WO2014021171A1 - Sensor member fabrication method, sensor chip fabrication method, and sensor member usage method - Google Patents

Sensor member fabrication method, sensor chip fabrication method, and sensor member usage method Download PDF

Info

Publication number
WO2014021171A1
WO2014021171A1 PCT/JP2013/070073 JP2013070073W WO2014021171A1 WO 2014021171 A1 WO2014021171 A1 WO 2014021171A1 JP 2013070073 W JP2013070073 W JP 2013070073W WO 2014021171 A1 WO2014021171 A1 WO 2014021171A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
metal film
manufacturing
sensor member
solid phase
Prior art date
Application number
PCT/JP2013/070073
Other languages
French (fr)
Japanese (ja)
Inventor
幸登 中村
正貴 松尾
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014528096A priority Critical patent/JPWO2014021171A1/en
Publication of WO2014021171A1 publication Critical patent/WO2014021171A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Definitions

  • the present invention relates to a surface plasmon resonance (SPR) measuring device and a surface based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS; Surface Plasmon-field enhanced Fluorescence Spectroscopy) applying the surface plasmon resonance phenomenon.
  • SPR surface plasmon resonance
  • SPFS Surface Plasmon-field enhanced Fluorescence Spectroscopy
  • the present invention relates to a sensor chip used in an optical analyte detection device such as a plasmon excitation enhanced fluorescence measurement device, a method for manufacturing a sensor member used in the sensor chip, and a method for using the sensor member.
  • SPFS device based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) using the surface plasmon resonance (SPR) phenomenon, analyte detection can be performed with higher accuracy than the SPR device.
  • SPFS device The surface plasmon excitation enhanced fluorescence spectrometer (hereinafter referred to as “SPFS device”) is also one of such specimen detection devices.
  • surface plasmon excitation enhanced fluorescence spectroscopy SPFS
  • surface plasmon light is applied to the surface of the metal thin film under the condition that excitation light such as laser light emitted from a light source attenuates total reflection (ATR) on the surface of the metal thin film.
  • excitation light such as laser light emitted from a light source attenuates total reflection (ATR) on the surface of the metal thin film.
  • ATR total reflection
  • FIG. 13 is a schematic configuration diagram illustrating an example of a conventional SPFS apparatus.
  • the SPFS device 100 includes a sensor chip 106 including a prism-shaped dielectric member 102 having a substantially trapezoidal vertical cross-sectional shape and a metal thin film 104 formed on a horizontal upper surface 102a of the dielectric member 102.
  • the sensor chip 106 is loaded in the sensor chip loading unit 108 of the SPFS device 100.
  • a light source 110 is arranged on one side surface 102 b below the dielectric member 102, and incident light 112 from the light source 110 is below the dielectric member 102. Then, the light enters the side surface 102b of the dielectric member 102 and is irradiated through the dielectric member 102 toward the metal thin film 104 formed on the upper surface 102a of the dielectric member 102.
  • the analyte to be detected is labeled with, for example, a fluorescent substance, and the fluorescent substance is excited by the surface plasmon light (dense wave) generated by the incident light 112 irradiated from the light source 110, and the fluorescence 118 is emitted. It emits light.
  • a fluorescent substance for example, a fluorescent substance
  • the fluorescent substance is excited by the surface plasmon light (dense wave) generated by the incident light 112 irradiated from the light source 110, and the fluorescence 118 is emitted. It emits light.
  • a light detection means 120 for receiving the fluorescence 118 is provided above the sensor chip 106.
  • the light source 110 irradiates the metal thin film 104 with incident light 112 at an incident angle ⁇ that is ATR, and the surface plasmon light (dense wave) generated on the surface of the metal thin film 104 causes an analyte Excitation of a fluorescent substance for labeling.
  • the light 118 emitted from the excited fluorescent material is received by the light detection means 120 to measure the light quantity of the fluorescence 118, and based on the light quantity of the fluorescence 118, the ratio of the analyte in the sample liquid Is configured to ask for.
  • the incident light 112 irradiated from the light source 110 is incident on the sensor chip 106, and the reflected light reflected on the metal thin film 104 is received by the light receiving means.
  • the intensity of the reflected light can be measured, and the ratio of the analyte in the sample liquid can be obtained based on the intensity of the reflected light.
  • a metal thin film deposited on the upper surface of a glass prism (dielectric member 102) was used.
  • a glass prism is expensive, it is not practical to replace a sensor chip using such a glass prism every time an analyte is measured because the measurement cost increases.
  • Patent Document 1 a sensor chip using a resin prism instead of a glass prism is also used.
  • the variation in detection accuracy due to individual differences has increased, and there has been concern about the reliability of detection accuracy.
  • a method for manufacturing a sensor member, a method for manufacturing a sensor chip, and a method for using the sensor member are provided.
  • the present invention has been invented in order to solve the above-described problems in the prior art, and in order to achieve at least one of the above-described objects, a sensor member reflecting one aspect of the present invention is provided.
  • the manufacturing method is a method for manufacturing a sensor member used in an optical sample detection apparatus that detects a sample by irradiating excitation light onto a metal film formed on a dielectric member, Forming a metal film on a flexible substrate having translucency; Forming a solid phase film used for immobilizing the specimen on the metal film formed on the flexible substrate; Cutting the flexible base material on which the metal film and the solid phase film are formed into a predetermined size.
  • a sensor chip manufacturing method reflecting another aspect of the present invention is used for an optical sample detection apparatus that detects a sample by irradiating a metal film formed on a dielectric member with excitation light.
  • a method for manufacturing a sensor chip comprising: Fixing the sensor member manufactured by any one of the above-described sensor member manufacturing methods on the dielectric member; A sample solution containing the sample is injected onto the dielectric member to which the sensor member is fixed, and a reaction space forming member for forming a reaction space for causing the reaction between the solid phase film and the sample is fixed. Process.
  • a method for using a sensor member reflecting still another aspect of the present invention includes a dielectric member, and an optical specimen detection device having a light source disposed on one side surface below the dielectric member.
  • a metal thin film and a solid phase film are formed on a flexible base material in advance to produce a film-like sensor member, and the film-like sensor member is fixed to a dielectric member to provide a sensor. Since the chip only needs to be manufactured, the manufacturing cost can be greatly reduced even when the sensor chip is mass-produced.
  • the plurality of sensor members are manufactured by cutting the sheet-like flexible substrate, individual differences among the sensor members can be suppressed, and the reliability of detection accuracy of the sensor chip can be improved. .
  • FIG. 1 is a schematic configuration diagram showing the configuration of a sensor member manufactured by the sensor member manufacturing method of the present invention described below.
  • FIG. 2 is a schematic configuration diagram for explaining the flow of the manufacturing method of the sensor member of FIG.
  • FIG. 3 is a schematic configuration diagram for explaining the convex portions 19 a and 19 b provided on the flexible base material 18.
  • FIG. 4 shows a configuration in which the flexible substrate 18 is wound up by the substrate take-up device 24 after the metal film 14 is formed on the flexible substrate 18 drawn out from the substrate feeding device 22. It is a schematic block diagram to explain.
  • FIG. 5 is a schematic configuration diagram showing a configuration of a sensor chip manufactured by the method for manufacturing a sensor chip of the present invention.
  • FIG. 5 is a schematic configuration diagram showing a configuration of a sensor chip manufactured by the method for manufacturing a sensor chip of the present invention.
  • FIG. 6 is a schematic configuration diagram for explaining the flow of the manufacturing method of the sensor chip of the present invention.
  • FIG. 7 is a schematic configuration diagram when the dielectric member 32 and the reaction space forming member 34 are fixed by fixing the reaction space forming member 34 and the sensor chip holding member 40 using the fastening member 42.
  • FIG. 8 is a schematic configuration diagram showing a configuration of an optical specimen detection apparatus 50 using the sensor member 10 of the present invention.
  • FIG. 9 is a graph showing the relationship between the incident angle of the excitation light 54 measured using the sensor member 10 manufactured by the sensor member manufacturing method of the present invention and the SPR signal.
  • FIG. 10 is a graph showing the relationship between the incident angle of the excitation light 54 measured using the sensor member 10 manufactured by the sensor member manufacturing method of the present invention and the SPFS signal.
  • FIG. 11 is a graph showing the relationship between the incident angle of excitation light measured using a conventional sensor chip and the SPR signal as a comparative example.
  • FIG. 12 is a graph showing the relationship between the incident angle of excitation light measured using a conventional sensor chip and the SPFS signal as a comparative example.
  • FIG. 13 is a schematic configuration diagram illustrating an example of a conventional SPFS apparatus.
  • FIG. 1 is a schematic configuration diagram showing the configuration of a sensor member manufactured by the method for manufacturing a sensor member of the present invention shown below.
  • FIG. 2 is a flow chart of the method for manufacturing the sensor member of FIG. It is a schematic block diagram for doing.
  • the sensor member 10 of the present invention includes a sensor base 12 having translucency and flexibility, a metal film 14 provided on the sensor base 12, and a metal film 14 provided on the sensor base 12. And the solid phase film 16 formed.
  • the sensor substrate 12 is not particularly limited as long as it has translucency and flexibility, but the refractive index n of the sensor substrate 12 is at least 1.4 or more, preferably 1.5 or more. It is hoped that.
  • the electric field enhancement can be increased and measurement can be performed with high accuracy.
  • the “translucency” of the sensor substrate 12 is required to transmit at least the excitation light irradiated from the light source of the SPR device or the SPFS device and to transmit light of all wavelengths, as will be described later. There is no.
  • Examples of such sensor substrate 12 include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene (PE) and polypropylene (PP), cyclic olefin copolymer (COC), and cyclic olefin polymer.
  • Polycyclic olefins such as (COP), vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polystyrene, polyetheretherketone (PEEK), polysulfone (PSF), polyethersulfone (PES), polycarbonate (PC)
  • Polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), or the like can be used.
  • ZEONOR registered trademark
  • the material of the metal film 14 is not particularly limited, but is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum, more preferably It is made of gold and may be made of an alloy of these metals.
  • the solid phase film 16 has a ligand for capturing an analyte immobilized when detecting an analyte using an SPR device or an SPFS device described later.
  • -Assembled Monolayer self-assembled monolayer
  • a solid-phased layer formed on the SAM.
  • Such a solid phase layer examples include glucose, carboxymethylated glucose, vinyl esters, acrylic esters, methacrylic esters, olefins, styrenes, crotonic esters, itaconic acid diesters, Including a polymer composed of at least one monomer selected from the group consisting of monomers included in maleic acid diesters, fumaric acid diesters, allyl compounds, vinyl ethers and vinyl ketones.
  • hydrophilic polymers such as dextran and dextran derivatives, vinyl esters, acrylic esters, methacrylic esters, olefins, styrenes, crotonic esters, itaconic diesters, maleic diesters, fumarate acid
  • a hydrophobic polymer composed of hydrophobic monomers included in esters, allyl compounds, vinyl ethers and vinyl ketones, and dextran such as carboxymethyldextran (CMD) is biocompatible. From the viewpoints of suppressing nonspecific adsorption reaction and high hydrophilicity, it is particularly preferable.
  • the solid-phased layer is not necessarily required, it does not need to have the solid-phased layer as the solid-phase film 16.
  • the sensor member 10 of the present invention configured as described above is manufactured by the following process.
  • a flexible substrate winding body 20 around which a long flexible substrate 18 to be a sensor substrate 12 is wound is attached to a substrate feeding device 22.
  • the flexible substrate 18 is fed out sequentially.
  • the method for forming the metal film 14 is not particularly limited, and examples thereof include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. . It is preferable to use a sputtering method or a vapor deposition method because it is easy to adjust the thin film formation conditions.
  • the thickness of the metal film 14 is not particularly limited, but preferably gold: 5 to 500 nm, silver: 5 to 500 nm, aluminum: 5 to 500 nm, copper: 5 to 500 nm, platinum: 5 Desirably within the range of ⁇ 500 nm and their alloys: 5 to 500 nm.
  • more preferable thicknesses of the metal film 14 are: gold: 20 to 70 nm, silver: 20 to 70 nm, aluminum: 10 to 50 nm, copper: 20 to 70 nm, platinum: 20 to 70 nm and their alloys: preferably in the range of 10-70 nm.
  • the upper surface shape of the metal film 14 is not limited to a planar shape, but can of course be applied to a case where the metal film 14 is formed in an uneven surface shape formed in a lattice shape, for example.
  • the solid phase film 16 is sequentially formed on the metal film 14 by the solid phase film forming means 27.
  • the method for forming the solid phase film 16 is not particularly limited, and a conventionally known method can be used.
  • the flexible substrate 18 is replaced with 10-carboxy-1-decanethiol (Co., Ltd.). And a method of dipping in an ethanol solution containing Dojindo Laboratories). In this way, the thiol group of 10-carboxy-1-decanethiol binds to the metal and is immobilized, and self-assembles on the surface of the metal film to form a SAM.
  • the solid phase film 16 is desirable to form only at a position necessary for the sensor member 10, that is, only in the reaction area 10 a of the sensor member 10 by inkjet coating.
  • a step of forming the solid phase layer may be provided after the SAM is formed.
  • a method for forming the solid phase layer is not particularly limited, and a conventionally known method can be used.
  • the flexible substrate 18 is composed of carboxymethyldextran (CMD) having a molecular weight of 500,000 at 1 mg / kg.
  • CMD carboxymethyldextran
  • MES MES buffered saline
  • NHS 0.5 mM N-hydroxysuccinimide
  • WSC water-soluble carbodiimide
  • Examples thereof include a method and a method performed by inkjet coating.
  • the flexible base material 18 on which the metal film 14 and the solid phase film 16 are formed is cut into a size necessary for the sensor member 10 by the base material cutting means 28.
  • the size required for the sensor member 10 is particularly limited as long as it can be attached to a dielectric member and can secure the reaction area 10a when a sensor chip is used, as will be described later. is not.
  • the flexible base material 18 is flexible with a cutter or the like.
  • the rectangular sensor member 10 can be manufactured by cutting in a direction perpendicular to the traveling direction of the substrate 18 (hereinafter referred to as “width direction”).
  • the sensor member 10 having the optimum size and shape for a sensor chip to be described later is obtained by cutting (punching) the flexible base material 18 into a shape necessary for the sensor member 10 by punching. Can do.
  • the circular sensor member 10 is preferably formed by punching. Excitation light emitted from a light source used in an optical specimen detection apparatus such as an SPFS apparatus, which will be described later, is usually light having a circular irradiation shape. Can be matched. For this reason, in the sensor member 10, excitation light is not irradiated and the area
