysilane (APDES), or 3-aminopropylmethyldimethoxysilane (APDMS).
  • APITMS 3-aminopropyltrimethoxysilane
  • APTES 3-aminopropyltriethoxysilane
  • APDES 3-aminopropylmethyldiethoxysilane
  • APIDMS 3-aminopropylmethyldimethoxysilane
  • one surface of graphene may be doped by the self-assembled monolayer.
  • the substrate may include, but is not limited to, one selected from the group consisting of oxides, nitrides, and combinations thereof.
  • the oxide may be MgO, Al 2 O 3 , SiO 2 , ZrO 2 , Y 2 O 3 , Cr 2 O 3 BeO, SnO 2 , Eu 2 O 3 , TiO 2 , TiO 2 ⁇ Al 2 O 3 , Gd 2 O 3 , UO 2 , (U-Pu) O 2 , ThO, complex oxides thereof, and combinations thereof, and the like, may be selected from the group consisting of, but may not be limited thereto.
  • the nitride may include one selected from the group consisting of Si 3 N 4 , AlN, TiN, BN, CrN, WrN, TaN, BeSiN 2 , Ti 2 AlN, complex nitrides thereof, and combinations thereof. It may be, but may not be limited thereto.
  • the substrate may have transparency, but may not be limited thereto.
  • the substrate may be a patterned electrode, but may not be limited thereto.
  • the electrode may include a source electrode 121 and a drain electrode 123.
  • the graphene 150 is formed on the substrate on which the self-assembled monolayer 130 is formed (FIG. 1C).
  • graphene is grown on a graphene growth substrate, and then the graphene is transferred.
  • the method of growing graphene on the graphene growth substrate is graphene growth in the art. If it is a conventionally used method can be used without particular limitation.
  • the graphene may be grown by chemical vapor deposition, non-limiting examples of the chemical vapor deposition (rapid thermal chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (inductively) coupled plasma-chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition deposition, MOCVD), or plasma-enhanced chemical vapor deposition (PECVD), but may not be limited thereto.
  • chemical vapor deposition rapid thermal chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (inductively) coupled plasma-chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition deposition, MOCVD), or plasma-enhanced chemical vapor deposition (PECVD), but may not be limited thereto.
  • the method for growing graphene on the graphene growth substrate by inserting a graphene growth substrate containing a metal into a furnace (furnace) by supplying and treating a reaction gas containing a carbon source (carbon source) (graphene) It may be to grow, but may not be limited thereto.
  • the carbon source is, for example, carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene, and combinations thereof It may be to include that selected from the group consisting of, but may not be limited thereto.
  • the graphene growth process may be performed at atmospheric pressure, low pressure or vacuum.
  • helium He
  • Ar heavy argon
  • hydrogen H 2
  • the treatment is performed at an elevated temperature it can synthesize high quality graphene by reducing the oxidized surface of the metal catalyst. have.
  • the material of the graphene growth base material on which graphene is grown is not particularly limited.
  • the graphene growth substrate is a metal
  • the graphene growth substrate itself may serve as a catalyst for forming a graphene layer.
  • the graphene growth substrate does not necessarily need to be a metal.
  • the graphene growth substrate may include silicon, and the graphene growth substrate including silicon is oxidized to form a catalyst layer on the graphene growth substrate including silicon.
  • a graphene growth substrate may be used in which an oxide layer is additionally formed, but may not be limited thereto.
  • a catalyst layer may be further formed to easily grow graphene on the graphene growth substrate.
  • the catalyst layer may be used without limitation in material, thickness, and shape, for example, the catalyst layer may be Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si At least one metal or alloy selected from the group consisting of Ta, Ti, W, U, V, Zr, brass, bronze, cupronickel, stainless steel, and Ge. It may be formed of the same or different material as the substrate for fin growth.
  • the thickness of the catalyst layer is not limited, and may be a thin film or a thick film.
  • the graphene formed by the above-mentioned method may have a large area ranging from about 1 mm to about 1,000 m in the transverse or longitudinal length. It also includes graphene having a homogeneous structure with few defects.
  • Graphene produced by the above-mentioned method may include a single layer or a plurality of layers of graphene. As a non-limiting example, the thickness of the graphene may be adjusted in the range of about 1 layer to about 100 layers.
  • the D-lock voltage may be changed by about 210 V compared with the conventional graphene, and may be to greatly improve the sheet resistance of the graphene, but may not be limited thereto.
  • the grown graphene may be transferred onto another substrate through a transfer process of graphene, but may not be limited thereto.
  • the transfer process may be used without particular limitation so long as it is a transfer process of graphene commonly used in the art, for example, a dry transfer process, a wet transfer process, a spray process, a roll-to-roll process, and their It may include a process selected from the group consisting of combinations, but may not be limited thereto.
  • the transferring of the graphene is performed by a process selected from the group consisting of graphene, a wet transfer process, a dry transfer process, a spray process, a roll-to-roll transfer process, and combinations thereof. It may include, but may not be limited to this.
  • the step of transferring the graphene, the graphene grown on the graphene growth substrate is coated with PMMA and etched using ammonium persulfate (APS), the graphene is It may include, but not limited to, performing wet transfer on the substrate on which the self-assembled monolayer is formed, and removing the coated PMMA with acetone.
  • the self-assembled monolayer and the graphene have Van der Waals interaction with each other.
  • the ionic end group or the polar end group included in the self-assembled monolayer may serve to transfer electrons to the graphene, and thus the graphene may exhibit an n-doped effect. It may not be limited.
  • the polar end group may include an amine group (NH 2 ), but may not be limited thereto.
  • the graphene is doped using the dopant 170 (FIG. 1D).
  • the dopant may include n-dopant, but may not be limited thereto.
  • the n-dopant may include an amine compound, a reducing material, or metal nanoparticles, but may not be limited thereto.
  • the metal nanoparticles may include nanoparticles of a metal including an alkali metal, but may not be limited thereto.
  • the doping of the graphene may include doping on the other side of the graphene on which the self-assembled monolayer is formed.
  • the other surface of the graphene may be doped by doping the graphene.
  • the amine compound may be diethylene triamine (DETA), ammonia (NH 3 ), hydrazine (NH 2 NH 2 ), pyridine (C 5 H 5 N), pyrrole (C 4 H 5 N), acetonitrile (CH 3 CN), triethanolamine, aniline, methylamine (CH 3 NH 2 ), dimethylamine (CH 3 ) 2 NH], 2-aminopentane ), Propylamine (CH 3 CH 2 CH 2 NH 2 ), 2-propylamine [2-propylamine, (CH 3 ) 2 CH 2 CH 2 NH 2 ], and combinations thereof It may include, but may not be limited thereto.
  • DETA diethylene triamine
  • ammonia NH 3
  • hydrazine NH 2 NH 2
  • pyridine C 5 H 5 N
  • pyrrole C 4 H 5 N
  • acetonitrile CH 3 CN
  • triethanolamine aniline, methylamine (CH 3 NH 2 ), dimethylamine (CH 3 )
  • the reducing material may include one selected from the group consisting of NaBH 4 , LiAlH 4 , hydroquinone, and combinations thereof, but may not be limited thereto.
  • the metal nanoparticles may include nanoparticles of a metal selected from the group consisting of Li, Mg, Na, K, Rb, Cs, Fr, and combinations thereof, but It may not be limited.
  • the doping of the graphene by the dopant may include, but may not be limited to, n-doping the graphene using an n-dopant.
