WO2014021600A1 - Neutron absorbing material and method for preparing same - Google Patents
Neutron absorbing material and method for preparing same Download PDFInfo
- Publication number
- WO2014021600A1 WO2014021600A1 PCT/KR2013/006810 KR2013006810W WO2014021600A1 WO 2014021600 A1 WO2014021600 A1 WO 2014021600A1 KR 2013006810 W KR2013006810 W KR 2013006810W WO 2014021600 A1 WO2014021600 A1 WO 2014021600A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- neutron absorbing
- absorbing material
- carbon
- boron
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D23/00—Casting processes not provided for in groups B22D1/00 - B22D21/00
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to a neutron absorbing material and a manufacturing method thereof, and more particularly, to a neutron absorbing material having excellent strength and corrosion resistance containing gadolium (Gd) and boron (B) having excellent neutron absorbing ability and a method for producing the same. .
- Gd gadolium
- B boron
- Conventional techniques for neutron absorbing materials include Korean Patent No. 10-0147082, Austenitic steel having excellent odor resistance to neutron irradiation, and Aluminum composite having neutron absorbing performance and a method of manufacturing the same.
- Cermet and composite materials containing boron carbide (Al alloy-B 4 C) in commercial aluminum alloys have the advantage of being lightweight and easy to manufacture, but due to the characteristics of the material, the melting point of aluminum is low and the welding area is weak. And, there is a disadvantage that the corrosion resistance of the aluminum-boron carbide interface is weak.
- the austenitic single-phase structure containing boron (B) has superior strength, corrosion resistance, and weldability as compared with aluminum alloy-boron carbide composites, but has a low solubility of boron for iron (Fe) and grain boundary segregation during firing.
- boron (B) reacts with neutrons to form helium gas, it is disadvantageous in comparison with gadolium (Gd) in neutron absorbing materials used for a long time. Meanwhile, gadolium (Gd) has a problem in that it is expensive in terms of price compared to boron (B).
- the present invention is to propose a neutron absorbing material having a neutron absorbing ability, excellent strength and corrosion resistance, and a method of manufacturing the same by using a combination of gadolium (Gd) and boron (B) having excellent neutron absorbing ability.
- Gd gadolium
- B boron
- Gd gadolium
- B boron
- Mo molybdenum
- Mo molybdenum
- a neutron absorbing material having high strength and high corrosion resistance it is possible to provide a neutron absorbing material having high strength and high corrosion resistance, and to suppress grain boundary segregation by a two-stage solidification heat treatment which is quenched by quenching during the production by the melt casting process.
- a neutron absorbing material having improved machinability can be manufactured.
- FIG. 1 is an analysis diagram showing the distribution of the Gd component of 2.5% Gd-containing SUS ingot prepared by pressure sintering by area mapping with EPMA according to an embodiment of the present invention.
- FIG. 1 (a) is an SEM image
- FIG. 1 (b) is an image in which the position of Gd is represented as a spot.
- FIG. 2 is an analysis showing the component analysis of 2.5% Gd-containing SUS prepared by vacuum magnetic buoyancy dissolution method analyzed by EPMA according to an embodiment of the present invention.
- FIG. 2 (a) is an SEM image
- FIG. 2 (b) is an image in which the position of Gd is represented as a spot.
- FIG. 3 is a SEM image (a) of a Gd-duplex stainless steel and a distribution map of Cr (b), Ni (c), and Gd (d) that are area mapped with EDX according to an embodiment of the present invention. .
- FIG. 5 is a graph showing the solution heat treatment conditions according to an embodiment of the present invention.
- FIG. 6 is a photograph of a neutron absorbing material after hot rolling according to an embodiment of the present invention.
- FIG. 7 is a microstructure photograph of a neutron absorbing material according to an embodiment of the present invention.
- gadolium (Gd) and boron (B) are excellent in neutron absorbing ability and can be added to aluminum or stainless steel to be used as neutron absorbers or shielding materials.
- B boron
- the composition of the steel used as a neutron absorber or shield and the microstructure of the steel are not properly adjusted, it is difficult to secure corrosion resistance and strength suitable for the application.
- the present inventors maintain the neutron absorption capability provided by these elements by appropriately adding the amounts of gadolium and boron, and at the same time, reduce the amount of expensive gadolium, and use duplex stainless steel as a neutron absorbing material. It has been devised to devise a proper corrosion resistance and strength.
- Cr, Mo, W, N in the above formula means the weight% value of these elements, respectively.
- gadolium When gadolium (Gd) is added at less than 0.1%, the effect of neutron absorption is not sufficiently obtained. Also, when it is more than 2.5%, the oxidative property between the atmosphere and the melt is high in a high temperature liquid molten state, which greatly reduces the flowability of the molten metal. ) To form an intermetallic compound and greatly reduce the formability can be limited to the above range.
- boron When boron is added in less than 0.3%, it is difficult to express the neutron absorbing remarkably, and in the case of more than 0.8%, boron may cause brittleness of the material, thereby making it difficult to mold in the solid state of the alloy, and thus it may be limited to the above range.
- Molybdenum (Mo) may be added to improve the alloy surface stability, that is, corrosion resistance in harsh corrosive environments, but may not be added in a relatively harsh general environment.
- Molybdenum ( ⁇ ) phase which is very fragile in a two-phase (duplex) alloy is formed, and thus has an adverse effect. Therefore, it is good to add at 4.0% or less (including 0%).
- Tungsten (W) is an expensive alloying element that positively affects the corrosion resistance, and when added in large amounts, it can promote the formation of intermetallic compounds, and therefore, in terms of phase stability, mechanical properties and corrosion resistance, the content of tungsten (6.5% or less) is less than 6.5% (including 0%). Is added.
- Nitrogen is a useful element that improves the resistance to formulas, and its effect is about 30 times more than chromium.
- the synergistic effect greatly improves the corrosion resistance.
- the carbon content is lowered for the purpose of improving the intergranular corrosion resistance, it is possible to obtain the compensation of mechanical properties by adding nitrogen, inhibiting the formation of chromium carbide and increasing the tensile strength and the yield strength without reducing the elongation.
- Carbon is preferably contained as little as possible because it improves the flowability of the molten metal during melt casting of the alloy, but has a very bad effect on corrosion resistance.
- it is preferable to contain 0.05% or less, but when it exceeds 0.1%, the corrosion resistance may be extremely deteriorated.
- impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
- Cr, Mo, W, N means the weight% value of these elements, respectively. If the equivalent index value is less than 30, sufficient corrosion resistance cannot be secured, and the higher the equivalent index value, the higher the corrosion resistance, so no particular upper limit is set.
- the neutron absorbing material of the present invention additionally contains at least one of vanadium (V): 10 times or less of carbon (C) and 10 times or less of niobium (Nb): carbon (C). It may include.
- V Vanadium (V): 10 times or less of carbon (C) content
- Nb Niobium (Nb): 10 times or less of carbon (C) content
- Vanadium and niobium typically contain 0.1 to 0.5% for heat treatment and high temperature phase stability.
- the alloy reacts with carbon, which has a great influence on corrosion resistance, to form carbides, thereby suppressing the adverse effect of carbon, each is added at 10 times or less of the carbon content.
- the amount of vulnerable carbides increases and there is a fear that the corrosion resistance is rather deteriorated due to excessive carbide extraction. It is better not to add carbon when it is lower than 0.03%.
- nickel (Ni): 0.4-8.0%, silicon (Si): 0.8% or less (except 0%), manganese (Mn): 1.2% or less (except 0%), phosphorus (P): 0.08% or less (including 0%), sulfur (S): 0.08% or less (including 0%) may be further included.
- Nickel is an austenite stabilizing element and is a useful element that increases the overall corrosion resistance in terms of corrosion resistance, and therefore it needs to contain at least 0.4% or more. Considering the relationship with the ordinary ratio and the expensive material, it is limited to 8.0% or less.
- Silicon is an element that stabilizes the ferrite structure, which has deoxidation effect during dissolution and refining, increases acid resistance and increases molten steel fluidity during casting, and decreases surface defects. Can increase, and the toughness and ductility of the steel is lowered. In view of corrosion resistance, 0.8% or less is preferable.
- Manganese is an austenite stabilizing element that can replace expensive nickel, an element that increases the solubility of nitrogen and lowers the resistance to high temperature deformation. In order to improve the corrosion resistance by increasing the nitrogen content, an appropriate amount of manganese is an essential element. Corrosion resistance is degraded when a large amount is added, and the upper limit thereof is limited to 1.2% or less since it promotes the formation of highly brittle intermetallic phases.
- Phosphorus (P) is not artificially added for the manufacture of alloys, but it is inevitably contained in steel as it is naturally present in iron, alloy iron, and various non-ferrous metal elements used as raw materials while the alloy is industrially manufactured. Phosphorus is an element that causes brittleness of materials and deteriorates corrosion resistance, so the maximum allowable value is controlled to 0.08%. On the other hand, since no more phosphorus is contained, a lower limit is not set.
- Sulfur is not artificially added for the manufacture of alloys, but it is inevitably contained in steel as trace amounts are naturally present in iron, ferroalloy, and various non-ferrous metal elements used as raw materials while the alloy is industrially manufactured.
- the maximum allowable value is controlled to 0.08% as it may cause cracking or deterioration of ductility after completion of the product, causing material brittleness.
- sulfur is so good that it does not contain, a lower limit is not set.
- the microstructure of the steel having the composition as described above is a mixture of two phases of austenite and ferrite
- the present invention can target a duplex stainless steel having such a two-phase structure.
- Duplex stainless steel has a fine combination of austenite ( ⁇ ) phase, which provides excellent processability, and ferrite ( ⁇ ) phase, which provides excellent corrosion resistance, so that the strength is at least 1.7 times higher than that of austenitic stainless steel. Excellent stress corrosion cracking resistance.
- gadolium Gd
- gadolium oxide Gd 2 O 3
- boron B
- a boron compound e.g., FeB, FeB 2 , CrB, CrB 2
- nano size 100nm or less (except 0nm)
- Such materials present on the microstructure of the austenite-ferrite biphasic phase can produce an effect of enhancing strength and simultaneously neutron absorbing ability in the neutron absorbing material.
- FIG. 1 is an analysis diagram showing the component analysis of 2.5% Gd-containing stainless steel (SUS) ingot prepared by pressure sintering analyzed by EPMA according to an embodiment of the present invention
- Figure 2 is an embodiment of the present invention It is the analysis figure which showed the component analysis of the 2.5% Gd containing SUS prepared by the vacuum magnetic buoyancy melt
- 1 (a) and 2 (a) show a BSE image
- FIGS. 1 (b) and 2 (b) show a Gd distribution.
- the supersaturated Gd compounds are distributed relatively homogeneously in the upper and lower portions of the ingot.
- Gd-duplex stainless steel shows the results of area mapping with EDX of Gd-duplex stainless steel. Cr, Ni, and Gd are uniformly distributed throughout the mother phase. 4 is a result of analyzing the components of the precipitate by EDX.
- Supersaturated Gd is a precipitate, such as gadolium oxide (Gd 2 O 3 ), present in grains and at grain boundaries.
- the raw material is prepared by dissolving in a melting furnace of inert atmosphere using pure iron, pure metal, iron alloy having a composition as shown in Table 1. (Standard composition range of alloy)
- the steel constituting the neutron-absorbing material is in weight percent, including at least one of gadolium (Gd): 0.1 to 2.5% and boron (B): 0.3 to 0.8%, and molybdenum.
- Gd gadolium
- B boron
- Mo molybdenum
- Mo 4.0% or less (including 0%)
- Cr chromium
- one or more of 10 times or less of vanadium (V): carbon (C) content and 10 times or less of niobium (Nb): carbon (C) content is further added. It may include.
- nickel (Ni): 0.4-8.0%, silicon (Si): 0.8% or less (except 0%), manganese (Mn): 1.2% or less (except 0%), phosphorus (P): 0.08% or less ( 0%), sulfur (S): 0.08% or less (including 0%) may be further included.
- a neutron absorbing material having a composition as shown in Table 1 above is an example, and an equivalent index (PREN) value defined as follows satisfies 30 or more.
- the solubility of boron (B) to iron (Fe) is increased by adding so that the atomic ratio of niobium (Nb) and carbon (C) is 1: 0.8 to 1: 1.2.
- a small amount of titanium (Ti) may be added, but in this case, the atomic ratio of titanium (Ti) and carbon (C) is 1: 0.8 to 1: 1.2.
- the solubility of boron (B) during casting reaches 0.5% by weight, but after cooling, there is a problem of lowering to 0.05% by weight for reasons such as oxidation.
- chromium (Cr), molybdenum (Mo), and vanadium (V) having a larger lattice constant than iron (Fe) are added during melting in the form of oxide or pure metal.
