WO2014021066A1 - Power generation system - Google Patents

Power generation system Download PDF

Info

Publication number
WO2014021066A1
WO2014021066A1 PCT/JP2013/068805 JP2013068805W WO2014021066A1 WO 2014021066 A1 WO2014021066 A1 WO 2014021066A1 JP 2013068805 W JP2013068805 W JP 2013068805W WO 2014021066 A1 WO2014021066 A1 WO 2014021066A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
abnormality
converter
power generation
stator winding
Prior art date
Application number
PCT/JP2013/068805
Other languages
French (fr)
Japanese (ja)
Inventor
智道 伊藤
順弘 楠野
守 木村
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to DE112013003764.5T priority Critical patent/DE112013003764T5/en
Priority to GB1419765.1A priority patent/GB2518989A/en
Publication of WO2014021066A1 publication Critical patent/WO2014021066A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • H02H7/062Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors for parallel connected generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/07Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings
    • H02P2207/076Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings wherein both supplies are made via converters: especially doubly-fed induction machines; e.g. for starting

Definitions

  • the present invention relates to a power generation system in which generated power is controlled by a power converter, and particularly relates to a system that improves operation continuity.
  • the wind power generation system is a pillar of renewable energy, and many capacities have been introduced all over the world beyond solar power generation systems and geothermal power generation systems.
  • the generator in a wind power generation system is arrange
  • Patent Document 1 there is one described in Patent Document 1 as one in which a plurality of rotors are provided in one generator to increase power generation efficiency.
  • the generator of the power generation apparatus includes the first and second rotors, and at least one of the rotations is accompanied by a magnetic circuit formed by the stator and both rotors.
  • One motive power is converted into electric power and output to the stator to generate electric power.
  • the rotating magnetic field generated by the electric power generation and the first and second rotors maintain a predetermined collinear relationship between the rotation speeds of each other. Rotate while.
  • two impellers are provided, and the first impeller converts the kinetic energy of the fluid into rotational kinetic energy, transmits the rotational kinetic energy to the first rotor, and rotates the first torque to rotate in one direction in the first rotation. Act on the child.
  • the second impeller converts the kinetic energy of the fluid into rotational kinetic energy, transmits it to the second rotor, rotates it in the direction opposite to that of the first rotor, and increases the second torque larger than the first torque. Torque is applied to the second rotor.
  • an object of the present invention is to provide a power generation system with improved operation continuity when an abnormality occurs in a generator or a control device.
  • a power generation system includes a rotor, a stator facing the rotor, a generator including a plurality of stator windings provided on the stator, An inverter disposed on the grid side, a converter disposed on the generator side, a capacitor disposed between the inverter and the converter, and a power converter provided for each stator winding; A sensor that is provided for each stator winding or the power converter and detects a state of the stator winding or the power converter, and based on the output of the sensor, the stator winding or the power converter An abnormality detection means for detecting an abnormality, and the abnormality detection means outputs whether or not there is an abnormality for each of the stator windings or the power converter, and is output when there is an abnormality from the abnormality detection means. If an error is detected, It has been the power converter, or abnormal, characterized in that interrupting the current of the stator winding in the power converter provided in the stator windings is
  • FIG. 1 is a schematic diagram of an entire power generation system according to Embodiment 1.
  • FIG. It is a figure explaining the flow of control of the electric power generation system which concerns on Example 1.
  • FIG. It is a figure explaining the structure of the power converter which concerns on Example 1.
  • FIG. It is a figure explaining arrangement
  • FIG. It is a figure explaining the magnitude
  • FIG. 1 is an axial sectional view of a generator according to Embodiment 1.
  • FIG. 3 is an explanatory diagram of a power converter controller according to the first embodiment.
  • FIG. 6 is an explanatory diagram of a power converter controller according to a second embodiment. It is a figure explaining the flow of control of the electric power generation system which concerns on Example 3.
  • FIG. 3 is an explanatory diagram of a power converter controller according to the first embodiment.
  • FIG. 6 is an explanatory diagram of a power converter controller according to a second embodiment. It is a
  • FIG. 6 is an explanatory diagram of a power converter controller according to a third embodiment.
  • FIG. 10 is an explanatory diagram of a power converter controller according to a fourth embodiment.
  • FIG. 10 is an axial sectional view of a generator according to a fifth embodiment.
  • FIG. 10 is an axial sectional view of a generator according to a fifth embodiment. It is a figure explaining the flow of control of the electric power generation system which concerns on Example 6.
  • FIG. FIG. 10 is an explanatory diagram of a power converter controller according to a sixth embodiment. It is a figure explaining the flow of control of the electric power generation system which concerns on Example 7.
  • FIG. FIG. 10 is a diagram illustrating a configuration of a converter according to a seventh embodiment.
  • FIG. 10 is a diagram for explaining an arrangement in a generator according to a seventh embodiment. It is a figure for demonstrating the principle by which the voltage in the neutral point pulsation which concerns on Example 7 is canceled.
  • the wind power generation system 1 includes a blade 10 that receives a wind force to obtain a rotational force, a hub 11 that transmits the rotational force of the blade 10 to a shaft 14, and a mechanical connection to the shaft 14.
  • the power generation / converter unit 100 that converts mechanical input into electricity and transmits the generated power to the power system 2 is connected to the shaft 14 and includes a part of the shaft 14 and the power generation / converter unit 100 therein.
  • the nacelle 60 and the tower 70 that supports the nacelle 60 so as to be rotatable in the horizontal direction are schematically configured.
  • An anemometer 203 is installed above the nacelle 60, and the output of the anemometer 203 is input to a host controller 1000 described later. Further, the connecting portion between the hub 11 and the blade 10 is provided with a pitch angle adjuster 12 (described in FIG. 2) that adjusts the angle of the blade 10.
  • the power generation / converter unit 100 is mainly configured by a power generator 101 to be described later, power converters 31 and 32, and a power converter controller 2000 that is a controller of the power converters 31 and 32.
  • the power generated by the generator 101 is frequency-converted by the power converter and transmitted to the power system 2 via the cable 26.
  • the wind power generation system 1 is roughly divided into two controllers.
  • One is a pitch angle command value ⁇ ref and a total system transmission power command value (generated power command value) Pref of the power converters 31 and 32 to control the rotation speed of the blade 10 according to the wind speed detected by the anemometer 203.
  • the other controller is a power converter controller 2000 that controls the transmission power to the power system 2 in accordance with the generated power command Pref output from the host controller 1000.
  • the host controller 1000 receives an output v of the anemometer 203, a generated power value P calculated by the power converter controller 2000, a blade rotation angular velocity ⁇ , and a power generation system abnormality signal L_ERR described later, and a pitch angle command value. ⁇ ref and the total generated power command value Pref of the power converters 31 and 32 are output.
  • the pitch angle command value ⁇ ref output from the host controller 1000 is input to the pitch angle adjuster 12, and the pitch angle adjuster 12 adjusts the pitch angle of the blade 10 according to the input pitch angle command value ⁇ ref.
  • the wind receiving area of the blade can be changed by adjusting the pitch angle.
  • the generated power command Pref output from the host controller 1000 is input to the power converter controller 2000.
  • the power converter controller 2000 controls both the power converters 31 and 32 so that the total of the effective power received by the power converters 31 and 32 from the generator 101 matches the power generation command.
  • the power generation system abnormality signal L_ERR output from the power converter controller 2000 is active (in this embodiment, when the abnormality detection signal is 0, it is active, that is, when the abnormality detection state is 1, and when the abnormality detection signal is 1. Is negative, that is, in a normal state), it is determined that the blade deceleration torque maximum value obtained from the power generation / converter unit 100 has been halved, and the pitch angle command value ⁇ ref and the total system transmission power command value Pref are limited respectively.
  • the restriction means that the pitch angle command value ⁇ ref is controlled to reduce the wind receiving area, and the total system transmission power command value Pref is that the command value is reduced. By limiting the pitch angle command value ⁇ ref, the rotational torque received from the wind can be reduced, and the blade 10 can be prevented from over-rotating.
  • the generator 101 is a permanent magnet synchronous generator including two sets of three-phase stator windings 10012 and 10013.
  • the power converters 31 and 32 are power converters having the same configuration. Note that the reason why the same configuration is used is that the members are intended to be general-purpose, and those having different configurations are not excluded. As will be described later, the inverter and the capacitor can be shared between the power converters.
  • the power converter 31 is connected to the generator 101 side, specifically, the converter 21 connected to the three-phase stator winding 10012, the inverter 23 connected to the power system 2 side, the converter 21 and the inverter 23 Between the smoothing capacitor 31cdc (and the voltage sensor 301 for detecting the stator winding voltage vst1, the current sensor 302 for detecting the stator winding current ist1, and the voltage across the terminals of the smoothing capacitor 31cdc. A voltage sensor 303 and a current sensor 304 for detecting the system output current ig1 are output to the power converter controller 2000. The output from the stator winding 10012 of the generator 101 is input to the power converter controller 2000. The power converter controller 20 receives the desired power and transmits the power to the output system 2.
  • Gate1 is a control signal of the converter 21 and the inverter 23, and outputs it to the power converter 31. Specifically, it has the same frequency as the voltage vst1 of the stator winding 10012 and is delayed in phase.
  • the converter 21 By causing the converter 21 to output the voltage, effective power is supplied from the stator winding 10012 to the power converter 31, and the power grid 2 is connected to the inverter 23 so that the voltage vdc 1 of the smoothing capacitor 31 cdc becomes a predetermined threshold value.
  • a voltage having a phase advanced from the point voltage vg is output, and the active power obtained from the stator winding is transmitted to the power system 2.
  • the power converter 32 is connected to the generator 101 side, specifically, the converter 22 connected to the three-phase stator winding 10013, the inverter 24 connected to the power system 2 side, the converter 22 and the inverter 24 A smoothing capacitor 32cdc arranged between them, a voltage sensor 306 for detecting the stator winding voltage vst2, a current sensor 307 for detecting the stator winding current ist2, and a voltage sensor for detecting the voltage across the terminals of the smoothing capacitor 32cdc. 308 and a current sensor 309 for detecting the system output current ig2.
  • the outputs of these voltage sensors and current sensors are also input to the power converter controller 2000 as in the case of the power converter 31.
  • the power system 2 side of the inverter 23 and the inverter 24 is electrically connected, and is connected to the power system 2 after being connected.
  • the measurement of the connection point voltage vg of the power system 2 is performed by the voltage sensor 305 that detects the connection point voltage.
  • the power converter controller 2000 calculates a gate signal Gate2 that is a control signal of the converter 22 and the inverter 24 so that the power converter 32 receives desired power from the stator winding 10013 of the generator 101 and transmits the power to the output system 2. And output to the power converter 32.
  • the inverter 24 outputs a voltage having a phase advanced from the connection point voltage vg of the power system 2, and the active power obtained from the stator winding is used as the power system 2 To send power.
  • the main circuit configuration and operation principle of the converter 21 and the inverter 23 will be described with reference to FIG.
  • the power converters 31 and 32 have the same configuration, and the converters and inverters provided in the power converters 31 and 32 have the same configuration. Therefore, the main circuit configuration and operation principle of the converter 22 and the inverter 24 are the same as those of the converter 21 and the inverter 23 although illustration and description are omitted.
  • the configuration of the converter 21 and the inverter 23 will be described using a 6-arm IGBT converter.
  • the IGBT elements 21m to 21r and 23m to 23r constitute the arms of the converter 21 and the inverter 23, respectively.
  • a gate drive signal is input from the power converter controller 2000 to the gates which are control electrodes of the IGBT elements 21m to 21r and 23m to 23r. When the gate drive signal is 0, the IGBT element is off, and when the gate drive signal is 1, the IGBT element is on.
