WO2014021398A1 - 単為結果制御遺伝子およびその利用 - Google Patents
単為結果制御遺伝子およびその利用 Download PDFInfo
- Publication number
- WO2014021398A1 WO2014021398A1 PCT/JP2013/070801 JP2013070801W WO2014021398A1 WO 2014021398 A1 WO2014021398 A1 WO 2014021398A1 JP 2013070801 W JP2013070801 W JP 2013070801W WO 2014021398 A1 WO2014021398 A1 WO 2014021398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polypeptide
- parthenoresult
- polynucleotide
- seq
- gene
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5097—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving plant cells
Definitions
- the present invention relates to a parthenoresult control gene and a plant production method using the gene.
- Participation is a trait in which the fruit grows without pollination. This trait is useful, for example, in that the fruit can be harvested without performing pollination induction using flower-visiting insects or fruit induction by hormonal treatment.
- Patent Document 1 also discloses crossing a tomato strain containing at least one parthenoresult-related gene as a male parent with a male sterile tomato strain containing at least one parthenoresult-related gene as a female parent. Describes a method for producing a nuclear-free participatory tomato, and pat2 is described as one of the participant-related genes.
- Patent Document 2 discloses a method for producing a parthenocarpy, or parthenocarpy and male-sterile tomato plant, comprising chromosomes 4 and 5 and / or 12 of S. habrochaites. A method for introgressing a genetic region of origin is described. In addition, the involvement of pat2 in the double recessive parthenocarpy is described.
- parthenogenetic outcomes can be unstable in expression depending on the cultivation conditions or cultivar line, evaluation is often difficult when relying solely on the appearance of the plant.
- evaluation of parthenoresults requires a lot of labor and labor, such as male removal before flowering and evaluation of fruit setting.
- the present invention has been made in view of the above problems, and an object thereof is to identify a novel gene involved in participatory outcome and provide use of the gene.
- the present invention includes any of the following 1) to 6).
- a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1, (2) having 70% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 1, and controlling participatory results A polynucleotide encoding a polypeptide having activity, (3) having an amino acid sequence in which 1 to 87 amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 1, Result polynucleotide that encodes a polypeptide having regulatory activity, (4) hybridizing under stringent conditions with a polynucleotide having a sequence complementary to the polynucleotide described in (1) above, and participle result A polynucleotide encoding a polypeptide having regulatory activity.
- a method for producing a plant with controlled participatory results comprising the step of performing the determination method according to 1) above and selecting plants showing participatory results.
- a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1, (2) having 70% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 1, and controlling participatory results A polynucleotide encoding a polypeptide having activity, (3) having an amino acid sequence in which 1 to 87 amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 1, Result polynucleotide that encodes a polypeptide having regulatory activity, (4) hybridizing under stringent conditions with a polynucleotide having a sequence complementary to the polynucleotide described in (1) above, and participle result A polynucleotide encoding a polypeptide having regulatory activity.
- a parthenologic control gene comprising the polynucleotide according to any one of (1) to (4) below.
- (1) a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1, (2) having 70% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 1, and controlling participatory results A polynucleotide encoding a polypeptide having activity, (3) having an amino acid sequence in which 1 to 87 amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 1, Result polynucleotide that encodes a polypeptide having regulatory activity, (4) hybridizing under stringent conditions with a polynucleotide having a sequence complementary to the polynucleotide described in (1) above, and participle result A polynucleotide encoding a polypeptide having regulatory activity.
- polypeptide according to any one of (1) to (4) below.
- FIG. It is a figure which shows schematic structure of the RNAi induction
- BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the RNAi induction
- polynucleotide can also be referred to as “nucleic acid” or “nucleic acid molecule”, and is intended to be a polymer of nucleotides.
- base sequence can also be referred to as a “nucleic acid sequence” or a “nucleotide sequence”, and unless otherwise specified, a deoxyribonucleotide sequence or a ribonucleotide sequence is intended.
- polypeptide can also be referred to as “protein”.
- partial result (sex) and “partially fruiting (sex)” are intended to indicate the property that fruit grows in plants without pollination.
- heterozygous intends a state in which different alleles are at corresponding loci on homologous chromosomes
- homo (zygous) is the correspondence between identical alleles on homologous chromosomes. It is intended to be at a genetic locus.
- tomato is broadly defined as cultivated species “S. lycopersicum”, wild species “S. cheesmaniae, S. chilense, S. chilense, S. chmielewskii, S. galapagense, S. habrochaites, S. lycopersicoides, S. neorikki (S. "S. pennelliii", S. peruvianum, and S. pimpinellifolium ", which in the narrow sense is intended to be” S. lycopersicum "
- a and / or B is a concept that includes both A and B and A or B, and can also be referred to as “at least one of A and B”.
- polynucleotides are in a complementary relationship” is synonymous with “complementary when a base sequence of a polynucleotide is compared”.
- the parthenoresult control gene encodes a polypeptide having at least an activity for controlling parthenoconsequence (participant control).
- a polypeptide has “activity that controls participatory outcome” means that if the polypeptide is present, the appearance of a trait of participatory outcome (partially fruitfulness) is suppressed. Refers to negative control.
- the plant exhibits a trait of parthenoconsequence, Even if it does not show a trait of participatory outcome, it has a predisposition to the trait.
- the parthenoresult control gene according to the present invention comprises the polynucleotide described in any of (1) to (4) below.
- the sequence identity of amino acid sequences is preferably 75% or more or 80% or more, more preferably 85% or more, more preferably 90% or more, and more preferably 95% or more. More preferably, it is 96% or more, 97% or more, 98% or more, or 99% or more.
- mutant genes derived from tomatoes or homologous genes derived from plants other than tomatoes are included in this category.
- the number of amino acids substituted, deleted, inserted and / or added is more preferably 1 to 72 or 1 to 58, more preferably 1 to 43, and more preferably 1 to 29. More preferably, it is 1-14, more preferably 1-10, and particularly preferably 1-5 or 6.
- amino acid deletion, substitution, and / or addition is, for example, the Kunkel method (Kunkel et al. (1985): Proc. Natl. Acad. Sci. USA, vol. 82. p488-), etc. Mutations may be artificially introduced using site-directed mutagenesis, or may be derived from similar naturally occurring mutant polypeptides.
- the amino acid sequence of SEQ ID NO: 1, from the 56th valine predicted as the Zn finger domain to the 112th asparagine, and as the homeodomain A region excluding the 276th asparagine from the predicted 219th lysine is preferable.
- the stringent conditions include, for example, the conditions described in the reference [Molecular cloning-a Laboratory manual 2nd edition (Sambrook et al., 1989)].
- stringent conditions include, for example, 6 ⁇ SSC (composition of 1 ⁇ SSC: 0.15 M sodium chloride, 0.015 M sodium citrate, pH 7.0), 0.5% SDS, 5 * Conditions include hybridization in a solution containing Denhart and 100 mg / mL herring sperm DNA with a probe at 65 ° C. for 8 to 16 hours.
- this polynucleotide preferably has a sequence identity of 70% or more with respect to the base sequence of the polynucleotide described in (1) above, and may have a sequence identity of 75% or more or 80% or more. More preferably, it has 85% or more sequence identity, more preferably 90% or more sequence identity, more preferably 95% or more, 96% or more, 97% or more, 98% or more, or 99% It is particularly preferable to have the above sequence identity.
- the parthenoresult control gene according to the present invention may exist in the form of RNA (for example, mRNA) or in the form of DNA (for example, cDNA or genomic DNA).
- the DNA may be double-stranded or single-stranded.
- the base sequence shown in SEQ ID NO: 2, which is an example of the polynucleotide according to the present invention, is a structural gene portion of cDNA encoding the polypeptide shown in SEQ ID NO: 1.
- the parthenoresult control gene according to the present invention may include an additional sequence such as a sequence of an untranslated region (UTR).
- the method for obtaining (isolating) the parthenoresult control gene according to the present invention is not particularly limited. For example, it specifically hybridizes with a part of the base sequence of the parthenoresult control gene.
- a probe may be prepared and a genomic DNA library or cDNA library may be screened.
- a method for obtaining a parthenoresult control gene according to the present invention a method using an amplification means such as PCR can be mentioned.
- a primer is prepared from the 5 ′ side sequence and 3 ′ side sequence (or its complementary sequence) of the parthenoresult control gene cDNA, and genomic DNA (or cDNA) etc. is prepared using these primers.
- the origin of the parthenogenetic control gene according to the present invention is not particularly limited as long as it is a plant, but is preferably a solanaceous plant such as tomato, eggplant, bell pepper, paprika, pepper, and potato, tomato, eggplant, More preferably, it is a plant belonging to the genus Solanum, such as potato, more preferably tomato or eggplant, and particularly preferably tomato.
- Whether the isolated candidate gene for parthenoresult control gene has the desired parthenoresult control activity is determined by suppressing the expression of the candidate gene in the plant from which it is derived. Evaluation can be made by observing whether the result is induced.
- the parthenogenetic control gene according to the present invention can be used to elucidate the mechanism of plant parthenogenesis.
- Participatory result control genes are those derived from tomato (SEQ ID NO: 2, 6 (ORF), 11 (full-length cDNA), SEQ ID NO: 16 (gene on intron-containing genomic DNA)), closely related to tomato Wild species from Pimpinellifolium (SEQ ID NO: 18) and tomato wild relatives in addition to those derived from Peruvianum (SEQ ID NO: 20). a gene derived from tuberosum fureja (SEQ ID NO: 22), and a gene derived from melogena (SEQ ID NO: 24).
- the category of parthenoresult control genes according to the present invention includes 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% with respect to the nucleotide sequence of the polynucleotide exemplified here.
- genes comprising nucleotides having sequence identity of 96% or more, 97% or more, 98% or more, or 99% or more and having participatory control activity are also included.
- polypeptides as parthenoresult control proteins The polypeptide according to the present invention is the above [1. This is a translation product of the parthenoresult control gene described in the Participant Result Control Gene] column and has at least an activity to control the parthenoresult of the plant. As described above, the polypeptide according to the present invention suppresses the appearance of a trait of parthenoconsequence, that is, negatively controls the parthenoconsequence.
- polypeptide according to the present invention may be isolated from a natural source or chemically synthesized. More specifically, the polypeptides are naturally purified products, products of chemical synthesis procedures, and prokaryotic or eukaryotic hosts (eg, bacterial cells, yeast cells, higher plant cells, insect cells, and mammals). Translation products produced by recombinant technology from (including cells) are included in that category.
- prokaryotic or eukaryotic hosts eg, bacterial cells, yeast cells, higher plant cells, insect cells, and mammals.
- Translation products produced by recombinant technology from (including cells) are included in that category.
- polypeptide according to the present invention is the polypeptide described in any of (1) to (4) below. Since this polypeptide is a translation product of a parthenoresult control gene, the meaning of the term “hybridizes under stringent conditions” and the like is described in [1. What is necessary is just to refer to the description of the parthenoresult control gene column.
- sequence identity is preferably 75% or more or 80% or more, more preferably 85% or more, more preferably 90% or more, and further preferably 95% or more, It is particularly preferably 96% or more, 97% or more, 98% or more, or 99% or more.
- the number of substituted, deleted, inserted and / or added amino acids is preferably 1 to 72 or 1 to 58, more preferably 1 to 43, and more preferably 1 to 29. Is more preferably 1 to 14, and particularly preferably 1 to 5 or 6.
- a parthenologic control activity encoded by a polynucleotide comprising a sequence complementary to the polynucleotide encoding the polypeptide of (1) above and a polynucleotide that hybridizes under stringent conditions; Having a polypeptide.
- the polypeptide is not limited to this as long as it is a polypeptide formed by peptide bonding of amino acids, and may contain a structure other than the polypeptide.
- structures other than the polypeptide herein include sugar chains and isoprenoid groups, but are not particularly limited.
- a tomato-derived polypeptide SEQ ID NO: 1
- a tomato-related wild species S. those derived from Pimpinellifolium SEQ ID NO: 19
- wild relatives of S. tomato in addition to those derived from Peruvianum
- tuberosum pureja SEQ ID NO: 23
- eggplant S. cerevisiae The thing derived from melongena (sequence number 25) etc. can be mentioned.
- the present invention also provides a recombinant expression vector in which the parthenoresult control gene according to the present invention is incorporated so that it can be expressed, and a transformant in which the recombinant expression vector or the parthenoresult control gene is introduced so that it can be expressed. provide.
- the type of vector for constructing the recombinant expression vector is not particularly limited, and a vector that can be expressed in the host cell may be appropriately selected. That is, a promoter sequence is appropriately selected according to the type of host cell, and the promoter sequence and the parthenoresult control gene according to the present invention are incorporated into, for example, a plasmid, phagemid, cosmid or the like as an expression vector. Use it.
- the above-mentioned transformant means not only cells, tissues and organs into which the above-described recombinant expression vector or parthenoresult control gene has been introduced, but also individual organisms.
- the species of the transformant is not particularly limited, and examples thereof include microorganisms such as Escherichia coli, plants, and animals.
- a plant that has been determined to be a plant in which the expression of the parthenoresult control gene is suppressed, or a plant in which the function of the polypeptide encoded by the parthenoresult control gene is inhibited in the test step is Therefore, it is preferable to select as a plant candidate whose result is controlled.
- the method for performing the inspection process is not particularly limited, and examples thereof include the following methods 1) to 3). Among these methods, the method 1) or 2) is preferable from the viewpoint of ease of implementation.
- 1) The expression level of the parthenoresult control gene in the target plant is examined, and if necessary, it is compared with the reference expression level to examine whether the expression of the parthenoresult control gene is suppressed. .
- the gene expression level may be determined, for example, by measuring the amount of transcription product by quantitative RT-PCR method, quantitative real-time PCR method, or measuring the amount of translation product by quantitative western blot method.
- the reference expression level refers to, for example, the expression level of the parthenologic control gene in the same type of plant that does not show participatory results (for example, an individual having a participatory control gene homozygously).
- the method of gene disruption or RNAi or the like is used to almost completely suppress transcription or translation of the parthenoresult control gene, comparison with the reference expression level may not be required.
- a mutation that affects the function of a polypeptide is a deletion of tens to thousands of nucleotides, preferably a deletion of at least about 100 bp to 1100 bp of nucleotides, including the coding region of a parthenogenetic control gene, or at least about A deletion of nucleotides from 270 bp to 1100 bp.
- mutation should just arise in at least one of a pair of parthenogenetic control gene in a homologous chromosome, it is preferable to have arisen in both (namely, it is recessive homology).
- the base sequence of the parthenoresult control gene can be directly or indirectly examined, and the above-described inspection process can be performed.
- the marker sequence is located within about 5.5 cM (ie, about 5.5 cM to 0 cM), preferably within about 5.3 cM from the position where the parthenologic control gene sits. More preferably, it is located within about 1.2 cM, and more preferably within about 1.1 cM.
- the kind of plant to which the determination method according to the present invention is applied is not particularly limited, it is preferably a plant of the solanaceous family such as tomato, eggplant, bell pepper, paprika, pepper, and potato, such as tomato, eggplant and potato. More preferably, it is a plant belonging to the genus Solanum, more preferably tomato or eggplant, and particularly preferably tomato.
- Examples of plants to which this determination method is applied include breeding materials (parent plants, that is, pollen parents or seed parents), progeny obtained by breeding, and the like. Breeding is a concept that includes genetic engineering techniques as well as mating techniques.
- parthenogenetic outcomes can be unstable in expression depending on the cultivation conditions or cultivar line, evaluation is often difficult when relying solely on the appearance of the plant.
- plants with heterozygous partheno-regulatory genes are useful as breeding materials, etc., but especially in the case of heterozygotes, it is not possible to clearly determine whether or not participatory results can be shown only by appearance.
- the method for determining participatory outcomes according to the present invention is determination at the gene level, it is not necessary to perform gene evaluation by homogenizing genes, and for example, the efficiency of breeding selection can be greatly improved. .