- Boron (B) and gadolium (Gd) may be initially used as raw materials in the form of borides (eg FeB, FeB 2 , CrB, CrB 2 ), and gadolium oxide (Gd 2 O 3 ).
- nanoparticles (100 nm or less (except 0 nm)) are added at a ratio of below their melting temperature in a ratio of these compounds (e.g., Gd 2 B 5 , GdB 2 , GdB). 4 , GdB 6 , GdB 12 , GdB 66 ) can be manufactured and used.
- alloying elements Cr, Ni, Mo, Si, N, etc.
- alloying elements are appropriately blended based on Table 1 above.
- buoyant melting using electromagnetic force may be applied to prevent the inflow of impurities through the ceramic crucible.
- High frequency may be applied for uniform mixing of alloying elements during dissolution.
- the solution is quenched by solution treatment around the ferrite decomposition temperature in the cooling stage after casting.
- solution treatment can be performed in any alloy system in which a single-phase solid solution region exists on the state diagram, and can perform solution treatment of carbon strength.
- the solution treatment temperature refers to an operation of heating to an austenite region in an iron-carbon state diagram.
- FIG. An example of the solution treatment condition of this invention is shown in FIG. According to this, the temperature was raised at a constant rate during the initial 80 minutes, and then maintained at 1070 ° C. for 50 minutes, followed by rapid water quenching.
- the neutron absorbing material manufactured by the melt casting method is capable of mass production and economical, the disadvantage is that various phases are generated during solidification due to high melting temperature and various alloying elements, and that boron and gadolium are oxidized and difficult to control. There are disadvantages, and in particular, it is difficult to accurately control the amount of gadolium and boron in the final product.
- the present invention sought to improve the powder metallurgy method.
- the steel constituting the neutron absorbing material is by weight, and includes at least one of gadolium (Gd): 0.1 to 2.5% and boron (B): 0.3 to 0.8%.
- one or more of 10 times or less of vanadium (V): carbon (C) content and 10 times or less of niobium (Nb): carbon (C) content is further added. It may include.
- nickel (Ni): 0.4-8.0%, silicon (Si): 0.8% or less (except 0%), manganese (Mn): 1.2% or less (except 0%), phosphorus (P): 0.08% or less ( 0%), sulfur (S): 0.08% or less (including 0%) may be further included.
- a neutron absorbing material having a composition as shown in Table 2 is an example, and an equivalent index (PREN) value defined as follows satisfies 30 or more.
- the compound of gadolium (Gd) and boron (B) added to the neutron absorbing material is a compound of porous boride boride (Bd) by burning synthesis by heating the gadolium (Gd) and boron (B) in an inert atmosphere at 2500 ° C. or more ( Example: Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , GdB 66 ), and the porous boride is mechanically pulverized to obtain a nano-sized powdery porous boride.
- the raw material is a porous boride which is a compound of gadolium (Gd) and boron (B) of pure iron, pure metal, nano-sized (100 nm or less (excluding 0 nm)) in a powder state of micro size with the composition shown in Table 2 above.
- Blend powder of thorium eg Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , GdB 66 ).
- porous gadolium boride eg Gd 2 B 5 , GdB 2 , GdB 4 , GdB
- Gd porous gadolium boride
- Gd a compound of raw metal and nanoscale (less than 100 nm but less than 0 nm) of gadolium (Gd) and boron (B) 6 , GdB 12 , GdB 66 ) by the mechanical alloying (mechanical alloying) to prepare a master alloy powder in which the presence of nano-sized gallium boride in the base material.
- the master alloy powder in which the nano-sized gadolium boride is present is molded under pressure at a pressure of 100-600 MPa.
- the microstructures are characterized by the presence of gadolium (Gd), gadolium oxide (Gd 2 O 3 ), boron (B) and boron compounds (e.g. FeB, FeB 2 , CrB, A complex structure in which CrB 2 ) is finely precipitated or distributed in a second phase, or in an austenitic-ferritic composite stainless alloy, gadolium (Gd), gadolium oxide (Gd 2 O 3 ), boron (B), and boron Compound boron (eg FeB, FeB 2 , CrB, CrB 2 ) is a complex structure in which a fine precipitate or second phase is distributed, and at the same time, a compound of gadolium (Gd) and boron (B) Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , and GdB 66 ) are composite tissues that exist in nanoscale (less than 100 nm (excluding 0
- austenite-ferritic composite stainless alloys include gadolium boride, which is a compound of gadolium (Gd) and boron (B) (e.g., Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , GdB 66 ) are made of composite tissue with nanoscale ( ⁇ 100nm (excluding 0nm)).
- Gd gadolium
- B boron
- the improved machinability is achieved by having a superstructure of boron supersaturated and nanoscale fine boron compounds, or a microstructure of supersaturated superoxide and nanosize microgadal compounds.
- the steel of the austenitic-ferrite composite structure has a high strength and high corrosion resistance compared to the steel of the austenitic single phase structure.
- the strength can be varied according to manufacturing conditions such as work hardening and annealing heat treatment, and cast steel shows the following ranges. It has a yield strength of about 2.2 times that of commercial single phase austenitic steel and about 2 times better corrosion resistance. Moreover, its yield strength and corrosion resistance are similar to those of commercial austenitic-ferrite two phase tissue steel, but it is strengthened by using precipitation hardening and foreign material dispersion strengthening. Is improved by more than 20%.
- Gd gadolium
- B boron
- austenite-ferritic composite stainless alloys may contain a mixture of gadolium (Gd) and boron (B), which is a compound of boride (e.g., Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , GdB 66 ) are nano-sized (100 nm or less (except 0 nm)) and are mostly dissolved in doped boride and relatively low in oxides (eg Gd 2 O 3 , B 2 O 5 ) Compared with the material produced by the casting method, the shielding efficiency per unit volume is high.
- Gd gadolium
- B boron
- W and Mo may be present at appropriate ratios to improve the structure control and weldability of the heat affected zone after welding.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Powder Metallurgy (AREA)
Abstract
Provided are a neutron absorbing material and a method for preparing same, wherein the neutron absorbing material is a steel comprising 0.1 to 2.5 wt% of Gd and/or 0.3 to 0.8 wt% of B, and further comprising 4.0 wt% or less of Mo (including 0 wt%), 6.5 wt% or less of W (including 0 wt%), 0.4 wt% or less of N (including 0 wt%), 16 to 34 wt% of Cr, 0.1 wt% or less of C (including 0 wt%),and Fe, and two phases of austenite and ferrite are admixed in the microstructure of the steel and an equivalent index value of the neutron absorbing material (PREN = Cr + 3.3(Mo + 0.5W) + 30N) reaches 30 or more. The neutron absorbing material according to the present invention has excellent strength, corrosion resistance, and processibility.
Description
본 발명은 중성자 흡수 소재 및 그의 제조방법에 관한 것으로, 구체적으로는 중성자 흡수 능력이 뛰어난 가도륨(Gd)과 붕소(B)를 함유한 강도와 내식성이 우수한 중성자 흡수 소재 및 그의 제조방법에 관한 것이다.The present invention relates to a neutron absorbing material and a manufacturing method thereof, and more particularly, to a neutron absorbing material having excellent strength and corrosion resistance containing gadolium (Gd) and boron (B) having excellent neutron absorbing ability and a method for producing the same. .
중성자 흡수 소재에 관한 종래기술로는 중성자조사에 대한 내취성이 우수한 오스테나이트강 및 이 강으로 구성된 부재에 관한 한국 등록특허 제10-0147082호, 중성자 흡수성능을 구비한 알루미늄 복합재 및 그 제조방법에 관한 한국 등록특허 제10-414958호, 중성자 흡수 복합재료 및 이의 제조방법에 관한 한국 등록특허 제10-329471호, 붕소함유 알루미늄 재료에 의한 중성자 흡수방법에 관한 한국 공개특허 제10-2007-024535호 등이 있다.Conventional techniques for neutron absorbing materials include Korean Patent No. 10-0147082, Austenitic steel having excellent odor resistance to neutron irradiation, and Aluminum composite having neutron absorbing performance and a method of manufacturing the same. Korean Patent No. 10-414958, Korean Patent No. 10-329471 concerning a neutron absorbing composite material and a method for manufacturing the same, Korean Patent Publication No. 10-2007-024535 concerning a method for absorbing neutrons by a boron-containing aluminum material Etc.
상기 종래기술들에서와 같이, 상용 중성자 흡수 소재로는 크게 알루미늄 합금계와 스테인리스강(stainless steel)계로 분류되어 개발되고 있으며, 알루미늄합금-탄화붕소(Al alloy-B4C),알루미늄-탄화붕소 써멧(Al-B Carbide Cermets), 붕소-알루미늄 합금, 알루미늄-탄화붕소 복합재료, 보론강(boron-steels), Ni-Cr-Mo-Gd 합금 등과 같이 다양한 소재가 개발되어 있다.As in the prior arts, commercial neutron absorbing materials are largely classified into aluminum alloys and stainless steels, and developed, such as aluminum alloy-boron carbide (Al alloy-B 4 C) and aluminum-boron carbide. Various materials have been developed such as cermets (Al-B Carbide Cermets), boron-aluminum alloys, aluminum-boron carbide composites, boron-steels, Ni-Cr-Mo-Gd alloys, and the like.
상용 알루미늄 합금계에 탄화붕소(Al alloy-B4C)를 함유한 써멧(Cermet)이나 복합재료는 경량이면서도 제조방법이 용이하다는 장점이 있지만, 소재의 특성상 알루미늄의 융점이 낮고, 용접 부위가 취약하며, 알루미늄-탄화붕소 계면의 내식성이 취약하다는 단점이 있다.Cermet and composite materials containing boron carbide (Al alloy-B 4 C) in commercial aluminum alloys have the advantage of being lightweight and easy to manufacture, but due to the characteristics of the material, the melting point of aluminum is low and the welding area is weak. And, there is a disadvantage that the corrosion resistance of the aluminum-boron carbide interface is weak.
한편, 상용 스테인리스강은 페라이트계, 마르텐사이트계, 및 오스테나이트계로 구성된다. 페라이트계와 마르텐사이트계는 오스테나이트계보다 강도, 내식성, 용접성이 낮다는 문제점이 있으므로, 오스테나이트계 스테인리스강에 중성자 흡수 능력이 우수한 물질을 첨가하여 중성자 흡수체 소재를 개발하려는 연구가 진행 중이다.On the other hand, commercial stainless steel is composed of ferritic, martensitic, and austenitic. Ferritic and martensitic systems have lower strength, corrosion resistance, and weldability than austenitic, and therefore, studies are underway to develop neutron absorber materials by adding materials having excellent neutron absorption ability to austenitic stainless steels.
그 일례로써, 붕소(B)를 함유하는 오스테나이트 단상조직은 알루미늄 합금-탄화붕소 복합재료와 비교하여 강도, 내식성, 용접성이 우수하지만 철(Fe)에 대한 붕소의 융해도가 낮고 소성 중에 입계 편석(grain boundary segregation)에 의한 균열발생으로 제조공정상 어려움이 있다. 즉, 일반 용해 주조 공정으로는 약 300ppm 이상에서는 소성가공 중에 입계 편석으로 인하여 균열이 발생하는 문제점이 있다. 특히 붕소(B)는 중성자와 반응하여 헬륨 기체를 만들기 때문에 장기적으로 사용되는 중성자 흡수소재에서는 가도륨(Gd)에 비해 불리하다. 한편, 가도륨(Gd)은 붕소(B)에 비해 가격 측면에서는 비싸다는 문제가 있다.As an example, the austenitic single-phase structure containing boron (B) has superior strength, corrosion resistance, and weldability as compared with aluminum alloy-boron carbide composites, but has a low solubility of boron for iron (Fe) and grain boundary segregation during firing. There is a difficulty in the manufacturing process due to crack generation by grain boundary segregation. That is, in the general melt casting process, there is a problem that cracking occurs due to grain boundary segregation during plastic working at about 300 ppm or more. In particular, since boron (B) reacts with neutrons to form helium gas, it is disadvantageous in comparison with gadolium (Gd) in neutron absorbing materials used for a long time. Meanwhile, gadolium (Gd) has a problem in that it is expensive in terms of price compared to boron (B).
