WO2014021533A1 - 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법 - Google Patents

부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법 Download PDF

Info

Publication number
WO2014021533A1
WO2014021533A1 PCT/KR2013/001951 KR2013001951W WO2014021533A1 WO 2014021533 A1 WO2014021533 A1 WO 2014021533A1 KR 2013001951 W KR2013001951 W KR 2013001951W WO 2014021533 A1 WO2014021533 A1 WO 2014021533A1
Authority
WO
WIPO (PCT)
Prior art keywords
butanol
pathway
coei
butyryl
converting
Prior art date
Application number
PCT/KR2013/001951
Other languages
English (en)
French (fr)
Inventor
이상현
엄문호
Original Assignee
지에스칼텍스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스(주) filed Critical 지에스칼텍스(주)
Priority to BR112015001834-3A priority Critical patent/BR112015001834B1/pt
Priority to CA2880181A priority patent/CA2880181C/en
Priority to US14/418,401 priority patent/US9567613B2/en
Publication of WO2014021533A1 publication Critical patent/WO2014021533A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1217Phosphotransferases with a carboxyl group as acceptor (2.7.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/06Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01008Phosphate acetyltransferase (2.3.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/02Phosphotransferases with a carboxy group as acceptor (2.7.2)
    • C12Y207/02007Butyrate kinase (2.7.2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/03CoA-transferases (2.8.3)
    • C12Y208/03008Acetate CoA-transferase (2.8.3.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01003Aldehyde dehydrogenase (NAD+) (1.2.1.3)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a recombinant microorganism having enhanced butanol producing ability and a butanol production method using the same.
  • Butanol is an intermediate compound with a wide range of applications, such as cosmetics, perfumes, hormones, hygiene, industrial coatings, paint additives, fibers, plastic monomers, medical supplies, vitamins, antibiotics, and pesticides (Durre, Biotechnol J). , 2: 1525-1534, 2007).
  • the conventional method for producing butanol was a method of producing butanol, acetone and ethanol by fermenting sugars with Clostridium strains (Weizmann, US Pat. No. 1,315,585) until the 1980s. Since then, butanol has been synthesized from propylene obtained from petroleum. The oxo process has been widely used. However, the petroleum-based butanol manufacturing process is complicated by using high temperature and high pressure and emits a large amount of hazardous waste and carbon dioxide (Tsuchida et al., Ind. Eng. Chem. Res., 45: 8634, 2006). There is an increasing demand for eco-friendly butanol production through fermentation of microorganisms from renewable resources.
  • the wild type Clostridium acetobutylicum ATCC824 strain is known to produce acetone, ethanol and butanol in a mass ratio of about 3: 1: 6 through fermentation, and produces a small amount of acetic acid and butyric acid. do.
  • the yield of the wild type strain is about 25%, the final concentration is about 10g / L.
  • Microorganisms having an acetyl coei biosynthetic pathway and a butyryl coei biosynthetic pathway, such as Clostridium acetobutylicum are generally known to synthesize acetone, butanol and ethanol by the same route as FIG. Recently, with the development of metabolic technology, efforts have been made to produce butanol more efficiently. Especially, in the case of Clostridium acetobutylicum, researches related to metabolic pathway manipulation have been actively conducted since the genome sequence was recently known.
  • the present inventors simultaneously studied pta and buk, genes involved in the production of butyrate and acetate, while studying a microorganism having excellent butanol selectivity, yield, and productivity, and the CtfAB gene encoding coate transferase (CoAT). And simultaneously overexpressing the adhE (alcohol / aldehyde dehydrogenase) gene that converts butyryl coai to butanol to produce recombinant mutant microorganisms, which can produce butanol with high yield, high selectivity and high productivity. Confirmed that the present invention was completed.
  • the present invention provides a microorganism having an acetyl coa biosynthetic pathway and a butyryl coa biosynthetic pathway,
  • a recombinant microorganism having enhanced butanol producing ability.
  • the present invention comprises the steps of culturing the recombinant microorganism of the present invention.
  • It provides a method for producing butanol comprising the step of recovering butanol from the culture.
  • the recombinant microorganism of the present invention has excellent properties of butanol productivity, yield and butanol selectivity.
  • FIG. 1 shows a synthesis route of acetone, butanol and ethanol in a microorganism having an acetyl coei biosynthetic pathway and a butyryl coei biosynthetic pathway.
  • Figure 2 shows one embodiment of the recombinant microorganism of the present invention.
  • 3 is a pGS1-MCS vector.
  • 5 is a pGS1-MCS1 (BglII) vector.
  • FIG. 8 is SEQ ID NO: 1
  • FIG. 9 is SEQ ID NO.
  • the present invention provides a microorganism having an acetyl coa biosynthetic pathway and a butyryl coa biosynthetic pathway,
  • Butanol-producing ability for recombinant microorganisms are enhanced.
  • the present invention comprises the steps of culturing the recombinant microorganism of the present invention.
  • It relates to a method for producing butanol comprising recovering butanol from the culture.
  • microorganisms having an acetyl coei biosynthetic pathway and a butyryl coei biosynthetic pathway For microorganisms having an acetyl coei biosynthetic pathway and a butyryl coei biosynthetic pathway,
  • microorganisms having an acetyl coei biosynthetic pathway and a butyryl coei biosynthetic pathway For microorganisms having an acetyl coei biosynthetic pathway and a butyryl coei biosynthetic pathway,
  • microorganisms having an acetyl coei biosynthetic pathway and a butyryl coei biosynthetic pathway For microorganisms having an acetyl coei biosynthetic pathway and a butyryl coei biosynthetic pathway,
  • the recombinant microorganism of the present invention is a gene encoding acetoacetic acid decarboxylase, that is, adc is not deleted.
  • Acetyl-CoA biosynthetic pathway of the present invention refers to the pathway by which the acetyl-coay is synthesized from a specific metabolite in the microorganism.
  • the acetyl coa biosynthesis pathway of the present invention may be a pathway for synthesizing acetyl coa from pyruvate or a pathway for synthesizing acetyl coa from acetate.
  • the pathway by which acetyl coeises are synthesized from acetate can be regulated by CoA-transferase.
  • the butyryl coei biosynthetic pathway of the present invention refers to the route by which butyryl coei is synthesized from certain metabolites in a microorganism.
  • the butyryl coei biosynthetic pathway of the present invention is a route for synthesizing butyryl CoA from acetyl coA, a route for synthesizing butyryl coei from acetoacetyl CoA or butyrate (butyrate) may be the route through which butyryl coei is synthesized.
  • the route by which butyryl coei is synthesized from butyrate can be regulated by coatetransferases.
  • the microorganism having the acetyl coei biosynthetic pathway and the butyryl coei biosynthetic pathway of the present invention may be a microorganism having the biosynthetic pathways described above, and is not particularly limited.
  • the microorganism of the present invention may be a microorganism having a acetyl-CoA biosynthetic pathway and a butyryl-CoA biosynthetic pathway as a wild type or a recombinant microorganism possessed by genetic recombination.
  • the microorganism of the present invention is not limited to Clostridium.
  • Biosynthesized acetyl coa may be converted to acetate via acetyl phosphate.
  • the pathway can be inhibited by inhibiting the conversion of acetyl coeiles to acetyl-phosphates or the conversion of acetyl-phosphates to acetate. These steps can be inhibited using known methods such as controlling the expression of enzymes that control each step or inhibiting enzyme activity.
  • phosphotransacetylase modulates the conversion of acetyl coeiles to acetyl-phosphate, whereby the phosphotransacetylase inhibits the pathway to convert acetyl coa to acetate.
  • Inhibition of the phosphotransacetylase can be achieved by inhibition of expression of phosphotransacetylase, inhibition of the enzyme activity of phosphotransacetylase, and the like.
  • a gene encoding fortran acetylase or causing mutations (mutations such as mutation, substitution or deletion of some bases or introduction of some bases to suppress the expression of normal genes)
  • mutations such as mutation, substitution or deletion of some bases or introduction of some bases to suppress the expression of normal genes
  • One skilled in the art may choose appropriate methods to inhibit phosphotransacetylase.
  • acetate kinase regulates the conversion of acetyl phosphate to acetate, and by inhibiting the acetate kinase, the pathway for converting acetyl coei to acetate can be inhibited. Inhibition of the acetate kinase may be achieved by inhibition of expression of acetate kinase, inhibition of enzyme activity of acetate kinase, and the like.
  • a gene encoding acetate kinase or mutating (mutating, replacing or deleting some bases or introducing some bases to inhibit normal gene expression), or a transcription process
  • mutating mutating, replacing or deleting some bases or introducing some bases to inhibit normal gene expression
  • a transcription process Those skilled in the art, such as controlling gene expression in the translation process, can choose appropriate methods to inhibit acetate kinases.
  • Biosynthesized butyryl coay can be converted to butyrate via Butyryl-phosphate.
  • the pathway can be inhibited by inhibiting the conversion of butyryl coei to butyryl-phosphate or the conversion of butyryl-phosphate to butyrate. These steps can be inhibited using known methods such as controlling the expression of enzymes that control each step or inhibiting enzyme activity.
  • butyrate kinase regulates the conversion of butyryl phosphate to butyrate, which may inhibit the pathway to convert butyryl coei to butyrate by inhibiting the butyrate kinase.
  • Inhibition of the butyrate kinase may be achieved by inhibition of expression of butyrate kinase, inhibition of enzyme activity of butyrate kinase, and the like.
  • deletion of buk, a gene encoding butyrate kinase, mutation of the gene (mutations such as mutation, substitution or deletion of some bases or introduction of some bases to suppress normal gene expression, or a transcriptional process)
  • mutation of the gene (mutations such as mutation, substitution or deletion of some bases or introduction of some bases to suppress normal gene expression, or a transcriptional process)
  • regulation of gene expression in the translation process can be selected to suppress the butyrate kinase.
  • phosphobutylbutylase regulates the conversion of butyryl coeilic to butyryl-phosphate, which may be inhibited by inhibiting the phosphobutylbutylase to convert the butyryl coeilic to butyrate.
  • the inhibition of phosphobutylbutylase may be achieved by inhibition of expression of phosphobutylbutylase, inhibition of enzymatic activity of phosphobutylbutylase, and the like.
  • deletion of ptb, a gene encoding fortran acetylase, or a mutation in the gene may choose appropriate methods to inhibit phosphotransacetylase.
  • Coate Transferase regulates the conversion of butyrate to butyryl coei.
  • CoA Transferase By increasing the activity of the coatetransferase, a pathway for converting butyrate to butyryl coei may be promoted.