  • the sensor member 10 is punched along the optical axis.
  • PET polyethylene terephthalate
  • the metal film 14 forming step, the solid phase film 16 forming step, and the flexible substrate 18 cutting step are described as being performed continuously. It can also be done.
  • the metal film 14 and the solid phase film 16 are formed on the flexible base material 18 drawn out by the base material feeding device 22, and then the base material winding is performed. It can be wound up by the take-up device 24.
  • the height of the protrusions 19a and 19b is such that when the flexible substrate 18 is wound up, the flexible substrate 18 does not directly touch the metal film 14 and the solid phase film 16. It may be sufficient, and can be appropriately determined according to the thickness of the metal film 14 and the thickness of the solid phase film 16.
  • FIG. 5 is a schematic configuration diagram showing a configuration of a sensor chip manufactured by the sensor chip manufacturing method of the present invention described below.
  • the sensor chip 30 of the present invention includes a prism-shaped dielectric member 32 having a substantially trapezoidal vertical cross-sectional shape, a sensor member 10 mounted on the dielectric member 32, and an analyte.
  • a reaction space forming member 34 for injecting a sample liquid to be included and forming a reaction space for causing a reaction between the solid phase layer of the solid phase film 16 of the sensor member 10 and the analyte in the sample liquid is formed.
  • the dielectric member 32 is not particularly limited, but optically transparent, for example, various inorganic materials such as glass and ceramics, natural polymers, and synthetic polymers can be used. Chemical stability, production From the viewpoints of stability and optical transparency, those containing silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ) are preferred.
  • the optical influence of the sensor base material 12 interposed between the dielectric member 32 and the metal film 14 is affected. Can be small.
  • the prism-shaped dielectric member 32 having a substantially trapezoidal vertical cross-sectional shape is used.
  • the vertical cross-sectional shape is a triangle (so-called triangular prism), a semicircular shape, a semi-elliptical shape, etc.
  • the shape of the member 32 can be changed as appropriate.
  • the reaction space forming member 34 may be a well member 35a capable of temporarily storing a sample liquid containing an analyte, or FIG. As shown in (), a flow path member 35b that can circulate the sample liquid to the reaction area 10a may be used.
  • the well member 35a constitutes a wall of the reaction area 10a so as to surround the reaction area 10a of the sensor member 10, and forms a reaction space 34a.
  • the analyte in the sample liquid reacts with the solid phase layer of the solid phase film 16 of the sensor member 10, and the solid phase. The analyte will be trapped in the activated layer.
  • the flow path member 35b forms a flow path 36 by the dielectric member 32 and the flow path member 35b so that the sample liquid circulates to the reaction area 10a. It is configured.
  • reaction space 34a is formed on the reaction area 10a of the flow path 36, and the analyte liquid in the sample liquid and the solid phase film 16 of the sensor member 10 are held by circulating the sample liquid in the reaction space 34a.
  • the analyte is trapped in the solid phase layer by reaction with the phase phase layer.
  • the method for allowing the sample liquid to flow through the flow path 36 is not particularly limited, but a pump (not shown) is connected to both end portions 36a and 36b of the flow path 36 so that the sample liquid is unidirectionally supplied.
  • the sample liquid may be circulated to the reaction area 10a by injecting the sample liquid from the end 36a of the flow path 36 using a pipette and sucking and discharging the sample liquid with the pipette. Also good.
  • the reaction efficiency between the analyte and the solid phase layer is increased even with a small amount of sample liquid, and the detection accuracy of the analyte is improved. Can do.
  • reaction space forming member 34 (well member 35a, flow path member 35b) is not particularly limited, and for example, various inorganic materials such as glass and ceramics, natural polymers, and synthetic polymers may be used. it can.
  • reaction area 10a When the reaction area 10a is covered with the reaction space forming member 34 as in the flow path member 35b, fluorescence can be observed from above the sensor chip 30 when the sensor chip 30 is used in an SPFS device, as will be described later. Thus, it is necessary to use an optically transparent material.
  • the sensor chip 30 of the present invention configured as described above is manufactured by the following process. First, as shown in FIG. 6A, the sensor member 10 is fixed to the dielectric member 32 via the refractive index matching liquid 38.
  • the refractive index matching liquid 38 is not particularly limited, and a conventionally known refractive index matching liquid (matching oil) can be used.
  • a conventionally known refractive index matching liquid matching oil
  • the refractive index matching liquid 38 for example, by using an adhesive such as an ultraviolet curable adhesive, the refractive index matching between the dielectric member 32 and the sensor member 10 can be obtained, and the dielectric member 32 and the sensor.
  • the member 10 can be bonded and fixed.
  • the sensor member 10 is preferably fixed to the dielectric member 32 so that the sensor member 10 can be removed.
  • the sensor member 10 is removed from the sensor chip 30 used for the detection of the analyte, and the sensor member 30 is manufactured by reusing the dielectric member 32 simply by attaching a new sensor member 10. can do.
  • the reaction space forming member 34 is placed on the dielectric member 32 to which the sensor member 10 is fixed, and the reaction space forming member 34 and the dielectric member 32 are, for example, Fix using adhesive 29 or the like.
  • the dielectric member 32 and the reaction space forming member 34 may be fixed by a fastening member such as a screw.
  • a fastening member such as a screw
  • the dielectric member 32 and the reaction space forming member 34 may be directly fastened and fixed.
  • the dielectric member 32 is attached to the sensor chip holding member 40.
  • the dielectric member 32 and the sensor member 10 are sandwiched between the reaction space forming member 34 and the sensor chip holding member 40 and fixed using, for example, a fastening member 42 such as a screw. Also good.
  • the seal member 44 is placed so as to surround the sensor member 10 and is fixed so that the seal member 44 is sandwiched between the dielectric member 32 and the reaction space forming member 34.
  • the sealing property (sealing property) between the dielectric member 32 and the reaction space forming member 34 can be ensured, and when the sample liquid is injected into the reaction space 34a. The specimen liquid does not leak from between the dielectric member 32 and the reaction space forming member 34.
  • FIG. 8 is a schematic configuration diagram showing a configuration of an optical specimen detection apparatus 50 using the sensor member 10 of the present invention. As shown in FIG. 8, in the optical sample detection device 50, the sensor chip 30 having the sensor member 10 attached on the dielectric member 32 is loaded in the sensor chip loading unit 52.
  • a light source 52 is arranged on one side surface 32 b below the dielectric member 32, and excitation light 54 from the light source 52 is below the dielectric member 32. Then, the light is incident on the side surface 32b of the dielectric member 32 and irradiated through the dielectric member 32 toward the metal film 14 of the sensor member 10 attached to the upper surface of the dielectric member 32. .
  • an LD Laser Diode
  • an LED Light Emitting Diode
  • an HID High Intensity Discharge lamp (high intensity discharge lamp), or the like
  • LD Laser Diode
  • LED Light Emitting Diode
  • HID High Intensity Discharge lamp
  • a polarizing filter 56 is provided between the light source 52 and the dielectric member 32 to convert the excitation light 54 emitted from the light source 52 into P-polarized light that efficiently generates surface plasmons on the metal film 14. ing.
  • light receiving means 58 for receiving the metal film reflected light 55 obtained by reflecting the excitation light 54 by the metal film 14 is provided on the other side surface 32 c below the dielectric member 32. ing.
  • the light source 52 is provided with incident angle adjusting means (not shown) that can appropriately change the incident angle of the excitation light 54 emitted from the light source 52 with respect to the metal film 14.
  • the light receiving means 58 is also provided with a movable means (not shown). Even when the reflection angle of the metal film reflected light 55 changes, the metal film reflected light 55 is reliably received in synchronization with the light source 52. Is configured to do.
  • the incident angle adjusting means of the light source 52 and the moving means of the light receiving means 58 are not particularly limited.
  • the light source 52 and the light receiving means 58 are rotated using a stepping motor or a gear train. (For example, in FIG. 8, it can be configured to rotate around the irradiation position of incident light on the metal film 14 in a plane).
  • the sensor chip 30, the light source 52, and the light receiving means 58 constitute an SPR device for performing SPR measurement.
  • a light detection means 60 for receiving the fluorescence 59 generated from the fluorescent substance that labels the analyte excited by the surface plasmon light (dense wave) generated on the metal film 14. ing.
  • the photodetection means 60 is not particularly limited.
  • an ultrasensitive photomultiplier tube a CCD (Charge-Coupled Device) image sensor capable of multipoint measurement, and a CMOS (Complementary Metal-Oxide Semiconductor).
  • An image sensor or the like can be used.
  • a condensing member 62 for condensing light efficiently and a wavelength selection function member 64 formed so as to selectively transmit only the fluorescence 59 are provided between the sensor chip 30 and the light detection means 60. Is provided.
  • any condensing system may be used as long as it aims at efficiently condensing the fluorescence on the light detecting means 60.
  • a simple condensing system for example, a commercially available objective lens used in a microscope or the like may be used. The magnification of the objective lens is preferably 10 to 100 times.
  • an optical filter As the wavelength selection function member 64, an optical filter, a cut filter, or the like can be used.
  • the optical filter include a neutral density (ND) filter and a diaphragm lens.
  • cut filters external light (illumination light outside the device), excitation light (excitation light transmission component), stray light (excitation light scattering component in various places), plasmon scattered light (excitation light originated from, Scattered light generated by the influence of structures or deposits on the sensor chip surface), and various noise lights such as autofluorescence of the oxygen fluorescent substrate, such as interference filters and color filters.
  • the sensor chip 30, the light source 52, and the light detection means 60 constitute an SPFS apparatus for performing SPFS measurement.
  • a ligand for capturing an analyte is solid-phased on the solid-phase film 16 of the sensor member 10.
  • An appropriate amount of the antibody solution containing is fed and circulated for a predetermined time.
  • the ligand for capturing the analyte is immobilized on the solid phase membrane.
  • an appropriate amount of the sample liquid containing the analyte is fed and circulated for a predetermined time.
  • the analyte is captured by the ligand solid-phased on the solid-phase film 16 on the metal film 14.
  • an appropriate amount of a fluorescent substance solution containing a fluorescent substance for labeling the analyte is fed to the flow path 36 and circulated for a predetermined time.
  • the analyte captured by the solid phase layer (solid phase film 16) on the metal film 14 is labeled with the fluorescent substance.
  • the excitation light 54 from the light source 52 is applied to the metal film 14 of the sensor member 10 via the dielectric member 32, and the metal film reflected light 55 is received by the light receiving means 58.
  • SPR signal the relationship between the light intensity of the metal film reflected light 55 (hereinafter referred to as “SPR signal”) and the incident angle of the excitation light 54. SPR measurement can be performed by examining the above.
  • the excitation light 54 from the light source 52 is applied to the metal film 14 of the sensor member 10 via the dielectric member 32 and the light 59 is received by the light detection means 60, whereby the amount of fluorescence by SPFS measurement is measured. (Hereinafter referred to as “SPFS signal”).
  • the total amount of analyte (analyte concentration) in the sample liquid is calculated by comparing with a calibration curve relating to the analyte concentration and SPFS signal created in advance. can do.
  • the sensor chip 30 may be configured by mounting the sensor member 10 on the dielectric member 32 mounted on the optical sample detection device 50.
  • a sensor member is applied to an SPR device and an SPFS device as an optical specimen detection device.
  • the present invention is not limited to this, and various modifications can be made without departing from the object of the present invention, such as application to other optical specimen detection devices.
  • FIG. 9 is a graph showing the relationship between the incident angle of the excitation light 54 measured using the sensor member 10 manufactured by the sensor member manufacturing method of the present invention and the SPR signal
  • FIG. 10 shows the sensor member of the present invention. It is a graph which shows the relationship between the incident angle of the excitation light 54 measured using the sensor member 10 manufactured by this manufacturing method, and an SPFS signal.
  • the ratio (reflectance) of the light amount of the excitation light 54 and the light amount of the metal film reflected light is used as the SPR signal.
  • the light quantity of the fluorescence 59 measured by the CCD sensor is used as the SPFS signal.
  • a ZEONOR (registered trademark) film (ZF14-188, refractive index: 1.53, thickness: 188 ⁇ m) manufactured by Nippon Zeon Co., Ltd. was used as the sensor substrate 12, and the metal film 14 was thickened by vapor deposition. It is formed as a thin film having a thickness of about 41 nm.
  • the dielectric member 32 a glass prism (BK7, refractive index: 1.5168) is used, and the sensor member 10 and the dielectric member 32 are made of a refractive index matching liquid (refractive index: 1.51). It is fixed through.
  • FIG. 11 is a comparative example, a graph showing the relationship between the incident angle of excitation light measured using a conventional sensor chip and the SPR signal
  • FIG. 12 is a comparative example, using a conventional sensor chip. It is a graph which shows the relationship between the incident angle of the measured excitation light, and a SPFS signal.
  • a metal film substrate provided with a metal film (thickness: about 42 nm) by vapor deposition on a glass substrate (BK7, thickness: 1000 ⁇ m, refractive index: 1.5168) is formed on a dielectric member. It is fixed.
  • a glass prism (BK7, refractive index: 1.5168) is used as the dielectric member, and the metal film substrate and the dielectric member are connected via a refractive index matching liquid (refractive index: 1.51). It is fixed.
  • both the SPR signal and the SPFS signal are almost the same as the measurement using the conventional glass substrate. The result was obtained.
  • the present invention provides a sensor chip which is a member to be measured for an optical specimen detection device used in a field where high-precision measurement is required, such as clinical tests such as AFP sugar chain measurement and CEA sugar chain measurement. Cost and stability can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

[Problem] To provide a sensor member fabrication method, a sensor chip fabrication method, and a sensor member usage method, whereby, even when mass producing sensor chips, easy production is possible, production costs can be significantly reduced, and it is possible to suppress variations in detection precision owing to individual differences. [Solution] A fabrication method for a sensor member which is employed in an optical-type specimen detection device which carries out a detection of a specimen by an illumination of an excitation light upon a metallic film which is formed upon a dielectric member comprises: a step of forming a metallic film upon a translucent flexible substrate; a step of forming a solid phase film upon the metallic film formed upon the flexible substrate, said solid phase film being employed to anchor the specimen; and a step of cutting the flexible substrate whereupon the metallic film and the solid phase film are formed to a prescribed size,.