본 발명은 중성자 흡수 능력이 우수한 가도륨(Gd)과 붕소(B)를 함께 사용하여 중성자 흡수 능력을 가지면서도, 강도와 내식성이 우수한 중성자 흡수 소재 및 그의 제조방법을 제시하고자 한다.The present invention is to propose a neutron absorbing material having a neutron absorbing ability, excellent strength and corrosion resistance, and a method of manufacturing the same by using a combination of gadolium (Gd) and boron (B) having excellent neutron absorbing ability.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 목적을 달성하기 위하여 본 발명의 일 측면은 중량%로, 가도륨(Gd): 0.1~2.5% 및 붕소(B): 0.3~0.8% 중 1종 이상을 포함하고, 몰리브덴(Mo): 4.0%이하(0% 포함), 텅스텐(W): 6.5% 이하(0% 포함), 질소(N): 0.4%이하(0% 포함), 크롬(Cr): 16~34%, 탄소(C): 0.1%이하(0% 포함) 및 철(Fe)을 더 포함하는 강(Steel)으로, 상기 강의 미세조직은 오스테나이트와 페라이트의 2상이 혼재하고, 당량지수(PREN = Cr + 3.3(Mo + 0.5W) + 30N) 값이 30 이상을 만족하는, 중성자 흡수소재를 제공한다.One aspect of the present invention in order to achieve the above object by weight, gadolium (Gd): 0.1 to 2.5% and boron (B): at least one of 0.3 to 0.8%, molybdenum (Mo) : 4.0% or less (including 0%), tungsten (W): 6.5% or less (including 0%), nitrogen (N): 0.4% or less (including 0%), chromium (Cr): 16 to 34%, carbon ( C): 0.1% or less (including 0%) and steel (Steel) further containing iron (Fe), the microstructure of the steel is a mixture of two phases of austenite and ferrite, the equivalent index (PREN = Cr + 3.3 ( A neutron absorbing material having a Mo + 0.5W) + 30N) value of 30 or more is provided.
본 발명의 다른 측면은, 중량%로, 가도륨(Gd): 0.1~2.5% 및 붕소(B): 0.3~0.8% 중 1종 이상을 포함하고, 몰리브덴(Mo): 4.0%이하(0% 포함), 텅스텐(W): 6.5% 이하(0% 포함), 질소(N): 0.4%이하(0% 포함), 크롬(Cr): 16~34%, 탄소(C): 0.1%이하(0% 포함) 및 철(Fe)을 더 포함하며, 당량지수(PREN = Cr + 3.3(Mo + 0.5W) + 30N) 값이 30 이상을 만족하는 강(Steel)을 주조하는 단계; 및 페라이트 분해온도를 중심으로 용체화 처리하여 급냉시키는 2단 응고 열처리하여 오스테나이트와 페라이트의 2상이 혼재하는 미세조직을 만드는 단계를 포함하는, 중성자 흡수소재의 제조방법을 제공한다.Another aspect of the present invention, in weight percent, gadolium (Gd): 0.1 to 2.5% and boron (B): at least one of 0.3 to 0.8%, molybdenum (Mo): 4.0% or less (0% Tungsten (W): 6.5% or less (including 0%), Nitrogen (N): 0.4% or less (including 0%), Chromium (Cr): 16 to 34%, Carbon (C): 0.1% or less ( Casting steel further comprising 0%) and iron (Fe), and having an equivalent index (PREN = Cr + 3.3 (Mo + 0.5W) + 30N) of 30 or more; And forming a microstructure in which two phases of austenite and ferrite are mixed by performing a two-stage solidification heat treatment for quenching the solution by quenching the ferrite decomposition temperature.
본 발명의 또 다른 측면은, 중량%로, 가도륨(Gd): 0.1~2.5% 및 붕소(B): 0.3~0.8% 중 1종 이상을 포함하고, 몰리브덴(Mo): 4.0%이하(0% 포함), 텅스텐(W): 6.5% 이하(0% 포함), 질소(N): 0.4%이하(0% 포함), 크롬(Cr): 16~34%, 탄소(C): 0.1%이하(0% 포함) 및 철(Fe)을 더 포함하며, 당량지수(PREN = Cr + 3.3(Mo + 0.5W) + 30N) 값이 30 이상을 만족하는 혼합합금분말을 100~600MPa의 압력으로 가압하여 성형하는 단계; 및 환원 또는 불활성 분위기에서 소결하여 판재로 성형하여 오스테나이트와 페라이트의 2상이 혼재하는 미세조직을 만드는 단계를 포함하는, 중성자 흡수소재의 제조방법을 제공한다.Another aspect of the present invention, in weight percent, contains at least one of gadolium (Gd): 0.1 to 2.5% and boron (B): 0.3 to 0.8%, molybdenum (Mo): 4.0% or less (0 %), Tungsten (W): 6.5% or less (including 0%), Nitrogen (N): 0.4% or less (including 0%), Chromium (Cr): 16 ~ 34%, Carbon (C): 0.1% or less (Including 0%) and iron (Fe), and pressurized mixed alloy powder with an equivalent index (PREN = Cr + 3.3 (Mo + 0.5W) + 30N) of 30 or more at a pressure of 100 to 600 MPa Forming by; And forming a plate by sintering in a reducing or inert atmosphere to form a plate to form a microstructure in which two phases of austenite and ferrite are mixed.
단, 상기 당량지수를 나타내는 식에서, Cr, Mo, W, N은 각각 이들 원소의 중량% 값을 의미한다. However, in the formula representing the equivalent index, Cr, Mo, W, and N each mean a weight% value of these elements.
본 발명에 의하면, 고강도와 고내식성을 가진 중성자 흡수 소재를 제공할 수 있고, 용해 주조법으로 제조시 용체화 처리하여 급냉시키는 2단 응고 열처리에 의하여 입계 편석을 억제함으로써 붕소가 과포화된 모상과 나노크기의 붕소화합물의 미세조직, 또는 가도륨이 과포화된 모상과 나노크기의 가도륨화합물의 미세조직을 가짐으로써 기계가공성이 향상된 중성자 흡수소재를 제조할 수 있다.According to the present invention, it is possible to provide a neutron absorbing material having high strength and high corrosion resistance, and to suppress grain boundary segregation by a two-stage solidification heat treatment which is quenched by quenching during the production by the melt casting process. By having a microstructure of the boron compound of, or a superstructure of a supersaturated base metal and a microstructure of a nano-sized gadolium compound, a neutron absorbing material having improved machinability can be manufactured.
도 1은 본 발명의 일 실시예에 따른 EPMA로 면분석 (area mapping)한 가압소결로 준비된 2.5%Gd 함유 SUS 잉곳(ingot)의 Gd 성분 분포를 나타낸 분석도이다. 도 1(a)는 SEM 이미지이고, 도 1(b)는 Gd의 위치가 점(spot)으로 나타난 이미지이다.1 is an analysis diagram showing the distribution of the Gd component of 2.5% Gd-containing SUS ingot prepared by pressure sintering by area mapping with EPMA according to an embodiment of the present invention. FIG. 1 (a) is an SEM image, and FIG. 1 (b) is an image in which the position of Gd is represented as a spot.
도 2는 본 발명의 일 실시예에 따른 EPMA로 분석한 진공 자기 부력 용해 방식으로 준비된 2.5% Gd 함유 SUS의 성분 분석을 나타낸 분석도이다. 도 2(a)는 SEM 이미지이고, 도 2(b)는 Gd의 위치가 점(spot)으로 나타난 이미지이다.Figure 2 is an analysis showing the component analysis of 2.5% Gd-containing SUS prepared by vacuum magnetic buoyancy dissolution method analyzed by EPMA according to an embodiment of the present invention. FIG. 2 (a) is an SEM image, and FIG. 2 (b) is an image in which the position of Gd is represented as a spot.
도 3은 본 발명의 일 실시예에 따른, Gd-듀플렉스 스테인리스강의 SEM 이미지(a), 그리고 EDX로 면분석(area mapping)한 Cr (b), Ni(c), Gd(d)의 분포도이다.3 is a SEM image (a) of a Gd-duplex stainless steel and a distribution map of Cr (b), Ni (c), and Gd (d) that are area mapped with EDX according to an embodiment of the present invention. .
도 4는 본 발명의 일 실시예에 따른, Gd 석출물의 SEM 이미지(a) 및 석출물의 EDX 스펙트럼(b)이다.4 is an SEM image (a) of a Gd precipitate and an EDX spectrum (b) of a precipitate according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 용체화 열처리 조건을 나타내는 그래프이다.5 is a graph showing the solution heat treatment conditions according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 열간압연 후의 중성자 흡수소재의 사진이다.6 is a photograph of a neutron absorbing material after hot rolling according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 중성자 흡수소재의 미세조직 사진이다.7 is a microstructure photograph of a neutron absorbing material according to an embodiment of the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention. Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiment of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.
또한, 본 명세서에서 사용되는 원소의 함량을 나타내는 단위인 %는 특별히 언급하지 않은 경우에는 중량%임에 유의할 필요가 있다.In addition, it is necessary to note that% which is a unit which shows content of the element used in this specification is a weight% unless there is particular notice.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 중성자 흡수소재 및 그의 제조방법을 상세히 설명한다.Hereinafter, the neutron absorbing material of the present invention and its manufacturing method will be described in detail so that a person skilled in the art can easily carry out the present invention.
일반적으로 가도륨(Gd)과 붕소(B)는 중성자 흡수 능력이 우수하여 알루미늄이나 스테인리스강에 첨가되어 중성자 흡수체 또는 차폐재로 이용할 수 있다. 그러나, 중성자 흡수체 또는 차폐재로 사용되는 강의 조성과 상기 강의 미세조직을 적절히 조절하지 못하면 용도에 적합한 내식성과 강도를 확보하기 어렵다. In general, gadolium (Gd) and boron (B) are excellent in neutron absorbing ability and can be added to aluminum or stainless steel to be used as neutron absorbers or shielding materials. However, if the composition of the steel used as a neutron absorber or shield and the microstructure of the steel are not properly adjusted, it is difficult to secure corrosion resistance and strength suitable for the application.
본 발명자들은 상기와 같은 과제를 해결하기 위해서 가도륨과 붕소의 양을 적절히 첨가하여 이들 원소가 제공하는 중성자 흡수능력을 유지함과 동시에 고가의 가도륨의 사용량을 줄이고, 듀플렉스 스테인리스강을 중성자 흡수 소재로 활용하여 적절한 내식성과 강도를 확보하는 방안을 고안하기에 이르렀다.In order to solve the above problems, the present inventors maintain the neutron absorption capability provided by these elements by appropriately adding the amounts of gadolium and boron, and at the same time, reduce the amount of expensive gadolium, and use duplex stainless steel as a neutron absorbing material. It has been devised to devise a proper corrosion resistance and strength.
이에 본 발명의 중성자 소재는 중량%로, 가도륨(Gd): 0.1~2.5% 및 붕소(B): 0.3~0.8% 중 1종 이상을 포함하고, 몰리브덴(Mo): 4.0%이하(0% 포함), 텅스텐(W): 6.5% 이하(0% 포함), 질소(N): 0.4%이하(0% 포함), 크롬(Cr): 16~34%, 탄소(C): 0.1%이하(0% 포함) 및 철(Fe)을 더 포함하며, 당량지수(PREN = Cr + 3.3(Mo + 0.5W) + 30N) 값이 30 이상을 만족하는 강(Steel)으로 이루어질 수 있다. 단, 여기서 상기 수식의 Cr, Mo, W, N은 각각 이들 원소의 중량% 값을 의미한다.Thus, the neutron material of the present invention is a weight%, including at least one of gadolium (Gd): 0.1 to 2.5% and boron (B): 0.3 to 0.8%, molybdenum (Mo): 4.0% or less (0% Tungsten (W): 6.5% or less (including 0%), Nitrogen (N): 0.4% or less (including 0%), Chromium (Cr): 16 to 34%, Carbon (C): 0.1% or less ( 0%) and iron (Fe), and the equivalent index (PREN = Cr + 3.3 (Mo + 0.5W) + 30N) value may be made of steel (Steel) that satisfies 30 or more. Here, Cr, Mo, W, N in the above formula means the weight% value of these elements, respectively.
상기 각 성분의 수치 한정 이유 및 이들 성분을 첨가하는 이유를 설명하면 다음과 같다. The reason for numerical limitation of each said component and the reason for adding these components are as follows.
가도륨(Gd): 0.1~2.5%Gadolium (Gd): 0.1-2.5%
가도륨(Gd)은 0.1% 미만으로 첨가시 중성자 흡수능 측면에서 효과를 충분히 얻기 어렵다 또한 2.5% 초과에서는 고온의 액체용탕상태에서 대기와 용탕간의 산화성이 커서 용탕의 유동성을 크게 떨어뜨리며 특히 철(Fe)과 함께 금속간 화합물을 형성하여 가공성형성을 크게 저하시키므로 상기 범위로 제한할 수 있다.When gadolium (Gd) is added at less than 0.1%, the effect of neutron absorption is not sufficiently obtained. Also, when it is more than 2.5%, the oxidative property between the atmosphere and the melt is high in a high temperature liquid molten state, which greatly reduces the flowability of the molten metal. ) To form an intermetallic compound and greatly reduce the formability can be limited to the above range.