  • the increase in the activity of the coate transferase may be achieved by an increase in the expression of coate transferase, an increase in the enzyme activity of the coate transferase.
  • ctfAB cftA or ctfB
  • Coatetransferases regulate the conversion of acetate to acetyl coeiche.
  • a pathway for converting acetate to acetyl coei may be promoted.
  • the increase in the activity of the coate transferase may be achieved by an increase in the expression of coate transferase, an increase in the enzyme activity of the coate transferase.
  • one of ordinary skill in the art can increase the activity of coatetransferase by selecting an appropriate method such as introduction, amplification, rearrangement, regulation of gene expression in a transcriptional or translational process, such as the introduction of ctfAB, a gene encoding coatetransferase.
  • Biosynthesized butyryl coco can be converted to butanol via butanal.
  • the pathway can be facilitated by promoting the conversion of butyryl coei to butanal or the conversion of butanal to butanol.
  • Each step can be promoted using known methods such as increasing enzyme activity.
  • aldehyde / alcohol dehydrogenase regulates the conversion of butyryl coai to butanal and butanol to butanol, but the activity of the aldehyde / alcohol dehydrogenase increases butyryl coei butanol
  • the route to conversion can be facilitated.
  • the increased activity of the aldehyde / alcohol dehydrogenase may be achieved by the increased expression of the aldehyde / alcohol dehydrogenase, the increased enzyme activity of the aldehyde / alcohol dehydrogenase, and the like.
  • introduction amplification, rearrangement, regulation of gene expression in the course of transcription or translation, such as the introduction of adhE, a gene encoding aldehyde / alcohol dehydrogenase
  • introduction amplification, rearrangement, regulation of gene expression in the course of transcription or translation
  • adhE a gene encoding aldehyde / alcohol dehydrogenase
  • Acetoacetate decarboxylase regulates the conversion of acetoacetate to acetone. Therefore, in some cases, adc is deleted by inhibiting acetone production by deleting adc, a gene encoding acetoacetic acid decarboxylase (WO 2009/082148). However, in the recombinant microorganism of the present invention, adc is further deleted. Butanol productivity and yield is significantly lowered if there is a problem. This may be because acetoacetic acid is not converted to acetone and causes cytotoxicity. Therefore, the recombinant microorganism of the present invention does not delete adc, the gene encoding the acetoacetic acid.
  • Enhancement of butanol production capacity includes butanol selectivity (the ratio of butanol in the produced ABE), butanol productivity (the amount of butanol produced per unit time), and yield (the amount of ABE produced relative to the amount of carbon source consumed in production). It means to be excellent.
  • the enhancement of butanol producing ability means that butanol selectivity is 60% or more, butanol productivity is 1.3 g / L / h or more, and the yield is 28% or more based on the batch culture.
  • Butanol production method of the present invention comprises the steps of culturing the recombinant microorganism of the present invention; and recovering butanol from the culture solution.
  • the culture may be any method generally used in the production process of alcohol using microorganisms and is not particularly limited.
  • the culture method of the present invention may be a liquid culture or a solid culture, and may be a batch culture, a continuous culture or a fed-batch culture, but is not particularly limited, and those skilled in the art may implement the present invention by selecting an appropriate culture method.
  • the butanol recovery method may be any method generally used for recovery of bioalcohol, and is not particularly limited.
  • the recovering step of the butanol of the present invention may be performed using a separator or distillation.
  • the culture of the microorganisms and the recovery of butanol may be performed simultaneously or sequentially.
  • microorganisms can be continuously cultured while recovering butanol.
  • butanol selectivity the ratio of butanol in the mixed solvent (ABE: acetone, butanol, ethanol) produced
  • butanol productivity and yield are calculated as follows It was.
  • Butanol selectivity (%): Butanol production (g) / ABE production (g) ⁇ 100
  • Butanol productivity (g / L / h): Unit time, amount of butanol produced per unit volume
  • ABE productivity (g / L / h): unit time, amount of ABE produced per unit volume
  • Clostridium acetobutylicum ATCC824 strains were plated in RCM solid medium and anaerobicly cultured for 48 hours. After obtaining one colony from the smeared solid medium and incubating it for 3 hours in 3 ml of RCM liquid medium, the culture medium was centrifuged to obtain cells, washed with 10 ml Tris buffer, and then Wizard Genomic DNA purification Kit. (Promega, USA) was used to isolate the chromosome of the strain.
  • the isolated chromosome was amplified using the primers AdhE1-UP-PstI (SEQ ID NO: 3) and AdhE1-DN-XhoI (SEQ ID NO: 4) using the isolated chromosome as a template.
  • 100 ⁇ l of PCR reaction mixture was added 250 ⁇ M of dNTP, primers 20 pmol, 1.5 mM MgCl 2, 10 ⁇ buffer 10 ⁇ l, DNA template 100 ng and pfu polymerase 5 units, and after initial denaturation at 95 ° C. for 5 minutes, followed by 1 at 95 ° C. Denatured for minutes, annealed at 50 ° C. for 1 minute and then polymerized at 72 ° C. for 2 minutes was repeated 25 times.
  • the amplified gene was purified on a 1% agarose gel, digested with DNA fragments with PstI and XhoI restriction enzymes, and ligated to the pGS1-MCS vector ( Figure 3) digested with the same restriction enzymes (pGS1-pThlAdhE1 ( Figure 4)).
  • pGS1-pThlAdhE1 Figure 4
  • ctfAB gene (SEQ ID NO: 2) of Clostridium acetobutylicum ATCC 824 strain using ctfAB-UP-BglII (SEQ ID NO: 5) and ctfAB-DN-EcoRI primer (SEQ ID NO: 6) under the same conditions as described above.
  • the amplified gene was purified on a 1% agarose gel, digested with DNA fragments using BglII and EcoRI restriction enzymes, and ligated into a pGS1-MCS1 (BglII) vector (FIG. 5) to complete pGS1-pThlCtfAB (FIG. 6). It was.
  • PGS1-pThlAdhE1-ctfAB was prepared using the recombinant plasmids prepared above.
  • the ctfAB gene (SEQ ID NO: 2) was amplified using pGS1-pThlCtfAB prepared above as a template using primers CtfAB-UP-XhoI (SEQ ID NO: 7) and E1AB-DN-SalI (SEQ ID NO: 8).
  • PCR reaction mixture 100 ⁇ l of PCR reaction mixture was added 250 ⁇ M of dNTP, primers 20 pmol, 1.5 mM MgCl2, 10 ⁇ buffer 10 ⁇ l, DNA template 100ng, pfu polymerase 5 units, and after initial denaturation at 95 °C for 5 minutes, followed by 95 °C Denatured for 1 minute at, annealing for 1 minute at 50 °C and polymerization was repeated 25 times for 1 minute at 72 °C.
  • the amplified gene was purified on 1% agarose gel, digested with DNA fragments with XhoI and SalI restriction enzymes, and ligated to the pGS1-pThlAdhE1 vector digested with the same restriction enzymes to prepare pGS1-pThlAdhE1-CtfAB (FIG. 7).
  • SEQ ID NOs: 1 and 2 describe the sequences in FIGS. 8 and 9, respectively, and SEQ ID NOs 3 to 8 are shown in Table 1 below.
  • the characteristics of the recombinant plasmids are shown in Table 2 below.
  • the recombinant plasmids prepared in Experimental Example 1 were introduced into strains in which the organic acid producing genes of Table 3 were deleted to prepare transformed recombinant microorganisms.
  • the cell pellet was washed three times with an electroporation buffer solution, and then suspended in 2 ml of the same buffer solution to prepare transformed cells.
  • 0.5-2.0 ug of plasmids were added to 500 ⁇ l of the transformed cells, and electroporation was performed using Gene pulser II of Bio-Rad (4mm cuvette, 2.5kV, ⁇ , 25uF) and antibiotics were added. After anaerobic culture in the medium, the transformed strains were prepared (Table 4).
  • the plasmids used for transformation were all methylated in the E. coli TOP10 strain transformed with the pAN1 vector prior to electroporation so that they were not affected by the restriction system of the Clostridium strain.
  • control group was wild-type C. acetobutylicum ATCC824 (C1), C. acetobutylicum ATCC824 strains (C2 to C4) and C. acetobutylicum ATCC824 ⁇ pta ⁇ buk that deleted the organic acid production genes Strain (C5) into which the expression vector was introduced was used (see Table 6 C1 to C5 strains).
  • Butanol and mixed solvents were analyzed by gas chromatography (Agilent, USA) and the analysis conditions are shown in Table 5 below.
  • concentration of sugar and organic acid was obtained by centrifuging the culture solution, obtaining a supernatant, and using HPLC and a sugar analyzer.
  • HPLC conditions used water containing 0.01 N sulfuric acid as the mobile phase and the flow rate was 0.6ml / min.
  • Aminex87H and Aminex87P (Bio-Rad, USA) were used for the column, and the resulting sugar and organic acid were analyzed using a reflective index (RI) detector.
  • the # 10 strain was additionally deleted by adc, a gene encoding acetoacetic acid decarboxylase, a gene that synthesizes acetone in the # 9 strain. Produced.
  • acetone production decreased and butanol selectivity increased as desired
  • butanol production decreased and yield and butanol productivity decreased by 6% and 0.5 times, respectively, when compared to the # 9 strain. This was judged to be because acetoacetic acid could not be converted to acetone, causing cytotoxicity (Table 6).
  • Butanol selectivity, butanol productivity and yield in Experimental Example 3 was evaluated for the performance and stability through the continuous culture for the # 9 strain determined to be excellent.
  • an incubator for a continuous process was produced.
  • a filter of about 150um was mounted, followed by mounting a stirrer and filling 200g of the adsorbent to complete two columns (a and b columns, respectively).
  • the inlet and outlet of the column were equipped with a 4-way valve to allow desorption in real time by flowing the elution solvent when the adsorbent in the column was saturated with butanol and mixed solvent in the culture process, and the culture solution was circulated to the second column.
  • the flow of the culture was made to be made continuously.
  • the circulation direction of the culture solution was circulated from the top of the column but the direction is not a problem.
  • # 9 strains having butanol and mixed solvent (ABE) productivity were incubated with the prepared incubator.
  • the culture was started by inoculating an incubator with 800 ml of the anaerobic culture in a CGM liquid medium overnight in a reactor containing 3.2 L of CGM liquid medium.
  • the seed was cultured by general batch fermentation.
  • the butanol concentration was about 7 ⁇ 8g / L after the start of the culture, the culture solution was circulated through the column at a rate of 50ml / min flow rate through the pump.
  • the adsorbent was suspended in the medium to form a thin slurry, while the flow of the medium passed through the column without being blocked by the cell flock.
  • a path for converting acetylcoei to acetate is inhibited, and a path for converting acetate to acetylcoei and butyryl coei for a microorganism having an acetylcoei biosynthetic pathway and a butyrylcoei biosynthetic pathway It is directed to a recombinant microorganism with enhanced butanol producing ability, which is facilitated by the conversion pathway.
  • the present invention also relates to a method for producing butanol using the recombinant microorganism.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물에 있어서, 아세틸 코에이를 아세테이트로 전환하는 경로가 억제되고, 아세테이트를 아세틸코에이로 전환하는 경로 및 부티릴 코에이를 부탄올로 전환하는 경로가 촉진된, 부탄올 생성능이 증강된 재조합 미생물에 대한 것이다. 또한 본 발명은 상기 재조합 미생물을 이용하여 부탄올을 생산하는 방법에 대한 것이다.