Description

センサー部材の製造方法およびセンサーチップの製造方法ならびにセンサー部材の使用方法Method for manufacturing sensor member, method for manufacturing sensor chip, and method for using sensor member
 本発明は、表面プラズモン共鳴(SPR;Surface Plasmon Resonance)測定装置、及び、表面プラズモン共鳴現象を応用した表面プラズモン励起増強蛍光分光法(SPFS;Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づいた表面プラズモン励起増強蛍光測定装置などの光学式検体検出装置に用いられるセンサーチップ、及び、このセンサーチップに用いられるセンサー部材の製造方法ならびにこのセンサー部材の使用方法に関する。 The present invention relates to a surface plasmon resonance (SPR) measuring device and a surface based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS; Surface Plasmon-field enhanced Fluorescence Spectroscopy) applying the surface plasmon resonance phenomenon. The present invention relates to a sensor chip used in an optical analyte detection device such as a plasmon excitation enhanced fluorescence measurement device, a method for manufacturing a sensor member used in the sensor chip, and a method for using the sensor member.
 従来、極微少な物質の検出を行う場合において、物質の物理的現象を応用することでこのような物質の検出を可能とした様々な検体検出装置が用いられている。
 このような検体検出装置の一つとして、ナノメートルレベルなどの微細領域中で電子と光が共鳴することにより、高い光出力を得る現象(表面プラズモン共鳴(SPR;Surface Plasmon Resonance)現象)を応用し、例えば、生体内の極微少なアナライトの検出を行うようにした表面プラズモン共鳴装置(以下、「SPR装置」と言う)が挙げられる。
2. Description of the Related Art Conventionally, when detecting a very small substance, various specimen detection apparatuses that can detect such a substance by applying a physical phenomenon of the substance have been used.
As one of such analyte detection devices, we apply the phenomenon (SPR: Surface Plasmon Resonance (SPR) phenomenon) in which high light output is obtained by resonating electrons and light in a minute region such as the nanometer level. For example, a surface plasmon resonance device (hereinafter referred to as “SPR device”) that detects minute analytes in a living body can be used.
 また、表面プラズモン共鳴(SPR)現象を応用した、表面プラズモン励起増強蛍光分光法(SPFS;Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づき、SPR装置よりもさらに高精度にアナライト検出を行えるようにした表面プラズモン励起増強蛍光分光測定装置(以下、「SPFS装置」と言う)も、このような検体検出装置の一つである。 In addition, based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) using the surface plasmon resonance (SPR) phenomenon, analyte detection can be performed with higher accuracy than the SPR device. The surface plasmon excitation enhanced fluorescence spectrometer (hereinafter referred to as “SPFS device”) is also one of such specimen detection devices.
 この表面プラズモン励起増強蛍光分光法(SPFS)は、光源より照射したレーザー光などの励起光が、金属薄膜表面で全反射減衰(ATR;Attenuated Total Reflectance)する条件において、金属薄膜表面に表面プラズモン光(疎密波)を発生させることによって、光源より照射した励起光が有するフォトン量を数十倍~数百倍に増やして、表面プラズモン光の電場増強効果を得るようになっている。 In this surface plasmon excitation enhanced fluorescence spectroscopy (SPFS), surface plasmon light is applied to the surface of the metal thin film under the condition that excitation light such as laser light emitted from a light source attenuates total reflection (ATR) on the surface of the metal thin film. By generating (dense wave), the amount of photons contained in the excitation light irradiated from the light source is increased to several tens to several hundreds times, and the electric field enhancement effect of the surface plasmon light is obtained.
 図13は、従来のSPFS装置の一例を示す概略構成図である。
 このSPFS装置100は、鉛直断面形状が略台形であるプリズム形状の誘電体部材102と、この誘電体部材102の水平な上面102aに形成された金属薄膜104とからなるセンサーチップ106を備えており、このセンサーチップ106は、SPFS装置100のセンサーチップ装填部108に装填されている。
FIG. 13 is a schematic configuration diagram illustrating an example of a conventional SPFS apparatus.
The SPFS device 100 includes a sensor chip 106 including a prism-shaped dielectric member 102 having a substantially trapezoidal vertical cross-sectional shape and a metal thin film 104 formed on a horizontal upper surface 102a of the dielectric member 102. The sensor chip 106 is loaded in the sensor chip loading unit 108 of the SPFS device 100.
 また、誘電体部材102の下方の一方の側面102bの側には、図13に示すように、光源110が配置されており、この光源110からの入射光112が、誘電体部材102の外側下方から、誘電体部材102の側面102bに入射して、誘電体部材102を介して、誘電体部材102の上面102aに形成された金属薄膜104に向かって照射されるようになっている。 Further, as shown in FIG. 13, a light source 110 is arranged on one side surface 102 b below the dielectric member 102, and incident light 112 from the light source 110 is below the dielectric member 102. Then, the light enters the side surface 102b of the dielectric member 102 and is irradiated through the dielectric member 102 toward the metal thin film 104 formed on the upper surface 102a of the dielectric member 102.
 なお、センサーチップ106の金属薄膜104上には、被検出検体であるアナライトを含む検体液を送液するための流路114が形成されており、この流路114の一部には、特定のアナライトと特異的に結合するリガンドが固定化されたセンサー領域116が設けられている。 On the metal thin film 104 of the sensor chip 106, a flow channel 114 for sending a sample liquid containing an analyte, which is a sample to be detected, is formed. A sensor region 116 on which a ligand that specifically binds to the analyte is immobilized is provided.
 被検出検体であるアナライトは、例えば、蛍光物質などによって標識されており、光源110から照射された入射光112によって発生した表面プラズモン光(疎密波)によって、蛍光物質が励起され、蛍光118が発光するようになっている。 The analyte to be detected is labeled with, for example, a fluorescent substance, and the fluorescent substance is excited by the surface plasmon light (dense wave) generated by the incident light 112 irradiated from the light source 110, and the fluorescence 118 is emitted. It emits light.
 また、センサーチップ106の上方には、この蛍光118を受光するための光検出手段120が備えられている。
 このように構成されたSPFS装置100では、光源110からATRとなる入射角αで入射光112を金属薄膜104に照射し、金属薄膜104表面に発生した表面プラズモン光(疎密波)によって、アナライトを標識する蛍光物質を励起する。
Further, above the sensor chip 106, a light detection means 120 for receiving the fluorescence 118 is provided.
In the SPFS device 100 configured in this manner, the light source 110 irradiates the metal thin film 104 with incident light 112 at an incident angle α that is ATR, and the surface plasmon light (dense wave) generated on the surface of the metal thin film 104 causes an analyte Excitation of a fluorescent substance for labeling.
 そして、励起された蛍光物質から発光される蛍光118を、光検出手段120によって受光することによって、蛍光118の光量を測定し、この蛍光118の光量に基づいて、検体液中のアナライトの割合を求めるように構成されている。 Then, the light 118 emitted from the excited fluorescent material is received by the light detection means 120 to measure the light quantity of the fluorescence 118, and based on the light quantity of the fluorescence 118, the ratio of the analyte in the sample liquid Is configured to ask for.
 また、従来のSPR装置においても、特許文献1などに記載されているように、センサーチップ106に光源110から照射した入射光112を入射して、金属薄膜104に反射した反射光を受光手段によって受光することによって、反射光の強度を測定し、この反射光の強度に基づいて、検体液中のアナライトの割合を求めることができる。 Also in the conventional SPR device, as described in Patent Document 1, the incident light 112 irradiated from the light source 110 is incident on the sensor chip 106, and the reflected light reflected on the metal thin film 104 is received by the light receiving means. By receiving the light, the intensity of the reflected light can be measured, and the ratio of the analyte in the sample liquid can be obtained based on the intensity of the reflected light.
 このようなSPR装置やSPFS装置で用いられるセンサーチップ106としては、ガラス製プリズム(誘電体部材102)の上面に金属薄膜を蒸着したものが用いられていた。しかしながら、ガラス製プリズムは高価であるため、このようなガラス製プリズムを用いたセンサーチップを、アナライトの測定のたびに交換することは測定コストが高くなり実用的ではない。 As the sensor chip 106 used in such an SPR device or SPFS device, a metal thin film deposited on the upper surface of a glass prism (dielectric member 102) was used. However, since a glass prism is expensive, it is not practical to replace a sensor chip using such a glass prism every time an analyte is measured because the measurement cost increases.
 このため、ガラス製プリズムの代わりに樹脂製プリズムを用いたセンサーチップも使われている(特許文献1)。 For this reason, a sensor chip using a resin prism instead of a glass prism is also used (Patent Document 1).
特開2007-192841号公報JP 2007-192841 A
 しかしながら、ガラス製プリズムや樹脂製プリズムなどの誘電体部材上に金属薄膜を直接形成したセンサーチップや、特許文献1のように、容器状部の内底面に金属薄膜を形成したセンサーチップでは、センサーチップを量産する場合にも製造コストを大幅に低減することは困難である。 However, a sensor chip in which a metal thin film is directly formed on a dielectric member such as a glass prism or a resin prism, or a sensor chip in which a metal thin film is formed on the inner bottom surface of a container-like part as in Patent Document 1, the sensor Even in the case of mass production of chips, it is difficult to significantly reduce the manufacturing cost.
 また、上記のようなセンサーチップでは、個体差による検出精度のばらつきが大きくなり、検出精度の信頼性にも懸念が生じていた。 Further, in the sensor chip as described above, the variation in detection accuracy due to individual differences has increased, and there has been concern about the reliability of detection accuracy.
 本発明では、このような現状に鑑み、センサーチップを量産する場合にも、容易に製造が可能で、製造コストを大幅に低減することができるとともに、個体差による検出精度のばらつきを抑制することができるセンサー部材の製造方法およびセンサーチップの製造方法ならびにセンサー部材の使用方法を提供する。 In the present invention, in view of such a current situation, even when mass-producing sensor chips, it can be easily manufactured, manufacturing costs can be greatly reduced, and variation in detection accuracy due to individual differences can be suppressed. A method for manufacturing a sensor member, a method for manufacturing a sensor chip, and a method for using the sensor member are provided.
 本発明は、前述したような従来技術における課題を解決するために発明されたものであって、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したセンサー部材の製造方法は、誘電体部材上に形成された金属膜に励起光を照射することで検体の検出を行う光学式検体検出装置に用いられるセンサー部材の製造方法であって、
 透光性を有する可撓性基材上に金属膜を形成する工程と、
 前記可撓性基材上に形成された前記金属膜上に、前記検体を固定化するために用いられる固相膜を形成する工程と、
 前記金属膜及び前記固相膜が形成された前記可撓性基材を、所定の大きさに切断する工程とを含む。
The present invention has been invented in order to solve the above-described problems in the prior art, and in order to achieve at least one of the above-described objects, a sensor member reflecting one aspect of the present invention is provided. The manufacturing method is a method for manufacturing a sensor member used in an optical sample detection apparatus that detects a sample by irradiating excitation light onto a metal film formed on a dielectric member,
Forming a metal film on a flexible substrate having translucency;
Forming a solid phase film used for immobilizing the specimen on the metal film formed on the flexible substrate;
Cutting the flexible base material on which the metal film and the solid phase film are formed into a predetermined size.
 また、本発明の別の一側面を反映したセンサーチップの製造方法は、誘電体部材上に形成された金属膜に励起光を照射することで検体の検出を行う光学式検体検出装置に用いられるセンサーチップの製造方法であって、
 前記誘電体部材上に、上述するいずれかのセンサー部材の製造方法によって製造されたセンサー部材を固定する工程と、
 前記センサー部材が固定された誘電体部材上に、前記検体を含む検体液を注入し、前記固相膜と前記検体との反応を行わせる反応空間を形成するための反応空間形成部材を固定する工程とを含む。
In addition, a sensor chip manufacturing method reflecting another aspect of the present invention is used for an optical sample detection apparatus that detects a sample by irradiating a metal film formed on a dielectric member with excitation light. A method for manufacturing a sensor chip, comprising:
Fixing the sensor member manufactured by any one of the above-described sensor member manufacturing methods on the dielectric member;
A sample solution containing the sample is injected onto the dielectric member to which the sensor member is fixed, and a reaction space forming member for forming a reaction space for causing the reaction between the solid phase film and the sample is fixed. Process.
 また、本発明のさらに別の一側面を反映したセンサー部材の使用方法は、誘電体部材と、該誘電体部材の下方の一方の側面側に配置された光源と、を有する光学式検体検出装置で用いられるセンサー部材の使用方法であって、
 前記誘電体部材上に、上述するいずれかのセンサー部材の製造方法によって製造されたセンサー部材を取り付ける工程と、
 前記センサー部材の金属膜に、前記光源から励起光を照射する工程と、
を有することを特徴とする。
In addition, a method for using a sensor member reflecting still another aspect of the present invention includes a dielectric member, and an optical specimen detection device having a light source disposed on one side surface below the dielectric member. A method of using a sensor member used in
Attaching a sensor member manufactured by any one of the above-described sensor member manufacturing methods on the dielectric member;
Irradiating the metal film of the sensor member with excitation light from the light source;
It is characterized by having.
 本発明によれば、事前に可撓性基材上に金属薄膜と固相膜を形成して、フィルム状のセンサー部材を作製し、このフィルム状のセンサー部材を誘電体部材に固定してセンサーチップを作製すればよいので、センサーチップを量産する場合にも製造コストを大幅に低減することができる。 According to the present invention, a metal thin film and a solid phase film are formed on a flexible base material in advance to produce a film-like sensor member, and the film-like sensor member is fixed to a dielectric member to provide a sensor. Since the chip only needs to be manufactured, the manufacturing cost can be greatly reduced even when the sensor chip is mass-produced.
 また、シート状の可撓性基板を切断して複数のセンサー部材を作製しているため、センサー部材の個体差を抑制することができ、センサーチップの検出精度の信頼性を向上させることができる。 In addition, since the plurality of sensor members are manufactured by cutting the sheet-like flexible substrate, individual differences among the sensor members can be suppressed, and the reliability of detection accuracy of the sensor chip can be improved. .
図1は、以下に示す本発明のセンサー部材の製造方法によって製造されたセンサー部材の構成を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing the configuration of a sensor member manufactured by the sensor member manufacturing method of the present invention described below. 図2は、図1のセンサー部材の製造方法の流れを説明するための概略構成図である。FIG. 2 is a schematic configuration diagram for explaining the flow of the manufacturing method of the sensor member of FIG. 図3は、可撓性基材18に設けられた凸部19a,19bを説明するための概略構成図である。FIG. 3 is a schematic configuration diagram for explaining the convex portions 19 a and 19 b provided on the flexible base material 18. 図4は、基材繰り出し装置22から繰り出された可撓性基材18に対して金属膜14を形成した後、基材巻き取り装置24によって可撓性基材18を巻き取る場合の構成を説明する概略構成図である。FIG. 4 shows a configuration in which the flexible substrate 18 is wound up by the substrate take-up device 24 after the metal film 14 is formed on the flexible substrate 18 drawn out from the substrate feeding device 22. It is a schematic block diagram to explain. 図5は、本発明のセンサーチップの製造方法によって製造されたセンサーチップの構成を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing a configuration of a sensor chip manufactured by the method for manufacturing a sensor chip of the present invention. 図6は、本発明のセンサーチップの製造方法の流れを説明するための概略構成図である。FIG. 6 is a schematic configuration diagram for explaining the flow of the manufacturing method of the sensor chip of the present invention. 図7は、締結部材42を用いて、反応空間形成部材34とセンサーチップ保持部材40を固定することによって、誘電体部材32と反応空間形成部材34とを固定した場合の概略構成図である。FIG. 7 is a schematic configuration diagram when the dielectric member 32 and the reaction space forming member 34 are fixed by fixing the reaction space forming member 34 and the sensor chip holding member 40 using the fastening member 42. 図8は、図8は、本発明のセンサー部材10を用いた光学式検体検出装置50の構成を示す概略構成図である。FIG. 8 is a schematic configuration diagram showing a configuration of an optical specimen detection apparatus 50 using the sensor member 10 of the present invention. 図9は、本発明のセンサー部材の製造方法によって製造されたセンサー部材10を用いて計測された励起光54の入射角とSPRシグナルとの関係を示すグラフである。FIG. 9 is a graph showing the relationship between the incident angle of the excitation light 54 measured using the sensor member 10 manufactured by the sensor member manufacturing method of the present invention and the SPR signal. 図10は、本発明のセンサー部材の製造方法によって製造されたセンサー部材10を用いて計測された励起光54の入射角とSPFSシグナルとの関係を示すグラフである。FIG. 10 is a graph showing the relationship between the incident angle of the excitation light 54 measured using the sensor member 10 manufactured by the sensor member manufacturing method of the present invention and the SPFS signal. 図11は、比較例であり、従来のセンサーチップを用いて計測された励起光の入射角とSPRシグナルとの関係を示すグラフである。FIG. 11 is a graph showing the relationship between the incident angle of excitation light measured using a conventional sensor chip and the SPR signal as a comparative example. 図12は、比較例であり、従来のセンサーチップを用いて計測された励起光の入射角とSPFSシグナルとの関係を示すグラフである。FIG. 12 is a graph showing the relationship between the incident angle of excitation light measured using a conventional sensor chip and the SPFS signal as a comparative example. 図13は、従来のSPFS装置の一例を示す概略構成図である。FIG. 13 is a schematic configuration diagram illustrating an example of a conventional SPFS apparatus.