  • the AC output power obtained from the stator winding 10012 of the generator 101 is output to DC power, and the DC power is output to the power system 2. Converted to AC power.
  • the current output from the stator winding 10012 of the generator 101 is determined by the difference between the generator induced voltage and the output voltage of the converter 21 and the leakage inductance of the stator winding 10012.
  • the stator winding current is converted into a direct current by the converter 21, and the smoothing capacitor 31cdc is charged by the direct current.
  • the output current to the power system 2 is determined by the difference between the grid system voltage of the power system 2 and the output voltage of the inverter 23, and the impedance of the harmonic filter 23fil.
  • the output current is converted from a direct current to an alternating current by switching of the inverter 23, and when the inverter 23 outputs active power to the system, the smoothing capacitor 31cdc is discharged.
  • the converter outputs a rectangular wave voltage by switching the IGBT element. Since this rectangular wave voltage causes the insulation deterioration of the generator, the converter 21 is connected to the generator 101 via the filter 21fil for limiting the voltage change rate. As described above, the power converter 32 has the same configuration as that of the power converter 31, and thus redundant description is omitted.
  • FIG. 4 is a diagram displayed apart from the actual magnitude relationship for explaining the radial sectional view of the generator, and the actual magnitude relationship is close to FIG.
  • the generator 101 includes a rotor 502 including a permanent magnet, and two stators 501 and 503 that sandwich the rotor 502 in the radial direction.
  • the rotor 502 is mechanically connected to the shaft 14 and rotates counterclockwise between the stators 501 and 503 as the blade 10 rotates (this does not exclude the specification of rotating clockwise). To do.
  • the stator 501 includes a plurality of magnetic poles and a stator winding 10012 wound around the magnetic poles.
  • the symbols (U1, V1, W1, N1, U2, V2, W2, and N2) shown on the winding terminals are electrically connected to each other. It shall be shown that
  • the stator 503 includes a plurality of magnetic poles and a stator winding 10013 wound around the magnetic poles.
  • terminal U2, V2, W2, N2 is not described, it is connected similarly to terminal U1, V1, W1, N1.
  • the magnetic flux generated by the permanent magnet of the rotor 502 is linked to the stator windings 10012 and 10013 of both the stator 501 and the stator 503. As the rotor 502 rotates, an induced voltage is generated in the stator windings 10012 and 10013.
  • the generator 101 By applying a voltage delayed in phase at the same frequency as the induced voltage from the converters 21 and 22 to the stator windings 10012 and 10013, the generator 101 passes through the stator windings 10012 and 10013 to the converters 21 and 22. Therefore, an effective current flows and power can be generated. Based on the above principle, power can be generated by both the stator windings 10012 and 10013.
  • the generator shown in FIG. 4 has a configuration with a small number of magnetic poles in order to explain the configuration of magnetic poles and stator windings. Therefore, in the figure, the distances from the generator rotation center at the magnetic pole surfaces of the stator 501 and the stator 503 are greatly different. For this reason, there is a large difference in the rate of change of the magnetic flux linked to the stator windings 10012 and 10013, and the induced voltages are greatly different.
  • the generator radius reaches several meters.
  • the distance from the generator rotation center on the magnetic pole surfaces of the stators 501 and 503 is relative as shown in FIG.
  • the sizes of the stators 501 and 503 are approximately the same. Therefore, a generator having a certain size such as the size can in principle generate approximately twice as much power as a generator including one stator having the same volume.
  • the wind power generation system 1 obtains rotational energy when the blade 10 receives wind, and rotates the rotor 502 of the generator 101 in the power generation / converter unit 100 via the shaft 14 by the rotational energy.
  • the rotor 502 includes a plurality of permanent magnets 520 and 521 (described in FIG. 6), and an alternating induced voltage is generated in the stator windings 10012 and 10013 of the generator 101 as the rotor 502 rotates. To do.
  • the power converters 31 and 32 have a frequency equal to the AC voltage induced in the stator windings 10012 and 10013 connected thereto, respectively, and output an AC voltage whose phase is delayed with respect to the induced voltage.
  • the active power is received from the machine 101.
  • the power converters 31 and 32 convert the active power into a frequency equal to that of the power system 2 and transmit the power to the power system 2.
  • the adjustment of the input torque from the wind is performed by adjusting the pitch angle of the blade 10, and the pitch angle is adjusted by the host controller 1000 so that the rotation speed of the blade becomes a rotation speed command value corresponding to the wind speed.
  • FIG. 6 demonstrates a generator structure and FIG. 7 demonstrates the abnormality detection function.
  • the power generation system includes a power converter connected to each stator and a detector that detects an abnormality in the power generation system. When an abnormality is detected, the power converter or the stator winding is connected.
  • the power converter is provided with a control system that cuts off the current of the stator winding and continues power generation with a sound stator winding and the power converter.
  • FIG. 6 is an axial sectional view of the generator 101.
  • the stator 501 is configured to cover the outside of the generator 101, and is in contact with the shaft 14 that transmits the rotational force of the blade 10 to the rotor 502 via a bearing 506.
  • a shaft 510 that is laid at the center of the stator 503 in the radial direction and supports the stator 503 via a spoke is fixed to the stator 501.
  • the other end of the shaft 510 is in contact with the rotor 502 via a bearing 505.
  • the rotor 502 is fixed to the shaft 14, and the other end of the rotor 502 is in contact with the shaft 510 through the bearing 504.
  • the rotor 502 and the stator 503 are supported by the stator 501 or the shaft 510 directly or indirectly via a bearing, and are provided with a rotor that is sandwiched between two stators in the radial direction. Can be formed.
  • the shaft 510 has a cylindrical configuration with a cavity inside, and the stator winding 10013 is drawn out of the generator through the cavity. With this configuration, the power converter 32 and the stator winding 10013 can be connected. Further, the permanent magnets 520 and 521 are supported by being embedded in the rotor 502, and the generator 101 can support a permanent magnet that generates a magnetic flux linked to the stator winding. On the other hand, the stator windings 10012 and 10013 can be fixed by being wound around the magnetic poles of the stators 501 and 503.
  • the generator 101 in this embodiment includes a plurality of stators, a smaller generator can be configured as compared with a conventional generator having the same rated power.
  • stator windings 10012 and 10013 in the present embodiment are installed in spatially separated locations in the generator as described above, abnormal heat generation due to short circuit or insulation deterioration occurs in one stator winding. Even if there is, since there is little influence on the other stator winding, there is a merit that it is possible to avoid an accidental expansion to a healthy stator winding.
  • the power converter controller 2000 includes a multiplier 2100 that decomposes the generated power command Pref input from the host controller 1000 into generated power commands Pref 1 and Pref 2 of the power converters 31 and 32, a subtractor 2101, and decomposed generated power A controller 2110 that calculates a gate signal Gate_01 of the power converter 31 so as to adjust the generated power of the power converter 31 according to the command Pref1, and a gate signal Gate_02 of the power converter 32 that adjusts the generated power of the power converter 32 according to Pref2.
  • the power command distribution method of the power converter controller 2000 will be described.
  • the generated power command value Pref input from the host controller 1000 is input to the multiplier 2100 and the subtractor 2101.
  • Multiplier 2100 multiplies power generation command value Pref by a fixed value k satisfying 0 ⁇ k ⁇ 1, and outputs the multiplication result (k * Pref) to controller 2110 and subtractor 2101.
  • the fixed value k is a value designed according to the ratio of electric power that can be generated from the thermal design of the stator windings 10012 and 10013 and the power converters 31 and 32.
  • the fixed value k will be described with reference to FIG.
  • the value is approximately equal to 0.5.
  • the fixed value k may be changed according to the output ratio expected according to the specification.
  • the controller 2110 outputs from each current sensor / voltage sensor so that the active power calculation value P1 received by the power converter 31 from the stator winding 10012 coincides with the power command value Pref1 and the DC voltage vdc1 becomes a predetermined threshold value.
  • the smoothing capacitor voltage vdc1, the power grid connection point voltage vg, the grid output current ig1, the output voltage vst1 of the stator winding 10012, the output current ist1 of the stator winding 10012, and the power command value Pref1 are input.
  • the gate signal Gate_01 of the converter 31 is calculated.
  • the active power calculation value P1 received from the stator winding 10012 is calculated by the product of the stator winding 10012 output voltage vst1 and the stator winding 10012 output current ist1. In addition to being used for the calculation in the controller 2110, P1 is output to the adder 2102.
  • the controller 2111 outputs from each current sensor / voltage sensor so that the active power calculation value P2 received by the power converter 32 from the stator winding 10013 coincides with the power command value Pref2 and the DC voltage vdc2 becomes a predetermined threshold value.
  • the smoothing capacitor voltage vdc2, the power grid connection point voltage vg, the grid output current ig2, the output voltage vst2 of the stator winding 10013, the output current ist2 of the stator winding 10013, and the power command value Pref2 are input.
  • the gate signal Gate_02 of the converter 32 is calculated.
  • the effective power calculation value P2 received from the stator winding 10013 is calculated by the product of the output voltage vst2 of the stator winding 10013 and the output current ist2 of the stator winding 10013. P2 is output to the adder 2102 in addition to being used for calculations in the controller 2111. Further, the controller 2111 calculates the rotational speed ⁇ of the generator 101 from the output voltage vst2 of the stator winding 10013 and the output current ist2 in addition to the calculation of the controller 2110, and outputs it to the host controller 1000.
  • the adder 2102 adds the active powers P1 and P2 and outputs the total generated power P of the generator 101 to the host controller 1000.
  • abnormality detector 2200 and the gate signal adjusters 2301 and 2302 will be described.
  • the anomaly detector 2200 receives the output currents ist1 and ist2 of the stator windings 10012 and 1001 and outputs the gate adjustment signal CTRL1 of the power converter 31 and the gate adjustment signal CTRL2 of the power converter 32.
  • the abnormality detection calculation of the abnormality detector 2200 will be described.
  • the abnormality detector 2200 determines that there is an abnormality in the stator winding or the power converter when the absolute value of the output current of the stator windings 10012 and 10013 is equal to or greater than a predetermined threshold, and outputs a gate adjustment signal. Change from 1 to 0.
  • the abnormality detector 2200 includes overcurrent detection calculators 2201 and 2202, and the overcurrent detection calculator calculates the absolute value of the stator winding output current and performs a comparison operation with a predetermined threshold value.
  • the predetermined threshold value can be set to a value larger than the rated current value of the stator winding currents is1 and ist2, for example, a value that is 1.2 times the rated current, and the fixed threshold value calculated by comparing with the predetermined threshold value.
  • an abnormality is detected, such as a short circuit of the stator windings 10012 and 1003 or a failure of the IGBT elements of the power converters 31 and 32.
  • the abnormality detector 2200 outputs the gate adjustment signal CTRL1 of the power converter 31 and the gate adjustment signal CTRL2 of the power converter 32.
  • the gate adjustment signal CTRL 1 is input to the gate signal adjuster 2301 and the gate adjustment signal CTRL 2 is input to the gate signal adjuster 2302.
  • the gate signal adjustment signal CTRL1 is a binary signal that is 0 when an abnormality is detected in the stator winding 10012 or the power converter 31, and is 1 otherwise.
  • the gate signal Gate1 of the power converter 31 is set to 0 regardless of the value of the gate signal Gate_01, and all the IGBT elements of the power converter 31 are OFF, that is, the gate block is fixed. The current of the child winding 10012 is cut off.
  • the gate signal adjustment signal CTRL2 is a binary signal that is 0 when an abnormality of the stator winding 10013 or the power converter 32 is detected, and 1 otherwise.