- the parthenoresult control gene has been clarified, it becomes possible to cut off the linkage with the defective trait originally cosegregating with the parthenoresult control gene by using a genetic engineering technique or the like.
- the other form (form 2) of the production method of the plant in which the participability is controlled according to the present invention suppresses the expression of the parthenoresult control gene in the plant or the participatory result. It is a method comprising the step of inhibiting the function of a polypeptide encoded by a regulatory gene.
- the “partial outcome control gene” is the above described [1. This refers to those described in the "Partial result control gene” column, and the “polypeptide encoded by the parthenoresult control gene” is the above-mentioned [2. This refers to those described in the "Polypeptides as parthenoresult control protein” column.
- the expression of the partheno-result control gene is suppressed by destroying the part-result control gene or introducing a polynucleotide that suppresses the expression of the partion-result control gene into a plant.
- the category of “suppressing the expression of parthenogenetic regulatory genes” includes suppression of gene transcription and suppression of protein translation.
- the method for disrupting the partheno-result control gene there is no particular limitation on the method for disrupting the partheno-result control gene.
- the site-specific mutagenesis method that performs specific gene disruption using homologous recombination is terminated in the middle of the part-effect control gene. It can be carried out by a method such as introducing a codon or physically destroying a part of the gene by irradiation with a heavy ion beam or the like.
- the method for introducing a polynucleotide that suppresses the expression of the parthenogenetic control gene into a plant is not particularly limited, and can be performed by a method such as RNA interference or antisense RNA.
- a method for introducing an expression cassette (eg, a vector) containing this polynucleotide into a plant is not particularly limited, and a polyethylene glycol method, an electroporation method (electroporation method), an Agrobacterium-mediated method, a particle gun method, and the like can be used. What is necessary is just to use suitably. In addition, what is necessary is just to introduce
- the suppression of expression of the partheno-result control gene can be achieved by applying a mutation that suppresses gene expression to an expression regulatory sequence (for example, a promoter sequence or an enhancer sequence) that controls the gene expression of the part-effect control gene. It can also be done by introducing.
- an expression regulatory sequence for example, a promoter sequence or an enhancer sequence
- the present invention also provides a plant produced by the above production method with controlled participatory outcome.
- a plant whose participatory effect is controlled is a concept that includes a plant having a predisposition to a trait that is not manifested as a participatory trait, in addition to a plant having a trait of participatory effect.
- the kind of the plant produced by the method according to the present invention is not particularly limited, but is preferably a solanaceous plant such as tomato, eggplant, pepper, paprika, pepper, and potato, and eggplant such as tomato, eggplant and potato. It is more preferably a plant belonging to the genus Solanum, more preferably tomato or eggplant, and particularly preferably tomato.
- the present invention includes any of the following 1) to 11).
- a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1, (2) having 70% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 1, and controlling participatory results A polynucleotide encoding a polypeptide having activity, (3) having an amino acid sequence in which 1 to 87 amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 1, Result polynucleotide that encodes a polypeptide having regulatory activity, (4) hybridizing under stringent conditions with a polynucleotide having a sequence complementary to the polynucleotide described in (1) above, and participle result A polynucleotide encoding a polypeptide having regulatory activity.
- Function of a polypeptide that suppresses the expression of a parthenoresult control gene containing a polynucleotide according to any one of (1) to (4) below or is encoded by the parthenoresult control gene in a plant A method for producing a plant with controlled participatory outcomes, comprising a step of inhibiting the above. In one form of the process, for example, at least in the bud of a plant, the expression of the parthenoresult control gene is suppressed, or the function of the polypeptide encoded by the parthenoresult control gene is inhibited.
- a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1, (2) having 70% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 1, and controlling participatory results A polynucleotide encoding a polypeptide having activity, (3) having an amino acid sequence in which 1 to 87 amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 1, Result polynucleotide that encodes a polypeptide having regulatory activity, (4) hybridizing under stringent conditions with a polynucleotide having a sequence complementary to the polynucleotide described in (1) above, and participle result A polynucleotide encoding a polypeptide having regulatory activity.
- the plant exhibits participatory outcome by suppressing the expression of the parthenoresult control gene, at least in the buds of the plant.
- a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1, (2) having 70% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 1, and controlling participatory results A polynucleotide encoding a polypeptide having activity, (3) having an amino acid sequence in which 1 to 87 amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 1, Result polynucleotide that encodes a polypeptide having regulatory activity, (4) hybridizing under stringent conditions with a polynucleotide having a sequence complementary to the polynucleotide described in (1) above, and participle result A polynucleotide encoding a polypeptide having regulatory activity.
- polypeptide according to any one of (1) to (4) below.
- the plant exhibits part-effects by inhibiting the function of the polypeptide, at least in the buds of the plant.
- any of the following 12) to 17) may be used.
- 12) In a plant, the expression of a parthenoresult control gene containing the polynucleotide according to any of (S1) to (S4) below is suppressed, or the polypeptide encoded by the parthenoresult control gene
- a method for determining participatory outcomes of a plant comprising an inspection step for inspecting whether the function is inhibited. In one form of the inspection process, for example, at least in the bud of the plant, it is tested whether the expression of the parthenoresult control gene is suppressed or the function of the polypeptide encoded by the parthenoresult control gene is inhibited. To do.
- (S1) a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 25, (S2) having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 25, and controlling participatory results
- a polynucleotide encoding a polypeptide having activity (S3) having an amino acid sequence in which 1 to 87 amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 25;
- a polynucleotide encoding a polypeptide having a regulatory activity (S4) hybridizing under stringent conditions with a polynucleotide comprising a sequence complementary to the polynucleotide described in (S1) above, and a participle result
- a polynucleotide encoding a polypeptide having regulatory activity (S1) a polynucleotide encoding a polypeptide having regulatory activity.
- a method for producing a plant with controlled participatory results comprising the step of performing the determination method according to 12) above and selecting a plant exhibiting participatory results.
- Function of a polypeptide that suppresses the expression of a parthenoresult control gene containing a polynucleotide according to any of the following (S1) to (S4) or that is encoded by the parthenoresult control gene in a plant A method for producing a plant with controlled participatory outcomes, comprising a step of inhibiting the above. In one form of the process, for example, at least in the bud of a plant, the expression of the parthenoresult control gene is suppressed, or the function of the polypeptide encoded by the parthenoresult control gene is inhibited.
- (S1) a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 25, (S2) having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 25, and controlling participatory results
- a polynucleotide encoding a polypeptide having activity (S3) having an amino acid sequence in which 1 to 87 amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 25;
- a polynucleotide encoding a polypeptide having a regulatory activity (S4) hybridizing under stringent conditions with a polynucleotide comprising a sequence complementary to the polynucleotide described in (S1) above, and a participle result
- a polynucleotide encoding a polypeptide having regulatory activity (S1) a polynucleotide encoding a polypeptide having regulatory activity.
- a parthenologic control gene comprising the polynucleotide according to any one of (S1) to (S4) below.
- the plant exhibits participatory outcome by suppressing the expression of the parthenoresult control gene, at least in the buds of the plant.
- (S1) a polynucleotide encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 25, (S2) having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 25, and controlling participatory results
- a polynucleotide encoding a polypeptide having activity (S3) having an amino acid sequence in which 1 to 87 amino acids are substituted, deleted, inserted and / or added in the amino acid sequence set forth in SEQ ID NO: 25;
- a polynucleotide encoding a polypeptide having a regulatory activity (S4) hybridizing under stringent conditions with a polynucleotide comprising a sequence complementary to the polynucleotide described in (S1) above, and a participle result
- a polynucleotide encoding a polypeptide having regulatory activity (S1) a polynucleotide encoding a polypeptide having regulatory activity.
- polypeptide according to any one of (S1) to (S4) below.
- the plant exhibits part-effects by inhibiting the function of the polypeptide, at least in the buds of the plant.
- (S1) a polypeptide having the amino acid sequence set forth in SEQ ID NO: 25,
- (S2) a polypeptide having 70% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 25 and having participatory control activity
- (S3) a polypeptide having an amino acid sequence of 1 to 87 substitutions, deletions, insertions and / or additions in the amino acid sequence set forth in SEQ ID NO: 25, and having parthenoresult control activity
- (S4) A polypeptide having participatory control activity encoded by a polynucleotide comprising a sequence complementary to the polynucleotide encoding the polypeptide according to (S1) above and a polynucleotide that hybridizes under stringent conditions .
- sequence identity of amino acid sequences is preferably 75% or more or 80% or more, more preferably 85% or more, and more preferably 90% or more. Preferably, it is 95% or more, more preferably 96% or more, 97% or more, 98% or more, or 99% or more.
- tomato line LS935 is a genetic resource introduced as a line obtained by backcrossing the large tomato variety Money Maker to the variety Severianin that has been reported to exhibit parthenologic outcomes.
- Saladette is a genetic resource introduced as a large tomato line and exhibits non-partial outcome (ie, does not show part-effect).
- Parthenocarpic causative gene A by the genetic analysis using F 2 population is Zajo to chromosome 4 tomatoes, to be located in the region from about 5cM between two SSR markers revealed (see Figure 1).
- the physical distance between the two SSR markers corresponded to about 1100 kb.
- a polymorphism was searched by newly extracting the SSR of the region on which the parthenogenetic causative gene A sits.
- SNP polymorphisms near candidate genes seated in the region were newly searched.
- From the F 2 population select an F 2 individual whose genotype of the region is heterozygous, then determine the genotype of the progeny F 3 individual, select a genetically recombinant individual, and determine the participatory outcome of this individual. evaluated.
- region narrowed down to about 300 kb is shown on the right side in FIG.
- RHF2As and PHDs are newly developed SNP markers
- tsm041208 is a newly developed SSR marker
- athb31 is a newly developed insertion deletion mutation marker.
- This deletion mutation exists on a putative gene having a reading frame as shown in SEQ ID NO: 6, and a part of the first exon and a part of the first intron are lost from the genome of “LS935”. Estimated. Therefore, it was predicted that the deletion mutation of the putative gene having the reading frame shown in SEQ ID NO: 6 was responsible for the parthenologic effect, and the following experiment was advanced.
- the base sequence (including intron) of the putative gene possessed by “Saladette” is shown in SEQ ID NO: 16, and the corresponding base sequence on the genome of “LS935” is shown in SEQ ID NO: 17.
- the sequence of the cDNA amplified by the PCR reaction using the same cDNA as the template as described above was determined by the direct sequencing method. Then, the 5 ′ end, 3 ′ end and other regions of the full-length cDNA obtained as described above were integrated based on sequence duplication to obtain a 1405 bp base sequence shown in SEQ ID NO: 11. This was defined as the full-length cDNA sequence of parthenogenetic causative gene A.
- Participation-causing gene A is predicted from the blast search (http://blast.ncbi.nlm.nih.gov/) as the Zn finger domain from the 56th valine to the 112th asparagine in the encoded amino acid sequence. Furthermore, it was shown that from the 219th lysine to the 276th asparagine belonged to a homeobox gene of Zn finger homeodomain type predicted as a homeodomain.
- a Zn finger homeodomain type homeobox gene is expected to control morphogenesis as a transcription factor.
- wild relative S. tomato. from Pimpinellifolium wild tomato related species S. from Peruvianum, potato S.
- the obtained 2572 bp clone has a genome-derived HindIII recognition site at the 5 ′ end, a SmaI recognition site derived from the PCR primer at the 3 ′ end, and 2239 bp upstream of the transcription start site of the parthenogenetic gene A. It consists of a total of 327 bp from the point through the 5′-UTR and the translation initiation point to a part of the protein coding region, and a SmaI recognition site 6 bp derived from the PCR primer.
- This DNA fragment (SEQ ID NO: 12) was used as a promoter of parthenogenetic causative gene A in the following experiment.
- RNA interference (RNAi) induction vector Using the primers shown in SEQ ID NO: 13 and SEQ ID NO: 14, PCR was performed using the cDNA of tomato variety “Akita” as a template, and a 500 bp DNA fragment shown in SEQ ID NO: 15 was obtained. This fragment has a SmaI recognition site and a HindIII recognition site at the 5 ′ end and an EcoRI recognition site and an XhoI recognition site at the 3 ′ end. This fragment was inserted into a cloning vector pTY262 (AB736152 (DDBJ)) to construct an RNAi-inducing chimeric gene for parthenogenetic causative gene A.
- a cloning vector pTY262 AB736152 (DDBJ)
- This pTY262 vector has an expression cassette consisting of a CaMV35S promoter and a Nos terminator, and is a vector in which a cloning site for foreign sequences is arranged so as to sandwich the first intron of the tomato tubulin gene (FIG. 2 (a)).
- RNAi-inducible chimeric gene has a structure in which almost the entire 500 bp fragment of SEQ ID NO: 15 is arranged in an inverted repeat sequence with the first intron of the tomato tubulin gene in between, and generally induces constitutive expression in plants. Expression is induced by the CaMV35S promoter (FIG. 2 (b)).
- RNAi-inducing chimera gene was constructed in which the CaMV35S promoter was replaced with the parthenogenetic causative gene A promoter shown in SEQ ID NO: 12.
- the constructed clone containing the RNAi-inducible chimeric gene was digested with AscI, and the resulting fragment containing the RNAi-inducible chimeric gene was cloned into the binary vector pZK3B (reference: Kuroda et al., Biosci Biotech Biochem, (2010) 74: 2348- 2351) was inserted into the AscI recognition site of the modified binary vector pZK3BGFP inserted with a reporter gene comprising CaMV35S promoter :: GFP :: Nos terminator to construct pZK3BGFP_geneA-RNAi (FIG. 2 (c)).
- RNAi-inducible chimeric gene Tomato was transformed with the RNAi-inducible chimeric gene (vector) shown in FIG. Specifically, using the Agrobacterium method (Sun et al. 2006 Plant Cell Physiol 47: 426-431), the cotyledons of tomato variety “Akitama” were infected with Agrobacterium having a binary vector and contained kanamycin. Culture and selection on the medium yielded redifferentiated plants. Gene transfer of the regenerated plant was confirmed by PCR, and RNAi recombinant tomato was obtained. In addition, in RNAi recombinant tomato, it was confirmed that the expression of gene A causing gene A was greatly suppressed.
- RNAi recombinant tomatoes were cultivated, and the weights of ripe fruits of stigma removed from which stigma was removed before flowering and pollen fruits that were pollinated on the day of flowering were investigated.
- non-transformants were also cultivated at the same time, subjected to the same treatment, examined for the weight of ripe fruits, and used as controls. The results are shown in FIG. 3 and FIG.
- the stigma removal fruit of the non-GMO tomato cultivar “Akitama” did not increase in fruit size, but the RNAi recombinant tomato fruit swelled as much as the pollination fruit.
- RNAi recombinant tomato there was no significant difference in the fruit weight ratio.
- the expression of the parthenogenetic causative gene A has at least the following six characteristics (see also FIG. 5). 1. Of all the tissues and developmental stages investigated, immature cocoons with a total length of 2 mm have the highest expression level. 2. The expression level decreases with the growth of the cocoon and decreases to 1/20 or less at the time of flowering. 3. Although a slight increase in expression is observed from the 2nd day to the 6th day after flowering, it is about 1/5 or less of an immature cocoon having a total length of 2 mm. 4). The expression is almost zero in the green and full maturity periods. 5). Although constant expression is also observed in leaves and stems, it is about 1/2 or less than that of immature pods. 6). There is almost no expression in the roots.
- PCR amplification was performed using primers having the nucleotide sequences of SEQ ID NO: 31 and SEQ ID NO: 32, and the genomic DNA of the tomato variety “Akitama” as a template, and a gene fragment having the nucleotide sequence of SEQ ID NO: 33 was obtained.
- the obtained gene fragment corresponds to base numbers 7150 to 12098 in the genome sequence having the base sequence shown in SEQ ID NO: 3.
- This gene fragment has AscI recognition sites derived from primers at the 5 'end and 3' end, 2271 bp upstream of the transcription start site of parthenogenetic causative gene A, 5'-UTR and translation start site from the transcription start site.