Description

부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법
본 발명은 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법에 대한 것이다.
부탄올은, 화장품, 향수, 호르몬, 위생제, 산업용 코팅제, 페인트첨가제, 섬유, 플라스틱 모노머, 의료용품, 비타민, 항생제, 농약 등 활용범위가 매우 넓은 중간체 화합물로 그 효용성이 매우 크다(Durre, Biotechnol J, 2:1525-1534, 2007).
기존의 부탄올 제조방법은 클로스트리디움 균주로 당을 발효하여 부탄올, 아세톤 및 에탄올을 생산하는 방법(Weizmann, U.S. Pat. No 1,315,585)이 80년대까지 이용되었으나 이후로는 석유로부터 얻어진 프로필렌으로부터 부탄올을 합성하는 옥소법(oxo process)이 널리 이용되어 왔다. 그러나 석유 기반의 부탄올 제조법은 고온 고압을 사용하여 공정이 복잡하며 다량의 유해성 폐기물과 이산화탄소를 배출하는 문제점(Tsuchida et al., Ind. Eng. Chem.Res., 45:8634, 2006)으로 최근에는 다시 재생 가능한 자원으로부터 미생물의 발효를 통해 친환경적으로 부탄올을 생산하기 위한 요구가 증가하고 있다.
그러나 미생물을 이용하여 산업적으로 유용한 수준으로 부탄올을 생산하기 위하여는 부탄올의 선택성, 수율 및 생산성, 즉 단위시간 당 부탄올의 생산량 모두가 우수하여야 한다. 그러나 바이오 부탄올 생산을 위한 야생형 및 재조합 미생물들 중 이들 조건들을 모두 만족하는 미생물은 아직 발견되지 않았다.
구체적으로, 야생형 클로스트리디움 아세토부틸리쿰(Clostridium acetobutylicum) ATCC824 균주 경우 아세톤, 에탄올 및 부탄올을 발효를 통해 약 3:1:6의 질량비로 생산하는 것으로 알려져 있으며, 소량의 아세트산과 부틸산을 생산한다. 이때 야생형 균주의 수율은 약 25%이고, 최종 농도는 약 10g/L 정도이다. 클로스트리디움 아세토부틸리쿰과 같이 아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물은, 일반적으로 도 1과 같은 경로로 아세톤, 부탄올 및 에탄올을 합성하는 것으로 알려져 있다. 최근 대사공학 기술의 발달로 좀더 효율적으로 부탄올을 생산하고자 하는 노력이 지속되고 있으며 특히 클로스트리디움 아세토부틸리쿰의 경우 최근 genome 서열이 알려지면서 대사경로 조작과 관련된 연구가 활발히 진행되고 있다.
예컨대, 부탄올 생성관련 유전자(adc, ctfAB 및 adhE1(알코올/알데히드 탈수소 효소) 및 adhE2(알코올/알데히드 탈수소 효소))가 존재하는 거대 플라스미드가 결실된 클로스트리디움 아세토부틸리쿰 M5 균주에 adhE1과 ctfAB 유전자를 동시에 과발현한 결과가 보고되었는데, 이 보고에 따르면 부탄올 선택도가 질량비로 0.78로 향상되었으나 균주의 생장이 저해되고 아세트산 생산이 증가하면서 생산성과 수율이 크게 저하되는 한계가 있었다(Lee, et al.,Biotechnology Journal, 4:1432-1440, 2009; Lee, et al., WO 2009/082148)
아세틸코에이(Acetyl-CoA)를 아세테이트로 전환하는 pta유전자를 결실시킨 경우 및 pta 및 부티릴코에이(Butyryl-CoA)를 부티레이트로 전환하는 buk 유전자 모두를 결실시키고 aad(알코올/알데히드 탈수소 효소)를 과발현한 경우 모두 부탄올 농도, 선택도 및 수율이 증가한 결과가 보고되었으나, 양자 모두 여전히 생산성 및 균주의 안정성 측면에서 한계가 있었다(LEE et al., WO 2011/037415). 또한 pta와 buk을 결실시킨 변이주에 추가로 코에이 트란스퍼라제(CoAT)를 코드하는 CtfB 유전자를 결실시킨 경우에도 생산성이 여전히 낮았다(LEE et al., WO 2011/037415).
그 밖에도, 무작위 돌연변이로 유발된 돌연변이주 Clostridium beijerinckii BA101 균주를 이용하여 탄소원으로 말토덱스트린을 사용하여 발효한 결과, 18.6 g/ℓ의 부탄올이 생산된다는 것을 보고한 예도 있다(Ezeji et al., Appl. Microbiol. Biotechnol., 63:653, 2004). 하지만, 상기 재조합 균주들을 이용하더라도 모두 최종 산물인 부탄올의 생산성이 낮아 산업적 이용이 불가능하다.
또한 코에이트란스퍼라아제를 코딩하는 ctfAB 또는 아세토아세트산 탈 탄산효소인 adc를 결실시킴으로써 아세톤의 농도를 감소시키고 부탄올의 선택도를 증가시킨 보고가 있지만 이들은 부탄올의 최종 농도가 10g/L 미만이고 균주의 안정성에 문제가 있다(Jiang et al., Metab. Eng., 11(4-5):284-291, 2009).
이에 본 발명자들은 부탄올의 선택성, 수율 및 생산성이 모두 우수한 미생물에 대하여 연구하던 중 부티레이트 및 아세테이트의 생산에 관여하는 유전자인 pta 및 buk를 동시에 결실시키고, 코에이트랜스퍼라제(CoAT)를 코드하는 CtfAB 유전자 및 부티릴 코에이를 부탄올로 전환하는 adhE(알코올/알데히드 디하이드로게나제) 유전자를 동시에 과발현시켜 재조합 변이 미생물을 제작하고, 상기 재조합 미생물이 고 수율, 고 선택도 및 고 생산성으로 부탄올을 생산할 수 있음을 확인하여 본 발명을 완성하였다.
본 발명의 목적은 부탄올 생성능이 증강된 재조합 미생물을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은 아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물에 있어서,
아세틸 코에이를 아세테이트로 전환하는 경로가 억제되고,
아세테이트를 아세틸코에이로 전환하는 경로 및 부티릴 코에이를 부탄올로 전환하는 경로가 촉진된,
부탄올 생성능이 증강된 재조합 미생물을 제공한다.
또한 본 발명은 본 발명의 재조합 미생물을 배양하는 단계;및
상기 배양액으로부터 부탄올을 회수하는 단계를 포함하는 부탄올의 생산 방법을 제공한다.
본 발명의 재조합 미생물은 부탄올 생산성, 수율 및 부탄올 선택도가 우수한 특성을 갖는다.
도 1은 아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물에 있어서, 아세톤, 부탄올 및 에탄올의 합성 경로를 나타낸다.
도 2는본 발명의 재조합 미생물의 일 실시예를 나타낸다.
도 3은 pGS1-MCS 벡터이다.
도 4는 pGS1-pThlAdhE1이다.
도 5는 pGS1-MCS1(BglⅡ)벡터이다.
도 6은 pGS1-pThlctfAB이다.
도 7은 pGS1-pThlAdhE1-CtfAB이다.
도 8은 서열번호 1이며, 도 9는 서열번호 2이다.
본 발명은 아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물에 있어서,
아세틸 코에이를 아세테이트로 전환하는 경로가 억제되고,
아세테이트를 아세틸코에이로 전환하는 경로 및 부티릴 코에이를 부탄올로 전환하는 경로가 촉진된,
부탄올 생성능이 증강된 재조합 미생물에 대한 것이다.
또한 본 발명은 본 발명의 재조합 미생물을 배양하는 단계;및
상기 배양액으로부터 부탄올을 회수하는 단계를 포함하는 부탄올의 생산 방법에 대한 것이다.
이하, 본 발명을 자세히 설명한다.
부탄올 생성능이 증강된 재조합 미생물
본 발명의 재조합 미생물은,
아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물에 있어서,
아세틸 코에이를 아세테이트로 전환하는 경로가 억제되고,
아세테이트를 아세틸코에이로 전환하는 경로 및 부티릴 코에이를 부탄올로 전환하는 경로가 촉진된,
부탄올 생성능이 증강된 재조합 미생물이다.
또한, 본 발명의 재조합 미생물은,
아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물에 있어서,
아세틸 코에이를 아세테이트로 전환하는 경로 및 부티릴 코에이를 부티레이트로 전환하는 경로가 억제되고,
아세테이트를 아세틸코에이로 전환하는 경로 및 부티릴 코에이를 부탄올로 전환하는 경로가 촉진된,
부탄올 생성능이 증강된 재조합 미생물이다.
또한, 본 발명의 재조합 미생물은 도 2에 개시된 바와 같이,