  • the gate signal Gate2 of the power converter 32 is set to 0 regardless of the value of the gate signal Gate_02, and all the IGBT elements of the power converter 31 are OFF, that is, the gate block is fixed. The current of the child winding 10013 is cut off.
  • the outputs CTRL 1 and CTRL 2 of the abnormality detector 2200 are output to the OR calculator 2303 and the display 2700.
  • the OR operator 2303 performs an OR operation on CTRL1 and CTRL2, and outputs the operation result to the host controller 1000 as an abnormality detection signal L_ERR.
  • the host controller 1000 when the abnormality detection signal L_ERR is 0, the host controller 1000 has approximately half the blade deceleration torque maximum value obtained by the power generation / converter unit 100 (the two stator windings have the same physique). Therefore, when there is a difference in capacity, the pitch angle command value ⁇ ref and the total system transmission power command value Pref are limited. . By limiting the pitch angle command value ⁇ ref, the rotational torque received by the wind can be reduced, and over-rotation of the blade 10 can be avoided.
  • Display unit 2700 receives CTRL1 and CTRL2 as input, and displays the name of the power converter that has detected the abnormality on a (liquid crystal) screen attached outside the power converter. That is, it plays a role of switching the display according to the output from the abnormality detector 2200.
  • the display on the (liquid crystal) screen may highlight the background of the name of the power converter that detected the abnormality in red, or the lamp indicating the failure of the power converter is turned on instead of the (liquid crystal) screen. May be.
  • the display 2700 communicates the occurrence of the failure via communication system 2701 to the communication terminal of the maintenance staff of the wind power generation system 1 located far away. With this configuration, the maintenance staff of the wind power generation system can know the abnormality of the power generation / converter unit 100 and can quickly make a repair plan.
  • two stators in the generator are provided across the rotor, and a stator winding is provided for each stator. Therefore, power generation is performed on both the radially outer side and the inner side of the rotor.
  • the space utilization factor of the generator can be improved, and a larger amount of generated power can be obtained with the same volume as the conventional generator. That is, the generator volume for obtaining a predetermined rated power can be reduced as compared with the conventional generator.
  • the number of stator windings provided in the stator does not have to be two, and can be increased. In that case, it is necessary to provide a power converter for each stator winding, and a sensor is provided for each stator winding or power converter to detect the state of the stator winding or power converter. It is also necessary to provide. After that, it suffices if there is an abnormality detection means for detecting an abnormality according to the output of the sensor.
  • a plurality of power converters that control the stator windings and generated power are provided.
  • a healthy stator can be obtained by gate-blocking the detected power converter. Electric power generation can be continued for the winding and the power converter.
  • the rotor windings by arranging the rotor windings on the outer side and the inner side in the radial direction of the rotor (with the rotor sandwiched between them)
  • the other healthy stator winding can be protected, and the healthy stator winding is not affected by the malfunction. Therefore, it is more suitable for the purpose of improving the power generation continuity.
  • the abnormality detection signal from the abnormality detection means is also displayed to the maintenance person of the wind power generation system, and it is possible to form a situation where the maintenance person can repair without delay while maintaining the power generation continuity. .
  • the host controller outside the power generation / converter unit 100 allows the blade deceleration torque to be maximized by the power generation system. It is possible to calculate the pitch angle command value ⁇ ref reflecting the decrease in the value, and to avoid over-rotation of the blade.
  • Example 2 will be described with reference to FIG.
  • the abnormality of the power generation / converter unit 100 is detected by the overcurrent of the stator winding current.
  • the abnormality detector 2200 calculates the current antiphase component 2203. 2204, when the output of the anti-phase component calculator and the second predetermined threshold are compared, and the outputs of the anti-phase calculators 2203 and 2204 are larger than the second predetermined threshold, the gate adjustment signals CTRL1 and CTRL2 are By providing the comparators 2205 and 2206 that change from 1 to 0, it is possible to detect disconnection of the stator windings 10012 and 10013 and avoid giving a large torque pulsation to the generator 101.
  • the second predetermined threshold is about 10 to 20% of the rated current of the stator windings 10012 and 10013 in order to avoid improper detection of abnormalities due to imbalance of winding resistance and noise simultaneously with appropriate abnormality detection. It is desirable to set to. About another point, it is the same as that of Example 1, and duplication description here is abbreviate
  • the abnormality detection target is the overcurrent or current reverse phase component of the line current below the stator.
  • abnormality detection may be performed based on an abnormal rise in the panel temperature of the inverter or converter.
  • the power generation / converter unit 100 detects an abnormal rise in the temperature inside the panel of the inverter or converter, and gate-blocks the corresponding power converter.
  • the temperature of the IGBT element or the panel rises.
  • the temperature rise of the IGBT is higher than the allowable temperature, there is a possibility of causing serious damage such as a burst or short circuit of the IGBT element module.
  • the converters 21 and 22 and the inverters 23 and 24 include temperature sensors 350, 351, 352, and 353 that detect the temperature in the panel, and outputs T 11, T 12, T 21, T 22 of the temperature sensors. Is input to the power converter controller 2000.
  • the abnormality detector 2200 of the power converter controller includes temperature determination units 2207 and 2208, which input T11 and T12, and the temperature sensor output value is larger than the third predetermined threshold value.
  • the power converter 31 is gate-blocked by changing the gate adjustment signal CTRL1 from 1 to 0. If the temperature sensor output value T21 or T22 is greater than the third predetermined threshold, the gate adjustment is performed.
  • a temperature sensor may be installed in the immediate vicinity of the IGBT element, and an abnormal rise in the IGBT element temperature may be detected instead of the temperature inside the panel.
  • duplication description here is abbreviate
  • the same effects as those described in the above embodiment can be obtained.
  • the power generation / converter unit 100 may detect an abnormal increase in the smoothing capacitor voltage.
  • the corresponding power converter is gate-blocked.
  • the cable connecting the inverter 23 or 24 to the power system 2 is disconnected, the corresponding inverter cannot transmit its rated power to the power system 2, and the power input from the converter connected to the inverter overcharges the capacitor. There is a possibility that. If the capacitor is overcharged, serious damage such as damage to the capacitor and damage to the IGBT element may occur.
  • the abnormality detector 2200 receives the smoothing capacitor voltages vdc1 and vdc2, and compares the smoothing capacitor voltage with a fourth predetermined threshold value to compare the power converters 31 and 32.
  • DC overvoltage calculators 2209 and 2210 for detecting a DC overvoltage are provided.
  • the DC voltage calculators 2209 and 2210 change the gate adjustment signal CTRL1 from 1 to 0 if the smoothing capacitor voltage vdc1 is larger than the fourth predetermined threshold, and the smoothing capacitor voltage vdc2 becomes lower than the fourth predetermined threshold. If it is larger, the gate adjustment signal CTRL2 is changed from 1 to 0.
  • each independently, and it is also possible to use them together. Since each detects anomalies for different events based on different measured values, it can be used together to detect anomalies for various anomaly patterns and improve the accuracy of anomaly detection. .
  • Example 5 will be described with reference to FIGS.
  • the generator 101 is a permanent magnet synchronous generator
  • an electromagnetic generator can also be used.
  • the voltage of the electric power system 2 is stepped down by the transformer 55 and rectified by the diode rectifier 54, and then the rotor windings are passed through the brushes 52 and 53 and the brush rings 50 and 51. Even if an exciting current is supplied to 10020, a linkage flux can be generated in the stator windings 10012 and 10013 in the same manner as the permanent magnet.
  • the generator 101 is provided in the stator 501, and is provided in the coil 60 excited by the power system 2 and the rotor 502, and the alternating magnetic flux generated by the coil 60 is linked.
  • a coil 61 that obtains AC power from the power system 2 in a non-contact manner, and a diode rectifier 54 that is provided in the rotor 502 and rectifies the AC voltage induced in the coil 61, and provides excitation current to the rotor winding 10020. It is possible to reduce the maintenance of the generator by providing a supply structure.
  • the exciting current for the electromagnet generator is obtained from the induced current between the non-contact coil 60 and the coil 61, and it is not necessary to obtain the exciting current by contacting (directly) through the brush. Therefore, a brushless structure can be realized.
  • each power converter has been described with an inverter and a converter.
  • inverters and capacitors arranged on the power system side may be shared. Is possible. That is, it is necessary for each power converter to include an inverter and a converter, but for each inverter, each power converter does not have to be independently provided.
  • Example 6 will be described with reference to FIGS. 14 and 15.
  • the power converters 31 and 32 have a configuration in which a DC unit is shared
  • the power generation / converter unit 100 may be configured to transmit the generated power to the power system 2 by a single inverter.
  • the DC circuit since the DC circuit is common, the DC circuit voltages of the converter 21 and the converter 22 are equal. Since the DC circuit voltages become equal (the controller 2111 does not need to perform inverter control), the controller 2110 controls the inverter 23 based on the output value of the DC voltage sensor 303 to obtain the generated power from the generator 101. Can be transmitted to the electric power system 2.
  • the inverter 24 is unnecessary, a current sensor for detecting the AC output current of the inverter 24 is not required. Therefore, with this configuration, it is possible to reduce the smoothing capacitor 32cdc on the power converter 32 side, the voltage sensor 308 for detecting the voltage of the smoothing capacitor 32cdc, and the current sensor 309 for system current detection.
  • the power converter controller 2000 includes a gate signal Gate — 021 for driving the gate signal of the converter 21 and a gate for driving the gate signal of the inverter 23 as shown in FIG.
  • the signal Gate — 023 is output, and the controller 2111 outputs a gate signal Gate — 022 that drives the gate signal of the converter 22, and only the gate signals of the converters 21 and 22 are adjusted according to the output of the abnormality detector 2200.
  • the configuration of the controller 2000 that allows only the IGBT of the converter to be turned off by the output of the abnormality detector 2200 is a significant difference from the above-described embodiment, and the gate block in the configuration sharing the DC section is different from that in the inverter.
  • the IGBT is not turned OFF, and is equivalent to controlling all the IGBTs in the converter to be turned OFF. Also in this case, when an abnormality is detected, the current of the stator winding is cut off by the power converter that detects the abnormality or the power converter that is connected to the stator winding that detects the abnormality. Continue power generation with windings and power converter.
  • the present embodiment it is possible to reduce the number of voltage sensors for detecting the smoothing capacitor voltage and the number of current sensors for system current detection, and to realize abnormality detection as in the above embodiments while realizing a simple configuration. It is possible to do the same.
  • Example 7 will be described with reference to FIGS. 16 to 19.
  • converters 125 and 126 that are three-level converters are provided, and the stator winding 20013 of the generator 201 is The stator winding 20012 is arranged with a deviation of about 60 degrees in electrical angle.
  • the three-level converter can output a waveform closer to a sine wave than the two-level converter and can suppress dV / dt in the AC output voltage, thereby reducing the requirement for the insulation performance of the stator winding.
  • the power factor at the generator terminal is other than 1
  • a power fluctuation of three times the frequency of the AC output voltage occurs from the neutral point of the DC circuit, so that the capacitor voltages of the converters 125, 126 and the inverter 123 are A large-capacitance capacitor must be mounted so as to be within the breakdown voltage range.
  • the converters connected to the generator 201 are the three-level converters 125 and 126, and their DC circuits are connected to each other.
  • the main circuit configurations of the converter 125 and the converter 126 are the same, and only the configuration of the converter 125 will be described with reference to FIG.
  • the converter 125 and the converter 126 do not always have to have the same main circuit configuration, and may have different configurations. By using similar parts, the types of parts can be reduced.