  • the doping of the graphene may be performed by a gas phase doping method, a doping method using metal nanoparticles, a doping method using a solution, or a method of synthesizing doped graphene by additionally mixing gases during graphene synthesis. It may be performed, but may not be limited thereto.
  • the nanoparticles of the metal including Li, Mg, Na, K, Rb, Cs, Fr, Au, Ag, Pt, Cu, and combinations thereof can be dispersed.
  • a solution for example, chlorobenzene or chloroform
  • the solution may be doped by impregnating graphene, but may not be limited thereto.
  • the amine compound or the reducing substance may be diluted with water and then doping by impregnating graphene, but may not be limited thereto.
  • a method of synthesizing doped graphene by additionally mixing gases in the synthesis of graphene, ammonia, borane (borane) or borazine in addition to methane and hydrogen gas commonly used in the synthesis of graphene It may be to synthesize the graphene by additionally supplying a gas such as, in this case, it is possible to obtain doped graphene by adding boron or nitrogen between the graphene, but may not be limited thereto.
  • the graphene having a large area may be easily doped by the gas phase doping method or the doping method using a solution, but may not be limited thereto.
  • the substrate may include, but may not be limited to, having one or more characteristics of transparency, flexibility, and stretchability.
  • the doping of the graphene may be performed by a vapor phase doping method, but may not be limited thereto.
  • the second aspect of the present disclosure can provide bidirectional doped graphene, one side doped with a self-assembled monolayer and the other side n-doped with an n-dopant.
  • 3 shows a schematic view of bidirectional doped graphene according to one embodiment of the present disclosure.
  • the bidirectional doped graphene may include graphene doped by the bidirectional doping method of graphene according to the first aspect of the present disclosure, but may not be limited thereto.
  • the self-assembled monolayer may include an ionic or polar terminal group, but may not be limited thereto.
  • the n-dopant may include an amine compound, a reducing material, or metal nanoparticles, but may not be limited thereto.
  • the metal nanoparticles may include nanoparticles of a metal including an alkali metal, but may not be limited thereto.
  • the amine compound is diethylene triamine (DETA), ammonia (NH 3 ), hydrazine (NH 2 NH 2 ), pyridine (C 5 H 5 N), pyrrole (C 4 H 5 N) , Acetonitrile (CH 3 CN), triethanolamine, aniline, methylamine (CH 3 NH 2 ), dimethylamine (CH 3 ) 2 NH], 2-aminopentane, propylamine (propylamine, CH 3 CH 2 CH 2 NH 2 ), 2-propylamine [2-propylamine, (CH 3 ) 2 CH 2 CH 2 NH 2 ], and those selected from the group consisting of combinations thereof It may be, but may not be limited thereto.
  • DETA diethylene triamine
  • ammonia NH 3
  • hydrazine NH 2 NH 2
  • pyridine C 5 H 5 N
  • pyrrole C 4 H 5 N
  • Acetonitrile CH 3 CN
  • triethanolamine aniline
  • methylamine CH 3 NH
  • the reducing material may include one selected from the group consisting of NaBH 4 , LiAlH 4 , hydroquinone, and combinations thereof, but may not be limited thereto.
  • the metal nanoparticles include nanoparticles of a metal selected from the group consisting of Li, Mg, Na, K, Rb, Cs, Fr, Au, Ag, Pt, Cu, and combinations thereof. It may be, but may not be limited thereto.
  • a third aspect of the present disclosure may provide an electrode comprising bidirectional doped graphene according to the second aspect of the present disclosure.
  • the electrode including the bidirectional doped graphene may be a transparent electrode, but may not be limited thereto.
  • an organic light emitting diode (OLED) or a solar cell may be manufactured using the electrode including the bidirectional doped graphene, but may not be limited thereto.
  • a fourth aspect of the present disclosure may provide a device comprising bidirectional doped graphene according to the second aspect of the present disclosure.
  • the device may include an electronic device, an optoelectronic device, an optical device, a light emitting device, a thin film transistor, an organic light emitting diode, an organic semiconductor device, an LCD display, a pn junction diode, a thin film sensor, or the like. It may be, but may not be limited thereto.
  • a fifth aspect of the present disclosure may provide an organic light emitting diode comprising an electrode according to the third aspect of the present disclosure.
  • the electrode is a transparent electrode having excellent light transmittance and electrical conductivity, the organic light emitting diode may have excellent efficiency.
  • a sixth aspect of the present disclosure may provide a solar cell including an electrode according to the third aspect of the present disclosure.
  • the efficiency of the solar cell may be improved by using the electrode including the graphene.
  • the electrical properties of the non-doped graphene, the graphene doped with a self-assembled molecule layer is formed on one surface, and the graphene doped bidirectionally by the n- dopant and the self-assembled monomer layer is compared Analysis and evaluation were performed, and the doping tendency of graphene was analyzed by Raman spectrum analysis.
  • the Si / SiO 2 substrate patterned with chromium / gold alloy electrode was impregnated with a solution containing 99% of 3-aminopropyltriethoxysilane (Aldrich) and water at a ratio of 1: 500 for 30 minutes. By reacting at room temperature, self-assembled monolayers (SAMs) were first formed on the substrate.
  • SAMs self-assembled monolayers
  • graphene was synthesized on copper foil by flowing methane gas and hydrogen gas at 1,000 ° C. using chemical vapor deposition, and then coated on the graphene using PMMA [Poly (methyl methacrylate)].
  • PMMA Poly (methyl methacrylate)
  • the copper foil was etched and removed using a solution of ammonium persulfate and water at a ratio of 2 g: 100 mL, and the remaining graphene was washed again with water, and then wetted on the substrate having the self-assembled monolayer. Warrior Thereafter, the PMMA coated on the transferred graphene was removed using acetone to obtain graphene doped on one side by a self-assembled monolayer.
  • the substrate was placed in a petri dish and diethylenetriamine (DETA, Aldrich) was dropped 2 to 3 drops near the substrate in the petri dish at a temperature of about 80 ° C. using a hot plate.
  • the DETA was vaporized while heating for about 30 minutes to vapor-dope the DETA to the other side of the graphene which was not doped by the self-assembled monolayer to obtain bi-doped graphene.
  • field effect transistor characteristics of bi-doped graphene were analyzed using Agilent's 2912A device (Precision Source / Measure Unit).
  • the Si / SiO 2 substrate used in this example used a silicon oxide having a thickness of 100 nm.
  • a dilock voltage was observed at about 1 V
  • graphene (B) doped on one side by an amine series self-assembled monolayer This was observed at about -36 V.
  • the dilock voltage was observed at about -67 V.
  • the dilock voltage described here corresponds to three times the values of 3 V, -108 V, and -201 V, respectively, when compared to the values described in the conventional device (the thickness of the silicon oxide is 300 nm).
  • the thickness of the silicon oxide is 300 nm.
  • a value corresponding to the Fermi level of the doped graphene may be inferred, and the carrier concentration of the doped material may also be inferred.
  • FIG. 5 shows undoped graphene (A), graphene (B) doped on one side by an amine-based self-assembled monolayer, graphene (C) doped on one side by DETA, and About 30 di-lock voltages of each device of bi-doped graphene (D) are measured, and a distribution chart is shown. As shown in FIG.
  • the de-lock voltage is mainly distributed at -70 V.
