WO2014021364A1 - 無人搬送車の充電管理システム - Google Patents

無人搬送車の充電管理システム Download PDF

Info

Publication number
WO2014021364A1
WO2014021364A1 PCT/JP2013/070707 JP2013070707W WO2014021364A1 WO 2014021364 A1 WO2014021364 A1 WO 2014021364A1 JP 2013070707 W JP2013070707 W JP 2013070707W WO 2014021364 A1 WO2014021364 A1 WO 2014021364A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
automatic guided
guided vehicle
battery
priority
Prior art date
Application number
PCT/JP2013/070707
Other languages
English (en)
French (fr)
Inventor
敏人 福井
満 平山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014528187A priority Critical patent/JP5773083B2/ja
Publication of WO2014021364A1 publication Critical patent/WO2014021364A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/44Industrial trucks or floor conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • B60L2240/72Charging station selection relying on external data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a charge management system for an automated guided vehicle that runs unattended using the power of a mounted battery as a drive source and charges a battery mounted at a charging station.
  • the JP2007-74800A automatic guided vehicle is equipped with a nickel metal hydride battery or a lithium ion battery that can be used for partial charge and discharge as a battery.
  • the automatic guided vehicle starts charging when the remaining capacity of the battery reaches the charging start capacity, and stops charging when the remaining capacity reaches the charging stop capacity.
  • a plurality of automatic guided vehicles are loaded so that assembly parts are loaded in the picking area, transported to the assembly area, unloaded in the assembly area, and traveled on the route of the circular track returning to the picking area.
  • the plurality of automatic guided vehicles are continuously operated so as to travel between the picking area and the assembly area so as to sequentially supply the assembly parts required in the assembly area.
  • the remaining capacity of the battery does not change uniformly according to the load such as the weight of the mounted parts to be mounted.
  • the battery capacity of the automated guided vehicle loaded with a specific part may decrease more quickly than other automated guided vehicles.
  • the automatic guided vehicle whose battery capacity is reduced needs to have a longer charging time at the charging station than other automatic guided vehicles. For this reason, the charging time for the automatic guided vehicle in which the battery capacity is reduced earlier is reduced for a plurality of automatic guided vehicles that are sequentially charged and charged at the same point including the charging station on the circuit route. There was a problem that it could not be secured.
  • An object of the present invention is to provide a charging management system for an automatic guided vehicle suitable for securing charging time for a plurality of automatic guided vehicles that are sequentially charged at a predetermined timing including a charging station on a circuit route. Is to provide.
  • the charging management system for an automated guided vehicle in which the battery is charged at a charging station installed at a predetermined position on the circuit route is driven by the mounted battery according to the present invention.
  • Based on production instruction data describing the production order of products distributed from the system, charging of each automatic guided vehicle according to a transport load caused by a work constituting the product that is sequentially transported by a plurality of automatic guided vehicles A charging priority setting unit that sets a priority; and a charging target value setting unit that sets a charging target value for each automatic guided vehicle based on the charging priority set by the charging priority setting unit.
  • FIG. 1 is a conceptual diagram illustrating an example of a travel route of an automated guided vehicle according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating another example of the travel route of the automatic guided vehicle.
  • FIG. 3 is a conceptual diagram showing still another example of the travel route of the automatic guided vehicle.
  • FIG. 4 is an explanatory diagram showing an outline of the automatic charger of the automatic guided vehicle and the charging station.
  • FIG. 5 is an explanatory diagram showing the relationship between the battery device of the automatic guided vehicle and the charger of the charging station during charging.
  • FIG. 6 is a charging characteristic diagram showing changes in battery voltage and charging current supplied during charging.
  • FIG. 7 is an explanatory diagram showing the picking work time for the vehicle type.
  • FIG. 8 is an explanatory diagram showing the charge priority of each vehicle type.
  • FIG. 1 is a conceptual diagram illustrating an example of a travel route of an automated guided vehicle according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating another example of the travel
  • FIG. 9 is a charging priority setting table for each automatic guided vehicle for setting the charging priority / target charging value for the battery of the automatic guided vehicle.
  • FIG. 10 is a control flowchart for setting the charging priority setting table for each automatic guided vehicle.
  • FIG. 11 is a time chart for explaining the change in the charging time based on the data set in the charging priority setting table for each automatic guided vehicle in FIG.
  • a plurality of vehicles having different vehicle types that is, a plurality of vehicle types are mixed and flowed to the assembly line, and the automatic guided vehicle corresponds to the vehicle type that sequentially arrives at each assembly area on the assembly line.
  • the target is a production system that assembles the necessary parts to be supplied.
  • a vehicle type to be mixed for example, an electric vehicle (hereinafter referred to as an “EV vehicle”) driven by a battery and a vehicle driven by an engine (hereinafter referred to as an “engine vehicle” when distinguished from an EV vehicle)
  • EV vehicle electric vehicle
  • engine vehicle when distinguished from an EV vehicle
  • the engine vehicle vehicles of different vehicle types having different specifications are mixed and supplied.
  • details of individual specifications are omitted, but when specifying these vehicle types, they are referred to as “B car specification 1”, “B car specification 2”, and “C car”.
  • the automatic guided vehicle 1 supplies a plurality of necessary parts corresponding to a vehicle type that sequentially arrives in one assembly area BA together. For this reason, as the traveling route R of the automatic guided vehicle, a circular trajectory passing through the picking area PA and the assembly area BA of the production line is set.
  • the traveling route R is configured such that a plurality of automatic guided vehicles 1 travel, and the traveling of each automatic guided vehicle 1 is controlled by the equipment-side control device 2.
  • Each automatic guided vehicle 1 loads the parts required in the assembly area BA in the picking area PA, travels on the travel route R, loads and unloads the parts transported and loaded on the assembly area BA, and again travels on the travel route R. Cycle and return to picking area PA.
  • a charging station CS including an automatic charger 3 controlled by the facility-side control device 2 is arranged on the travel route R.
  • a ground station 4 that performs signal transmission / reception between the automatic guided vehicle 1 and the facility-side control device 2 is installed at an entrance and an exit to the assembly area BA.
  • the travel route R of the automatic guided vehicle 1 is not limited to that shown in FIG. 1, and may be the travel route R shown in FIGS. 2 and 3, for example.
  • an EV car-specific picking area PA2 for supplying dedicated assembly parts to an EV car of a specific vehicle type is provided independently of the all-car picking area PA1.
  • the equipment-side control device 2, the charging station CS, the assembly area BA, and the like are configured in the same manner as in FIG.
  • the vehicle is traveling in the charging station CS.
  • the automatic guided vehicle 1 that loads and conveys the assembly parts to the EV car stops in all the vehicle picking areas PA1, travels on the travel route R with necessary parts loaded, and also stops in the EV car dedicated picking area PA2.
  • the EV vehicle is loaded with special assembly parts and travels to the charging station CS.
  • an EV car-specific picking area PA4 that supplies all assembly parts necessary for an EV car that is a specific vehicle type is provided independently of the engine car picking area PA3.
  • the equipment-side control device 2, the charging station CS, the assembly area BA, and the like are configured in the same manner as in FIG.
  • the automatic guided vehicle 1 that loads and conveys the assembly parts for the engine vehicle is stopped in the engine vehicle picking area PA3, travels along the travel route R with the necessary parts loaded, and travels to the charging station CS.
  • the automatic guided vehicle 1 that loads and conveys the assembly parts for the EV vehicle travels on the traveling route R provided to branch off from the traveling route R to the engine vehicle picking area PA3, and is dedicated to the EV vehicle picking area.
  • the vehicle is stopped at PA4, loaded with all assembly parts required for the EV vehicle, and travels to the charging station CS.
  • production instruction data is distributed from the higher-level production management control device to the facility-side control device 2.
  • the vehicle type preceding assembly that arrives at the assembly area BA is described in time series.
  • the facility-side control device 2 specifies, based on the production instruction data, a plurality of vehicle types scheduled to sequentially arrive at the assembly area BA and an automatic guided vehicle 1 that conveys parts used for the assembly of the vehicle type by ID number, The paper is sequentially sent to the picking area PA, the charging station CS, and the assembly area BA.
  • the facility-side control device 2 conveys the vehicle type that sequentially arrives at the assembly area BA to the picking area PA, a plurality of parts used for assembling the vehicle type, and the parts based on the production instruction data.
  • the ID number of the automatic guided vehicle 1 to be forwarded to the picking area PA is instructed.
  • the facility-side control device 2 is used for a plurality of vehicle types that are scheduled to arrive at the vehicle currently being assembled in the assembly area BA and assembled to the vehicle, based on the production instruction data.
  • the ID number of the automated guided vehicle 1 that arrives with parts loaded is indicated.
  • the above instructions are sequentially updated in synchronization with the completion of assembly (or start of assembly) in one vehicle in the assembly area BA.
  • the automatic guided vehicle 1 includes a battery box 5 that houses a battery B made of a secondary battery (for example, a lithium ion secondary battery), a charge / discharge monitor 11 that monitors the state of the battery B, and the like. For example, it is equipped in the center of the vehicle.
  • the automatic guided vehicle 1 runs using the battery B as a driving power source.
  • Battery B includes battery modules BM connected in series by bus bar BB.
  • three battery modules BM are connected in series.
  • a plurality of lithium ion cells (cells) are connected in parallel or in series to form a battery module BM.