아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물에 있어서,
아세틸 코에이를 아세테이트로 전환하는 경로 및 부티릴 코에이를 부티레이트로 전환하는 경로가 억제되고,
부티레이트를 부티릴코에이로 전환하는 경로, 아세테이트를 아세틸코에이로 전환하는 경로 및 부티릴 코에이를 부탄올로 전환하는 경로가 촉진된,
부탄올 생성능이 증강된 재조합 미생물이다.
또한 본 발명의 재조합 미생물은 아세토아세트산 탈탄산효소를 코드하는 유전자, 즉 adc가 결실되지 않은 것이다.
아세틸 코에이 생합성 경로
본 발명의 아세틸 코에이(Acetyl-CoA) 생합성 경로는 미생물 내 특정 대사산물로부터 아세틸 코에이가 합성되는 경로를 의미한다. 본 발명의 아세틸 코에이 생합성 경로는 피루베이트(pyruvate)로부터 아세틸 코에이가 합성되는 경로 또는 아세테이트로(acetate)부터 아세틸 코에이가 합성되는 경로 등이 될 수 있다. 아세테이트로부터 아세틸 코에이가 합성되는 경로는 코에이트랜스퍼라제(CoA-transferase)에 의하여 조절될 수 있다.
부티릴 코에이 생합성 경로
본 발명의 부티릴 코에이 생합성 경로는 미생물 내 특정 대사산물로부터 부티릴 코에이가 합성되는 경로를 의미한다. 본 발명의 부티릴 코에이 생합성 경로는 아세틸 코에이(Acetyl CoA)로부터 부티릴 코에이(Butyryl CoA)를 합성하는 경로, 아세토아세틸 코에이(Acetoacetyl CoA)로부터 부티릴 코에이가 합성되는 경로 또는 부티레이트(butyrate)로부터 부티릴 코에이가 합성되는 경로 등이 될 수 있다. 부티레이트로부터 부티릴 코에이가 합성되는 경로는 코에이트랜스퍼라제에 의하여 조절될 수 있다.
아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물
본 발명의 아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물은 전술한 상기 생합성 경로들을 갖는 미생물이면 되고 특별히 한정되지 않는다. 또한, 본 발명의 미생물은 아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 야생형으로 갖고 있는 미생물 또는 유전자 재조합에 의하여 갖게 되는 재조합 미생물일 수 있다. 바람직하게는 본 발명의 미생물은 클로스트리디움이나 이에 제한되는 것은 아니다.
아세틸 코에이를 아세테이트로 전환하는 경로의 억제
생합성된 아세틸 코에이는 아세틸 포스페이트 (Acetyl phosphate)를 거쳐 아세테이트로 전환될 수 있다. 상기 경로는 아세틸 코에이의 아세틸-포스페이트 로의 전환 단계 또는 아세틸-포스페이트 의 아세테이트로의 전환 단계를 억제함으로써 억제될 수 있다. 상기 단계들은 각 단계를 조절하는 효소의 발현 조절 또는 효소 활성의 억제와 같은 공지의 방법을 이용하여 억제될 수 있다.
예컨대, 포스포트랜스아세틸라제는 아세틸 코에이의 아세틸-포스페이트로의 전환을 조절하는데, 상기 포스포트랜스아세틸라제가 억제됨으로써 아세틸 코에이를 아세테이트로 전환하는 경로가 억제될 수 있다. 상기 포스포트랜스아세틸라제의 억제는 포스포트랜스아세틸라제의 발현 억제, 포스포트랜스아세틸라제의 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 포트란스아세틸라제를 코드하는 유전자인 pta를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 포스포트랜스아세틸라제를 억제할 수 있다.
또, 아세테이트 키나아제(Acetate kinase, ack)는 아세틸 포스페이트의 아세테이트로의 전환을 조절하는데, 상기 아세테이트 키나아제가 억제됨으로써 아세틸 코에이를 아세테이트로 전환하는 경로가 억제될 수 있다. 상기 아세테이트 키나아제의 억제는 아세테이트 키나아제의 발현 억제, 아세테이트 키나아제의 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 아세테이트 키나아제를 코드하는 유전자인 ack를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 아세테이트 키나아제를 억제할 수 있다.
부티릴 코에이를 부티레이트로 전환하는 경로의 억제
생합성된 부티릴 코에이는 부티릴-포스페이트(Butyryl-phosphate)를 거쳐 부티레이트로 전환될 수 있다. 상기 경로는 부티릴 코에이의 부티릴-포스페이트로의 전환 단계 또는 부티릴-포스페이트의 부티레이트로의 전환 단계를 억제함으로써 억제될 수 있다. 상기 단계들은 각 단계를 조절하는 효소의 발현 조절 또는 효소 활성의 억제와 같은 공지의 방법을 이용하여 억제될 수 있다.
예컨대, 부티레이트 키나아제(butyrate kinase)는 부티릴 포스페이트의 부티레이트로의 전환을 조절하는데, 상기 부티레이트 키나아제가 억제됨으로써 부티릴 코에이를 부티레이트로 전환하는 경로가 억제될 수 있다. 상기 부티레이트 키나아제의 억제는 부티레이트 키나아제의 발현 억제, 부티레이트 키나아제의 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 부티레이트 키나아제를 코드하는 유전자인 buk를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등 당업자는 적절한 방법을 선택하여 부티레이트 키나아제를 억제할 수 있다.
또한, 포스포트랜스부틸라제는 부티릴 코에이의 부티릴-포스페이트로의 전환을 조절하는데, 상기 포스포트랜스부틸라제가 억제됨으로써 부티릴 코에이를 부티레이트로 전환하는 경로가 억제될 수 있다. 상기 포스포트랜스부틸라제의 억제는 포스포트랜스부틸라제의 발현 억제, 포스포트랜스부틸라제의 효소 활성 억제 등에 의하여 이루어질 수 있다. 예컨대, 포트란스아세틸라제를 코드하는 유전자인 ptb를 결실시키거나 상기 유전자에 돌연변이(일부 염기를 변이, 치환 또는 삭제하거나 일부 염기를 도입하여 정상적인 유전자의 발현을 억제시키는 등의 돌연변이)를 일으키거나, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등, 당업자는 적절한 방법을 선택하여 포스포트랜스아세틸라제를 억제할 수 있다.
부티레이트를 부티릴 코에이로 전환하는 경로의 촉진
코에이트랜스퍼라제(CoA Transferase)는 부티레이트의 부티릴 코에이로의 전환을 조절한다. 상기 코에이트랜스퍼라제의 활성을 증가시킴으로써 부티레이트를 부티릴 코에이로 전환하는 경로가 촉진될 수 있다. 상기 코에이트랜스퍼라제의 활성 증가는 코에이트랜스퍼라제의 발현 증가, 코에이트랜스퍼라제의 효소 활성 증가 등에 의하여 이루어질 수 있다. 예컨대, 코에이트랜스퍼라제를 코드하는 유전자인 cftA 또는 ctfB(이하, "ctfAB"라 한다)의 도입, 증폭, 재배열, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등 당업자는 적절한 방법을 선택하여 코에이트랜스퍼라제의 활성을 증가시킬 수 있다.
아세테이트를 아세틸코에이로 전환하는 경로의 촉진
코에이트랜스퍼라제는 아세테이트의 아세틸 코에이로의 전환을 조절한다. 상기 코에이트랜스퍼라제의 활성을 증가시킴으로써 아세테이트를 아세틸 코에이로 전환하는 경로가 촉진될 수 있다. 상기 코에이트랜스퍼라제의 활성 증가는 코에이트랜스퍼라제의 발현 증가, 코에이트랜스퍼라제의 효소 활성 증가 등에 의하여 이루어질 수 있다. 예컨대, 코에이트랜스퍼라제를 코드하는 유전자인 ctfAB의 도입, 증폭, 재배열, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등 당업자는 적절한 방법을 선택하여 코에이트랜스퍼라제의 활성을 증가시킬 수 있다.
부티릴 코에이를 부탄올로 전환하는 경로의 촉진
생합성된 부티릴 코에이는 부탄알(butanal)을 거쳐 부탄올로 전환될 수 있다. 상기 경로는 부티릴 코에이의 부탄알로의 전환 단계 또는 부탄알의 부탄올로의 전환 단계를 촉진함으로써 촉진될 수 있다. 각 단계는 효소 활성의 증가와 같은 공지의 방법을 이용하여 촉진될 수 있다.