  • charge density 0.5 ⁇ 10 12 # / cm 2 , 7.5 ⁇ 10 12 # / It was found that the values correspond to cm 2 , 1.0 ⁇ 10 13 # / cm 2 , and 1.5 ⁇ 10 13 # / cm 2 . In other words, it was possible to derive the charge density by switching the dilock voltage, and it was also confirmed that the doping degree of the graphene increased as the charge density increased.
  • the change of the sheet resistance according to the doping of graphene was analyzed using AC and DC Current Source (Keithley, 6221) and low voltage meter (2182A, Keithley).
  • 6 shows graphene doped on one side by undoped graphene (first row, Pristine), amine-based self-assembled monolayer (second row, SAMs), graphene doped on one side by DETA.
  • the sheet resistance of the (third row, DETA), and bidirectional doped graphene (fourth row, DETA + SAMs) is measured and its dispersion is shown. As shown in FIG.
  • Raman spectra according to doping of graphene were analyzed using a Raman microscope (inVia, Renishaw).
  • the degree of doping of graphene can be determined by shifting the position of the G-peak, and it is generally observed that the G-peak is observed at a position of about 1,583 cm -1 to 1,585 cm -1 for the undoped graphene.
  • the degree of doping of graphene can be determined by shifting the position of the G-peak, and it is generally observed that the G-peak is observed at a position of about 1,583 cm -1 to 1,585 cm -1 for the undoped graphene.
  • FIG. 7 is a Raman spectrum analysis result according to the present embodiment, and one side is doped by undoped graphene (A) and one side doped by amine-based self-assembled monolayers (B) and DETA.
  • Raman spectra of the prepared graphene (C) and bidirectionally doped graphene (D) were measured. According to this, G-peak was observed at 1,584 cm -1 for undoped graphene, and at 1,593 cm -1 for graphene doped by amine-based self-assembled monolayers.
  • Surface doped graphene was observed at 1,596 cm ⁇ 1 and bidirectional doped graphene at 1,599 cm ⁇ 1 , respectively.
  • the degree of doping of the bidirectional doped graphene was confirmed to be the largest.
  • the degree of doping of graphene can also be confirmed through the change of the graphene's G-peak position and the intensity of 2D-peak.
  • the intensity of the 2D-peak decreases as the degree of doping increases. I could confirm it.
  • the doping leads to an increase in the density of electrons, which is associated with the intensity of 2D-peak in Raman analysis. That is, it is observed that as the degree of doping increases and the density of electrons increases, the frequency of electron-electron collisions increases, so that the intensity of 2D-peak decreases.
  • G-peak as the degree of doping increases, the interaction between electrons and phonons increases, and the position of the G-peak becomes blue-shifted, and thus the degree of doping can be predicted through this. have.
  • FIG. 8 is a diagram analyzed using the change of G-peak and the ratio of 2D-peak and G-peak of the Raman spectrum of graphene doped according to the present embodiment.
  • Undoped graphene square
  • graphene doped on one side by an amine-based self-assembled monolayer circle
  • graphene doped on one side by DETA equilateral triangle
  • bidirectional doped graphene respectively.
  • Inverted triangles were analyzed, indicating that the higher the blue shift of the Raman G-peak, the greater the degree of n-doping, and the ratio of 2D-peak and G-peak as the doping was performed. It gradually decreased from about 3.5 to about 1.2. That is, as the degree of doping increases, the intensity of the G-peaks hardly changes, while the intensity of the 2D-peaks gradually decreases, thereby decreasing the ratio of 2D-to-G-peaks. You can see that it is doped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본원은, 그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 상기 양방향 도핑된 그래핀을 포함하는 소자에 관한 것이다.

Description

그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 이를 포함하는 소자
본원은, 그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 상기 양방향 도핑된 그래핀을 포함하는 소자에 관한 것이다.
그래핀은 2 차원의 벌집구조를 가지는 탄소로만 이루어진 물질로서, 전기적, 기계적, 광학적으로 매우 우수한 신소재로서 현재 자연과학 및 공학분야에서 활발히 연구되고 있으며, 상대적으로 가벼운 원소인 탄소만으로 이루어져 1 차원 또는 2 차원 나노패턴을 가공하기가 매우 용이하다는 장점이 있다. 상기 그래핀은 반도체-도체 성질을 조절할 수 있을 뿐 아니라 탄소가 가지는 화학결합의 다양성을 이용해 센서, 메모리 등 광범위한 기능성 소자의 제작이 가능하다. 또한, 상기 그래핀을 이용하여 생활에 응용될 수 있는 디스플레이에서의 투명전극, 태양전지, 및 압력센서 등으로의 연구 또한 활발하게 이루어지고 있다. 이러한 응용에 있어서 그래핀의 전기적 특성 개질은 필수적이기 때문에, 현재 활발한 연구가 진행중이다.
지금까지 p-도펀트나 n-도펀트를 이용한 그래핀의 전도성 개선에 대한 연구는 활발하게 진행되어 왔다. 예를 들어, 대한민국 공개특허 제2012-0064980호는 질소가 도핑된 그래핀의 제조 방법 및 이에 의하여 제조되는 질소가 도핑된 그래핀에 대하여 개시하고 있다. 또한, 화학적 도핑에 대해 선행된 연구들은 소자측정에 있어 디락 전압을 최대 120 V가량 개선시키는 연구가 있었다.
그러나 전기적 특성의 개질을 위하여 그래핀의 양면을 동시에 도핑하는 것에 대한 연구는 아직 보고되지 않았다.
본원은 그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 상기 양방향 도핑된 그래핀을 포함하는 소자를 제공한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 기재 상에 자기조립단분자(self-assembled monolayers, SAMs) 층을 형성하는 단계; 상기 자기조립단분자 층 상에 그래핀을 전사하는 단계; 및, 도펀트에 의해 상기 그래핀을 도핑하는 단계를 포함하는 것인, 그래핀의 양방향 도핑 방법을 제공할 수 있다.
본원의 제 2 측면은, 일 면이 자기조립단분자 층에 의하여 도핑되어 있고, 다른 일 면은 n-도펀트에 의하여 n-도핑되어 있는, 양방향 도핑된 그래핀을 제공할 수 있다.
본원의 제 3 측면은, 본원의 제 2 측면에 따른 양면이 도핑된 그래핀을 포함하는 전극을 제공할 수 있다.
본원의 제 4 측면은, 본원의 제 2 측면에 따른 양면이 도핑된 그래핀을 포함하는 소자를 제공할 수 있다.
본원의 제 5 측면은, 본원의 제 3 측면에 따른 전극을 포함하는 유기 발광 다이오드를 제공할 수 있다.
본원의 제 6 측면은, 본원의 제 3 측면에 따른 전극을 포함하는 태양전지를 제공할 수 있다.
본원에 의하면, 그래핀의 일 면만이 아닌 양 면을 도핑한 양방향 도핑된 그래핀을 제조할 수 있다. 상기 양방향 도핑된 그래핀은 전기적 특성이 개질되어 우수한 전도성을 가지며, 이에 따라 다양한 소자로의 응용가능성을 가진다.
도 1a 내지 도 1d는 본원의 일 구현예에 따른 그래핀의 양방향 도핑 방법의 각 단계를 설명하기 위한 단면도이다.
도 2는 본원의 일 구현예에 따른 양방향 도핑된 그래핀 소자의 개략도이다.
도 3은 본원의 일 구현예에 따른 양방향 도핑된 그래핀 소자의 개략도이다.
도 4는 본원의 일 실시예에 따른 양방향 도핑된 그래핀의 전계효과 트랜지스터 특성을 나타낸 그래프이다.