붕소(B): 0.3~0.8%Boron (B): 0.3-0.8%
붕소는 0.3% 미만으로 첨가시 중성자 흡수능을 현저히 발현하기 어렵고 0.8% 초과에서는 재료의 취성을 유발하여 합금의 고체상태에서 성형가공을 어렵게 만들므로 상기 범위로 제한할 수 있다.When boron is added in less than 0.3%, it is difficult to express the neutron absorbing remarkably, and in the case of more than 0.8%, boron may cause brittleness of the material, thereby making it difficult to mold in the solid state of the alloy, and thus it may be limited to the above range.
몰리브덴(Mo): 4.0%이하(0% 포함)Molybdenum (Mo): 4.0% or less (including 0%)
몰리브덴(Mo)은 가혹한 부식환경에서 합금표면안정성 즉, 내식특성을 향상시키는 것으로 넣으면 좋으나 비교적 가혹하지 않은 일반적인 환경에서는 넣지 않아도 무방하다. 한편 4.0% 초과하여 함유되면 2상(듀플렉스) 합금에서 매우 취약한 시그마(σ)상을 형성하므로 역효과를 나타낸다. 따라서, 4.0%이하(0% 포함)로 첨가하는 것이 좋다.Molybdenum (Mo) may be added to improve the alloy surface stability, that is, corrosion resistance in harsh corrosive environments, but may not be added in a relatively harsh general environment. On the other hand, when it contains more than 4.0%, a sigma (σ) phase which is very fragile in a two-phase (duplex) alloy is formed, and thus has an adverse effect. Therefore, it is good to add at 4.0% or less (including 0%).
텅스텐(W): 6.5% 이하(0% 포함)Tungsten (W): 6.5% or less (including 0%)
텅스텐(W)은 내식성에 긍정적 영향을 주는 고가의 합금원소이면서 다량 첨가하면 금속간 화합물의 생성을 촉진시킬 수 있으므로 상안정성, 기계적 성질 및 내식성의 측면에서 텅스텐 함량을 6.5%이하(0% 포함)로 첨가한다.Tungsten (W) is an expensive alloying element that positively affects the corrosion resistance, and when added in large amounts, it can promote the formation of intermetallic compounds, and therefore, in terms of phase stability, mechanical properties and corrosion resistance, the content of tungsten (6.5% or less) is less than 6.5% (including 0%). Is added.
질소(N): 0.4%이하(0% 포함)Nitrogen (N): 0.4% or less (including 0%)
질소는 공식에 대한 저항성을 향상시키는 유용한 원소이며, 그 효과는 크롬의 약 30배 이상이다. 강력한 오스테나이트 안정화 원소로서 내식성의 측면에서 가장 중요한 원소 중 하나이다. 몰리브덴과 동시에 존재하면 상승 효과에 의하여 내식성을 크게 향상시킨다. 입계 부식 저항성의 향상을 목적으로 탄소 함량을 낮출 때 질소를 첨가하여 기계적 성질의 보상을 얻을 수 있으며, 크롬 탄화물의 생성을 억제하고 연신율의 감소 없이 인장강도 및 항복강도를 높인다. 탄소, 크롬, 니켈, 몰리브덴 및 텅스텐 등과의 균형과 오스테나이트-페라이트 상비율을 고려하여 첨가하여야 하며, 내식성을 향상시키는 원소이지만 고용도의 한계로 인하여 무한정 첨가할 수 없으므로 0.4%이하(0% 포함)가 바람직하며, 0.4% 초과하여 다량 첨가시 재료의 취성과 제조과정 중 가스결함을 유발할 수 있다. 따라서, 그 함량을 0.4%이하(0% 포함)로 제어하는 것이 바람직하다.Nitrogen is a useful element that improves the resistance to formulas, and its effect is about 30 times more than chromium. As a strong austenite stabilizing element, it is one of the most important elements in terms of corrosion resistance. When present simultaneously with molybdenum, the synergistic effect greatly improves the corrosion resistance. When the carbon content is lowered for the purpose of improving the intergranular corrosion resistance, it is possible to obtain the compensation of mechanical properties by adding nitrogen, inhibiting the formation of chromium carbide and increasing the tensile strength and the yield strength without reducing the elongation. It should be added in consideration of balance with carbon, chromium, nickel, molybdenum and tungsten, and austenite-ferrite phase ratio.It is an element that improves corrosion resistance but cannot be added indefinitely due to the limitation of solid solubility. ), And addition of more than 0.4% may cause brittleness of the material and gas defects during the manufacturing process. Therefore, it is desirable to control the content to 0.4% or less (including 0%).
크롬(Cr): 16~34% Chromium (Cr): 16-34%
스테인리스강의 내식성 유지에 가장 중요하고 기본이 되는 원소이다. 최소한의 내식성을 위해서는 12% 이상이 필요하나, 본 발명의 합금에서는 오스테나이트-페라이트 2상 조직을 얻어야 하기 때문에 오스테나이트/페라이트의 상비율을 고려하여 16% 이상의 크롬을 함유하여야 한다. 또한, 크롬은 내식성을 향상시키기 위한 원소로서 많이 함유할수록 내식성이 강해지는 효과가 있으나, 질소, 몰리브덴, 텅스텐 등의 균형에 따른 듀플렉스 스테인리스강을 제조하기 위해 바람직하게는 34%이하인 것이 좋다.It is the most important and basic element for maintaining corrosion resistance of stainless steel. 12% or more is required for the minimum corrosion resistance, but in the alloy of the present invention, since the austenite-ferrite two-phase structure must be obtained, it must contain 16% or more of chromium in consideration of the austenite / ferrite phase ratio. In addition, the more chromium is contained as an element for improving the corrosion resistance, the corrosion resistance is stronger, but in order to produce a duplex stainless steel according to the balance of nitrogen, molybdenum, tungsten, etc., preferably 34% or less.
탄소(C): 0.1%이하(0% 포함)Carbon (C): 0.1% or less (including 0%)
탄소는 합금의 용해주조시에 용탕의 유동성을 좋게 하지만 내식성에 매우 나쁜 영향을 미치므로 가능한 적게 함유되는 것이 바람직하다. 바람직하게는 0.05% 이하로 함유하는 것이 좋으나 0.1% 초과하면 내식성을 극도로 악화시킬 수 있다.Carbon is preferably contained as little as possible because it improves the flowability of the molten metal during melt casting of the alloy, but has a very bad effect on corrosion resistance. Preferably, it is preferable to contain 0.05% or less, but when it exceeds 0.1%, the corrosion resistance may be extremely deteriorated.
철(Fe)Fe
철(Fe)은 스테인리스강에 함유된 성분 중 가장 많은 부분을 차지하는 것으로서 잔부를 구성할 수 있다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.Iron (Fe) occupies the most part of the components contained in stainless steel, and can comprise a remainder. However, in the conventional manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned in the present specification.
당량지수(PREN = Cr + 3.3(Mo + 0.5W) + 30N) 값이 30 이상 Equivalence index (PREN = Cr + 3.3 (Mo + 0.5W) + 30N) has a value of 30 or more
여기서, Cr, Mo, W, N은 각각 이들 원소의 중량% 값을 의미한다. 당량지수 값이 30 미만에서는 충분한 내식성이 확보될 수 없고, 당량지수 값이 높을수록 내식성이 높아지므로 특별히 상한을 설정하지는 않는다. Here, Cr, Mo, W, N means the weight% value of these elements, respectively. If the equivalent index value is less than 30, sufficient corrosion resistance cannot be secured, and the higher the equivalent index value, the higher the corrosion resistance, so no particular upper limit is set.
본 발명의 중성자 흡수소재는 상기 성분에 더하여 중량%로, 바나듐(V): 탄소(C)함량의 10배 이하 및 니오브(Nb): 탄소(C)함량의 10배 이하 중 1종 이상을 추가적으로 포함할 수 있다.In addition to the above components, the neutron absorbing material of the present invention additionally contains at least one of vanadium (V): 10 times or less of carbon (C) and 10 times or less of niobium (Nb): carbon (C). It may include.
바나듐(V): 탄소(C)함량의 10배 이하, 니오브(Nb): 탄소(C)함량의 10배 이하Vanadium (V): 10 times or less of carbon (C) content, Niobium (Nb): 10 times or less of carbon (C) content
바나듐과 니오브는 열처리와 고온 상안정을 위하여 0.1~0.5%를 포함하는 것이 통상적이다. 그러나 합금에서 내식성에 큰 영향을 미치는 탄소와 반응하여 탄화물을 형성함으로써 탄소의 악영향을 억제하는 영향을 나타내므로 각각 탄소 함량의 10배 이하로 첨가한다. 그러나 그보다 많이 첨가되면 취약한 탄화물의 양이 많아지고 과다한 탄화물 정출로 내식성을 오히려 떨어뜨릴 우려가 있다. 탄소가 0.03%이하로 낮게 들어가 있을 경우에는 첨가하지 않는 것이 오히려 좋다.Vanadium and niobium typically contain 0.1 to 0.5% for heat treatment and high temperature phase stability. However, since the alloy reacts with carbon, which has a great influence on corrosion resistance, to form carbides, thereby suppressing the adverse effect of carbon, each is added at 10 times or less of the carbon content. However, if it is added more than that, the amount of vulnerable carbides increases and there is a fear that the corrosion resistance is rather deteriorated due to excessive carbide extraction. It is better not to add carbon when it is lower than 0.03%.
상기에 언급한 성분들 이외에도 니켈(Ni): 0.4~8.0%, 규소(Si): 0.8%이하(0% 제외), 망간(Mn): 1.2%이하(0% 제외), 인(P): 0.08%이하(0% 포함), 황(S): 0.08%이하(0% 포함)를 더 포함할 수도 있다.In addition to the components mentioned above, nickel (Ni): 0.4-8.0%, silicon (Si): 0.8% or less (except 0%), manganese (Mn): 1.2% or less (except 0%), phosphorus (P): 0.08% or less (including 0%), sulfur (S): 0.08% or less (including 0%) may be further included.
니켈(Ni): 0.4~8.0%Nickel (Ni): 0.4-8.0%
니켈은 오스테나이트 안정화 원소로서 내식성의 측면에서 전면부식 저항성을 증가시키는 유용한 원소이므로 적어도 0.4% 이상을 함유할 필요가 있다. 상비율과의 관계 및 고가의 재료임을 고려하여 8.0% 이하로 제한된다.Nickel is an austenite stabilizing element and is a useful element that increases the overall corrosion resistance in terms of corrosion resistance, and therefore it needs to contain at least 0.4% or more. Considering the relationship with the ordinary ratio and the expensive material, it is limited to 8.0% or less.
규소(Si): 0.8%이하(0% 제외)Silicon (Si): 0.8% or less (excluding 0%)
규소는 페라이트 조직을 안정화시키는 원소로서 용해 정련시 탈산 효과가 있고 내산성을 증가시키고 주물품 제조시 용강 유동성을 증가시켜 표면결함을 줄이는 원소이나 3%를 초과하면 취성이 강한 금속간 상들의 석출 속도를 증가시킬 수 있으며, 강의 인성과 연성이 저하된다. 내식성의 측면에서는 0.8% 이하가 바람직하다. Silicon is an element that stabilizes the ferrite structure, which has deoxidation effect during dissolution and refining, increases acid resistance and increases molten steel fluidity during casting, and decreases surface defects. Can increase, and the toughness and ductility of the steel is lowered. In view of corrosion resistance, 0.8% or less is preferable.
망간(Mn): 1.2%이하(0% 제외)Manganese (Mn): 1.2% or less (excluding 0%)
망간은 값비싼 니켈을 대체할 수 있는 오스테나이트 안정화 원소이며, 질소의 고용도를 증가시키며, 고온 변형 저항성을 낮추는 원소이다. 질소 함량을 증가시켜 내식성을 향상시키고자 할 때 적정한 양의 망간은 필수적인 원소이다. 다량 첨가시 내식성이 저하되며, 취성이 강한 금속간 상들의 생성을 조장하기 때문에 그 상한값을 1.2% 이하로 제한한다. Manganese is an austenite stabilizing element that can replace expensive nickel, an element that increases the solubility of nitrogen and lowers the resistance to high temperature deformation. In order to improve the corrosion resistance by increasing the nitrogen content, an appropriate amount of manganese is an essential element. Corrosion resistance is degraded when a large amount is added, and the upper limit thereof is limited to 1.2% or less since it promotes the formation of highly brittle intermetallic phases.
