WO2014021419A1 - Curable resin composition - Google Patents

Curable resin composition Download PDF

Info

Publication number
WO2014021419A1
WO2014021419A1 PCT/JP2013/070875 JP2013070875W WO2014021419A1 WO 2014021419 A1 WO2014021419 A1 WO 2014021419A1 JP 2013070875 W JP2013070875 W JP 2013070875W WO 2014021419 A1 WO2014021419 A1 WO 2014021419A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silicone resin
sio
curable resin
composition
Prior art date
Application number
PCT/JP2013/070875
Other languages
French (fr)
Japanese (ja)
Inventor
吉仁 武井
丈章 齋木
元紀 田熊
奈央 佐藤
つばさ 伊藤
愛美 金
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201380035817.6A priority Critical patent/CN104411771B/en
Priority to JP2013554125A priority patent/JP6400904B2/en
Publication of WO2014021419A1 publication Critical patent/WO2014021419A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a curable resin composition.
  • Patent Document 1 a curable resin composition containing a silicone resin having a reactive functional group at both ends is known (see Patent Document 1 and the like), and is used, for example, in the field of electronic materials.
  • a curable resin composition containing a silicone resin has increased.
  • a curable resin composition having good adhesion to an adherend is demanded.
  • a curable resin composition is a composition for encapsulating an optical semiconductor, good transparency after curing and a higher refractive index are also required. This is because the higher the refractive index of a cured product that seals an optical semiconductor such as an LED, the light extraction efficiency is improved and the brightness becomes brighter.
  • This invention is made
  • the present inventors have found that a composition containing a specific silicone resin and a specific organometallic compound has excellent adhesion and good transparency and high after curing.
  • the inventors have found that it exhibits a refractive index and completed the present invention. That is, the present invention provides the following (1) to (7).
  • a curable resin composition comprising a polysiloxane compound (B) having a Si—H bond, an organic zirconium compound (C), and a hydrosilylation catalyst (D).
  • R 1 represents a substituted or unsubstituted monovalent hydrocarbon group
  • R 2 represents an alkyl group
  • X represents an alkenyl group
  • r represents an integer of 0 or 1
  • n represents And represents an integer greater than or equal to 1.
  • a plurality of R 1 , R 2 and X may be the same or different from each other, but at least one R 1 in one molecule represents an aryl group.
  • the content of the organozirconium compound (C) is 0.001 to 10 parts by mass with respect to 100 parts by mass in total of the silicone resin (A) and the polysiloxane compound (B).
  • the content of the hydrosilylation reaction catalyst (D) is 0.00001 to 0.1 parts by mass with respect to a total of 100 parts by mass of the silicone resin (A) and the polysiloxane compound (B).
  • the curable resin composition according to any one of (1) to (3) above.
  • a is a positive number
  • b is 0 or a positive number
  • c is 0 or a positive number
  • d is 0 or a positive number
  • e is 0 or a positive number
  • B / a is a number from 0 to 10
  • c / a is a number from 0 to 0.5
  • d / (a + b + c + d) is a number from 0 to 0.3
  • e / (a + b + c + d) is 0. It is a number of ⁇ 0.4.
  • the curable resin composition of the present invention (hereinafter also referred to as “the composition of the present invention”) is a silicone having one or more aryl groups in one molecule and having an alkenyl group and an alkoxy group at both ends.
  • Resin (A) polysiloxane compound (B) having one or more aryl groups and two or more Si—H bonds in one molecule, organozirconium compound (C), hydrosilylation reaction catalyst (D ) And a curable resin composition.
  • each component contained in the composition of the present invention will be described in detail.
  • the silicone resin (A) contained in the composition of the present invention is a silicone resin having one or more aryl groups in one molecule and having an alkenyl group and an alkoxy group at both ends.
  • the composition of the present invention has improved adhesion to the adherend, but it can be added by an alkenyl group and a condensation reaction by an alkoxy group by containing the silicone resin (A). It is presumed that.
  • cured material shows a high refractive index because the composition of this invention contains the silicone resin (A) which has an aryl group. This is presumably because the polarizability of the aryl group is high and intermolecular interaction works. Since the cured product exhibits a high refractive index, the light extraction efficiency is improved when the composition of the present invention is a composition for encapsulating an optical semiconductor. Furthermore, since the intermolecular interaction works in the aryl group as compared with the methyl group or the like, the gas permeability is improved, and an improvement in sulfur resistance can be expected.
  • the aryl group means a substituted or unsubstituted aryl group.
  • the content of aryl groups in all organic groups bonded to silicon atoms is preferably 5 mol% or more. More preferably, it is at least mol%. If the content of the aryl group is within this range, the composition of the present invention has an appropriate viscosity and the cured product has a higher refractive index. Moreover, it is preferable that content of the aryl group in a silicon atom bond all organic group is 99 mol% or less.
  • the “organic group” bonded to the silicon atom is not particularly limited, and examples thereof include a substituted or unsubstituted monovalent hydrocarbon group represented by R 1 described later (hereinafter the same).
  • the silicone resin (A) contained in the composition of the present invention is particularly limited as long as it is a silicone resin having one or more aryl groups in one molecule and having an alkenyl group and an alkoxy group at both ends. However, it is preferably a silicone resin represented by the following formula (A1).
  • R 1 represents a substituted or unsubstituted monovalent hydrocarbon group
  • R 2 represents an alkyl group
  • X represents an alkenyl group
  • r represents an integer of 0 or 1
  • n 1
  • a plurality of R 1 , R 2 and X may be the same or different from each other, but at least one R 1 in one molecule represents an aryl group.
  • the integer represented by n is preferably an integer of 3 to 1000, and can be a numerical value corresponding to the weight average molecular weight of the silicone resin (A).
  • Examples of the substituted or unsubstituted monovalent hydrocarbon group (excluding the aryl group) represented by R 1 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl Group, tert-butyl group, various pentyl groups, various hexyl groups, various octyl groups, various decyl groups, cyclopentyl groups, cyclohexyl groups and other alkyl groups having 1 to 18 carbon atoms; vinyl group, propenyl group, allyl group, hexenyl group Alkenyl groups having 2 to 18 carbon atoms such as octenyl group, cyclopentenyl group and cyclohexenyl group; aralkyl groups having 7 to 18 carbon atoms such as benzyl group and phenethyl group; and the like.
  • an alkyl group having 1 to 18 carbon atoms is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, an alkyl group having 1 to 6 carbon atoms is more preferable, and a methyl group Particularly preferred is an ethyl group.
  • the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 includes an aryl group.
  • This aryl group is a substituted or unsubstituted aryl group.
  • an aryl group having 6 to 18 carbon atoms such as a phenyl group and a naphthyl group; a tolyl group, a xylyl group, an ethylphenyl group Alkyl having 7 to 18 carbon atoms such as propylphenyl group, butylphenyl group, pentylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, undecylphenyl group, dodecylphenyl group, etc.
  • Aryl group and the like. Of these, an unsubstituted aryl group having 6 to 18 carbon atoms is preferable, and a phenyl group is more preferable because the cured product of the composition of the present invention exhibits a higher refractive index.
  • Examples of the alkyl group represented by R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, and various hexyl groups. , Various octyl groups, various decyl groups, cyclopentyl groups, cyclohexyl groups, and the like.
  • an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 6 carbon atoms is more preferable, and a methyl group and an ethyl group are preferable. Is more preferable.
  • R 2 represents an alkyl group
  • “—OR 2 ” represents an alkoxy group in the formula (A1).
  • Examples of the alkenyl group represented by X include a vinyl group, a propenyl group, an allyl group, a hexenyl group, an octenyl group, a cyclopentenyl group, a cyclohexenyl group, and the like, because the curability of the composition of the present invention is excellent. , Vinyl group and allyl group are preferable.
  • the weight average molecular weight (Mw) of the silicone resin (A) is preferably 500 to 1,000,000 from the viewpoints of mechanical properties, ease of viscosity operation, and ease of reaction operation.
  • a weight average molecular weight shall be the weight average molecular weight of polystyrene conversion by the gel permeation chromatography (GPC) which uses chloroform as a solvent.
  • the viscosity of the silicone resin (A) at 25 ° C. is preferably 20 to 1,000,000 mPa ⁇ s from the viewpoints of mechanical properties, ease of viscosity operation, and ease of reaction operation. 500 to 100,000 mPa ⁇ s is more preferable. In the present invention, the viscosity is measured at 25 ° C. in accordance with 4.1 (Brookfield rotary viscometer) of JIS K7117-1.
  • Such a silicone resin (A) includes, for example, a silicone resin having one or more aryl groups in one molecule and silanol groups at both ends, and one or more alkenyl groups in one molecule. It is obtained by reaction with the alkoxysilane it has. More specifically, the silicone resin (A) is preferably obtained by a reaction between a silicone resin (a1) described later and an alkoxysilane (a2) described later. Hereinafter, the manufacturing method of a silicone resin (A) is demonstrated.
  • the silicone resin (a1) used in the method for producing the silicone resin (A) is a silicone resin having silanol groups at both ends represented by the following formula (1).
  • the silanol group means a group in which a hydroxy group (—OH) is directly bonded to a silicon atom (Si).
  • R 1 has the same meaning as R 1 described above, and a plurality of R 1 may be the same or different, but at least one R 1 is aryl in one molecule. Indicates a group.
  • m represents an integer of 1 or more.
  • the integer represented by m is preferably an integer of 3 to 1000, and can be a numerical value corresponding to the weight average molecular weight of the silicone resin (a1).
  • the weight average molecular weight (Mw) of the silicone resin (a1) is 500 to 1,000,000 in terms of mechanical properties, ease of viscosity operation of the resulting silicone resin (A), and ease of reaction operation. 000 is preferred.
  • the viscosity of the silicone resin (a1) at 25 ° C. is preferably 20 to 1,000,000 mPa ⁇ s, more preferably 500 to 100,000 mPa ⁇ s from the same viewpoint.
  • the alkoxysilane (a2) used in the method for producing the silicone resin (A) is an alkoxysilane having at least two alkoxy groups in one molecule represented by the following formula (2).
  • R 2 , X and r are synonymous with R 2 , X and r described above.
  • a plurality of R 2 may be the same or different.
  • the weight average molecular weight (Mw) of the alkoxysilane (a2) is 100 to 2 from the viewpoints of reactivity, mechanical properties, ease of viscosity operation of the resulting silicone resin (A), and ease of reaction operation. 1,000 is preferable, and 140 to 1,000 is more preferable.
  • R 3 represents a substituted or unsubstituted monovalent hydrocarbon group or a hydrogen atom.
  • the substituted or unsubstituted monovalent hydrocarbon group represented by R 3 include those described as the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 , among others, the ease of removal after the reaction, From the viewpoint of compatibility with the silicone resin and availability, it is preferably a monovalent aliphatic hydrocarbon group, more preferably an alkyl group, methyl group, ethyl group, n-propyl group. More preferably, it is a group.
  • the method for producing the silicone resin (A) comprises a step of reacting the silicone resin (a1) and the alkoxysilane (a2) in the presence of the carboxylic acid compound (a3) to obtain a reaction product (hereinafter referred to as “reaction step”). ").
  • reaction step the content ratio of each component is not particularly limited, but from the viewpoint of ease of reaction operation and reaction reproducibility, alkoxysilane (a2) 5 to 100 parts by mass of silicone resin (a1) The amount is preferably 100 parts by mass and 0.001 to 10 parts by mass of the carboxylic acid compound (a3).
  • the reaction between the silicone resin (a1) and the alkoxysilane (a2) is preferably performed by stirring.
  • stirring it is preferable to heat in a temperature range of 60 to 120 ° C. from the viewpoint of milder reaction conditions, and the stirring time (reaction time) is preferably 3 to 12 hours.
  • the method of stirring and heating is not particularly limited, and can be performed by a conventionally known method.
  • the carboxylic acid compound (a3) functions as a catalyst, and the reaction between the silicone resin (a1) and the alkoxysilane (a2) proceeds. That is, “—OH” possessed by the silicone resin (a1) and “—OR 2 ” possessed by the alkoxysilane (a2) react to give “R 2 OH” as a by-product, whereby the above-described silicone resin ( A) is formed as the main product.
  • This reaction process will be described more specifically.
  • a carboxylic acid compound (a3) represented by the following formula (3 ′) is used as a catalyst, and a silicone resin (a1 represented by the following formula (1 ′) is used.
  • the reaction is traced by 1 H-NMR to confirm the disappearance of the peak derived from the silanol group of the silicone resin (a1) or the appearance of a peak derived from a component other than the component used in the reaction.
  • the reaction can be completed as a reaction product containing the silicone resin (A) as a main product and a by-product.
  • the method for producing the silicone resin (A) in the present invention is a step of removing a by-product from the reaction product to obtain a silicone resin (A) as a main product (hereinafter also referred to as “removing step”). May be provided.
  • the method for removing the by-product is not particularly limited, and examples thereof include a method of stirring the reaction product under reduced pressure while heating. At this time, conditions such as heating temperature, pressure, stirring time and the like are not particularly limited and can be appropriately set according to the by-product to be generated, but together with the by-product, unreacted alkoxysilane (a2) In addition, it is preferable that the conditions are such that the carboxylic acid compound (a3) as a catalyst can be removed at the same time.
  • the heating temperature is preferably 120 to 160 ° C.
  • the pressure is preferably 1 to 30 mmHg
  • the stirring time is 2 to 5 hours. Is preferred.
  • the viscosity of the reaction product was measured, and the by-product, unreacted alkoxysilane (a2) and carboxylic acid compound (a3) were removed when the viscosity increased from the beginning and remained unchanged. As an end, it can be terminated.
  • the polysiloxane compound (B), the organic zirconium compound (C), and the hydrosilylation catalyst (D) will be described as components that contribute to the curing of the above-described silicone resin (A).
  • the polysiloxane compound (B) contained in the composition of the present invention is a polysiloxane compound having one or more aryl groups and two or more Si—H bonds in one molecule.
  • Si—H bond means a hydrogen atom (H) bonded to a silicon atom (Si) in a main skeleton formed by a siloxane bond (... Si—O—Si).
  • the polysiloxane compound (B) undergoes an addition reaction (hydrosilylation reaction) with respect to the alkenyl group of the silicone resin (A). At this time, since the polysiloxane compound (B) has at least two Si—H bonds in one molecule, it functions as a crosslinking agent between the silicone resins (A).
  • the amount of the Si—H bond (hereinafter referred to as “Si—H / Si for convenience” with respect to 1 mol of the alkenyl group of the silicone resin (A) described above.
  • the “ ⁇ Vi molar ratio”) is preferably 0.5 to 5.0 mol, more preferably 0.5 to 1.5 mol.
  • the polysiloxane compound (B) has an aryl group, which makes the composition of the present invention excellent in compatibility with the above-described silicone resin (A) having an aryl group and suppresses turbidity. Excellent in transparency of cured product.
  • the content of the aryl group in the silicon atom-bonded total organic group is preferably 5 mol% or more, and more preferably 10 mol% or more. If the content of the aryl group is within this range, the composition of the present invention is more excellent in transparency and has a higher refractive index after curing.
  • content of the aryl group in a silicon atom bond all organic group is 99 mol% or less.
  • the polysiloxane compound (B) is not particularly limited as long as it is a polysiloxane compound having one or more aryl groups and two or more Si—H bonds in one molecule.
  • the polysiloxane compound (B) is represented by the following formula (b1). What is done.
  • R 4 represents a substituted or unsubstituted monovalent hydrocarbon group or a hydrogen atom excluding an alkenyl group, and t represents an integer of 1 or more.
  • R ⁇ 4 > may be the same or different, However, In 1 molecule, at least 1 R ⁇ 4 > shows an aryl group and at least 2 R ⁇ 4 > shows a hydrogen atom.
  • Examples of the substituted or unsubstituted monovalent hydrocarbon group represented by R 4 include those described as the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 .
  • the integer represented by t can be a numerical value corresponding to the weight average molecular weight of the polysiloxane compound (B).
  • the weight average molecular weight (Mw) of the polysiloxane compound (B) is 100 to 10,000 because the adhesiveness of the composition of the present invention is more excellent and the physical properties after curing are also improved. It is preferably 120 to 5,000.
  • the viscosity of the polysiloxane compound (B) at 25 ° C. is preferably from 0.1 to 10,000 mPa ⁇ s, more preferably from 1 to 100 mPa ⁇ s from the viewpoints of compatibility and workability. preferable.
  • polysiloxane compound (B) represented by the formula (b1) a commercially available product can be used.
  • the polysiloxane compound (B) may be partly or wholly a silicone resin represented by the following average composition formula (b2).
  • R 5 is a substituted or unsubstituted monovalent hydrocarbon group or a hydrogen atom excluding the same or different alkenyl groups, and 0.1 to 40 mol% of all R 5 in one molecule is Is a hydrogen atom, 10 mol% or more of the total R 5 is an aryl group
  • X 5 is a hydrogen atom or an alkyl group
  • h is a positive number
  • i 0 or a positive number
  • j is 0 or
  • It is a positive number, g / f is a number from 0 to 10, h / f is a number from 0 to
  • Examples of the substituted or unsubstituted monovalent hydrocarbon group represented by 6 in the formula (b2) are those described as the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 and excluding the alkenyl group. Can be mentioned.
  • Organic zirconium compound (C) ⁇ Organic zirconium compound (C)>
  • the organozirconium compound (C) contained in the composition of the present invention functions as a condensation catalyst that accelerates the condensation reaction of the alkoxy group of the silicone resin (A).
  • the composition of the present invention is excellent in adhesion by containing the organic zirconium compound (C) in combination with the silicone resin (A).
  • the resulting cured product is colored and inferior in transparency, but the cured product of the composition of the present invention using the organic zirconium compound (C) is colored. Suppressed and excellent in transparency. This is presumably because the transition of d electrons in zirconium is less likely to occur than in titanium.
  • the organic zirconium compound (C) is not particularly limited, but for example, zirconium alkoxide, zirconium chelate and the like are preferably used.
  • the zirconium alkoxide is not particularly limited, and examples thereof include tetraethoxyzirconium, tetra-n-propoxyzirconium, tetra-i-propoxyzirconium, tetra-n-butoxyzirconium, tetra-i-butoxyzirconium, tetra-sec-butoxyzirconium. Tetra-t-butoxyzirconium, tetra-2-ethylhexylzirconium and the like. Among them, tetra-n-butoxyzirconium and tetra-2-ethylhexylzirconium are preferable.
  • the zirconium chelate is not particularly limited, and examples thereof include triethoxy mono (acetylacetonato) zirconium, tri-n-propoxy mono (acetylacetonato) zirconium, tri-i-propoxymono (acetylacetonato) zirconium, Tri-n-butoxy mono (acetylacetonato) zirconium, tri-sec-butoxy mono (acetylacetonato) zirconium, tri-t-butoxymono (acetylacetonato) zirconium, diethoxybis (acetylacetonato) Zirconium, di-n-propoxy bis (acetylacetonato) zirconium, di-i-propoxy bis (acetylacetonato) zirconium, di-n-butoxy bis (acetylacetonato) zirconium Di-sec-butoxy bis (acetylacetonato) zirconium
  • di -i- propoxy bis (ethylacetoacetate) zirconium di -i- propoxy bis (acetylacetonate) zirconium, tetrakis (acetylacetonato) zirconium are preferred.
  • zirconium metal salts include aliphatic carboxylates such as zirconyl dioctylate and zirconyl dineodecane; alicyclic carboxylates such as zirconyl naphthenate and zirconyl cyclohexane; aromatic carboxylates such as zirconyl benzoate; Acid salt; and the like.
  • organic zirconium compound (C) examples include those described above, alone or in combination of two or more.
  • the content of the organic zirconium compound (C) is preferably 0.001 to 10 parts by mass with respect to 100 parts by mass in total of the silicone resin (A) and the polysiloxane compound (B), and 0.01 to 5 It is preferable that it is a mass part. If content of an organozirconium compound (C) is this range, while the composition of this invention is excellent in sclerosis
  • the catalyst for hydrosilylation reaction (D) contained in the composition of the present invention is used in combination with the polysiloxane compound (B) to promote the addition reaction (hydrosilylation reaction) to the alkenyl group of the silicone resin (A).
  • a conventionally known catalyst can be used, and examples thereof include a platinum-based catalyst, a rhodium-based catalyst, a palladium-based catalyst, and the like, and a platinum-based catalyst is preferable.
  • platinum-based catalysts include chloroplatinic acid, chloroplatinic acid-olefin complexes, chloroplatinic acid-divinyltetramethyldisiloxane complexes, chloroplatinic acid-alcohol coordination compounds, platinum diketone complexes, and the like. May be used alone or in combination of two or more.
  • the content of the hydrosilylation reaction catalyst (D) is a catalytic amount, but because the curability of the composition of the present invention is excellent, a total of 100 of the above-described silicone resin (A) and polysiloxane compound (B).
  • the amount is preferably 0.00001 to 0.1 parts by weight, more preferably 0.0001 to 0.01 parts by weight with respect to parts by weight.
  • the composition of the present invention may further contain a curing retarder (E).
  • the curing retarder (E) is a component for adjusting the curing rate and working life of the composition of the present invention.
  • the curing retarder (E) is a component for adjusting the curing rate and working life of the composition of the present invention.
  • 3-methyl-1-butyn-3-ol, 3,5-dimethyl- Alcohol derivatives having a carbon-carbon triple bond such as 1-hexyn-3-ol, phenylbutynol, 1-ethynyl-1-cyclohexanol; 3-methyl-3-penten-1-yne, 3,5-dimethyl- Enyne compounds such as 3-hexen-1-yne; low molecular weight siloxanes containing alkenyl groups such as tetramethyltetravinylcyclotetrasiloxane and tetramethyltetrahexenylcyclotetrasiloxane; methyl-tris
  • content of a hardening retarder (E) is suitably selected according to the usage method etc. of the composition of this invention, for example, a total of 100 mass parts of silicone resin (A) mentioned above and a polysiloxane compound (B).
  • the amount is preferably 0.00001 to 0.1 parts by mass, and more preferably 0.0001 to 0.01 parts by mass.
  • composition of the present invention may further contain a silicone resin (F) represented by the following average composition formula (f).
  • a silicone resin (F) represented by the following average composition formula (f).
  • R 6 is the same or different substituted or unsubstituted monovalent hydrocarbon group, and 10 mol% or more of all R 6 in one molecule is an aryl group, and X 6 is a hydrogen atom.
  • a is a positive number
  • b is 0 or a positive number
  • c is 0 or a positive number
  • d is 0 or a positive number
  • e is 0 or a positive number
  • B / a is a number from 0 to 10
  • c / a is a number from 0 to 0.5
  • d / (a + b + c + d) is a number from 0 to 0.3
  • e / (a + b + c + d) is 0. It is a number of ⁇ 0.4.
  • Examples of the substituted or unsubstituted monovalent hydrocarbon group represented by 6 in the formula (f) include those described as the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 .
  • the content of aryl groups in the silicon atom-bonded all organic groups is preferably 5 to 95 mol%, more preferably 20 to 80 mol%.
  • the content of the silicone resin (F) is not particularly limited. For example, it is preferably 10 to 1000 parts by mass with respect to 100 parts by mass in total of the silicone resin (A) and the polysiloxane compound (B) described above. More preferred is 50 to 500 parts by mass.
  • the composition of the present invention may further contain an adhesion promoter (G).
  • adhesion-imparting agent (G) include a silane coupling agent.
  • Specific examples of the silane coupling agent include aminosilane, vinyl silane, epoxy silane, methacryl silane, isocyanate silane, imino silane, reaction products thereof, and the like.
  • the compound etc. which are obtained by reaction with polyisocyanate are mentioned, It is preferable that it is an epoxy silane.
  • the epoxy silane is not particularly limited as long as it is a compound having an epoxy group and an alkoxysilyl group.
  • ⁇ -glycidoxypropylmethyldimethoxysilane ⁇ -glycidoxypropylethyldiethoxysilane, ⁇ -glycid Dialkoxyepoxysilanes such as xylpropylmethyldiethoxysilane and ⁇ - (3,4 epoxycyclohexyl) ethylmethyldimethoxysilane; ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4 epoxycyclohexyl) ethyltrimethoxysilane And the like, and the like.
  • the content of the adhesion-imparting agent (G) is not particularly limited, but it is 0.5 with respect to a total of 100 parts by mass of the above-described silicone resin (A), polysiloxane compound (B), and organic zirconium compound (C). It is preferably ⁇ 10 parts by mass, more preferably 1 to 5 parts by mass.
  • the manufacturing method of the composition of this invention is not specifically limited, For example, the method of manufacturing by mixing the essential component mentioned above and an arbitrary component is mentioned. Further, the method for obtaining a cured product by curing the composition of the present invention is not particularly limited, and examples thereof include a method of heating the composition of the present invention at 80 to 200 ° C. for 10 minutes to 720 minutes.
  • composition of the present invention is, for example, in the field of display materials, optical recording medium materials, optical equipment materials, optical component materials, optical fiber materials, optical / electronic functional organic materials, semiconductor integrated circuit peripheral materials, etc. It can be used as a primer, a sealing material and the like.
  • the composition of the present invention can be suitably used as a composition for encapsulating an optical semiconductor because it has excellent adhesion and its cured product exhibits good transparency and high refractive index.
  • the optical semiconductor to which the composition of the present invention can be applied is not particularly limited, and examples thereof include a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array.
  • LED light emitting diode
  • organic EL organic electroluminescent element
  • laser diode a laser diode
  • LED array As a method for using the composition of the present invention as an optical semiconductor sealing composition, for example, the composition of the present invention is applied to an optical semiconductor, and the optical semiconductor to which the composition of the present invention is applied is heated. The method of hardening the composition of invention is mentioned.
  • the method for applying and curing the composition of the present invention is not particularly limited, and examples thereof include a method using a dispenser, a potting method, screen printing, transfer molding, and injection
  • the obtained cured product was measured for transmittance (unit:%) at a wavelength of 400 nm using an ultraviolet / visible (UV-Vis) absorption spectrum measuring apparatus (manufactured by Shimadzu Corporation) in accordance with JIS K 0115: 2004.
  • the measurement results are shown in Table 1 below. If the transmittance value is 80% T or more, it can be evaluated as being excellent in “transparency”.
  • ⁇ Tensile shear bond strength, CF> The prepared composition was bonded to an adherend (aluminum alloy plate, A1050P, manufactured by Partec Co., Ltd.) with an adhesion area of 12.5 mm ⁇ 25 mm, and then cured by heating at 150 ° C. for 2 hours, and tested. Got the body. Using the obtained specimen, a tensile test was performed in accordance with JIS K6850: 1999, and the tensile shear bond strength (unit: MPa) was measured. Further, the ratio (unit:%) of the cohesive failure (CF) area to the adhesion area was also measured. The results are shown in Table 1 below. It can be evaluated that the higher the value of tensile shear adhesive strength and the closer the value of CF is to 100, the better the adhesion.
  • ⁇ Reflow test, wet heat test> The manufactured composition was applied to an LED package (manufactured by Enomoto) and cured by heating at 150 ° C. for 2 hours to prepare a test specimen.
  • eight test bodies were produced for each example. The eight test specimens thus produced were subjected to the following two types of tests, and the number of test specimens for which peeling of the cured product was not confirmed was counted. The larger the number, the better the adhesion.
  • Silicone resin A1 Silicone resin having a phenyl group and having a vinyl group and a methoxy group at both ends, produced as described later (Mw: 2,000, viscosity: 250 mPa ⁇ s, containing vinyl group) Amount: 3.10% by mass, content of phenyl group in all silicon-bonded organic groups: 50 mol%). It is represented by the following formula (A1-1), and n ′ in the formula is a numerical value corresponding to the weight average molecular weight of the silicone resin A1.
  • Silicone resin X1 A methylphenyl silicone resin having a phenyl group and having a methyl group and a vinyl group at both ends (PMV-9925, Gelest, Mw: 2,500, viscosity: 500 mPa ⁇ s, vinyl group Content: 2.2% by mass, content of phenyl group in all silicon atom-bonded organic groups: 50 mol%)
  • Silicone resin X2 A silicone resin represented by the following formula (X2), produced as described later, having no phenyl group and having a vinyl group and a methoxy group at both ends (Mw: 20,000) , Viscosity: 1,000 mPa ⁇ s, vinyl group content: 0.30% by mass)
  • Polysiloxane compound B1 dimethylhydrogensiloxy group-blocked methylhydrogensiloxane-methylphenylsiloxane copolymer (HPM-502, manufactured by Gelest, Mw: 4,300, phenyl group in silicon atom-bonded all organic groups) Content: 33 mol%)
  • Polysiloxane compound Z1 Organopolysiloxane represented by the following formula (Z1) (HMS-991, manufactured by Gelest, Mw: 1,600)
  • Organic zirconium compound C1 tetra-n-butoxyzirconium (Orgachix ZA-65, manufactured by Matsumoto Trading Co., Ltd.)
  • Organic titanium compound Y1 Tetra-i-propoxy titanium (TA-10, manufactured by Matsumoto Fine Chemical Co., Ltd.)
  • Catalyst for hydrosilylation reaction D1 Chloroplatinic acid-divinyltetramethyldisiloxane complex (Gelest, Mw: 474.68) Curing retarder E1: 3-methyl-1-butyn-3-ol (manufactured by Tokyo Chemical Industry Co., Ltd., Mw: 100) Silicone resin F1: Phenyl silicone resin represented by an average composition formula “(PhSiO 3/2 ) 0.9 (ViMe 2 SiO 1/2 ) 0.1 ” (vinyl group content: 5.6 mass%, all silicon atoms bonded) (Phyl group content in organic group: 75 mol%) Adhesion imparting agent G1: ⁇ -glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • silicone resin A1, A2, X2 it manufactured as follows. First, a 2 L 3-neck flask was equipped with a Dimroth condenser and a mechanical stirrer, and the components shown in Table 2 below (unit: parts by mass) were enclosed. Next, the mechanical stirrer was rotated while the flask was immersed in an oil bath and heated to 100 ° C., and the components enclosed in the flask were stirred and reacted for 6 hours.
  • the silicone resin a1-1 which will be described later, a1-2, disappearance of a peak derived from a silanol group of the a1-3, or the appearance of a peak derived from a component other than the component enclosed in a flask, 1 H
  • the reaction was terminated as a reaction product containing the main product (silicone resins A1, A2, and X2) was obtained.
  • the reaction product was stirred for 3 hours under conditions of 140 ° C.
  • silicone resins A1, A2 and X2 were obtained.
  • Silicone resin a1-1 Silanol group polymethylphenylsiloxane at both ends (Mw: 1,500)
  • Silicone resin a1-2 Silanol group diphenylsiloxane-dimethylsiloxane copolymer at both terminals (PDS-1615, manufactured by Gelest, Mw: 1,000)
  • Silicone resin a1-3 Silanol polydimethylsiloxane at both ends (DMS-S27, manufactured by Gelest, Mw: 18,000, viscosity: 800 mPa ⁇ s)
  • Alkoxysilane a2-1 Trimethoxyvinylsilane (KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd., Mw: 148.2)
  • Carboxylic acid compound a3-1 Acetic acid (Deer grade 1, manufactured by Kanto Chemical Co., Inc.)