 以下、本発明の実施の形態(実施例)を図面に基づいて、より詳細に説明する。
1.センサー部材の製造方法
 図1は、以下に示す本発明のセンサー部材の製造方法によって製造されたセンサー部材の構成を示す概略構成図、図2は、図1のセンサー部材の製造方法の流れを説明するための概略構成図である。
 図1に示すように、本発明のセンサー部材10は、透光性・可撓性を有するセンサー基材12と、センサー基材12上に設けられた金属膜14と、金属膜14上に設けられた固相膜16とから構成される。
Hereinafter, embodiments (examples) of the present invention will be described in more detail based on the drawings.
1. FIG. 1 is a schematic configuration diagram showing the configuration of a sensor member manufactured by the method for manufacturing a sensor member of the present invention shown below. FIG. 2 is a flow chart of the method for manufacturing the sensor member of FIG. It is a schematic block diagram for doing.
As shown in FIG. 1, the sensor member 10 of the present invention includes a sensor base 12 having translucency and flexibility, a metal film 14 provided on the sensor base 12, and a metal film 14 provided on the sensor base 12. And the solid phase film 16 formed.
 センサー基材12は、透光性・可撓性を有していれば特に限定されるものではないが、センサー基材12の屈折率nが少なくとも1.4以上、好ましくは1.5以上あることが望まれる。 The sensor substrate 12 is not particularly limited as long as it has translucency and flexibility, but the refractive index n of the sensor substrate 12 is at least 1.4 or more, preferably 1.5 or more. It is hoped that.
 センサー基材12がこのような屈折率nを有していることによって、後述するように、電場増強度を高めることができ、精度良く測定を行うことができる。
 なお、センサー基材12が有する「透光性」とは、後述するように、SPR装置やSPFS装置の光源から照射される励起光が少なくとも透過すればよく、全ての波長の光が透過する必要はない。
Since the sensor substrate 12 has such a refractive index n, as will be described later, the electric field enhancement can be increased and measurement can be performed with high accuracy.
The “translucency” of the sensor substrate 12 is required to transmit at least the excitation light irradiated from the light source of the SPR device or the SPFS device and to transmit light of all wavelengths, as will be described later. There is no.
 このようなセンサー基材12としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリスチレン、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。 Examples of such sensor substrate 12 include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene (PE) and polypropylene (PP), cyclic olefin copolymer (COC), and cyclic olefin polymer. Polycyclic olefins such as (COP), vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polystyrene, polyetheretherketone (PEEK), polysulfone (PSF), polyethersulfone (PES), polycarbonate (PC) Polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), or the like can be used.
 特に、光学性能として光学ガラス(例えば、BK7など)などと同程度の優れた性能を有する環状オレフィンポリマー(COP)を用いた日本ゼオン社製のZEONOR(登録商標)などが好ましい。 In particular, ZEONOR (registered trademark) manufactured by Nippon Zeon Co., Ltd. using a cyclic olefin polymer (COP) having an optical performance (such as BK7) that is comparable to that of optical glass or the like is preferable.
 また、金属膜14の材質としては、特に限定されるものではないが、好ましくは、金、銀、アルミニウム、銅、および白金からなる群から選ばれる少なくとも1種の金属からなり、より好ましくは、金からなり、さらに、これらの金属の合金から構成してもよい。 The material of the metal film 14 is not particularly limited, but is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum, more preferably It is made of gold and may be made of an alloy of these metals.
 また、固相膜16は、後述するSPR装置やSPFS装置を用いてアナライトの検出を行う際に、アナライトを捕捉するためのリガンドが固定化されるものであって、例えば、SAM(Self-Assembled Monolayer;自己組織化単分子膜)及びSAM上に形成された固相化層によって構成することができる。 The solid phase film 16 has a ligand for capturing an analyte immobilized when detecting an analyte using an SPR device or an SPFS device described later. -Assembled Monolayer (self-assembled monolayer) and a solid-phased layer formed on the SAM.
 このような固相化層としては、例えば、グルコース,カルボキシメチル化グルコース,ならびにビニルエステル類,アクリル酸エステル類,メタクリル酸エステル類,オレフィン類,スチレン類,クロトン酸エステル類,イタコン酸ジエステル類,マレイン酸ジエステル類,フマル酸ジエステル類,アリル化合物類,ビニルエーテル類およびビニルケトン類それぞれに包含される単量体からなる群より選択される少なくとも1種の単量体から構成される高分子を含むことが好ましく、デキストランおよびデキストラン誘導体などの親水性高分子ならびにビニルエステル類,アクリル酸エステル類,メタクリル酸エステル類,オレフィン類,スチレン類,クロトン酸エステル類,イタコン酸ジエステル類,マレイン酸ジエステル類,フマル酸ジエステル類,アリル化合物類,ビニルエーテル類およびビニルケトン類それぞれに包含される疎水性単量体から構成される疎水性高分子を含むことがより好ましく、カルボキシメチルデキストラン(CMD)などのデキストランが生体親和性、非特異的な吸着反応の抑制性、高い親水性の観点から特に好適である。 Examples of such a solid phase layer include glucose, carboxymethylated glucose, vinyl esters, acrylic esters, methacrylic esters, olefins, styrenes, crotonic esters, itaconic acid diesters, Including a polymer composed of at least one monomer selected from the group consisting of monomers included in maleic acid diesters, fumaric acid diesters, allyl compounds, vinyl ethers and vinyl ketones. Preferred are hydrophilic polymers such as dextran and dextran derivatives, vinyl esters, acrylic esters, methacrylic esters, olefins, styrenes, crotonic esters, itaconic diesters, maleic diesters, fumarate acid It is more preferable to include a hydrophobic polymer composed of hydrophobic monomers included in esters, allyl compounds, vinyl ethers and vinyl ketones, and dextran such as carboxymethyldextran (CMD) is biocompatible. From the viewpoints of suppressing nonspecific adsorption reaction and high hydrophilicity, it is particularly preferable.
 なお、センサー部材10を製造する段階では、固相化層は必ずしも必要ではないため、固相膜16として固相化層を有していなくとも構わない。
 このように構成される本発明のセンサー部材10は、以下のような工程で製造される。
In addition, in the stage which manufactures the sensor member 10, since the solid-phased layer is not necessarily required, it does not need to have the solid-phased layer as the solid-phase film 16.
The sensor member 10 of the present invention configured as described above is manufactured by the following process.
 まず、図2に示すように、センサー基材12となる長尺状の可撓性基材18が巻装された可撓性基材巻装体20を基材繰り出し装置22に装着し、可撓性基材18を順次繰り出す。 First, as shown in FIG. 2, a flexible substrate winding body 20 around which a long flexible substrate 18 to be a sensor substrate 12 is wound is attached to a substrate feeding device 22. The flexible substrate 18 is fed out sequentially.
 そして、繰り出された可撓性基材18上に、金属膜形成手段26によって順次金属膜14を形成する。なお、金属膜14の形成方法は、特に限定されるものではないが、例えば、スパッタリング法、蒸着法(抵抗加熱蒸着法、電子線蒸着法など)、電解メッキ、無電解メッキ法などが挙げられる。好ましくは、スパッタリング法、蒸着法を使用するのが、薄膜形成条件の調整が容易であるので望ましい。 Then, the metal film 14 is sequentially formed on the fed flexible base material 18 by the metal film forming means 26. The method for forming the metal film 14 is not particularly limited, and examples thereof include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. . It is preferable to use a sputtering method or a vapor deposition method because it is easy to adjust the thin film formation conditions.
 また、金属膜14の厚さとしては、特に限定されるものではないが、好ましくは、金:5~500nm、銀:5~500nm、アルミニウム:5~500nm、銅:5~500nm、白金:5~500nm、および、それらの合金:5~500nmの範囲内であるのが望ましい。 Further, the thickness of the metal film 14 is not particularly limited, but preferably gold: 5 to 500 nm, silver: 5 to 500 nm, aluminum: 5 to 500 nm, copper: 5 to 500 nm, platinum: 5 Desirably within the range of ˜500 nm and their alloys: 5 to 500 nm.
 なお、後述する電場増強効果の観点から、より好ましい金属膜14の厚さとしては、金:20~70nm、銀:20~70nm、アルミニウム:10~50nm、銅:20~70nm、白金:20~70nm、および、それらの合金:10~70nmの範囲内であるのが望ましい。 From the viewpoint of the electric field enhancement effect described later, more preferable thicknesses of the metal film 14 are: gold: 20 to 70 nm, silver: 20 to 70 nm, aluminum: 10 to 50 nm, copper: 20 to 70 nm, platinum: 20 to 70 nm and their alloys: preferably in the range of 10-70 nm.
 なお、金属膜14の上面形状は平面状である場合に限らず、例えば格子状に形成された凹凸面状に形成されている場合にも適用できることは勿論である。 It should be noted that the upper surface shape of the metal film 14 is not limited to a planar shape, but can of course be applied to a case where the metal film 14 is formed in an uneven surface shape formed in a lattice shape, for example.
 次いで、金属膜14上に、固相膜形成手段27によって、順次固相膜16を形成する。なお、固相膜16の形成方法は、特に限定されるものではなく、従来公知の方法を用いることができ、例えば、可撓性基材18を10-カルボキシ-1-デカンチオール((株)同仁化学研究所製)を含むエタノール溶液に浸漬する方法などが挙げられる。このように、10-カルボキシ-1-デカンチオールが有するチオール基が、金属と結合し固定化され、金属膜の表面上で自己組織化し、SAMを形成する。 Next, the solid phase film 16 is sequentially formed on the metal film 14 by the solid phase film forming means 27. The method for forming the solid phase film 16 is not particularly limited, and a conventionally known method can be used. For example, the flexible substrate 18 is replaced with 10-carboxy-1-decanethiol (Co., Ltd.). And a method of dipping in an ethanol solution containing Dojindo Laboratories). In this way, the thiol group of 10-carboxy-1-decanethiol binds to the metal and is immobilized, and self-assembles on the surface of the metal film to form a SAM.
 より好ましくは、インクジェット塗布によって、センサー部材10に必要な位置にのみ、すなわち、センサー部材10の反応エリア10aのみに固相膜16を形成することが望ましい。このように固相膜16を形成することによって、固相膜16を形成するための材料の使用を低減させることができ、センサー部材10の製造コストを削減できる。 More preferably, it is desirable to form the solid phase film 16 only at a position necessary for the sensor member 10, that is, only in the reaction area 10 a of the sensor member 10 by inkjet coating. By forming the solid phase film 16 in this way, the use of the material for forming the solid phase film 16 can be reduced, and the manufacturing cost of the sensor member 10 can be reduced.
 なお、固相化層を形成する場合には、SAMを形成した後に、固相化層を形成する工程を設ければよい。固相化層の形成方法としては、特に限定されるものではなく、従来公知の方法を用いることができ、例えば、可撓性基材18を分子量50万のカルボキシメチルデキストラン(CMD)を1mg/mLと、N-ヒドロキシコハク酸イミド(NHS)を0.5mMと、水溶性カルボジイミド(WSC)を1mMとを含むpH7.4のMES緩衝生理食塩水(MES)(イオン強度:10mM)に浸漬する方法や、インクジェット塗布により行う方法などが挙げられる。 In the case of forming the solid phase layer, a step of forming the solid phase layer may be provided after the SAM is formed. A method for forming the solid phase layer is not particularly limited, and a conventionally known method can be used. For example, the flexible substrate 18 is composed of carboxymethyldextran (CMD) having a molecular weight of 500,000 at 1 mg / kg. Immerse in MES buffered saline (MES) (ionic strength: 10 mM) at pH 7.4 containing mL, 0.5 mM N-hydroxysuccinimide (NHS) and 1 mM water-soluble carbodiimide (WSC). Examples thereof include a method and a method performed by inkjet coating.
 次いで、金属膜14及び固相膜16が形成された可撓性基材18を、基材切断手段28によって、センサー部材10として必要な大きさに切断する。センサー部材10として必要な大きさは、後述するように、センサーチップとした場合に、誘電体部材に取付け可能であり、かつ、反応エリア10aを確保できる大きさであれば、特に限定されるものではない。 Next, the flexible base material 18 on which the metal film 14 and the solid phase film 16 are formed is cut into a size necessary for the sensor member 10 by the base material cutting means 28. The size required for the sensor member 10 is particularly limited as long as it can be attached to a dielectric member and can secure the reaction area 10a when a sensor chip is used, as will be described later. is not.
 なお、可撓性基材18の切断方法としては、例えば、スリッターナイフなどによって可撓性基材18の進行方向(以下、「長さ方向」という)に切断した後、カッターなどによって可撓性基材18の進行方向とは垂直な方向(以下、「幅方向」という)に切断することによって、方形状のセンサー部材10を製造することができる。 In addition, as a cutting method of the flexible base material 18, for example, after cutting in the traveling direction of the flexible base material 18 (hereinafter referred to as “length direction”) with a slitter knife or the like, the flexible base material 18 is flexible with a cutter or the like. The rectangular sensor member 10 can be manufactured by cutting in a direction perpendicular to the traveling direction of the substrate 18 (hereinafter referred to as “width direction”).
 より好ましくは、打ち抜き加工によって、可撓性基材18からセンサー部材10として必要な形状に切断(打ち抜き)することで、後述するセンサーチップに最適な大きさ・形状を有するセンサー部材10とすることができる。 More preferably, the sensor member 10 having the optimum size and shape for a sensor chip to be described later is obtained by cutting (punching) the flexible base material 18 into a shape necessary for the sensor member 10 by punching. Can do.
 なお、打ち抜き加工によって円形状のセンサー部材10とすることが好ましい。後述するようなSPFS装置などの光学式検体検出装置で用いられる光源から照射される励起光は、通常、照射形状が円形状の光であるため、励起光が照射される領域とセンサー部材10とを一致させることができる。このため、センサー部材10において、励起光が照射されず、測定に用いられない領域が生じない。 It should be noted that the circular sensor member 10 is preferably formed by punching. Excitation light emitted from a light source used in an optical specimen detection apparatus such as an SPFS apparatus, which will be described later, is usually light having a circular irradiation shape. Can be matched. For this reason, in the sensor member 10, excitation light is not irradiated and the area | region which is not used for a measurement does not arise.
 さらに、可撓性基材18(センサー基材12)として、ポリエチレンテレフタレート(PET)のような複屈折性の高い材料を用いる場合であっても、光学軸に沿ってセンサー部材10を打ち抜くことによって、センサー部材10としての使用に影響を与えないようにすることができる。 Further, even when a highly birefringent material such as polyethylene terephthalate (PET) is used as the flexible substrate 18 (sensor substrate 12), the sensor member 10 is punched along the optical axis. The use as the sensor member 10 can be prevented from being affected.
 なお、本実施例では、金属膜14の形成工程、固相膜16の形成工程、可撓性基材18の切断工程を連続して行うように説明しているが、それぞれの工程にわけて行うこともできる。 In the present embodiment, the metal film 14 forming step, the solid phase film 16 forming step, and the flexible substrate 18 cutting step are described as being performed continuously. It can also be done.
 この場合、図3に示すように、可撓性基材18の幅方向の両縁部18a,18bに凸部19a,19bが設けられた可撓性基材を用いることが好ましい。