  • the voltage of the battery module BM is about 8V in the charged state. Since three battery modules BM are connected in series to the battery B, the output voltage of the battery B is about 25V. Therefore, the overcharge voltage of the battery B is set to 25 V, for example, and the overdischarge voltage is set to 18 V, for example.
  • the power receiving contactor 13 is disposed at the end of the power supply line 12 to the battery B so as to be exposed on the outer surface of the battery box 5.
  • the power receiving contactor 13 is connected to a power supply contactor 23 that is expanded and contracted from the automatic charger 3 of the charging station CS, so that the battery B can be charged.
  • the state of charge of the battery B by the lithium ion battery is monitored and calculated by the charge / discharge monitor 11 as shown in FIG.
  • the charge / discharge monitor 11 monitors the charge / discharge capacity (battery voltage) and cell voltage of the battery B, the input / output current amount (ampere hour, AH) of the battery B, the abnormality history of the battery B, etc. at predetermined time intervals (10 msec). And act to remember.
  • the charge / discharge monitor 11 can transmit these pieces of information to the equipment-side control device 2 via the ground station 4 and the automatic charger 3 via the communication unit 14 (for example, optical communication).
  • the charge / discharge monitor 11 displays that the battery B is in an abnormal state when each cell voltage constituting the battery B is in an overdischarge state that is equal to or lower than a shutdown threshold (for example, 2.8 to 3 V). To do. And it operates so that automatic guided vehicle 1 may be shut down (abnormal stop).
  • the set value of the shutdown threshold can be changed, and is normally set to 3.0 V, for example. However, the shutdown threshold value is set to a lower setting value (for example, 2.8 V) while the traveling route R passes through the assembly area BA, so that the shutdown operation in the assembly area BA area is suppressed.
  • the setting value is changed from 3.0V to 2.8V. I am trying to change it.
  • the shutdown prohibition release command is received from the ground station 4 installed at the exit to the assembly area BA of the travel route R via the communication unit 14, the setting value is changed from 2.8V to 3.0V. I am doing so.
  • the automatic charger 3 includes a DC power source 21 capable of boosting up to an upper limit voltage (for example, 25 V) of the battery B, a charge control device 20 that controls a charging current value and a voltage value supplied from the DC power source 21 to the battery B, and an unmanned A communication unit 24 capable of communicating with the communication unit 14 of the transport vehicle 1.
  • a DC power source 21 capable of boosting up to an upper limit voltage (for example, 25 V) of the battery B
  • a charge control device 20 that controls a charging current value and a voltage value supplied from the DC power source 21 to the battery B
  • an unmanned A communication unit 24 capable of communicating with the communication unit 14 of the transport vehicle 1.
  • the communication unit 24 is connected to the communication unit 14 of the automatic guided vehicle 1.
  • the charge / discharge capacity (voltage) of the battery B, the input / output current amount (ampere hour, AH) of the battery B, the abnormality history of the battery B, and the like The command signal can be communicated.
  • the automatic guided vehicle 1 travels using the battery B as a driving power source, and the charge / discharge capacity (voltage) of the battery B decreases as the travel proceeds. For this reason, the automatic guided vehicle 1 is temporarily stopped when passing the charging station CS, and the automatic guided vehicle 1 is connected between the automatic guided vehicle 1 and the automatic charger 3 of the charging station CS via the communication units 14 and 24. The charge / discharge capacity of the battery B of 1 is confirmed. Then, on the charging station CS side, it is determined whether or not the charge / discharge capacity (voltage) of the battery B at that time requires charging. When it is determined that charging is required, the battery B of the automatic guided vehicle 1 is charged by the automatic charger 3.
  • Charging is performed by extending the power feeding contactor 23 toward the power receiving contactor 13 of the automatic guided vehicle 1 and confirming the connection when the power feeding contactor 23 and the power receiving contactor 13 are connected to make the charging state possible. Thereafter, charging power is supplied from the DC power supply 21 to the automatic charger 3.
  • the charging control device 20 can perform regular charging using a constant current / constant voltage method. However, the charging control device 20 supplies a charging current larger than the charging current during normal charging to the battery B. Voltage-based rapid charging is performed. Rapid charging is desirable for transport processes that require short-term charging.
  • constant current charging CC charging
  • constant voltage charging for supplying a constant charging current is performed at the beginning of charging.
  • constant voltage charging CV charging
  • FIG. 6 shows changes in the battery voltage during charging and changes in the supplied charging current.
  • the battery voltage is gradually boosted by CC charging, and when the battery voltage rises to a charging upper limit voltage (for example, 25 V), constant voltage charging (CV charging) for which the voltage is constant while decreasing the charging current from that point is performed for a predetermined time. It is executed until it elapses. When the predetermined time has elapsed, the charging control device 20 stops the DC power supply 21 to stop charging.
  • the above charging method is a charging method for fully charging the battery.
  • CC charge is executed, and when the battery voltage of the automatic guided vehicle 1 is raised to a threshold voltage that does not require charging, charging can be stopped as charging is completed.
  • CC charge can be performed only for the predetermined time set beforehand, the battery voltage of the automatic guided vehicle 1 can be raised by the charge time, and charge can also be stopped as charge completion.
  • the charging time can be shortened. For this reason, it is suitable for charging the battery B of the automated guided vehicle 1 that circulates along the travel route R, and in this embodiment, a charging stop method is employed in which charging is stopped for a predetermined time.
  • the threshold voltage that does not require charging is set to 24.9 V, for example, as described above. That is, it is determined that charging is necessary when the battery voltage falls below the threshold voltage that does not require charging, and charging is determined to be unnecessary when the battery voltage is higher than the threshold voltage that does not require charging. In this way, the battery B is protected so that the battery B does not reach the overdischarge voltage by sufficiently increasing the voltage difference between the overdischarge voltage and the charge unnecessary threshold voltage required for charging.
  • the automatic charger 3 determines that the charging is completed, and retracts the power supply contactor 23 to disconnect the connection with the power receiving contactor 13 of the automatic guided vehicle 1.
  • the contactors 13 and 23 are disconnected from each other, the automatic guided vehicle 1 is separated from the charging station CS and travels to the travel route R.
  • the plurality of automatic guided vehicles 1 described above are continuously operated so as to travel around between the picking area PA and the assembly area BA so as to sequentially supply the assembly parts required in the assembly area BA.
  • the charging station CS is stopped for each round trip, and the amount of power consumed by the round trip in a very short time (for example, 1 min) included in the round cycle. Is charged by the automatic charger 3 with respect to the battery B mounted therein.
  • FIG. 7 shows the picking work time for the vehicle type.
  • the element work time in the figure is the work time for taking out a part from the parts shelf, transporting it to the automatic guided vehicle and loading it on the automatic guided vehicle, and the accompanying work time is the work time for selecting the part from the parts shelf.
  • This work time table indicates that the work time differs in the order of EV car> B car specification 1> B car specification 2> C car, and the quantity and weight of the assembled parts differ in this order.
  • the remaining capacity of the battery B mounted on each automatic guided vehicle 1 does not change uniformly according to the load such as the weight of the assembled parts to be loaded, and a specific vehicle type, for example, EV
  • the battery capacity of some automated guided vehicles 1 that transport assembly parts to be assembled to the vehicle is lower than that of other automated guided vehicles 1.
  • some automatic guided vehicles 1 that transport assembly parts to be assembled to a specific vehicle type have a plurality of picking areas PA to stop, and transport assembly parts to be assembled to an engine vehicle. Compared with the automatic guided vehicle 1 to be operated, the lap time may be longer.
  • some automatic guided vehicles 1 that convey assembly parts to be assembled to a specific vehicle type have a length of a travel route R that circulates in the picking area PA as an engine vehicle. Compared to the automatic guided vehicle 1 that transports the assembled parts to be assembled, the lap time is also increased.
  • the traveling time of the automated guided vehicle 1 having a long lap time is set as the reference lap time. Then, the automatic guided vehicle 1 with a short lap time absorbs this time difference by, for example, waiting in front of the charging station CS while charging the preceding automatic guided vehicle 1 with a long lap time at the charging station CS that always passes. It can be solved by operating as follows. However, even in the automatic guided vehicle 1 having a long lap time, the capacity of the battery B to be mounted is lower than that of other automatic guided vehicles 1 as compared to the automatic guided vehicle 1 having a short lap time.
  • the automatic guided vehicle 1 whose battery capacity has decreased compared to the other automatic guided vehicles 1 has a longer charging time at the charging station CS and is restored to the same battery capacity as the other automatic guided vehicles 1. It is necessary to let For this reason, it is necessary to ensure the charging time for the automatic guided vehicle 1 whose battery capacity is lower than the others in the circulation cycle in which the plurality of automatic guided vehicles 1 travel around the same traveling route R.
  • the charging management system for the automatic guided vehicle solves such a problem and ensures automatic charging for a plurality of automatic guided vehicles 1 traveling around the same traveling route R in a circular traveling cycle.
  • a charge management system for the car 1 is provided.
  • FIG. 8 is a vehicle-specific charge priority setting table stored in the facility-side control device 2.
  • the charge priority is set corresponding to the vehicle type.
  • the charging priority is, for example, high for an EV car with a large number of parts to be loaded, parts weight, and rounding distance, and the number of parts to be loaded, parts weight, and rounding distance are sequentially small. Normally, it is set to “Normal” for the B car specification 2, the C car.