예컨대, 알데히드/알코올 디하이드로게나제는 부티릴 코에이의 부탄알로의 전환 및 부탄알의 부탄올로의 전환을 조절하는데, 상기 알데히드/알코올 디하이드로게나제의 활성이 증가됨으로써 부티릴 코에이를 부탄올로 전환하는 경로가 촉진될 수 있다. 상기 알데히드/알코올 디하이드로게나제의 활성 증가는 알데히드/알코올 디하이드로게나제의 발현 증가, 알데히드/알코올 디하이드로게나제의 효소 활성 증가 등에 의하여 이루어질 수 있다. 예컨대, 알데히드/알코올 디하이드로게나제를 코드하는 유전자인 adhE의 도입, 증폭, 재배열, 전사 과정 또는 번역 과정에서의 유전자 발현 조절 등 당업자는 적절한 방법을 선택하여 알데히드/알코올 디하이드로게나제의 활성을 증가시킬 수 있다.
아세토아세트산 탈탄산효소
아세토아세트산 탈탄산효소(acetoacetate decarboxylase)는 아세토아세테이트의 아세톤으로의 전환을 조절한다. 그러므로 아세토아세트산 탈탄산효소를 코드하는 유전자인 adc를 결실시켜 아세톤 생산을 저해함으로써 부탄올 생산의 증가를 도모하는 경우도 있다(WO 2009/082148) 그러나 본 발명의 재조합 미생물의 경우, adc가 추가로 결실되는 경우 부탄올 생산성 및 수율이 현저히 낮아지는 문제가 있다. 이는 아세토아세트산이 아세톤으로 전환되지 못하여 세포독성을 야기하기 때문으로 판단된다. 그러므로 본 발명의 재조합 미생물에서는 상기 아세토아세트산을 코드하는 유전자인 adc를 결실시키지 않는다.
부탄올 생성능의 증강
부탄올 생성능의 증강이란 부탄올 선택도(생산된 ABE 중 부탄올의 비율), 부탄올 생산성(단위 시간 당 생성되는 부탄올의 양) 및 수율(생산에 소모된 탄소원의 양에 대한 생산된 ABE의 양)이 모두 우수해지는 것을 의미한다. 바람직하게는 부탄올 생성능의 증강이란, 회분식 배양을 기준으로 부탄올 선택도가 60 % 이상, 부탄올 생산성이 1.3 g/L/h 이상, 수율이 28 % 이상이 되는 것을 의미한다.
부탄올의 생산 방법
본 발명의 부탄올 생산 방법은 본 발명의 재조합 미생물을 배양하는 단계;및 상기 배양액으로부터 부탄올을 회수하는 단계를 포함한다.
상기 배양은 미생물을 이용한 알코올의 생산 공정에서 일반적으로 사용되는 방법이면 되고 특별히 제한되지 않는다. 예컨대, 본 발명의 배양 방법은 액체 배양 또는 고체 배양일 수 있고, 회분식 배양, 연속 배양 또는 유가식 배양일 수도 있으나 특별히 제한되지는 않으며 당업자는 적절한 배양 방법을 선택하여 본 발명을 실시할 수 있다.
상기 부탄올의 회수 방법 역시 바이오 알코올의 회수에 일반적으로 사용되는 방법이면 되고 특별히 제한되지 않는다. 예컨대, 본 발명의 부탄올의 회수 단계는 분리막 또는 증류 등을 이용하여 수행할 수 있다. 또한 상기 미생물의 배양 및 부탄올의 회수는 동시에 수행될 수도 있고, 순차로 수행될 수도 있다. 예컨대, 부탄올을 회수하면서 미생물을 계속하여 배양할 수 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
재료 및 방법
WO2011/037415에 기재된 방법 등 공지의 방법을 이용하여, Clostridium acetobutylicum ATCC824 △pta, Clostridium acetobutylicum ATCC824 △buk, Clostridium acetobutylicum ATCC824 △pta △buk 및 Clostridium acetobutylicum ATCC824 △pta △buk △adc를 제작하였다.
한편, 재조합 C. 아세토부틸리쿰 균주의 바이오 부탄올 생성능의 평가 시, 부탄올 선택도(생산되는 혼합용매(ABE:아세톤, 부탄올, 에탄올) 중 부탄올의 비율), 부탄올 생산성 및 수율은 하기와 같이 계산하였다.
-부탄올 선택도(%): 부탄올 생산량(g)/ABE 생산량(g) × 100
-부탄올 생산성(g/L/h): 단위 시간, 단위 부피당 생산되는 부탄올 양
(이 때, 부탄올 생산성은 exponential phase 기준임)
-수율(%): ABE 생산량(g)/탄소원(g) × 100
-ABE 생산성(g/L/h): 단위 시간, 단위 부피당 생산되는 ABE의 양
<실험예 1> 플라스미드의 제작
pGS1-pThlAdhE1 및 pGS1-pThlCtfAB의 제작
클로스트리디움 아세토부틸리쿰 ATCC824 균주를 RCM 고체배지에 도말한 후 48시간 동안 혐기 배양하였다. 상기 도말된 고체배지에서 콜로니 하나를 수득하여 이를 RCM 액체배지 3ml에서 18시간 동안 배양한 후, 배양액을 원심 분리하여 세포를 수득하고, 10ml Tris 버퍼를 이용하여 이를 세척한 후, Wizard Genomic DNA purification Kit (Promega사,USA)를 이용하여 균주의 염색체를 분리하였다.
상기 분리된 염색체를 프라이머 AdhE1-UP-PstI(서열번호 3) 및 AdhE1-DN-XhoI(서열번호 4)를 사용하여 상기 분리된 염색체를 주형으로 하여 AdhE1 유전자(서열번호 1)를 증폭하였다. PCR반응 혼합물 100μl는 dNTP 250μM, 프라이머들을 각각 20pmol, 1.5mM MgCl2, 10×버퍼 10μl, DNA 주형 100ng 및 pfu 폴리머라제 5 units을 첨가하였으며 95℃에서 5분 동안 초기 변성 과정을 거친 다음 95℃에서 1분 동안 변성시키고, 50 ℃에서 1분 동안 어닐링하고 그 후 72℃에서 2분 동안 중합하는 과정을 25회 반복하였다.
그리고 증폭된 유전자를 1% 아가로오즈 젤에서 정제하고 PstI, XhoI 제한효소로 DNA 단편을 절단하고 동일한 제한효소로 절단한 pGS1-MCS 벡터(도 3)에 라이게이션하여 pGS1-pThlAdhE1(도 4)을 제작하였다.
한편, 상기와 동일한 조건으로 ctfAB-UP-BglⅡ(서열번호 5) 및 ctfAB-DN-EcoRI 프라이머(서열번호 6)를 이용하여 클로스트리디움 아세토부틸리쿰 ATCC 824 균주의 ctfAB 유전자(서열번호 2)를 증폭하였다. 그리고 증폭된 유전자를 1% 아가로오즈 젤에서 정제하고 BglⅡ 및 EcoRI 제한효소로 DNA 단편을 절단하고, pGS1-MCS1(BglⅡ)벡터(도 5)에 라이게이션하여 pGS1-pThlCtfAB(도 6)를 완성하였다.
pGS1-pThlAdhE1-CtfAB의 제작
앞서 제작한 재조합 플라스미드들을 이용하여 pGS1-pThlAdhE1-ctfAB를 제작하였다. 먼저 프라이머 CtfAB-UP-XhoI(서열번호 7) 및 E1AB-DN-SalI(서열번호 8)을 사용하여 상기 제작한 pGS1-pThlCtfAB를 주형으로 하여 ctfAB 유전자(서열번호 2)를 증폭하였다. PCR반응 혼합물 100μl는 dNTP 250 μM, 프라이머들을 각각 20 pmol, 1.5mM의 MgCl2, 10×buffer 10μl, DNA 주형100ng, pfu polymerase 5 units을 첨가하였으며 95℃에서 5분 동안 초기 변성 과정을 거친 다음 95℃에서 1분동안 변성, 50℃에서 1분 동안 어닐링 및 72℃에서 1분 동안 중합과정을 25회 반복하였다.
증폭된 유전자는 1% 아가로오즈 젤에서 정제하고 XhoI 및 SalI제한효소로 DNA 단편을 절단하고 동일한 제한효소로 절단한 pGS1-pThlAdhE1 벡터에 라이게이션 하여 pGS1-pThlAdhE1-CtfAB를 제작하였다(도 7). 상기 서열번호 1 및 2는 각각 도 8 및 도 9에 그 서열을 기재하였으며, 서열번호 3 내지 8은 하기 표 1과 같다. 또한 상기 재조합 플라스미드들의 특징은 하기 표 2와 같다.
표 1
Figure PCTKR2013001951-appb-T000001
표 2
Figure PCTKR2013001951-appb-T000002
<실험예 2> 재조합 미생물의 제작
하기 표 3의 유기산 생산 유전자가 결실된 균주들에 상기 실험예 1에서 제작한 재조합 플라스미드들을 도입하여 형질전환된 재조합 미생물을 제작하였다.
표 3
Figure PCTKR2013001951-appb-T000003