Abstract

Provided is a curable resin composition which exhibits excellent adhesion and provides a cured product that has good transparency and high refractive index. This curable resin composition contains (A) a silicone resin which has one or more aryl groups in each molecule and has an alkenyl group and an alkoxy group at both ends, (B) a polysiloxane compound which has one or more aryl groups and two or more Si-H bonds in each molecule, (C) an organic zirconium compound and (D) a catalyst for hydrosilylation reactions.

Description

硬化性樹脂組成物Curable resin composition
 本発明は、硬化性樹脂組成物に関する。 The present invention relates to a curable resin composition.
 従来、両末端に反応性官能基を有するシリコーン樹脂を含有する硬化性樹脂組成物が知られており(特許文献1等を参照)、例えば、電子材料分野で用いられている。 Conventionally, a curable resin composition containing a silicone resin having a reactive functional group at both ends is known (see Patent Document 1 and the like), and is used, for example, in the field of electronic materials.
特開昭63-270762号公報JP-A 63-270762
 近年、シリコーン樹脂を含有する硬化性樹脂組成物について要求される性能レベルが高まっている。とりわけ、被着体に対する密着性が良好な硬化性樹脂組成物が求められている。また、このような硬化性樹脂組成物が光半導体封止用組成物である場合には、硬化後に良好な透明性され、さらに高い屈折率も要求される。これは、LEDなどの光半導体を封止する硬化物の屈折率が高いほど、光の取り出し効率が改善されて、より明るくなるためである。 In recent years, the performance level required for a curable resin composition containing a silicone resin has increased. In particular, a curable resin composition having good adhesion to an adherend is demanded. Further, when such a curable resin composition is a composition for encapsulating an optical semiconductor, good transparency after curing and a higher refractive index are also required. This is because the higher the refractive index of a cured product that seals an optical semiconductor such as an LED, the light extraction efficiency is improved and the brightness becomes brighter.
 本発明は、以上の点を鑑みてなされたものであり、密着性に優れ、かつ、硬化物が良好な透明性および高屈折率を有する、硬化性樹脂組成物を提供することを目的とする。 This invention is made | formed in view of the above point, and it aims at providing the curable resin composition which is excellent in adhesiveness, and has hardened | cured material with favorable transparency and high refractive index. .
 本発明者は、上記課題を解決するために鋭意検討した結果、特定のシリコーン樹脂と特定の有機金属化合物とを含有する組成物が、密着性に優れ、かつ、硬化後に良好な透明性および高い屈折率を示すことを見出し、本発明を完成させた。
 すなわち、本発明は、以下の(1)~(7)を提供する。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a composition containing a specific silicone resin and a specific organometallic compound has excellent adhesion and good transparency and high after curing. The inventors have found that it exhibits a refractive index and completed the present invention.
That is, the present invention provides the following (1) to (7).
 (1)1分子中に1個以上のアリール基を有し、かつ、両末端にアルケニル基およびアルコキシ基を有するシリコーン樹脂(A)と、1分子中に1個以上のアリール基および2個以上のSi-H結合を有するポリシロキサン化合物(B)と、有機ジルコニウム化合物(C)と、ヒドロシリル化反応用触媒(D)と、を含有する硬化性樹脂組成物。 (1) A silicone resin (A) having one or more aryl groups in one molecule and having an alkenyl group and an alkoxy group at both ends, and one or more aryl groups and two or more in one molecule A curable resin composition comprising a polysiloxane compound (B) having a Si—H bond, an organic zirconium compound (C), and a hydrosilylation catalyst (D).
 (2)上記シリコーン樹脂(A)が、下記式(A1)表されるシリコーン樹脂である、上記(1)に記載の硬化性樹脂組成物。 (2) The curable resin composition according to (1), wherein the silicone resin (A) is a silicone resin represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(A1)中、R1は置換または非置換の一価炭化水素基を示し、R2はアルキル基を示し、Xはアルケニル基を示し、rは0または1の整数を示し、nは1以上の整数を示す。複数のR1,R2およびXは、それぞれ同一であっても異なっていてもよいが、1分子中、少なくとも1個のR1は、アリール基を示す。) (In Formula (A1), R 1 represents a substituted or unsubstituted monovalent hydrocarbon group, R 2 represents an alkyl group, X represents an alkenyl group, r represents an integer of 0 or 1, and n represents And represents an integer greater than or equal to 1. A plurality of R 1 , R 2 and X may be the same or different from each other, but at least one R 1 in one molecule represents an aryl group.
 (3)上記有機ジルコニウム化合物(C)の含有量が、上記シリコーン樹脂(A)および上記ポリシロキサン化合物(B)の合計100質量部に対して、0.001~10質量部である、上記(1)または(2)に記載の硬化性樹脂組成物。 (3) The content of the organozirconium compound (C) is 0.001 to 10 parts by mass with respect to 100 parts by mass in total of the silicone resin (A) and the polysiloxane compound (B). The curable resin composition according to 1) or (2).
 (4)上記ヒドロシリル化反応用触媒(D)の含有量が、上記シリコーン樹脂(A)および上記ポリシロキサン化合物(B)の合計100質量部に対して、0.00001~0.1質量部である、上記(1)~(3)のいずれかに記載の硬化性樹脂組成物。 (4) The content of the hydrosilylation reaction catalyst (D) is 0.00001 to 0.1 parts by mass with respect to a total of 100 parts by mass of the silicone resin (A) and the polysiloxane compound (B). The curable resin composition according to any one of (1) to (3) above.
 (5)さらに、下記平均組成式(f)で表されるシリコーンレジン(F)を含有する、上記(1)~(4)のいずれかに記載の硬化性樹脂組成物。
 (R6SiO3/2a(R6 2SiO2/2b(R6 3SiO1/2c(SiO4/2d(X61/2e …(f)
(式(f)中、R6は同一または異なる置換または非置換の一価炭化水素基であって、一分子中、全R6の10モル%以上はアリール基であり、X6は水素原子またはアルキル基であり、aは正数であり、bは0または正数であり、cは0または正数であり、dは0または正数であり、eは0または正数であり、かつ、b/aは0~10の数であり、c/aは0~0.5の数であり、d/(a+b+c+d)は0~0.3の数であり、e/(a+b+c+d)は0~0.4の数である。)
(5) The curable resin composition according to any one of (1) to (4), further comprising a silicone resin (F) represented by the following average composition formula (f):
(R 6 SiO 3/2 ) a (R 6 2 SiO 2/2 ) b (R 6 3 SiO 1/2 ) c (SiO 4/2 ) d (X 6 O 1/2 ) e (f)
(In formula (f), R 6 is the same or different substituted or unsubstituted monovalent hydrocarbon group, and 10 mol% or more of all R 6 in one molecule is an aryl group, and X 6 is a hydrogen atom. Or an alkyl group, a is a positive number, b is 0 or a positive number, c is 0 or a positive number, d is 0 or a positive number, e is 0 or a positive number, and , B / a is a number from 0 to 10, c / a is a number from 0 to 0.5, d / (a + b + c + d) is a number from 0 to 0.3, and e / (a + b + c + d) is 0. It is a number of ~ 0.4.)
 (6)上記ポリシロキサン化合物(B)の一部または全部が、下記平均組成式(b2)で表されるシリコーンレジンである、上記(1)~(5)のいずれかに記載の硬化性樹脂組成物。
 (R5SiO3/2f(R5 2SiO2/2g(R5 3SiO1/2h(SiO4/2i(X51/2j …(b2)
(式(b2)中、R5は同一または異なるアルケニル基を除く置換または非置換の一価炭化水素基または水素原子であって、一分子中、全R5の0.1~40モル%は水素原子であり、全R5の10モル%以上はアリール基であり、X5は水素原子またはアルキル基であり、hは正数であり、iは0または正数であり、jは0または正数であり、かつ、g/fは0~10の数であり、h/fは0~0.5の数であり、j/(f+g+h+i)は0~0.3の数である。)
(6) The curable resin according to any one of (1) to (5) above, wherein a part or all of the polysiloxane compound (B) is a silicone resin represented by the following average composition formula (b2): Composition.
(R 5 SiO 3/2 ) f (R 5 2 SiO 2/2 ) g (R 5 3 SiO 1/2 ) h (SiO 4/2 ) i (X 5 O 1/2 ) j (b2)
(In the formula (b2), R 5 is a substituted or unsubstituted monovalent hydrocarbon group or a hydrogen atom excluding the same or different alkenyl groups, and 0.1 to 40 mol% of all R 5 in one molecule is Is a hydrogen atom, 10 mol% or more of the total R 5 is an aryl group, X 5 is a hydrogen atom or an alkyl group, h is a positive number, i is 0 or a positive number, and j is 0 or (It is a positive number, g / f is a number from 0 to 10, h / f is a number from 0 to 0.5, and j / (f + g + h + i) is a number from 0 to 0.3.)
 (7)光半導体素子封止用組成物である、上記(1)~(6)のいずれかに記載の硬化性樹脂組成物。 (7) The curable resin composition according to any one of (1) to (6) above, which is an optical semiconductor element sealing composition.
 本発明によれば、密着性に優れ、かつ、硬化物が良好な透明性および高屈折率を有する、硬化性樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a curable resin composition having excellent adhesion and having a cured product having good transparency and a high refractive index.
 本発明の硬化性樹脂組成物(以下、「本発明の組成物」ともいう)は、1分子中に1個以上のアリール基を有し、かつ、両末端にアルケニル基およびアルコキシ基を有するシリコーン樹脂(A)と、1分子中に1個以上のアリール基および2個以上のSi-H結合を有するポリシロキサン化合物(B)と、有機ジルコニウム化合物(C)と、ヒドロシリル化反応用触媒(D)と、を含有する硬化性樹脂組成物である。
 以下、本発明の組成物が含有する各成分について詳細に説明する。
The curable resin composition of the present invention (hereinafter also referred to as “the composition of the present invention”) is a silicone having one or more aryl groups in one molecule and having an alkenyl group and an alkoxy group at both ends. Resin (A), polysiloxane compound (B) having one or more aryl groups and two or more Si—H bonds in one molecule, organozirconium compound (C), hydrosilylation reaction catalyst (D ) And a curable resin composition.
Hereinafter, each component contained in the composition of the present invention will be described in detail.
 <シリコーン樹脂(A)>
 本発明の組成物が含有するシリコーン樹脂(A)は、1分子中に1個以上のアリール基を有し、かつ、両末端にアルケニル基およびアルコキシ基を有するシリコーン樹脂である。
 本発明の組成物は、被着体に対する密着性が向上するが、これは、シリコーン樹脂(A)を含有することにより、アルケニル基による付加型反応と、アルコキシ基による縮合反応とが可能になるためと推測される。
<Silicone resin (A)>
The silicone resin (A) contained in the composition of the present invention is a silicone resin having one or more aryl groups in one molecule and having an alkenyl group and an alkoxy group at both ends.
The composition of the present invention has improved adhesion to the adherend, but it can be added by an alkenyl group and a condensation reaction by an alkoxy group by containing the silicone resin (A). It is presumed that.
 また、本発明の組成物は、アリール基を有するシリコーン樹脂(A)を含有することにより、硬化物が高い屈折率を示す。これは、アリール基の分極率が高く、分子間相互作用が働くためと考えられる。硬化物が高い屈折率を示すため、本発明の組成物が光半導体封止用組成物である場合には、光の取り出し効率が改善される。
 さらに、アリール基はメチル基等と比べて分子間相互作用が働くため、ガス透過性も改善され、耐硫化性の向上も期待できる。
 なお、本発明において、アリール基とは、置換または非置換のアリール基を意味するものとする。
Moreover, the hardened | cured material shows a high refractive index because the composition of this invention contains the silicone resin (A) which has an aryl group. This is presumably because the polarizability of the aryl group is high and intermolecular interaction works. Since the cured product exhibits a high refractive index, the light extraction efficiency is improved when the composition of the present invention is a composition for encapsulating an optical semiconductor.
Furthermore, since the intermolecular interaction works in the aryl group as compared with the methyl group or the like, the gas permeability is improved, and an improvement in sulfur resistance can be expected.
In the present invention, the aryl group means a substituted or unsubstituted aryl group.
 シリコーン樹脂(A)においては、ケイ素原子に結合する全有機基(以下、「ケイ素原子結合全有機基」ともいう)中のアリール基の含有量が、5モル%以上であるのが好ましく、10モル%以上であるのがより好ましい。アリール基の含有量がこの範囲であれば、本発明の組成物は、粘度が適切で、硬化物がより高屈折率となる。また、ケイ素原子結合全有機基中のアリール基の含有量は、99モル%以下であるのが好ましい。
 なお、ケイ素原子に結合する「有機基」としては、特に限定されず、例えば、後述するR1が示す置換または非置換の一価炭化水素基が挙げられる(以下、同様)。
In the silicone resin (A), the content of aryl groups in all organic groups bonded to silicon atoms (hereinafter also referred to as “silicon atom bonded total organic groups”) is preferably 5 mol% or more. More preferably, it is at least mol%. If the content of the aryl group is within this range, the composition of the present invention has an appropriate viscosity and the cured product has a higher refractive index. Moreover, it is preferable that content of the aryl group in a silicon atom bond all organic group is 99 mol% or less.
The “organic group” bonded to the silicon atom is not particularly limited, and examples thereof include a substituted or unsubstituted monovalent hydrocarbon group represented by R 1 described later (hereinafter the same).
 本発明の組成物に含有されるシリコーン樹脂(A)としては、1分子中に1個以上のアリール基を有し、かつ、両末端にアルケニル基およびアルコキシ基を有するシリコーン樹脂であれば特に限定されないが、下記式(A1)で表されるシリコーン樹脂であるのが好ましい。 The silicone resin (A) contained in the composition of the present invention is particularly limited as long as it is a silicone resin having one or more aryl groups in one molecule and having an alkenyl group and an alkoxy group at both ends. However, it is preferably a silicone resin represented by the following formula (A1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(A1)中、R1は置換または非置換の一価炭化水素基を示し、R2はアルキル基を示し、Xはアルケニル基を示し、rは0または1の整数を示し、nは1以上の整数を示す。複数のR1,R2およびXは、それぞれ同一であっても異なっていてもよいが、1分子中、少なくとも1個のR1は、アリール基を示す。
 また、nが示す整数は、3~1000の整数であるのが好ましく、シリコーン樹脂(A)の重量平均分子量に対応する数値にすることができる。
In formula (A1), R 1 represents a substituted or unsubstituted monovalent hydrocarbon group, R 2 represents an alkyl group, X represents an alkenyl group, r represents an integer of 0 or 1, and n represents 1 The above integers are shown. A plurality of R 1 , R 2 and X may be the same or different from each other, but at least one R 1 in one molecule represents an aryl group.
The integer represented by n is preferably an integer of 3 to 1000, and can be a numerical value corresponding to the weight average molecular weight of the silicone resin (A).
 R1が示す置換または非置換の一価炭化水素基(アリール基を除く)としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、シクロペンチル基、シクロヘキシル基などの炭素数1~18のアルキル基;ビニル基、プロペニル基、アリル基、ヘキセニル基、オクテニル基、シクロペンテニル基、シクロヘキセニル基などの炭素数2~18のアルケニル基;ベンジル基、フェネチル基などの炭素数7~18のアラルキル基;等が挙げられる。
 これらのうち、炭素数1~18のアルキル基であるのが好ましく、炭素数1~10のアルキル基であるのがより好ましく、炭素数1~6のアルキル基であるのがさらに好ましく、メチル基、エチル基であるのが特に好ましい。