인(P): 0.08%이하(0% 포함)Phosphorus (P): 0.08% or less (including 0%)
인(P)은 합금의 제조를 위해서 인위적으로 첨가되는 것은 아니나, 합금이 공업적으로 제조되는 가운데 원료로 쓰이는 철 및 합금철, 각종 비철금속 원소에 자연상태로 미량 존재하는 것으로 강 중에 불가피하게 함유되는데, 인은 재료의 취성을 유발하고 내식성을 떨어뜨리는 원소이므로 최대허용치를 0.08%로 제어한다. 한편 인은 함유되지 않을수록 좋으므로 하한은 설정하지 않는다.Phosphorus (P) is not artificially added for the manufacture of alloys, but it is inevitably contained in steel as it is naturally present in iron, alloy iron, and various non-ferrous metal elements used as raw materials while the alloy is industrially manufactured. Phosphorus is an element that causes brittleness of materials and deteriorates corrosion resistance, so the maximum allowable value is controlled to 0.08%. On the other hand, since no more phosphorus is contained, a lower limit is not set.
황(S): 0.08%이하(0% 포함)Sulfur (S): 0.08% or less (including 0%)
황은 합금의 제조를 위해서 인위적으로 첨가되는 것은 아니나, 합금이 공업적으로 제조되는 가운데 원료로 쓰이는 철 및 합금철, 각종 비철금속 원소에 자연상태로 미량 존재하는 것으로 강 중에 불가피하게 함유되는데, 황은 응고과정시 균열을 발생시키거나 제품 완성 후 연성을 저하시켜 재료 취성의 원인이 되므로 최대허용치를 0.08%로 제어한다. 한편 황은 함유되지 않을수록 좋으므로 하한은 설정하지 않는다.Sulfur is not artificially added for the manufacture of alloys, but it is inevitably contained in steel as trace amounts are naturally present in iron, ferroalloy, and various non-ferrous metal elements used as raw materials while the alloy is industrially manufactured. The maximum allowable value is controlled to 0.08% as it may cause cracking or deterioration of ductility after completion of the product, causing material brittleness. On the other hand, since sulfur is so good that it does not contain, a lower limit is not set.
상기와 같은 조성을 가지는 강의 미세조직은 오스테나이트와 페라이트의 2상이 혼재하며, 본 발명은 이러한 2상 조직을 가지는 듀플렉스 스테인리스강을 대상으로 할 수 있다. 듀플렉스 스테인리스강은 우수한 가공성을 제공하는 오스테나이트(γ)상과 우수한 내식성을 제공하는 페라이트(α) 상이 미세하게 결합하여 강도가 오스테나이트계 스테인리스강보다 최소 1.7배 이상 높을 뿐만 아니라, 공식(Pitting)과 응력부식균열 저항성이 매우 우수하다.The microstructure of the steel having the composition as described above is a mixture of two phases of austenite and ferrite, the present invention can target a duplex stainless steel having such a two-phase structure. Duplex stainless steel has a fine combination of austenite (γ) phase, which provides excellent processability, and ferrite (α) phase, which provides excellent corrosion resistance, so that the strength is at least 1.7 times higher than that of austenitic stainless steel. Excellent stress corrosion cracking resistance.
또한, 상기 중성자 흡수소재의 미세조직 상에 가도륨(Gd), 산화가도륨(Gd2O3),붕소(B)와 붕소화합물 (예: FeB, FeB2, CrB, CrB2)이 미세하게 석출되어 존재하거나, 붕화가도륨(예; Gd2B5, GdB2, GdB4, GdB6, GdB12, GdB66)이 나노크기(100nm이하(0nm 제외))로 존재하여 복합 조직을 이룰 수 있다. In addition, gadolium (Gd), gadolium oxide (Gd 2 O 3 ), boron (B) and a boron compound (e.g., FeB, FeB 2 , CrB, CrB 2 ) on the microstructure of the neutron absorbing material finely Precipitate present or form a complex structure with Gaborium boride (e.g. Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , GdB 66 ) in nano size (100nm or less (except 0nm)) Can be.
오스테나이트-페라이트 2상의 미세조직 상에 존재하는 상기와 같은 물질들은 중성자 흡수소재에 있어서 강도를 강화하고 동시에 중성자 흡수 능력을 강화하는 효과를 발생시킬 수 있다.Such materials present on the microstructure of the austenite-ferrite biphasic phase can produce an effect of enhancing strength and simultaneously neutron absorbing ability in the neutron absorbing material.
도 1은 본 발명의 일 실시예에 따른 EPMA로 분석한 가압소결로 준비된 2.5%Gd 함유 SUS(Steel Use Stainless) 잉곳(ingot)의 성분 분석을 나타낸 분석도이고, 도 2는 본 발명의 일 실시예에 따른 EPMA로 분석한 진공 자기 부력 용해 방식으로 준비된 2.5% Gd 함유 SUS의 성분 분석을 나타낸 분석도이다. 도 1(a) 및 도 2(a)는 BSE 이미지, 도 1(b) 및 도2(b)는 Gd 분포를 나타낸 것이다.1 is an analysis diagram showing the component analysis of 2.5% Gd-containing stainless steel (SUS) ingot prepared by pressure sintering analyzed by EPMA according to an embodiment of the present invention, Figure 2 is an embodiment of the present invention It is the analysis figure which showed the component analysis of the 2.5% Gd containing SUS prepared by the vacuum magnetic buoyancy melt | dissolution method analyzed by EPMA according to the example. 1 (a) and 2 (a) show a BSE image, and FIGS. 1 (b) and 2 (b) show a Gd distribution.
잉곳 상부와 하부에 과포화된 Gd 화합물이 비교적 균질하게 분포되어 있음을 확인할 수 있다.It can be seen that the supersaturated Gd compounds are distributed relatively homogeneously in the upper and lower portions of the ingot.
도 3는 Gd-듀플렉스 스테인리스강의 EDX로 면분석(area mapping)한 결과이다. Cr, Ni, Gd이 모상에 전체적으로 균일하게 분포되어 있다. 도 4는 석출물의 성분을 EDX로 분석한 결과이다. 과포화된 Gd은 산화가도륨(Gd2O3)와 같은 석출물로서 결정립내와 결정립계에 존재한다. 3 shows the results of area mapping with EDX of Gd-duplex stainless steel. Cr, Ni, and Gd are uniformly distributed throughout the mother phase. 4 is a result of analyzing the components of the precipitate by EDX. Supersaturated Gd is a precipitate, such as gadolium oxide (Gd 2 O 3 ), present in grains and at grain boundaries.
이하에서는, 상술한 본 발명의 중성자 흡수소재를 제조하는 방법을 실시예를 통해 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세히 설명하기 위한 예일 뿐, 본 발명의 권리범위를 제한하지는 않는다.Hereinafter, the method for producing the neutron absorbing material of the present invention described above will be described in detail by way of examples. However, the following examples are merely examples for describing the present invention in more detail, and do not limit the scope of the present invention.
[실시예] EXAMPLE
1. 용해주조법에 의한 중성자 흡수소재의 제조1. Preparation of neutron absorbing material by melt casting method
원료 소재는 하기 표 1과 같은 조성을 가지는 순철, 순금속, 합금철을 이용하여 불활성 분위기의 용해로에서 용해 제조한다. (합금의 표준 조성범위)The raw material is prepared by dissolving in a melting furnace of inert atmosphere using pure iron, pure metal, iron alloy having a composition as shown in Table 1. (Standard composition range of alloy)
표 1
Table 1
원소 | 중량% | 원소 | 중량% | 원소 | 중량% |
Gd | 0.1~2.5 | P | 0.08이하(0 포함) | W | 6.5이하(0 포함) |
B | 0.3~0.8 | S | 0.08이하(0 포함) | N | 0.4이하(0 포함) |
C | 0.1이하(0 포함) | Ni | 0.4~8.0 | V | C*10 이하 |
Si | 0.8이하(0 제외) | Cr | 16~34 | Nb | C*10 이하 |
Mn | 1.2이하(0 제외) | Mo | 0.4이하(0 포함) | Fe | 잔부 |
element | weight% | element | weight% | element | weight% |
Gd | 0.1-2.5 | P | 0.08 or less (including 0) | W | 6.5 or less (including 0) |
B | 0.3 ~ 0.8 | S | 0.08 or less (including 0) | N | 0.4 or less (including 0) |
C | 0.1 or less (including 0) | Ni | 0.4-8.0 | V | C * 10 or less |
Si | 0.8 or less (excluding 0) | Cr | 16-34 | Nb | C * 10 or less |
Mn | 1.2 or less (excluding 0) | Mo | 0.4 or less (including 0) | Fe | Balance |
용해주조법에 의하는 경우 중성자 흡수소재를 구성하는 강(Steel)은 중량%로, 가도륨(Gd): 0.1~2.5% 및 붕소(B): 0.3~0.8% 중 1종 이상을 포함하고, 몰리브덴(Mo): 4.0%이하(0% 포함), 텅스텐(W): 6.5% 이하(0% 포함), 질소(N): 0.4%이하(0% 포함), 크롬(Cr): 16~34%, 탄소(C): 0.1%이하(0% 포함) 및 철(Fe)을 더 포함할 수 있다.According to the melt casting method, the steel constituting the neutron-absorbing material is in weight percent, including at least one of gadolium (Gd): 0.1 to 2.5% and boron (B): 0.3 to 0.8%, and molybdenum. (Mo): 4.0% or less (including 0%), tungsten (W): 6.5% or less (including 0%), nitrogen (N): 0.4% or less (including 0%), chromium (Cr): 16 ~ 34% , Carbon (C): 0.1% or less (including 0%) and may further include iron (Fe).
또한, 열처리와 고온 상안정을 위하여, 중량%로, 바나듐(V): 탄소(C)함량의 10배 이하 및 니오브(Nb): 탄소(C)함량의 10배 이하 중 1종 이상을 추가로 포함할 수 있다.In addition, for heat treatment and high temperature phase stability, by weight%, one or more of 10 times or less of vanadium (V): carbon (C) content and 10 times or less of niobium (Nb): carbon (C) content is further added. It may include.
그 외에도, 니켈(Ni): 0.4~8.0%, 규소(Si): 0.8%이하(0% 제외), 망간(Mn): 1.2%이하(0% 제외), 인(P): 0.08%이하(0% 포함), 황(S): 0.08%이하(0% 포함)를 더 포함할 수도 있다.In addition, nickel (Ni): 0.4-8.0%, silicon (Si): 0.8% or less (except 0%), manganese (Mn): 1.2% or less (except 0%), phosphorus (P): 0.08% or less ( 0%), sulfur (S): 0.08% or less (including 0%) may be further included.
상기 표 1과 같은 조성을 가지는 중성자 흡수 소재는 그 일례이며, 하기와 같이 정의되는 당량지수(PREN) 값이 30 이상을 만족한다.A neutron absorbing material having a composition as shown in Table 1 above is an example, and an equivalent index (PREN) value defined as follows satisfies 30 or more.
PREN = Cr + 3.3(Mo + 0.5W) + 30N PREN = Cr + 3.3 (Mo + 0.5 W) + 30 N
(여기서, Cr, Mo, W, N은 각각 이들 원소의 중량% 값을 의미한다.)(Wherein, Cr, Mo, W, and N each represent the weight% value of these elements.)
스테인리스강(Fe-18% Cr) 조성에서 붕소(B)의 용해도가 작기 때문에 약 1.35중량% 정도 이상이면 응고 중에 붕소(B)와 탄소(C)의 과포화된 고용체를 만드는 문제점이 있다. 이러한 문제점을 해결하고자 탄소(C)를 제어할 목적으로 탄화물을 우선 만들고, 응고 중에 철(Fe)에 대한 붕소(B)의 용해도를 높이기 위하여 니오브(Nb)를 탄소(C) 양과 유사한 원자비로 첨가한다.Since the solubility of boron (B) in stainless steel (Fe-18% Cr) composition is small, about 1.35% by weight or more has a problem of making supersaturated solid solution of boron (B) and carbon (C) during solidification. In order to solve this problem, carbides are first made for the purpose of controlling carbon, and niobium (Nb) is used in an atomic ratio similar to that of carbon (C) to increase the solubility of boron (B) in iron (Fe) during solidification. Add.
즉, 니오브(Nb)와 탄소(C)의 원자비가 1:0.8 내지 1:1.2가 되도록 첨가하여 철(Fe)에 대한 붕소(B)의 용해도를 높인다. 또한 소량의 티타늄(Ti)이 첨가될 수도 있는데 이 경우에도 티타늄(Ti)과 탄소(C)의 원자비가 1:0.8 내지 1:1.2가 되도록 첨가한다.That is, the solubility of boron (B) to iron (Fe) is increased by adding so that the atomic ratio of niobium (Nb) and carbon (C) is 1: 0.8 to 1: 1.2. In addition, a small amount of titanium (Ti) may be added, but in this case, the atomic ratio of titanium (Ti) and carbon (C) is 1: 0.8 to 1: 1.2.