  • the facility-side control device 2 reads the ID number of the automatic guided vehicle 1 at the charging station CS, and stores the charging state, the target vehicle type of the loaded parts, and the charging priority for each ID number in order of passing time.
  • a charge priority setting table for each transport vehicle is provided.
  • the equipment side control apparatus 2 performs the control flowchart which calculates a charging priority and a charging target based on the charging priority setting table for each automatic guided vehicle, and the charging priority and charging of the subsequent automatic guided vehicle 1 A target is set on the charge priority setting table.
  • the vehicle model to which the loaded parts are applied to the automatic guided vehicle 1 is distributed as production instruction data from the higher-level production management control device, and the production instruction data given to the automatic guided vehicle 1 together with the ID number is used. Is done.
  • the charging priority setting table for each automatic guided vehicle shows the voltage after the previous charging of each automatic guided vehicle 1 of each ID (second column (ID6-0001) to the second column from the left side in the figure). 5 columns (ID 6-0004 are the previous values) are stored as past data. And based on this past data and the target vehicle type of the assembly parts loaded on the automatic guided vehicle 1 that will arrive at the charging station CS in the future (the third row from the left to the sixth column in the figure). Thus, the future charging priority and the charging target value of each automatic guided vehicle 1 can be set. And the future charging priority of each automatic guided vehicle 1 and a charging target value are set by executing the control flowchart shown in FIG.
  • step S1 when the automatic guided vehicle 1 arrives at the charging station CS, the target vehicle type of the assembly part loaded on the next automatic guided vehicle 1 is read from the production instruction data.
  • the automatic guided vehicle 1 (ID6-0001) in the sixth column in FIG. 9 has arrived.
  • step S2 the charging priority of the target vehicle type of the assembly part loaded on the next automatic guided vehicle 1 is confirmed.
  • the production instruction data and the charging priority of the third and fourth rows of the automated guided vehicle 1 (ID6-0001) in the seventh column in FIG. 9 are confirmed.
  • step S3 it is confirmed whether or not the charging priority of the target vehicle model of the assembly part loaded on the next arriving automatic guided vehicle 1 is high. If the charging priority of the target vehicle type of the assembly part loaded on the next automatic guided vehicle 1 is not high “High”, the current processing step is terminated. However, if the charging priority of the target model of the assembly part loaded on the next automatic guided vehicle 1 is high, the process proceeds to step S4, and the next automatic charging of the next automatic guided vehicle 1 is performed. Get the post-charge voltage at. Here, the voltage after the previous charging of the automatic guided vehicle 1 (ID6-0002) (third column, second row in the figure) is confirmed.
  • step S5 it is determined whether or not there is a voltage value in which the acquired post-charging voltage at the previous charging of the next automatic guided vehicle 1 is lower than the priority charging voltage value A.
  • the preferential charging voltage value A may be set to a voltage value that can circulate the travel route R with a margin or an average value of the post-charging voltage value. Here, for example, 24V is set.
  • the current processing step is terminated. That is, since the battery of the next automatic guided vehicle 1 has a sufficiently required voltage value (capacity), the charging target is set to “Default”, that is, a preset charging time is sufficient.
  • step S5 if it is determined in step S5 that the previous voltage value is lower than the priority charging voltage value A, the process proceeds to step S6 and step S7 to the automatic guided vehicle 1 that is currently stopped at the charging station CS. Reset the charging priority and charging target voltage.
  • the voltage after the previous charging of the automatic guided vehicle 1 ID 6-0002 (second column, second row in the figure) is 23.5V, which is lower than the priority charging voltage value A (24V). For this reason, it progresses to step S6 and step S7, and the charge priority and charge target voltage to the automatic guided vehicle 1 currently stopped at the charging station CS are reset.
  • step S6 the charging priority of the automatic guided vehicle 1 currently stopped at the charging station CS is set to low “Low”.
  • the previous automatic guided vehicle stopped at the charging station CS is set to the previous one. Obtain the post-charge voltage and set it to the current charge target value.
  • the charging target value for the next automatic guided vehicle 1 with the high priority “High” is also set to the voltage after the previous charging of the automatic guided vehicle 1 currently stopped at the charging station CS.
  • the charging target value of ID (ID6-0001) whose priority is set to Low is set to 24V.
  • the charging target value for the ID (ID6-0002) set to the priority level High is also set to 24V.
  • the preceding charging priority is “ The charging priority of the “Normal” automatic guided vehicle 1 is set to low “Low”. Then, the charging target values of the automatic guided vehicle 1 in which the preceding charging priority is set to low “Low” and the next automatic charging priority “High” automatic guided vehicle 1 are set to low “Low”, respectively. The voltage after the previous charging of the set automatic guided vehicle 1 is set.
  • the charging time for the automatic guided vehicle 1 in which the preceding charging priority is set to low “Low” is originally higher than the default time because the charging start voltage is originally high. Shortened. Further, the charging time for the next automatic high priority “High” automatic guided vehicle 1 is longer than the Default time because the charging start voltage is originally low. However, since the charging time for the automatic guided vehicle 1 with the preceding charging priority of Low is shortened, the charging time for the automatic guided vehicle 1 with the charging priority of High that follows the shortened charging time is charged. Can be devoted to For this reason, the cycle time of the round traveling of the automatic guided vehicle 1 is not disturbed.
  • the automatic guided vehicle 1 selected as the charging priority Low is specified as the automatic guided vehicle 1 preceding the automatic guided vehicle 1 set to the charging priority High.
  • the automatic guided vehicle 1 selected as the priority Low may be specified as the automatic guided vehicle 1 before and after the automatic guided vehicle 1 with the charging priority High.
  • the charging target value has been described for charging up to the voltage after the previous charging of the automatic guided vehicle 1 whose charging priority is set to Low
  • the charging target value is not limited to this. It may be set to an average value of a voltage value that can be circulated by holding and a voltage value after charging.
  • the charging time is shortened for the unmanned transport vehicle 1 having a low charging priority with respect to the charging time set from the circulation cycle time of the unmanned transport vehicle 1, and the unmanned transport having a high charging priority is performed. For the vehicle 1, the charging time may be extended.
  • a charge management system for the automatic guided vehicle 1 in which the battery B is charged by a charging station CS installed at a predetermined position on the circuit route R by unmanned travel using the mounted battery B as a drive source. is there. And in this embodiment, it originates in the workpiece
  • a charging priority setting table is provided as a charging priority setting unit that sets the charging priority of each automatic guided vehicle 1 according to the transfer load. And a charging target value is set to each automatic guided vehicle 1 based on the charging priority set by the charging priority setting part.
  • each of the automatic guided vehicles 1 respectively according to the conveyance load caused by the work constituting the product to be conveyed
  • the charging priority of the automatic guided vehicle 1 is set, and the charging target value is set for each automatic guided vehicle 1 based on the charging priority. For this reason, even when a plurality of automatic guided vehicles 1 travels on the route R, the battery capacity of the automatic guided vehicle 1 whose battery capacity is reduced is restored without disturbing the rotational travel cycle of each automatic guided vehicle 1. Can be made.
  • the charging priority setting unit selects the automatic guided vehicle 1 having a high charging priority when the voltage after the previous charging of the automatic guided vehicle 1 having a high charging priority is lower than a preset priority charging voltage.
  • the charging priority of at least one of the other automatic guided vehicles 1 except for the automatic guided vehicle 1 is reduced. That is, when the post-charging voltage of the automatic guided vehicle 1 having a high charging priority is lower than the preset priority charging voltage, the charging priority is lowered to change the charging priority of the other automatic guided vehicle 1.
  • charging of the automatic guided vehicle 1 can be suppressed, and charging of the automatic guided vehicle 1 having a high charging priority can be promoted accordingly.
  • the charging target value setting unit sets a charging target value for the automatic guided vehicle set to a high charging priority by the charging priority setting unit so that the charging time becomes long, and the charging priority setting unit The charging target value is set so that the charging time is shortened for the automatic guided vehicle set at a low charging priority. That is, the charging time is increased for the automatic guided vehicle 1 having a high charging priority, and the charging time is shortened for the automatic guided vehicle 1 having a low charging priority. For this reason, the battery capacity of the automatic guided vehicle 1 whose battery capacity is reduced can be recovered without disturbing the rotational traveling cycle of the plurality of automatic guided vehicles 1 on the circular route R.
  • the automatic guided vehicle 1 includes a charge / discharge monitor 11 that monitors the charge / discharge amount of the battery B.
  • the charge / discharge monitor 11 monitors a plurality of cell voltages constituting the battery B, and when any cell voltage falls below a preset voltage value, the battery B of the automatic guided vehicle 1 is in an abnormal state.
  • the automatic guided vehicle 1 is configured to stop.
  • the voltage value for determining that the battery B is abnormal is lowered as compared with traveling in another area. For this reason, the abnormal stop of the automatic guided vehicle 1 can be suppressed while passing through the area of the assembly area BA.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 搭載したバッテリーを駆動源として周回ルートを無人で走行し、周回ルート上の所定の位置に設置した充電ステーションで前記バッテリーが充電される無人搬送車の充電管理システムにおいて、上位の生産管理システムから配信される製品の生産順序が記述された生産指示データに基づいて、複数の無人搬送車が順次搬送する前記製品を構成するワークに起因する搬送負荷に応じてそれぞれの無人搬送車の充電優先度を設定する充電優先度設定部と、前記充電優先度設定部によって設定された充電優先度に基づいて各無人搬送車に充電目標値を設定する充電目標値設定部と、を備える。