Examples of the substituted or unsubstituted monovalent hydrocarbon group (excluding the aryl group) represented by R 1 include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl Group, tert-butyl group, various pentyl groups, various hexyl groups, various octyl groups, various decyl groups, cyclopentyl groups, cyclohexyl groups and other alkyl groups having 1 to 18 carbon atoms; vinyl group, propenyl group, allyl group, hexenyl group Alkenyl groups having 2 to 18 carbon atoms such as octenyl group, cyclopentenyl group and cyclohexenyl group; aralkyl groups having 7 to 18 carbon atoms such as benzyl group and phenethyl group; and the like.
Among these, an alkyl group having 1 to 18 carbon atoms is preferable, an alkyl group having 1 to 10 carbon atoms is more preferable, an alkyl group having 1 to 6 carbon atoms is more preferable, and a methyl group Particularly preferred is an ethyl group.
 また、R1が示す置換または非置換の一価炭化水素基は、アリール基を含む。このアリール基は、置換または非置換のアリール基であり、具体的には、例えば、フェニル基、ナフチル基などの炭素数6~18の非置換のアリール基;トリル基、キシリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ペンチルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ウンデシルフェニル基、ドデシルフェニル基などの炭素数7~18のアルキルアリール基;等が挙げられる。
 これらのうち、本発明の組成物の硬化物がより高い屈折率を示すという理由から、炭素数6~18の非置換のアリール基であるのが好ましく、フェニル基であるのがより好ましい。
Further, the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 includes an aryl group. This aryl group is a substituted or unsubstituted aryl group. Specifically, for example, an aryl group having 6 to 18 carbon atoms such as a phenyl group and a naphthyl group; a tolyl group, a xylyl group, an ethylphenyl group Alkyl having 7 to 18 carbon atoms such as propylphenyl group, butylphenyl group, pentylphenyl group, hexylphenyl group, heptylphenyl group, octylphenyl group, nonylphenyl group, decylphenyl group, undecylphenyl group, dodecylphenyl group, etc. Aryl group; and the like.
Of these, an unsubstituted aryl group having 6 to 18 carbon atoms is preferable, and a phenyl group is more preferable because the cured product of the composition of the present invention exhibits a higher refractive index.
 R2が示すアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、各種ペンチル基、各種ヘキシル基、各種オクチル基、各種デシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 これらのうち、硬化性、密着性の観点から、炭素数1~10のアルキル基であるのが好ましく、炭素数1~6のアルキル基であるのがより好ましく、メチル基、エチル基であるのがさらに好ましい。
 R2がアルキル基を示すことにより、式(A1)中においては、「-OR2」がアルコキシ基を示す。
Examples of the alkyl group represented by R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, various pentyl groups, and various hexyl groups. , Various octyl groups, various decyl groups, cyclopentyl groups, cyclohexyl groups, and the like.
Among these, from the viewpoints of curability and adhesion, an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 6 carbon atoms is more preferable, and a methyl group and an ethyl group are preferable. Is more preferable.
When R 2 represents an alkyl group, “—OR 2 ” represents an alkoxy group in the formula (A1).
 Xが示すアルケニル基としては、例えば、ビニル基、プロペニル基、アリル基、ヘキセニル基、オクテニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられ、本発明の組成物の硬化性が優れるという理由から、ビニル基、アリル基であるのが好ましい。 Examples of the alkenyl group represented by X include a vinyl group, a propenyl group, an allyl group, a hexenyl group, an octenyl group, a cyclopentenyl group, a cyclohexenyl group, and the like, because the curability of the composition of the present invention is excellent. , Vinyl group and allyl group are preferable.
 シリコーン樹脂(A)の重量平均分子量(Mw)としては、機械特性、粘度操作のしやすさ、および、反応操作の容易さの観点から、500~1,000,000であるのが好ましい。
 なお、本発明において、重量平均分子量とは、クロロホルムを溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量であるものとする。
The weight average molecular weight (Mw) of the silicone resin (A) is preferably 500 to 1,000,000 from the viewpoints of mechanical properties, ease of viscosity operation, and ease of reaction operation.
In addition, in this invention, a weight average molecular weight shall be the weight average molecular weight of polystyrene conversion by the gel permeation chromatography (GPC) which uses chloroform as a solvent.
 また、シリコーン樹脂(A)の25℃における粘度としては、機械特性、粘度操作のしやすさ、および、反応操作の容易さの観点から、20~1,000,000mPa・sであるのが好ましく、500~100,000mPa・sであるのがより好ましい。
 なお、本発明において、粘度とは、JIS K7117-1の4.1(ブルックフィールド形回転粘度計)に準拠し、25℃において測定されたものとする。
The viscosity of the silicone resin (A) at 25 ° C. is preferably 20 to 1,000,000 mPa · s from the viewpoints of mechanical properties, ease of viscosity operation, and ease of reaction operation. 500 to 100,000 mPa · s is more preferable.
In the present invention, the viscosity is measured at 25 ° C. in accordance with 4.1 (Brookfield rotary viscometer) of JIS K7117-1.
 (シリコーン樹脂(A)の製造方法)
 このようなシリコーン樹脂(A)は、例えば、1分子中に1個以上のアリール基を有し、かつ、両末端にシラノール基を有するシリコーン樹脂と、1分子中に1個以上のアルケニル基を有するアルコキシシランと、の反応により得られるものである。
 より具体的には、シリコーン樹脂(A)は、後述するシリコーン樹脂(a1)と後述するアルコキシシラン(a2)との反応により得られるものであるのが好ましい。以下、シリコーン樹脂(A)の製造方法について説明する。
(Manufacturing method of silicone resin (A))
Such a silicone resin (A) includes, for example, a silicone resin having one or more aryl groups in one molecule and silanol groups at both ends, and one or more alkenyl groups in one molecule. It is obtained by reaction with the alkoxysilane it has.
More specifically, the silicone resin (A) is preferably obtained by a reaction between a silicone resin (a1) described later and an alkoxysilane (a2) described later. Hereinafter, the manufacturing method of a silicone resin (A) is demonstrated.
  [シリコーン樹脂(a1)]
 シリコーン樹脂(A)の製造方法に用いられるシリコーン樹脂(a1)は、下記式(1)で表される両末端にシラノール基を有するシリコーン樹脂である。なお、シラノール基とは、ケイ素原子(Si)にヒドロキシ基(-OH)が直接結合したものをいう。
[Silicone resin (a1)]
The silicone resin (a1) used in the method for producing the silicone resin (A) is a silicone resin having silanol groups at both ends represented by the following formula (1). The silanol group means a group in which a hydroxy group (—OH) is directly bonded to a silicon atom (Si).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)中、R1は上述したR1と同義であり、複数のR1は、それぞれ同一であっても異なっていてもよいが、1分子中、少なくとも1個のR1は、アリール基を示す。mは1以上の整数を示す。
 mが示す整数としては、3~1000の整数であるのが好ましく、シリコーン樹脂(a1)の重量平均分子量に対応する数値にすることができる。
In formula (1), R 1 has the same meaning as R 1 described above, and a plurality of R 1 may be the same or different, but at least one R 1 is aryl in one molecule. Indicates a group. m represents an integer of 1 or more.
The integer represented by m is preferably an integer of 3 to 1000, and can be a numerical value corresponding to the weight average molecular weight of the silicone resin (a1).
 シリコーン樹脂(a1)の重量平均分子量(Mw)としては、機械特性、得られるシリコーン樹脂(A)の粘度操作のしやすさ、および、反応操作の容易さの観点から、500~1,000,000であるのが好ましい。
 また、シリコーン樹脂(a1)の25℃における粘度としては、同様の観点から、20~1,000,000mPa・sであるのが好ましく、500~100,000mPa・sであるのがより好ましい。
The weight average molecular weight (Mw) of the silicone resin (a1) is 500 to 1,000,000 in terms of mechanical properties, ease of viscosity operation of the resulting silicone resin (A), and ease of reaction operation. 000 is preferred.
The viscosity of the silicone resin (a1) at 25 ° C. is preferably 20 to 1,000,000 mPa · s, more preferably 500 to 100,000 mPa · s from the same viewpoint.
  [アルコキシシラン(a2)]
 シリコーン樹脂(A)の製造方法に用いられるアルコキシシラン(a2)は、下記式(2)で表される1分子中に少なくとも2個のアルコキシ基を有するアルコキシシランである。
[Alkoxysilane (a2)]
The alkoxysilane (a2) used in the method for producing the silicone resin (A) is an alkoxysilane having at least two alkoxy groups in one molecule represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(2)中、R2,Xおよびrは、上述したR2,Xおよびrと同義である。複数のR2は、それぞれ同一であっても異なっていてもよい。 In the formula (2), R 2 , X and r are synonymous with R 2 , X and r described above. A plurality of R 2 may be the same or different.
 アルコキシシラン(a2)の重量平均分子量(Mw)としては、反応性、機械特性、得られるシリコーン樹脂(A)の粘度操作のしやすさ、および、反応操作の容易さの観点から、100~2,000であるのが好ましく、140~1,000であるのがより好ましい。 The weight average molecular weight (Mw) of the alkoxysilane (a2) is 100 to 2 from the viewpoints of reactivity, mechanical properties, ease of viscosity operation of the resulting silicone resin (A), and ease of reaction operation. 1,000 is preferable, and 140 to 1,000 is more preferable.
  [カルボン酸化合物(a3)]
 シリコーン樹脂(a1)とアルコキシシラン(a2)との反応は、下記式(3)で表される1分子中に少なくとも1個のカルボキシ基を有するカルボン酸化合物(a1)の存在下で行われるのが好ましい。これにより、緩やかな条件(低温かつ短時間)で、目的とするシリコーン樹脂(A)を得ることができる。
[Carboxylic acid compound (a3)]
The reaction between the silicone resin (a1) and the alkoxysilane (a2) is performed in the presence of a carboxylic acid compound (a1) having at least one carboxy group in one molecule represented by the following formula (3). Is preferred. Thereby, the target silicone resin (A) can be obtained under mild conditions (low temperature and short time).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(3)中、R3は置換または非置換の一価炭化水素基または水素原子を示す。R3が示す置換または非置換の一価炭化水素基としては、R1が示す置換または非置換の一価炭化水素基として記載したものが挙げられ、なかでも、反応後における除去の容易さ、シリコーン樹脂との相溶性、および、入手のしやすさという観点から、一価の脂肪族炭化水素基であるのが好ましく、アルキル基であるのがより好ましく、メチル基、エチル基、n-プロピル基であるのがさらに好ましい。 In the formula (3), R 3 represents a substituted or unsubstituted monovalent hydrocarbon group or a hydrogen atom. Examples of the substituted or unsubstituted monovalent hydrocarbon group represented by R 3 include those described as the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 , among others, the ease of removal after the reaction, From the viewpoint of compatibility with the silicone resin and availability, it is preferably a monovalent aliphatic hydrocarbon group, more preferably an alkyl group, methyl group, ethyl group, n-propyl group. More preferably, it is a group.
  [反応工程]
 シリコーン樹脂(A)の製造方法は、シリコーン樹脂(a1)とアルコキシシラン(a2)とを、カルボン酸化合物(a3)の存在下で反応させて、反応生成物を得る工程(以下、「反応工程」ともいう)を備える。
 反応工程において、各成分の含有量比は特に限定されないが、反応操作の容易さ、および、反応再現性の観点から、シリコーン樹脂(a1)100質量部に対して、アルコキシシラン(a2)5~100質量部、カルボン酸化合物(a3)0.001~10質量部であるのが好ましい。
[Reaction process]
The method for producing the silicone resin (A) comprises a step of reacting the silicone resin (a1) and the alkoxysilane (a2) in the presence of the carboxylic acid compound (a3) to obtain a reaction product (hereinafter referred to as “reaction step”). ").
In the reaction step, the content ratio of each component is not particularly limited, but from the viewpoint of ease of reaction operation and reaction reproducibility, alkoxysilane (a2) 5 to 100 parts by mass of silicone resin (a1) The amount is preferably 100 parts by mass and 0.001 to 10 parts by mass of the carboxylic acid compound (a3).
 シリコーン樹脂(a1)とアルコキシシラン(a2)との反応は、撹拌により行われるのが好ましい。また、撹拌に際しては、より緩やかな反応条件という観点から、60~120℃の温度範囲で加熱するのが好ましく、撹拌時間(反応時間)は、3~12時間であるのが好ましい。
 反応工程において、撹拌および加熱を行う方法は、特に限定されず、従来公知の方法によって行うことができる。
The reaction between the silicone resin (a1) and the alkoxysilane (a2) is preferably performed by stirring. In stirring, it is preferable to heat in a temperature range of 60 to 120 ° C. from the viewpoint of milder reaction conditions, and the stirring time (reaction time) is preferably 3 to 12 hours.
In the reaction step, the method of stirring and heating is not particularly limited, and can be performed by a conventionally known method.
 このような反応工程によって、カルボン酸化合物(a3)が触媒として機能し、シリコーン樹脂(a1)とアルコキシシラン(a2)との反応が進行する。すなわち、シリコーン樹脂(a1)が有する「-OH」と、アルコキシシラン(a2)が有する「-OR2」とが反応し、副生成物として「R2OH」を与えて、上述したシリコーン樹脂(A)が主生成物として生成する。
 この反応工程を、より具体的に説明すると、例えば、下記式(3′)で表されるカルボン酸化合物(a3)が触媒として用いられ、下記式(1′)で表されるシリコーン樹脂(a1)が有する「-OH」と、下記式(2′)で表されるアルコキシシラン(a2)が有する「-OMe」とが反応し、副生成物として「MeOH」を与えて、下記式(A1′)で表されるシリコーン樹脂(A)が主生成物として生成する。
 なお、下記式中「Me」はメチル基を示し、「Ph」はフェニル基を示し、「Vi」はビニル基を示す(以下、同様)。また、下記式中、kおよびlは、それぞれ、1以上の整数を示す。
Through such a reaction step, the carboxylic acid compound (a3) functions as a catalyst, and the reaction between the silicone resin (a1) and the alkoxysilane (a2) proceeds. That is, “—OH” possessed by the silicone resin (a1) and “—OR 2 ” possessed by the alkoxysilane (a2) react to give “R 2 OH” as a by-product, whereby the above-described silicone resin ( A) is formed as the main product.
This reaction process will be described more specifically. For example, a carboxylic acid compound (a3) represented by the following formula (3 ′) is used as a catalyst, and a silicone resin (a1 represented by the following formula (1 ′) is used. ) Reacts with “—OMe” of the alkoxysilane (a2) represented by the following formula (2 ′) to give “MeOH” as a by-product to give the following formula (A1) The silicone resin (A) represented by ′) is produced as the main product.
In the following formulae, “Me” represents a methyl group, “Ph” represents a phenyl group, and “Vi” represents a vinyl group (hereinafter the same). In the following formulae, k and l each represent an integer of 1 or more.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 反応工程においては、1H-NMRによって反応追跡を行い、シリコーン樹脂(a1)が有するシラノール基に由来するピークの消滅、または、反応に用いた成分以外の成分に由来するピークの出現を確認することにより、主生成物であるシリコーン樹脂(A)と副生成物とを含む反応生成物が得られたものとして、反応終了とすることができる。 In the reaction step, the reaction is traced by 1 H-NMR to confirm the disappearance of the peak derived from the silanol group of the silicone resin (a1) or the appearance of a peak derived from a component other than the component used in the reaction. Thus, the reaction can be completed as a reaction product containing the silicone resin (A) as a main product and a by-product.
  [除去工程]