도 5는 본원의 일 실시예에 따른 양방향 도핑된 그래핀 소자의 디락 전압 분포 및 전하 밀도 분포도를 나타낸 그래프이다.
도 6은 본원의 일 실시예에 따른 양방향 도핑된 그래핀의 면저항의 분포도를 나타낸 그래프이다.
도 7은 본원의 일 실시예에 따른 양방향 도핑된 그래핀의 라만 스펙트럼의 G-피크의 위치와 2D/G 비율의 의존도를 나타낸 그래프이다.
도 8은 본원의 일 실시예에 따른 양방향 도핑된 그래핀의 라만 스펙트럼의 G-피크의 위치와 2D/G 비율의 의존도를 나타낸 것이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
이하, 첨부된 도면을 참조하여 본원의 구현예 및 실시예를 상세히 설명한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되지 않을 수 있다.
본원의 제 1 측면은, 기재 상에 자기조립단분자(self-assembled monolayers, SAMs) 층을 형성하는 단계; 상기 자기조립단분자 층 상에 그래핀을 전사하는 단계; 및, 도펀트에 의해 상기 그래핀을 도핑하는 단계를 포함하는, 그래핀의 양방향 도핑 방법을 제공할 수 있다.
도 1a 내지 도 1d는 본원의 일 구현예에 따른 그래핀의 양방향 도핑 방법의 각 단계를 설명하기 위한 단면도이고, 도 2는 본원의 일 구현예에 따라 양방향 도핑된 그래핀의 개략도이다.
이하에서는, 도 1a 내지 도 1d를 참조하여 본원의 구현예에 따른 그래핀의 양방향 도핑 방법을 상세히 설명한다.
먼저, 베이스(105) 상에 기재(110)를 준비하고 (도 1a), 상기 기재 상에 자기조립단분자 층(130)을 형성한다 (도 1b).
예를 들어, 상기 베이스(105)는 실리콘(Si)을 포함하는 것일 수 있고, 상기 기재는 실리콘 옥사이드(SiO2)를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 자기조립단분자 층은 이온성 또는 극성 말단기를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 극성 말단기는 아민기를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 자기조립단분자 층은 APTMS(3-aminopropyltrimethoxysilane), APTES(3-aminopropyltriethoxysilane), APDES(3-aminopropylmethyldiethoxysilane), 또는 APDMS(3-aminopropylmethyldimethoxysilane)를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 자기조립단분자 층에 의하여 그래핀의 일 면이 도핑되는 것일 수 있다.
예를 들어, 상기 기재는 산화물, 질화물, 및 이들의 조합들로 이루어지는 군에서 선택되는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 산화물은 MgO, Al2O3, SiO2, ZrO2, Y2O3, Cr2O3BeO, SnO2, Eu2O3, TiO2, TiO2ㆍAl2O3, Gd2O3, UO2, (U-Pu)O2, ThO, 이들의 복합산화물, 및 이들의 조합들로 이루어지는 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 질화물은 Si3N4, AlN, TiN, BN, CrN, WrN, TaN, BeSiN2, Ti2AlN, 이들의 복합질화물, 및 이들의 조합들로 이루어지는 군에서 선택되는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 기재는 투명성을 가지는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 기재는 전극이 패터닝된 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 전극은 소스 전극(121) 및 드레인 전극(123)을 포함하는 것일 수 있다.
다음으로, 상기 자기조립단분자 층(130)이 형성된 기재 상에 그래핀(150)을 형성한다 (도 1c).
그래핀을 형성하기 위해서는 먼저 그래핀 성장용 기재 상에 그래핀을 성장시킨 후 상기 그래핀을 전사하여야 하는데, 상기 그래핀 성장용 기재 상에 그래핀을 성장시키는 방법은 당업계에서 그래핀 성장을 위해 통상적으로 사용되는 방법이라면 특별히 제한 없이 사용가능하다. 예를 들어, 상기 그래핀은 화학기상증착법에 의해 성장될 수 있으며, 상기 화학기상증착법의 비제한적인 예시로 고온 화학기상증착(rapid thermal chemical vapour deposition, RTCVD), 유도결합플라즈마 화학기상증착(inductively coupled plasma-chemical vapor Deposition, ICP-CVD), 저압 화학기상증착(low pressure chemical vapor deposition, LPCVD), 상압 화학기상증착(atmospheric pressure chemical vapor deposition, APCVD), 금속 유기화학기상증착(metal organic chemical vapor deposition, MOCVD), 또는 플라즈마 화학기상증착(plasma-enhanced chemical vapor deposition, PECVD)을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
상기 그래핀 성장용 기재 상에 그래핀을 성장시키는 방법은, 금속을 포함하는 그래핀 성장용 기재를 로(furnace)에 넣고 탄소 소스(carbon source)를 포함하는 반응 가스를 공급하고 처리함으로써 그래핀을 성장시키는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 탄소 소스는, 예를 들어, 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔, 및 이들의 조합들로 이루어지는 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기와 같은 탄소 소스를 기상으로 공급하면서, 예를 들어, 약 300℃ 내지 약 2,000℃의 온도로 열처리하면 상기 탄소 소스에 존재하는 탄소 성분들이 결합하여 6각형의 판상 구조를 형성하면서 그래핀이 성장되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
상기 그래핀을 성장시키는 공정은 상압, 저압 또는 진공 하에서 수행 가능하다. 예를 들어, 상압 조건 하에서 상기 공정을 수행하는 경우 헬륨(He) 등을 캐리어 가스로 사용함으로써 고온에서 무거운 아르곤(Ar)과의 충돌에 의해 야기되는 그래핀의 손상(damage)을 최소화시킬 수 있다. 또한 상압 조건 하에서 상기 공정을 수행하는 경우, 저비용으로 간단한 공정에 의하여 대면적 그래핀을 제조할 수 있는 이점이 있다. 또한, 상기 공정이 저압 또는 진공 조건에서 수행되는 경우, 수소(H2)를 분위기 가스로 사용하며, 온도를 올리면서 처리하여 주면 금속 촉매의 산화된 표면을 환원시킴으로써 고품질의 그래핀을 합성할 수 있다.
그래핀이 성장되는 그래핀 성장용 기재의 재료는 특별히 제한되지 않으며, 예를 들어, 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동(brass), 청동(bronze), 백동(white brass), 스테인레스 스틸(stainless steel), 및 Ge 로 이루어진 군으로부터 선택된 하나 이상의 금속 또는 합금을 포함할 수 있다. 상기 그래핀 성장용 기재가 금속인 경우, 상기 그래핀 성장용 기재 자체가 그래핀 층이 형성되기 위한 촉매 역할을 할 수 있다. 다만, 상기 그래핀 성장용 기재가 반드시 금속일 필요는 없다. 예를 들어, 상기 그래핀 성장용 기재는 실리콘을 포함하는 것일 수 있으며, 상기 실리콘을 포함하는 그래핀 성장용 기재 상에 촉매층을 형성하기 위해 상기 실리콘을 포함하는 그래핀 성장용 기재를 산화시켜 실리콘 산화물층이 추가 형성된 그래핀 성장용 기재를 사용할 수 있으나, 이에 제한되지 않을 수 있다.