  • the converter 125 includes six IGBT elements and two diodes connected to a DC neutral point in one arm. By turning on and off the IGBT element, three levels of potentials can be output to the filter 121fil: the positive potential of the smoothing capacitor 131dcp, the DC neutral point potential, and the negative potential of the smoothing capacitor 131dcn.
  • converter 125 When converter 125 outputs an AC voltage to filter 121fil, a difference occurs in the discharge power of smoothing capacitors 131dcp and 131dcn, and pulsation occurs.
  • FIG. 18 shows the configuration of the generator 201 of this embodiment.
  • the stator 603 is out of phase with the stator 601 by an electrical angle of 60 degrees.
  • the output voltages and output currents of the converter 125 and the converter 126 are both shifted by 60 degrees, so that the power pulsation is also equivalent to the fundamental wave and is shifted by 60 degrees.
  • An electrical angle of 60 degrees of the fundamental wave corresponds to 180 degrees, which is three times that of pulsating power having a frequency three times that of the fundamental wave. Therefore, the pulsation can be canceled by shifting the stator windings 20012, 20013 of the generator 201 by 60 degrees in electrical angle.
  • a generator having a high output density is configured, and even when a failure occurs in the power generation system, high power continuation using a sound stator winding and a power converter can be realized.
  • the winding insulation design of the generator 201 can be facilitated by using a three-level converter as the converter of the generator / converter unit 200.
  • the pulsating power flowing from the three-level converters 125 and 126 to the DC neutral point can be canceled by shifting the phases of the stator windings 20012 and 20013 of the generator 201 by 60 degrees, which is a feature of this embodiment. It is possible to configure the power converter 31 with a small-capacitance capacitor.
  • the application target is not necessarily limited to the wind power generation system except for the part related to the pitch angle control of the blades specific to the wind power generation system.

Abstract

The purpose of the present invention is to provide a power generation system capable of improving continuity in operation when an abnormality occurs in a generator or a control device. In order to solve the abovementioned problem, the power generation system comprises: a generator (101) having a plurality of stator windings (10012, 10013) provided on a stator; power convertors (31, 32) provided on each stator winding; a sensor provided on each stator winding or on each power convertor to detect the state thereof; and an abnormality detection means for detecting the abnormality in the stator windings or the power convertors on the basis of the output from the sensor. The abnormality detection means outputs the presence or absence of an abnormality for each stator winding or each power convertor, and when the abnormality detection means outputs the presence of an abnormality, the power convertor in which the abnormality was detected or the power convertor provided on the stator winding in which the abnormality was detected cuts off the current of the stator winding.

Description

発電システムPower generation system
 本発明は、電力変換器により発電電力が制御される発電システムに関わるものであり、特に運転継続性を向上させるもの等に関する。 The present invention relates to a power generation system in which generated power is controlled by a power converter, and particularly relates to a system that improves operation continuity.
 風力発電システムは再生可能エネルギーの柱として、太陽光発電システムや地熱発電システム等を超えて、多くの容量が世界中で導入されている。ここで、風力発電システムにおける発電機は、スペースが限られたナセル内等に配置されるので、大型化には制約がある。一方、発電容量を大きくしようとすると、回転子や固定子が大型化するのは回避し難い。ここで、一台の発電機内に複数の回転子を備えて、発電効率を高めるものとして例えば特許文献1に記載されたものがある。 The wind power generation system is a pillar of renewable energy, and many capacities have been introduced all over the world beyond solar power generation systems and geothermal power generation systems. Here, since the generator in a wind power generation system is arrange | positioned in the nacelle etc. where the space was limited, there exists a restriction | limiting in enlargement. On the other hand, when trying to increase the power generation capacity, it is difficult to avoid an increase in the size of the rotor and the stator. Here, for example, there is one described in Patent Document 1 as one in which a plurality of rotors are provided in one generator to increase power generation efficiency.
 該特許文献によれば、発電装置の発電機では、第1および第2の回転子を備えて、少なくとも一方の回転に伴い、固定子と両回転子で形成される磁気回路を介して、少なくとも一方の動力を電力に変換し、固定子に出力して発電し、発電に伴って発生する回転磁界、第1および第2の回転子が互いの間に回転数の所定の共線関係を保ちながら回転する。また、羽根車を2つ備え、第1の羽根車は、流体の運動エネルギーを回転運動エネルギーに変換して第1の回転子に伝達し、一方向に回転させる第1トルクを第1の回転子に作用させる。第2の羽根車は、流体の運動エネルギーを回転運動エネルギーに変換して第2の回転子に伝達し、第1の回転子とは逆方向に回転させ、第1のトルクよりも大きな第2トルクを第2の回転子に作用させる。 According to the patent document, the generator of the power generation apparatus includes the first and second rotors, and at least one of the rotations is accompanied by a magnetic circuit formed by the stator and both rotors. One motive power is converted into electric power and output to the stator to generate electric power. The rotating magnetic field generated by the electric power generation and the first and second rotors maintain a predetermined collinear relationship between the rotation speeds of each other. Rotate while. In addition, two impellers are provided, and the first impeller converts the kinetic energy of the fluid into rotational kinetic energy, transmits the rotational kinetic energy to the first rotor, and rotates the first torque to rotate in one direction in the first rotation. Act on the child. The second impeller converts the kinetic energy of the fluid into rotational kinetic energy, transmits it to the second rotor, rotates it in the direction opposite to that of the first rotor, and increases the second torque larger than the first torque. Torque is applied to the second rotor.
特開2009-185782号公報JP 2009-185782 JP
 近年、風力発電システムは大容量化が続いており、風車のタワーの高さが70mを超えるものも多くなっている。また、設置場所についても、陸上のみならず洋上に設置されるケースが増えている。 In recent years, the capacity of wind power generation systems has continued to increase, and the height of wind turbine towers has exceeded 70 m. In addition, the number of installation locations is increasing not only on land but also offshore.
 また、風車の大型化に伴い、機器不具合が発生した場合の修理が困難になっており、特に洋上では風車までのアクセスが困難であることから、部品交換を長期化し、メンテナンス周期を長期化させる等でメンテナンス負担を低減することが望まれる。 In addition, as the size of the windmill increases, it becomes difficult to repair in the event of equipment failure. Especially, since it is difficult to access the windmill offshore, it is necessary to prolong parts replacement and lengthen the maintenance cycle. It is desirable to reduce the maintenance burden.
 風力発電システム運営者にとっては、メンテナンス負担の低減も重要だが、異常発生時には直ちに修理できるものではないため、異常発生後も修理を行う迄の間、たとえ発電可能電力が減ったとしても風力発電システムが発電を継続できる方が(稼働率が上がるため)望ましい。 Although it is also important for wind power generation system operators to reduce the maintenance burden, it is not something that can be repaired immediately when an abnormality occurs. Therefore, even if the power that can be generated decreases even after the abnormality occurs, the wind power generation system However, it is desirable to be able to continue power generation (because of higher operating rates).
 しかし、特許文献1に記載された発電装置においては、発電機または制御器に異常が生じた場合における運転継続性については、何ら記載されていない。 However, in the power generation apparatus described in Patent Document 1, there is no description about operation continuity when an abnormality occurs in the generator or the controller.
 そこで、本発明では発電機または制御機器に異常が生じた場合における運転継続性を高めた発電システムを提供することを目的とする。 Therefore, an object of the present invention is to provide a power generation system with improved operation continuity when an abnormality occurs in a generator or a control device.
 上記の課題を解決するために、本発明に係る発電システムは、回転子と、該回転子に対向する固定子と、該固定子に設けられる複数の固定子巻線を備える発電機と、電力系統側に配置されるインバータと、発電機側に配置されるコンバータと、該インバータ及び該コンバータの間に配置されるコンデンサとを備え、かつ、前記固定子巻線毎に設けられる電力変換器と、前記固定子巻線または前記電力変換器毎に設けられ、該固定子巻線または電力変換器の状態を検出するセンサと、前記センサの出力に基づき、前記固定子巻線または電力変換器の異常を検出する異常検出手段とを備え、該異常検出手段は、前記固定子巻線または電力変換器毎に、異常があるか否かを出力し、該異常検出手段から異常があると出力された場合には、異常が検出された前記電力変換器、または異常が検出された前記固定子巻線に設けられる前記電力変換器で前記固定子巻線の電流を遮断することを特徴とする。 In order to solve the above problems, a power generation system according to the present invention includes a rotor, a stator facing the rotor, a generator including a plurality of stator windings provided on the stator, An inverter disposed on the grid side, a converter disposed on the generator side, a capacitor disposed between the inverter and the converter, and a power converter provided for each stator winding; A sensor that is provided for each stator winding or the power converter and detects a state of the stator winding or the power converter, and based on the output of the sensor, the stator winding or the power converter An abnormality detection means for detecting an abnormality, and the abnormality detection means outputs whether or not there is an abnormality for each of the stator windings or the power converter, and is output when there is an abnormality from the abnormality detection means. If an error is detected, It has been the power converter, or abnormal, characterized in that interrupting the current of the stator winding in the power converter provided in the stator windings is detected.
 本発明によれば、発電機または制御機器に異常が生じた場合における運転継続性を高めた発電システムを提供することが可能になる。 According to the present invention, it is possible to provide a power generation system with improved operation continuity when an abnormality occurs in a generator or a control device.
実施例1に係る発電システム全体の概略図である。1 is a schematic diagram of an entire power generation system according to Embodiment 1. FIG. 実施例1に係る発電システムの制御の流れを説明する図である。It is a figure explaining the flow of control of the electric power generation system which concerns on Example 1. FIG. 実施例1に係る電力変換器の構成を説明する図である。It is a figure explaining the structure of the power converter which concerns on Example 1. FIG. 実施例1に係る発電機内の配置を説明する図である。It is a figure explaining arrangement | positioning in the generator which concerns on Example 1. FIG. 実施例1に係る発電機内機器の大きさを説明する図である。It is a figure explaining the magnitude | size of the apparatus in generator which concerns on Example 1. FIG. 実施例1に係る発電機の軸方向断面図である。1 is an axial sectional view of a generator according to Embodiment 1. FIG. 実施例1に係る電力変換器コントローラ説明図である。FIG. 3 is an explanatory diagram of a power converter controller according to the first embodiment. 実施例2に係る電力変換器コントローラ説明図である。FIG. 6 is an explanatory diagram of a power converter controller according to a second embodiment. 実施例3に係る発電システムの制御の流れを説明する図である。It is a figure explaining the flow of control of the electric power generation system which concerns on Example 3. FIG. 実施例3に係る電力変換器コントローラ説明図である。FIG. 6 is an explanatory diagram of a power converter controller according to a third embodiment. 実施例4に係る電力変換器コントローラ説明図である。FIG. 10 is an explanatory diagram of a power converter controller according to a fourth embodiment. 実施例5に係る発電機の軸方向断面図である。FIG. 10 is an axial sectional view of a generator according to a fifth embodiment. 実施例5に係る発電機の軸方向断面図である。FIG. 10 is an axial sectional view of a generator according to a fifth embodiment. 実施例6に係る発電システムの制御の流れを説明する図である。It is a figure explaining the flow of control of the electric power generation system which concerns on Example 6. FIG. 実施例6に係る電力変換器コントローラ説明図である。FIG. 10 is an explanatory diagram of a power converter controller according to a sixth embodiment. 実施例7に係る発電システムの制御の流れを説明する図である。It is a figure explaining the flow of control of the electric power generation system which concerns on Example 7. FIG. 実施例7に係るコンバータの構成を説明する図である。FIG. 10 is a diagram illustrating a configuration of a converter according to a seventh embodiment. 実施例7に係る発電機内の配置を説明する図である。FIG. 10 is a diagram for explaining an arrangement in a generator according to a seventh embodiment. 実施例7に係る中性点脈動における電圧が相殺される原理を説明するための図である。It is a figure for demonstrating the principle by which the voltage in the neutral point pulsation which concerns on Example 7 is canceled.