Description

無人搬送車の充電管理システム
 この発明は、搭載したバッテリーの電力を駆動源として無人で走行し、充電ステーションで搭載したバッテリーに充電を行う無人搬送車の充電管理システムに関する。
 JP2007-74800Aの無人搬送車は、部分充放電でも使用可能なニッケル水素電池やリチウムイオン電池をバッテリーとして搭載する。この無人搬送車は、バッテリーの残容量が充電開始容量になったときに充電が開始され、残容量が充電停止容量に達したときに充電が停止される。
 ところで、組立生産ラインでは、ピッキングエリアで組み付け部品を積み込み、組立エリアに搬送し、組立エリアで組み付け部品を積み下ろし、再びピッキングエリアに戻る周回軌道の走行ルート上を走行させるよう、複数の無人搬送車が使用されるのが一般的である。そして、複数の無人搬送車は、組立エリアで要求する組み付け部品を順次供給するように、ピッキングエリアと組立エリアとの間を周回走行するように連続的に運用される。
 このように連続的に運用される複数の無人搬送車においては、搭載される組み付け部品の重量等の負荷に応じて、バッテリーの残容量が一様には変化しない。特定の部品を積載する無人搬送車のバッテリー容量が他の無人搬送車に比較してより早く低下することがある。バッテリー容量が低下する無人搬送車は、バッテリー容量を回復するために、他の無人搬送車に比較して充電ステーションでの充電時間を長くする必要がある。このため、周回ルート上の充電ステーションを含む同一地点を、順次所定のタイミングにより通過し且つ充電される、複数の無人搬送車に対して、バッテリー容量がより早く低下する無人搬送車に対する充電時間を確保することができないという課題があった。
 本発明は、このような従来の問題点に着目してなされた。本発明の目的は、周回ルート上の充電ステーションを含む同一地点を順次所定のタイミングにより通過し且つ充電される、複数の無人搬送車に対する充電時間を確保するに好適な無人搬送車の充電管理システムを提供することである。
 本発明による搭載したバッテリーを駆動源として周回ルートを無人で走行し、周回ルート上の所定の位置に設置した充電ステーションで前記バッテリーが充電される無人搬送車の充電管理システムは、上位の生産管理システムから配信される製品の生産順序が記述された生産指示データに基づいて、複数の無人搬送車が順次搬送する前記製品を構成するワークに起因する搬送負荷に応じてそれぞれの無人搬送車の充電優先度を設定する充電優先度設定部と、前記充電優先度設定部によって設定された充電優先度に基づいて各無人搬送車に充電目標値を設定する充電目標値設定部と、を備える。
図1は、本発明の実施形態における無人搬送車の走行経路の例を示す概念図である。 図2は、無人搬送車の走行経路の別の例を示す概念図である。 図3は、無人搬送車の走行経路のさらに別の例を示す概念図である。 図4は、無人搬送車及び充電ステーションの自動充電器の概略を示す説明図である。 図5は、充電時における無人搬送車のバッテリー装置と充電ステーションの充電器との関係を示す説明図である。 図6は、充電時のバッテリー電圧の変化と供給する充電電流の変化を示す充電特性図である。 図7は、車両形式に対するピッキング作業時間を示す説明図である。 図8は、車種別充電優先度を示す説明図である。 図9は、無人搬送車のバッテリーへの充電優先度・充電目標値を設定するための無人搬送車別充電優先度設定テーブルである。 図10は、無人搬送車別充電優先度設定テーブルを設定するための制御フローチャートである。 図11は、図10の無人搬送車別充電優先度設定テーブルで設定したデータに基づく、充電時間の変化を説明するタイムチャートである。
 以下、添付の図面を参照しながら本発明の実施形態について説明する。
 本実施形態では、例えば、車両形式が異なる複数の車両、即ち、多車種を混流させて組立ラインに流し、この組立ライン上の各組立エリアにおいて順次到着する車両形式に対応して無人搬送車より供給される必要な複数の部品を組み付ける生産方式を対象とする。混流させる車両形式としては、例えば、バッテリー駆動により電気自動車(以下では、「EV車」という)と、エンジン駆動による車両(以下では、EV車と区別する場合は、「エンジン車」という)が、混流されて供給される場合を想定している。なお、エンジン車においても、個別の仕様が異なる車両形式の車両が混流して供給される。ここでは、個別の仕様の詳細は省略するが、これらの車両形式を特定する場合は、「B車仕様1」、「B車仕様2」、「C車」という。
 無人搬送車1は、例えば、図1に示すように、一つの組立エリアBAに、当該組立エリアBAで順次到着する車両形式に対応した必要な複数の部品を纏まりにして供給する。このため、無人搬送車の走行ルートRとして、ピッキングエリアPAと生産ラインの組立エリアBAとを経由する周回軌道が設定される。この走行ルートRには、複数の無人搬送車1が走行するように構成され、各無人搬送車1の走行は設備側制御装置2によって制御される。
 各無人搬送車1は、ピッキングエリアPAにおいて組立エリアBAで必要とする部品を積み込み、走行ルートR上を走行して組立エリアBAに搬送して積載した部品を積み降ろし、再び走行ルートR上を走行してピッキングエリアPAに戻る循環走行を繰り返す。走行ルートR上の、例えば、ピッキングエリアPAの手前には、設備側制御装置2により制御される自動充電器3を備える充電ステーションCSが配置されている。また、例えば、組立エリアBAへの入口及び出口には、無人搬送車1と設備側制御装置2との信号授受を実行する地上局4が設置されている。
 無人搬送車1の走行ルートRは、図1に示すものに限定されるものでなく、例えば、図2及び図3に示す走行ルートRであってもよい。図2においては、特定の車両形式であるEV車に専用の組み付け部品を供給するEV車専用ピッキングエリアPA2を、全車ピッキングエリアPA1と独立して備えるものである。なお、設備側制御装置2、充電ステーションCS、組立エリアBA、等は、図1と同様に構成している。エンジン車に対する組み付け部品を積載して搬送する無人搬送車1は、全車ピッキングエリアPA1に停車して必要な部品が積載されて走行ルートRを走行し、EV車専用ピッキングエリアPA2には停車せずに、充電ステーションCSに走行する走行形態となる。また、EV車に対する組み付け部品を積載して搬送する無人搬送車1は、全車ピッキングエリアPA1に停車して必要な部品が積載されて走行ルートRを走行し、EV車専用ピッキングエリアPA2にも停車して、EV車に専用の組み付け部品も積載して、充電ステーションCSに走行する走行形態となる。
 図3においては、特定の車両形式であるEV車に必要な全ての組み付け部品を供給するEV車専用ピッキングエリアPA4を、エンジン車ピッキングエリアPA3と独立して備えるものである。なお、設備側制御装置2、充電ステーションCS、組立エリアBA、等は、図1と同様に構成している。エンジン車に対する組み付け部品を積載して搬送する無人搬送車1は、エンジン車ピッキングエリアPA3に停車して必要な部品が積載されて走行ルートRを走行して、充電ステーションCSに走行する走行形態となる。また、EV車に対する組み付け部品を積載して搬送する無人搬送車1は、エンジン車ピッキングエリアPA3への走行ルートRとは分岐して設けられた走行ルートRを走行して、EV車専用ピッキングエリアPA4に停車して、EV車に必要な全ての組み付け部品を積載して、充電ステーションCSに走行する走行形態となる。