 さらに、本発明におけるシリコーン樹脂(A)の製造方法は、上記反応生成物から副生成物を除去し、主生成物であるシリコーン樹脂(A)を得る工程(以下、「除去工程」ともいう)を備えていてもよい。
 副生成物の除去方法は、特に限定されず、例えば、反応生成物を加熱しながら、減圧条件下で撹拌することにより行う方法が挙げられる。
 このとき、加熱温度、圧力、撹拌時間等の条件は、特に限定されず、生成する副生成物に応じて、適宜設定することができるが、副生成物とともに、未反応のアルコキシシラン(a2)および触媒であるカルボン酸化合物(a3)も同時に除去できる条件であるのが好ましい。
 例えば、副生成物として「MeOH」(メタノール)が生成する場合には、加熱温度は120~160℃であるのが好ましく、圧力は1~30mmHgであるのが好ましく、撹拌時間は2~5時間であるのが好ましい。
 除去工程においては、反応生成物の粘度を測定し、粘度が当初より上昇して不変となったところで、副生成物、未反応のアルコキシシラン(a2)およびカルボン酸化合物(a3)が除去されたものとして、終了とすることができる。
[Removal process]
Furthermore, the method for producing the silicone resin (A) in the present invention is a step of removing a by-product from the reaction product to obtain a silicone resin (A) as a main product (hereinafter also referred to as “removing step”). May be provided.
The method for removing the by-product is not particularly limited, and examples thereof include a method of stirring the reaction product under reduced pressure while heating.
At this time, conditions such as heating temperature, pressure, stirring time and the like are not particularly limited and can be appropriately set according to the by-product to be generated, but together with the by-product, unreacted alkoxysilane (a2) In addition, it is preferable that the conditions are such that the carboxylic acid compound (a3) as a catalyst can be removed at the same time.
For example, when “MeOH” (methanol) is produced as a by-product, the heating temperature is preferably 120 to 160 ° C., the pressure is preferably 1 to 30 mmHg, and the stirring time is 2 to 5 hours. Is preferred.
In the removal step, the viscosity of the reaction product was measured, and the by-product, unreacted alkoxysilane (a2) and carboxylic acid compound (a3) were removed when the viscosity increased from the beginning and remained unchanged. As an end, it can be terminated.
 次に、上述したシリコーン樹脂(A)の硬化に寄与する成分として、ポリシロキサン化合物(B)、有機ジルコニウム化合物(C)、ヒドロシリル化反応用触媒(D)について説明する。 Next, the polysiloxane compound (B), the organic zirconium compound (C), and the hydrosilylation catalyst (D) will be described as components that contribute to the curing of the above-described silicone resin (A).
 <ポリシロキサン化合物(B)>
 本発明の組成物に含有されるポリシロキサン化合物(B)は、1分子中に1個以上のアリール基および2個以上のSi-H結合を有するポリシロキサン化合物である。ここで、「Si-H結合」とは、シロキサン結合(…Si-O-Si…)で形成された主骨格中のケイ素原子(Si)に水素原子(H)が結合したものいう。
<Polysiloxane compound (B)>
The polysiloxane compound (B) contained in the composition of the present invention is a polysiloxane compound having one or more aryl groups and two or more Si—H bonds in one molecule. Here, the “Si—H bond” means a hydrogen atom (H) bonded to a silicon atom (Si) in a main skeleton formed by a siloxane bond (... Si—O—Si...).
 ポリシロキサン化合物(B)は、シリコーン樹脂(A)が有するアルケニル基に対して付加反応(ヒドロシリル化反応)する。このとき、ポリシロキサン化合物(B)は、1分子中に少なくとも2個のSi-H結合を有しているため、シリコーン樹脂(A)どうしの架橋剤として機能する。 The polysiloxane compound (B) undergoes an addition reaction (hydrosilylation reaction) with respect to the alkenyl group of the silicone resin (A). At this time, since the polysiloxane compound (B) has at least two Si—H bonds in one molecule, it functions as a crosslinking agent between the silicone resins (A).
 ポリシロキサン化合物(B)においては、硬化性を確保する観点から、上述したシリコーン樹脂(A)が有するアルケニル基1モルに対する上記Si-H結合の量(以下、便宜的に「Si-H/Si-Viモル比」ともいう)は、0.5~5.0モルを満たすことが好ましく、0.5~1.5モルであるのがより好ましい。 In the polysiloxane compound (B), from the viewpoint of ensuring curability, the amount of the Si—H bond (hereinafter referred to as “Si—H / Si for convenience” with respect to 1 mol of the alkenyl group of the silicone resin (A) described above. The “−Vi molar ratio”) is preferably 0.5 to 5.0 mol, more preferably 0.5 to 1.5 mol.
 また、ポリシロキサン化合物(B)は、アリール基を有するが、これにより、本発明の組成物においては、上述したアリール基を有するシリコーン樹脂(A)との相溶性に優れ、濁り等が抑えられ、硬化物の透明性に優れる。
 このとき、ポリシロキサン化合物(B)において、ケイ素原子結合全有機基中のアリール基の含有量は、5モル%以上であるのが好ましく、10モル%以上であるのがより好ましい。アリール基の含有量がこの範囲であれば、本発明の組成物は、透明性がより優れ、硬化後の屈折率がより高くなる。また、ケイ素原子結合全有機基中のアリール基の含有量は、99モル%以下であるのが好ましい。
In addition, the polysiloxane compound (B) has an aryl group, which makes the composition of the present invention excellent in compatibility with the above-described silicone resin (A) having an aryl group and suppresses turbidity. Excellent in transparency of cured product.
At this time, in the polysiloxane compound (B), the content of the aryl group in the silicon atom-bonded total organic group is preferably 5 mol% or more, and more preferably 10 mol% or more. If the content of the aryl group is within this range, the composition of the present invention is more excellent in transparency and has a higher refractive index after curing. Moreover, it is preferable that content of the aryl group in a silicon atom bond all organic group is 99 mol% or less.
 ポリシロキサン化合物(B)としては、1分子中に1個以上のアリール基および2個以上のSi-H結合を有するポリシロキサン化合物であれば特に限定されないが、例えば、下記式(b1)で表されるものが挙げられる。 The polysiloxane compound (B) is not particularly limited as long as it is a polysiloxane compound having one or more aryl groups and two or more Si—H bonds in one molecule. For example, the polysiloxane compound (B) is represented by the following formula (b1). What is done.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(b1)中、R4はアルケニル基を除く置換または非置換の一価炭化水素基または水素原子を示し、tは1以上の整数を示す。複数のR4は同一であっても異なっていてもよいが、1分子中、少なくとも1個のR4はアリール基を示し、少なくとも2個のR4は水素原子を示す。
 R4が示す置換または非置換の一価炭化水素基としては、R1が示す置換または非置換の一価炭化水素基として記載したものが挙げられる。
 tが示す整数としては、ポリシロキサン化合物(B)の重量平均分子量に対応する数値にすることができる。
In formula (b1), R 4 represents a substituted or unsubstituted monovalent hydrocarbon group or a hydrogen atom excluding an alkenyl group, and t represents an integer of 1 or more. Several R < 4 > may be the same or different, However, In 1 molecule, at least 1 R < 4 > shows an aryl group and at least 2 R < 4 > shows a hydrogen atom.
Examples of the substituted or unsubstituted monovalent hydrocarbon group represented by R 4 include those described as the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 .
The integer represented by t can be a numerical value corresponding to the weight average molecular weight of the polysiloxane compound (B).
 ポリシロキサン化合物(B)の重量平均分子量(Mw)としては、本発明の組成物の密着性がより優れ、かつ、硬化後の物性も良好になるという理由から、100~10,000であるのが好ましく、120~5,000であるのがより好ましい。
 また、ポリシロキサン化合物(B)の25℃における粘度としては、相溶性および作業性の観点から、0.1~10,000mPa・sであるのが好ましく、1~100mPa・sであるのがより好ましい。
The weight average molecular weight (Mw) of the polysiloxane compound (B) is 100 to 10,000 because the adhesiveness of the composition of the present invention is more excellent and the physical properties after curing are also improved. It is preferably 120 to 5,000.
The viscosity of the polysiloxane compound (B) at 25 ° C. is preferably from 0.1 to 10,000 mPa · s, more preferably from 1 to 100 mPa · s from the viewpoints of compatibility and workability. preferable.
 式(b1)で表されるポリシロキサン化合物(B)としては市販品を使用することができ、具体的には、例えば、下記式(b1′)で表される、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン-メチルフェニルシロキサン共重合体(HPM-502、Gelest社製、Mw:4,300、p:q=1:1、ケイ素原子結合全有機基中のフェニル基の含有量:33モル%)が挙げられる。 As the polysiloxane compound (B) represented by the formula (b1), a commercially available product can be used. Specifically, for example, both terminal dimethylhydrogensiloxy groups represented by the following formula (b1 ′) Blocked methylhydrogensiloxane-methylphenylsiloxane copolymer (HPM-502, manufactured by Gelest, Mw: 4,300, p: q = 1: 1, content of phenyl groups in all silicon atom-bonded organic groups: 33 Mol%).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、ポリシロキサン化合物(B)は、その一部または全部が、下記平均組成式(b2)で表されるシリコーンレジンであってもよい。
 (R5SiO3/2f(R5 2SiO2/2g(R5 3SiO1/2h(SiO4/2i(X51/2j …(b2)
(式(b2)中、R5は同一または異なるアルケニル基を除く置換または非置換の一価炭化水素基または水素原子であって、一分子中、全R5の0.1~40モル%は水素原子であり、全R5の10モル%以上はアリール基であり、X5は水素原子またはアルキル基であり、hは正数であり、iは0または正数であり、jは0または正数であり、かつ、g/fは0~10の数であり、h/fは0~0.5の数であり、j/(f+g+h+i)は0~0.3の数である。)
The polysiloxane compound (B) may be partly or wholly a silicone resin represented by the following average composition formula (b2).
(R 5 SiO 3/2 ) f (R 5 2 SiO 2/2 ) g (R 5 3 SiO 1/2 ) h (SiO 4/2 ) i (X 5 O 1/2 ) j (b2)
(In the formula (b2), R 5 is a substituted or unsubstituted monovalent hydrocarbon group or a hydrogen atom excluding the same or different alkenyl groups, and 0.1 to 40 mol% of all R 5 in one molecule is Is a hydrogen atom, 10 mol% or more of the total R 5 is an aryl group, X 5 is a hydrogen atom or an alkyl group, h is a positive number, i is 0 or a positive number, and j is 0 or (It is a positive number, g / f is a number from 0 to 10, h / f is a number from 0 to 0.5, and j / (f + g + h + i) is a number from 0 to 0.3.)
 式(b2)中の6が示す置換または非置換の一価炭化水素基としては、R1が示す置換または非置換の一価炭化水素基として記載したものであって、アルケニル基を除くものが挙げられる。 Examples of the substituted or unsubstituted monovalent hydrocarbon group represented by 6 in the formula (b2) are those described as the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 and excluding the alkenyl group. Can be mentioned.
 <有機ジルコニウム化合物(C)>
 本発明の組成物に含有される有機ジルコニウム化合物(C)は、シリコーン樹脂(A)が有するアルコキシ基の縮合反応を促進する縮合触媒として機能する。
 本発明の組成物は、シリコーン樹脂(A)と併用させて、有機ジルコニウム化合物(C)を含有することにより、密着性に優れる。
<Organic zirconium compound (C)>
The organozirconium compound (C) contained in the composition of the present invention functions as a condensation catalyst that accelerates the condensation reaction of the alkoxy group of the silicone resin (A).
The composition of the present invention is excellent in adhesion by containing the organic zirconium compound (C) in combination with the silicone resin (A).
 例えば、縮合触媒として有機チタン化合物を使用した場合においては、得られる硬化物は着色して透明性が劣るが、有機ジルコニウム化合物(C)を使用した本発明の組成物の硬化物は、着色が抑えられ、透明性に優れる。これは、ジルコニウムのd電子の遷移がチタンに比べて起こりにくいためと考えられる。 For example, when an organic titanium compound is used as the condensation catalyst, the resulting cured product is colored and inferior in transparency, but the cured product of the composition of the present invention using the organic zirconium compound (C) is colored. Suppressed and excellent in transparency. This is presumably because the transition of d electrons in zirconium is less likely to occur than in titanium.
 有機ジルコニウム化合物(C)としては、特に限定されないが、例えば、ジルコニウムアルコキシド、ジルコニウムキレート等が好適に用いられる。 The organic zirconium compound (C) is not particularly limited, but for example, zirconium alkoxide, zirconium chelate and the like are preferably used.
 ジルコニウムアルコキシドとしては、特に限定されず、例えば、テトラエトキシジルコニウム、テトラ-n-プロポキシジルコニウム、テトラ-i-プロポキシジルコニウム、テトラ-n-ブトキシジルコニウム、テトラ-i-ブトキシジルコニウム、テトラ-sec-ブトキシジルコニウム、テトラ-t-ブトキシジルコニウム、テトラ-2-エチルヘキシルジルコニウム等が挙げられ、なかでも、テトラ-n-ブトキシジルコニウム、テトラ-2-エチルヘキシルジルコニウムが好ましい。 The zirconium alkoxide is not particularly limited, and examples thereof include tetraethoxyzirconium, tetra-n-propoxyzirconium, tetra-i-propoxyzirconium, tetra-n-butoxyzirconium, tetra-i-butoxyzirconium, tetra-sec-butoxyzirconium. Tetra-t-butoxyzirconium, tetra-2-ethylhexylzirconium and the like. Among them, tetra-n-butoxyzirconium and tetra-2-ethylhexylzirconium are preferable.
 ジルコニウムキレートとしては、特に限定されず、例えば、トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-i-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-sec-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-t-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-n-プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-i-プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-sec-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-t-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-n-プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-i-プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-n-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-sec-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-t-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-n-プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-i-プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-n-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-sec-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-t-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-n-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-i-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-n-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-sec-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-t-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-n-プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-i-プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-n-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-sec-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-t-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム等が挙げられ、なかでも、ジ-i-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-i-プロポキシ・ビス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウムが好ましい。 The zirconium chelate is not particularly limited, and examples thereof include triethoxy mono (acetylacetonato) zirconium, tri-n-propoxy mono (acetylacetonato) zirconium, tri-i-propoxymono (acetylacetonato) zirconium, Tri-n-butoxy mono (acetylacetonato) zirconium, tri-sec-butoxy mono (acetylacetonato) zirconium, tri-t-butoxymono (acetylacetonato) zirconium, diethoxybis (acetylacetonato) Zirconium, di-n-propoxy bis (acetylacetonato) zirconium, di-i-propoxy bis (acetylacetonato) zirconium, di-n-butoxy bis (acetylacetonato) zirconium Di-sec-butoxy bis (acetylacetonato) zirconium, di-t-butoxy bis (acetylacetonato) zirconium, monoethoxy tris (acetylacetonato) zirconium, mono-n-propoxy tris (acetylacetonate) ) Zirconium, mono-i-propoxy-tris (acetylacetonato) zirconium, mono-n-butoxy-tris (acetylacetonato) zirconium, mono-sec-butoxy-tris (acetylacetonato) zirconium, mono-t-butoxy・ Tris (acetylacetonate) zirconium, tetrakis (acetylacetonato) zirconium, triethoxy mono (ethylacetoacetate) zirconium, tri-n-propoxy mono (ethylacetoacetate) ) Zirconium, tri-i-propoxy mono (ethyl acetoacetate) zirconium, tri-n-butoxy mono (ethyl acetoacetate) zirconium, tri-sec-butoxy mono (ethyl acetoacetate) zirconium, tri-t-butoxy・ Mono (ethyl acetoacetate) zirconium, diethoxy bis (ethyl acetoacetate) zirconium, di-n-propoxy bis (ethyl acetoacetate) zirconium, di-i-propoxy bis (ethyl acetoacetate) zirconium, di-n -Butoxy bis (ethyl acetoacetate) zirconium, di-sec-butoxy bis (ethyl acetoacetate) zirconium, di-t-butoxy bis (ethyl acetoacetate) zirconium, monoethoxy Tris (ethyl acetoacetate) zirconium, mono-n-propoxy tris (ethyl acetoacetate) zirconium, mono-i-propoxy tris (ethyl acetoacetate) zirconium, mono-n-butoxy tris (ethyl acetoacetate) zirconium, Mono-sec-butoxy-tris (ethylacetoacetate) zirconium, mono-t-butoxy-tris (ethylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium, mono (acetylacetonato) tris (ethylacetoacetate) zirconium, Bis (acetylacetonato) bis (ethylacetoacetate) zirconium, tris (acetylacetonato) mono (ethylacetoacetate) zirconium, etc. In either di -i- propoxy bis (ethylacetoacetate) zirconium, di -i- propoxy bis (acetylacetonate) zirconium, tetrakis (acetylacetonato) zirconium are preferred.