- first exon 780 bp that leads to an intron site
- intron 778 bp an intron 778 bp
- second exon 566 bp that goes from the position immediately after the intron to a polyA addition position via a translation stop codon
- genomic sequence 495 bp downstream of the second exon a genomic sequence 495 bp downstream of the second exon.
- This amplified gene fragment was digested with AscI, cloned into the AscI recognition site of cloning vector pUC198AAA (reference: Kuroda et al., Biosci Biotech Biochem, (2010) 74: 2348-2351) (Fig. 6). PUC198AA_whole_gene_A).
- the base sequence of the obtained clone was determined by the Sanger method, and compared with the base sequence shown in SEQ ID NO: 3, a clone not containing a mutation during PCR amplification was selected.
- This selected clone was digested with AscI, and the fragment obtained by digestion was transferred from the CaMV35S promoter :: GFP :: Nos terminator to the binary vector pZK3B (Kuroda et al., Biosci Biotech Biochem, (2010) 74: 2348-2351).
- a binary vector pZK3BGFP_whole_Gene_A was constructed by inserting the reporter gene into the AscI recognition site of the modified binary vector pZK3BGFP (FIG. 7).
- Participant-causing gene A-expressing recombinant tomato was cultivated, and the ripe fruit weights of the stigma-removed fruits with the stigma removed before flowering and the pollinated fruits that were pollinated on the day of flowering were investigated.
- a non-transformant (LS935) was also cultivated at the same time, treated in the same way as parthenogenetic causative gene A-expressing recombinant tomatoes, and the ripe fruit weight was investigated and used as a control. The results are shown in FIG. 8 and FIG. In FIG. 8 and FIG. 9, E16 and E18 are partheno-result-causing gene A-expressing recombinant tomatoes.
- the ratio of the fruit weight of the stigma removal fruit when the fruit weight of the pollination fruit is 1 was not significantly different in the non-recombinant tomato LS935, It was almost 0 in the gene A-expressing recombinant tomato.
- the genotype indicated by L is a homomorphic trait of LS935 (partial result causative gene has a deletion: parthenoresult (p)), and the genotype indicated by S is a Saladette homotypic trait (mono Therefore, there is no deletion in the causative gene A: non-partial outcome (np)), and the genotype indicated by H indicates a heterozygous trait (non-partial outcome (np)).
- each of the marker sequences shown in the figure was originally developed by the inventors and has the following characteristics. Among these, the determination accuracy of RHF2As, athb31, and PHDs is high, and in particular, athb31 is a complete linkage type marker with a determination accuracy of 100%.
- Tbm2167 Distance from parthenogenetic causative gene A is about 1.1 cM.
- the SSR polymorphism of the fragment amplified by PCR reaction which uses genomic DNA as a template using the primer set of sequence number 48 and sequence number 49 located on sequence number 47. If the fragment length is 241 bases, it is a parthenogenetic line LS935 type, and if the fragment length is 243 bases, it is a non-participant line Saladette type.
- RHF2As Distance from the parthenogenetic causative gene A is about 135.1 kb.
- SNP whether the 123rd base in the base sequence shown in SEQ ID NO: 50 is A or T. If the base is A, the genotype is a parthenotype LS935 type, and if the base is T, the genotype is a non-parthenotype Saladette type.
- Athb31 insertion deletion mutation in gene A causing gene A mutation in which the 977th to 11011th bases in the base sequence shown in SEQ ID NO: 3 are deleted. If this deletion is present, the genotype is a parthenogenetic lineage LS935, and if this deletion is not present, the genotype is a non-participant line Saladette.
- PHDs Distance from parthenogenetic causative gene A is about 161.6 kb.
- SNP which is whether the 119th base in the base sequence shown to sequence number 51 is A or G. If the base is A, the genotype is a parthenotype LS935 type, and if the base is G, the genotype is a non-parthenotype Saladette type.
- Tsm041208 distance from parthenogenetic causative gene A is about 247.7 kb.
- the fragment length is 393 bases, it is a parthenogenetic line LS935, and if the fragment length is 359 bases, it is a non-participant line Saladette.
- Tbm2177 Distance from parthenogenetic causative gene A is about 5.3 cM.
- a sequencing library was prepared from the genomic DNA of eggplant “Nakae Meguro”, and an insert size 200-300 bp fragment end and 2 kb mate pair sequence were performed using an Illumina HiSeq2000 type sequencer.
- the obtained sequence data equivalent to about 140x of the total of 1.44 billion reads and eggplant genome (about 1.1 Gb) is assembled by the assembler program SOAPdenovo, and the fragment genome sequence of 1,321,157 sequences and the total length of 1,145 Mb is obtained. Obtained.
- the sequence was subjected to BLASTN analysis to obtain a genomic sequence (67,902 base pairs) partially showing high homology with tomato parthenogenesis result gene A.
- genomic DNA sequence (SEQ ID NO: 34) containing an eggplant homolog gene (hereinafter referred to as parthenogenetic causative gene SmA) candidate and its protein code
- SEQ ID NO: 35 The sequence (SEQ ID NO: 35) was obtained. From the nucleotide sequences shown in SEQ ID NO: 34 and SEQ ID NO: 35, it is clear that the parthenogenetic causal gene SmA is a gene composed of two exons and one intron.
- PCR was performed using PCR primers designed based on this predicted gene sequence, and a cDNA derived from eggplant moth was used as a template to obtain a cDNA clone containing the entire ORF of parthenogenetic causative gene SmA.
- the nucleotide sequence of the obtained cDNA clone was determined by the Sanger method, and it was confirmed that it was the same as the nucleotide sequence shown in SEQ ID NO: 35 predicted from the program and that it was a gene expressed in eggplant pods.
- the protein encoded by the parthenogenetic causal gene SmA has the amino acid sequence shown in SEQ ID NO: 25.
- Primers having the nucleotide sequences shown in SEQ ID NO: 36 and SEQ ID NO: 37 were prepared, PCR was performed using the clone having the nucleotide sequence shown in SEQ ID NO: 35 as a template, and a 473 base pair PCR product having the nucleotide sequence shown in SEQ ID NO: 38 was obtained. .
- This PCR product has a BamHI recognition site and a HindIII recognition site at the 5 'end, and a SacI recognition site and a KpnI recognition site at the 3' end.
- RNAi induction vector for the eggplant parthenogenesis gene SmA was constructed. Furthermore, the CaMV35S promoter of this vector was replaced with the SmA gene promoter sequence consisting of 2561 base pairs whose base sequence is shown in SEQ ID NO: 39 (FIG. 10). This promoter sequence is presumed to contain, at its 3 ′ end, 29 base pairs of the 5 ′ end portion of the SmA ORF whose base sequence is shown in SEQ ID NO: 40 and a 5 ′ untranslated region encoding unidentified mRNA. For RNAi induction, transcription of RNA encoding a functional protein is not required, and the function as an RNAi induction vector is not affected.
- RNAi-derived vector was digested with AscI, and a reporter gene consisting of the CaMV35S promoter :: GFP :: Nos terminator was inserted into the binary vector pZK3B (Kuroda et al., Biosci Biotech Biochem, (2010) 74: 2348-2351)
- the modified binary vector pZK3BGFP was inserted into the AscI recognition site to construct an RNAi-derived binary vector pZK3BGFP_ SmA-RNAi (FIG. 11).
- the eggplant parthenogenetic causative gene SmA has a structurally similar sequence to that of the tomato parthenogenetic causative gene A, but the timing and systematic specificity of its expression pattern are also shown in FIG. It is clear from the results of real-time quantitative PCR analysis that they are very similar. Note that the constitutively expressed housekeeping gene SmFL20F10 (SEQ ID NO: 41) originally developed was used as an intrinsic standard gene for real-time quantitative PCR. For tomato, Solyc04g049180.2.1 (ITAG2.30, SEQ ID NO: 42), which is strongly estimated from the result of the BLAST search to be an ortholog of SmFL20F10, was used. The primer sequences for amplification of the internal standard gene are as follows.
- the present invention it is possible to obtain a new variety of plants having participatory results.
- the present invention can also be used in fields such as agriculture or horticulture.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Plant Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
次の何れかのポリヌクレオチドを含む単為結果制御遺伝子とその利用の提供。(1)配列番号1に記載のアミノ酸配列をコードする、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有するアミノ酸配列をコードする、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換等したアミノ酸配列をコードする、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズする。
Description
本発明は、単為結果制御遺伝子およびそれを利用した植物の生産方法等に関する。
単為結果性は、受粉しなくても果実が肥大する形質である。この形質は、例えば、訪花昆虫を用いた受粉誘導、またはホルモン剤処理による着果誘導といった作業を行わなくとも果実が収穫できるという点で有用な形質である。
従来、トマトにおいては、単為結果性トマト系統が遺伝資源として配布されており、これを育種素材とした実用品種の育成が進められている。また、トマトにおける単為結果関連遺伝子としてpat2が存在し、この遺伝子は単因子劣性形質であるとの報告がある。
また、特許文献1には、雄親としての少なくとも1つの単為結果関連遺伝子を含むトマト株と、雌親としての少なくとも1つの単為結果関連遺伝子を含む雄性不稔性トマト株を交雑させることにより無核の単為結果トマトを生産する方法が記載されており、該単為結果関連遺伝子の1つとして、pat2が記載されている。
また、特許文献2には、単為結実性の、または単為結実性かつ雄性不稔性のトマト植物を作出する方法であって、S.ハブロカイテスの4番、5番および/または12番染色体由来の遺伝領域を遺伝子移入する方法が記載されている。また、pat2の2重劣性の単為結実性への関与について記載されている。