 以下、本発明を実施する上で好適となる実施例について、図面を用いて説明する。尚、下記はあくまでも実施の例に過ぎず、本発明の実施態様を下記具体的態様に限定することを意図する趣旨ではない。本発明は下記実施態様以外にも種々の態様に変形等が可能である。 Hereinafter, embodiments suitable for carrying out the present invention will be described with reference to the drawings. The following are merely examples of implementation, and are not intended to limit the embodiments of the present invention to the following specific embodiments. The present invention can be modified in various ways other than the following embodiments.
 本実施例について、図1ないし図7を用いて説明する。図1には、本実施例の発電システムを備える風力発電システムの概略を示している。該図に示す様に、風力発電システム1は、風の力を受けて回転力を得るブレード10と、ブレード10の回転力をシャフト14に伝達するハブ11と、シャフト14に機械的に接続して機械的入力を電気に変換し、電力系統2に該発電電力を送電する発電・変換器部100と、シャフト14に接続され、シャフト14の一部と発電・変換器部100を内部に有するナセル60と、ナセル60を水平方向に回転可能に支持するタワー70により概略構成される。ナセル60の上部には風速計203が設置され、該風速計203の出力は後述の上位コントローラ1000に入力される。また、ハブ11及びブレード10の接続部には、ブレード10の角度を調整するピッチ角調整機12(図2に記載)が備えられる。 This embodiment will be described with reference to FIGS. In FIG. 1, the outline of the wind power generation system provided with the power generation system of a present Example is shown. As shown in the figure, the wind power generation system 1 includes a blade 10 that receives a wind force to obtain a rotational force, a hub 11 that transmits the rotational force of the blade 10 to a shaft 14, and a mechanical connection to the shaft 14. The power generation / converter unit 100 that converts mechanical input into electricity and transmits the generated power to the power system 2 is connected to the shaft 14 and includes a part of the shaft 14 and the power generation / converter unit 100 therein. The nacelle 60 and the tower 70 that supports the nacelle 60 so as to be rotatable in the horizontal direction are schematically configured. An anemometer 203 is installed above the nacelle 60, and the output of the anemometer 203 is input to a host controller 1000 described later. Further, the connecting portion between the hub 11 and the blade 10 is provided with a pitch angle adjuster 12 (described in FIG. 2) that adjusts the angle of the blade 10.
 図2に示す様に、発電・変換器部100は、主として、後述する発電機101と、電力変換器31、32と、電力変換器31、32のコントローラである電力変換器コントローラ2000により構成されており、発電機101の発電電力は上記電力変換器により周波数変換され、ケーブル26を介して電力系統2に送電される。 As shown in FIG. 2, the power generation / converter unit 100 is mainly configured by a power generator 101 to be described later, power converters 31 and 32, and a power converter controller 2000 that is a controller of the power converters 31 and 32. The power generated by the generator 101 is frequency-converted by the power converter and transmitted to the power system 2 via the cable 26.
 以下、風力発電システム1の制御システムおよび発電・変換器部100の各部の詳細構成について説明する。 Hereinafter, a detailed configuration of each part of the control system of the wind power generation system 1 and the power generation / converter unit 100 will be described.
 風力発電システム1は、大きく分けて2つのコントローラを備える。一つは、風速計203により検出した風速に応じてブレード10の回転速度を制御すべくピッチ角指令値φref及び電力変換器31、32の合計系統送電電力指令値(発電電力指令値)Pref、を算出する上位コントローラ1000であり、もう一つのコントローラは、上位コントローラ1000から出力された発電電力指令Prefに従い、電力系統2への送電電力を制御する電力変換器コントローラ2000である。 The wind power generation system 1 is roughly divided into two controllers. One is a pitch angle command value φref and a total system transmission power command value (generated power command value) Pref of the power converters 31 and 32 to control the rotation speed of the blade 10 according to the wind speed detected by the anemometer 203. The other controller is a power converter controller 2000 that controls the transmission power to the power system 2 in accordance with the generated power command Pref output from the host controller 1000.
 上位コントローラ1000は、風速計203の出力vと、電力変換器コントローラ2000が算出する発電電力値Pと、ブレード回転角速度ωと、後述する発電システム異常信号L_ERRと、を入力され、ピッチ角指令値φrefと、電力変換器31、32の合計発電電力指令値Prefを出力する。 The host controller 1000 receives an output v of the anemometer 203, a generated power value P calculated by the power converter controller 2000, a blade rotation angular velocity ω, and a power generation system abnormality signal L_ERR described later, and a pitch angle command value. φref and the total generated power command value Pref of the power converters 31 and 32 are output.
 上位コントローラ1000から出力されたピッチ角指令値φrefはピッチ角調整機12に入力され、ピッチ角調整機12は入力されたピッチ角指令値φrefに従ってブレード10のピッチ角を調整する。ピッチ角の調整により、ブレードの受風面積を変更することが出来る。 The pitch angle command value φref output from the host controller 1000 is input to the pitch angle adjuster 12, and the pitch angle adjuster 12 adjusts the pitch angle of the blade 10 according to the input pitch angle command value φref. The wind receiving area of the blade can be changed by adjusting the pitch angle.
 上位コントローラ1000から出力された発電電力指令Prefは、電力変換器コントローラ2000に入力される。電力変換器31、32が発電機101より受け取る有効電力の合計が上記発電指令と一致するように、電力変換器コントローラ2000は両電力変換器31、32を制御する。 The generated power command Pref output from the host controller 1000 is input to the power converter controller 2000. The power converter controller 2000 controls both the power converters 31 and 32 so that the total of the effective power received by the power converters 31 and 32 from the generator 101 matches the power generation command.
 上位コントローラ1000は、電力変換器コントローラ2000から出力された発電システム異常信号L_ERRがアクティブ(本実施例では異常検出信号が0のときがアクティブ、つまり異常検出の状態とし、異常検出信号が1のときがネガティブ、つまり正常状態、とする)のとき、発電・変換器部100から得られるブレード減速トルク最大値が半減したと判定し、ピッチ角指令値φref及び合計系統送電電力指令値Prefを各々制限する。制限するとは、ピッチ角指令値φrefにおいては、受風面積を減らす方向に制御することを指し、合計系統送電電力指令値Prefについては、指令値を小さくすることを指す。ピッチ角指令値φrefを制限することで、風から受ける回転トルクを低減でき、ブレード10の過回転を回避することができる。 In the host controller 1000, the power generation system abnormality signal L_ERR output from the power converter controller 2000 is active (in this embodiment, when the abnormality detection signal is 0, it is active, that is, when the abnormality detection state is 1, and when the abnormality detection signal is 1. Is negative, that is, in a normal state), it is determined that the blade deceleration torque maximum value obtained from the power generation / converter unit 100 has been halved, and the pitch angle command value φref and the total system transmission power command value Pref are limited respectively. To do. The restriction means that the pitch angle command value φref is controlled to reduce the wind receiving area, and the total system transmission power command value Pref is that the command value is reduced. By limiting the pitch angle command value φref, the rotational torque received from the wind can be reduced, and the blade 10 can be prevented from over-rotating.
 次に、発電・変換器部100について詳細に説明する。 Next, the power generation / converter unit 100 will be described in detail.
 発電機101は、2組の3相固定子巻線10012、10013、を備える永久磁石同期発電機である。電力変換器31、32については同じ構成を備える電力変換器である。尚、同じ構成としたのは部材の汎用化を意図したためであり、異なる構成を備えるものを排除した訳ではない。また、後述する様に、インバータ及びコンデンサを、電力変換器間で共有することも可能である。 The generator 101 is a permanent magnet synchronous generator including two sets of three- phase stator windings 10012 and 10013. The power converters 31 and 32 are power converters having the same configuration. Note that the reason why the same configuration is used is that the members are intended to be general-purpose, and those having different configurations are not excluded. As will be described later, the inverter and the capacitor can be shared between the power converters.
 電力変換器31は、発電機101側に接続され、具体的には3相固定子巻線10012に接続されるコンバータ21と、電力系統2側に接続されるインバータ23と、コンバータ21及びインバータ23の間に配置される平滑コンデンサ31cdc(と、固定子巻線電圧vst1を検出する電圧センサ301と、固定子巻線電流ist1を検出する電流センサ302と、平滑コンデンサ31cdcの端子間電圧を検出する電圧センサ303と、系統出力電流ig1を検出する電流センサ304とを備える。これら各電圧センサ、電流センサの出力は、電力変換器コントローラ2000に入力される。発電機101の固定子巻線10012から電力変換器31が所望の電力を受け取り、出力系統2に送電する様、電力変換器コントローラ2000はコンバータ21とインバータ23の制御信号であるゲート信号Gate1を算出し、電力変換器31に出力する。具体的には、固定子巻線10012の電圧vst1と同じ周波数であり、位相の遅れた電圧をコンバータ21に出力させることにより、固定子巻線10012より電力変換器31に有効電力を流し、平滑コンデンサ31cdcの電圧vdc1が所定の閾値となるように、インバータ23に電力系統2の連系点電圧vgより位相の進んだ電圧を出力させ、該固定子巻線より得た有効電力を電力系統2に送電させる。 The power converter 31 is connected to the generator 101 side, specifically, the converter 21 connected to the three-phase stator winding 10012, the inverter 23 connected to the power system 2 side, the converter 21 and the inverter 23 Between the smoothing capacitor 31cdc (and the voltage sensor 301 for detecting the stator winding voltage vst1, the current sensor 302 for detecting the stator winding current ist1, and the voltage across the terminals of the smoothing capacitor 31cdc. A voltage sensor 303 and a current sensor 304 for detecting the system output current ig1 are output to the power converter controller 2000. The output from the stator winding 10012 of the generator 101 is input to the power converter controller 2000. The power converter controller 20 receives the desired power and transmits the power to the output system 2. 0 calculates a gate signal Gate1 which is a control signal of the converter 21 and the inverter 23, and outputs it to the power converter 31. Specifically, it has the same frequency as the voltage vst1 of the stator winding 10012 and is delayed in phase. By causing the converter 21 to output the voltage, effective power is supplied from the stator winding 10012 to the power converter 31, and the power grid 2 is connected to the inverter 23 so that the voltage vdc 1 of the smoothing capacitor 31 cdc becomes a predetermined threshold value. A voltage having a phase advanced from the point voltage vg is output, and the active power obtained from the stator winding is transmitted to the power system 2.