 また、設備側制御装置2には、上位の生産管理制御装置から生産指示データが配信される。この生産指示データは、組立エリアBAに到着する組立に先行する車両形式が時系列に記載されている。
 設備側制御装置2は、生産指示データに基づき、組立エリアBAに順次到着予定の複数の車両形式及び当該車両形式の組立に用いられる部品を搬送する無人搬送車1をIDナンバーによって指定して、ピッキングエリアPA、充電ステーションCS、組立エリアBAへ順次回送させる。また、設備側制御装置2は、生産指示データに基づき、ピッキングエリアPAに対して、組立エリアBAに順次到着する車両形式と、当該車両形式の組立に用いられる複数の部品と、当該部品を搬送するようピッキングエリアPAに回送する無人搬送車1のIDナンバーと、を指示する。また、設備側制御装置2は、生産指示データに基づき、充電ステーションCSに対して、組立エリアBAで現在組立中の車両に後に順次到着予定の複数の車両形式及び当該車両への組み付けに用いられる部品を積載して到着する無人搬送車1のIDナンバーを指示する。以上の指示は、組立エリアBAで一つの車両への組み付け完了(若しくは組み付け開始)に同期して、順次更新される。
 無人搬送車1は、図4に示すように、二次電池(例えば、リチウムイオン二次電池)からなるバッテリーB、バッテリーBの状態を監視する充放電モニター11等を収容するバッテリーボックス5を、例えば、車両中央に装備している。そして、無人搬送車1は、バッテリーBを駆動電源として走行する。バッテリーBは、バスバーBBで直列接続された電池モジュールBMを含む。図5では、3個の電池モジュールBMが直列接続される。複数のリチウムイオン単電池(セル)が並列又は直列に接続されて電池モジュールBMが構成される。この電池モジュールBMの電圧は、充電状態で約8V強である。バッテリーBには、3個の電池モジュールBMが直列接続されているので、バッテリーBの出力電圧は、25V程度となる。従って、バッテリーBの過充電電圧は、例えば、25V、過放電電圧は、例えば、18Vに設定される。
 バッテリーBへの給電線12の端部には、バッテリーボックス5の外面に露出させて受電コンタクター13が配置される。この受電コンタクター13に充電ステーションCSの自動充電器3から伸縮される給電コンタクター23が接続されて、バッテリーBに充電可能となっている。
 また、リチウムイオン電池によるバッテリーBの充電状態は、図5に示すように、充放電モニター11により監視・演算する。充放電モニター11は、バッテリーBの充放電容量(バッテリー電圧)及びセル電圧、バッテリーBの入出力の電流量(アンペアアワー、AH)、バッテリーBの異常履歴等を所定時間(10msec)毎に監視し、記憶するよう作動する。そして、充放電モニター11は、通信部14(例えば、光通信)を介して、地上局4及び自動充電器3を介してこれらの情報を設備側制御装置2に送信可能としている。
 また、充放電モニター11は、バッテリーBを構成する各セル電圧がシャットダウン閾値(例えば、2.8~3V)以下の過放電状態となっている場合に、バッテリーBが異常状態であることを表示する。そして、無人搬送車1をシャットダウン(異常停止)させるよう作動する。シャットダウン閾値は、その設定値を変更可能となっており、通常は例えば、3.0Vに設定されている。しかし、シャットダウン閾値は、走行ルートRの組立エリアBA通過中は、より低い設定値(例えば、2.8V)に設定し、組立エリアBA領域内でのシャットダウン動作を抑制するようにしている。具体的には、走行ルートRの組立エリアBAへの入口に設置された地上局4から通信部14を介してシャットダウン禁止コマンドを受け取ったときに、設定値を、3.0Vから2.8Vに変更するようにしている。また、走行ルートRの組立エリアBAへの出口に設置された地上局4から通信部14を介してシャットダウン禁止解除コマンドを受け取ったときに、設定値を、2.8Vから3.0Vに変更するようにしている。
 自動充電器3は、バッテリーBの上限電圧(例えば、25V)まで昇圧可能な直流電源21と、直流電源21よりバッテリーBへ供給する充電電流値及び電圧値を制御する充電制御装置20と、無人搬送車1の通信部14と通信可能な通信部24と、を備える。
 通信部24は、無人搬送車1の通信部14との間で、バッテリーBの充放電容量(電圧)、バッテリーBの入出力の電流量(アンペアアワー、AH)、バッテリーBの異常履歴、その他の指令信号等を通信可能としている。
 無人搬送車1は、バッテリーBを駆動電源として走行し、走行に連れてバッテリーBの充放電容量(電圧)が低下する。このため、無人搬送車1が充電ステーションCSを通過するときに一時停止させ、無人搬送車1と充電ステーションCSの自動充電器3との間で、通信部14,24を介して、無人搬送車1のバッテリーBの充放電容量を確認する。そして、充電ステーションCS側において、そのときのバッテリーBの充放電容量(電圧)が充電を必要とするか否かを判定する。そして充電を必要とすると判定したときに、無人搬送車1のバッテリーBに対して自動充電器3よって充電がなされる。
 充電は、給電コンタクター23を無人搬送車1の受電コンタクター13に向かって伸長させ、給電コンタクター23と受電コンタクター13とが接続されると、この接続を確認して充電可能な状態とする。その後に、自動充電器3には、直流電源21から充電電力が供給される。充電制御装置20は、バッテリーBへ充電するために、定電流・定電圧方式の普通充電も可能であるが、普通充電時の充電電流よりも大きな充電電流をバッテリーBに供給する定電流・定電圧方式の急速充電が実施される。急速充電は、短時間の充電を必要とする搬送工程には望ましい。定電流・定電圧方式の充電では、充電初期には定電流の充電電流を供給する定電流充電(CC充電)を行う。次いで、充電によってバッテリー電圧が充電上限電圧(例えば、25V)まで上昇した時点からは、電圧一定とする定電圧充電(CV充電)を所定時間が経過するまで行う。
 図6は、充電時のバッテリー電圧の変化と供給する充電電流の変化を示すものである。CC充電によりバッテリー電圧は徐々に昇圧され、バッテリー電圧が充電上限電圧(例えば、25V)まで上昇すると、その時点から充電電流を低下させつつ電圧一定とする定電圧充電(CV充電)を所定時間が経過するまで実行される。所定時間が経過すると、充電制御装置20は、直流電源21を停止させて充電を停止させる。以上の充電方法は、バッテリーへ満充電させる充電方法である。
 また、上記した満充電に代えて、CC充電を実行して、無人搬送車1のバッテリー電圧が充電不要しきい電圧まで上昇された時点で、充電完了として、充電を停止させることもできる。また、CC充電を予め設定した所定時間だけ実行して、無人搬送車1のバッテリー電圧を充電時間分だけ上昇させて、充電完了として、充電を停止させることもできる。このように、充電不要しきい電圧まで、若しくは、所定時間だけ、バッテリー電圧を上昇させた時点で、充電を終了させる場合には、充電時間を短縮させることができる。このため、走行ルートRを周回する無人搬送車1のバッテリーBへの充電には適しており、本実施形態では、充電を所定時間だけ実行して充電停止させる充電停止方法を採用している。