特許文献1および2にも記載の通り、広義のトマトにおいて、単為結果に関与する遺伝子の存在は遺伝学的には認められている。しかし、その詳細な座乗位置および遺伝子の構造は未だ報告がなされていない。
単為結果性は栽培条件または品種系統によって形質発現が不安定になることがあるため、植物の外見のみに依拠すると評価が難しい場合がしばしば生じる。また、単為結果性の評価には、開花前の除雄および着果性の評価等の多くの労力と手間が必要である。
単為結果性の評価に関してトマトの場合を例示すると、単為結果性は劣性形質であるため、この形質をトマトの外見から評価するためには単為結果性に関与する遺伝子をホモ化する必要がある。また、F1世代において単為結果性の形質を有する品種を得るためには、その両親に単為結果性の形質を導入する必要があり、育種選抜は効率的に進められていない。
本発明は上記課題に鑑みてなされたものであり、その目的は、単為結果性に関与する新規な遺伝子を同定し、その遺伝子の利用を提供することにある。
本発明者らは、上記課題を解決するために鋭意検討した結果、単為結果性に関与する新規な遺伝子を同定して単離することに成功して、本発明を完成させるに至った。
すなわち、本発明は、以下の1)~6)の何れかを包含する。
1) 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する検査工程を含む、植物の単為結果性の判定方法。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
2) 上記1)に記載の判定方法を行い、単為結果性を示す植物を選抜する工程を含む、単為結果性が制御された植物の生産方法。
3) 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する工程を含む、単為結果性が制御された植物の生産方法。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
4) 上記2)または3)の何れかに記載の生産方法により生産された、単為結果性が制御された植物。
5) 以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子。(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
6) 以下の(1)~(4)の何れかに記載のポリペプチド。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチド、(3)配列番号1に記載のアミノ酸配列において1~87個の置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチド、(4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってコードされる、単為結果制御活性を有するポリペプチド。
1) 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する検査工程を含む、植物の単為結果性の判定方法。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
2) 上記1)に記載の判定方法を行い、単為結果性を示す植物を選抜する工程を含む、単為結果性が制御された植物の生産方法。
3) 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する工程を含む、単為結果性が制御された植物の生産方法。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
4) 上記2)または3)の何れかに記載の生産方法により生産された、単為結果性が制御された植物。
5) 以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子。(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
6) 以下の(1)~(4)の何れかに記載のポリペプチド。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチド、(3)配列番号1に記載のアミノ酸配列において1~87個の置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチド、(4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってコードされる、単為結果制御活性を有するポリペプチド。
遺伝子または当該遺伝子がコードするポリペプチドを指標または標的として、植物の単為結果性を判定したり、単為結果性の植物を生産することが出来る。
本発明の実施の形態について説明すれば、以下の通りである。なお、本発明は、これに限定されるものではない。
〔用語等の定義〕
本明細書において、「ポリヌクレオチド」は、「核酸」または「核酸分子」とも換言でき、ヌクレオチドの重合体を意図している。また、「塩基配列」は、「核酸配列」または「ヌクレオチド配列」とも換言でき、特に言及のない限り、デオキシリボヌクレオチドの配列またはリボヌクレオチドの配列を意図している。
本明細書において、「ポリヌクレオチド」は、「核酸」または「核酸分子」とも換言でき、ヌクレオチドの重合体を意図している。また、「塩基配列」は、「核酸配列」または「ヌクレオチド配列」とも換言でき、特に言及のない限り、デオキシリボヌクレオチドの配列またはリボヌクレオチドの配列を意図している。
本明細書において、「ポリペプチド」は、「タンパク質」とも換言できる。
本明細書において、「単為結果(性)」、および「単為結実(性)」は、植物において、受粉をしなくとも果実が肥大する性質を意図している。
本明細書において、「ヘテロ(接合)」は、異なる対立遺伝子が相同染色体上の対応する遺伝子座にある状態を意図し、「ホモ(接合)」は、同一の対立遺伝子が相同染色体上の対応する遺伝子座にある状態を意図する。
本明細書において、「トマト」は、広義には、栽培種「S.リコペルシクム(S.lycopersicum)」、野生種「S.ケエスマニ(S.cheesmaniae)、S.チレンセ(S.chilense)、S.クミエレウスキイ(S.chmielewskii)、S.ガラパゲンセ(S.galapagense)、S.ハブロカイテス(S.habrochaites)、S.リコペルシコイデス(S.lycopersicoides)、S.ネオリキイ(S.neorickii)、S.ペネリ(S.pennellii)、S.ペルビアナム(S.peruvianum)、およびS.ピンピネリフォリウム(S.pimpinellifolium)」を含む概念であり、狭義には「S.リコペルシクム」を意図している。
本明細書において、「Aおよび/またはB」は、AおよびBとAまたはBとの双方を含む概念であり、「AおよびBの少なくとも一方」とも換言できる。
本明細書において、「ポリヌクレオチド同士が相補的な関係にある」とは、「ポリヌクレオチドが有する塩基配列同士を比較したときに相補的な関係にある」ことと同義である。
〔1.単為結果制御遺伝子〕
本発明にかかる単為結果制御遺伝子は、少なくとも単為結果性を制御する活性(単為結果制御活性)を有するポリペプチドをコードするものである。ポリペプチドが「単為結果性を制御する活性を有する」とは、当該ポリペプチドが存在すれば単為結果性(単為結実性)という形質の出現が抑制されること、すなわち単為結果性を負に制御することを指す。また、本発明にかかる単為結果制御遺伝子の発現が抑制されるか、当該単為結果制御遺伝子がコードするポリペプチドの活性が阻害されると、植物は単為結果性という形質を示すか、単為結果性という形質を示さなくとも当該形質の素因を保有するようになる。
本発明にかかる単為結果制御遺伝子は、少なくとも単為結果性を制御する活性(単為結果制御活性)を有するポリペプチドをコードするものである。ポリペプチドが「単為結果性を制御する活性を有する」とは、当該ポリペプチドが存在すれば単為結果性(単為結実性)という形質の出現が抑制されること、すなわち単為結果性を負に制御することを指す。また、本発明にかかる単為結果制御遺伝子の発現が抑制されるか、当該単為結果制御遺伝子がコードするポリペプチドの活性が阻害されると、植物は単為結果性という形質を示すか、単為結果性という形質を示さなくとも当該形質の素因を保有するようになる。
本発明に係る単為結果制御遺伝子は、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含むものである。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド。
(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。なお、アミノ酸配列の配列同一性は、75%以上あるいは80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、96%以上、97%以上、98%以上、或いは99%以上であることが特に好ましい。例えば、トマトに由来する変異遺伝子、またはトマト以外の植物に由来する相同遺伝子がこの範疇に含まれる。
(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。なお、置換、欠失、挿入、および/または付加されたアミノ酸の個数は、1~72個あるいは1~58個であることがより好ましく、1~43個であることがより好ましく、1~29個であることがより好ましく、1~14個あるいは1~10個であることがさらに好ましく、1~5または6個であることが特に好ましい。
なお、上記「アミノ酸の欠失、置換、および/または付加」は、例えば、Kunkel法(Kunkel et al.(1985):Proc.Natl.Acad.Sci.USA,vol.82.p488-)等の部位特異的突然変異誘発法を用いて人為的に変異を導入してもよいし、天然に存在する同様の変異ポリペプチドに由来するものであってもよい。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド。
(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。なお、アミノ酸配列の配列同一性は、75%以上あるいは80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、96%以上、97%以上、98%以上、或いは99%以上であることが特に好ましい。例えば、トマトに由来する変異遺伝子、またはトマト以外の植物に由来する相同遺伝子がこの範疇に含まれる。
(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。なお、置換、欠失、挿入、および/または付加されたアミノ酸の個数は、1~72個あるいは1~58個であることがより好ましく、1~43個であることがより好ましく、1~29個であることがより好ましく、1~14個あるいは1~10個であることがさらに好ましく、1~5または6個であることが特に好ましい。
なお、上記「アミノ酸の欠失、置換、および/または付加」は、例えば、Kunkel法(Kunkel et al.(1985):Proc.Natl.Acad.Sci.USA,vol.82.p488-)等の部位特異的突然変異誘発法を用いて人為的に変異を導入してもよいし、天然に存在する同様の変異ポリペプチドに由来するものであってもよい。
また、アミノ酸の欠失、置換、および/または付加の生じる領域としては、配列番号1のアミノ酸配列のうち、Znフィンガードメインとして予測される56番目のバリンから112番目のアスパラギンまで、およびホメオドメインとして予測される219番目のリジンから276番目のアスパラギンを除く領域であることが好ましい。
(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。なお、ストリンジェントな条件下とは、例えば、参考文献[Molecular cloning-a Laboratory manual 2nd edition(Sambrookら、1989)]に記載の条件等が挙げられる。ストリンジェントな条件下とは、より具体的には例えば、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハートおよび100mg/mLニシン精子DNAを含む溶液にプローブとともに65℃で8~16時間恒温し、ハイブリダイズさせる条件が挙げられる。なお、このポリヌクレオチドは、上記(1)に記載のポリヌクレオチドの塩基配列に対して70%以上の配列同一性を有することが好ましく、75%以上あるいは80%以上の配列同一性を有することがより好ましく、85%以上の配列同一性を有することがより好ましく、90%以上の配列同一性を有することがさらに好ましく、95%以上、96%以上、97%以上、98%以上、或いは99%以上の配列同一性を有することが特に好ましい。
(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。なお、ストリンジェントな条件下とは、例えば、参考文献[Molecular cloning-a Laboratory manual 2nd edition(Sambrookら、1989)]に記載の条件等が挙げられる。ストリンジェントな条件下とは、より具体的には例えば、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハートおよび100mg/mLニシン精子DNAを含む溶液にプローブとともに65℃で8~16時間恒温し、ハイブリダイズさせる条件が挙げられる。なお、このポリヌクレオチドは、上記(1)に記載のポリヌクレオチドの塩基配列に対して70%以上の配列同一性を有することが好ましく、75%以上あるいは80%以上の配列同一性を有することがより好ましく、85%以上の配列同一性を有することがより好ましく、90%以上の配列同一性を有することがさらに好ましく、95%以上、96%以上、97%以上、98%以上、或いは99%以上の配列同一性を有することが特に好ましい。
本発明にかかる単為結果制御遺伝子は、RNA(例えば、mRNA)の形態、またはDNAの形態(例えば、cDNAまたはゲノムDNA)で存在し得る。DNAは、二本鎖であっても、一本鎖であってもよい。本発明にかかるポリヌクレオチドの一例である、配列番号2に示す塩基配列は、配列番号1に示すポリペプチドをコードするcDNAの構造遺伝子部分である。本発明にかかる単為結果制御遺伝子は、非翻訳領域(UTR)の配列等の付加的な配列を含むものであってもよい。
本発明に係る単為結果制御遺伝子を取得する(単離する)方法は、特に限定されるものではないが、例えば、上記単為結果制御遺伝子の塩基配列の一部と特異的にハイブリダイズするプローブを調製し、ゲノムDNAライブラリーまたはcDNAライブラリーをスクリーニングすればよい。
また、本発明にかかる単為結果制御遺伝子を取得する方法として、PCR等の増幅手段を用いる方法を挙げることができる。例えば、当該単為結果制御遺伝子のcDNAのうち、5’側および3’側の配列(またはその相補配列)の中からそれぞれプライマーを調製し、これらプライマーを用いてゲノムDNA(またはcDNA)等を鋳型にしてPCR等を行い、両プライマー間に挟まれるDNA領域を増幅することで、本発明にかかる単為結果制御遺伝子を含むDNA断片を大量に取得できる。
本発明にかかる単為結果制御遺伝子の由来は植物である限りにおいて特に限定されないが、トマト、ナス、ピーマン、パプリカ、トウガラシ、およびジャガイモ等のナス科の植物であることが好ましく、トマト、ナス、およびジャガイモ等のナス科ナス属の植物であることがより好ましく、トマトまたはナスであることがさらに好ましく、トマトであることが特に好ましい。
なお、単離された単為結果制御遺伝子の候補遺伝子が、所望する単為結果制御活性を有するか否かは、由来する植物における当該候補遺伝子の発現を抑制することによって、当該植物の単為結果性が誘導されるかを観察することによって評価ができる。
本発明にかかる単為結果制御遺伝子は、植物の単為結果性の機構の解明に利用することができる。
本発明に係る単為結果制御遺伝子として、トマト由来のもの(配列番号2、6(ORF)、11(完全長cDNA)、配列番号16(イントロンを含むゲノムDNA上の遺伝子))、トマト近縁野生種S.pimpinellifolium由来のもの(配列番号18)およびトマト近縁野生種S.peruvianum由来のもの(配列番号20)の他、ジャガイモS.tuberosum phureja由来の遺伝子(配列番号22)、ナスS.melongena由来の遺伝子(配列番号24)等を挙げることができる。また、本発明に係る単為結果制御遺伝子の範疇には、ここで例示したポリヌクレオチドの塩基配列に対して70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、或いは99%以上の配列同一性を有し、単為結果制御活性を有するヌクレオチドからなる遺伝子も含まれる。
〔2.単為結果制御タンパク質としてのポリペプチド〕
本発明にかかるポリペプチドは、上記〔1.単為結果制御遺伝子〕欄に記載した単為結果制御遺伝子の翻訳産物であり、少なくとも植物の単為結果性を制御する活性を有する。上述の通り、本発明に係るポリペプチドは、単為結果性という形質の出現を抑制する、すなわち単為結果性を負に制御する。
本発明にかかるポリペプチドは、上記〔1.単為結果制御遺伝子〕欄に記載した単為結果制御遺伝子の翻訳産物であり、少なくとも植物の単為結果性を制御する活性を有する。上述の通り、本発明に係るポリペプチドは、単為結果性という形質の出現を抑制する、すなわち単為結果性を負に制御する。
本発明にかかるポリペプチドは、天然供給源より単離されても、化学合成されてもよい。より具体的には、当該ポリペプチドは、天然の精製産物、化学合成手順の産物、および原核生物宿主または真核生物宿主(例えば、細菌細胞、酵母細胞、高等植物細胞、昆虫細胞、および哺乳動物細胞を含む)から組換え技術によって産生された翻訳産物をその範疇に含む。
本発明にかかるポリペプチドは、より具体的には、以下の(1)~(4)の何れかに記載のポリペプチドである。なお、このポリペプチドは単為結果制御遺伝子の翻訳産物であるから、用語「ストリンジェントな条件下でハイブリダイズする」等の意味については上記〔1.単為結果制御遺伝子〕欄の記載をそのまま参照すればよい。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチド。
(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチド。なお、配列同一性は、75%以上あるいは80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、96%以上、97%以上、98%以上、或いは99%以上であることが特に好ましい。
(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチド。なお、置換、欠失、挿入、および/または付加されたアミノ酸の個数は、1~72個あるいは1~58個であることが好ましく、1~43個であることがより好ましく、1~29個であることがより好ましく、1~14個であることがさらに好ましく、1~5または6個であることが特に好ましい。(4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってコードされる、単為結果制御活性を有するポリペプチド。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチド。
(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチド。なお、配列同一性は、75%以上あるいは80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、96%以上、97%以上、98%以上、或いは99%以上であることが特に好ましい。
(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチド。なお、置換、欠失、挿入、および/または付加されたアミノ酸の個数は、1~72個あるいは1~58個であることが好ましく、1~43個であることがより好ましく、1~29個であることがより好ましく、1~14個であることがさらに好ましく、1~5または6個であることが特に好ましい。(4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってコードされる、単為結果制御活性を有するポリペプチド。
上記ポリペプチドは、アミノ酸がペプチド結合してなるポリペプチドであればよいが、これに限定されるものではなく、ポリペプチド以外の構造を含むものであってもよい。ここでいうポリペプチド以外の構造としては、糖鎖やイソプレノイド基等を挙げることができるが、特に限定されるものではない。
なお、単為結果制御タンパク質としての本発明に係るポリペプチドとして、トマト由来のもの(配列番号1)、トマト近縁野生種S.pimpinellifolium由来のもの(配列番号19)およびトマト近縁野生種S.peruvianum由来のもの(配列番号21)の他、ジャガイモS.tuberosum phureja由来のもの(配列番号23)、ナスS.melongena由来のもの(配列番号25)等を挙げることができる。