또한, 상기 그래핀 성장용 기재 상에 용이하게 그래핀을 성장시키기 위하여 촉매층을 추가로 형성할 수 있다. 상기 촉매층은 재료, 두께, 및 형태에 있어, 제한 없이 사용될 수 있으며, 예를 들어, 상기 촉매층은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동(brass), 청동(bronze), 백동, 스테인레스 스틸(stainless steel), 및 Ge 로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 합금일 수 있으며, 상기 그래핀 성장용 기재와 동일하거나 상이한 재료에 의해 형성될 수 있다. 또한, 상기 촉매층의 두께는 제한되지 않으며, 박막 또는 후막일 수 있다.
상기 언급한 방법에 의해 형성되는 그래핀은 횡방향 또는 종방향 길이가 약 1 mm 내지 약 1,000 m 에 이르는 대면적일 수 있다. 또한, 결함이 거의 없는 균질한 구조를 갖는 그래핀을 포함한다. 상기 언급한 방법에 의해 제조되는 그래핀은 그래핀의 단일층 또는 복수층을 포함할 수 있다. 비제한적 예로서, 상기 그래핀의 두께는 약 1 층 내지 약 100 층 범위에서 조절할 수 있다.
예를 들어, 그래핀을 양방향 도핑함으로써 기존의 그래핀과 비교하였을 때 디락 전압을 약 210 V 가량 변화시킬 수 있고, 그래핀의 면저항을 대폭 향상 시키는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 성장된 그래핀은 그래핀의 전사 공정을 통하여 다른 기재 상에 전사될 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 전사 공정은 당업계에서 통상적으로 사용되는 그래핀의 전사 공정이라면 특별히 제한 없이 사용 가능하며, 예를 들어, 건식 전사 공정, 습식 전사 공정, 스프레이 공정, 롤투롤 공정, 및 이들의 조합들로 이루어지는 군에서 선택되는 공정을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 그래핀을 전사하는 단계는 그래핀을 습식 전사 공정, 건식 전사 공정, 스프레이 공정, 롤투롤 전사 공정, 및 이들의 조합들로 이루어지는 군에서 선택되는 공정에 의하여 수행되는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 그래핀을 전사하는 단계는, 그래핀 성장용 기재 상에 성장된 그래핀을 PMMA로 코팅하고 암모늄 퍼설페이트(ammonium persulfate, APS)를 이용하여 에칭한 뒤, 상기 그래핀을 상기 자기조립단분자 층이 형성된 기재 위에 습식 전사를 하고, 상기 코팅된 PMMA를 아세톤으로 제거하는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
상기 자기조립단분자 층(130) 상에 그래핀(150)이 형성되면, 상기 자기조립단분자 층과 상기 그래핀이 서로 반 데르 발스 상호작용(Van der Waals interaction)을 하게 되고, 이 때, 상기 자기조립단분자 층에 포함된 상기 이온성 말단기 또는 상기 극성 말단기가 상기 그래핀에 전자를 전달하는 역할을 할 수 있으며, 이에 따라 상기 그래핀이 n-도핑된 효과를 나타낼 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 극성 말단기는 아민기(amine group, NH2)를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
다음으로, 도펀트(170)를 이용하여 상기 그래핀을 도핑한다 (도 1d).
본원의 일 구현예에 따르면, 상기 도펀트는 n-도펀트를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 n-도펀트는 아민 화합물, 환원성 물질, 또는 금속 나노입자를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 금속 나노입자는 알칼리 금속을 포함하는 금속의 나노입자를 포함할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 그래핀을 도핑하는 단계는, 일 면에 상기 자기조립단분자 층이 형성된 그래핀의 다른 일 면에 도핑하는 것을 포함할 수 있다. 예를 들어, 상기 그래핀을 도핑하는 단계에 의하여 상기 그래핀의 다른 일 면이 도핑되는 것일 수 있다.
본원의 일 구현예에 따르면, 상기 아민 화합물은 다이에틸렌트라이아민(diethylene triamine, DETA), 암모니아(NH3), 히드라진(NH2NH2), 피리딘(C5H5N), 피롤(C4H5N), 아세토니트릴(CH3CN), 트리에탄올아민, 아닐린, 메틸아민(methylamine, CH3NH2), 디메틸아민[dimethylamine, (CH3)2NH], 2-아미노펜탄(2-aminopentane), 프로필아민(propylamine, CH3CH2CH2NH2), 2-프로필아민[2-propylamine, (CH3)2CH2CH2NH2], 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 환원성 물질은 NaBH4, LiAlH4, 하이드로퀴논(hydroquinone), 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 금속 나노입자는 Li, Mg, Na, K, Rb, Cs, Fr, 및 이들의 조합들로 이루어지는 군에서 선택되는 금속의 나노입자를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 도펀트에 의해 상기 그래핀을 도핑하는 단계는, n-도펀트를 이용하여 상기 그래핀을 n-도핑하는 단계를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 그래핀을 도핑하는 단계는 기상 도핑 방법, 금속 나노입자를 이용한 도핑 방법, 용액을 이용한 도핑 방법, 또는 그래핀 합성 시 추가적으로 가스를 혼합하여 도핑된 그래핀을 합성하는 방법에 의하여 수행되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 금속 나노입자를 이용한 도핑 방법의 경우 Li, Mg, Na, K, Rb, Cs, Fr, Au, Ag, Pt, Cu, 및 이들의 조합들로 이루어지는 금속의 나노입자를 분산이 가능한 용액, 예를 들어, 클로로벤젠 또는 클로로포름 등에 분산시킨 후, 상기 용액에 그래핀을 함침시켜 도핑을 수행하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 용액을 이용한 도핑 방법의 경우 상기 아민 화합물 또는 상기 환원성 물질을 물에 희석시킨 후 그래핀을 함침하여 도핑을 수행하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 그래핀 합성 시 추가적으로 가스를 혼합하여 도핑된 그래핀을 합성하는 방법의 경우, 그래핀 합성 시 통상적으로 사용되는 메탄과 수소 가스 외에 암모니아, 보란(borane), 또는 보라진(borazine) 등의 가스를 추가적으로 혼합 공급하여 그래핀을 합성하는 것일 수 있으며, 이 경우 그래핀 사이에 붕소나 질소가 추가되어 도핑된 그래핀을 얻을 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 기상 도핑 방법, 또는 용액을 이용한 도핑 방법에 의하여 대면적의 그래핀을 용이하게 도핑할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 기재는 투명성, 유연성, 및 연신 가능성 중 하나 이상의 특성을 가지는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 그래핀을 도핑하는 단계는 기상 도핑 방법에 의해 수행되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 2 측면은, 일 면이 자기조립단분자 층에 의하여 도핑되어 있고, 다른 일 면은 n-도펀트에 의하여 n-도핑되어 있는, 양방향 도핑된 그래핀을 제공할 수 있다. 도 3은 본원의 일 구현예에 따른 양방향 도핑된 그래핀의 개략도를 나타낸 것이다.