 充電不要しきい電圧は、前述した、例えば、24.9Vに設定している。即ち、充電不要しきい電圧よりバッテリー電圧が低下したときに充電が必要と判定し、充電不要しきい電圧よりバッテリー電圧が高いときに充電が不要と判定する。このように、過放電電圧と充電が必要とする充電不要しきい電圧との間の電圧差を十分に大きくして、バッテリーBが過放電電圧に至らないよう、バッテリーBを保護している。
 充電ステーションCSにおいて、バッテリーBへの充電が終了すると、自動充電器3は充電終了と判断して、給電コンタクター23を待避させて無人搬送車1の受電コンタクター13との接続を切離す。コンタクター13,23同士の接続が切離されると、無人搬送車1は、充電ステーションCSから離脱させて走行ルートRへ走行させる。
 ところで、上記した複数の無人搬送車1は、組立エリアBAで要求する組み付け部品を順次供給するように、ピッキングエリアPAと組立エリアBAとの間を周回走行するように連続的に運用される。このように運用される複数の無人搬送車1においては、周回走行毎に充電ステーションCSに停止させて、周回サイクルに含まれるごく短時間(例えば、1min)に、周回走行で消費された電力量を、搭載しているバッテリーBに対して自動充電器3により充電される。
 ところで、特定の車両形式(EV車)に組み付ける組み付け部品は、エンジン車に組み付ける組み付け部品よりも、数量が多く、重量が重くなる。図7は、車両形式に対するピッキング作業時間を示すものである。図中の要素作業時間は部品を部品棚から取り出し、無人搬送車へ運び、無人搬送車に積載する作業時間であり、付随作業時間は部品を部品棚から選ぶ作業時間である。この作業時間表では、EV車>B車仕様1>B車仕様2>C車の順で作業時間が異なり、この順で組み付け部品の数量や重量が異なることを示している。
 このため、各無人搬送車1に搭載しているバッテリーBの残容量は、積載される組み付け部品の重量等の負荷に応じて、一様には変化せず、特定の車両形式、例えば、EV車に組み付ける組み付け部品を搬送する一部の無人搬送車1のバッテリー容量が他の無人搬送車1よりも低下する。
 また、図2に示すように、特定の車両形式(EV車)に組み付ける組み付け部品を搬送する一部の無人搬送車1は、停車するピッキングエリアPAが複数あり、エンジン車に組み付ける組み付け部品を搬送する無人搬送車1に比較して、周回時間が長くなる場合がある。また、図3に示すように、特定の車両形式(EV車)に組み付ける組み付け部品を搬送する一部の無人搬送車1は、ピッキングエリアPAを周回する走行ルートRの長さが、エンジン車に組み付ける組み付け部品を搬送する無人搬送車1に比較して長くなり、周回時間も長くなる。
 上記した周回時間の長短は、周回時間の長い無人搬送車1の走行時間を基準周回時間に設定する。そして、周回時間の短い無人搬送車1は、例えば、必ず通過する充電ステーションCSにおいて、先行する長い周回時間の無人搬送車1の充電中に充電ステーションCSの手前で待機させることによりこの時間差を吸収するように運用することで解消できる。しかしながら、この周回時間の長い無人搬送車1においても、周回時間の短い無人搬送車1と比較して、搭載するバッテリーBの容量が他の無人搬送車1よりも低下する。
 このように、他の無人搬送車1に比較してバッテリー容量が低下した無人搬送車1は、充電ステーションCSでの充電時間を長くして、他の無人搬送車1と同等のバッテリー容量に回復させる必要がある。このため、バッテリー容量が他より低下する無人搬送車1に対する充電時間を、同じ走行ルートRを複数の無人搬送車1が周回走行する周回サイクル内で、確保する必要がある。
 本実施形態の無人搬送車の充電管理システムは、このような課題を解決して、同じ走行ルートRを周回走行する複数の無人搬送車1に対する周回走行サイクル内での充電時間を確保する無人搬送車1の充電管理システムを提供するものである。
 このため、本実施形態では、無人搬送車1に積載される組み付け部品(EV車用、エンジン車用(B車仕様1、B車仕様2、C車))に基づいて、充電ステーションCSでの充電優先度を変更するようにする。図8は設備側制御装置2に記憶させた車種別充電優先度設定テーブルである。この車種別充電優先度設定テーブルでは、車種に対応して充電優先度を設定するものである。充電優先度は、例えば、積載する部品数や部品重量及び周回距離の大きいEV車に対しては、高「High」とし、順次、積載する部品数や部品重量及び周回距離が小さい、B車仕様1、B車仕様2、C車に対しては、通常「Normal」に設定する。
 また、設備側制御装置2は、充電ステーションCSで無人搬送車1のIDナンバーを読み取り、IDナンバー毎に、充電状態・積載部品の適用対象車種及び充電優先度を、通過時刻順に記憶させた無人搬送車別充電優先度設定テーブルを備えている。
 そして、設備側制御装置2は、無人搬送車別充電優先度設定テーブルに基づいて、充電優先順位及び充電目標を演算する制御フローチャートを実行して、後続の無人搬送車1の充電優先度及び充電目標を、充電優先度設定テーブル上に設定する。なお、無人搬送車1への積載部品の適用対象車種は、前記したように、上位の生産管理制御装置から生産指示データとして配信され、無人搬送車1にIDナンバーと共に付与した生産指示データが使用される。
 即ち、無人搬送車別充電優先度設定テーブルは、図9に示すように、各IDの無人搬送車1それぞれの前回の充電後電圧(図中の左側から第2列(ID6-0001)~第5列(ID6-0004)までが前回値となっている)を過去のデータとして記憶している。そして、この過去のデータと、充電ステーションCSに今後到着する無人搬送車1に積載されている組み付け部品の対象車種(図中の左側から第6列~第7列の3行目)とに基づいて、無人搬送車1それぞれの今後の充電優先度、及び、充電目標値を、それぞれ設定可能としている。そして、無人搬送車1それぞれの今後の充電優先度、及び、充電目標値は、図10に示す制御フローチャートを実行することにより、設定する。
 以下では、図10に示す制御フローチャートに基づいて、本実施形態の無人搬送車1の充電管理システムを詳細に説明する。
 先ず、ステップS1では、無人搬送車1が充電ステーションCSに到着すると、次に到着する無人搬送車1に積載されている組み付け部品の対象車種を生産指示データから読込む。ここでは、図9の第6列目の無人搬送車1(ID6-0001)が到着したことを想定している。そして、ステップS2において、次に到着する無人搬送車1に積載されている組み付け部品の対象車種の充電優先度を確認する。ここでは、図9の第7列目の無人搬送車1(ID6-0001)の3行目及び4行目の生産指示データ及び充電優先度を確認することを想定している。
 次いで、ステップS3において、次に到着する無人搬送車1に積載されている組み付け部品の対象車種の充電優先度が高「High」であるか否かを確認する。そして、次に到着する無人搬送車1に積載されている組み付け部品の対象車種の充電優先度が高「High」でない場合には、今回の処理ステップを終了する。しかし、次に到着する無人搬送車1に積載されている組み付け部品の対象車種の充電優先度が高「High」である場合には、ステップS4へ進み、次の無人搬送車1の前回充電時における充電後電圧を取得する。ここでは、無人搬送車1(ID6-0002)の前回の充電後電圧(図中の第3列2行目)が確認される。