주조 중 붕소(B)의 용해도는 0.5중량%에 이르지만, 냉각한 후에는 산화 등의 이유에 의하여 0.05중량%로 낮아지는 문제점이 있다. 이러한 붕소(B)의 용해도를 개선하기 위하여 철(Fe)보다 격자상수가 큰 크롬(Cr)과 몰리브덴(Mo)과 바나듐(V)을 산화물 형태 또는 순금속 형태로 융해 중에 첨가한다. 붕소(B)와 가도륨(Gd)은 보라이드(예; FeB, FeB2, CrB, CrB2),산화가도륨(Gd2O3)의 형태로 초기에 원료로 사용할 수 있다. 특히, 가도륨(Gd)과 붕소(B)의 경우 나노크기(100nm이하(0nm 제외))로 이들의 용융 온도 이하에서 정량비로 첨가하여 이들의 화합물(예; Gd2B5, GdB2, GdB4, GdB6, GdB12, GdB66)을 제조하여 사용할 수 있다.The solubility of boron (B) during casting reaches 0.5% by weight, but after cooling, there is a problem of lowering to 0.05% by weight for reasons such as oxidation. In order to improve the solubility of boron (B), chromium (Cr), molybdenum (Mo), and vanadium (V) having a larger lattice constant than iron (Fe) are added during melting in the form of oxide or pure metal. Boron (B) and gadolium (Gd) may be initially used as raw materials in the form of borides (eg FeB, FeB 2 , CrB, CrB 2 ), and gadolium oxide (Gd 2 O 3 ). Particularly, in the case of gadolium (Gd) and boron (B), nanoparticles (100 nm or less (except 0 nm)) are added at a ratio of below their melting temperature in a ratio of these compounds (e.g., Gd 2 B 5 , GdB 2 , GdB). 4 , GdB 6 , GdB 12 , GdB 66 ) can be manufactured and used.
응고된 상의 균형을 맞추기 위하여 합금원소(Cr, Ni, Mo, Si, N 등)를 상기 표 1을 근거로 하여 적정 배합한다. 용해 중에 대기 중으로부터 불순물의 유입을 억제하기 위하여 상용 진공용해, 불활성 분위기에 용해 이외에도 세라믹 도가니를 통한 불순물 유입을 막기 위하여 전자기력을 이용한 부력 용해를 적용할 수도 있다. 용해 중에 균일한 합금원소의 혼합을 위하여 고주파를 적용할 수도 있다.In order to balance the solidified phase, alloying elements (Cr, Ni, Mo, Si, N, etc.) are appropriately blended based on Table 1 above. In order to suppress the inflow of impurities from the atmosphere during melting, in addition to commercial vacuum melting and melting in an inert atmosphere, buoyant melting using electromagnetic force may be applied to prevent the inflow of impurities through the ceramic crucible. High frequency may be applied for uniform mixing of alloying elements during dissolution.
용해 후 또는 용접 후 냉각 중에 600~1,000℃ 구역에서 공석반응으로 페라이트가 분해되는 시그마(σ)상이 석출되는 현상을 억제하기 위하여 주조 후 냉각단계에서 페라이트 분해온도를 중심으로 용체화 처리하여 급냉시키는 2단 응고열처리를 수행한다. 상기 용체화 처리란, 상태도 상에서 단상 고용체 영역이 존재하는 어느 합금계에서나 가능하며, 탄소강도 용체화 처리를 할 수 있다. 용체화 처리 온도는 철-탄소 상태도에서의 오스테나이트 영역으로 가열하는 조작을 말한다. 도 5에 본 발명의 용체화 처리 조건의 일례를 나타내었다. 이에 따르면, 초기 80분 동안에 일정 속도로 승온한 후 1070℃에서 50분간 유지하고 나서 급속도로 수냉(water quenching)하는 방식을 취하였다.In order to suppress the sigma phase (σ) phase in which ferrite is decomposed by vacancy reaction in the zone of 600 ~ 1,000 ℃ during melting after welding or welding, the solution is quenched by solution treatment around the ferrite decomposition temperature in the cooling stage after casting. However, solidification heat treatment is performed. The solution treatment can be performed in any alloy system in which a single-phase solid solution region exists on the state diagram, and can perform solution treatment of carbon strength. The solution treatment temperature refers to an operation of heating to an austenite region in an iron-carbon state diagram. An example of the solution treatment condition of this invention is shown in FIG. According to this, the temperature was raised at a constant rate during the initial 80 minutes, and then maintained at 1070 ° C. for 50 minutes, followed by rapid water quenching.
이러한 용체화 처리를 통하여 단조 및 냉간가공에 균열을 유발하는 입계 편석(grain boundary segregation)을 억제하고 붕소(B)가 과포화된 모상과 나노 크기의 극미세한 붕소화합물(예; FeB, FeB2, CrB, CrB2)의 미세조직을 갖게 된다.Through this solution treatment, grain boundary segregation that inhibits cracking in forging and cold working is suppressed, and superfine boron compound of nano-sized boron (B) and nano-sized boron compounds (eg FeB, FeB 2 , CrB) , CrB 2 ) will have a microstructure.
이어서, 압연 과정을 거쳐 판재로 제작할 수 있다. 고농도 가도륨과 붕소가 함유됨에 따라 단조와 압연이 어렵다는 문제점을 개선하기 위하여 연속 주조장치에 연속 열간 압연롤을 장착하여 주조 후 냉각 전에 열간 압연롤을 통과시켜 두께(t) 10 이하의 판재 형태의 중성자 흡수소재를 제조할 수 있다. 도 6에 열간 압연된 판재의 사진을 첨부하였다.Subsequently, it can manufacture into a board | plate material through a rolling process. In order to improve the problem that forging and rolling are difficult due to the high concentration of gallium and boron, continuous hot rolling rolls are mounted on the continuous casting apparatus and passed through the hot rolling rolls before cooling to form a plate having a thickness of 10 or less (t). Neutron absorbing material can be prepared. The photograph of the hot rolled board | plate material was attached to FIG.
2. 분말 야금법에 의한 중성자 흡수 소재의 제조2. Preparation of neutron absorbing material by powder metallurgy
용해 주조방법으로 제조되는 중성자 흡수소재는 대량생산이 가능하고 경제적이지만 용해온도가 높고 합금원소가 다양하여 다양한 상이 응고 중에 생성되는 단점과, 각각의 붕소와 가도륨이 산화되어 제어하기가 까다롭다는 단점이 있으며, 특히 최종 제품에서의 가도륨과 붕소의 양을 정확히 제어하는데 어려움이 있다.Although the neutron absorbing material manufactured by the melt casting method is capable of mass production and economical, the disadvantage is that various phases are generated during solidification due to high melting temperature and various alloying elements, and that boron and gadolium are oxidized and difficult to control. There are disadvantages, and in particular, it is difficult to accurately control the amount of gadolium and boron in the final product.
이와 같은 문제점을 해결하고자 본 발명에서는 분말 야금법으로 개선하는 방안을 모색하였다.In order to solve this problem, the present invention sought to improve the powder metallurgy method.
표 2
TABLE 2
원소 | 중량% | 원소 | 중량% | 원소 | 중량% |
Gd | 0.1~2.5 | P | 0.08이하(0 포함) | W | 6.5이하(0 포함) |
B | 0.3~0.8 | S | 0.08이하(0 포함) | N | 0.4이하(0 포함) |
C | 0.1이하(0 포함) | Ni | 0.4~8.0 | V | C*10 이하 |
Si | 0.8이하(0 제외) | Cr | 16~34 | Nb | C*10 이하 |
Mn | 1.2이하(0 제외) | Mo | 0.4이하(0 포함) | Fe | 잔부 |
element | weight% | element | weight% | element | weight% |
Gd | 0.1-2.5 | P | 0.08 or less (including 0) | W | 6.5 or less (including 0) |
B | 0.3 ~ 0.8 | S | 0.08 or less (including 0) | N | 0.4 or less (including 0) |
C | 0.1 or less (including 0) | Ni | 0.4-8.0 | V | C * 10 or less |
Si | 0.8 or less (excluding 0) | Cr | 16-34 | Nb | C * 10 or less |
Mn | 1.2 or less (excluding 0) | Mo | 0.4 or less (including 0) | Fe | Balance |
분말 야금법에 의하는 경우 중성자 흡수소재를 구성하는 강(Steel)은 중량%로, 가도륨(Gd): 0.1~2.5% 및 붕소(B): 0.3~0.8% 중 1종 이상을 포함하고, 몰리브덴(Mo): 4.0%이하(0% 포함), 텅스텐(W): 6.5% 이하(0% 포함), 질소(N): 0.4%이하(0% 포함), 크롬(Cr): 16~34%, 탄소(C): 0.1%이하(0% 포함) 및 철(Fe)을 더 포함할 수 있다.According to the powder metallurgy method, the steel constituting the neutron absorbing material is by weight, and includes at least one of gadolium (Gd): 0.1 to 2.5% and boron (B): 0.3 to 0.8%. Molybdenum (Mo): 4.0% or less (including 0%), Tungsten (W): 6.5% or less (including 0%), Nitrogen (N): 0.4% or less (including 0%), Chromium (Cr): 16 ~ 34 %, Carbon (C): 0.1% or less (including 0%) and may further include iron (Fe).
또한, 열처리와 고온 상안정을 위하여, 중량%로, 바나듐(V): 탄소(C)함량의 10배 이하 및 니오브(Nb): 탄소(C)함량의 10배 이하 중 1종 이상을 추가로 포함할 수 있다.In addition, for heat treatment and high temperature phase stability, by weight%, one or more of 10 times or less of vanadium (V): carbon (C) content and 10 times or less of niobium (Nb): carbon (C) content is further added. It may include.
그 외에도, 니켈(Ni): 0.4~8.0%, 규소(Si): 0.8%이하(0% 제외), 망간(Mn): 1.2%이하(0% 제외), 인(P): 0.08%이하(0% 포함), 황(S): 0.08%이하(0% 포함)를 더 포함할 수도 있다.In addition, nickel (Ni): 0.4-8.0%, silicon (Si): 0.8% or less (except 0%), manganese (Mn): 1.2% or less (except 0%), phosphorus (P): 0.08% or less ( 0%), sulfur (S): 0.08% or less (including 0%) may be further included.
상기 표 2와 같은 조성을 가지는 중성자 흡수 소재는 그 일례이며, 하기와 같이 정의되는 당량지수(PREN) 값이 30 이상을 만족한다. A neutron absorbing material having a composition as shown in Table 2 is an example, and an equivalent index (PREN) value defined as follows satisfies 30 or more.
PREN = Cr + 3.3(Mo + 0.5W) + 30N PREN = Cr + 3.3 (Mo + 0.5 W) + 30 N
(여기서, Cr, Mo, W, N은 각각 이들 원소의 중량% 값을 의미한다.)(Wherein, Cr, Mo, W, and N each represent the weight% value of these elements.)
상기 중성자 흡수소재에 첨가되는 가도륨(Gd)과 붕소(B)의 화합물은 가도륨(Gd)과 붕소(B)를 불활성분위기에서 2500℃ 이상 가열하여 연소합성으로 다공성 붕화가도륨의 화합물(예; Gd2B5, GdB2, GdB4, GdB6, GdB12, GdB66)로 합성하고, 상기 다공성 붕화가도륨을 기계적으로 분쇄하여 나노크기의 분말 다공성 붕화가도륨으로 얻는다.The compound of gadolium (Gd) and boron (B) added to the neutron absorbing material is a compound of porous boride boride (Bd) by burning synthesis by heating the gadolium (Gd) and boron (B) in an inert atmosphere at 2500 ° C. or more ( Example: Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , GdB 66 ), and the porous boride is mechanically pulverized to obtain a nano-sized powdery porous boride.
원료 소재는 상기 표 2와 같은 조성으로 마이크로 (micro) 크기의 분말 상태의 순철, 순금속, 나노크기(100nm이하(0nm 제외))의 가도륨(Gd)과 붕소(B)의 화합물인 다공성 붕화가도륨(예; Gd2B5, GdB2, GdB4, GdB6, GdB12, GdB66)의 분말을 혼합(Blending)한다. The raw material is a porous boride which is a compound of gadolium (Gd) and boron (B) of pure iron, pure metal, nano-sized (100 nm or less (excluding 0 nm)) in a powder state of micro size with the composition shown in Table 2 above. Blend powder of thorium (eg Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , GdB 66 ).