 このように構成することで、図4に示すように、基材繰り出し装置22によって繰り出された可撓性基材18に対して、金属膜14や固相膜16を形成したのち、基材巻き取り装置24によって巻き取ることができる。
In this case, as shown in FIG. 3, it is preferable to use a flexible base material in which convex portions 19 a and 19 b are provided on both edge portions 18 a and 18 b in the width direction of the flexible base material 18.
With this configuration, as shown in FIG. 4, the metal film 14 and the solid phase film 16 are formed on the flexible base material 18 drawn out by the base material feeding device 22, and then the base material winding is performed. It can be wound up by the take-up device 24.
 なお、凸部19a,19bの高さとしては、可撓性基材18を巻き取った際に、金属膜14及び固相膜16に可撓性基材18が直接触れないような高さであればよく、金属膜14の厚さ及び固相膜16の厚さに応じて適宜決定することができる。 The height of the protrusions 19a and 19b is such that when the flexible substrate 18 is wound up, the flexible substrate 18 does not directly touch the metal film 14 and the solid phase film 16. It may be sufficient, and can be appropriately determined according to the thickness of the metal film 14 and the thickness of the solid phase film 16.
 このようにセンサー部材を製造することによって、センサーチップを量産する場合にも、容易に製造が可能で、製造コストを大幅に低減することができるとともに、個体差による検出精度のばらつきを抑制することができる。 By manufacturing sensor members in this way, even when mass-producing sensor chips, it can be easily manufactured, manufacturing costs can be greatly reduced, and variations in detection accuracy due to individual differences can be suppressed. Can do.
2.センサーチップの製造方法
 このように製造されたセンサー部材10は、例えば、SPR装置やSPFS装置に用いられるセンサーチップに取り付けられて使用される。
 図5は、以下に示す本発明のセンサーチップの製造方法によって製造されたセンサーチップの構成を示す概略構成図である。
2. Sensor Chip Manufacturing Method The sensor member 10 manufactured in this way is used by being attached to a sensor chip used in, for example, an SPR device or an SPFS device.
FIG. 5 is a schematic configuration diagram showing a configuration of a sensor chip manufactured by the sensor chip manufacturing method of the present invention described below.
 図5に示すように、本発明のセンサーチップ30は、鉛直断面形状が略台形であるプリズム形状の誘電体部材32と、この誘電体部材32上に取り付けられたセンサー部材10と、アナライトを含む検体液を注入し、センサー部材10の固相膜16が有する固相化層と検体液中のアナライトとの反応を行わせる反応空間を形成するための反応空間形成部材34とから構成される。 As shown in FIG. 5, the sensor chip 30 of the present invention includes a prism-shaped dielectric member 32 having a substantially trapezoidal vertical cross-sectional shape, a sensor member 10 mounted on the dielectric member 32, and an analyte. A reaction space forming member 34 for injecting a sample liquid to be included and forming a reaction space for causing a reaction between the solid phase layer of the solid phase film 16 of the sensor member 10 and the analyte in the sample liquid is formed. The
 誘電体部材32としては、特に限定されるものではないが、光学的に透明な、例えば、ガラス、セラミックスなどの各種の無機物、天然ポリマー、合成ポリマーを用いることができ、化学的安定性、製造安定性、光学的透明性の観点から、二酸化ケイ素(SiO2)または二酸化チタン(TiO2)を含むものが好ましい。 The dielectric member 32 is not particularly limited, but optically transparent, for example, various inorganic materials such as glass and ceramics, natural polymers, and synthetic polymers can be used. Chemical stability, production From the viewpoints of stability and optical transparency, those containing silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ) are preferred.
 なお、誘電体部材32の材料として、センサー部材10のセンサー基材12と同じ材料を用いることによって、誘電体部材32と金属膜14との間に介在するセンサー基材12の光学的な影響を小さくすることができる。 By using the same material as the sensor base material 12 of the sensor member 10 as the material of the dielectric member 32, the optical influence of the sensor base material 12 interposed between the dielectric member 32 and the metal film 14 is affected. Can be small.
 また、この実施例では、鉛直断面形状が略台形であるプリズム形状の誘電体部材32を用いたが、鉛直断面形状を三角形(いわゆる三角プリズム)、半円形状、半楕円形状にするなど誘電体部材32の形状は、適宜変更可能である。 In this embodiment, the prism-shaped dielectric member 32 having a substantially trapezoidal vertical cross-sectional shape is used. However, the vertical cross-sectional shape is a triangle (so-called triangular prism), a semicircular shape, a semi-elliptical shape, etc. The shape of the member 32 can be changed as appropriate.
 また、反応空間形成部材34としては、図5(a)に示すように、アナライトを含有した検体液を一時的に貯留することができるウェル部材35aであってもよいし、図5(b)に示すように、検体液を反応エリア10aに対して循環させることができる流路部材35bであってもよい。 Further, as shown in FIG. 5A, the reaction space forming member 34 may be a well member 35a capable of temporarily storing a sample liquid containing an analyte, or FIG. As shown in (), a flow path member 35b that can circulate the sample liquid to the reaction area 10a may be used.
 ウェル部材35aは、図5(a)に示すように、センサー部材10の反応エリア10aを囲繞するように反応エリア10aの壁を構成し、反応空間34aを形成している。
 この反応空間34aに、例えば、ピペットなどを用いて検体液を注入することによって、検体液中のアナライトとセンサー部材10の固相膜16が有する固相化層とが反応して、固相化層にアナライトが捕捉されることになる。
As shown in FIG. 5A, the well member 35a constitutes a wall of the reaction area 10a so as to surround the reaction area 10a of the sensor member 10, and forms a reaction space 34a.
For example, by injecting the sample liquid into the reaction space 34 a using a pipette or the like, the analyte in the sample liquid reacts with the solid phase layer of the solid phase film 16 of the sensor member 10, and the solid phase. The analyte will be trapped in the activated layer.
 一方で、流路部材35bは、図5(b)に示すように、誘電体部材32と流路部材35bとによって流路36を形成し、検体液が反応エリア10aに対して循環するように構成されている。 On the other hand, as shown in FIG. 5B, the flow path member 35b forms a flow path 36 by the dielectric member 32 and the flow path member 35b so that the sample liquid circulates to the reaction area 10a. It is configured.
 すなわち、流路36の反応エリア10a上が反応空間34aとなっており、この反応空間34aに検体液を流通させることによって、検体液中のアナライトとセンサー部材10の固相膜16が有する固相化層とが反応して、固相化層にアナライトが捕捉されることになる。 That is, the reaction space 34a is formed on the reaction area 10a of the flow path 36, and the analyte liquid in the sample liquid and the solid phase film 16 of the sensor member 10 are held by circulating the sample liquid in the reaction space 34a. The analyte is trapped in the solid phase layer by reaction with the phase phase layer.
 なお、流路36に検体液を流通させる方法としては、特に限定されるものではないが、流路36の両端部36a,36bにポンプ(図示せず)を接続して、検体液を一方向に循環させてもよいし、流路36の端部36aからピペットを用いて検体液を注入するとともに、ピペットによって検体液を吸排することによって、反応エリア10aに対して検体液を往復移動させてもよい。 The method for allowing the sample liquid to flow through the flow path 36 is not particularly limited, but a pump (not shown) is connected to both end portions 36a and 36b of the flow path 36 so that the sample liquid is unidirectionally supplied. The sample liquid may be circulated to the reaction area 10a by injecting the sample liquid from the end 36a of the flow path 36 using a pipette and sucking and discharging the sample liquid with the pipette. Also good.
 特に、反応エリア10aに対して検体液を往復移動させることによって、少量の検体液であっても、アナライトと固相化層との反応効率が高くなり、アナライトの検出精度を向上させることができる。 In particular, by reciprocating the sample liquid with respect to the reaction area 10a, the reaction efficiency between the analyte and the solid phase layer is increased even with a small amount of sample liquid, and the detection accuracy of the analyte is improved. Can do.
 また、反応空間形成部材34(ウェル部材35a,流路部材35b)の材料としては、特に限定されるものではなく、例えば、ガラス、セラミックスなどの各種の無機物、天然ポリマー、合成ポリマーを用いることができる。 Further, the material of the reaction space forming member 34 (well member 35a, flow path member 35b) is not particularly limited, and for example, various inorganic materials such as glass and ceramics, natural polymers, and synthetic polymers may be used. it can.
 なお、流路部材35bのように反応エリア10aを反応空間形成部材34によって覆う場合には、後述するように、センサーチップ30をSPFS装置に用いる場合にセンサーチップ30の上方から蛍光を観測可能なように、光学的に透明な材料を用いる必要がある。 When the reaction area 10a is covered with the reaction space forming member 34 as in the flow path member 35b, fluorescence can be observed from above the sensor chip 30 when the sensor chip 30 is used in an SPFS device, as will be described later. Thus, it is necessary to use an optically transparent material.
 このように構成される本発明のセンサーチップ30は、以下のような工程で製造される。
 まず、図6(a)に示すように、誘電体部材32に屈折率整合液38を介してセンサー部材10を固定する。
The sensor chip 30 of the present invention configured as described above is manufactured by the following process.
First, as shown in FIG. 6A, the sensor member 10 is fixed to the dielectric member 32 via the refractive index matching liquid 38.
 屈折率整合液38としては、特に限定されるものではなく、従来公知の屈折率整合液(マッチングオイル)を用いることができる。なお、屈折率整合液38として、例えば、紫外線硬化型接着剤などの接着剤を用いることによって、誘電体部材32とセンサー部材10との屈折率整合性を得られるとともに、誘電体部材32とセンサー部材10とを接着固定することができる。 The refractive index matching liquid 38 is not particularly limited, and a conventionally known refractive index matching liquid (matching oil) can be used. As the refractive index matching liquid 38, for example, by using an adhesive such as an ultraviolet curable adhesive, the refractive index matching between the dielectric member 32 and the sensor member 10 can be obtained, and the dielectric member 32 and the sensor. The member 10 can be bonded and fixed.
 なお、センサー部材10を取り外し可能なように、誘電体部材32にセンサー部材10を固定することが好ましい。このように構成することで、アナライトの検出に利用したセンサーチップ30からセンサー部材10を取り外して、新しいセンサー部材10を取り付けるだけで、誘電体部材32を再利用して、センサーチップ30を製造することができる。 Note that the sensor member 10 is preferably fixed to the dielectric member 32 so that the sensor member 10 can be removed. By configuring in this way, the sensor member 10 is removed from the sensor chip 30 used for the detection of the analyte, and the sensor member 30 is manufactured by reusing the dielectric member 32 simply by attaching a new sensor member 10. can do.
 このため、光学的特性に優れるが、高価なガラス製プリズムを誘電体部材32として利用する場合であっても、ガラス製プリズムを再利用することができるため、センサーチップ30の製造コストを低減することができる。 For this reason, although it is excellent in an optical characteristic, even if it is a case where an expensive glass prism is utilized as the dielectric material member 32, since a glass prism can be reused, the manufacturing cost of the sensor chip 30 is reduced. be able to.
 次いで、図6(b)に示すように、センサー部材10が固定された誘電体部材32上に反応空間形成部材34を載置し、反応空間形成部材34と誘電体部材32とを、例えば、接着剤29などを用いて固定する。 Next, as shown in FIG. 6B, the reaction space forming member 34 is placed on the dielectric member 32 to which the sensor member 10 is fixed, and the reaction space forming member 34 and the dielectric member 32 are, for example, Fix using adhesive 29 or the like.
 なお、センサー部材10を取り外し可能なように構成する場合には、例えば、誘電体部材32と反応空間形成部材34とを、例えば、ネジなどの締結部材によって固定するようにしてもよい。なお、締結部材によって固定する場合には、誘電体部材32と反応空間形成部材34とを直接締結・固定してもよいが、図7に示すように、誘電体部材32をセンサーチップ保持部材40に載置した状態で、反応空間形成部材34とセンサーチップ保持部材40とによって、誘電体部材32及びセンサー部材10を挟持して、例えば、ネジなどの締結部材42を用いて固定するようにしてもよい。 When the sensor member 10 is configured to be removable, for example, the dielectric member 32 and the reaction space forming member 34 may be fixed by a fastening member such as a screw. In the case of fixing with a fastening member, the dielectric member 32 and the reaction space forming member 34 may be directly fastened and fixed. However, as shown in FIG. 7, the dielectric member 32 is attached to the sensor chip holding member 40. In this state, the dielectric member 32 and the sensor member 10 are sandwiched between the reaction space forming member 34 and the sensor chip holding member 40 and fixed using, for example, a fastening member 42 such as a screw. Also good.
 また、センサー部材10を囲繞するようにシール部材44を載置し、誘電体部材32と反応空間形成部材34とによって、シール部材44を挟持するように固定することが好ましい。 Further, it is preferable that the seal member 44 is placed so as to surround the sensor member 10 and is fixed so that the seal member 44 is sandwiched between the dielectric member 32 and the reaction space forming member 34.
 このように、シール部材44を設けることによって、誘電体部材32と反応空間形成部材34との間のシール性(密閉性)を確保することができ、反応空間34aに検体液を注入した場合に、検体液が誘電体部材32と反応空間形成部材34との間から漏れ出るようなことがない。 Thus, by providing the sealing member 44, the sealing property (sealing property) between the dielectric member 32 and the reaction space forming member 34 can be ensured, and when the sample liquid is injected into the reaction space 34a. The specimen liquid does not leak from between the dielectric member 32 and the reaction space forming member 34.
3.センサー部材の使用方法
 図8は、本発明のセンサー部材10を用いた光学式検体検出装置50の構成を示す概略構成図である。
 図8に示すように、光学式検体検出装置50では、誘電体部材32上にセンサー部材10が取り付けられたセンサーチップ30が、センサーチップ装填部52に装填されている。
3. Method of Using Sensor Member FIG. 8 is a schematic configuration diagram showing a configuration of an optical specimen detection apparatus 50 using the sensor member 10 of the present invention.
As shown in FIG. 8, in the optical sample detection device 50, the sensor chip 30 having the sensor member 10 attached on the dielectric member 32 is loaded in the sensor chip loading unit 52.
 また、誘電体部材32の下方の一方の側面32bの側には、図8に示すように、光源52が配置されており、この光源52からの励起光54が、誘電体部材32の外側下方から、誘電体部材32の側面32bに入射して、誘電体部材32を介して、誘電体部材32の上面に取り付けられたセンサー部材10の金属膜14に向かって照射されるようになっている。 Further, as shown in FIG. 8, a light source 52 is arranged on one side surface 32 b below the dielectric member 32, and excitation light 54 from the light source 52 is below the dielectric member 32. Then, the light is incident on the side surface 32b of the dielectric member 32 and irradiated through the dielectric member 32 toward the metal film 14 of the sensor member 10 attached to the upper surface of the dielectric member 32. .
 なお、光源52は、例えば、LD(Laser Diode;レーザーダイオード)やLED(Light Emitting Diode;発光ダイオード)、HID(High Intensity Discharge)ランプ(高輝度放電ランプ)などを用いることができる。 As the light source 52, for example, an LD (Laser Diode), an LED (Light Emitting Diode), an HID (High Intensity Discharge) lamp (high intensity discharge lamp), or the like can be used.
 また、光源52と誘電体部材32との間には、光源52から照射される励起光54を、金属膜14上で表面プラズモンを効率よく発生させるP偏光とするための偏光フィルタ56が設けられている。 Further, a polarizing filter 56 is provided between the light source 52 and the dielectric member 32 to convert the excitation light 54 emitted from the light source 52 into P-polarized light that efficiently generates surface plasmons on the metal film 14. ing.
 また、誘電体部材32の下方の他方の側面32cの側には、図8に示すように、励起光54が金属膜14によって反射された金属膜反射光55を受光する受光手段58が備えられている。 Further, as shown in FIG. 8, light receiving means 58 for receiving the metal film reflected light 55 obtained by reflecting the excitation light 54 by the metal film 14 is provided on the other side surface 32 c below the dielectric member 32. ing.