 次いで、ステップS5において、取得した次の無人搬送車1の前回充電時における充電後電圧が優先充電電圧値Aよりも低い電圧値があるか否かを判定する。優先充電電圧値Aは、走行ルートRを余裕を持って周回可能な電圧値や充電後電圧値の平均値に設定してもよい。ここでは、例えば、24Vと設定する。そして、この判定において、前回電圧値が優先充電電圧値Aよりも高い電圧値である場合には、今回の処理ステップを終了する。即ち、次の無人搬送車1のバッテリーは十分に必要な電圧値(容量)を備えているため、充電目標を「Default」、即ち、予め設定した充電時間で十分とする。
 しかし、ステップS5の判定において、前回電圧値が優先充電電圧値Aよりも低い電圧値である場合には、ステップS6及びステップS7へ進み、現在充電ステーションCSに停止している無人搬送車1への充電優先度及び充電目標電圧を再設定する。ここでは、無人搬送車1(ID6-0002)の前回の充電後電圧(図中の第3列2行目)が23.5Vであり、優先充電電圧値A(24V)よりも低い。このため、ステップS6及びステップS7へ進み、現在充電ステーションCSに停止している無人搬送車1への充電優先度及び充電目標電圧を再設定する。
 ステップS6では、現在充電ステーションCSに停止している無人搬送車1への充電優先度を低「Low」に設定し、ステップS7では、現在充電ステーションCSに停止している無人搬送車の前回の充電後電圧を取得し、今回の充電目標値に設定する。また、優先度が高「High」とした次の無人搬送車1への充電目標値も、現在充電ステーションCSに停止している無人搬送車1の前回の充電後電圧に設定する。ここでは、優先度をLowに設定したID(ID6-0001)の前回電圧値が、24Vであるため、優先度をLowに設定したID(ID6-0001)の充電目標値を、24Vに設定する。また、優先度Highに設定したID(ID6-0002)に対する充電目標値も、24Vに設定する。
 以上のように、次の無人搬送車1の充電優先度が高「High」の前回の充電後電圧が優先充電電圧値Aよりも低い電圧値である場合には、先行する充電優先度が「Normal」の無人搬送車1の充電優先度を低「Low」に設定する。そして、先行する充電優先度を低「Low」に設定した無人搬送車1と次の充電優先度高「High」の無人搬送車1の充電目標値を、それぞれ充電優先度を低「Low」に設定した無人搬送車1の前回の充電後電圧に設定するようにしている。
 このように、設定することにより、図11に示すように、先行する充電優先度を低「Low」に設定した無人搬送車1に対する充電時間は、充電開始電圧が元々高いため、Default時間よりも短縮される。また、次の充電優先度高「High」の無人搬送車1に対する充電時間は、充電開始電圧が元々低いため、Default時間よりも長くなる。しかしながら、先行する充電優先度がLowのIDの無人搬送車1に対する充電時間が短縮されるため、その短縮された充電時間分を後続する充電優先度がHighのIDの無人搬送車1に対する充電時間に充てることができる。このため、無人搬送車1の周回走行のサイクルタイムを乱すことがない。
 なお、上記実施形態において、充電優先度Lowに選定する無人搬送車1として、充電優先度Highと設定した無人搬送車1に先行する無人搬送車1に特定するようにしていた。しかしながら、優先度Lowに選定する無人搬送車1として、充電優先度Highの無人搬送車1の前後の無人搬送車1に特定するようにしてもよい。また、走行ルートR上に投入されている、充電優先度Highの無人搬送車1を除く、全ての無人搬送車1を特定するようにしてもよい。
 また、充電目標値として、充電優先度をLowに設定した無人搬送車1の前回の充電後電圧まで充電するものについて説明したが、これに限定されるものでなく、例えば、走行ルートRを余裕を持って周回可能な電圧値や充電後電圧値の平均値に設定してもよい。また、充電目標値として、無人搬送車1の周回サイクルタイムから設定した充電時間に対して、充電優先度が低い無人搬送車1に対しては充電時間を短縮し、充電優先度が高い無人搬送車1に対しては充電時間を延長させるものであってもよい。
 本実施形態においては、以下に記載する効果を奏することができる。
 (1)搭載したバッテリーBを駆動源として周回ルートRを無人で走行し、周回ルートR上の所定の位置に設置した充電ステーションCSでバッテリーBが充電される無人搬送車1の充電管理システムである。そして、本実施形態においては、上位の生産管理システムから配信される製品の生産順序が記述された生産指示データに基づいて、複数の無人搬送車1が順次搬送する製品を構成するワークに起因する搬送負荷に応じてそれぞれの無人搬送車1の充電優先度を設定する充電優先度設定部としての充電優先度設定テーブルを備える。そして、充電優先度設定部によって設定された充電優先度に基づいて各無人搬送車1に充電目標値を設定する。
 即ち、上位の生産管理システムより配信される製品の生産順序が記述された生産指示データに基づいて、複数の無人搬送車1が順次搬送する製品を構成するワークに起因する搬送負荷に応じてそれぞれの無人搬送車1の充電優先度を設定し、充電優先度に基づいて各無人搬送車1のそれぞれに充電目標値を設定するようにしている。このため、周回ルートR上に複数の無人搬送車1を周回走行させる場合においても、各無人搬送車1の周回走行サイクルを乱すことなく、バッテリー容量の低下した無人搬送車1のバッテリー容量を回復させることができる。
 (2)充電優先度設定部は、設定した充電優先度の高い無人搬送車1の前回の充電後電圧が予め設定した優先充電電圧よりも低い場合に、充電優先度の高い無人搬送車1を除いた他の無人搬送車1の少なくともいずれか一つの無人搬送車1の充電優先度を低下させる。即ち、充電優先度の高い無人搬送車1の充電後電圧が予め設定した優先充電電圧よりも低い場合には、他の無人搬送車1の充電優先度を変更するため、充電優先度を低下させた無人搬送車1への充電を抑制でき、その分だけ、充電優先度の高い無人搬送車1に対する充電を促進することができる。
 (3)充電目標値設定部は、充電優先度設定部で高い充電優先度に設定された無人搬送車に対しては充電時間が長くなるよう充電目標値を設定し、充電優先度設定部で低い充電優先度に設定された無人搬送車に対しては充電時間が短くなるよう充電目標値を設定する。即ち、充電優先度が高い無人搬送車1に対しては充電時間が長くなり、充電優先度が低い無人搬送車1に対しては充電時間が短くなる。このため、周回ルートR上に複数の無人搬送車1の周回走行サイクルを乱すことなく、バッテリー容量の低下した無人搬送車1のバッテリー容量を回復させることができる。
 (4)無人搬送車1は、バッテリーBの充放電量を監視する充放電モニター11を備える。充放電モニター11は、バッテリーBを構成する複数のセル電圧を監視し、いずれかのセル電圧が予め設定した電圧値よりも低下した場合には、無人搬送車1のバッテリーBが異常状態であることを表示して無人搬送車1を停止させるよう構成される。そして、無人搬送車1が生産ラインの組立エリアBAに臨む領域を走行する場合には、他の領域を走行する場合に比較して、バッテリーBが異常であると判定する電圧値を低下させる。このため、組立エリアBAの領域を通過中は、無人搬送車1の異常停止を抑制することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 たとえば、上記実施形態は、適宜組み合わせ可能である。
 本願は、2012年8月2日に日本国特許庁に出願された特願2012-171718に基づく優先権を主張し、これらの出願の全ての内容は参照によって本明細書に組み込まれる。