예를 들어, 상기 양방향 도핑된 그래핀은 본원의 제 1 측면에 따른 그래핀의 양방향 도핑 방법에 의하여 도핑된 그래핀을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 자기조립단분자 층은 이온성 또는 극성 말단기를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 n-도펀트는 아민 화합물, 환원성 물질, 또는 금속 나노입자를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 금속 나노입자는 알칼리 금속을 포함한 금속의 나노입자를 포함할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 아민 화합물은 다이에틸렌트라이아민(diethylene triamine, DETA), 암모니아(NH3), 히드라진(NH2NH2), 피리딘(C5H5N), 피롤(C4H5N), 아세토니트릴(CH3CN), 트리에탄올아민, 아닐린, 메틸아민(methylamine, CH3NH2), 디메틸아민[dimethylamine, (CH3)2NH], 2-아미노펜탄(2-aminopentane), 프로필아민(propylamine, CH3CH2CH2NH2), 2-프로필아민[2-propylamine, (CH3)2CH2CH2NH2], 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 환원성 물질은 NaBH4, LiAlH4, 하이드로퀴논(hydroquinone), 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 금속 나노입자는 Li, Mg, Na, K, Rb, Cs, Fr, Au, Ag, Pt, Cu, 및 이들의 조합들로 이루어지는 군에서 선택되는 금속의 나노입자를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 3 측면은, 본원의 제 2 측면에 따른 양방향 도핑된 그래핀을 포함하는 전극을 제공할 수 있다. 예를 들어, 상기 양방향 도핑된 그래핀을 포함하는 전극은 투명전극일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 양방향 도핑된 그래핀을 포함하는 전극을 이용하여 유기 발광 다이오드(OLED) 또는 태양전지 등을 제조할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 4 측면은, 본원의 제 2 측면에 따른 양방향 도핑된 그래핀을 포함하는 소자를 제공할 수 있다. 예를 들어, 상기 소자는 전자 장치, 광전자 장치, 광학 장치, 발광 장치, 박막 트랜지스터(thin film transister), 유기 발광 다이오드, 유기 반도체 장치, LCD 디스플레이, p-n 접합 다이오드, 또는 박막 센서 등을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 5 측면은, 본원의 제 3 측면에 따른 전극을 포함하는 유기 발광 다이오드를 제공할 수 있다. 예를 들어, 상기 전극은 빛의 투과도 및 전기 전도도가 우수한 투명전극이므로 상기 유기 발광 다이오드의 효율이 우수한 것일 수 있다.
본원의 제 6 측면은, 본원의 제 3 측면에 따른 전극을 포함하는 태양전지를 제공할 수 있다. 예를 들어, 상기 그래핀이 포함된 전극을 사용함으로써 상기 태양전지의 효율이 향상되는 것일 수 있다.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.
[실시예]
본 실시예에서는 도핑이 되지 않은 그래핀, 일 면에 자기조립단분자 층이 형성되어 도핑된 그래핀, 및 자기조립단분자 층과 n-도펀트에 의하여 양방향 도핑된 그래핀 각각의 전기적 특성을 비교분석 및 평가하였고, 라만 스펙트럼 분석을 통하여 그래핀의 도핑 경향성을 분석하였다.
1. 그래핀의 양방향 도핑 방법
크롬/금 합금 전극이 패터닝 되어 있는 Si/SiO2 기재를 99%의 3-아미노프로필트리에톡시실란(3-aminopropyltriethoxysilane, Aldrich)과 물이 1 : 500의 비율로 혼합된 용액에 30 분간 함침시키고 상온에서 반응시켜 상기 기재 상에 자기조립단분자 층(self-assembled monolayers, SAMs)을 먼저 형성하였다.
이어서, 화학기상증착법을 이용하여 1,000℃에서 메탄 가스와 수소 가스를 흘려주며 구리 호일 상에 그래핀을 합성한 후, PMMA[Poly(methyl methacrylate)]를 이용하여 상기 그래핀을 코팅하였다. 이어서, 암모늄 퍼설페이트와 물이 2 g : 100 mL의 비율로 섞인 용액을 이용하여 상기 구리 호일을 에칭하여 제거한 뒤, 남은 그래핀을 다시 물로 세척한 후에 상기 자기조립단분자 층이 형성된 기재 위에 습식 전사를 하였다. 이후, 상기 전사된 그래핀 상에 코팅되어 있는 상기 PMMA를 아세톤을 이용하여 제거하여 일 면이 자기조립단분자 층에 의하여 도핑된 그래핀을 수득하였다.
다음으로, 페트리 디쉬 내에 상기 기재를 넣고 다이에틸렌트라이아민(DETA, Aldrich)을 상기 페트리 디쉬 내 상기 기재 근처에 2 방울 내지 3 방울 정도 떨어트린 뒤 핫플레이트(hot plate)를 이용하여 약 80℃에서 약 30 분간 가열하면서 상기 DETA를 증기화시켜 상기 DETA를 자기조립단분자 층에 의하여 도핑되지 않은 상기 그래핀의 다른 일 면에 기상 도핑하여 양방향 도핑된 그래핀을 수득하였다.
2. 그래핀의 도핑에 따른 전계효과 트랜지스터 특성 분석
본 실시예에서는 Agilent 사의 2912A장비 (Precision Source/Measure Unit)를 사용하여 양방향 도핑된 그래핀의 전계효과 트랜지스터 특성을 분석하였다. 높은 디락 전압을 측정하기 위해, 본 실시예에서 사용된 Si/SiO2 기재는 실리콘 옥사이드의 두께가 100 nm인 것을 사용하였다. 도 4에 나타난 바에 따르면, 도핑되지 않은 그래핀(A)의 경우 디락 전압이 약 1 V에서 관측되었으며, 아민 계열 자기조립단분자 층에 의하여 일 면이 도핑된 그래핀(B)의 경우 디락 전압이 약 -36 V에서 관측되었다. 그리고 양방향 도핑된 그래핀(C)의 경우에는 디락 전압이 약 -67 V에서 관측됨을 확인할 수 있었다. 여기에서 기술된 디락 전압은 기존의 소자 (실리콘옥사이드의 두께가 300 nm임)에서 기술된 값과 비교를 하면 3 배에 해당하는 3 V, -108 V, 및 -201 V의 값 각각에 해당하는 것이었다. 이와 같은 디락 전압으로부터 도핑된 그래핀의 페르미 준위에 해당하는 값을 유추할 수 있으며, 도핑 물질의 전자 밀도(carrier concentration) 또한 유추할 수 있다.
3. 그래핀의 도핑에 따른 그래핀 소자의 디락 전압 분포 및 전하 밀도 분포 분석
본 실시예에서는 그래핀의 도핑 여부에 따른 그래핀 소자의 디락 전압 분포 및 전하 밀도 분포를 분석하였다. 도 5는 도핑되지 않은 그래핀(pristine graphene, A), 아민 계열 자기조립단분자 층에 의하여 일 면이 도핑된 그래핀(B), DETA에 의하여 일 면이 도핑된 그래핀(C), 및 양방향 도핑된 그래핀(D)의 소자 약 30 개의 디락 전압을 각각 측정하여 분포도를 나타낸 것이다. 도 5에 나타난 바에 따르면, 도핑되지 않은 그래핀의 경우 0.5 V, 아민 계열 자기조립단분자 층에 의하여 일 면이 도핑된 그래핀의 경우 -35 V, DETA에 의하여 일 면이 도핑된 그래핀의 경우 -46 V, 그리고 양방향 도핑된 그래핀의 경우 -70 V에서 디락 전압이 주로 분산됨을 확인할 수 있었으며, 이를 전하 밀도로 전환하면 각각, 0.5 × 1012 #/cm2, 7.5 × 1012 #/cm2, 1.0 × 1013 #/cm2, 및 1.5 × 1013 #/cm2에 해당하는 값임을 알 수 있었다. 즉, 디락 전압을 전환하여 전하 밀도를 도출할 수 있었으며, 또한 전하 밀도가 클수록 그래핀의 도핑 정도가 증가된 것임을 확인할 수 있었다.