 また、本発明に用いられる有機ジルコニウム化合物(C)としては、ジルコニル[(Zr=O)2+]を構成要素として含むジルコニウム金属塩であってもよい。このようなジルコニウム金属塩としては、例えば、ジオクチル酸ジルコニル、ジネオデカン酸ジルコニルなどの脂肪族カルボン酸塩;ナフテン酸ジルコニル、シクロヘキサン酸ジルコニルなどの脂環式カルボン酸塩;安息香酸ジルコニルなどの芳香族カルボン酸塩;等が挙げられる。 Further, the organic zirconium compound (C) used in the present invention may be a zirconium metal salt containing zirconyl [(Zr = O) 2+ ] as a constituent element. Examples of such zirconium metal salts include aliphatic carboxylates such as zirconyl dioctylate and zirconyl dineodecane; alicyclic carboxylates such as zirconyl naphthenate and zirconyl cyclohexane; aromatic carboxylates such as zirconyl benzoate; Acid salt; and the like.
 有機ジルコニウム化合物(C)としては、上述したものを1種単独で用いてもよく、2種以上を併用してもよい。
 有機ジルコニウム化合物(C)の含有量は、シリコーン樹脂(A)およびポリシロキサン化合物(B)の合計100質量部に対して、0.001~10質量部であるのが好ましく、0.01~5質量部であるのが好ましい。
 有機ジルコニウム化合物(C)の含有量がこの範囲であれば、本発明の組成物は、硬化性が優れるとともに、密着性がより優れ、硬化物の透明性もより優れる。
As the organic zirconium compound (C), those described above may be used alone or in combination of two or more.
The content of the organic zirconium compound (C) is preferably 0.001 to 10 parts by mass with respect to 100 parts by mass in total of the silicone resin (A) and the polysiloxane compound (B), and 0.01 to 5 It is preferable that it is a mass part.
If content of an organozirconium compound (C) is this range, while the composition of this invention is excellent in sclerosis | hardenability, adhesiveness is more excellent and transparency of hardened | cured material is also more excellent.
 <ヒドロシリル化反応用触媒(D)>
 本発明の組成物に含有されるヒドロシリル化反応用触媒(D)は、ポリシロキサン化合物(B)と併用されて、シリコーン樹脂(A)のアルケニル基に対する付加反応(ヒドロシリル化反応)を促進する触媒として機能する。
 ヒドロシリル化反応用触媒(D)としては、従来公知のものを用いることができ、例えば、白金系触媒、ロジウム系触媒、パラジウム系触媒等が挙げられ、白金系触媒であることが好ましい。白金系触媒の具体例としては、塩化白金酸、塩化白金酸-オレフィン錯体、塩化白金酸-ジビニルテトラメチルジシロキサン錯体、塩化白金酸-アルコール配位化合物、白金のジケトン錯体等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 ヒドロシリル化反応用触媒(D)の含有量は、触媒量であるが、本発明の組成物の硬化性が優れるという理由から、上述したシリコーン樹脂(A)およびポリシロキサン化合物(B)の合計100質量部に対して、0.00001~0.1質量部であるのが好ましく、0.0001~0.01質量部であるのがより好ましい。
<Hydrosilylation catalyst (D)>
The catalyst for hydrosilylation reaction (D) contained in the composition of the present invention is used in combination with the polysiloxane compound (B) to promote the addition reaction (hydrosilylation reaction) to the alkenyl group of the silicone resin (A). Function as.
As the hydrosilylation catalyst (D), a conventionally known catalyst can be used, and examples thereof include a platinum-based catalyst, a rhodium-based catalyst, a palladium-based catalyst, and the like, and a platinum-based catalyst is preferable. Specific examples of platinum-based catalysts include chloroplatinic acid, chloroplatinic acid-olefin complexes, chloroplatinic acid-divinyltetramethyldisiloxane complexes, chloroplatinic acid-alcohol coordination compounds, platinum diketone complexes, and the like. May be used alone or in combination of two or more.
The content of the hydrosilylation reaction catalyst (D) is a catalytic amount, but because the curability of the composition of the present invention is excellent, a total of 100 of the above-described silicone resin (A) and polysiloxane compound (B). The amount is preferably 0.00001 to 0.1 parts by weight, more preferably 0.0001 to 0.01 parts by weight with respect to parts by weight.
 <硬化遅延剤(E)>
 本発明の組成物は、さらに、硬化遅延剤(E)を含有していてもよい。硬化遅延剤(E)は、本発明の組成物の硬化速度や作業可使時間を調整するための成分であり、例えば、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、フェニルブチノール、1-エチニル-1-シクロヘキサノールなどの炭素-炭素三重結合を有するアルコール誘導体;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-インなどのエンイン化合物;テトラメチルテトラビニルシクロテトラシロキサン、テトラメチルテトラヘキセニルシクロテトラシロキサンなどのアルケニル基含有低分子量シロキサン;メチル-トリス(3-メチル-1-ブチン-3-オキシ)シラン、ビニル-トリス(3-メチル-1-ブチン-3-オキシ)シランなどのアルキン含有シラン;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 硬化遅延剤(E)の含有量は、本発明の組成物の使用方法等に応じて適宜選択されるが、例えば、上述したシリコーン樹脂(A)およびポリシロキサン化合物(B)の合計100質量部に対して、0.00001~0.1質量部であるのが好ましく、0.0001~0.01質量部であるのがより好ましい。
<Curing retarder (E)>
The composition of the present invention may further contain a curing retarder (E). The curing retarder (E) is a component for adjusting the curing rate and working life of the composition of the present invention. For example, 3-methyl-1-butyn-3-ol, 3,5-dimethyl- Alcohol derivatives having a carbon-carbon triple bond such as 1-hexyn-3-ol, phenylbutynol, 1-ethynyl-1-cyclohexanol; 3-methyl-3-penten-1-yne, 3,5-dimethyl- Enyne compounds such as 3-hexen-1-yne; low molecular weight siloxanes containing alkenyl groups such as tetramethyltetravinylcyclotetrasiloxane and tetramethyltetrahexenylcyclotetrasiloxane; methyl-tris (3-methyl-1-butyne-3- Alkyne-containing silanes such as oxy) silane, vinyl-tris (3-methyl-1-butyne-3-oxy) silane; Gerare, may be used those either alone, or in combination of two or more.
Although content of a hardening retarder (E) is suitably selected according to the usage method etc. of the composition of this invention, for example, a total of 100 mass parts of silicone resin (A) mentioned above and a polysiloxane compound (B). The amount is preferably 0.00001 to 0.1 parts by mass, and more preferably 0.0001 to 0.01 parts by mass.
 <シリコーンレジン(F)>
 本発明の組成物は、さらに、下記平均組成式(f)で表されるシリコーンレジン(F)を含有していてもよい。これにより、本発明の組成物は、硬度が高くなり、表面タックが抑制される。
<Silicone resin (F)>
The composition of the present invention may further contain a silicone resin (F) represented by the following average composition formula (f). Thereby, the composition of the present invention has high hardness and suppresses surface tack.
 (R6SiO3/2a(R6 2SiO2/2b(R6 3SiO1/2c(SiO4/2d(X61/2e …(f)
(式(f)中、R6は同一または異なる置換または非置換の一価炭化水素基であって、一分子中、全R6の10モル%以上はアリール基であり、X6は水素原子またはアルキル基であり、aは正数であり、bは0または正数であり、cは0または正数であり、dは0または正数であり、eは0または正数であり、かつ、b/aは0~10の数であり、c/aは0~0.5の数であり、d/(a+b+c+d)は0~0.3の数であり、e/(a+b+c+d)は0~0.4の数である。)
(R 6 SiO 3/2 ) a (R 6 2 SiO 2/2 ) b (R 6 3 SiO 1/2 ) c (SiO 4/2 ) d (X 6 O 1/2 ) e (f)
(In formula (f), R 6 is the same or different substituted or unsubstituted monovalent hydrocarbon group, and 10 mol% or more of all R 6 in one molecule is an aryl group, and X 6 is a hydrogen atom. Or an alkyl group, a is a positive number, b is 0 or a positive number, c is 0 or a positive number, d is 0 or a positive number, e is 0 or a positive number, and , B / a is a number from 0 to 10, c / a is a number from 0 to 0.5, d / (a + b + c + d) is a number from 0 to 0.3, and e / (a + b + c + d) is 0. It is a number of ~ 0.4.)
 式(f)中の6が示す置換または非置換の一価炭化水素基としては、R1が示す置換または非置換の一価炭化水素基として記載したものが挙げられる。 Examples of the substituted or unsubstituted monovalent hydrocarbon group represented by 6 in the formula (f) include those described as the substituted or unsubstituted monovalent hydrocarbon group represented by R 1 .
 シリコーンレジン(F)においては、ケイ素原子結合全有機基中のアリール基の含有量が、5~95モル%であるのが好ましく、20~80モル%であるのがより好ましい。 In the silicone resin (F), the content of aryl groups in the silicon atom-bonded all organic groups is preferably 5 to 95 mol%, more preferably 20 to 80 mol%.
 シリコーンレジン(F)の含有量は、特に限定されないが、例えば、上述したシリコーン樹脂(A)およびポリシロキサン化合物(B)の合計100質量部に対し、10~1000質量部であるのが好ましく、50~500質量部であるのがより好ましい。 The content of the silicone resin (F) is not particularly limited. For example, it is preferably 10 to 1000 parts by mass with respect to 100 parts by mass in total of the silicone resin (A) and the polysiloxane compound (B) described above. More preferred is 50 to 500 parts by mass.
 <密着付与剤(G)>
 本発明の組成物は、さらに、密着付与剤(G)を含有していてもよい。
 密着付与剤(G)としては、例えば、シランカップリング剤が挙げられ、シランカップリング剤の具体例としては、アミノシラン、ビニルシラン、エポキシシラン、メタクリルシラン、イソシアネートシラン、イミノシラン、これらの反応物、これらとポリイソシアネートとの反応により得られる化合物等が挙げられ、エポキシシランであるのが好ましい。
 エポキシシランとしては、エポキシ基とアルコキシシリル基とを有する化合物であれば特に限定されず、例えば、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルメチルジメトキシシランなどのジアルコキシエポキシシラン;γ-グリシドキシプロピルトリメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシランなどのトリアルコキシエポキシシラン;等が挙げられる。
 密着付与剤(G)の含有量は、特に限定されないが、上述したシリコーン樹脂(A)、ポリシロキサン化合物(B)、および、有機ジルコニウム化合物(C)の合計100質量部に対して0.5~10質量部であるのが好ましく、1~5質量部であるのがより好ましい。
<Adhesion imparting agent (G)>
The composition of the present invention may further contain an adhesion promoter (G).
Examples of the adhesion-imparting agent (G) include a silane coupling agent. Specific examples of the silane coupling agent include aminosilane, vinyl silane, epoxy silane, methacryl silane, isocyanate silane, imino silane, reaction products thereof, and the like. The compound etc. which are obtained by reaction with polyisocyanate are mentioned, It is preferable that it is an epoxy silane.
The epoxy silane is not particularly limited as long as it is a compound having an epoxy group and an alkoxysilyl group. For example, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropylethyldiethoxysilane, γ-glycid Dialkoxyepoxysilanes such as xylpropylmethyldiethoxysilane and β- (3,4 epoxycyclohexyl) ethylmethyldimethoxysilane; γ-glycidoxypropyltrimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane And the like, and the like.
The content of the adhesion-imparting agent (G) is not particularly limited, but it is 0.5 with respect to a total of 100 parts by mass of the above-described silicone resin (A), polysiloxane compound (B), and organic zirconium compound (C). It is preferably ˜10 parts by mass, more preferably 1 to 5 parts by mass.
 本発明の組成物の製造方法は、特に限定されず、例えば、上述した必須成分および任意成分を混合することによって製造する方法が挙げられる。
 また、本発明の組成物を硬化して硬化物を得る方法も特に限定されず、例えば、本発明の組成物を、80~200℃、10分~720分加熱する方法が挙げられる。
The manufacturing method of the composition of this invention is not specifically limited, For example, the method of manufacturing by mixing the essential component mentioned above and an arbitrary component is mentioned.
Further, the method for obtaining a cured product by curing the composition of the present invention is not particularly limited, and examples thereof include a method of heating the composition of the present invention at 80 to 200 ° C. for 10 minutes to 720 minutes.
 本発明の組成物は、例えば、ディスプレイ材料、光記録媒体材料、光学機器材料、光部品材料、光ファイバー材料、光・電子機能有機材料、半導体集積回路周辺材料等の分野において、例えば、接着剤、プライマー、封止材等として使用できる。 The composition of the present invention is, for example, in the field of display materials, optical recording medium materials, optical equipment materials, optical component materials, optical fiber materials, optical / electronic functional organic materials, semiconductor integrated circuit peripheral materials, etc. It can be used as a primer, a sealing material and the like.
 とりわけ、本発明の組成物は、密着性に優れ、その硬化物が良好な透明性および高い屈折率を示すことから、光半導体封止用組成物として好適に使用することができる。
 本発明の組成物を適用できる光半導体は特に制限されず、例えば、発光ダイオード(LED)、有機電界発光素子(有機EL)、レーザーダイオード、LEDアレイ等が挙げられる。
 光半導体封止用組成物としての本発明の組成物の使用方法としては、例えば、光半導体に本発明の組成物を付与し、本発明の組成物が付与された光半導体を加熱して本発明の組成物を硬化させる方法が挙げられる。
 このとき、本発明の組成物を付与し硬化させる方法は特に制限されず、例えば、ディスペンサーを使用する方法、ポッティング法、スクリーン印刷、トランスファー成形、インジェクション成形等が挙げられる。
In particular, the composition of the present invention can be suitably used as a composition for encapsulating an optical semiconductor because it has excellent adhesion and its cured product exhibits good transparency and high refractive index.