 電力変換器32は、発電機101側に接続され、具体的には3相固定子巻線10013に接続されるコンバータ22と、電力系統2側に接続されるインバータ24、コンバータ22及びインバータ24の間に配置される平滑コンデンサ32cdcと、固定子巻線電圧vst2を検出する電圧センサ306と、固定子巻線電流ist2を検出する電流センサ307と、平滑コンデンサ32cdcの端子間電圧を検出する電圧センサ308と、系統出力電流ig2を検出する電流センサ309とを備える。これら各電圧センサ、電流センサの出力も、電力変換器31の場合と同様に、電力変換器コントローラ2000に入力される。インバータ23及びインバータ24の電力系統2側は電気的に接続されており、接続されてから電力系統2に繋がる。電力系統2の連系点電圧vgの測定は、連係点電圧を検出する電圧センサ305により行う。発電機101の固定子巻線10013から電力変換器32が所望の電力を受け取り、出力系統2に送電する様、電力変換器コントローラ2000はコンバータ22とインバータ24の制御信号であるゲート信号Gate2を算出し、電力変換器32に出力する。具体的には、固定子巻線10013の電圧vst2と同じ周波数であり、位相の遅れた電圧をコンバータ22に出力させることにより、固定子巻線10013より電力変換器32に有効電力を流し、平滑コンデンサ32cdcの電圧vdc2が所定の閾値となるように、インバータ24に電力系統2の連系点電圧vgより位相の進んだ電圧を出力させ、該固定子巻線より得た有効電力を電力系統2に送電させる。 The power converter 32 is connected to the generator 101 side, specifically, the converter 22 connected to the three-phase stator winding 10013, the inverter 24 connected to the power system 2 side, the converter 22 and the inverter 24 A smoothing capacitor 32cdc arranged between them, a voltage sensor 306 for detecting the stator winding voltage vst2, a current sensor 307 for detecting the stator winding current ist2, and a voltage sensor for detecting the voltage across the terminals of the smoothing capacitor 32cdc. 308 and a current sensor 309 for detecting the system output current ig2. The outputs of these voltage sensors and current sensors are also input to the power converter controller 2000 as in the case of the power converter 31. The power system 2 side of the inverter 23 and the inverter 24 is electrically connected, and is connected to the power system 2 after being connected. The measurement of the connection point voltage vg of the power system 2 is performed by the voltage sensor 305 that detects the connection point voltage. The power converter controller 2000 calculates a gate signal Gate2 that is a control signal of the converter 22 and the inverter 24 so that the power converter 32 receives desired power from the stator winding 10013 of the generator 101 and transmits the power to the output system 2. And output to the power converter 32. Specifically, by causing the converter 22 to output a voltage having the same frequency as the voltage vst2 of the stator winding 10013 and a phase lag, the effective power is supplied from the stator winding 10013 to the power converter 32, and smoothed. In order for the voltage vdc2 of the capacitor 32cdc to be a predetermined threshold, the inverter 24 outputs a voltage having a phase advanced from the connection point voltage vg of the power system 2, and the active power obtained from the stator winding is used as the power system 2 To send power.
 図3を用いて、コンバータ21、インバータ23の主回路構成および動作原理について、説明する。尚、上述した様に、本実施例では電力変換器31、32については同じ構成としており、電力変換器31、32の内部に設けられるコンバータ及びインバータについても同様の構成となる。故に、コンバータ22、インバータ24の主回路構成及び動作原理は、図示及び説明を省略するものの、コンバータ21、インバータ23と同様である。 The main circuit configuration and operation principle of the converter 21 and the inverter 23 will be described with reference to FIG. As described above, in this embodiment, the power converters 31 and 32 have the same configuration, and the converters and inverters provided in the power converters 31 and 32 have the same configuration. Therefore, the main circuit configuration and operation principle of the converter 22 and the inverter 24 are the same as those of the converter 21 and the inverter 23 although illustration and description are omitted.
 本実施例では、コンバータ21、インバータ23の構成を6アーム構成のIGBT変換器の場合で説明する。IGBT素子21m~21r、23m~23rがそれぞれコンバータ21とインバータ23のアームを構成している。各IGBT素子21m~21r、23m~23rの制御電極であるゲートには、電力変換器コントローラ2000からゲート駆動信号を入力する。ゲート駆動信号が0のときは、IGBT素子はオフ、ゲート駆動信号が1のときは、IGBT素子はオンとなる。 In the present embodiment, the configuration of the converter 21 and the inverter 23 will be described using a 6-arm IGBT converter. The IGBT elements 21m to 21r and 23m to 23r constitute the arms of the converter 21 and the inverter 23, respectively. A gate drive signal is input from the power converter controller 2000 to the gates which are control electrodes of the IGBT elements 21m to 21r and 23m to 23r. When the gate drive signal is 0, the IGBT element is off, and when the gate drive signal is 1, the IGBT element is on.
 PWM変調したゲート駆動信号を入力して各IGBT素子をスイッチングさせることにより、発電機101の固定子巻線10012より得られる交流出力電力は直流電力に、該直流電力は電力系統2に出力される交流電力に変換される。 By switching each IGBT element by inputting a PWM-modulated gate drive signal, the AC output power obtained from the stator winding 10012 of the generator 101 is output to DC power, and the DC power is output to the power system 2. Converted to AC power.
 発電機101の固定子巻線10012から出力される電流は、発電機誘起電圧とコンバータ21の出力電圧の差と、固定子巻線10012の漏れインダクタンスにより決まる。該固定子巻線電流はコンバータ21により直流電流に変換され、該直流電流により平滑コンデンサ31cdcが充電される。 The current output from the stator winding 10012 of the generator 101 is determined by the difference between the generator induced voltage and the output voltage of the converter 21 and the leakage inductance of the stator winding 10012. The stator winding current is converted into a direct current by the converter 21, and the smoothing capacitor 31cdc is charged by the direct current.
 電力系統2への出力電流は、電力系統2の連系点系統電圧とインバータ23の出力電圧の差と、高調波フィルタ23filのインピーダンスと、により決まる。該出力電流はインバータ23のスイッチングにより直流電流から交流電流に変換されたものであり、インバータ23が系統に有効電力を出力することにより平滑コンデンサ31cdcが放電される。 The output current to the power system 2 is determined by the difference between the grid system voltage of the power system 2 and the output voltage of the inverter 23, and the impedance of the harmonic filter 23fil. The output current is converted from a direct current to an alternating current by switching of the inverter 23, and when the inverter 23 outputs active power to the system, the smoothing capacitor 31cdc is discharged.
 コンバータはIGBT素子のスイッチングによって矩形波電圧を出力する。この矩形波電圧は発電機の絶縁劣化を引き起こす原因となるため,コンバータ21は電圧変化率制限用のフィルタ21filを介して発電機101に連系する。
 上述の様に、電力変換器32は、電力変換器31と同じ構成を有するため、重複説明を省略する。
The converter outputs a rectangular wave voltage by switching the IGBT element. Since this rectangular wave voltage causes the insulation deterioration of the generator, the converter 21 is connected to the generator 101 via the filter 21fil for limiting the voltage change rate.
As described above, the power converter 32 has the same configuration as that of the power converter 31, and thus redundant description is omitted.
 次に、図4及び図5を用いて発電機101について説明する。図4は発電機の半径方向断面図を説明するために実際の大小関係とは離れて表示した図であり、実際の大小関係としては図5に近いものとなる。 Next, the generator 101 will be described with reference to FIGS. 4 and 5. FIG. 4 is a diagram displayed apart from the actual magnitude relationship for explaining the radial sectional view of the generator, and the actual magnitude relationship is close to FIG.
 発電機101は、永久磁石を備える回転子502と、該回転子502を半径方向に挟む二つの固定子501及び固定子503を有する。回転子502はシャフト14に機械的に接続されており、ブレード10の回転に伴い、固定子501と503の間を反時計回り(時計回りに回る様な仕様を排除するものではない)に回転する。 The generator 101 includes a rotor 502 including a permanent magnet, and two stators 501 and 503 that sandwich the rotor 502 in the radial direction. The rotor 502 is mechanically connected to the shaft 14 and rotates counterclockwise between the stators 501 and 503 as the blade 10 rotates (this does not exclude the specification of rotating clockwise). To do.
 固定子501は複数の磁極と、該磁極に巻かれる固定子巻線10012を備える。図を簡潔に説明するため、図中の巻線端子に記載した記号(U1、V1、W1、N1、U2、V2、W2、N2)は、同一記号のついた端子は互いに電気的に接続されていることを示すものとする。 The stator 501 includes a plurality of magnetic poles and a stator winding 10012 wound around the magnetic poles. For the sake of brevity, the symbols (U1, V1, W1, N1, U2, V2, W2, and N2) shown on the winding terminals are electrically connected to each other. It shall be shown that
 固定子503は複数の磁極と、該磁極に巻かれる固定子巻線10013を備える。尚、端子U2、V2、W2、N2の結線を記載していないが、端子U1、V1、W1、N1と同様に接続されている。 The stator 503 includes a plurality of magnetic poles and a stator winding 10013 wound around the magnetic poles. In addition, although the connection of terminal U2, V2, W2, N2 is not described, it is connected similarly to terminal U1, V1, W1, N1.
 回転子502の永久磁石の発生する磁束は、固定子501と固定子503両方の固定子巻線10012、10013に鎖交する。回転子502が回転することにより、固定子巻線10012、10013には誘起電圧が発生する。 The magnetic flux generated by the permanent magnet of the rotor 502 is linked to the stator windings 10012 and 10013 of both the stator 501 and the stator 503. As the rotor 502 rotates, an induced voltage is generated in the stator windings 10012 and 10013.
 コンバータ21、22から、上記誘起電圧と同じ周波数で位相の遅れた電圧を固定子巻線10012、10013に印加することで、発電機101からコンバータ21、22へ固定子巻線10012、10013を介して有効電流が流れ、発電することができる。以上の原理により、固定子巻線10012、10013の両方で発電が可能となる。 By applying a voltage delayed in phase at the same frequency as the induced voltage from the converters 21 and 22 to the stator windings 10012 and 10013, the generator 101 passes through the stator windings 10012 and 10013 to the converters 21 and 22. Therefore, an effective current flows and power can be generated. Based on the above principle, power can be generated by both the stator windings 10012 and 10013.
 図4に示す発電機は、磁極や固定子巻線の構成を説明するため、磁極数の少ない構成とした。そのため、該図では固定子501と固定子503の磁極面における発電機回転中心からの距離が大きく異なる。そのため、固定子巻線10012と10013に鎖交する磁束の変化率に大きな差ができ、結果として誘起される電圧が大きく異なる。 The generator shown in FIG. 4 has a configuration with a small number of magnetic poles in order to explain the configuration of magnetic poles and stator windings. Therefore, in the figure, the distances from the generator rotation center at the magnetic pole surfaces of the stator 501 and the stator 503 are greatly different. For this reason, there is a large difference in the rate of change of the magnetic flux linked to the stator windings 10012 and 10013, and the induced voltages are greatly different.
 しかし、定格回転数が20rpm程度の風力発電システムでは、発電機半径は数メートルに達するため、実際は図5に示すように固定子501と503の磁極面における発電機回転中心からの距離は相対的に小さくなり、固定子501と503の大きさはほぼ同程度となる。故に、当該サイズ等、ある程度の大きさを有する発電機は同一体積を持つ固定子を1つ備える発電機に比べて略2倍の発電が原理的に可能となる。 However, in a wind power generation system with a rated rotational speed of about 20 rpm, the generator radius reaches several meters. In practice, therefore, the distance from the generator rotation center on the magnetic pole surfaces of the stators 501 and 503 is relative as shown in FIG. Thus, the sizes of the stators 501 and 503 are approximately the same. Therefore, a generator having a certain size such as the size can in principle generate approximately twice as much power as a generator including one stator having the same volume.
 続いて、風力発電システム1の動作について、説明する。 Subsequently, the operation of the wind power generation system 1 will be described.
 風力発電システム1は、ブレード10が風を受けることにより回転エネルギーを得、該回転エネルギーによりシャフト14を介して発電・変換器部100内の発電機101の回転子502を回転させる。 The wind power generation system 1 obtains rotational energy when the blade 10 receives wind, and rotates the rotor 502 of the generator 101 in the power generation / converter unit 100 via the shaft 14 by the rotational energy.
 回転子502は複数の永久磁石520、521(図6に記載)を備えており、該回転子502が回転することにより発電機101の固定子巻線10012、10013には交流の誘起電圧が発生する。 The rotor 502 includes a plurality of permanent magnets 520 and 521 (described in FIG. 6), and an alternating induced voltage is generated in the stator windings 10012 and 10013 of the generator 101 as the rotor 502 rotates. To do.