 なお、光源52には、光源52から照射される励起光54の、金属膜14に対する入射角を適宜変更可能とする入射角調整手段(図示せず)が備えられている。一方で、受光手段58にも、図示しない可動手段が備えられており、金属膜反射光55の反射角が変わった場合にも、光源52と同期して、確実に金属膜反射光55を受光するように構成されている。 The light source 52 is provided with incident angle adjusting means (not shown) that can appropriately change the incident angle of the excitation light 54 emitted from the light source 52 with respect to the metal film 14. On the other hand, the light receiving means 58 is also provided with a movable means (not shown). Even when the reflection angle of the metal film reflected light 55 changes, the metal film reflected light 55 is reliably received in synchronization with the light source 52. Is configured to do.
 このような、光源52の入射角調整手段や受光手段58の可動手段としては、特に限定されるものではなく、例えば、ステッピングモーターや歯車列などを用いて、光源52や受光手段58を回動(例えば、図8において、平面内で金属膜14への入射光の照射位置を中心に回動)させるように構成することができる。 The incident angle adjusting means of the light source 52 and the moving means of the light receiving means 58 are not particularly limited. For example, the light source 52 and the light receiving means 58 are rotated using a stepping motor or a gear train. (For example, in FIG. 8, it can be configured to rotate around the irradiation position of incident light on the metal film 14 in a plane).
 なお、センサーチップ30、光源52、受光手段58によって、SPR測定を行うためのSPR装置が構成されている。 The sensor chip 30, the light source 52, and the light receiving means 58 constitute an SPR device for performing SPR measurement.
 また、センサーチップ30の上方には、金属膜14上に発生した表面プラズモン光(疎密波)によって励起されたアナライトを標識する蛍光物質から発生する蛍光59を受光する光検出手段60が設けられている。 Above the sensor chip 30, there is provided a light detection means 60 for receiving the fluorescence 59 generated from the fluorescent substance that labels the analyte excited by the surface plasmon light (dense wave) generated on the metal film 14. ing.
 光検出手段60としては、特に限定されるものではないが、例えば、超高感度の光電子増倍管や、多点計測が可能なCCD(Charge Coupled Device)イメージセンサー、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサーなどを用いることができる。 The photodetection means 60 is not particularly limited. For example, an ultrasensitive photomultiplier tube, a CCD (Charge-Coupled Device) image sensor capable of multipoint measurement, and a CMOS (Complementary Metal-Oxide Semiconductor). An image sensor or the like can be used.
 なお、センサーチップ30と光検出手段60との間には、光を効率よく集光するための集光部材62と、蛍光59のみを選択的に透過するように形成された波長選択機能部材64が設けられている。 Note that a condensing member 62 for condensing light efficiently and a wavelength selection function member 64 formed so as to selectively transmit only the fluorescence 59 are provided between the sensor chip 30 and the light detection means 60. Is provided.
 集光部材62としては、光検出手段60に蛍光を効率よく集光することを目的とするものであれば、任意の集光系でよい。簡易な集光系としては、例えば、顕微鏡などで使用されている市販の対物レンズを転用してもよい。対物レンズの倍率としては、10~100倍が好ましい。 As the condensing member 62, any condensing system may be used as long as it aims at efficiently condensing the fluorescence on the light detecting means 60. As a simple condensing system, for example, a commercially available objective lens used in a microscope or the like may be used. The magnification of the objective lens is preferably 10 to 100 times.
 また、波長選択機能部材64としては、光学フィルタ、カットフィルタなどを用いることができる。
 光学フィルタとしては、減光(ND)フィルタ、ダイアフラムレンズなどが挙げられる。さらに、カットフィルタとしては、外光(装置外の照明光)、励起光(励起光の透過成分)、迷光(各所での励起光の散乱成分)、プラズモンの散乱光(励起光を起源とし、センサーチップ表面上の構造体または付着物などの影響で発生する散乱光)、酸素蛍光基質の自家蛍光などの各種ノイズ光を除去するフィルタであって、例えば、干渉フィルタ、色フィルタなどが挙げられる。
As the wavelength selection function member 64, an optical filter, a cut filter, or the like can be used.
Examples of the optical filter include a neutral density (ND) filter and a diaphragm lens. Furthermore, as cut filters, external light (illumination light outside the device), excitation light (excitation light transmission component), stray light (excitation light scattering component in various places), plasmon scattered light (excitation light originated from, Scattered light generated by the influence of structures or deposits on the sensor chip surface), and various noise lights such as autofluorescence of the oxygen fluorescent substrate, such as interference filters and color filters. .
 なお、センサーチップ30、光源52、光検出手段60によって、SPFS測定を行うためのSPFS装置が構成されている。 The sensor chip 30, the light source 52, and the light detection means 60 constitute an SPFS apparatus for performing SPFS measurement.
 このように構成された光学式検体検出装置50では、まず、アナライトを捕捉するためのリガンドをセンサー部材10の固相膜16に固相化するため、センサーチップ30の流路36に、リガンドを含む抗体溶液を適量送液し、所定時間循環させる。これによって、固相膜にアナライトを捕捉するためのリガンドが固相化されることになる。 In the optical specimen detection apparatus 50 configured as described above, first, a ligand for capturing an analyte is solid-phased on the solid-phase film 16 of the sensor member 10. An appropriate amount of the antibody solution containing is fed and circulated for a predetermined time. As a result, the ligand for capturing the analyte is immobilized on the solid phase membrane.
 次に、アナライトを含む検体液を適量送液し、所定時間循環させる。これによって、金属膜14上の固相膜16に固相化されたリガンドにアナライトが捕捉されることになる。 Next, an appropriate amount of the sample liquid containing the analyte is fed and circulated for a predetermined time. As a result, the analyte is captured by the ligand solid-phased on the solid-phase film 16 on the metal film 14.
 次に、アナライトを標識するための蛍光物質を含んだ蛍光物質溶液を、流路36に適量送液し、所定時間循環させる。これによって、金属膜14上の固相化層(固相膜16)に捕捉されたアナライトが蛍光物質によって標識されることになる。 Next, an appropriate amount of a fluorescent substance solution containing a fluorescent substance for labeling the analyte is fed to the flow path 36 and circulated for a predetermined time. As a result, the analyte captured by the solid phase layer (solid phase film 16) on the metal film 14 is labeled with the fluorescent substance.
 このようにして、蛍光物質によって標識されたアナライトが、センサー部材10の反応エリア10aに固定化されることになる。この状態で、光源52から励起光54を、誘電体部材32を介して、センサー部材10の金属膜14に照射するとともに、金属膜反射光55を受光手段58によって受光する。 In this way, the analyte labeled with the fluorescent substance is fixed to the reaction area 10a of the sensor member 10. In this state, the excitation light 54 from the light source 52 is applied to the metal film 14 of the sensor member 10 via the dielectric member 32, and the metal film reflected light 55 is received by the light receiving means 58.
 そして、励起光54の金属膜14に対する入射角を所定の角度で変動させることによって、金属膜反射光55の光強度(以下、「SPRシグナル」と呼ぶ)と励起光54の入射角との関係を調べることにより、SPR測定を行うことができる。 Then, by changing the incident angle of the excitation light 54 with respect to the metal film 14 by a predetermined angle, the relationship between the light intensity of the metal film reflected light 55 (hereinafter referred to as “SPR signal”) and the incident angle of the excitation light 54. SPR measurement can be performed by examining the above.
 一方で、光源52から励起光54を、誘電体部材32を介して、センサー部材10の金属膜14に照射するとともに、蛍光59を光検出手段60によって受光することによって、SPFS測定による蛍光の光量(以下、「SPFSシグナル」と呼ぶ)を測定する。 On the other hand, the excitation light 54 from the light source 52 is applied to the metal film 14 of the sensor member 10 via the dielectric member 32 and the light 59 is received by the light detection means 60, whereby the amount of fluorescence by SPFS measurement is measured. (Hereinafter referred to as “SPFS signal”).
 このようにSPR測定もしくはSPFS測定を行うことによって、例えば、事前に作成したアナライト濃度とSPFSシグナルとに関する検量線と比較することによって、検体液中のアナライトの総量(アナライト濃度)を算出することができる。 By performing SPR measurement or SPFS measurement in this manner, for example, the total amount of analyte (analyte concentration) in the sample liquid is calculated by comparing with a calibration curve relating to the analyte concentration and SPFS signal created in advance. can do.
 なお、このような光学式検体検出装置50に、本発明のセンサー部材10を用いる場合には、上述したように、誘電体部材32にセンサー部材10を取り付けてセンサーチップ30とした後、光学式検体検出装置50に装填してもよいし、光学式検体検出装置50に装填された誘電体部材32にセンサー部材10を取り付けることによって、センサーチップ30を構成するようにしても構わない。 When the sensor member 10 of the present invention is used in such an optical specimen detection apparatus 50, as described above, after the sensor member 10 is attached to the dielectric member 32 to form the sensor chip 30, the optical member is detected. The sensor chip 30 may be configured by mounting the sensor member 10 on the dielectric member 32 mounted on the optical sample detection device 50.
 以上、本発明の好ましい実施の態様を説明してきたが、本発明はこれに限定されることはなく、例えば、上記実施例では、光学式検体検出装置としてSPR装置及びSPFS装置にセンサー部材を適用する例を挙げたが、これに限らず、他の光学式検体検出装置などにも適用できるなど、本発明の目的を逸脱しない範囲で種々の変更が可能である。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to this. For example, in the above embodiment, a sensor member is applied to an SPR device and an SPFS device as an optical specimen detection device. However, the present invention is not limited to this, and various modifications can be made without departing from the object of the present invention, such as application to other optical specimen detection devices.
 図9は、本発明のセンサー部材の製造方法によって製造されたセンサー部材10を用いて計測された励起光54の入射角とSPRシグナルとの関係を示すグラフ、図10は、本発明のセンサー部材の製造方法によって製造されたセンサー部材10を用いて計測された励起光54の入射角とSPFSシグナルとの関係を示すグラフである。 FIG. 9 is a graph showing the relationship between the incident angle of the excitation light 54 measured using the sensor member 10 manufactured by the sensor member manufacturing method of the present invention and the SPR signal, and FIG. 10 shows the sensor member of the present invention. It is a graph which shows the relationship between the incident angle of the excitation light 54 measured using the sensor member 10 manufactured by this manufacturing method, and an SPFS signal.
 なお、図9及び後述する図11では、SPRシグナルとして、励起光54の光量と金属膜反射光の光量の比率(反射率)を用いている。また、図10及び後述する図12では、SPFSシグナルとして、CCDセンサーによって測定された蛍光59の光量を用いている。 In FIG. 9 and FIG. 11 described later, the ratio (reflectance) of the light amount of the excitation light 54 and the light amount of the metal film reflected light is used as the SPR signal. In FIG. 10 and FIG. 12 described later, the light quantity of the fluorescence 59 measured by the CCD sensor is used as the SPFS signal.
 この実施例では、センサー基材12として、日本ゼオン社製のZEONOR(登録商標)フィルム(ZF14-188、屈折率:1.53、厚さ:188μm)を用い、金属膜14は、蒸着によって厚さ41nm程度の薄膜として形成されている。 In this example, a ZEONOR (registered trademark) film (ZF14-188, refractive index: 1.53, thickness: 188 μm) manufactured by Nippon Zeon Co., Ltd. was used as the sensor substrate 12, and the metal film 14 was thickened by vapor deposition. It is formed as a thin film having a thickness of about 41 nm.
 また、誘電体部材32としては、ガラス製プリズム(BK7、屈折率:1.5168)を用いており、センサー部材10と誘電体部材32とは、屈折率整合液(屈折率:1.51)を介して固定されている。 Further, as the dielectric member 32, a glass prism (BK7, refractive index: 1.5168) is used, and the sensor member 10 and the dielectric member 32 are made of a refractive index matching liquid (refractive index: 1.51). It is fixed through.
 図11は、比較例であり、従来のセンサーチップを用いて計測された励起光の入射角とSPRシグナルとの関係を示すグラフ、図12は、比較例であり、従来のセンサーチップを用いて計測された励起光の入射角とSPFSシグナルとの関係を示すグラフである。 FIG. 11 is a comparative example, a graph showing the relationship between the incident angle of excitation light measured using a conventional sensor chip and the SPR signal, and FIG. 12 is a comparative example, using a conventional sensor chip. It is a graph which shows the relationship between the incident angle of the measured excitation light, and a SPFS signal.
 この比較例では、ガラス製基板(BK7、厚さ:1000μm、屈折率:1.5168)上に蒸着によって金属膜(厚さ:42nm程度)が設けられた金属膜基板が、誘電体部材上に固定されている。 In this comparative example, a metal film substrate provided with a metal film (thickness: about 42 nm) by vapor deposition on a glass substrate (BK7, thickness: 1000 μm, refractive index: 1.5168) is formed on a dielectric member. It is fixed.
 なお、誘電体部材としてはガラス製プリズム(BK7、屈折率:1.5168)を用いており、金属膜基板と誘電体部材とは、屈折率整合液(屈折率:1.51)を介して固定されている。 Note that a glass prism (BK7, refractive index: 1.5168) is used as the dielectric member, and the metal film substrate and the dielectric member are connected via a refractive index matching liquid (refractive index: 1.51). It is fixed.
 図9~12に示したように、本発明のセンサー部材の製造方法によって製造されたセンサー部材を用いた測定では、SPRシグナル、SPFSシグナルともに、従来のガラス製基板を用いた測定とほぼ同程度という結果が得られた。 As shown in FIGS. 9 to 12, in the measurement using the sensor member manufactured by the sensor member manufacturing method of the present invention, both the SPR signal and the SPFS signal are almost the same as the measurement using the conventional glass substrate. The result was obtained.
 このため、本発明のセンサー部材の製造方法を用いることによって、従来と同程度の精度を担保しつつも、容易に大量生産することができ、生産コストを低減することが可能となる。 For this reason, by using the manufacturing method of the sensor member of the present invention, it is possible to easily mass-produce while ensuring the same level of accuracy as before, and to reduce the production cost.
 本発明は、AFP糖鎖測定やCEA糖鎖測定などの臨床試験のような、高精度の測定が要求される分野において使用される光学式検体検出装置の被測定用部材であるセンサーチップを低コストかつ安定的に提供することができる。 The present invention provides a sensor chip which is a member to be measured for an optical specimen detection device used in a field where high-precision measurement is required, such as clinical tests such as AFP sugar chain measurement and CEA sugar chain measurement. Cost and stability can be provided.
10   センサー部材
10a  反応エリア
12   センサー基材
14   金属膜
16   固相膜
18   可撓性基材
18a,18b  両縁部
19a,19b  凸部
20   可撓性基材巻装体
22   基材繰り出し装置
24   基材巻き取り装置
26   金属膜形成手段
27   固相膜形成手段
28   基材切断手段
29   接着剤
30   センサーチップ
32   誘電体部材
32b  側面
32c  側面
34   反応空間形成部材
34a  反応空間
35a  ウェル部材
35b  流路部材
36   流路
36a,36b  端部
38   屈折率整合液
40   センサーチップ保持部材
42   締結部材
44   シール部材
50   光学式検体検出装置
52   センサーチップ装填部
52   光源
54   励起光
55   金属膜反射光
56   偏光フィルタ
58   受光手段
59   蛍光
60   光検出手段
62   集光部材
64   波長選択機能部材
100  SPFS装置
102  誘電体部材
102a 上面
102b 側面
104  金属薄膜
106  センサーチップ
108  センサーチップ装填部
110  光源
112  入射光
114  流路
116  センサー領域
118  蛍光
120  光検出手段
DESCRIPTION OF SYMBOLS 10 Sensor member 10a Reaction area 12 Sensor base material 14 Metal film 16 Solid phase film 18 Flexible base material 18a, 18b Both edge parts 19a, 19b Convex part 20 Flexible base material winding body 22 Base material feeding apparatus 24 group Material winding device 26 Metal film forming means 27 Solid phase film forming means 28 Base material cutting means 29 Adhesive 30 Sensor chip 32 Dielectric member 32b Side surface 32c Side surface 34 Reaction space forming member 34a Reaction space 35a Well member 35b Flow path member 36 Flow path 36a, 36b End 38 Refractive index matching liquid 40 Sensor chip holding member 42 Fastening member 44 Sealing member 50 Optical specimen detection device 52 Sensor chip loading part 52 Light source 54 Excitation light 55 Metal film reflected light 56 Polarization filter 58 Light receiving means 59 Fluorescence 60 Photodetection means 62 Condensing member 4 wavelength selecting function member 100 SPFS device 102 dielectric member 102a top 102b side 104 metal film 106 sensor chip 108 sensor chip loading section 110 light source 112 incident light 114 the channel 116 sensor area 118 fluorescence 120 light detecting means