4. 그래핀의 도핑에 따른 면저항의 분포 분석
본 실시예에서는 AC and DC Current Source (Keithley, 6221)와 저전압계 (2182A, Keithley)를 사용하여 그래핀의 도핑에 따른 면저항의 변화를 분석하였다. 도 6는 도핑되지 않은 그래핀(첫 번째 행, Pristine), 아민 계열 자기조립단분자 층에 의하여 일 면이 도핑된 그래핀(두 번째 행, SAMs), DETA에 의하여 일 면이 도핑된 그래핀(세 번째 행, DETA), 및 양방향 도핑된 그래핀(네 번째 행, DETA+SAMs)의 면저항을 측정하고 이의 분산을 나타낸 것이다. 도 6에 나타난 바에 따르면, 도핑되지 않은 그래핀의 경우 950 Ω/sq, 아민 계열 자기조립단분자 층에 의하여 일 면이 도핑된 그래핀은 350 Ω/sq, DETA에 의하여 일 면이 도핑된 그래핀의 경우 180 Ω/sq, 그리고 양방향 도핑된 그래핀의 경우 80 Ω/sq의 면저항을 가짐을 확인할 수 있었다. 따라서, 본 실시예에 따른 그래핀의 양방향 도핑에 의하여 그래핀의 면저항이 현저하게 감소된다는 것을 확인하였다.
5. 그래핀의 도핑에 따른 라만 스펙트럼의 G-피크의 위치 분석
본 실시예에서는 라만 현미경 (inVia, Renishaw)을 이용하여 그래핀의 도핑에 따른 라만 스펙트럼을 분석하였다. 일반적으로, 그래핀의 도핑 정도는 G-피크의 위치의 이동에 의해 알 수 있으며, 보통 도핑이 되지 않은 그래핀의 경우 약 1,583 cm-1 내지 1,585 cm-1 의 위치에서 G-피크이 관측된다는 것이 알려져 있다.
도 7은 본 실시예에 따른 라만 스펙트럼 분석 결과이며, 도핑되지 않은 그래핀(A), 아민 계열 자기조립단분자 층에 의하여 일 면이 도핑된 그래핀(B), DETA에 의하여 일 면이 도핑된 그래핀(C), 및 양방향 도핑된 그래핀(D)의 라만 스펙트럼을 측정하였다. 이에 따르면 도핑이 되지 않은 그래핀의 경우 G-피크가 1,584 cm-1에서 관측되었고, 아민 계열 자기조립단분자 층에 의하여 일 면이 도핑된 그래핀의 경우 1,593 cm-1에서, DETA에 의하여 일 면이 도핑된 그래핀의 경우 1,596 cm-1에서, 그리고 양방향 도핑된 그래핀의 경우 1,599 cm-1에서 각각 관측되었다. 이에 따라, 양방향 도핑된 그래핀의 도핑의 정도가 가장 큼을 확인할 수 있었다. 또한 그래핀의 G-피크 위치(position)의 변화와 2D-피크의 세기를 통해서도 그래핀의 도핑 정도를 확인할 수 있는데, 도 7을 참조하면 도핑의 정도가 강해질 수록 2D-피크의 세기가 줄어듦을 확인할 수 있었다. 구체적으로, 도핑을 통하여 전자의 밀도가 증가하게 되고, 이는 라만 분석시 2D-피크의 세기와 연관된다. 즉, 도핑의 정도가 증가하여 전자의 밀도가 커질수록 전자간의 충돌(electron-electron collision)의 빈도가 증가하게 되고, 따라서 2D-피크의 세기가 감소되는 것이 관측된다. G-피크의 경우에는 도핑의 정도가 증가할수록 전자와 포논(phonon)의 상호작용이 증가하게 되어 G-피크의 위치가 청색 이동(blue-shift)하게 되고, 따라서 이를 통하여 도핑의 정도를 예측할 수 있다.
6. 그래핀의 도핑에 따른 라만 스펙트럼의 2D/G 피크 비율의 의존도 분석
도 8은 본 실시예에 따라 도핑된 그래핀의 라만 스펙트럼의 G-피크의 변화와 2D-피크과 G-피크의 비율을 이용하여 분석한 그림이다. 각각 도핑되지 않은 그래핀 (사각형), 아민 계열 자기조립단분자 층에 의하여 일 면이 도핑된 그래핀 (원), DETA에 의하여 일 면이 도핑된 그래핀 (정삼각형), 및 양방향 도핑된 그래핀 (역삼각형)에 대하여 분석하였는데, 이를 통해 라만의 G-피크가 청색 이동 (blue-shift)할수록 n-도핑의 정도가 커지는 것을 알 수 있었고, 도핑을 함에 따라 2D-피크, G-피크의 비율이 3.5 정도에서 점점 감소하여 1.2 정도까지 감소함을 확인할 수 있었다. 즉, 도핑의 정도가 증가함에 따라 G-피크의 세기는 거의 변화가 없고, 이에 반하여 2D-피크의 세기는 점점 감소하게 되므로, 2D-피크 대 G-피크의 비율이 감소하는 것으로부터 그래핀이 도핑되었음을 확인할 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (16)

  1. 기재 상에 자기조립단분자 층을 형성하는 단계;
    상기 자기조립단분자 층 상에 그래핀을 전사하는 단계; 및,
    도펀트(dopant)에 의해 상기 그래핀을 도핑하는 단계
    를 포함하는, 그래핀의 양방향 도핑 방법.
  2. 제 1 항에 있어서,
    상기 도펀트는 n-도펀트를 포함하는 것인, 그래핀의 양방향 도핑 방법.
  3. 제 1 항에 있어서,
    상기 자기조립단분자 층은 이온성 또는 극성 말단기를 포함하는 것인, 그래핀의 양방향 도핑 방법.
  4. 제 1 항에 있어서,
    상기 자기조립단분자 층은 APTMS(3-aminopropyltrimethoxysilane), APTES(3-aminopropyltriethoxysilane), APDES(3-aminopropylmethyldiethoxysilane), 또는 APDMS(3-aminopropylmethyldimethoxysilane)를 포함하는 것인, 그래핀의 양방향 도핑 방법.
  5. 제 2 항에 있어서,
    상기 n-도펀트는 아민 화합물, 환원성 물질, 또는 금속 나노입자를 포함하는 것인, 그래핀의 양방향 도핑 방법.
  6. 제 5 항에 있어서,
    상기 아민 화합물은 다이에틸렌트라이아민(diethylene triamine, DETA), 암모니아(NH3), 히드라진(NH2NH2), 피리딘(C5H5N), 피롤(C4H5N), 아세토니트릴(CH3CN), 트리에탄올아민, 아닐린, 메틸아민(methylamine, CH3NH2), 디메틸아민[dimethylamine, (CH3)2NH], 2-아미노펜탄(2-aminopentane), 프로필아민(propylamine, CH3CH2CH2NH2), 2-프로필아민[2-propylamine, (CH3)2CH2CH2NH2], 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인, 그래핀의 양방향 도핑 방법.
  7. 제 5 항에 있어서,
    상기 환원성 물질은 NaBH4, LiAlH4, 하이드로퀴논(hydroquinone), 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인, 그래핀의 양방향 도핑 방법.
  8. 제 5 항에 있어서,
    상기 금속 나노입자는 Li, Mg, Na, K, Rb, Cs, Fr, Au, Ag, Pt, Cu, 및 이들의 조합들로 이루어지는 군에서 선택되는 금속의 나노입자를 포함하는 것인, 그래핀의 양방향 도핑 방법.