 電力変換器31、32は、それぞれ接続される固定子巻線10012、10013に誘起された交流電圧と等しい周波数を有し、該誘起電圧に対して位相の遅れた交流電圧を出力することにより発電機101から有効電力を受け取る。電力変換器31、32は該有効電力を電力系統2と等しい周波数に変換し、電力系統2へ送電する。 The power converters 31 and 32 have a frequency equal to the AC voltage induced in the stator windings 10012 and 10013 connected thereto, respectively, and output an AC voltage whose phase is delayed with respect to the induced voltage. The active power is received from the machine 101. The power converters 31 and 32 convert the active power into a frequency equal to that of the power system 2 and transmit the power to the power system 2.
 風からの入力トルクの調整はブレード10のピッチ角調整により実施し、ブレードの回転速度を風速に対応した回転速度指令値となる様、上位コントローラ1000によりピッチ角が調整される。 The adjustment of the input torque from the wind is performed by adjusting the pitch angle of the blade 10, and the pitch angle is adjusted by the host controller 1000 so that the rotation speed of the blade becomes a rotation speed command value corresponding to the wind speed.
 次に、発電機構成および発電・変換器部100の異常検出機能について、図6及び図7を用いて詳細に説明する。尚、図6では発電機構成を説明し、図7では異常検出機能について説明する。 Next, the generator configuration and the abnormality detection function of the power generation / converter unit 100 will be described in detail with reference to FIGS. In addition, FIG. 6 demonstrates a generator structure and FIG. 7 demonstrates the abnormality detection function.
 本実施例の発電システムは、固定子に各々接続される電力変換器と発電システムの異常を検出する検出器を備え、異常を検出したときには当該電力変換器または当該固定子巻線の接続される電力変換器で当該固定子巻線の電流を遮断して健全な固定子巻線と電力変換器で発電を継続させる制御システムを備えている。 The power generation system according to the present embodiment includes a power converter connected to each stator and a detector that detects an abnormality in the power generation system. When an abnormality is detected, the power converter or the stator winding is connected. The power converter is provided with a control system that cuts off the current of the stator winding and continues power generation with a sound stator winding and the power converter.
 回転子502、固定子503の支持方法を、図6を用いて説明する。図6は発電機101の軸方向断面図である。 A method for supporting the rotor 502 and the stator 503 will be described with reference to FIG. FIG. 6 is an axial sectional view of the generator 101.
 固定子501は、発電機101の外側を覆うような構成となっており、ブレード10の回転力を回転子502に伝達するシャフト14とはベアリング506を介して接する。固定子501には、固定子503の半径方向中心に敷設され、スポークを介して固定子503を支持する軸510が固定される。軸510の他端はベアリング505を介して回転子502に接する。そして、回転子502はシャフト14に固定され、回転子502の他端はベアリング504を介して軸510に接する。 The stator 501 is configured to cover the outside of the generator 101, and is in contact with the shaft 14 that transmits the rotational force of the blade 10 to the rotor 502 via a bearing 506. A shaft 510 that is laid at the center of the stator 503 in the radial direction and supports the stator 503 via a spoke is fixed to the stator 501. The other end of the shaft 510 is in contact with the rotor 502 via a bearing 505. The rotor 502 is fixed to the shaft 14, and the other end of the rotor 502 is in contact with the shaft 510 through the bearing 504.
 本構成により、回転子502、固定子503は直接的に、またはベアリングを介して間接的に固定子501または軸510に支持され、2つの固定子に半径方向に挟まれる回転子を備える発電機を形成できる。 With this configuration, the rotor 502 and the stator 503 are supported by the stator 501 or the shaft 510 directly or indirectly via a bearing, and are provided with a rotor that is sandwiched between two stators in the radial direction. Can be formed.
 なお、軸510は内部に空洞を持つ円筒構成とし、固定子巻線10013を、該空洞を通して発電機外部に引き出す。本構成により、電力変換器32と固定子巻線10013を接続することを可能とする。また、永久磁石520、521は回転子502内部に埋め込むことにより支持しており、発電機101は固定子巻線に鎖交させる磁束を発生する永久磁石を支持可能となる。一方、固定子巻線10012、10013については固定子501、503の磁極に巻かれることにより固定可能である。 The shaft 510 has a cylindrical configuration with a cavity inside, and the stator winding 10013 is drawn out of the generator through the cavity. With this configuration, the power converter 32 and the stator winding 10013 can be connected. Further, the permanent magnets 520 and 521 are supported by being embedded in the rotor 502, and the generator 101 can support a permanent magnet that generates a magnetic flux linked to the stator winding. On the other hand, the stator windings 10012 and 10013 can be fixed by being wound around the magnetic poles of the stators 501 and 503.
 本実施例における発電機101では、複数の固定子を備えているので、同一定格電力を持つ従来発電機に比べて小型な発電機を構成することができる。 Since the generator 101 in this embodiment includes a plurality of stators, a smaller generator can be configured as compared with a conventional generator having the same rated power.
 また、本実施例における固定子巻線10012、10013は、上述のように発電機内の空間的に離れた場所に設置されるため、一方の固定子巻線で短絡や絶縁劣化などによる異常発熱があった場合でも、他方の固定子巻線が受ける影響が少ないため、健全な固定子巻線への事故拡大を回避することができるメリットがある。 In addition, since the stator windings 10012 and 10013 in the present embodiment are installed in spatially separated locations in the generator as described above, abnormal heat generation due to short circuit or insulation deterioration occurs in one stator winding. Even if there is, since there is little influence on the other stator winding, there is a merit that it is possible to avoid an accidental expansion to a healthy stator winding.
 次に、電力変換器コントローラ2000について、図7を用いて説明する。 Next, the power converter controller 2000 will be described with reference to FIG.
 電力変換器コントローラ2000は、上位コントローラ1000より入力された発電電力指令Prefから電力変換器31と32の発電電力指令Pref1、Pref2に分解する乗算器2100と、減算器2101と、分解された発電電力指令Pref1に従って電力変換器31の発電電力を調整するよう電力変換器31のゲート信号Gate_01を算出するコントローラ2110と、Pref2に従って電力変換器32の発電電力を調整するよう電力変換器32のゲート信号Gate_02を算出するコントローラ2111と、発電・変換器部100の異常を検出するための演算を行い、異常か否かを出力する異常検出器2200と、該異常検出器2200の出力に応じて電力変換器31、32のゲート信号を調整するゲート信号調整器2301、2302とを備える。 The power converter controller 2000 includes a multiplier 2100 that decomposes the generated power command Pref input from the host controller 1000 into generated power commands Pref 1 and Pref 2 of the power converters 31 and 32, a subtractor 2101, and decomposed generated power A controller 2110 that calculates a gate signal Gate_01 of the power converter 31 so as to adjust the generated power of the power converter 31 according to the command Pref1, and a gate signal Gate_02 of the power converter 32 that adjusts the generated power of the power converter 32 according to Pref2. A controller 2111 for calculating the abnormality, an abnormality detector 2200 for performing an operation for detecting an abnormality of the power generation / converter unit 100 and outputting whether or not there is an abnormality, and a power converter according to the output of the abnormality detector 2200 Gate signal adjustment to adjust 31 and 32 gate signals And a vessel 2301 and 2302.
 電力変換器コントローラ2000の電力指令分配方法について、説明する。 The power command distribution method of the power converter controller 2000 will be described.
 上位コントローラ1000から入力された発電電力指令値Prefは、乗算器2100と、減算器2101に入力される。乗算器2100は、0<k<1である固定値kを発電指令値Prefに乗算し、乗算結果(k*Pref)をコントローラ2110および減算器2101に出力する。 The generated power command value Pref input from the host controller 1000 is input to the multiplier 2100 and the subtractor 2101. Multiplier 2100 multiplies power generation command value Pref by a fixed value k satisfying 0 <k <1, and outputs the multiplication result (k * Pref) to controller 2110 and subtractor 2101.
 減算器2101は、発電電力指令値Prefおよび乗算器2100の乗算結果を入力とし、発電電力指令値Prefに対する乗算結果の差分を計算することで、電力変換器32の発電電力指令値Pref2(=(1-k)*Pref)を算出する。 The subtractor 2101 receives the generated power command value Pref and the multiplication result of the multiplier 2100 as input, and calculates the difference between the generated power command value Pref and the generated power command value Pref2 (= ( 1-k) * Pref) is calculated.
 固定値kは、固定子巻線10012、10013および電力変換器31、32の熱設計から発電可能な電力の比率に応じて設計する値であり、本実施例では、図5に関連して説明した様に固定子巻線10012及び固定子巻線10013に発生する電力は同程度であると期待されるので、0.5に略等しい値としている。無論、仕様に応じて期待される出力比に応じて固定値kを変化させても良い。 The fixed value k is a value designed according to the ratio of electric power that can be generated from the thermal design of the stator windings 10012 and 10013 and the power converters 31 and 32. In this embodiment, the fixed value k will be described with reference to FIG. As described above, since the electric power generated in the stator winding 10012 and the stator winding 10013 is expected to be approximately the same, the value is approximately equal to 0.5. Of course, the fixed value k may be changed according to the output ratio expected according to the specification.
 電力変換器31が固定子巻線10012より受け取る有効電力算出値P1が電力指令値Pref1と一致し、直流電圧vdc1が所定の閾値となる様に、コントローラ2110は、各電流センサ・電圧センサから出力される、平滑コンデンサ電圧vdc1、電力系統連系点電圧vg、系統出力電流ig1、固定子巻線10012の出力電圧vst1、固定子巻線10012の出力電流ist1および電力指令値Pref1を入力とし、電力変換器31のゲート信号Gate_01を算出する。固定子巻線10012から受け取る有効電力算出値P1は、固定子巻線10012出力電圧vst1と固定子巻線10012出力電流ist1の積で算出される。P1はコントローラ2110内の演算に用いられる他に加算器2102に出力される。 The controller 2110 outputs from each current sensor / voltage sensor so that the active power calculation value P1 received by the power converter 31 from the stator winding 10012 coincides with the power command value Pref1 and the DC voltage vdc1 becomes a predetermined threshold value. The smoothing capacitor voltage vdc1, the power grid connection point voltage vg, the grid output current ig1, the output voltage vst1 of the stator winding 10012, the output current ist1 of the stator winding 10012, and the power command value Pref1 are input. The gate signal Gate_01 of the converter 31 is calculated. The active power calculation value P1 received from the stator winding 10012 is calculated by the product of the stator winding 10012 output voltage vst1 and the stator winding 10012 output current ist1. In addition to being used for the calculation in the controller 2110, P1 is output to the adder 2102.
 電力変換器32が固定子巻線10013より受け取る有効電力算出値P2が電力指令値Pref2と一致し、直流電圧vdc2が所定の閾値となる様に、コントローラ2111は、各電流センサ・電圧センサから出力される、平滑コンデンサ電圧vdc2、電力系統連系点電圧vg、系統出力電流ig2、固定子巻線10013の出力電圧vst2、固定子巻線10013の出力電流ist2および電力指令値Pref2を入力とし、電力変換器32のゲート信号Gate_02を算出する。固定子巻線10013から受け取る有効電力算出値P2は、固定子巻線10013の出力電圧vst2と固定子巻線10013の出力電流ist2の積で算出される。P2はコントローラ2111内の演算に用いられる他に加算器2102に出力される。更に、コントローラ2111は、コントローラ2110の演算に加え、固定子巻線10013の出力電圧vst2と出力電流ist2より発電機101の回転数ωを算出し、上位コントローラ1000に出力する。 The controller 2111 outputs from each current sensor / voltage sensor so that the active power calculation value P2 received by the power converter 32 from the stator winding 10013 coincides with the power command value Pref2 and the DC voltage vdc2 becomes a predetermined threshold value. The smoothing capacitor voltage vdc2, the power grid connection point voltage vg, the grid output current ig2, the output voltage vst2 of the stator winding 10013, the output current ist2 of the stator winding 10013, and the power command value Pref2 are input. The gate signal Gate_02 of the converter 32 is calculated. The effective power calculation value P2 received from the stator winding 10013 is calculated by the product of the output voltage vst2 of the stator winding 10013 and the output current ist2 of the stator winding 10013. P2 is output to the adder 2102 in addition to being used for calculations in the controller 2111. Further, the controller 2111 calculates the rotational speed ω of the generator 101 from the output voltage vst2 of the stator winding 10013 and the output current ist2 in addition to the calculation of the controller 2110, and outputs it to the host controller 1000.