유기산 생산 유전자가 결실된 클로스트리디움 균주 각각을 CGM 액체배지(0.75 g/L K2HPO4, 0.75 g/L KH2PO4, 0.7 g/L, MgSO4·7H2O, 0.017 g/L MnSO4·5H2O, 0.01 g/L, FeSO4·7H2O, 2 g/L (NH4)2SO4, 1 g/L NaCl, 2 g/L asparagine, 0.004 g/L p-aminobenzoic acid, 5 g/L, yeast extract, 4.08 g/L CH3COONa·3H2O, and 80 g/L glucose.) 60ml에서 OD600=0.5가 될 때까지 혐기 조건에서 배양한 후 배양액을 얼음에서 10분 동안 방치하고, 그 후 7000 g로 10분 동안 4 ℃에서 배양액을 원심 분리하였다. 세포 펠렛(pellet)을 일렉트로포레이션(electroporation) 완충용액으로 3회 씻은 다음, 동일한 완충용액 2 ml에 현탁하여 형질전환용 세포를 제작하였다. 이렇게 제작된 형질전환용 세포 500μl에 0.5~2.0 ug의 플라스미드들을 첨가하여 Bio-Rad사의 Gene pulser Ⅱ를 이용하여 일렉트로포레이션(4mm cuvette, 2.5kV, ∞Ω, 25uF)을 수행하고 항생제가 첨가된 배지에서 혐기 배양한 후 형질전환 균주를 제작하였다(표 4).
형질 전환을 위해 사용한 플라스미드들은 모두 일렉트로포레이션 전에 pAN1 벡터로 형질 전환된 대장균 TOP10 균주에서 메틸화되어 클로스트리디움 균주의 restriction 시스템의 작용을 받지 않게 제작된 것들이다.
표 4
Figure PCTKR2013001951-appb-T000004
<실험예 3> 회분식 배양법에 의한 바이오 부탄올의 생산
회분식 배양을 통하여, 재조합 미생물들에 따른 부탄올 생성능을 시험하였다.실험예 2에서 제작한 재조합 클로스트리듐 균주들(#1 내지 #10)을 CGM/Erythromycin 또는 CGM/Chlorampenicol 평판 배지에 도말하여 37 ℃에서 밤새 혐기 배양하였다. 배양된 콜로니 각각 1개를 CCM/항생제 배지 40ml이 포함된 50ml 일회용 튜브(Falcon, USA)에 접종하고, 37℃에서 정치하며 OD600=1이 될 때까지 혐기 배양하였다. 배양된 종균을 다시 400ml 6% 글루코스를 포함하는 CGM 액체배지에 접종하고 37℃에서 정치하며 OD600=1~2가 될 때까지 혐기 배양하여 8% 글루코스를 포함하는 CGM 액체배지 1.6L가 포함된 발효조에 접종하여 배양을 시작하였다. pH는 수산화암모늄(NH4OH)를 이용하여 혐기 배양 중 5.0을 유지하였고 질소를 20ml/min의 속도로 주입하면서 혐기 조건을 유지하였다. 배양 시작 후 3시간 마다 생성되는 부탄올 및 혼합용매의 농도를 분석하였다.
한편 대조군으로는 야생형인 C. 아세토부틸리쿰 ATCC824(C1), 유기산 생산 유전자들을 결실시킨 C. 아세토부틸리쿰 ATCC824 균주들(C2 내지 C4) 및 C. 아세토부틸리쿰 ATCC824 △pta △buk에 발현용 벡터를 도입한 균주(C5)를 사용하였다(표 6 C1 내지 C5 균주 참조).
부탄올 및 혼합용매의 분석은 가스 크로마토그래피(Agilent, USA)를 이용하였으며 분석 조건은 하기 표 5와 같다. 또한 당과 유기산의 농도는 배양액을 원심 분리한 후, 상등액을 수득하고, HPLC, 당분석기를 이용해 확인하였다. HPLC 조건은 이동상으로 0.01N 황산을 함유한 물을 이용하였으며 유속은 0.6ml/min이었다. 칼럼은 Aminex87H 및 Aminex87P(Bio-Rad, USA)을 이용하였으며, 생성되는 당과 유기산은 RI(Reflective Index) detector를 이용하여 분석하였다.
표 5
Figure PCTKR2013001951-appb-T000005
그 결과, pta 결실균주(C2)의 경우 야생형 균주(C1)에 비하여 생산성 및 수율이 각각 2.3배, 2% 이상 증가하는 것을 확인할 수 있었다. 또한 buk 결실 균주(C3)의 경우 생산성 및 수율 측면에서 야생형 균주(C1)에 비하여 각각 1.5배, 6% 이상 증가하는 것을 확인할 수 있었다. 특히, pta 및 buk가 동시에 결실된 균주(C4) 경우 부탄올 선택도, 생산성 및 수율이 각각 8.9%, 1.5배, 4% 향상되는 것을 확인할 수 있었다. 상기 결과로 볼 때 유기산 생산 유전자를 결실시킬 경우 수율과 부탄올 생산성 및 선택도가 대체로 향상되는 것으로 판단되었다.
한편, pta 결실균주에 AdhE1를 과발현 시킨 균주(#1)의 경우 수율이 7% 향상되는 것을 확인할 수 있었으며, pta 및 buk가 동시에 결실된 균주에 AdhE1를 과발현시킨 경우(#3) 부탄올 생산성과 수율이 각각 1.7배 및 6% 향상되는 것을 확인할 수 있었다.
또한 pta 결실균주에 ctfAB를 과발현한 균주(#4)의 경우 상기 과발현으로 인하여 수율이 3% 향상되었으며, buk가 결실된 균주에 ctfAB를 과발현한 균주(#5)의 경우 상기 과발현으로 인하여 생산성과 수율이 각각 1.13배 및 2% 향상되는 것을 확인하였다. 아울러, pta 및 buk가 동시에 결실된 균주에 ctfAB를 과발현한 균주(#6)는 상기 과발현으로 인하여 생산성과 수율이 각각 1.6배 및 4% 향상되는 것을 확인할 수 있었다.
특히, pta 및 buk가 동시에 결실되고 AdhE1과 CtfAB가 동시에 과발현되는 경우 수율, 부탄올 생산성 및 부탄올 선택도 모두가 가장 우수한 것을 확인할 수 있었다(#9).
한편, 아세톤 생산을 억제하여 전체적으로 수율, 부탄올 생산성 및 부탄올 선택도를 추가적으로 향상시키기 위하여 #9 균주에서 아세톤을 합성하는 유전자인 아세토아세트산 탈탄산효소를 코드하는 유전자인 adc를 추가적으로 결실시켜 #10 균주를 제작하였다. 그러나 목적한대로 아세톤 생산이 감소하고 부탄올 선택도도 증가하였으나, 부탄올 생산량이 감소하고 수율 및 부탄올 생산성이 #9 균주와 비교해 볼 때 각각 6%, 0.5배로 크게 감소하는 것을 확인하였다. 이는 아세토아세트산이 아세톤으로 전환되지 못하여 세포독성을 야기하기 때문인 것으로 판단되었다(표 6).
표 6
Figure PCTKR2013001951-appb-T000006
<실험예 4> 연속배양방법을 이용한 바이오 부탄올의 생산
상기 실험예 3에서 부탄올 선택도, 부탄올 생산성 및 수율 모두가 우수하다고 판단된 #9 균주에 대하여 연속배양을 통하여 성능 및 안정성을 평가하였다.
먼저 연속 공정을 위한 배양기를 제작하였다. 3L의 부피를 가지는 칼럼에 위 아래로 흡착제가 용출돼 유실되는 것을 방지하고자 약 150um 정도의 필터를 장착한 후에 교반기를 장착하고 흡착제 200g을 충진하여 칼럼 2개를(각각 a, b 칼럼) 완성하였다. 그리고 이를 배양기에 실리콘 튜브를 이용하여 연결하고 펌프를 장착하여 배양액이 칼럼을 순환하게 장착하였다. 칼럼의 inlet과 outlet은 4-way 밸브를 장착하여 배양 과정에서 칼럼내의 흡착제가 부탄올 및 혼합용매로 포화될 때 용출용 용매를 흘려 실시간으로 탈착할 수 있도록 하였으며, 이때 배양액은 두 번째 칼럼으로 순환시켜 배양액의 흐름은 연속적으로 이루어질 수 있도록 제작하였다. 배양액의 순환 방향은 칼럼의 위쪽에서 아래로 순환하였으나 그 방향은 문제가 되지 않는다.
제작한 상기 배양기로 부탄올 및 혼합용매(ABE) 생산성능을 가지는 #9 균주를 배양하였다. 먼저 3.2L의 CGM 액체배지가 포함된 반응기에 밤새 CGM액체배지에서 혐기 배양한 800ml 종균을 접종하면서 배양을 시작하였다. 이 때, 일반 배치 발효로 종균을 배양하였다. 배양 시작 후 부탄올 농도가 약 7~8g/L가 되면 배양액을 펌프를 통해 유속을 50ml/min 속도로 칼럼을 통과시키며 배양액을 순환시켰다. 칼럼으로 배양액이 통과하면서 흡착제가 배양액에 현탁되어 묽은 슬러리상을 형성하면서 배양액의 흐름이 cell flock에 의해 막히지 않고 칼럼을 통과하였으며 칼럼 통과직전과 통과직후의 배양액 배양액 시료를 채취하여 부탄올 농도가 8g/L 이하가 되도록 유지하였다. 부탄올 및 혼합용매의 농도는 가스 크로마토그래피를 통하여 분석하였다. 배양 과정 동안 당 농도를 HPLC및 당분석기를 이용하여 20g/L을 유지하였다.
그 결과, 53시간 동안 안정적으로 연속배양을 수행하였으며, 부탄올 생산성 및 수율 등 균주의 성능이 향상된 것을 확인할 수 있었다(표 7).
표 7
Figure PCTKR2013001951-appb-T000007
본 발명은 아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물에 있어서, 아세틸 코에이를 아세테이트로 전환하는 경로가 억제되고, 아세테이트를 아세틸코에이로 전환하는 경로 및 부티릴 코에이를 부탄올로 전환하는 경로가 촉진된, 부탄올 생성능이 증강된 재조합 미생물에 대한 것이다. 또한 본 발명은 상기 재조합 미생물을 이용하여 부탄올을 생산하는 방법에 대한 것이다.