Claims (4)

  1.  搭載したバッテリーを駆動源として周回ルートを無人で走行し、周回ルート上の所定の位置に設置した充電ステーションで前記バッテリーが充電される無人搬送車の充電管理システムにおいて、
     上位の生産管理システムから配信される製品の生産順序が記述された生産指示データに基づいて、複数の無人搬送車が順次搬送する前記製品を構成するワークに起因する搬送負荷に応じてそれぞれの無人搬送車の充電優先度を設定する充電優先度設定部と、
     前記充電優先度設定部によって設定された充電優先度に基づいて各無人搬送車に充電目標値を設定する充電目標値設定部と、
    を備える無人搬送車の充電管理システム。
  2.  請求項1に記載の無人搬送車の充電管理システムにおいて、
     前記充電優先度設定部は、設定した充電優先度の高い無人搬送車の前回の充電後電圧が予め設定した優先充電電圧よりも低い場合に、充電優先度の高い無人搬送車を除いた他の無人搬送車の少なくともいずれか一つの無人搬送車の充電優先度を低下させる、
    無人搬送車の充電管理システム。
  3.  請求項1又は請求項2に記載の無人搬送車の充電管理システムにおいて、
     前記充電目標値設定部は、
      前記充電優先度設定部で高い充電優先度に設定された無人搬送車に対しては充電時間が長くなるよう充電目標値を設定し、
      前記充電優先度設定部で低い充電優先度に設定された無人搬送車に対しては充電時間が短くなるよう充電目標値を設定する、
    無人搬送車の充電管理システム。
  4.  請求項1から請求項3までのいずれか1項に記載の無人搬送車の充電管理システムにおいて、
     前記無人搬送車は、バッテリーの充放電量を監視する充放電モニターを備え、
     前記充放電モニターは、バッテリーを構成する複数のセル電圧を監視し、いずれかのセル電圧が予め設定した電圧値よりも低下した場合には、無人搬送車のバッテリーが異常状態であることを表示して無人搬送車を停止させるよう構成され、
     無人搬送車が生産ラインの組立エリアに臨む領域を走行する場合には、他の領域を走行する場合に比較して、前記バッテリーが異常であると判定する電圧値を低下させる、
    無人搬送車の充電管理システム。
PCT/JP2013/070707 2012-08-02 2013-07-31 無人搬送車の充電管理システム WO2014021364A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528187A JP5773083B2 (ja) 2012-08-02 2013-07-31 無人搬送車の充電管理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-171718 2012-08-02
JP2012171718 2012-08-02

Publications (1)

Publication Number Publication Date
WO2014021364A1 true WO2014021364A1 (ja) 2014-02-06

Family

ID=50028034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070707 WO2014021364A1 (ja) 2012-08-02 2013-07-31 無人搬送車の充電管理システム

Country Status (2)

Country Link
JP (1) JP5773083B2 (ja)
WO (1) WO2014021364A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048737A (ja) * 2019-09-20 2021-03-25 株式会社豊田自動織機 産業車両のバッテリ温度調節システム
WO2021135635A1 (zh) * 2019-12-31 2021-07-08 青岛海高设计制造有限公司 一种用于送货装置的控制方法、装置及冰箱
JP2023108601A (ja) * 2022-01-25 2023-08-04 トランスポーテーション アイピー ホールディングス,エルエルシー 車両システムの充電のためのシステムおよび方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279883A (ja) * 1990-03-29 1991-12-11 Shinko Electric Co Ltd 無人搬送車のバッテリーの過放電検知装置
JP2007074800A (ja) * 2005-09-06 2007-03-22 Tsubakimoto Chain Co 無人搬送車の電池充放電管理システム
JP2009136109A (ja) * 2007-11-30 2009-06-18 Toyota Motor Corp 充電制御装置および充電制御方法
JP2009268205A (ja) * 2008-04-23 2009-11-12 Power System:Kk 自走搬送車システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03279883A (ja) * 1990-03-29 1991-12-11 Shinko Electric Co Ltd 無人搬送車のバッテリーの過放電検知装置
JP2007074800A (ja) * 2005-09-06 2007-03-22 Tsubakimoto Chain Co 無人搬送車の電池充放電管理システム
JP2009136109A (ja) * 2007-11-30 2009-06-18 Toyota Motor Corp 充電制御装置および充電制御方法
JP2009268205A (ja) * 2008-04-23 2009-11-12 Power System:Kk 自走搬送車システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048737A (ja) * 2019-09-20 2021-03-25 株式会社豊田自動織機 産業車両のバッテリ温度調節システム
JP7205430B2 (ja) 2019-09-20 2023-01-17 株式会社豊田自動織機 産業車両のバッテリ温度調節システム
WO2021135635A1 (zh) * 2019-12-31 2021-07-08 青岛海高设计制造有限公司 一种用于送货装置的控制方法、装置及冰箱
JP2023108601A (ja) * 2022-01-25 2023-08-04 トランスポーテーション アイピー ホールディングス,エルエルシー 車両システムの充電のためのシステムおよび方法

Also Published As

Publication number Publication date
JP5773083B2 (ja) 2015-09-02
JPWO2014021364A1 (ja) 2016-07-21

Similar Documents

Publication Publication Date Title
JP6020569B2 (ja) 無人搬送車の充電管理システム
JP5800093B2 (ja) 無人搬送車の充電管理システムおよび無人搬送車の充電管理方法
KR101540553B1 (ko) 무인 반송차의 충전 관리 시스템 및 충전 관리 방법
KR101592835B1 (ko) 무인 반송차의 이상 검출 시스템
JP5773083B2 (ja) 無人搬送車の充電管理システム
WO2013118612A1 (ja) 蓄電システム
JP2014117066A (ja) 大型搬送車両
WO2014021414A1 (ja) 無人搬送車のバッテリー管理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825492

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014528187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825492

Country of ref document: EP

Kind code of ref document: A1