혼합공정에서 원료 금속과 나노크기(100nm이하(0nm 제외))의 가도륨(Gd)과 붕소(B)의 화합물인 다공성 붕화가도륨(예; Gd2B5, GdB2, GdB4, GdB6, GdB12, GdB66)을 기계적 합금(mechanical alloying)시킴으로써 모재에 나노 크기의 붕화가도륨이 존재하는 모합금 분말을 제조한다.In the mixing process, porous gadolium boride (eg Gd 2 B 5 , GdB 2 , GdB 4 , GdB), which is a compound of raw metal and nanoscale (less than 100 nm but less than 0 nm) of gadolium (Gd) and boron (B) 6 , GdB 12 , GdB 66 ) by the mechanical alloying (mechanical alloying) to prepare a master alloy powder in which the presence of nano-sized gallium boride in the base material.
상기 나노 크기의 붕화가도륨이 존재하는 모합금 분말을 100-600MPa의 압력으로 가압으로 성형한다. The master alloy powder in which the nano-sized gadolium boride is present is molded under pressure at a pressure of 100-600 MPa.
상기 가압성형 후 (1)환원성 분위기 또는 불활성 분위기에서 1050~1,150℃의 온도로 가열하고, 10-20MPa의 압력으로 가압하는 가압소결, (2)환원성 분위기에서 1,200~1,300℃의 온도에서 소결하는 고상소결, 또는 (3)환원성 분위기에서 1,350~1,420℃의 온도에서 소결하는 액상소결 방식으로 판재로 만들 수 있다.After the press molding, (1) heating at a temperature of 1050 to 1,150 ° C. in a reducing atmosphere or an inert atmosphere, pressurizing and sintering at a pressure of 10-20 MPa, and (2) solid phase sintering at a temperature of 1,200 to 1,300 ° C. in a reducing atmosphere. Sintering or (3) It can be made into a plate by the liquid sintering method of sintering at a temperature of 1,350 ~ 1,420 ℃ in a reducing atmosphere.
3. 특징3. Features
(1) 미세조직의 특징(1) Characteristics of microstructure
미세조직은 성분 함량과 제조 방법에 따라서 오스테나이트-페라이트 복합 조직에 가도륨(Gd), 산화가도륨(Gd2O3),붕소(B)와 붕소화합물 (예: FeB, FeB2, CrB, CrB2)이 미세하게 석출 또는 제2상으로 분포되어 있는 복합 조직, 또는, 오스테나이트-페라이트 복합 스테인리스 합금에 가도륨(Gd), 산화가도륨(Gd2O3),붕소(B)와 붕소화합물 (예: FeB, FeB2, CrB, CrB2)이 미세하게 석출 또는 제2상으로 분포되어 있는 복합 조직, 동시에 가도륨(Gd)과 붕소(B)의 화합물인 붕화가도륨(예; Gd2B5, GdB2, GdB4, GdB6, GdB12, GdB66)이 나노크기(100nm이하(0nm 제외))로 존재하는 복합 조직이 된다. 도 7에 본 발명의 중성자 흡수소재의 미세조직을 광학현미경으로 관찰한 사진을 첨부하였다.The microstructures are characterized by the presence of gadolium (Gd), gadolium oxide (Gd 2 O 3 ), boron (B) and boron compounds (e.g. FeB, FeB 2 , CrB, A complex structure in which CrB 2 ) is finely precipitated or distributed in a second phase, or in an austenitic-ferritic composite stainless alloy, gadolium (Gd), gadolium oxide (Gd 2 O 3 ), boron (B), and boron Compound boron (eg FeB, FeB 2 , CrB, CrB 2 ) is a complex structure in which a fine precipitate or second phase is distributed, and at the same time, a compound of gadolium (Gd) and boron (B) Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , and GdB 66 ) are composite tissues that exist in nanoscale (less than 100 nm (excluding 0 nm)). 7 is a photograph of the microstructure of the neutron absorbing material of the present invention observed with an optical microscope.
특히 분말야금법으로 제조되는 경우에는 오스테나이트-페라이트 복합 스테인리스 합금에 가도륨(Gd)과 붕소(B)의 화합물인 붕화가도륨(예: Gd2B5, GdB2, GdB4, GdB6, GdB12, GdB66)이 나노크기(100nm이하(0nm 제외))로 존재하는 복합 조직이 만들어진다.Particularly, when manufactured by powder metallurgy, austenite-ferritic composite stainless alloys include gadolium boride, which is a compound of gadolium (Gd) and boron (B) (e.g., Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , GdB 66 ) are made of composite tissue with nanoscale (<100nm (excluding 0nm)).
또한, 용해 주조법으로 제조되는 경우에는 붕소가 과포화된 모상과 나노크기의 미세한 붕소화합물의 미세조직, 또는 가도륨이 과포화된 모상과 나노크기의 미세한 가도륨화합물의 미세조직을 갖게 됨으로써 향상된 기계가공성을 가진다.In addition, when manufactured by the melt casting method, the improved machinability is achieved by having a superstructure of boron supersaturated and nanoscale fine boron compounds, or a microstructure of supersaturated superoxide and nanosize microgadal compounds. Have
(2) 기계적 특성 및 내식성(2) mechanical properties and corrosion resistance
오스테나이트-페라이트 복합조직의 강은 오스테나이트 단상 조직의 강에 비하여 고강도 고내식성을 갖는다.The steel of the austenitic-ferrite composite structure has a high strength and high corrosion resistance compared to the steel of the austenitic single phase structure.
강도는 가공 경화, 소둔 열처리 등의 제조조건에 따라 다양하게 변화시킬 수 있으며 주강의 경우 다음과 같은 범위를 보인다. 이는 상용 단상 오스테나이트 강 대비 항복강도가 약 2.2배, 내식성이 약 2배 우수하며, 또한 상용 오스테나이트-페라이트 2상 조직강 대비 항복강도와 내식성은 유사하나 석출경화와 이물질 분산강화를 이용하여 강도가 20%이상 향상된다.The strength can be varied according to manufacturing conditions such as work hardening and annealing heat treatment, and cast steel shows the following ranges. It has a yield strength of about 2.2 times that of commercial single phase austenitic steel and about 2 times better corrosion resistance. Moreover, its yield strength and corrosion resistance are similar to those of commercial austenitic-ferrite two phase tissue steel, but it is strengthened by using precipitation hardening and foreign material dispersion strengthening. Is improved by more than 20%.
표 3
TABLE 3
항복강도[MPa] | 인장강도[MPa] | 연신률[%] | 충격에너지[J, -46] | 내식성[6% FeCl2] | 쾌삭성[%] | 균열민감도[%] |
>450 | >640 | >25 | >min.50 | 25 | 100 | 10 |
Yield strength [MPa] | Tensile Strength [MPa] | Elongation [%] | Impact Energy [J, -46] | Corrosion Resistance [6% FeCl 2 ] | Free Machinability [%] | Crack Sensitivity [%] |
> 450 | > 640 | > 25 | > min.50 | 25 | 100 | 10 |
(3) 중성자 흡수 및 차폐능(3) neutron absorption and shielding ability
다량의 가도륨(Gd)과 붕소(B)를 동시에 또는 각각 함유함으로써 사용자가 원하는 범위의 차폐제를 제조하여 공급할 수 있으며, 기존의 중성자 흡수소재에 비하여 우수하거나 최소한 동일한 중성자 흡수효과를 갖는다.Containing a large amount of gadolium (Gd) and boron (B) at the same time or each can manufacture and supply a shielding agent of the desired range, and has an neutron absorption effect is superior or at least as compared to the existing neutron absorbing material.
분말 야금법으로 제조되는 경우에는, 오스테나이트-페라이트 복합 스테인리스 합금에 가도륨(Gd)과 붕소(B)의 화합물인 붕화가도륨(예: Gd2B5, GdB2, GdB4, GdB6, GdB12, GdB66)이 나노크기(100nm이하(0nm 제외))로 존재하는 복합 조직으로써 대부분 붕화가도륨이고 산화물(예: Gd2O3, B2O5)이 상대적으로 적기 때문에 용해 주조방식으로 제조된 소재에 비하여 단위부피당 차폐효율이 높은 특징이 있다.When manufactured by powder metallurgy, austenite-ferritic composite stainless alloys may contain a mixture of gadolium (Gd) and boron (B), which is a compound of boride (e.g., Gd 2 B 5 , GdB 2 , GdB 4 , GdB 6 , GdB 12 , GdB 66 ) are nano-sized (100 nm or less (except 0 nm)) and are mostly dissolved in doped boride and relatively low in oxides (eg Gd 2 O 3 , B 2 O 5 ) Compared with the material produced by the casting method, the shielding efficiency per unit volume is high.
(4) 용접성(4) weldability
조성 표 1과 표 2를 기준으로 W과 Mo를 적정비율로 존재시켜서 용접 후 열영향부의 조직제어와 용접성을 개선시킬 수 있다.Based on Tables 1 and 2, W and Mo may be present at appropriate ratios to improve the structure control and weldability of the heat affected zone after welding.
Claims (12)
- 중량%로, 가도륨(Gd): 0.1~2.5% 및 붕소(B): 0.3~0.8% 중 1종 이상을 포함하고, 몰리브덴(Mo): 4.0%이하(0% 포함), 텅스텐(W): 6.5% 이하(0% 포함), 질소(N): 0.4%이하(0% 포함), 크롬(Cr): 16~34%, 탄소(C): 0.1%이하(0% 포함) 및 철(Fe)을 더 포함하는 강(Steel)으로, By weight, containing at least one of gadolium (Gd): 0.1-2.5% and boron (B): 0.3-0.8%, molybdenum (Mo): 4.0% or less (including 0%), tungsten (W) : 6.5% or less (including 0%), nitrogen (N): 0.4% or less (including 0%), chromium (Cr): 16 to 34%, carbon (C): 0.1% or less (including 0%) and iron ( Steel further containing Fe),상기 강의 미세조직은 오스테나이트와 페라이트의 2상이 혼재하고, The microstructure of the steel is a mixture of two phases of austenite and ferrite,하기와 같이 정의되는 당량지수(PREN) 값이 30 이상을 만족하는, 중성자 흡수소재. A neutron absorbing material that has an equivalent index (PREN) value of 30 or more defined as follows.PREN = Cr + 3.3(Mo + 0.5W) + 30N PREN = Cr + 3.3 (Mo + 0.5 W) + 30 N(여기서, Cr, Mo, W, N은 각각 이들 원소의 중량% 값을 의미한다.)(Wherein, Cr, Mo, W, and N each represent the weight% value of these elements.)
- 제 1항에 있어서,The method of claim 1,상기 중성자 흡수소재는 중량%로, 바나듐(V): 탄소(C)함량의 10배 이하 및 니오브(Nb): 탄소(C)함량의 10배 이하 중 1종 이상을 추가로 포함하는, 중성자 흡수소재.The neutron absorbing material is in weight percent, neutron absorbing further comprising one or more of 10 times or less of vanadium (V): carbon (C) content and 10 times or less of niobium (Nb): carbon (C) content. Material.
- 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2,상기 중성자 흡수소재의 미세조직 상에 가도륨(Gd), 산화가도륨(Gd2O3),붕소(B) 및 붕소화합물이 존재하는, 중성자 흡수소재. A neutron absorbing material in which gadolium (Gd), gadolium oxide (Gd 2 O 3 ), boron (B) and a boron compound are present on the microstructure of the neutron absorbing material.
- 제 1항 또는 제 2항에 있어서,The method according to claim 1 or 2,상기 중성자 흡수소재의 미세조직 상에 붕화가도륨이 100nm이하(0nm 제외)의 크기로 존재하는, 중성자 흡수소재.The neutron absorbing material is present on the microstructure of the neutron absorbing material in the size of less than 100nm (excluding 0nm).
- 제 2항에 있어서,The method of claim 2,상기 니오브(Nb)와 탄소(C)의 원자비가 1:0.8 내지 1:1.2인 것인, 중성자 흡수소재.The atomic ratio of the niobium (Nb) and carbon (C) is 1: 0.8 to 1: 1.2, neutron absorbing material.
- 중량%로, 가도륨(Gd): 0.1~2.5% 및 붕소(B): 0.3~0.8% 중 1종 이상을 포함하고, 몰리브덴(Mo): 4.0%이하(0% 포함), 텅스텐(W): 6.5% 이하(0% 포함), 질소(N): 0.4%이하(0% 포함), 크롬(Cr): 16~34%, 탄소(C): 0.1%이하(0% 포함) 및 철(Fe)을 더 포함하며, 하기와 같이 정의되는 당량지수(PREN) 값이 30 이상을 만족하는 강(Steel)을 주조하는 단계; 및By weight, containing at least one of gadolium (Gd): 0.1-2.5% and boron (B): 0.3-0.8%, molybdenum (Mo): 4.0% or less (including 0%), tungsten (W) : 6.5% or less (including 0%), nitrogen (N): 0.4% or less (including 0%), chromium (Cr): 16 to 34%, carbon (C): 0.1% or less (including 0%) and iron ( Fe), and casting a steel (Steel) satisfying an equivalent index (PREN) value of 30 or more defined as follows; And페라이트 분해온도를 중심으로 용체화 처리하여 급냉시키는 2단 응고 열처리하여 오스테나이트와 페라이트의 2상이 혼재하는 미세조직을 만드는 단계를 포함하는, 중성자 흡수소재의 제조방법. A method of manufacturing a neutron absorbing material, comprising the step of forming a microstructure in which two phases of austenite and ferrite are mixed by a two-stage solidification heat treatment that is quenched by quenching around a ferrite decomposition temperature.PREN = Cr + 3.3(Mo + 0.5W) + 30N PREN = Cr + 3.3 (Mo + 0.5 W) + 30 N(여기서, Cr, Mo, W, N은 각각 이들 원소의 중량% 값을 의미한다.)(Wherein, Cr, Mo, W, and N each represent the weight% value of these elements.)