The optical semiconductor to which the composition of the present invention can be applied is not particularly limited, and examples thereof include a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array.
As a method for using the composition of the present invention as an optical semiconductor sealing composition, for example, the composition of the present invention is applied to an optical semiconductor, and the optical semiconductor to which the composition of the present invention is applied is heated. The method of hardening the composition of invention is mentioned.
At this time, the method for applying and curing the composition of the present invention is not particularly limited, and examples thereof include a method using a dispenser, a potting method, screen printing, transfer molding, and injection molding.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
〔実施例1~3、比較例1~5〕
 <硬化性樹脂組成物の製造>
 下記第1表に示す成分を同表に示す量(単位:質量部)で用い、これらを真空攪拌機で均一に混合して硬化性樹脂組成物(以下、単に「組成物」ともいう。)を製造した。なお、同表中、「Si-H/Si-Viモル比」とは上述したとおりである。
[Examples 1 to 3, Comparative Examples 1 to 5]
<Manufacture of curable resin composition>
The components shown in Table 1 below were used in the amounts shown in the table (unit: parts by mass), and these were uniformly mixed with a vacuum stirrer to give a curable resin composition (hereinafter also simply referred to as “composition”). Manufactured. In the table, “Si—H / Si—Vi molar ratio” is as described above.
 <透過率>
 製造された組成物を、150℃で2時間加熱して硬化させて、硬化物(厚さ=2.0mm)を得た。得られた硬化物について、JIS K 0115:2004に準じ、紫外・可視(UV-Vis)吸収スペクトル測定装置(島津製作所社製)を用いて波長400nmにおける透過率(単位:%)を測定した。測定結果を下記第1表に示す。透過率の値が80%T以上であれば「透明性」に優れるものとして評価できる。
<Transmissivity>
The produced composition was cured by heating at 150 ° C. for 2 hours to obtain a cured product (thickness = 2.0 mm). The obtained cured product was measured for transmittance (unit:%) at a wavelength of 400 nm using an ultraviolet / visible (UV-Vis) absorption spectrum measuring apparatus (manufactured by Shimadzu Corporation) in accordance with JIS K 0115: 2004. The measurement results are shown in Table 1 below. If the transmittance value is 80% T or more, it can be evaluated as being excellent in “transparency”.
 <屈折率>
 製造された組成物を、150℃で2時間加熱して硬化させて、硬化物(厚さ=2.0mm)を得た。得られた硬化物について、JIS K 7105:1981に準拠する測定法でアッベリフレクトメータ(ATAGO社製)を用いて、ナトリウムのスペクトルのD線589.6nmにおける屈折率を測定した。測定結果を下記第1表に示す。屈折率の値が1.43以上であれば高屈折率であると評価でき、1.5以上であればより高屈折率である評価できる。
<Refractive index>
The produced composition was cured by heating at 150 ° C. for 2 hours to obtain a cured product (thickness = 2.0 mm). About the obtained hardened | cured material, the refractive index in D line | wire 589.6nm of the spectrum of sodium was measured by the measuring method based on JISK7105: 1981 using the Abbereflectometer (made by ATAGO). The measurement results are shown in Table 1 below. If the value of the refractive index is 1.43 or more, it can be evaluated as a high refractive index, and if it is 1.5 or more, it can be evaluated as a higher refractive index.
 <引張せん断接着強さ、CF>
 製造された組成物を、接着面積12.5mm×25mmとして、被着体(アルミニウム合金板、A1050P、パルテック社製)の間に挟み込んだ後、150℃で2時間加熱することにより硬化させ、試験体を得た。得られた試験体を用いて、JIS K6850:1999に準拠して、引張試験を行い、引張せん断接着強さ(単位:MPa)を測定した。また、接着面積に対する凝集破壊(CF)面積の割合(単位:%)も測定した。いずれも結果を下記第1表に示す。引張せん断接着強さの値が高いほど、また、CFの値が100に近いほど、密着性に優れるものとして評価できる。
<Tensile shear bond strength, CF>
The prepared composition was bonded to an adherend (aluminum alloy plate, A1050P, manufactured by Partec Co., Ltd.) with an adhesion area of 12.5 mm × 25 mm, and then cured by heating at 150 ° C. for 2 hours, and tested. Got the body. Using the obtained specimen, a tensile test was performed in accordance with JIS K6850: 1999, and the tensile shear bond strength (unit: MPa) was measured. Further, the ratio (unit:%) of the cohesive failure (CF) area to the adhesion area was also measured. The results are shown in Table 1 below. It can be evaluated that the higher the value of tensile shear adhesive strength and the closer the value of CF is to 100, the better the adhesion.
 <リフロー試験、湿熱試験>
 製造された組成物を、LEDパッケージ(エノモト社製)に塗布し、150℃で2時間加熱することにより硬化させて、試験体を作製した。なお、各例ごとに試験体を8個作製した。作製した8個の試験体を、以下2種の試験に供し、硬化物の剥離が確認されなかった試験体の個数をカウントした。この個数が多いほど、密着性に優れるものとして評価できる。
<Reflow test, wet heat test>
The manufactured composition was applied to an LED package (manufactured by Enomoto) and cured by heating at 150 ° C. for 2 hours to prepare a test specimen. In addition, eight test bodies were produced for each example. The eight test specimens thus produced were subjected to the following two types of tests, and the number of test specimens for which peeling of the cured product was not confirmed was counted. The larger the number, the better the adhesion.
 (リフロー試験)
 試験体を、280℃に熱したホットプレート上に40秒間放置した後、硬化物の剥離の有無を目視にて確認した。
 (湿熱試験)
 試験体を、温度85℃、湿度85%の環境下に1000時間放置した後、硬化物の剥離の有無を目視にて確認した。
(Reflow test)
After leaving the test body on a hot plate heated to 280 ° C. for 40 seconds, the presence or absence of peeling of the cured product was visually confirmed.
(Moist heat test)
The specimen was left for 1000 hours in an environment at a temperature of 85 ° C. and a humidity of 85%, and then the presence or absence of peeling of the cured product was visually confirmed.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 第1表中の各成分は、以下のものを使用した。
 ・シリコーン樹脂A1:後述するようにして製造した、フェニル基を有し、かつ、両末端にビニル基およびメトキシ基を有するシリコーン樹脂(Mw:2,000、粘度:250mPa・s、ビニル基の含有量:3.10質量%、ケイ素原子結合全有機基中のフェニル基の含有量:50モル%)。下記式(A1-1)で表され、式中のn′は、シリコーン樹脂A1の重量平均分子量に対応する数値である。
 ・シリコーン樹脂A2:後述するようにして製造した、フェニル基を有し、かつ、両末端にビニル基およびメトキシ基を有するシリコーン樹脂(Mw:1,500、粘度:100mPa・s、ビニル基の含有量:4.51質量%、ケイ素原子結合全有機基中のフェニル基の含有量:50モル%)。下記式(A2-1)で表され、式中のk′、l′は、シリコーン樹脂A2の重量平均分子量に対応する数値であり、かつ、k′:l′=1:1である。
The following were used for each component in Table 1.
Silicone resin A1: Silicone resin having a phenyl group and having a vinyl group and a methoxy group at both ends, produced as described later (Mw: 2,000, viscosity: 250 mPa · s, containing vinyl group) Amount: 3.10% by mass, content of phenyl group in all silicon-bonded organic groups: 50 mol%). It is represented by the following formula (A1-1), and n ′ in the formula is a numerical value corresponding to the weight average molecular weight of the silicone resin A1.
Silicone resin A2: A silicone resin having a phenyl group and having a vinyl group and a methoxy group at both ends, produced as described later (Mw: 1,500, viscosity: 100 mPa · s, containing vinyl group) Amount: 4.51 mass%, content of phenyl group in silicon atom-bonded all organic groups: 50 mol%). It is represented by the following formula (A2-1), and k ′ and l ′ in the formula are numerical values corresponding to the weight average molecular weight of the silicone resin A2, and k ′: l ′ = 1: 1.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ・シリコーン樹脂X1:フェニル基を有し、かつ、両末端にメチル基およびビニル基を有するメチルフェニルシリコーン樹脂(PMV-9925、Gelest社、Mw:2,500、粘度:500mPa・s、ビニル基の含有量:2.2質量%、ケイ素原子結合全有機基中のフェニル基の含有量:50モル%)
 ・シリコーン樹脂X2:下記式(X2)で表される、後述するようにして製造した、フェニル基を有さず、かつ、両末端にビニル基およびメトキシ基を有するシリコーン樹脂(Mw:20,000、粘度:1,000mPa・s、ビニル基の含有量:0.30質量%)
Silicone resin X1: A methylphenyl silicone resin having a phenyl group and having a methyl group and a vinyl group at both ends (PMV-9925, Gelest, Mw: 2,500, viscosity: 500 mPa · s, vinyl group Content: 2.2% by mass, content of phenyl group in all silicon atom-bonded organic groups: 50 mol%)
Silicone resin X2: A silicone resin represented by the following formula (X2), produced as described later, having no phenyl group and having a vinyl group and a methoxy group at both ends (Mw: 20,000) , Viscosity: 1,000 mPa · s, vinyl group content: 0.30% by mass)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 ・ポリシロキサン化合物B1:両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン-メチルフェニルシロキサン共重合体(HPM-502、Gelest社製、Mw:4,300、ケイ素原子結合全有機基中のフェニル基の含有量:33モル%)
 ・ポリシロキサン化合物Z1:下記式(Z1)で表されるオルガノポリシロキサン(HMS-991、Gelest社製、Mw:1,600)
Polysiloxane compound B1: dimethylhydrogensiloxy group-blocked methylhydrogensiloxane-methylphenylsiloxane copolymer (HPM-502, manufactured by Gelest, Mw: 4,300, phenyl group in silicon atom-bonded all organic groups) Content: 33 mol%)
Polysiloxane compound Z1: Organopolysiloxane represented by the following formula (Z1) (HMS-991, manufactured by Gelest, Mw: 1,600)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 ・有機ジルコニウム化合物C1:テトラ-n-ブトキシジルコニウム(オルガチックスZA-65、マツモト交商社製)
 ・有機チタン化合物Y1:テトラ-i-プロポキシチタン(TA-10、マツモトファインケミカル社製)
・ Organic zirconium compound C1: tetra-n-butoxyzirconium (Orgachix ZA-65, manufactured by Matsumoto Trading Co., Ltd.)
Organic titanium compound Y1: Tetra-i-propoxy titanium (TA-10, manufactured by Matsumoto Fine Chemical Co., Ltd.)
 ・ヒドロシリル化反応用触媒D1:塩化白金酸-ジビニルテトラメチルジシロキサン錯体(Gelest社製、Mw:474.68)
 ・硬化遅延剤E1:3-メチル-1-ブチン-3-オール(東京化成工業社製、Mw:100)
 ・シリコーンレジンF1:平均組成式「(PhSiO3/20.9(ViMe2SiO1/20.1」で表されるフェニルシリコーンレジン(ビニル基の含有量:5.6質量%、ケイ素原子結合全有機基中のフェニル基の含有量:75モル%)
 ・密着付与剤G1:γ-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業社製)
Catalyst for hydrosilylation reaction D1: Chloroplatinic acid-divinyltetramethyldisiloxane complex (Gelest, Mw: 474.68)
Curing retarder E1: 3-methyl-1-butyn-3-ol (manufactured by Tokyo Chemical Industry Co., Ltd., Mw: 100)
Silicone resin F1: Phenyl silicone resin represented by an average composition formula “(PhSiO 3/2 ) 0.9 (ViMe 2 SiO 1/2 ) 0.1 ” (vinyl group content: 5.6 mass%, all silicon atoms bonded) (Phyl group content in organic group: 75 mol%)
Adhesion imparting agent G1: γ-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.)
 シリコーン樹脂A1,A2,X2については、以下のとおり製造した。
 まず、2Lの3口フラスコに、ジムロート冷却管とメカニカルスターラーとを備え付け、下記第2表に示す成分(単位は質量部)を封入した。次に、このフラスコをオイルバスに漬けて100℃に加熱しながら、メカニカルスターラーを回転させて、フラスコに封入された成分を撹拌し、6時間反応させた。
 このとき、後述するシリコーン樹脂a1-1,a1-2,a1-3が有するシラノール基に由来するピークの消滅、または、フラスコに封入された成分以外の成分に由来するピークの出現を、1H-NMRによって確認することにより、主生成物(シリコーン樹脂A1,A2,X2)含む反応生成物が得られたものとして、反応終了とした。
 次に、真空ポンプを用いて、反応生成物を、140℃、10mmHgの条件下で3時間撹拌し、粘度が不変となったところで、副生成物、未反応のアルコキシシランa2-1およびカルボン酸化合物a3-1の除去が終了したものとして、シリコーン樹脂A1,A2,X2を得た。
About silicone resin A1, A2, X2, it manufactured as follows.
First, a 2 L 3-neck flask was equipped with a Dimroth condenser and a mechanical stirrer, and the components shown in Table 2 below (unit: parts by mass) were enclosed. Next, the mechanical stirrer was rotated while the flask was immersed in an oil bath and heated to 100 ° C., and the components enclosed in the flask were stirred and reacted for 6 hours.
At this time, the silicone resin a1-1, which will be described later, a1-2, disappearance of a peak derived from a silanol group of the a1-3, or the appearance of a peak derived from a component other than the component enclosed in a flask, 1 H By confirming by -NMR, the reaction was terminated as a reaction product containing the main product (silicone resins A1, A2, and X2) was obtained.
Next, the reaction product was stirred for 3 hours under conditions of 140 ° C. and 10 mmHg using a vacuum pump, and when the viscosity was unchanged, by-products, unreacted alkoxysilane a2-1 and carboxylic acid As the removal of compound a3-1, silicone resins A1, A2 and X2 were obtained.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 第2表中の各成分は、以下のものを使用した。
 ・シリコーン樹脂a1-1:両末端シラノール基ポリメチルフェニルシロキサン(Mw:1,500)
 ・シリコーン樹脂a1-2:両末端シラノール基ジフェニルシロキサン-ジメチルシロキサン共重合体(PDS-1615、Gelest社製、Mw:1,000)
 ・シリコーン樹脂a1-3:両末端シラノールポリジメチルシロキサン(DMS-S27、Gelest社製、Mw:18,000、粘度:800mPa・s)
 ・アルコキシシランa2-1:トリメトキシビニルシラン(KBM-1003、信越化学工業社製、Mw:148.2)
 ・カルボン酸化合物a3-1:酢酸(鹿1級、関東化学社製)
The following were used for each component in Table 2.
Silicone resin a1-1: Silanol group polymethylphenylsiloxane at both ends (Mw: 1,500)
Silicone resin a1-2: Silanol group diphenylsiloxane-dimethylsiloxane copolymer at both terminals (PDS-1615, manufactured by Gelest, Mw: 1,000)
Silicone resin a1-3: Silanol polydimethylsiloxane at both ends (DMS-S27, manufactured by Gelest, Mw: 18,000, viscosity: 800 mPa · s)
Alkoxysilane a2-1: Trimethoxyvinylsilane (KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd., Mw: 148.2)
Carboxylic acid compound a3-1: Acetic acid (Deer grade 1, manufactured by Kanto Chemical Co., Inc.)
 第1表に示す結果を見ると、実施例1~3は、いずれも、透過率の値が高く透明性に優れ、また、高屈折率であった。さらに、密着性にも優れていた。
 これに対し、両末端にメチル基およびビニル基を有する(アルコキシ基を有さない)シリコーン樹脂X1を用いた比較例1~3は、いずれも密着性に劣ることが分かった。
 また、有機チタン化合物Y1を使用した比較例4は、透過率の値が低く、透明性に劣っていた。
 また、フェニル基を有さないシリコーン樹脂X2を使用した比較例5は、低屈折率であった。
As seen from the results shown in Table 1, all of Examples 1 to 3 had high transmittance values, excellent transparency, and a high refractive index. Furthermore, the adhesiveness was also excellent.
On the other hand, it was found that Comparative Examples 1 to 3 using the silicone resin X1 having a methyl group and a vinyl group at both ends (no alkoxy group) were inferior in adhesion.
Moreover, the comparative example 4 using the organic titanium compound Y1 had a low transmittance value and was inferior in transparency.
Further, Comparative Example 5 using the silicone resin X2 having no phenyl group had a low refractive index.