〔3.組換え発現ベクター、および形質転換体〕
本発明はまた、本発明にかかる単為結果制御遺伝子が発現可能に組み込まれた組換え発現ベクター、並びに、当該組換え発現ベクターまたは単為結果制御遺伝子が発現可能に導入された形質転換体を提供する。
本発明はまた、本発明にかかる単為結果制御遺伝子が発現可能に組み込まれた組換え発現ベクター、並びに、当該組換え発現ベクターまたは単為結果制御遺伝子が発現可能に導入された形質転換体を提供する。
組換え発現ベクターを構成するためのベクターの種類は特に限定されるものではなく、ホスト細胞中で発現可能なものを適宜選択すればよい。すなわち、ホスト細胞の種類に応じて、適宜プロモーター配列を選択し、当該プロモーター配列と本発明にかかる単為結果制御遺伝子とを、例えば、プラスミド、ファージミド、またはコスミド等に組み込んだものを発現ベクターとして用いればよい。
また、上記形質転換体とは、上記組換え発現ベクターまたは単為結果制御遺伝子が発現可能に導入された細胞、組織および器官のみならず、生物個体を含む意味である。形質転換体の生物種は特に限定されず、例えば、大腸菌等の微生物、植物、動物等が挙げられる。
〔4.植物の単為結果性の判定方法〕
本発明に係る単為結果性の判定方法は、植物において、上記単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する検査工程を含んでなる。ここで、「単為結果制御遺伝子」は上記〔1.単為結果制御遺伝子〕欄に記載したものを指し、「単為結果制御遺伝子がコードするポリペプチド」は上記〔2.単為結果制御タンパク質としてのポリペプチド〕欄に記載したものを指す。なお、「単為結果制御遺伝子の発現を抑制」の範疇には、遺伝子の転写の抑制およびタンパク質への翻訳の抑制が含まれる。
本発明に係る単為結果性の判定方法は、植物において、上記単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する検査工程を含んでなる。ここで、「単為結果制御遺伝子」は上記〔1.単為結果制御遺伝子〕欄に記載したものを指し、「単為結果制御遺伝子がコードするポリペプチド」は上記〔2.単為結果制御タンパク質としてのポリペプチド〕欄に記載したものを指す。なお、「単為結果制御遺伝子の発現を抑制」の範疇には、遺伝子の転写の抑制およびタンパク質への翻訳の抑制が含まれる。
また、上記検査工程において、上記単為結果制御遺伝子の発現が抑制されている植物、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されている植物と判定されたものを、単為結果性が制御された植物の候補として選抜することが好ましい。
上記検査工程を行う手法は特に限定されないが、例えば、以下の1)~3)に示す手法が挙げられる。そして、これら手法の中では、実施の容易さの観点で、1)または2)の手法が好ましい。
1)対象となる植物における単為結果制御遺伝子の発現量を調べ、必要に応じて基準となる発現量と比較して、当該単為結果制御遺伝子の発現が抑制されているか否かを検査する。遺伝子の発現量は、例えば、定量RT-PCR法、定量リアルタイムPCR法等で転写産物の量を測るか、定量ウエスタンブロット法等で翻訳産物の量を測る方法を採用すればよい。また、基準となる発現量とは、例えば、単為結果性を示さない同種の植物(例えば、単為結果制御遺伝子をホモに持つ個体)における単為結果制御遺伝子の発現量を指す。なお、遺伝子破壊の手法、またはRNAi等の手法を用いて、単為結果制御遺伝子の転写または翻訳をほぼ完全に抑制する場合には、基準となる発現量との比較を要しない場合がある。
2)対象となる植物における単為結果制御遺伝子(ゲノムDNA、mRNA、またはcDNA)の塩基配列を解析する。そして、解析の結果、単為結果制御遺伝子がコードするポリペプチドの機能に影響を与える変異が生じている場合には、当該ポリペプチドの機能が阻害されていると判定する。ポリペプチドの機能に影響を与える変異の一例は、単為結果制御遺伝子のコード領域を含む数十~数千bpのヌクレオチドの欠損であり、好ましくは少なくとも100bp~1100bpのヌクレオチドの欠損、あるいは少なくとも約270bp~1100bpのヌクレオチドの欠損である。なお、このような変異は、相同染色体における一対の単為結果制御遺伝子の少なくとも一方に生じていればよいが、双方に生じている(すなわち劣性ホモである)ことが好ましい。
また、単為結果制御遺伝子上の変異と連鎖するマーカー配列を利用すれば、単為結果制御遺伝子の塩基配列を直接的にか間接的に検査することになって、上記検査工程を行うことが可能である。上記のマーカー配列は、一例において、単為結果制御遺伝子が座乗する位置から約5.5cM以内(すなわち約5.5cM~0cM)に位置しており、好ましくは約5.3cM以内に位置しており、より好ましくは約1.2cM以内に位置しており、さらに好ましくは約1.1cM以内に位置している。なお、単為結果制御遺伝子上の変異をマーカー配列として利用することももちろん可能である。
3)対象となる植物から、単為結果制御遺伝子がコードするポリペプチドを単離する。そして、ポリペプチドのアミノ酸配列を解析する。そして、解析の結果、このポリペプチドの機能に影響を与える変異(例えば数十以上のアミノ酸の欠失を伴うトランケート体の発生)が生じている場合には、ポリペプチドの機能が阻害されていると判定する。
1)対象となる植物における単為結果制御遺伝子の発現量を調べ、必要に応じて基準となる発現量と比較して、当該単為結果制御遺伝子の発現が抑制されているか否かを検査する。遺伝子の発現量は、例えば、定量RT-PCR法、定量リアルタイムPCR法等で転写産物の量を測るか、定量ウエスタンブロット法等で翻訳産物の量を測る方法を採用すればよい。また、基準となる発現量とは、例えば、単為結果性を示さない同種の植物(例えば、単為結果制御遺伝子をホモに持つ個体)における単為結果制御遺伝子の発現量を指す。なお、遺伝子破壊の手法、またはRNAi等の手法を用いて、単為結果制御遺伝子の転写または翻訳をほぼ完全に抑制する場合には、基準となる発現量との比較を要しない場合がある。
2)対象となる植物における単為結果制御遺伝子(ゲノムDNA、mRNA、またはcDNA)の塩基配列を解析する。そして、解析の結果、単為結果制御遺伝子がコードするポリペプチドの機能に影響を与える変異が生じている場合には、当該ポリペプチドの機能が阻害されていると判定する。ポリペプチドの機能に影響を与える変異の一例は、単為結果制御遺伝子のコード領域を含む数十~数千bpのヌクレオチドの欠損であり、好ましくは少なくとも100bp~1100bpのヌクレオチドの欠損、あるいは少なくとも約270bp~1100bpのヌクレオチドの欠損である。なお、このような変異は、相同染色体における一対の単為結果制御遺伝子の少なくとも一方に生じていればよいが、双方に生じている(すなわち劣性ホモである)ことが好ましい。
また、単為結果制御遺伝子上の変異と連鎖するマーカー配列を利用すれば、単為結果制御遺伝子の塩基配列を直接的にか間接的に検査することになって、上記検査工程を行うことが可能である。上記のマーカー配列は、一例において、単為結果制御遺伝子が座乗する位置から約5.5cM以内(すなわち約5.5cM~0cM)に位置しており、好ましくは約5.3cM以内に位置しており、より好ましくは約1.2cM以内に位置しており、さらに好ましくは約1.1cM以内に位置している。なお、単為結果制御遺伝子上の変異をマーカー配列として利用することももちろん可能である。
3)対象となる植物から、単為結果制御遺伝子がコードするポリペプチドを単離する。そして、ポリペプチドのアミノ酸配列を解析する。そして、解析の結果、このポリペプチドの機能に影響を与える変異(例えば数十以上のアミノ酸の欠失を伴うトランケート体の発生)が生じている場合には、ポリペプチドの機能が阻害されていると判定する。
本発明に係る判定方法が適用される植物の種類は特に限定されないが、トマト、ナス、ピーマン、パプリカ、トウガラシ、およびジャガイモ等のナス科の植物であることが好ましく、トマト、ナスおよびジャガイモ等のナス科ナス属の植物であることがより好ましく、トマトまたはナスであることがさらに好ましく、トマトであることが特に好ましい。また、この判定方法が適用される植物は、例えば、育種素材(親植物、すなわち花粉親、または種子親)や、育種により得られた子孫等が挙げられる。なお、育種とは交配による手法のほか、遺伝子工学的な手法も含む概念である。
単為結果性は栽培条件または品種系統によって形質発現が不安定になることがあるため、植物の外見のみに依拠すると評価が難しい場合がしばしば生じる。また、単為結果制御遺伝子がヘテロ接合となっている植物も育種材料等として利用価値があるが、特にヘテロ接合の場合は外見だけでは単為結果性を示しうるか否かが明確に判断できない場合もある。本発明に係る単為結果性の判定方法は遺伝子レベルでの判定であるから、遺伝子のホモ化を行って形質評価を行わなくてもよくなり、例えば育種選抜の効率を大幅に向上可能となる。また、単為結果制御遺伝子が明らかとなったため、遺伝子工学的手法を用いる等して、本来この単為結果制御遺伝子と共分離する不良形質との連鎖を切り離すことも可能になる。
〔5.単為結果性が制御された植物の生産方法、および作出した植物〕
本発明に係る、単為結果性が制御された植物の生産方法の一形態(形態1とする)は、上記〔4.植物の単為結果性の判定方法〕欄で記載した判定方法を行って、単為結果性が制御された植物を選抜する工程を含む方法である。
本発明に係る、単為結果性が制御された植物の生産方法の一形態(形態1とする)は、上記〔4.植物の単為結果性の判定方法〕欄で記載した判定方法を行って、単為結果性が制御された植物を選抜する工程を含む方法である。
また、本発明に係る、単為結果性が制御された植物の生産方法の他形態(形態2とする)は、植物において、単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する工程を含む方法である。ここで、「単為結果制御遺伝子」は上記〔1.単為結果制御遺伝子〕欄に記載したものを指し、「単為結果制御遺伝子がコードするポリペプチド」は上記〔2.単為結果制御タンパク質としてのポリペプチド〕欄に記載したものを指す。
なお、上記形態2では、上記単為結果制御遺伝子を破壊するか、上記単為結果制御遺伝子の発現を抑制するポリヌクレオチドを植物に導入することによって、単為結果制御遺伝子の発現を抑制することが好ましい。なお、「単為結果制御遺伝子の発現を抑制」の範疇には、遺伝子の転写の抑制およびタンパク質への翻訳の抑制が含まれる。
単為結果制御遺伝子を破壊する手法は特に限定されず、例えば、相同組換えを用いた特異的な遺伝子破壊を行う、部位特異的突然変異誘発法を用いて単為結果制御遺伝子の途中に終止コドンを導入する、重イオンビーム等の照射によって物理的に遺伝子の一部を破壊する等の方法で行うことができる。
また、単為結果制御遺伝子の発現を抑制するポリヌクレオチドを植物に導入する手法は特に限定されず、例えば、RNA干渉、またはアンチセンスRNA等の手法によって行うことができる。このポリヌクレオチドを含む発現カセット(例えばベクター等)を植物へ導入する方法は特に限定されず、ポリエチレングリコール法、電気穿孔法(エレクトロポレーション法)、アグロバクテリウムを介する方法、パーティクルガン法等を適宜用いればよい。なお、このポリヌクレオチドを含む発現カセットは、植物細胞、カルス、植物組織、または植物個体に対して導入すればよい。
なお、単為結果制御遺伝子の発現の抑制は、単為結果制御遺伝子の遺伝子発現を制御している発現調節配列(例えば、プロモーター配列、またはエンハンサ配列)に、遺伝子発現を抑制するような変異を導入することによっても行うことができる。
本発明はまた、上記の生産方法により生産された、単為結果性が制御された植物も提供する。単為結果性が制御された植物とは、単為結果性という形質が出現した植物の他、単為結果性という形質が出現していないもののその素因を保有する植物を含む概念である。
本発明に係る方法により生産される植物の種類は特に限定されないが、トマト、ナス、ピーマン、パプリカ、トウガラシ、およびジャガイモ等のナス科の植物であることが好ましく、トマト、ナスおよびジャガイモ等のナス科ナス属の植物であることがより好ましく、トマトまたはナスであることがさらに好ましく、トマトであることが特に好ましい。
〔6.本発明に係る具体的な態様の例示〕
すなわち、本発明は、以下の1)~11)の何れかを包含する。
1) 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する検査工程を含む、植物の単為結果性の判定方法。検査工程の一形態では、例えば、少なくとも植物のつぼみにおいて、上記単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
2) 上記検査工程において、上記単為結果制御遺伝子の塩基配列、または当該単為結果制御遺伝子の発現量を検査する、1)に記載の判定方法。
3) 上記検査工程において、上記単為結果制御遺伝子の発現が抑制されている植物、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されている植物を、単為結果性を示す植物として選抜する、1)または2)に記載の判定方法。
4) 1)~3)の何れかに記載の判定方法を行い、単為結果性を示す植物を選抜する工程を含む、単為結果性が制御された植物の生産方法。
5) 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する工程を含む、単為結果性が制御された植物の生産方法。当該工程の一形態では、例えば、少なくとも植物のつぼみにおいて、上記単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
6) 上記工程において、上記単為結果制御遺伝子の発現を抑制するポリヌクレオチドを植物に導入するか、上記単為結果制御遺伝子を破壊する、5)に記載の生産方法。
7) 上記植物がナス科の植物である1)~6)の何れかに記載の方法。
8) 上記植物がトマトである7)に記載の方法。
9) 4)~6)の何れかに記載の生産方法により生産された、単為結果性が制御された植物。
10) 以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子。当該単為結果制御遺伝子の一形態では、例えば、少なくとも植物のつぼみにおいて、単為結果制御遺伝子の発現を抑制することによって、植物が単為結果性を示す。(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
11) 以下の(1)~(4)の何れかに記載のポリペプチド。当該ポリペプチドの一形態では、例えば、少なくとも植物のつぼみにおいて、このポリペプチドの機能を阻害することによって、植物が単為結果性を示す。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチド、(3)配列番号1に記載のアミノ酸配列において1~87個の置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチド、(4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってコードされる、単為結果制御活性を有するポリペプチド。
すなわち、本発明は、以下の1)~11)の何れかを包含する。
1) 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する検査工程を含む、植物の単為結果性の判定方法。検査工程の一形態では、例えば、少なくとも植物のつぼみにおいて、上記単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
2) 上記検査工程において、上記単為結果制御遺伝子の塩基配列、または当該単為結果制御遺伝子の発現量を検査する、1)に記載の判定方法。
3) 上記検査工程において、上記単為結果制御遺伝子の発現が抑制されている植物、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されている植物を、単為結果性を示す植物として選抜する、1)または2)に記載の判定方法。
4) 1)~3)の何れかに記載の判定方法を行い、単為結果性を示す植物を選抜する工程を含む、単為結果性が制御された植物の生産方法。
5) 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する工程を含む、単為結果性が制御された植物の生産方法。当該工程の一形態では、例えば、少なくとも植物のつぼみにおいて、上記単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
6) 上記工程において、上記単為結果制御遺伝子の発現を抑制するポリヌクレオチドを植物に導入するか、上記単為結果制御遺伝子を破壊する、5)に記載の生産方法。
7) 上記植物がナス科の植物である1)~6)の何れかに記載の方法。
8) 上記植物がトマトである7)に記載の方法。
9) 4)~6)の何れかに記載の生産方法により生産された、単為結果性が制御された植物。
10) 以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子。当該単為結果制御遺伝子の一形態では、例えば、少なくとも植物のつぼみにおいて、単為結果制御遺伝子の発現を抑制することによって、植物が単為結果性を示す。(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
11) 以下の(1)~(4)の何れかに記載のポリペプチド。当該ポリペプチドの一形態では、例えば、少なくとも植物のつぼみにおいて、このポリペプチドの機能を阻害することによって、植物が単為結果性を示す。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチド、(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチド、(3)配列番号1に記載のアミノ酸配列において1~87個の置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチド、(4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってコードされる、単為結果制御活性を有するポリペプチド。
また、本発明の他の態様においては、以下の12)~17)の何れかであってもよい。
12) 植物において、以下の(S1)~(S4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する検査工程を含む、植物の単為結果性の判定方法。検査工程の一形態では、例えば、少なくとも植物のつぼみにおいて、上記単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する。
(S1)配列番号25に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(S2)配列番号25に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S3)配列番号25に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S4)上記(S1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
13) 上記12)に記載の判定方法を行い、単為結果性を示す植物を選抜する工程を含む、単為結果性が制御された植物の生産方法。
14) 植物において、以下の(S1)~(S4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する工程を含む、単為結果性が制御された植物の生産方法。当該工程の一形態では、例えば、少なくとも植物のつぼみにおいて、上記単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する。
(S1)配列番号25に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(S2)配列番号25に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S3)配列番号25に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S4)上記(S1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
15) 上記13)または14)の何れかに記載の生産方法により生産された、単為結果性が制御された植物。