Claims (21)

  1.  誘電体部材上に形成された金属膜に励起光を照射することで検体の検出を行う光学式検体検出装置に用いられるセンサー部材の製造方法であって、
     透光性を有する可撓性基材上に金属膜を形成する工程と、
     前記可撓性基材上に形成された前記金属膜上に、前記検体を固定化するために用いられる固相膜を形成する工程と、
     前記金属膜及び前記固相膜が形成された前記可撓性基材を、所定の大きさに切断する工程と、
    を含むセンサー部材の製造方法。
    A method for producing a sensor member for use in an optical sample detection apparatus that detects a sample by irradiating excitation light onto a metal film formed on a dielectric member,
    Forming a metal film on a flexible substrate having translucency;
    Forming a solid phase film used for immobilizing the specimen on the metal film formed on the flexible substrate;
    Cutting the flexible base material on which the metal film and the solid phase film are formed into a predetermined size;
    The manufacturing method of the sensor member containing this.
  2.  長尺状の前記可撓性基材が巻装された可撓性基材巻装体から、前記可撓性基材を順次繰り出すことによって、前記可撓性基材上に前記金属膜を順次形成し、前記金属膜上に前記固相膜を順次形成し、前記金属膜及び前記固相膜が形成された前記可撓性基材を、順次所定の大きさに切断する請求項1に記載のセンサー部材の製造方法。 The metal film is sequentially applied onto the flexible substrate by sequentially feeding out the flexible substrate from a flexible substrate wound body on which the long flexible substrate is wound. The solid phase film is sequentially formed on the metal film, and the flexible base material on which the metal film and the solid phase film are formed is sequentially cut into a predetermined size. Manufacturing method of the sensor member.
  3.  前記可撓性基材の幅方向の両縁部に凸部が設けられている請求項2に記載のセンサー部材の製造方法。 The method for producing a sensor member according to claim 2, wherein convex portions are provided on both edges in the width direction of the flexible base material.
  4.  前記金属膜が、スパッタリング法または蒸着法によって形成される請求項1から3のいずれかに記載のセンサー部材の製造方法。 The method for producing a sensor member according to any one of claims 1 to 3, wherein the metal film is formed by a sputtering method or a vapor deposition method.
  5.  前記固相膜が、インクジェット塗布によって形成される請求項1から4のいずれかに記載のセンサー部材の製造方法。 The method for producing a sensor member according to any one of claims 1 to 4, wherein the solid phase film is formed by inkjet coating.
  6.  前記金属膜及び前記固相膜が形成された前記可撓性基材を、打ち抜き加工により所定の大きさに切断する請求項1から5のいずれかに記載のセンサー部材の製造方法。 The method for producing a sensor member according to any one of claims 1 to 5, wherein the flexible base material on which the metal film and the solid phase film are formed is cut into a predetermined size by punching.
  7.  前記金属膜及び前記固相膜が形成された前記可撓性基材を、円形状に打ち抜き加工する請求項6に記載のセンサー部材の製造方法。 The method for producing a sensor member according to claim 6, wherein the flexible base material on which the metal film and the solid phase film are formed is punched into a circular shape.
  8.  前記可撓性基材の光学軸に沿って打ち抜き加工する請求項6または7に記載のセンサー部材の製造方法。 The method for manufacturing a sensor member according to claim 6 or 7, wherein a punching process is performed along the optical axis of the flexible substrate.
  9.  前記可撓性基材が、ポリエチレンテレフタレートフィルムである請求項8に記載のセンサー部材の製造方法。 The method for producing a sensor member according to claim 8, wherein the flexible substrate is a polyethylene terephthalate film.
  10.  誘電体部材上に形成された金属膜に励起光を照射することで検体の検出を行う光学式検体検出装置に用いられるセンサーチップの製造方法であって、
     前記誘電体部材上に、請求項1から9のいずれかに記載のセンサー部材の製造方法によって製造されたセンサー部材を固定する工程と、
     前記センサー部材が固定された誘電体部材上に、前記検体を含む検体液を注入し、前記固相膜と前記検体との反応を行わせる反応空間を形成するための反応空間形成部材を固定する工程と、
    を含むセンサーチップの製造方法。
    A method of manufacturing a sensor chip for use in an optical sample detection device that detects a sample by irradiating excitation light onto a metal film formed on a dielectric member,
    Fixing the sensor member manufactured by the method for manufacturing a sensor member according to any one of claims 1 to 9 on the dielectric member;
    A sample solution containing the sample is injected onto the dielectric member to which the sensor member is fixed, and a reaction space forming member for forming a reaction space for causing the reaction between the solid phase film and the sample is fixed. Process,
    A method of manufacturing a sensor chip including:
  11.  前記誘電体部材と前記センサー部材との間に、屈折率整合液を介在させる請求項10に記載のセンサーチップの製造方法。 The method for manufacturing a sensor chip according to claim 10, wherein a refractive index matching liquid is interposed between the dielectric member and the sensor member.
  12.  前記屈折率整合液が、接着剤である請求項11に記載のセンサーチップの製造方法。 The method for manufacturing a sensor chip according to claim 11, wherein the refractive index matching liquid is an adhesive.
  13.  前記誘電体部材と前記反応空間形成部材とを締結部材によって固定する請求項10から13のいずれかに記載のセンサーチップの製造方法。 The method for manufacturing a sensor chip according to any one of claims 10 to 13, wherein the dielectric member and the reaction space forming member are fixed by a fastening member.
  14.  前記誘電体部材をセンサーチップ保持部材に載置した状態で、前記センサーチップ保持部材と前記反応空間形成部材とによって、前記誘電体部材及び前記センサー部材とを挟持して、締結部材によって固定する請求項10から13のいずれかに記載のセンサーチップの製造方法。 The dielectric member and the sensor member are sandwiched between the sensor chip holding member and the reaction space forming member in a state where the dielectric member is placed on the sensor chip holding member, and fixed by a fastening member. Item 14. A method for producing a sensor chip according to any one of Items 10 to 13.
  15.  前記センサー部材を囲繞するようにシール部材を載置し、前記反応空間形成部材と前記誘電体部材とによって、前記シール部材を挟持するように固定する請求項10から14のいずれかに記載のセンサーチップの製造方法。 The sensor according to any one of claims 10 to 14, wherein a seal member is placed so as to surround the sensor member, and is fixed so as to sandwich the seal member by the reaction space forming member and the dielectric member. Chip manufacturing method.
  16.  前記反応空間形成部材が、前記検体液を一時的に貯留することができるウェル部材である請求項10から15のいずれかに記載のセンサーチップの製造方法。 The method for manufacturing a sensor chip according to any one of claims 10 to 15, wherein the reaction space forming member is a well member capable of temporarily storing the sample liquid.
  17.  前記反応空間形成部材が、前記検体液を前記センサー部材の反応エリアに対して循環させることができる流路部材である請求項10から15のいずれかに記載のセンサーチップの製造方法。 The method for manufacturing a sensor chip according to any one of claims 10 to 15, wherein the reaction space forming member is a flow path member capable of circulating the sample liquid with respect to a reaction area of the sensor member.
  18.  前記誘電体部材が、天然ポリマーもしくは合成ポリマーから形成されている請求項10から17のいずれかに記載のセンサーチップの製造方法。 The method for manufacturing a sensor chip according to any one of claims 10 to 17, wherein the dielectric member is formed of a natural polymer or a synthetic polymer.
  19.  誘電体部材と、該誘電体部材の下方の一方の側面側に配置された光源と、を有する光学式検体検出装置で用いられるセンサー部材の使用方法であって、
     前記誘電体部材上に、請求項1から9のいずれかに記載のセンサー部材の製造方法によって製造されたセンサー部材を取り付ける工程と、
     前記センサー部材の金属膜に、前記光源から励起光を照射する工程と、
    を有するセンサー部材の使用方法。
    A method of using a sensor member used in an optical specimen detection device having a dielectric member and a light source disposed on one side surface below the dielectric member,
    Attaching the sensor member produced by the method for producing a sensor member according to any one of claims 1 to 9 on the dielectric member;
    Irradiating the metal film of the sensor member with excitation light from the light source;
    Method of using a sensor member having
  20.  前記光学式検体検出装置は、前記誘電体部材の上方に配置された光検出手段をさらに備える請求項18のセンサー部材の使用方法。 The method for using a sensor member according to claim 18, wherein the optical specimen detection device further includes a light detection means disposed above the dielectric member.
  21.  前記光学式検体検出装置は、前記誘電体部材の下方の他方の側面側に配置された受光手段をさらに備える請求項18のセンサー部材の使用方法。 The method of using a sensor member according to claim 18, wherein the optical specimen detection device further includes a light receiving means disposed on the other side surface below the dielectric member.
PCT/JP2013/070073 2012-07-30 2013-07-24 Sensor member fabrication method, sensor chip fabrication method, and sensor member usage method WO2014021171A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014528096A JPWO2014021171A1 (en) 2012-07-30 2013-07-24 Method for manufacturing sensor member, method for manufacturing sensor chip, and method for using sensor member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012168282 2012-07-30
JP2012-168282 2012-07-30