Claims (7)

  1.  1分子中に1個以上のアリール基を有し、かつ、両末端にアルケニル基およびアルコキシ基を有するシリコーン樹脂(A)と、
     1分子中に1個以上のアリール基および2個以上のSi-H結合を有するポリシロキサン化合物(B)と、
     有機ジルコニウム化合物(C)と、
     ヒドロシリル化反応用触媒(D)と、
    を含有する硬化性樹脂組成物。
    A silicone resin (A) having one or more aryl groups in one molecule and having an alkenyl group and an alkoxy group at both ends;
    A polysiloxane compound (B) having one or more aryl groups and two or more Si-H bonds in one molecule;
    An organic zirconium compound (C);
    A hydrosilylation catalyst (D);
    A curable resin composition containing
  2.  前記シリコーン樹脂(A)が、下記式(A1)で表されるシリコーン樹脂である、請求項1に記載の硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(A1)中、R1は置換または非置換の一価炭化水素基を示し、R2はアルキル基を示し、Xはアルケニル基を示し、rは0または1の整数を示し、nは1以上の整数を示す。複数のR1,R2およびXは、それぞれ同一であっても異なっていてもよいが、1分子中、少なくとも1個のR1は、アリール基を示す。)
    The curable resin composition according to claim 1, wherein the silicone resin (A) is a silicone resin represented by the following formula (A1).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (A1), R 1 represents a substituted or unsubstituted monovalent hydrocarbon group, R 2 represents an alkyl group, X represents an alkenyl group, r represents an integer of 0 or 1, and n represents And represents an integer greater than or equal to 1. A plurality of R 1 , R 2 and X may be the same or different from each other, but at least one R 1 in one molecule represents an aryl group.
  3.  前記有機ジルコニウム化合物(C)の含有量が、前記シリコーン樹脂(A)および前記ポリシロキサン化合物(B)の合計100質量部に対して、0.001~10質量部である、請求項1または2に記載の硬化性樹脂組成物。 The content of the organic zirconium compound (C) is 0.001 to 10 parts by mass with respect to a total of 100 parts by mass of the silicone resin (A) and the polysiloxane compound (B). The curable resin composition described in 1.
  4.  前記ヒドロシリル化反応用触媒(D)の含有量が、前記シリコーン樹脂(A)および前記ポリシロキサン化合物(B)の合計100質量部に対して、0.00001~0.1質量部である、請求項1~3のいずれかに記載の硬化性樹脂組成物。 The content of the hydrosilylation catalyst (D) is 0.00001 to 0.1 parts by mass with respect to a total of 100 parts by mass of the silicone resin (A) and the polysiloxane compound (B). Item 4. The curable resin composition according to any one of Items 1 to 3.
  5.  さらに、下記平均組成式(f)で表されるシリコーンレジン(F)を含有する、請求項1~4のいずれかに記載の硬化性樹脂組成物。
     (R6SiO3/2a(R6 2SiO2/2b(R6 3SiO1/2c(SiO4/2d(X61/2e …(f)
    (式(f)中、R6は同一または異なる置換または非置換の一価炭化水素基であって、一分子中、全R6の10モル%以上はアリール基であり、X6は水素原子またはアルキル基であり、aは正数であり、bは0または正数であり、cは0または正数であり、dは0または正数であり、eは0または正数であり、かつ、b/aは0~10の数であり、c/aは0~0.5の数であり、d/(a+b+c+d)は0~0.3の数であり、e/(a+b+c+d)は0~0.4の数である。)
    The curable resin composition according to any one of claims 1 to 4, further comprising a silicone resin (F) represented by the following average composition formula (f):
    (R 6 SiO 3/2 ) a (R 6 2 SiO 2/2 ) b (R 6 3 SiO 1/2 ) c (SiO 4/2 ) d (X 6 O 1/2 ) e (f)
    (In formula (f), R 6 is the same or different substituted or unsubstituted monovalent hydrocarbon group, and 10 mol% or more of all R 6 in one molecule is an aryl group, and X 6 is a hydrogen atom. Or an alkyl group, a is a positive number, b is 0 or a positive number, c is 0 or a positive number, d is 0 or a positive number, e is 0 or a positive number, and , B / a is a number from 0 to 10, c / a is a number from 0 to 0.5, d / (a + b + c + d) is a number from 0 to 0.3, and e / (a + b + c + d) is 0. It is a number of ~ 0.4.)
  6.  前記ポリシロキサン化合物(B)の一部または全部が、下記平均組成式(b2)で表されるシリコーンレジンである、請求項1~5のいずれかに記載の硬化性樹脂組成物。
     (R5SiO3/2f(R5 2SiO2/2g(R5 3SiO1/2h(SiO4/2i(X51/2j …(b2)
    (式(b2)中、R5は同一または異なるアルケニル基を除く置換または非置換の一価炭化水素基または水素原子であって、一分子中、全R5の0.1~40モル%は水素原子であり、全R5の10モル%以上はアリール基であり、X5は水素原子またはアルキル基であり、hは正数であり、iは0または正数であり、jは0または正数であり、かつ、g/fは0~10の数であり、h/fは0~0.5の数であり、j/(f+g+h+i)は0~0.3の数である。)
    The curable resin composition according to any one of claims 1 to 5, wherein a part or all of the polysiloxane compound (B) is a silicone resin represented by the following average composition formula (b2).
    (R 5 SiO 3/2 ) f (R 5 2 SiO 2/2 ) g (R 5 3 SiO 1/2 ) h (SiO 4/2 ) i (X 5 O 1/2 ) j (b2)
    (In the formula (b2), R 5 is a substituted or unsubstituted monovalent hydrocarbon group or a hydrogen atom excluding the same or different alkenyl groups, and 0.1 to 40 mol% of all R 5 in one molecule is Is a hydrogen atom, 10 mol% or more of the total R 5 is an aryl group, X 5 is a hydrogen atom or an alkyl group, h is a positive number, i is 0 or a positive number, and j is 0 or (It is a positive number, g / f is a number from 0 to 10, h / f is a number from 0 to 0.5, and j / (f + g + h + i) is a number from 0 to 0.3.)
  7.  光半導体素子封止用組成物である、請求項1~6のいずれかに記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 6, which is an optical semiconductor element sealing composition.
PCT/JP2013/070875 2012-08-03 2013-08-01 Curable resin composition WO2014021419A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380035817.6A CN104411771B (en) 2012-08-03 2013-08-01 Curable resin composition
JP2013554125A JP6400904B2 (en) 2012-08-03 2013-08-01 Curable resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012173252 2012-08-03
JP2012-173252 2012-08-03