16) 以下の(S1)~(S4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子。当該単為結果制御遺伝子の一形態では、例えば、少なくとも植物のつぼみにおいて、単為結果制御遺伝子の発現を抑制することによって、植物が単為結果性を示す。(S1)配列番号25に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(S2)配列番号25に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S3)配列番号25に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S4)上記(S1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
17) 以下の(S1)~(S4)の何れかに記載のポリペプチド。当該ポリペプチドの一形態では、例えば、少なくとも植物のつぼみにおいて、このポリペプチドの機能を阻害することによって、植物が単為結果性を示す。
(S1)配列番号25に記載のアミノ酸配列を有するポリペプチド、(S2)配列番号25に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチド、(S3)配列番号25に記載のアミノ酸配列において1~87個の置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチド、(S4)上記(S1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってコードされる、単為結果制御活性を有するポリペプチド。
なお、上記の12)~17)において、アミノ酸配列の配列同一性は、75%以上あるいは80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、96%以上、97%以上、98%以上、或いは99%以上であることが特に好ましい。
12) 植物において、以下の(S1)~(S4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する検査工程を含む、植物の単為結果性の判定方法。検査工程の一形態では、例えば、少なくとも植物のつぼみにおいて、上記単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する。
(S1)配列番号25に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(S2)配列番号25に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S3)配列番号25に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S4)上記(S1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
13) 上記12)に記載の判定方法を行い、単為結果性を示す植物を選抜する工程を含む、単為結果性が制御された植物の生産方法。
14) 植物において、以下の(S1)~(S4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する工程を含む、単為結果性が制御された植物の生産方法。当該工程の一形態では、例えば、少なくとも植物のつぼみにおいて、上記単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する。
(S1)配列番号25に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(S2)配列番号25に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S3)配列番号25に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S4)上記(S1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
15) 上記13)または14)の何れかに記載の生産方法により生産された、単為結果性が制御された植物。
16) 以下の(S1)~(S4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子。当該単為結果制御遺伝子の一形態では、例えば、少なくとも植物のつぼみにおいて、単為結果制御遺伝子の発現を抑制することによって、植物が単為結果性を示す。(S1)配列番号25に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、(S2)配列番号25に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S3)配列番号25に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、(S4)上記(S1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。
17) 以下の(S1)~(S4)の何れかに記載のポリペプチド。当該ポリペプチドの一形態では、例えば、少なくとも植物のつぼみにおいて、このポリペプチドの機能を阻害することによって、植物が単為結果性を示す。
(S1)配列番号25に記載のアミノ酸配列を有するポリペプチド、(S2)配列番号25に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチド、(S3)配列番号25に記載のアミノ酸配列において1~87個の置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチド、(S4)上記(S1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってコードされる、単為結果制御活性を有するポリペプチド。
なお、上記の12)~17)において、アミノ酸配列の配列同一性は、75%以上あるいは80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、96%以上、97%以上、98%以上、或いは99%以上であることが特に好ましい。
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変
更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
〔1.トマト由来の単為結果原因遺伝子Aの同定〕
〔遺伝解析集団の育成〕
単為結果性のトマト系統LS935(野菜茶業研究所より入手)と、非単為結果性のトマト系統Saladette(LA2662)(Tomato Genetics Resource Center、米国より入手)とを交配することによってF2個体の集団を得た。このF2集団を用いて、以下に記載する、トマト由来の単為結果原因遺伝子Aを含む連鎖地図の作成および単為結果性の遺伝解析を行った。さらに、F2集団から選抜した系統の自殖後代F3集団を、後述する単為結果性の詳細な遺伝解析に用いた。
〔遺伝解析集団の育成〕
単為結果性のトマト系統LS935(野菜茶業研究所より入手)と、非単為結果性のトマト系統Saladette(LA2662)(Tomato Genetics Resource Center、米国より入手)とを交配することによってF2個体の集団を得た。このF2集団を用いて、以下に記載する、トマト由来の単為結果原因遺伝子Aを含む連鎖地図の作成および単為結果性の遺伝解析を行った。さらに、F2集団から選抜した系統の自殖後代F3集団を、後述する単為結果性の詳細な遺伝解析に用いた。
なお、トマト系統LS935は、単為結果性を示すことが報告されている品種Severianinに、大玉トマト品種Money Makerを戻し交配した系統として導入された遺伝資源である。Saladetteは、大玉トマト系統として導入された遺伝資源であって非単為結果性を示す(すなわち単為結果性を示さない)。
〔単為結果性の評価方法〕
開花前に柱頭を除去し、柱頭除去果の完熟果重量と種子の有無を調査した。植物体あたり3花房以上の柱頭除去果と1花房以上の放任受粉果の完熟果の重量を調査した。柱頭除去果と放任受粉果との重量を比較し、同等の果実重の完熟果が着果した系統を単為結果性と判断した。なお、RNAi組換えトマト以外に関して、放任受粉果が小さく柱頭除去果との差が小さいために単為結果性の判断の難しい系統は、挿し芽による増殖を行い、再度検定をした。
開花前に柱頭を除去し、柱頭除去果の完熟果重量と種子の有無を調査した。植物体あたり3花房以上の柱頭除去果と1花房以上の放任受粉果の完熟果の重量を調査した。柱頭除去果と放任受粉果との重量を比較し、同等の果実重の完熟果が着果した系統を単為結果性と判断した。なお、RNAi組換えトマト以外に関して、放任受粉果が小さく柱頭除去果との差が小さいために単為結果性の判断の難しい系統は、挿し芽による増殖を行い、再度検定をした。
〔連鎖地図の作成〕
既報のSSR(simple sequence repeat)マーカー(参考文献:Ohyama A. et al. (2009) Mol. Breed. 23: 685-691, Shirasawa L. et al. (2010) Theor. Appl. Genet. 121:731-739.)および既報のSNPマーカー近傍にあるSSRをマーカー化したもの(出願人が開発中の独自マーカー)を用いて、F2集団100個体の単為結果性/非単為結果性に関する形質分離を調査して、図1に示す連鎖地図を作成した。連鎖地図の作成にはMapmaker exp 3.0を用いた。なお、図1中の左側はトマト第4染色体の連鎖地図であり、TESで始まる名称は既報のSSRマーカー、tbmで始まる名称は出願人が開発した独自マーカーを示す。
既報のSSR(simple sequence repeat)マーカー(参考文献:Ohyama A. et al. (2009) Mol. Breed. 23: 685-691, Shirasawa L. et al. (2010) Theor. Appl. Genet. 121:731-739.)および既報のSNPマーカー近傍にあるSSRをマーカー化したもの(出願人が開発中の独自マーカー)を用いて、F2集団100個体の単為結果性/非単為結果性に関する形質分離を調査して、図1に示す連鎖地図を作成した。連鎖地図の作成にはMapmaker exp 3.0を用いた。なお、図1中の左側はトマト第4染色体の連鎖地図であり、TESで始まる名称は既報のSSRマーカー、tbmで始まる名称は出願人が開発した独自マーカーを示す。
〔単為結果性の詳細な遺伝解析〕
F2集団を用いた遺伝解析により単為結果原因遺伝子Aはトマト第4染色体に座乗し、2つのSSRマーカー間約5cMの領域に位置することが明らかとなった(図1参照)。SSRマーカーの配列情報とトマト全ゲノム配列情報(sol genomics network http://solgenomics.net/)との比較解析を行ったところ、この2つのSSRマーカー間の物理距離は約1100kbに相当した。
F2集団を用いた遺伝解析により単為結果原因遺伝子Aはトマト第4染色体に座乗し、2つのSSRマーカー間約5cMの領域に位置することが明らかとなった(図1参照)。SSRマーカーの配列情報とトマト全ゲノム配列情報(sol genomics network http://solgenomics.net/)との比較解析を行ったところ、この2つのSSRマーカー間の物理距離は約1100kbに相当した。
次に、トマト全ゲノム配列情報を利用して、単為結果原因遺伝子Aの座乗する領域のSSRを新たに抽出して多型を検索した。また、当該領域に座乗する候補遺伝子近傍のSNP多型を新たに検索した。F2集団から当該領域の遺伝子型がヘテロ接合であるF2個体を選定し、その後代F3個体の遺伝子型を決定して遺伝的組換え個体を選定し、この個体の単為結果性を評価した。これにより単為結果原因遺伝子Aを、2つのSNPマーカー間約300kbに絞り込んだ。なお、約300kbに絞り込んだ領域の近傍に位置する遺伝マーカーは図1中の右側に示す。RHF2AsおよびPHDsは新規に開発したSNPマーカーであり、tsm041208は新規に開発したSSRマーカーであり、athb31は新規に開発した挿入欠失変異マーカーである。
そして、非単為結果性の系統「Saladette」と単為結果性の系統「LS935」とに関して、約300kbに絞り込んだゲノム上の上記領域の塩基配列を決定し、配列の変異を検索した。その結果、「Saladette」のゲノム配列(配列番号3)と比較して、「LS935」のゲノム配列(配列番号4)に1034bpの欠失変異(配列番号5)を見出した。
この欠失変異は配列番号6に示すような読み枠をもつ推定遺伝子の上に存在し、第1エクソンの一部と第1イントロンの一部が「LS935」のゲノムから失われていることが推定された。そこで、この配列番号6に示される読み枠をもった推定遺伝子の欠失変異が単為結果性の原因であると予想し、以下の実験を進めた。なお、「Saladette」が有する上記推定遺伝子のゲノム上の塩基配列(イントロンを含む)は配列番号16に、「LS935」が有するゲノム上の対応する塩基配列は配列番号17に示した。
〔単為結果原因遺伝子Aの完全長cDNA配列の取得〕
非単為結果性のトマト品種「秋玉」の葉、茎および花を含む地上部組織から全RNAをTrizol法で抽出し、SMARTer RACE cDNA amplification Kit(タカラバイオ株式会社)を用いてcDNAを合成した。このcDNAを鋳型として、配列番号7で示すポリヌクレオチドを遺伝子特異的プライマーとして用いた5’-RACE法によって、mRNAの転写開始点および翻訳開始点を含むcDNAの増幅を試みた。増幅産物は大腸菌ベクターにクローニングし、その配列をSanger法によって決定した。PCR法による増幅の際には低頻度ながら塩基配列の変異が生じることが知られているため、独立に複数のクローンの塩基配列を決定した。その結果、第一エクソン(5’-UTR(非翻訳領域)298bpおよびORFの5’-側541bp)および第2エクソン3bpを含む完全長cDNAの5’側末端842bpの配列が得られた。
非単為結果性のトマト品種「秋玉」の葉、茎および花を含む地上部組織から全RNAをTrizol法で抽出し、SMARTer RACE cDNA amplification Kit(タカラバイオ株式会社)を用いてcDNAを合成した。このcDNAを鋳型として、配列番号7で示すポリヌクレオチドを遺伝子特異的プライマーとして用いた5’-RACE法によって、mRNAの転写開始点および翻訳開始点を含むcDNAの増幅を試みた。増幅産物は大腸菌ベクターにクローニングし、その配列をSanger法によって決定した。PCR法による増幅の際には低頻度ながら塩基配列の変異が生じることが知られているため、独立に複数のクローンの塩基配列を決定した。その結果、第一エクソン(5’-UTR(非翻訳領域)298bpおよびORFの5’-側541bp)および第2エクソン3bpを含む完全長cDNAの5’側末端842bpの配列が得られた。
同様に、配列番号8で示すポリヌクレオチドを遺伝子特異的プライマーとして用いた3’-RACE法によって、翻訳終止点およびポリアデニレーション部位を含むcDNAの増幅と大腸菌ベクターへのクローニングおよび配列決定を試みた。その結果、305bpの第2エクソン(ORFの3’-側末端(翻訳終止点を含む))および234bpの3’-UTRを含む完全長cDNAの3’側末端539bpの配列が得られた。
さらに、配列番号9および配列番号10に示す1対のプライマーセットを用い、上記と同じcDNAを鋳型としたPCR反応によって増幅されたcDNAの配列をダイレクトシーケンシング法によって決定した。そして、以上のようにして得られた、完全長cDNAの5’側末端、3’側末端、並びにその他の領域を配列の重複に基づき統合して配列番号11に示す1405bpの塩基配列を得て、これを単為結果原因遺伝子Aの完全長cDNA配列とした。
〔単為結果原因遺伝子Aのアミノ配列の解析およびホモログ遺伝子の探索〕
単為結果原因遺伝子Aは、ブラスト検索(http://blast.ncbi.nlm.nih.gov/)の結果、コードするアミノ酸配列における56番目のバリンから112番目のアスパラギンまでがZnフィンガードメインとして予測され、さらに219番目のリジンから276番目のアスパラギンまでがホメオドメインとして予測される、Znフィンガー・ホメオドメイン型のホメオボックス遺伝子に属することが示された。Znフィンガー・ホメオドメイン型のホメオボックス遺伝子は、転写因子として形態形成を制御することが予想される。また、トマト近縁野生種S.pimpinellifolium由来、トマト近縁野生種S.peruvianum由来、ジャガイモS.tuberosum phureja由来、ナスS.melongena由来の単為結果性遺伝子Aのホモログをデータベース上で見出した。単為結果性遺伝子Aがコードするアミノ酸配列に対するこれらのホモログのアミノ酸配列の相同性は、トマト近縁野生種S.pimpinellifolium由来のもの(配列番号19)は95%、トマト近縁野生種S.peruvianum由来のもの(配列番号21)は94%、ジャガイモS.tuberosum phureja由来のもの(配列番号23)は84%、ナスS.melongena由来のもの(配列番号25)は75%であった。なお、ナスのホモログ遺伝子の探索に用いたデータベースは、発明者らが独自に構築した未公開のものである。
単為結果原因遺伝子Aは、ブラスト検索(http://blast.ncbi.nlm.nih.gov/)の結果、コードするアミノ酸配列における56番目のバリンから112番目のアスパラギンまでがZnフィンガードメインとして予測され、さらに219番目のリジンから276番目のアスパラギンまでがホメオドメインとして予測される、Znフィンガー・ホメオドメイン型のホメオボックス遺伝子に属することが示された。Znフィンガー・ホメオドメイン型のホメオボックス遺伝子は、転写因子として形態形成を制御することが予想される。また、トマト近縁野生種S.pimpinellifolium由来、トマト近縁野生種S.peruvianum由来、ジャガイモS.tuberosum phureja由来、ナスS.melongena由来の単為結果性遺伝子Aのホモログをデータベース上で見出した。単為結果性遺伝子Aがコードするアミノ酸配列に対するこれらのホモログのアミノ酸配列の相同性は、トマト近縁野生種S.pimpinellifolium由来のもの(配列番号19)は95%、トマト近縁野生種S.peruvianum由来のもの(配列番号21)は94%、ジャガイモS.tuberosum phureja由来のもの(配列番号23)は84%、ナスS.melongena由来のもの(配列番号25)は75%であった。なお、ナスのホモログ遺伝子の探索に用いたデータベースは、発明者らが独自に構築した未公開のものである。
〔単為結果原因遺伝子Aのプロモーターの単離〕
配列番号11に示す単為結果原因遺伝子Aの完全長cDNA配列は配列番号3に示すゲノム配列の塩基番号9421から11603までに対応する。したがって、その上流のゲノム配列は単為結果原因遺伝子Aの発現制御に関わるプロモーター領域であると推定される。そこで、その領域を増幅するPCRプライマーを合成し、これを用いてトマト品種「桃太郎8」のゲノムDNAを鋳型とするPCRを行った。得られたPCR産物を制限酵素HindIIIおよびSmaIで消化し、クローニングベクターpHSG398のHindIII-SmaI部位に挿入してクローニングした。
配列番号11に示す単為結果原因遺伝子Aの完全長cDNA配列は配列番号3に示すゲノム配列の塩基番号9421から11603までに対応する。したがって、その上流のゲノム配列は単為結果原因遺伝子Aの発現制御に関わるプロモーター領域であると推定される。そこで、その領域を増幅するPCRプライマーを合成し、これを用いてトマト品種「桃太郎8」のゲノムDNAを鋳型とするPCRを行った。得られたPCR産物を制限酵素HindIIIおよびSmaIで消化し、クローニングベクターpHSG398のHindIII-SmaI部位に挿入してクローニングした。
そして、得られたクローンの配列をSanger法によって確認し、配列番号3の配列と比較することによってPCR増幅時の変異を含まないクローンを選択した。得られた2572bpのクローンは、5’末端にゲノム由来のHindIII認識部位、3’末端にPCRプライマー由来のSmaI認識部位を有し、単為結果原因遺伝子Aの転写開始点の上流2239bp、転写開始点から5’-UTRおよび翻訳開始点を経てタンパクコード領域の一部に至る合計327bp、並びにPCRプライマー由来のSmaI認識部位6bpからなる。このDNA断片(配列番号12)を単為結果原因遺伝子Aのプロモーターとして以下の実験に用いた。
〔RNA干渉(RNAi)誘導ベクターの構築〕
配列番号13および配列番号14に示すプライマーを用い、トマト品種「秋玉」のcDNAを鋳型としたPCRを行い、配列番号15に示す500bpのDNA断片を得た。この断片は5’末端にSmaI認識部位およびHindIII認識部位、3’末端にEcoRI認識部位およびXhoI認識部位をもつ。この断片をクローニングベクターpTY262(AB736152(DDBJ))に挿入し、単為結果原因遺伝子Aに対するRNAi誘導キメラ遺伝子を構築した。このpTY262ベクターはCaMV35SプロモーターとNosターミネータからなる発現カセットを有し、トマトチューブリン遺伝子の第1イントロンを挟むように外来配列のクローニングサイトを配置したベクターである(図2(a))。