- 제 6항에 있어서,The method of claim 6,상기 강은 중량%로, 바나듐(V): 탄소(C)함량의 10배 이하 및 니오브(Nb): 탄소(C)함량의 10배 이하 중 1종 이상을 추가로 포함하는 것인, 중성자 흡수소재의 제조방법.The steel is neutron absorbing, in weight percent, further comprising one or more of 10 times or less of vanadium (V): carbon (C) content and 10 times or less of niobium (Nb): carbon (C) content. Method of manufacturing the material.
- 제 7항에 있어서,The method of claim 7, wherein상기 강에 포함된 니오브(Nb)와 탄소(C)의 원자비가 1:0.8 내지 1:1.2인 것인, 중성자 흡수소재의 제조방법.The atomic ratio of niobium (Nb) and carbon (C) contained in the steel is 1: 0.8 to 1: 1.2, the method for producing a neutron absorbing material.
- 제 6항에 있어서,The method of claim 6,상기 강을 주조하는 단계에서 상기 크롬(Cr), 상기 몰리브덴(Mo) 및 상기 바나듐(V)은 산화물 형태 또는 순금속 형태로 융해 중에 첨가되는 것인, 중성자 흡수소재의 제조방법.In the casting of the steel, the chromium (Cr), the molybdenum (Mo) and the vanadium (V) is added during melting in the form of oxide or pure metal, neutron absorbing material manufacturing method.
- 중량%로, 가도륨(Gd): 0.1~2.5% 및 붕소(B): 0.3~0.8% 중 1종 이상을 포함하고, 몰리브덴(Mo): 4.0%이하(0% 포함), 텅스텐(W): 6.5% 이하(0% 포함), 질소(N): 0.4%이하(0% 포함), 크롬(Cr): 16~34%, 탄소(C): 0.1%이하(0% 포함) 및 철(Fe)을 더 포함하며, 하기와 같이 정의되는 당량지수(PREN) 값이 30 이상을 만족하는 혼합합금분말을 100~600MPa의 압력으로 가압하여 성형하는 단계; 및By weight, containing at least one of gadolium (Gd): 0.1-2.5% and boron (B): 0.3-0.8%, molybdenum (Mo): 4.0% or less (including 0%), tungsten (W) : 6.5% or less (including 0%), nitrogen (N): 0.4% or less (including 0%), chromium (Cr): 16 to 34%, carbon (C): 0.1% or less (including 0%) and iron ( Fe) further comprising, by pressing a mixture alloy powder satisfying an equivalent index (PREN) value of 30 or more defined as follows to a pressure of 100 ~ 600MPa; And환원 또는 불활성 분위기에서 소결하여 판재로 성형하여 오스테나이트와 페라이트의 2상이 혼재하는 미세조직을 만드는 단계를 포함하는, 중성자 흡수소재의 제조방법.Sintering in a reducing or inert atmosphere to form a plate material to form a microstructure in which the two phases of austenite and ferrite are mixed, neutron absorbing material manufacturing method.PREN = Cr + 3.3(Mo + 0.5W) + 30N PREN = Cr + 3.3 (Mo + 0.5 W) + 30 N(여기서, Cr, Mo, W, N은 각각 이들 원소의 중량% 값을 의미한다.)(Wherein, Cr, Mo, W, and N each represent the weight% value of these elements.)
- 제 10항에 있어서,The method of claim 10,상기 강은 중량%로, 바나듐(V): 탄소(C)함량의 10배 이하 및 니오브(Nb): 탄소(C)함량의 10배 이하 중 1종 이상을 추가로 포함하는 것인, 중성자 흡수소재의 제조방법.The steel is neutron absorbing, in weight percent, further comprising one or more of 10 times or less of vanadium (V): carbon (C) content and 10 times or less of niobium (Nb): carbon (C) content. Method of manufacturing the material.
- 제 10항에 있어서,The method of claim 10,상기 가도륨(Gd)과 상기 붕소(B)는 가도륨(Gd)과 붕소(B)를 불활성 분위기에서 가열하여 연소합성된 다공성 붕화가도륨의 분말 형태로 상기 혼합합금분말에 포함되는 것인, 중성자 흡수소재의 제조방법.The gadolium (Gd) and the boron (B) is included in the mixed alloy powder in the form of a powder of porous gaborium boride burn-composed by heating the gadolium (Gd) and boron (B) in an inert atmosphere , Manufacturing method of neutron absorbing material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157003590A KR102061839B1 (en) | 2012-07-30 | 2013-07-30 | Neutron absorption material and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120083303 | 2012-07-30 | ||
KR10-2012-0083303 | 2012-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014021600A1 true WO2014021600A1 (en) | 2014-02-06 |
Family
ID=50028224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/006810 WO2014021600A1 (en) | 2012-07-30 | 2013-07-30 | Neutron absorbing material and method for preparing same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102061839B1 (en) |
WO (1) | WO2014021600A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160111640A (en) * | 2015-03-17 | 2016-09-27 | 한국생산기술연구원 | Duplex stainless steel and method of manufacturing the same |
CN113798487A (en) * | 2021-08-27 | 2021-12-17 | 四川大学 | Novel Fe-based spherical shielding alloy powder and preparation method thereof |
CN115491530A (en) * | 2022-10-18 | 2022-12-20 | 西安工业大学 | Gadolinium-containing stainless steel neutron absorption composite board and preparation method thereof |
CN117512474A (en) * | 2023-10-24 | 2024-02-06 | 四川大学 | Fe-based shielding alloy for structure/function integrated nuclear radiation protection and preparation method thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101876854B1 (en) * | 2016-08-12 | 2018-07-11 | 한국생산기술연구원 | Fe-Gd binary alloy for deoxidizing Fe alloy |
ES2775216T3 (en) * | 2017-05-11 | 2020-07-24 | Hyperion Materials & Tech Sweden Ab | A body of iron tungsten borocarbon for nuclear shielding applications |
KR101982712B1 (en) * | 2017-09-07 | 2019-05-27 | 한국생산기술연구원 | Neutron absorber and a fabrication method thereof |
KR102264466B1 (en) | 2019-11-06 | 2021-06-16 | 한국생산기술연구원 | Neutron absorber and the manufacturing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05255812A (en) * | 1992-03-12 | 1993-10-05 | Nisshin Steel Co Ltd | Austenitic stainless steel for shielding thermal neutron |
JPH06192792A (en) * | 1992-10-30 | 1994-07-12 | Sumitomo Metal Ind Ltd | Boron-containing stainless steel with high corrosion resistance |
KR19990028428A (en) * | 1995-08-09 | 1999-04-15 | 고지마 마타오 | Stainless steel with excellent thermal neutron absorption |
KR20040011815A (en) * | 2002-07-30 | 2004-02-11 | 재단법인 포항산업과학연구원 | Fastener having superior tightening strength and adhesion-resistant properties |
JP2011027638A (en) * | 2009-07-28 | 2011-02-10 | Toshiba Corp | Neutron shield material, method for manufacturing same, and cask for spent fuel |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6008484B2 (en) * | 2011-09-21 | 2016-10-19 | 大王製紙株式会社 | Tape type disposable diaper |
-
2013
- 2013-07-30 WO PCT/KR2013/006810 patent/WO2014021600A1/en active Application Filing
- 2013-07-30 KR KR1020157003590A patent/KR102061839B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05255812A (en) * | 1992-03-12 | 1993-10-05 | Nisshin Steel Co Ltd | Austenitic stainless steel for shielding thermal neutron |
JPH06192792A (en) * | 1992-10-30 | 1994-07-12 | Sumitomo Metal Ind Ltd | Boron-containing stainless steel with high corrosion resistance |
KR19990028428A (en) * | 1995-08-09 | 1999-04-15 | 고지마 마타오 | Stainless steel with excellent thermal neutron absorption |
KR20040011815A (en) * | 2002-07-30 | 2004-02-11 | 재단법인 포항산업과학연구원 | Fastener having superior tightening strength and adhesion-resistant properties |
JP2011027638A (en) * | 2009-07-28 | 2011-02-10 | Toshiba Corp | Neutron shield material, method for manufacturing same, and cask for spent fuel |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160111640A (en) * | 2015-03-17 | 2016-09-27 | 한국생산기술연구원 | Duplex stainless steel and method of manufacturing the same |
KR101677146B1 (en) * | 2015-03-17 | 2016-11-17 | 한국생산기술연구원 | Duplex stainless steel and method of manufacturing the same |
CN113798487A (en) * | 2021-08-27 | 2021-12-17 | 四川大学 | Novel Fe-based spherical shielding alloy powder and preparation method thereof |
CN113798487B (en) * | 2021-08-27 | 2022-07-08 | 四川大学 | Fe-based spherical shielding alloy powder and preparation method thereof |
CN115491530A (en) * | 2022-10-18 | 2022-12-20 | 西安工业大学 | Gadolinium-containing stainless steel neutron absorption composite board and preparation method thereof |
CN115491530B (en) * | 2022-10-18 | 2023-05-16 | 西安工业大学 | Gadolinium-containing stainless steel neutron absorption composite board and preparation method thereof |
CN117512474A (en) * | 2023-10-24 | 2024-02-06 | 四川大学 | Fe-based shielding alloy for structure/function integrated nuclear radiation protection and preparation method thereof |
CN117512474B (en) * | 2023-10-24 | 2024-05-07 | 四川大学 | Fe-based shielding alloy for structure/function integrated nuclear radiation protection and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102061839B1 (en) | 2020-01-02 |
KR20150042203A (en) | 2015-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014021600A1 (en) | Neutron absorbing material and method for preparing same | |
WO2015099373A1 (en) | Ultrahigh-strength welded structural steel having excellent toughness in welding heat-affected zones thereof, and production method therefor | |
WO2015099221A1 (en) | Steel sheet having high strength and low density and method of manufacturing same | |
WO2017111510A1 (en) | Non-magnetic steel material having excellent hot workability and manufacturing method therefor | |
WO2016104975A1 (en) | High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor | |
WO2011007921A1 (en) | High strength / corrosion-resistant,.austenitic stainless steel with carbon - nitrogen complex additive, and method for manufacturing same | |
WO2012002638A2 (en) | Ultra-high-strength steel bar and method for manufacturing same | |
WO2018074887A1 (en) | High-strength reinforcing steel and method for manufacturing same | |
WO2010126268A2 (en) | High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same | |
WO2018117712A1 (en) | High manganese steel having superior low-temperature toughness and yield strength and manufacturing method | |
WO2018117676A1 (en) | Austenite steel material having superb abrasion resistance and toughness, and method for producing same | |
WO2017188654A1 (en) | Ultrahigh-strength and high-ductility steel sheet having excellent yield ratio and manufacturing method therefor | |
WO2018080133A1 (en) | Ultra-high-strength steel sheet having excellent hole expandability and yield ratio and method for preparing same | |
WO2018117614A1 (en) | Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same | |
WO2018080108A1 (en) | High-strength and high-manganese steel having excellent low-temperature toughness and manufacturing method therefor | |
WO2015099222A1 (en) | Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same | |
WO2020111856A2 (en) | High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof | |
WO2019124890A1 (en) | Thick steel plate having excellent low-temperature toughness and manufacturing method therefor | |
WO2018117477A1 (en) | Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor | |
WO2018070753A1 (en) | Cold rolled steel sheet for flux cored wire, and manufacturing method therefor | |
WO2017111345A1 (en) | Low-yield-ratio type high-strength steel, and manufacturing method therefor | |
WO2016105003A1 (en) | Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor | |
WO2011081236A1 (en) | Quenched steel sheet having excellent hot press formability, and method for manufacturing same | |
WO2020080602A1 (en) | Method for producing high manganese steel material having excellent anti-vibration characteristics and formability, and high manganese steel produced thereby | |
WO2019124793A1 (en) | High strength steel sheet and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13825432 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157003590 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13825432 Country of ref document: EP Kind code of ref document: A1 |