Claims (13)

  1. 아세틸 코에이 생합성 경로 및 부티릴 코에이 생합성 경로를 갖는 미생물에 있어서,
    아세틸 코에이를 아세테이트로 전환하는 경로가 억제되고,
    아세테이트를 아세틸코에이로 전환하는 경로 및 부티릴 코에이를 부탄올로 전환하는 경로가 촉진된,
    부탄올 생성능이 증강된 재조합 미생물.
  2. 제 1항에 있어서,
    포스포트랜스아세틸라제가 억제됨으로써 아세틸 코에이를 아세테이트로 전환하는 경로가 억제되는 것을 특징으로 하는 재조합 미생물.
  3. 제 1항 또는 제 2항에 있어서,
    코에이트랜스퍼라제의 활성이 증가됨으로써 아세테이트를 아세틸코에이로 전환하는 경로가 촉진되는 것을 특징으로 하는 재조합 미생물.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    알데히드/알코올 디하이드로게나제의 활성이 증가됨으로써 부티릴 코에이를 부탄올로 전환하는 경로가 촉진되는 것을 특징으로 하는 재조합 미생물.
  5. 제 1항 내지 제 4항 중 어느 한 항에 있어서,
    부티릴 코에이를 부티레이트로 전환하는 경로가 억제되는 것을 특징으로 하는 재조합 미생물.
  6. 제 5항에 있어서,
    부티레이트 키나아제를 억제함으로써 부티릴 코에이를 부티레이트로 전환하는 경로가 억제되는 것을 특징으로 하는 재조합 미생물.
  7. 제 1항 내지 제 6항 중 어느 한 항에 있어서,
    부티레이트를 부티릴 코에이로 전환하는 경로가 촉진되는 것을 특징으로 하는 재조합 미생물.
  8. 제 1항 내지 제 7항 중 어느 한 항에 있어서,
    포스포트랜스아세틸라제를 코드하는 유전자인 pta 및 부티레이트 키나아제를 코드하는 유전자인 buk 중 적어도 하나가 결실 또는 억제되고
    코에이트랜스퍼라제를 코드하는 유전자인 ctfAB 및 알데히드/알코올 디하이드로게나제를 코드하는 유전자인 adhE 중 적어도 하나가 도입 또는 발현이 증진되는 것을 특징으로 하는 재조합 미생물.
  9. 제 1항 내지 제 8항 중 어느 한 항에 있어서,
    아세토아세트산 탈탄산효소를 코드하는 유전자가 결실되지 않은 것을 특징으로 하는 재조합 미생물.
  10. 제 1항 내지 제 9항 중 어느 한 항에 있어서,
    회분식 배양을 기준으로 부탄올 선택도가 60 % 이상인 것을 특징으로 하는 재조합 미생물.
  11. 제 1항 내지 제 10항 중 어느 한 항에 있어서,
    회분식 배양을 기준으로 부탄올 생산성이 1.3 g/L/h 이상인 것을 특징으로 하는 재조합 미생물.
  12. 제 1항 내지 제 11항 중 어느 한 항에 있어서,
    회분식 배양을 기준으로 수율이 28 % 이상인 것을 특징으로 하는 재조합 미생물.
  13. 제 1항 내지 제 12항 중 어느 한 항의 재조합 미생물을 배양하는 단계;및
    상기 배양액으로부터 부탄올을 회수하는 단계를 포함하는 부탄올의 생산 방법.
PCT/KR2013/001951 2012-07-30 2013-03-11 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법 WO2014021533A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112015001834-3A BR112015001834B1 (pt) 2012-07-30 2013-03-11 Micro-organismo recombinante tendo uma capacidade melhorada para produzir butanol e método para produzir butanol usando o mesmo
CA2880181A CA2880181C (en) 2012-07-30 2013-03-11 Recombinant microorganism having enhanced butanol producing ability and method for producing butanol using the same
US14/418,401 US9567613B2 (en) 2012-07-30 2013-03-11 Recombinant microorganism having enhanced butanol producing ability and method for producing butanol using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120083547A KR101406066B1 (ko) 2012-07-30 2012-07-30 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법
KR10-2012-0083547 2012-07-30