配列番号13および配列番号14に示すプライマーを用い、トマト品種「秋玉」のcDNAを鋳型としたPCRを行い、配列番号15に示す500bpのDNA断片を得た。この断片は5’末端にSmaI認識部位およびHindIII認識部位、3’末端にEcoRI認識部位およびXhoI認識部位をもつ。この断片をクローニングベクターpTY262(AB736152(DDBJ))に挿入し、単為結果原因遺伝子Aに対するRNAi誘導キメラ遺伝子を構築した。このpTY262ベクターはCaMV35SプロモーターとNosターミネータからなる発現カセットを有し、トマトチューブリン遺伝子の第1イントロンを挟むように外来配列のクローニングサイトを配置したベクターである(図2(a))。
まず、上述した500bp断片(配列番号15)をHindIIIおよびEcoRIで消化したものをNosターミネータ(tNos)の直前に挿入した。次いで上述の500bp断片をSmaIおよびXhoIによって消化し、得られたベクターにおけるCaMV35Sプロモーターの直後に挿入した。得られたRNAi誘導キメラ遺伝子は、配列番号15の500bp断片のほぼ全域をトマトチューブリン遺伝子第1イントロンを挟んで逆位反復配列に配置した構造を有し、一般に植物において構成的発現を誘導するCaMV35Sプロモーターによって発現誘導される(図2(b))。さらに、このCaMV35Sプロモーターを配列番号12に示した単為結果原因遺伝子Aのプロモーターと入れ換えたRNAi誘導キメラ遺伝子を構築した。次いで、構築したRNAi誘導キメラ遺伝子をもつクローンをAscIで消化し、得られたRNAi誘導キメラ遺伝子を含む断片をバイナリベクターpZK3B(参考文献 Kuroda et al., Biosci Biotech Biochem, (2010) 74: 2348-2351)にCaMV35Sプロモータ::GFP::Nosターミネータからなるレポーター遺伝子を挿入した改変バイナリーベクターpZK3BGFPのAscI認識部位に挿入してpZK3BGFP_geneA-RNAi(図2(c))を構築した。
〔RNAi組換えトマトの作出〕
トマトを図2(c)に示すRNAi誘導キメラ遺伝子(ベクター)で形質転換した。具体的には、アグロバクテリウム法(Sun et al. 2006 Plant Cell Physiol 47: 426-431)を用いて、トマト品種「秋玉」の子葉にバイナリベクターを有するアグロバクテリウムを感染させ、カナマイシン含有培地上で培養および選抜し、再分化植物を得た。再分化植物の遺伝子導入をPCRにより確認し、RNAi組換えトマトを得た。なお、RNAi組換えトマトでは、単為結果原因遺伝子Aの発現が大きく抑制されていることを確認した。
トマトを図2(c)に示すRNAi誘導キメラ遺伝子(ベクター)で形質転換した。具体的には、アグロバクテリウム法(Sun et al. 2006 Plant Cell Physiol 47: 426-431)を用いて、トマト品種「秋玉」の子葉にバイナリベクターを有するアグロバクテリウムを感染させ、カナマイシン含有培地上で培養および選抜し、再分化植物を得た。再分化植物の遺伝子導入をPCRにより確認し、RNAi組換えトマトを得た。なお、RNAi組換えトマトでは、単為結果原因遺伝子Aの発現が大きく抑制されていることを確認した。
〔RNAi組換えトマトの単為結果性の検討〕
RNAi組換えトマトを栽培し、開花前に柱頭を除去した柱頭除去果と開花当日に受粉を行った受粉果の完熟果重量を調査した。また、非形質転換体も同時に栽培し、同様の処理を行い、完熟果重量を調査し、コントロールとした。結果を図3および図4に示す。
RNAi組換えトマトを栽培し、開花前に柱頭を除去した柱頭除去果と開花当日に受粉を行った受粉果の完熟果重量を調査した。また、非形質転換体も同時に栽培し、同様の処理を行い、完熟果重量を調査し、コントロールとした。結果を図3および図4に示す。
図3に示すように非遺伝子組換えトマト品種「秋玉」の柱頭除去果は着果肥大しなかったが、RNAi組換えトマトは柱頭除去果が受粉果と同等に着果肥大した。また、図4に示すように、受粉果の果実重を1としたときの柱頭除去果の果実重の比率は、コントロールの非形質転換体では柱頭除去果の果実重がほぼ0であったのに対し、RNAi組換えトマトでは、果実重の比率について有意差は見られなかった。
以上の結果から、単為結果原因遺伝子Aの機能抑制(欠失変異)が単為結果性の原因であると結論づけた。
〔単為結果原因遺伝子Aの発現解析〕
単為結果原因遺伝子Aの時期・組織特異的発現を、蛍光リアルタイムPCR装置(LC480型、ロシュ社)およびロシュ社のライトサイクラー480 SYBR Greenマスターキットを用いて、リアルタイム定量PCR法により詳細に調査した。調査に用いたトマト品種はマネーメーカーであり、調査した組織は図5に示す通りである。なお、図5において「開花」とは花における遺伝子の発現量を、「緑熟期」および「完熟期」とは果実における遺伝子の発現量を表す。単為結果原因遺伝子Aの増幅には配列番号26および配列番号27に塩基配列を示すプライマーを用いた。リアルタイム定量PCRの内在標準遺伝子として、発明者らが独自に開発した、トマト組織で構成的に発現するハウスキーピング遺伝子Solyc04g049180.2.1 (ITAG2.30、配列番号28)を用い、ハウスキーピング遺伝子のPCR増幅には配列番号29および配列番号30に塩基配列を示すプライマーを用いた。
単為結果原因遺伝子Aの時期・組織特異的発現を、蛍光リアルタイムPCR装置(LC480型、ロシュ社)およびロシュ社のライトサイクラー480 SYBR Greenマスターキットを用いて、リアルタイム定量PCR法により詳細に調査した。調査に用いたトマト品種はマネーメーカーであり、調査した組織は図5に示す通りである。なお、図5において「開花」とは花における遺伝子の発現量を、「緑熟期」および「完熟期」とは果実における遺伝子の発現量を表す。単為結果原因遺伝子Aの増幅には配列番号26および配列番号27に塩基配列を示すプライマーを用いた。リアルタイム定量PCRの内在標準遺伝子として、発明者らが独自に開発した、トマト組織で構成的に発現するハウスキーピング遺伝子Solyc04g049180.2.1 (ITAG2.30、配列番号28)を用い、ハウスキーピング遺伝子のPCR増幅には配列番号29および配列番号30に塩基配列を示すプライマーを用いた。
その結果、単為結果原因遺伝子Aの発現には、少なくとも以下の6つの特徴を示すことが明らかとなった(図5も参照)。
1.調査した全ての組織および発育ステージのうち、全長2mmの未熟な蕾で最も発現量が高い。
2.蕾の生長に伴って発現量は低下し、開花時には1/20以下に低下する。
3.開花後2日目から6日目にかけて若干の発現上昇が認められるが全長2mmの未熟な蕾の1/5程度もしくはそれ以下である。
4.緑熟期および完熟期には発現はほぼ0となる。
5.葉や茎においても一定の発現が認められるが未熟蕾の1/2程度もしくはそれ以下である。
6.根では発現がほとんど認められない。
1.調査した全ての組織および発育ステージのうち、全長2mmの未熟な蕾で最も発現量が高い。
2.蕾の生長に伴って発現量は低下し、開花時には1/20以下に低下する。
3.開花後2日目から6日目にかけて若干の発現上昇が認められるが全長2mmの未熟な蕾の1/5程度もしくはそれ以下である。
4.緑熟期および完熟期には発現はほぼ0となる。
5.葉や茎においても一定の発現が認められるが未熟蕾の1/2程度もしくはそれ以下である。
6.根では発現がほとんど認められない。
〔単為結果原因遺伝子A発現ベクターの構築〕
配列番号31および配列番号32に塩基配列を示すプライマーを用い、トマト品種「秋玉」のゲノムDNAを鋳型としたPCR増幅を行い、配列番号33に塩基配列を示す遺伝子断片を得た。得られた遺伝子断片は、配列番号3に塩基配列を示すゲノム配列における塩基番号7150から12098までに対応する。この遺伝子断片は、5’末端および3’末端にプライマー由来のAscI認識部位を有し、単為結果原因遺伝子Aの転写開始点の上流2271bp、転写開始点から5’-UTRおよび翻訳開始点を経てイントロン部位に至る第一エクソン780bp、イントロン778bp、当該イントロンの直後から翻訳終止コドンを経てpolyA付加位置に至る第二エクソン566bp、並びに、当該第二エクソンの下流のゲノム配列495bpからなる。
配列番号31および配列番号32に塩基配列を示すプライマーを用い、トマト品種「秋玉」のゲノムDNAを鋳型としたPCR増幅を行い、配列番号33に塩基配列を示す遺伝子断片を得た。得られた遺伝子断片は、配列番号3に塩基配列を示すゲノム配列における塩基番号7150から12098までに対応する。この遺伝子断片は、5’末端および3’末端にプライマー由来のAscI認識部位を有し、単為結果原因遺伝子Aの転写開始点の上流2271bp、転写開始点から5’-UTRおよび翻訳開始点を経てイントロン部位に至る第一エクソン780bp、イントロン778bp、当該イントロンの直後から翻訳終止コドンを経てpolyA付加位置に至る第二エクソン566bp、並びに、当該第二エクソンの下流のゲノム配列495bpからなる。
この増幅された遺伝子断片をAscIで消化し、クローニングベクターpUC198AA (参考文献:Kuroda et al., Biosci Biotech Biochem, (2010) 74: 2348-2351) のAscI認識部位に挿入してクローニングした(図6に示す pUC198AA_whole_gene_A)。得られたクローンの塩基配列をSanger法によって決定し、配列番号3に示す塩基配列と比較することによって、PCR増幅時の変異を含まないクローンを選択した。この選択したクローンをAscIで消化し、消化によって得た断片を、バイナリベクターpZK3B(Kuroda et al., Biosci Biotech Biochem, (2010) 74: 2348-2351)にCaMV35Sプロモータ::GFP::Nosターミネータからなるレポーター遺伝子を挿入した改変バイナリーベクターpZK3BGFPのAscI認識部位に挿入して、バイナリーベクターpZK3BGFP_whole_Gene_Aを構築した(図7)。
〔単為結果原因遺伝子A発現組換えトマトの作出〕
〔RNAi組換えトマトの作出〕の場合と同様にして、アグロバクテリウム法を用いて、単為結果性トマト系統LS935の子葉にバイナリベクターpZK3BGFP_whole_gene_Aを有するアグロバクテリウムを感染させ、カナマイシン含有培地上で培養および選抜し、再分化植物を得た。再分化植物に目的の遺伝子が導入されていることをPCR法により確認し、単為結果原因遺伝子A発現組換えトマトを得た。
〔RNAi組換えトマトの作出〕の場合と同様にして、アグロバクテリウム法を用いて、単為結果性トマト系統LS935の子葉にバイナリベクターpZK3BGFP_whole_gene_Aを有するアグロバクテリウムを感染させ、カナマイシン含有培地上で培養および選抜し、再分化植物を得た。再分化植物に目的の遺伝子が導入されていることをPCR法により確認し、単為結果原因遺伝子A発現組換えトマトを得た。
〔単為結果原因遺伝子A発現組換えトマトの単為結果性の検討〕
単為結果原因遺伝子A発現組換えトマトを栽培し、開花前に柱頭を除去した柱頭除去果と開花当日に受粉を行った受粉果との完熟果実重を調査した。また、非形質転換体(LS935)も同時に栽培し、単為結果原因遺伝子A発現組換えトマトと同様の処理を行い、完熟果実重を調査しコントロールとした。結果を図8および図9に示す。なお、図8および図9において、E16およびE18は単為結果原因遺伝子A発現組換えトマトである。
単為結果原因遺伝子A発現組換えトマトを栽培し、開花前に柱頭を除去した柱頭除去果と開花当日に受粉を行った受粉果との完熟果実重を調査した。また、非形質転換体(LS935)も同時に栽培し、単為結果原因遺伝子A発現組換えトマトと同様の処理を行い、完熟果実重を調査しコントロールとした。結果を図8および図9に示す。なお、図8および図9において、E16およびE18は単為結果原因遺伝子A発現組換えトマトである。
図8に示すように単為結果性系統である非組換えトマトLS935の柱頭除去果は受粉果と同等に着果肥大したが、単為結果原因遺伝子A発現組換えトマトの柱頭除去果は着果肥大しなかった。また、図9に示すように、受粉果の果実重を1としたときの柱頭除去果の果実重の比率は、非組換えトマトLS935では有意な差は見られなかったが、単為結果原因遺伝子A発現組換えトマトではほぼ0であった。
〔2.マーカー配列を用いたトマトの形質の分離〕
単為結果性のトマト系統LS935(野菜茶業研究所より入手)と、非単為結果性のトマト系統Saladette(LA2662)(Tomato Genetics Resource Center、米国より入手)とを交配することによってF2個体の集団を得た。このF2集団から選抜した系統の自殖後代F3集団と、このF3集団から選抜した系統の自殖後代F4集団とを、マーカー配列を用いたトマトのジェノタイプおよび表現形質の分離の解析に用いた。結果を図14に示す。
単為結果性のトマト系統LS935(野菜茶業研究所より入手)と、非単為結果性のトマト系統Saladette(LA2662)(Tomato Genetics Resource Center、米国より入手)とを交配することによってF2個体の集団を得た。このF2集団から選抜した系統の自殖後代F3集団と、このF3集団から選抜した系統の自殖後代F4集団とを、マーカー配列を用いたトマトのジェノタイプおよび表現形質の分離の解析に用いた。結果を図14に示す。
同図において、Lで示されるジェノタイプはLS935のホモ型形質(単為結果原因遺伝子に欠失あり:単為結果性(p))、Sで示されるジェノタイプはSaladetteのホモ型形質(単為結果原因遺伝子Aに欠失なし:非単為結果性(np))、Hで示されるジェノタイプはヘテロ型の形質(非単為結果性(np))を指す。
同図に示すマーカー配列は何れも発明者らが独自に開発したものであり、以下の特性を持つ。これらの中では、RHF2As、athb31、PHDsの判定精度が高く、特にathb31は判定精度が100%の完全連鎖型マーカーである。
・tbm2167:単為結果原因遺伝子Aからの距離約1.1cM。配列番号47上に位置する配列番号48および配列番号49のプライマーセットを用いてゲノムDNAを鋳型とするPCR反応により増幅される断片のSSR多型。断片長が241塩基であれば単為結果性系統LS935型、断片長が243塩基であれば非単為結果性系統Saladette型である。
・RHF2As:単為結果原因遺伝子Aからの距離約135.1kb。配列番号50に示す塩基配列における123番目の塩基がAであるか、TであるかというSNP。当該塩基がAであればジェノタイプが単為結果性系統LS935型であり、当該塩基がTであればジェノタイプが非単為結果性系統Saladette型である。
・athb31:単為結果原因遺伝子A内の挿入欠失変異。配列番号3に示す塩基配列における9977番目~11011番目の塩基が欠失している変異。この欠失があればジェノタイプが単為結果性系統LS935型であり、この欠失がなければジェノタイプが非単為結果性系統Saladette型である。
・PHDs:単為結果原因遺伝子Aからの距離約161.6kb。配列番号51に示す塩基配列における119番目の塩基がAであるか、GであるかというSNP。当該塩基がAであればジェノタイプが単為結果性系統LS935型であり、当該塩基がGであればジェノタイプが非単為結果性系統Saladette型である。
・tsm041208:単為結果原因遺伝子Aからの距離約247.7kb。配列番号52に位置する配列番号53および配列番号54のプライマーセットを用いてゲノムDNAを鋳型とするPCR反応により増幅される断片の多型。断片長が393塩基であれば単為結果性系統LS935型、断片長が359塩基であれば非単為結果性系統Saladette型である。
・tbm2177:単為結果原因遺伝子Aからの距離約5.3cM。配列番号55に位置する配列番号56および配列番号57のプライマーセットを用いてゲノムDNAを鋳型とするPCR反応により増幅される断片のSSR多型。断片長が243塩基であれば単為結果性系統LS935型、断片長が241塩基であれば非単為結果性系統Saladette型である。
・tbm2167:単為結果原因遺伝子Aからの距離約1.1cM。配列番号47上に位置する配列番号48および配列番号49のプライマーセットを用いてゲノムDNAを鋳型とするPCR反応により増幅される断片のSSR多型。断片長が241塩基であれば単為結果性系統LS935型、断片長が243塩基であれば非単為結果性系統Saladette型である。
・RHF2As:単為結果原因遺伝子Aからの距離約135.1kb。配列番号50に示す塩基配列における123番目の塩基がAであるか、TであるかというSNP。当該塩基がAであればジェノタイプが単為結果性系統LS935型であり、当該塩基がTであればジェノタイプが非単為結果性系統Saladette型である。
・athb31:単為結果原因遺伝子A内の挿入欠失変異。配列番号3に示す塩基配列における9977番目~11011番目の塩基が欠失している変異。この欠失があればジェノタイプが単為結果性系統LS935型であり、この欠失がなければジェノタイプが非単為結果性系統Saladette型である。
・PHDs:単為結果原因遺伝子Aからの距離約161.6kb。配列番号51に示す塩基配列における119番目の塩基がAであるか、GであるかというSNP。当該塩基がAであればジェノタイプが単為結果性系統LS935型であり、当該塩基がGであればジェノタイプが非単為結果性系統Saladette型である。
・tsm041208:単為結果原因遺伝子Aからの距離約247.7kb。配列番号52に位置する配列番号53および配列番号54のプライマーセットを用いてゲノムDNAを鋳型とするPCR反応により増幅される断片の多型。断片長が393塩基であれば単為結果性系統LS935型、断片長が359塩基であれば非単為結果性系統Saladette型である。
・tbm2177:単為結果原因遺伝子Aからの距離約5.3cM。配列番号55に位置する配列番号56および配列番号57のプライマーセットを用いてゲノムDNAを鋳型とするPCR反応により増幅される断片のSSR多型。断片長が243塩基であれば単為結果性系統LS935型、断片長が241塩基であれば非単為結果性系統Saladette型である。
〔3.ナス由来の単為結果原因遺伝子SmAの同定〕
ナス「中生真黒」のゲノムDNAからシーケンシングライブラリを作成し、イルミナ社HiSeq2000型シーケンサを用いて、インサートサイズ200-300pbの断片のペアエンドおよび2kbのメイトペアシーケンスを行った。得られた合計14.4億リード、ナスゲノム(約1.1Gb)の約140xに相当する配列データを、アセンブラプログラムSOAPdenovoによりアセンブルし、1,321,157配列、全長1,145Mbの断片ゲノム配列を得た。その配列に対してBLASTN解析を行い、トマト単為結果原因遺伝子Aと部分的に高い相同性を示すゲノム配列(67,902塩基対)を得た。得られたゲノム配列を用いて、遺伝子予測プログラムAugustusを用いて遺伝子予測を行い、ナスのホモログ遺伝子(以下、単為結果原因遺伝子SmA)候補を含むゲノムDNA配列(配列番号34)およびそのタンパクコード配列(配列番号35)を得た。配列番号34および配列番号35に示す塩基配列から、単為結果原因遺伝子SmAは2つのエクソンと1つのイントロンとからなる遺伝子であることが明らかである。この予測遺伝子配列に基づいて設計したPCRプライマーを用い、ナスの蕾由来のcDNAを鋳型としてPCRを行い、単為結果原因遺伝子SmAのORF全体を含むcDNAクローンを得た。得られたcDNAクローンの塩基配列をサンガー法によって決定し、プログラムより予測された配列番号35に示す塩基配列と同一であること、ナスの蕾において発現している遺伝子であることを確認した。単為結果原因遺伝子SmAがコードするタンパク質は、配列番号25にアミノ酸配列を示したものである。
ナス「中生真黒」のゲノムDNAからシーケンシングライブラリを作成し、イルミナ社HiSeq2000型シーケンサを用いて、インサートサイズ200-300pbの断片のペアエンドおよび2kbのメイトペアシーケンスを行った。得られた合計14.4億リード、ナスゲノム(約1.1Gb)の約140xに相当する配列データを、アセンブラプログラムSOAPdenovoによりアセンブルし、1,321,157配列、全長1,145Mbの断片ゲノム配列を得た。その配列に対してBLASTN解析を行い、トマト単為結果原因遺伝子Aと部分的に高い相同性を示すゲノム配列(67,902塩基対)を得た。得られたゲノム配列を用いて、遺伝子予測プログラムAugustusを用いて遺伝子予測を行い、ナスのホモログ遺伝子(以下、単為結果原因遺伝子SmA)候補を含むゲノムDNA配列(配列番号34)およびそのタンパクコード配列(配列番号35)を得た。配列番号34および配列番号35に示す塩基配列から、単為結果原因遺伝子SmAは2つのエクソンと1つのイントロンとからなる遺伝子であることが明らかである。この予測遺伝子配列に基づいて設計したPCRプライマーを用い、ナスの蕾由来のcDNAを鋳型としてPCRを行い、単為結果原因遺伝子SmAのORF全体を含むcDNAクローンを得た。得られたcDNAクローンの塩基配列をサンガー法によって決定し、プログラムより予測された配列番号35に示す塩基配列と同一であること、ナスの蕾において発現している遺伝子であることを確認した。単為結果原因遺伝子SmAがコードするタンパク質は、配列番号25にアミノ酸配列を示したものである。