Publications (1)

Publication Number Publication Date
WO2014021171A1 true WO2014021171A1 (en) 2014-02-06

Family

ID=50027849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070073 WO2014021171A1 (en) 2012-07-30 2013-07-24 Sensor member fabrication method, sensor chip fabrication method, and sensor member usage method

Country Status (2)

Country Link
JP (1) JPWO2014021171A1 (en)
WO (1) WO2014021171A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376210A4 (en) * 2015-11-13 2018-09-26 Konica Minolta, Inc. Detection device, detection method, and detection system
JP2020514771A (en) * 2017-01-10 2020-05-21 オックスフォード インストゥルメンツ テクノロジーズ オサケユイチア Semiconductor radiation detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375542A (en) * 1986-08-19 1988-04-05 ソ−ン イ−エムアイ ピ−エルシ− Chemical sensitive surface plasmon resonator
JPH11326339A (en) * 1998-05-08 1999-11-26 Wako Pure Chem Ind Ltd Testing instrument for use in diagnosis automatic analyzing apparatus
JP2006090758A (en) * 2004-09-21 2006-04-06 Fuji Photo Film Co Ltd Sensor in utilizing attenuated total reflection
JP2008209278A (en) * 2007-02-27 2008-09-11 Aisin Seiki Co Ltd Sensor chip
JP2012098256A (en) * 2010-11-05 2012-05-24 Konica Minolta Holdings Inc Surface plasmon resonance fluorescence analysis apparatus and surface plasmon resonance fluorescence analysis method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375542A (en) * 1986-08-19 1988-04-05 ソ−ン イ−エムアイ ピ−エルシ− Chemical sensitive surface plasmon resonator
JPH11326339A (en) * 1998-05-08 1999-11-26 Wako Pure Chem Ind Ltd Testing instrument for use in diagnosis automatic analyzing apparatus
JP2006090758A (en) * 2004-09-21 2006-04-06 Fuji Photo Film Co Ltd Sensor in utilizing attenuated total reflection
JP2008209278A (en) * 2007-02-27 2008-09-11 Aisin Seiki Co Ltd Sensor chip
JP2012098256A (en) * 2010-11-05 2012-05-24 Konica Minolta Holdings Inc Surface plasmon resonance fluorescence analysis apparatus and surface plasmon resonance fluorescence analysis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3376210A4 (en) * 2015-11-13 2018-09-26 Konica Minolta, Inc. Detection device, detection method, and detection system
EP4212854A1 (en) * 2015-11-13 2023-07-19 Otsuka Pharmaceutical Co., Ltd. Heated detection chip holder for measuring surface plasmon resonance and corresponding method
JP2020514771A (en) * 2017-01-10 2020-05-21 オックスフォード インストゥルメンツ テクノロジーズ オサケユイチア Semiconductor radiation detector
JP7114628B2 (en) 2017-01-10 2022-08-08 オックスフォード インストゥルメンツ テクノロジーズ オサケユイチア Semiconductor radiation detector

Also Published As

Publication number Publication date
JPWO2014021171A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
US20170370924A1 (en) Target substance detection chip, target substance detection plate, target substance detection device and target substance detection method
JP5920692B2 (en) Target substance detection chip, target substance detection device, and target substance detection method
JP6098523B2 (en) SPFS measurement sensor chip, SPFS measurement method using SPFS measurement sensor chip, and SPFS measurement apparatus equipped with SPFS measurement sensor chip
JP6766820B2 (en) Optical sample detection system
WO2014021171A1 (en) Sensor member fabrication method, sensor chip fabrication method, and sensor member usage method
JP5923811B2 (en) Target substance detection plate, target substance detection apparatus, and target substance detection method
JP5673211B2 (en) Optical specimen detector
WO2014007134A1 (en) Sensor chip
JP5891990B2 (en) Optical specimen detector
WO2014017433A1 (en) Optical specimen detection device
WO2015146036A1 (en) Enhanced raman spectroscopy device
WO2018235332A1 (en) Specimen detection device and specimen detection method
JP2015111063A (en) Surface plasmon-field enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
US11169090B2 (en) Diffracted light removal slit and optical sample detection system using same
JP5655917B2 (en) Chip structure
US10976250B2 (en) Position detection method and position detection device for sensor chip in optical sample detection system
JP6885458B2 (en) Sensor chip for sample detection system
JP2011185698A (en) Chip structure
JP6481371B2 (en) Detection method and detection kit
JP6586884B2 (en) Chip and surface plasmon enhanced fluorescence measurement method
JP6398989B2 (en) Optical specimen detector
JP5786985B2 (en) Surface plasmon enhanced fluorescence sensor and chip structure unit used for surface plasmon enhanced fluorescence sensor
JP2012052917A (en) Surface plasmon exciting intensified fluorescence measuring device and sensor structure used for the same
JP2012220256A (en) Sensor chip for use in surface plasmon measurement apparatus and surface plasmon measurement apparatus using sensor chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825723

Country of ref document: EP

Kind code of ref document: A1