Publications (1)

Publication Number Publication Date
WO2014021419A1 true WO2014021419A1 (en) 2014-02-06

Family

ID=50028086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070875 WO2014021419A1 (en) 2012-08-03 2013-08-01 Curable resin composition

Country Status (4)

Country Link
JP (1) JP6400904B2 (en)
CN (1) CN104411771B (en)
TW (1) TWI596160B (en)
WO (1) WO2014021419A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017182390A1 (en) * 2016-04-18 2017-10-26 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component, and optoelectronic component
WO2018016372A1 (en) * 2016-07-19 2018-01-25 株式会社ダイセル Curable resin composition, cured product of same and semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107841141A (en) * 2016-09-21 2018-03-27 王志明 Hardening hybrid silicone resin combination, its hardening thing and its application
CN115612448B (en) * 2022-12-19 2023-08-25 北京康美特科技股份有限公司 Organic silicon packaging adhesive for micro LED element and packaging method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002093A (en) * 2004-06-18 2006-01-05 Dow Corning Toray Co Ltd Curable organopolysiloxane composition
JP2008208160A (en) * 2007-02-23 2008-09-11 Yokohama Rubber Co Ltd:The Sealing material composition for light-emitting device, its cured material and sealed light-emitting device
JP2009173789A (en) * 2008-01-25 2009-08-06 Momentive Performance Materials Inc Silicone composition for photosemiconductor encapsulation, and photosemiconductor device using it
JP2010043136A (en) * 2008-08-08 2010-02-25 Yokohama Rubber Co Ltd:The Silicone resin composition, silicone resin using the same and optical semiconductor sealed-body
JP2010163602A (en) * 2008-12-16 2010-07-29 Yokohama Rubber Co Ltd:The Silanol condensation catalyst, heat-curable silicone resin composition for sealing photosemiconductor and sealed photosemiconductor using the same
JP2010226093A (en) * 2009-02-24 2010-10-07 Shin-Etsu Chemical Co Ltd Optical semiconductor device encapsulated with silicone resin
JP2011178983A (en) * 2010-01-26 2011-09-15 Yokohama Rubber Co Ltd:The Silicone resin composition and method for using the same, silicone resin, silicone resin-containing structure, and optical semiconductor device sealed body
JP2012074416A (en) * 2010-09-27 2012-04-12 Sekisui Chem Co Ltd Die-bonding material for optical semiconductor device and optical semiconductor device using the same
JP2012121992A (en) * 2010-12-08 2012-06-28 Yokohama Rubber Co Ltd:The Curable resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162859A (en) * 2003-12-02 2005-06-23 Dow Corning Toray Silicone Co Ltd Addition reaction curing type organopolysiloxane resin composition and optical member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002093A (en) * 2004-06-18 2006-01-05 Dow Corning Toray Co Ltd Curable organopolysiloxane composition
JP2008208160A (en) * 2007-02-23 2008-09-11 Yokohama Rubber Co Ltd:The Sealing material composition for light-emitting device, its cured material and sealed light-emitting device
JP2009173789A (en) * 2008-01-25 2009-08-06 Momentive Performance Materials Inc Silicone composition for photosemiconductor encapsulation, and photosemiconductor device using it
JP2010043136A (en) * 2008-08-08 2010-02-25 Yokohama Rubber Co Ltd:The Silicone resin composition, silicone resin using the same and optical semiconductor sealed-body
JP2010163602A (en) * 2008-12-16 2010-07-29 Yokohama Rubber Co Ltd:The Silanol condensation catalyst, heat-curable silicone resin composition for sealing photosemiconductor and sealed photosemiconductor using the same
JP2010226093A (en) * 2009-02-24 2010-10-07 Shin-Etsu Chemical Co Ltd Optical semiconductor device encapsulated with silicone resin
JP2011178983A (en) * 2010-01-26 2011-09-15 Yokohama Rubber Co Ltd:The Silicone resin composition and method for using the same, silicone resin, silicone resin-containing structure, and optical semiconductor device sealed body
JP2012074416A (en) * 2010-09-27 2012-04-12 Sekisui Chem Co Ltd Die-bonding material for optical semiconductor device and optical semiconductor device using the same
JP2012121992A (en) * 2010-12-08 2012-06-28 Yokohama Rubber Co Ltd:The Curable resin composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017182390A1 (en) * 2016-04-18 2017-10-26 Osram Opto Semiconductors Gmbh Method for producing an optoelectronic component, and optoelectronic component
US10833231B2 (en) 2016-04-18 2020-11-10 Osram Oled Gmbh Method for producing an optoelectronic component, and optoelectronic component
WO2018016372A1 (en) * 2016-07-19 2018-01-25 株式会社ダイセル Curable resin composition, cured product of same and semiconductor device
KR20190031508A (en) * 2016-07-19 2019-03-26 주식회사 다이셀 Curable resin composition, cured product thereof, and semiconductor device
US11124649B1 (en) 2016-07-19 2021-09-21 Nichia Corporation Curable resin composition, cured product of same and semiconductor device
KR102363592B1 (en) 2016-07-19 2022-02-16 니치아 카가쿠 고교 가부시키가이샤 Curable resin composition, cured product thereof, and semiconductor device

Also Published As

Publication number Publication date
TWI596160B (en) 2017-08-21
CN104411771A (en) 2015-03-11
TW201412882A (en) 2014-04-01
JPWO2014021419A1 (en) 2016-07-21
CN104411771B (en) 2017-02-22
JP6400904B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP7280253B2 (en) Curable polyorganosiloxane composition, cured body obtained by curing the composition, and electronic device containing the same
JP5149022B2 (en) Silicone composition for optical semiconductor sealing and optical semiconductor device using the same
JP5062430B2 (en) Room temperature fast-curing organopolysiloxane composition and curing method thereof
JP5708824B2 (en) Curable resin composition
TWI544665B (en) Silicon oxide compositions for semiconductor encapsulation
JPWO2008047892A1 (en) Curable polyorganosiloxane composition
JP5924286B2 (en) Organic functional group-containing polyether-modified alkoxysiloxane and method for producing the same
KR20130090351A (en) Adhesive silicone composition sheet containing phosphor, and method for manufacturing light emitting device using the same
JP6400904B2 (en) Curable resin composition
KR20190126846A (en) Organosilicon Compound and Method for Making the Same
KR20200079504A (en) Silicone adhesive composition, adhesive tape, adhesive sheet and double-sided adhesive sheet
US10100156B2 (en) Curable resin composition
JP2012102177A (en) Curable resin composition
WO2014129347A1 (en) Curable resin composition
TWI634160B (en) Organic-silicon metal composites, curable organopolysiloxane composition comprising thereof, and optical material comprising the composition
JP2009137050A (en) Mold release agent composition
JP2006111697A (en) Room temperature-curing organopolysiloxane composition
JP5284490B2 (en) Silicone composition for semiconductor encapsulation
JP2019108528A (en) Curable organopolysiloxane composition
JP2013133382A (en) Thermosetting silicone resin composition for optical semiconductor sealing
JPH08151525A (en) Curable organopolysiloxane composition
KR20140055734A (en) New epoxy compounds, method for preparing thereof and curable polyorganosiloxane composition containing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013554125

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826317

Country of ref document: EP

Kind code of ref document: A1