Publications (1)

Publication Number Publication Date
WO2014021533A1 true WO2014021533A1 (ko) 2014-02-06

Family

ID=50028177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/001951 WO2014021533A1 (ko) 2012-07-30 2013-03-11 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법

Country Status (6)

Country Link
US (1) US9567613B2 (ko)
KR (1) KR101406066B1 (ko)
BR (1) BR112015001834B1 (ko)
CA (1) CA2880181C (ko)
MY (1) MY173384A (ko)
WO (1) WO2014021533A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101548480B1 (ko) 2015-02-11 2015-08-31 지에스칼텍스 주식회사 혼합당 동시발효능을 갖는 미생물 및 이를 이용한 부탄올의 생산 방법
EP4085146A1 (en) 2020-02-21 2022-11-09 Braskem, S.A. Production of ethanol with one or more co-products in yeast

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080077080A (ko) * 2007-02-08 2008-08-21 바이오퓨얼켐 주식회사 Butyryl-CoA를 중간체로 하여 부탄올을 생합성하는 능력을가지는 효모를 이용하여 부탄올을 제조하는 방법
US20090047718A1 (en) * 2007-05-17 2009-02-19 Blaschek Hans P Methods and compositions for producing solvents
WO2009082148A2 (en) * 2007-12-20 2009-07-02 Korea Advanced Institute Of Science And Technology Enhanced ethanol and butanol producing microorganisms and method for preparing ethanol and butanol using the same
KR20110033089A (ko) * 2009-09-22 2011-03-30 한국과학기술원 부탄올 생성능이 증가된 재조합 미생물 및 이를 이용한 부탄올의 제조방법
KR20110033087A (ko) * 2009-09-22 2011-03-30 한국과학기술원 부탄올, 에탄올 및 이소프로판올 생성능이 증가된 재조합 변이 미생물 및 이를 이용한 부탄올, 에탄올 및 이소프로판올의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1315585A (en) 1919-09-09 Charles weizmann
WO2011037414A2 (ko) * 2009-09-22 2011-03-31 한국과학기술원 알코올 생성능이 증가된 재조합 변이 미생물 및 이를 이용한 알코올의 제조방법
WO2012045022A2 (en) * 2010-10-01 2012-04-05 The Ohio State University Metabolic engineering of clostridium tyrobutyricum for butanol production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080077080A (ko) * 2007-02-08 2008-08-21 바이오퓨얼켐 주식회사 Butyryl-CoA를 중간체로 하여 부탄올을 생합성하는 능력을가지는 효모를 이용하여 부탄올을 제조하는 방법
US20090047718A1 (en) * 2007-05-17 2009-02-19 Blaschek Hans P Methods and compositions for producing solvents
WO2009082148A2 (en) * 2007-12-20 2009-07-02 Korea Advanced Institute Of Science And Technology Enhanced ethanol and butanol producing microorganisms and method for preparing ethanol and butanol using the same
KR20110033089A (ko) * 2009-09-22 2011-03-30 한국과학기술원 부탄올 생성능이 증가된 재조합 미생물 및 이를 이용한 부탄올의 제조방법
KR20110033087A (ko) * 2009-09-22 2011-03-30 한국과학기술원 부탄올, 에탄올 및 이소프로판올 생성능이 증가된 재조합 변이 미생물 및 이를 이용한 부탄올, 에탄올 및 이소프로판올의 제조방법

Also Published As

Publication number Publication date
KR101406066B1 (ko) 2014-06-20
BR112015001834A2 (ko) 2019-12-31
CA2880181C (en) 2018-06-19
KR20140032519A (ko) 2014-03-17
BR112015001834B1 (pt) 2021-07-27
US20150299740A1 (en) 2015-10-22
MY173384A (en) 2020-01-21
US9567613B2 (en) 2017-02-14
CA2880181A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
KR101444968B1 (ko) 높은 수율로 n-부탄올을 생물학적으로 생산하는 방법
JP6014042B2 (ja) 組換え微生物による一酸化炭素からのブタノールの産生
US20090042265A1 (en) Thermophilic Microorganisms with Inactivated Lactate Dehydrogenase Gene (LDH) for Ethanol Production
US9284580B2 (en) Metabolic engineering of clostridium tyrobutyricum for butanol production
KR20090090319A (ko) 높은 수율로 글리세롤로부터 1,3-프로판디올을 생물학적으로 생산하는 방법
EP1948813A2 (en) Thermophilic organisms for conversion of lignocellulosic biomass to ethanol
WO2012141542A2 (ko) 미생물 발효를 통해 제조된 생성물을 흡착제를 이용하여 분리 정제하는 장치 및 방법
CN114395575B (zh) 一种生产丁酸丁酯的酪丁酸梭菌重组菌株及其构建方法和应用
WO2014081084A1 (ko) 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법
WO2014021533A1 (ko) 부탄올 생성능이 증강된 재조합 미생물 및 이를 이용한 부탄올 생산 방법
Walter et al. Host-plasmid interactions in recombinant strains of Clostridium acetobutylicum ATCC 824
CN102533720B (zh) 一种提高天然产溶剂梭菌发酵产物中总溶剂转化率的方法
EP2084287A2 (en) Process for the biological production of n-butanol with high yield
WO2017074063A1 (ko) 중쇄 아미노카르복시산의 생산 방법
WO2017074061A1 (ko) 중쇄 디올의 생산 방법
Wanga et al. Supporting Information for Engineering Clostridium saccharoperbutylacetonicum for high level Isopropanol-Butanol-Ethanol (IBE) production from acetic acid pretreated switchgrass using the CRISPR-Cas9 system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2880181

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14418401

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826469

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015001834

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015001834

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150127

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015001834

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE KR 10-2012-0083547; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULARES, NUMERO DE REGISTRO, DATA E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR QUE NAO FOI POSSIVEL IDENTIFICAR OS TITULARES DO PEDIDO PRIORITARIO NOS DOCUMENTOS JUNTADOS AO PROCESSO, TAMPOUCO NOS APRESENTADOS NA OMPI, POIS SE ENCONTRAM EM COREANO.

ENP Entry into the national phase

Ref document number: 112015001834

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150127