配列番号36および配列番号37に塩基配列を示すプライマーを調製し、配列番号35に塩基配列を示すクローンを鋳型としてPCRを行い、配列番号38に塩基配列を示す473塩基対のPCR産物を得た。このPCR産物は5’末端にBamHI認識部位およびHindIII認識部位、3’末端にSacI認識部位およびKpnI認識部位をもつ。このPCR産物をクローニングベクターpTY262(AB736152(DDBJ))に逆位反復構造をとるように挿入し、ナスの単為結果原因遺伝子SmAに対するRNAi誘導ベクターを構築した。さらに、このベクターのCaMV35Sプロモータを配列番号39に塩基配列を示した2561塩基対からなるSmA遺伝子プロモータ配列と入れ換えた(図10)。このプロモータ配列はその3’末端に、配列番号40に塩基配列を示すSmAのORFの5’末端部分29塩基対および未同定のmRNAをコードする5’非翻訳領域を含むと推定されるが、RNAi誘導には機能のあるタンパク質をコードするRNAの転写は不要であり、RNAi誘導ベクターとしての機能に影響はない。
得られたRNAi誘導ベクターをAscIで消化し、バイナリベクターpZK3B(Kuroda et al., Biosci Biotech Biochem, (2010) 74: 2348-2351)にCaMV35Sプロモータ::GFP::Nosターミネータからなるレポーター遺伝子を挿入した改変バイナリーベクターpZK3BGFPのAscI認識部位に挿入し、RNAi誘導バイナリーベクターpZK3BGFP_ SmA-RNAiを構築した(図11)。
単為結果性を示さないナス品種「千両二号」を、図11に示すRNAi誘導キメラ遺伝子(バイナリーベクター)で形質転換した。具体的には、アグロバクテリウム法(Billings et al. 1997 J. Amer. Hort. Sci. 122: 158-162)を用いて、ナス品種「千両二号」の子葉への感染、カナマイシン含有培地上における培養と選抜を行い、再分化植物に目的遺伝子が導入されているかをPCRにより確認し、RNAi組換えナスを得た。
RNAi組換えナスを栽培し、開花前に柱頭を除去した花において、明らかな子房の肥大が認められた(図12)。非組換え体では柱頭を除去した場合、子房の肥大はほとんど認められず、花は開花後1週間程度の後に枯死する。以上の結果から、単為結果原因遺伝子SmAの発現抑制により、トマトにおいて観察されたのと同様、ナスにおいても、落下防止と果実肥大が誘導されると結論した。
ナスの単為結果原因遺伝子SmAはトマトの単為結果原因遺伝子Aに対して、構造上最も類似した配列をもつが、その発現様式の時期・組織的特異性についても、図13に示す通り、極めて類似していることがリアルタイム定量PCR分析の結果から明らかである。なお、リアルタイム定量PCRの内在標準遺伝子として、独自に開発した構成的に発現するハウスキーピング遺伝子SmFL20F10(配列番号41)を用いた。また、トマトでは、このSmFL20F10のオルソログであることがBLAST検索の結果から強く推定されるSolyc04g049180.2.1 (ITAG2.30、配列番号42)を用いた。
内部標準遺伝子の増幅用プライマー配列は以下の通り。
<ナスSmFL20F10用(配列番号41)>
フォワードプライマー: 配列番号43
リバースプライマー: 配列番号44
<トマトSolyc04g049180.2.1用(配列番号42)>
フォワードプライマー: 配列番号45
リバースプライマー: 配列番号46
内部標準遺伝子の増幅用プライマー配列は以下の通り。
<ナスSmFL20F10用(配列番号41)>
フォワードプライマー: 配列番号43
リバースプライマー: 配列番号44
<トマトSolyc04g049180.2.1用(配列番号42)>
フォワードプライマー: 配列番号45
リバースプライマー: 配列番号46
本発明によれば、単為結果性を有する新品種の植物を得ることができる。また、本発明は、農業または園芸等の分野に利用することができる。
Claims (11)
- 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現が抑制されているか、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されているかを検査する検査工程を含む、植物の単為結果性の判定方法。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、
(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、
(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、
(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。 - 上記検査工程において、上記単為結果制御遺伝子の塩基配列、または当該単為結果制御遺伝子の発現量を検査する、請求項1に記載の判定方法。
- 上記検査工程において、上記単為結果制御遺伝子の発現が抑制されている植物、または当該単為結果制御遺伝子がコードするポリペプチドの機能が阻害されている植物を、単為結果性を示す植物として選抜する、請求項1または2に記載の判定方法。
- 請求項1~3の何れか一項に記載の判定方法を行い、単為結果性を示す植物を選抜する工程を含む、単為結果性が制御された植物の生産方法。
- 植物において、以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子の発現を抑制するか、または当該単為結果制御遺伝子がコードするポリペプチドの機能を阻害する工程を含む、単為結果性が制御された植物の生産方法。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、
(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、
(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、
(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。 - 上記工程において、上記単為結果制御遺伝子の発現を抑制するポリヌクレオチドを植物に導入するか、上記単為結果制御遺伝子を破壊する、請求項5に記載の生産方法。
- 上記植物がナス科の植物である請求項1~6の何れか一項に記載の方法。
- 上記植物がトマトである請求項7に記載の方法。
- 請求項4~6の何れか一項に記載の生産方法により生産された、単為結果性が制御された植物。
- 以下の(1)~(4)の何れかに記載のポリヌクレオチドを含む単為結果制御遺伝子。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチドをコードするポリヌクレオチド、
(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、
(3)配列番号1に記載のアミノ酸配列において1~87個のアミノ酸が置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド、
(4)上記(1)に記載のポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズし、単為結果制御活性を有するポリペプチドをコードするポリヌクレオチド。 - 以下の(1)~(4)の何れかに記載のポリペプチド。
(1)配列番号1に記載のアミノ酸配列を有するポリペプチド、
(2)配列番号1に記載のアミノ酸配列に対して70%以上の配列同一性を有し、単為結果制御活性を有するポリペプチド、
(3)配列番号1に記載のアミノ酸配列において1~87個の置換、欠失、挿入、および/または付加されたアミノ酸配列を有し、単為結果制御活性を有するポリペプチド、
(4)上記(1)に記載のポリペプチドをコードするポリヌクレオチドと相補的な配列からなるポリヌクレオチドと、ストリンジェントな条件下でハイブリダイズするポリヌクレオチドによってコードされる、単為結果制御活性を有するポリペプチド。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380040459.8A CN104540943A (zh) | 2012-07-31 | 2013-07-31 | 单性结果控制基因及其利用 |
US14/418,504 US20190194684A1 (en) | 2012-07-31 | 2013-07-31 | Parthenocarpy regulation gene and use thereof |
JP2014528207A JP6012016B2 (ja) | 2012-07-31 | 2013-07-31 | 単為結果制御遺伝子およびその利用 |
EP13825285.3A EP2883955A4 (en) | 2012-07-31 | 2013-07-31 | PARTHENOCARPIEREGULATION TREATMENT AND ITS USE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012170506 | 2012-07-31 | ||
JP2012-170506 | 2012-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014021398A1 true WO2014021398A1 (ja) | 2014-02-06 |
Family
ID=50028068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/070801 WO2014021398A1 (ja) | 2012-07-31 | 2013-07-31 | 単為結果制御遺伝子およびその利用 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190194684A1 (ja) |
EP (1) | EP2883955A4 (ja) |
JP (2) | JP6012016B2 (ja) |
CN (1) | CN104540943A (ja) |
WO (1) | WO2014021398A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015108185A1 (ja) * | 2014-01-17 | 2015-07-23 | 独立行政法人農業・食品産業技術総合研究機構 | 単為結果制御遺伝子およびその利用 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113943731B (zh) * | 2021-11-30 | 2023-11-03 | 中国农业科学院蔬菜花卉研究所 | 一种利用kasp分子标记鉴定茄子显性单性结实基因的引物对及其应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010532164A (ja) * | 2007-07-05 | 2010-10-07 | ウェスタン シード インターナショナル ベスローテン フェンノートシャップ | トマトにおける単為結果遺伝子 |
JP2011045373A (ja) | 1997-10-27 | 2011-03-10 | Seminis Vegetable Seeds Inc | 無核トマト及びその生産方法 |
-
2013
- 2013-07-31 JP JP2014528207A patent/JP6012016B2/ja active Active
- 2013-07-31 WO PCT/JP2013/070801 patent/WO2014021398A1/ja active Application Filing
- 2013-07-31 CN CN201380040459.8A patent/CN104540943A/zh active Pending
- 2013-07-31 US US14/418,504 patent/US20190194684A1/en not_active Abandoned
- 2013-07-31 EP EP13825285.3A patent/EP2883955A4/en not_active Withdrawn
-
2016
- 2016-04-25 JP JP2016087500A patent/JP2016178931A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011045373A (ja) | 1997-10-27 | 2011-03-10 | Seminis Vegetable Seeds Inc | 無核トマト及びその生産方法 |
JP2010532164A (ja) * | 2007-07-05 | 2010-10-07 | ウェスタン シード インターナショナル ベスローテン フェンノートシャップ | トマトにおける単為結果遺伝子 |
Non-Patent Citations (14)
Title |
---|
BERALDI,D. ET AL.: "Fine mapping of the parthenocarpic fruit(pat) mutation in tomato", THEOR.APPL.GENET., vol. 108, 2004, pages 209 - 216, XP002597651 * |
BILLINGS ET AL., J. AMER. HORT. SCI., vol. 122, 1997, pages 158 - 162 |
CARMI,N. ET AL.: "Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary", PLANTA, vol. 217, 2003, pages 726 - 735, XP055089081 * |
GORGUET,B. ET AL.: "Mapping and characterization of novel parthenocarpy QTLs in tomato", THEOR.APPL.GENET., vol. 116, 2005, pages 755 - 767, XP002597650 * |
KUNKEL ET AL., PROC.NATL.ACAD.SCI.USA, vol. 82, 1985, pages 488 |
KURODA ET AL., BIOSCI BIOTECH BIOCHEM, vol. 74, 2010, pages 2348 - 2351 |
MUHAMMAD,A.B. ET AL.: "A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing", GENOME RES., vol. 10, 2000, pages 129 - 136, XP055190942 * |
OHYAMA A. ET AL., BREED, vol. 23, 2009, pages 685 - 691 |
OLIMPIERI,I. ET AL.: "Tomato fruit set driven by pollination or by parthenocarpic fruit alle are mediated by transcriptionally regulated gibberellin biosynthesis", PLANTA, vol. 226, 2007, pages 877 - 888, XP019542332 * |
SAMBROOK ET AL.: "Molecular cloning-a Laboratory manual", 1989 |
See also references of EP2883955A4 * |
SHIRASAWA L. ET AL., THEOR. APPL. GENET., vol. 121, 2010, pages 731 - 739 |
SUN ET AL., PLANT CELL PHYSIOL, vol. 47, 2006, pages 426 - 431 |
WANG,Y. ET AL.: "Characteristics of the tomato nuclear genome as determined by sequencing undermethylated EcoRI digested fragments", THEOR.APPL.GENET., vol. 112, 2005, pages 72 - 84, XP019322118 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015108185A1 (ja) * | 2014-01-17 | 2015-07-23 | 独立行政法人農業・食品産業技術総合研究機構 | 単為結果制御遺伝子およびその利用 |
US11091773B2 (en) | 2014-01-17 | 2021-08-17 | National Research And Development Agency National Agriculture And Food Research Organization | Parthenocarpy regulation gene and use thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2016178931A (ja) | 2016-10-13 |
CN104540943A (zh) | 2015-04-22 |
EP2883955A4 (en) | 2016-04-20 |
JP6012016B2 (ja) | 2016-10-25 |
EP2883955A1 (en) | 2015-06-17 |
JPWO2014021398A1 (ja) | 2016-07-21 |
US20190194684A1 (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220186238A1 (en) | Diplospory gene | |
JP6899779B2 (ja) | コムギ雄性不稔遺伝子wmsおよびその葯特異的発現プロモーターならびにそれらの使用 | |
US20220090118A1 (en) | Powdery mildew resistant cannabis plants | |
WO2019038417A1 (en) | METHODS FOR INCREASING GRAIN YIELD | |
US11643665B2 (en) | Nucleotide sequences encoding Fasciated EAR3 (FEA3) and methods of use thereof | |
US20230279418A1 (en) | Plant haploid induction | |
JP5769341B2 (ja) | 植物の開花性/閉花性を支配する遺伝子およびその利用 | |
JP6012016B2 (ja) | 単為結果制御遺伝子およびその利用 | |
US20230193305A1 (en) | Methods for increasing powdery mildew resistance in cannabis | |
AU2022206708A1 (en) | Methods For Increasing Powdery Mildew Resistance In Cannabis | |
WO2018168016A1 (ja) | タバコ植物体とその製造方法 | |
EP4278891A1 (en) | Clubroot resistance and markers in brassica | |
JP2012115178A (ja) | 植物の種子休眠性を支配する遺伝子およびその利用 | |
JP2023111899A (ja) | 短葯形質を有するイネ、及びその製造方法 | |
JP2004283126A (ja) | 細胞質雄性不稔回復遺伝子 | |
EA041890B1 (ru) | Ген мужской стерильности пшеницы wms и его промотор специфичной для пыльника экспрессии и их применение | |
JPWO2013080973A1 (ja) | 植物の種子休眠性を支配するQsd1遺伝子およびその利用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13825285 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014528207 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013825285 Country of ref document: EP |