  9. 제 1 항에 있어서,
    상기 기재는 투명성, 유연성, 및 연신 가능성 중 하나 이상의 특성을 가지는 것인, 그래핀의 양방향 도핑 방법.
  10. 제 1 항에 있어서,
    상기 그래핀을 도핑하는 단계는 기상 도핑에 의해 수행되는 것을 포함하는 것인, 그래핀의 양방향 도핑 방법.
  11. 일 면이 자기조립단분자 층에 의하여 도핑되어 있고, 다른 일 면은 n-도펀트에 의하여 n-도핑되어 있는, 양방향 도핑된 그래핀.
  12. 제 11 항에 따른 양방향 도핑된 그래핀을 포함하는, 전극.
  13. 제 12 항에 있어서,
    상기 전극은 투명전극인 것인, 전극.
  14. 제 11 항에 따른 양방향 도핑된 그래핀을 포함하는, 소자.
  15. 제 12 항 또는 제 13 항에 따른 전극을 포함하는, 유기 발광 다이오드(OLED).
  16. 제 12 항 또는 제 13 항에 따른 전극을 포함하는, 태양전지.
PCT/KR2013/006903 2012-08-02 2013-07-31 그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 이를 포함하는 소자 WO2014021640A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0084905 2012-08-02
KR1020120084905A KR101351001B1 (ko) 2012-08-02 2012-08-02 그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 이를 포함하는 소자

Publications (1)

Publication Number Publication Date
WO2014021640A1 true WO2014021640A1 (ko) 2014-02-06

Family

ID=50028252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006903 WO2014021640A1 (ko) 2012-08-02 2013-07-31 그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 이를 포함하는 소자

Country Status (2)

Country Link
KR (1) KR101351001B1 (ko)
WO (1) WO2014021640A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140238591A1 (en) * 2013-02-28 2014-08-28 Electronics And Telecommunications Research Institute Method of transferring graphene
CN107381549A (zh) * 2017-07-31 2017-11-24 常州市天宁区鑫发织造有限公司 一种石墨烯导热膜的制备方法
US11575033B2 (en) 2017-12-22 2023-02-07 Graphensic Ab Assembling of molecules on a 2D material and an electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102308654B1 (ko) * 2014-11-10 2021-10-05 엘지디스플레이 주식회사 다기능막, 다기능막을 포함하는 유기발광표시장치 및 그 제조방법
US9892821B2 (en) 2016-01-04 2018-02-13 Samsung Electronics Co., Ltd. Electrical conductors and electronic devices including the same
JP6113372B1 (ja) * 2016-02-24 2017-04-12 三菱電機株式会社 電磁波検出器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066427A (ja) * 2009-09-21 2011-03-31 Hitachi Global Storage Technologies Netherlands Bv 電子デバイス
KR20110061909A (ko) * 2009-12-02 2011-06-10 삼성전자주식회사 도펀트로 도핑된 그라펜 및 이를 이용한 소자
KR20110095751A (ko) * 2010-02-19 2011-08-25 성균관대학교산학협력단 그래핀의 층간에 도펀트를 포함하는 다층 그래핀, 이를 포함하는 박막 및 투명전극
EP2362459A1 (en) * 2010-02-24 2011-08-31 University College Cork-National University of Ireland, Cork Modified graphene structure and method of manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066427A (ja) * 2009-09-21 2011-03-31 Hitachi Global Storage Technologies Netherlands Bv 電子デバイス
KR20110061909A (ko) * 2009-12-02 2011-06-10 삼성전자주식회사 도펀트로 도핑된 그라펜 및 이를 이용한 소자
KR20110095751A (ko) * 2010-02-19 2011-08-25 성균관대학교산학협력단 그래핀의 층간에 도펀트를 포함하는 다층 그래핀, 이를 포함하는 박막 및 투명전극
EP2362459A1 (en) * 2010-02-24 2011-08-31 University College Cork-National University of Ireland, Cork Modified graphene structure and method of manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140238591A1 (en) * 2013-02-28 2014-08-28 Electronics And Telecommunications Research Institute Method of transferring graphene
US9023166B2 (en) * 2013-02-28 2015-05-05 Electronics And Telecommunications Research Institute Method of transferring graphene
CN107381549A (zh) * 2017-07-31 2017-11-24 常州市天宁区鑫发织造有限公司 一种石墨烯导热膜的制备方法
US11575033B2 (en) 2017-12-22 2023-02-07 Graphensic Ab Assembling of molecules on a 2D material and an electronic device
US11908926B2 (en) 2017-12-22 2024-02-20 Graphensic Ab Assembling of molecules on a 2D material and an electronic device

Also Published As

Publication number Publication date
KR101351001B1 (ko) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2014021640A1 (ko) 그래핀의 양방향 도핑 방법, 양방향 도핑된 그래핀, 및 이를 포함하는 소자
WO2012118350A2 (ko) 그래핀의 n-도핑 방법
WO2011081440A2 (ko) 그래핀 필름의 롤투롤 도핑 방법 및 도핑된 그래핀 필름
Zhang et al. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells
Liu et al. Flexible single-walled carbon nanotubes/polyaniline composite films and their enhanced thermoelectric properties
WO2012008789A9 (ko) 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트
Pakdel et al. Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains
WO2011099831A2 (ko) 그래핀을 이용한 유연성 투명 발열체 및 이의 제조 방법
WO2011046415A2 (ko) 그래핀의 롤투롤 전사 방법, 그에 의한 그래핀 롤, 및 그래핀의 롤투롤 전사 장치
WO2012015267A2 (ko) 그래핀의 제조 방법, 그래핀 시트 및 이를 이용한 소자
WO2011108878A2 (ko) 그래핀을 이용한 전자파 차폐 방법 및 전자파 차폐재
WO2013032233A2 (ko) 도핑된 폴리머층을 포함하는 그래핀 기반 적층체
WO2015008905A1 (ko) 그래핀/실리콘 나노선 분자 센서 또는 이의 제조 방법과 이를 이용한 분자 확인 방법
US20160225991A1 (en) Amine precursors for depositing graphene
TW201004868A (en) Pentacene-carbon nanotube composite, method of forming the composite, and semiconductor device including the composite
Parmar et al. Ethanol sensing using CuO/MWNT thin film
He et al. Synthesis of nitrogen-doped monolayer graphene with high transparent and n-type electrical properties
US20150210549A1 (en) Covalent functionalization of carbon nanotubes grown on a surface
CN104108706A (zh) 一种大面积优质氮掺杂石墨烯及其制备方法与应用
KR20140036171A (ko) SiNW 어레이 상에 수직 정렬된 CNTs의 무촉매 합성방법
Yi et al. Catalyst-Free Growth of Two-Dimensional BC x N Materials on Dielectrics by Temperature-Dependent Plasma-Enhanced Chemical Vapor Deposition
Hata et al. Cu-ion-induced n-to p-type switching in organic thermoelectric polyazacycloalkane/carbon nanotubes
CN103650093A (zh) 包括纳米结构的器件及其制造方法
Kumar et al. Highly sensitive MWCNTs/SiNWs hybrid nanostructured sensor fabricated on silicon-chip for alcohol vapors detection
WO2012036537A2 (ko) 플래쉬 램프 또는 레이저 빔을 이용한 그래핀 제조장치, 제조방법 및 이를 이용하여 제조된 그래핀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825788

Country of ref document: EP

Kind code of ref document: A1