 加算器2102は、有効電力P1、P2を加算し、発電機101の合計発電電力Pを上位コントローラ1000に出力する。 The adder 2102 adds the active powers P1 and P2 and outputs the total generated power P of the generator 101 to the host controller 1000.
 以下、異常検出器2200及びゲート信号調整器2301、2302について、説明する。 Hereinafter, the abnormality detector 2200 and the gate signal adjusters 2301 and 2302 will be described.
 異常検出器2200は、固定子巻線10012、10013の出力電流ist1、ist2を入力とし、電力変換器31のゲート調整信号CTRL1、電力変換器32のゲート調整信号CTRL2を出力する。 The anomaly detector 2200 receives the output currents ist1 and ist2 of the stator windings 10012 and 1001 and outputs the gate adjustment signal CTRL1 of the power converter 31 and the gate adjustment signal CTRL2 of the power converter 32.
 異常検出器2200の異常検出演算について説明する。 The abnormality detection calculation of the abnormality detector 2200 will be described.
 異常検出器2200は、固定子巻線10012及び10013の出力電流の絶対値が所定の閾値以上となった場合に、固定子巻線もしくは電力変換器に異常があったと判断し、ゲート調整信号を1から0に変化させる。 The abnormality detector 2200 determines that there is an abnormality in the stator winding or the power converter when the absolute value of the output current of the stator windings 10012 and 10013 is equal to or greater than a predetermined threshold, and outputs a gate adjustment signal. Change from 1 to 0.
 具体的には、異常検出器2200は過電流検出演算器2201、2202を備えており、該過電流検出演算器は固定子巻線出力電流の絶対値を算出し、所定の閾値と大小比較演算を実施する。所定の閾値は、固定子巻線電流ist1、ist2の定格電流値より大きい値、例えば定格電流の1.2倍の値等と設定でき、該所定の閾値との比較をして、算出した固定子巻線出力電流の絶対値が上回っている場合には、固定子巻線10012、10013の短絡または電力変換器31、32のIGBT素子が故障している等、異常を検出する。 Specifically, the abnormality detector 2200 includes overcurrent detection calculators 2201 and 2202, and the overcurrent detection calculator calculates the absolute value of the stator winding output current and performs a comparison operation with a predetermined threshold value. To implement. The predetermined threshold value can be set to a value larger than the rated current value of the stator winding currents is1 and ist2, for example, a value that is 1.2 times the rated current, and the fixed threshold value calculated by comparing with the predetermined threshold value. When the absolute value of the child winding output current exceeds, an abnormality is detected, such as a short circuit of the stator windings 10012 and 1003 or a failure of the IGBT elements of the power converters 31 and 32.
 異常検出器2200は、電力変換器31のゲート調整信号CTRL1、電力変換器32のゲート調整信号CTRL2を出力する。ゲート調整信号CTRL1は、ゲート信号調整器2301に、ゲート調整信号CTRL2は、ゲート信号調整器2302にそれぞれ入力される。 The abnormality detector 2200 outputs the gate adjustment signal CTRL1 of the power converter 31 and the gate adjustment signal CTRL2 of the power converter 32. The gate adjustment signal CTRL 1 is input to the gate signal adjuster 2301 and the gate adjustment signal CTRL 2 is input to the gate signal adjuster 2302.
 ゲート信号調整信号CTRL1は、固定子巻線10012もしくは電力変換器31の異常を検出した場合は0、それ以外は1である2値信号である。異常を検出したときには、電力変換器31のゲート信号Gate1はゲート信号Gate_01の値に関わらず0となる様に設定しており、電力変換器31のIGBT素子全てがOFF、即ちゲートブロックされ、固定子巻線10012の電流を遮断する。 The gate signal adjustment signal CTRL1 is a binary signal that is 0 when an abnormality is detected in the stator winding 10012 or the power converter 31, and is 1 otherwise. When an abnormality is detected, the gate signal Gate1 of the power converter 31 is set to 0 regardless of the value of the gate signal Gate_01, and all the IGBT elements of the power converter 31 are OFF, that is, the gate block is fixed. The current of the child winding 10012 is cut off.
 ゲート信号調整信号CTRL2は、固定子巻線10013もしくは電力変換器32の異常を検出した場合は0、それ以外は1である2値信号である。異常を検出したときには、電力変換器32のゲート信号Gate2はゲート信号Gate_02の値に関わらず0となる様に設定しており、電力変換器31のIGBT素子全てがOFF、即ちゲートブロックされ、固定子巻線10013の電流を遮断する。 The gate signal adjustment signal CTRL2 is a binary signal that is 0 when an abnormality of the stator winding 10013 or the power converter 32 is detected, and 1 otherwise. When an abnormality is detected, the gate signal Gate2 of the power converter 32 is set to 0 regardless of the value of the gate signal Gate_02, and all the IGBT elements of the power converter 31 are OFF, that is, the gate block is fixed. The current of the child winding 10013 is cut off.
 発電・変換器部100における、異常検出信号の上位コントローラへの伝達および風力発電システム1の保守員に対する異常通知インターフェースについて説明する。 In the power generation / converter unit 100, transmission of an abnormality detection signal to the host controller and an abnormality notification interface for maintenance personnel of the wind power generation system 1 will be described.
 異常検出器2200の出力CTRL1、CTRL2は、OR演算器2303および表示器2700に出力される。OR演算器2303は、CTRL1とCTRL2のOR演算を実施し、演算結果を異常検出信号L_ERRとして上位コントローラ1000に出力する。 The outputs CTRL 1 and CTRL 2 of the abnormality detector 2200 are output to the OR calculator 2303 and the display 2700. The OR operator 2303 performs an OR operation on CTRL1 and CTRL2, and outputs the operation result to the host controller 1000 as an abnormality detection signal L_ERR.
 上述の様に、上位コントローラ1000は異常検出信号L_ERRが0の場合には、発電・変換器部100により得られるブレード減速トルク最大値がおよそ半減(二つの固定子巻線が同程度の体格のため。容量に差がある場合には、異常が生じた固定子が有する容量比に応じた割合で減ずる。)したと判定し、ピッチ角指令値φref及び合計系統送電電力指令値Prefを制限する。ピッチ角指令値φrefの制限により、風により受ける回転トルクを低減でき、ブレード10の過回転を回避することができる。 As described above, when the abnormality detection signal L_ERR is 0, the host controller 1000 has approximately half the blade deceleration torque maximum value obtained by the power generation / converter unit 100 (the two stator windings have the same physique). Therefore, when there is a difference in capacity, the pitch angle command value φref and the total system transmission power command value Pref are limited. . By limiting the pitch angle command value φref, the rotational torque received by the wind can be reduced, and over-rotation of the blade 10 can be avoided.
 表示器2700は、CTRL1とCTRL2を入力とし、異常を検出した電力変換器名称を電力変換器外部に取り付けられた(液晶)画面に表示する。即ち、異常検出器2200からの出力に応じて表示を切り替える役割を果たす。ここで、(液晶)画面への表示は異常を検出した電力変換器名称の背景を赤色でハイライトしても良いし、(液晶)画面ではなく、電力変換器の故障を示すランプを点灯しても良い。また、表示器2700は通信システム2701を介し、遠方にいる風力発電システム1の保守員の通信端末に故障発生を通信で伝達する。本構成により、該風力発電システムの保守員は発電・変換器部100の異常を知ることができ、速やかに補修計画を立てることができる。 Display unit 2700 receives CTRL1 and CTRL2 as input, and displays the name of the power converter that has detected the abnormality on a (liquid crystal) screen attached outside the power converter. That is, it plays a role of switching the display according to the output from the abnormality detector 2200. Here, the display on the (liquid crystal) screen may highlight the background of the name of the power converter that detected the abnormality in red, or the lamp indicating the failure of the power converter is turned on instead of the (liquid crystal) screen. May be. Further, the display 2700 communicates the occurrence of the failure via communication system 2701 to the communication terminal of the maintenance staff of the wind power generation system 1 located far away. With this configuration, the maintenance staff of the wind power generation system can know the abnormality of the power generation / converter unit 100 and can quickly make a repair plan.
 本実施例では、発電機における固定子が回転子を挟んで二つ設けられ、各固定子毎に固定子巻線が備えられる様にしたので、回転子の半径方向外側と内側の両方で発電することができ、発電機の空間利用率が向上し、従来の発電機と同じ体積で、より大きな発電電力を得ることができる。つまり、従来発電機に比べて所定の定格電力を得るための発電機体積を小型化することができる。また、固定子に設けられる固定子巻線の数は二つでなければならないと言う訳ではなく、更に多くすることも可能である。その場合には、固定子巻線毎に電力変換器を設ける必要があり、また、固定子巻線または電力変換器毎に設けられ、当該固定子巻線または電力変換器の状態を検出するセンサを設ける必要もある。後は、センサの出力に応じて異常を検出する異常検出手段があれば良い。 In this embodiment, two stators in the generator are provided across the rotor, and a stator winding is provided for each stator. Therefore, power generation is performed on both the radially outer side and the inner side of the rotor. The space utilization factor of the generator can be improved, and a larger amount of generated power can be obtained with the same volume as the conventional generator. That is, the generator volume for obtaining a predetermined rated power can be reduced as compared with the conventional generator. Further, the number of stator windings provided in the stator does not have to be two, and can be increased. In that case, it is necessary to provide a power converter for each stator winding, and a sensor is provided for each stator winding or power converter to detect the state of the stator winding or power converter. It is also necessary to provide. After that, it suffices if there is an abnormality detection means for detecting an abnormality according to the output of the sensor.
 また、固定子巻線と発電電力を制御する電力変換器を複数備え、発電システムにおいて異常が検出された際には、不具合の検出された電力変換器をゲートブロックすることで、健全な固定子巻線と電力変換器については発電を継続することができる。 In addition, a plurality of power converters that control the stator windings and generated power are provided. When an abnormality is detected in the power generation system, a healthy stator can be obtained by gate-blocking the detected power converter. Electric power generation can be continued for the winding and the power converter.
 さらに、複数の固定子巻線の配置についても、回転子の半径方向外側と内側に分けて(回転子を挟んで)設置することにより、不具合の発生した固定子巻線の発熱等の影響から、他方の健全な固定子巻線を保護することができ、健全な固定子巻線については、不具合の影響を受けることがない。故に、発電継続性を向上させることを意図する上では一層好適なものとなる。 Furthermore, with regard to the arrangement of the plurality of stator windings, by arranging the rotor windings on the outer side and the inner side in the radial direction of the rotor (with the rotor sandwiched between them) The other healthy stator winding can be protected, and the healthy stator winding is not affected by the malfunction. Therefore, it is more suitable for the purpose of improving the power generation continuity.
 さらに、上記異常検出手段から異常検出信号を該風力発電システムの保守者へも併せて表示する様にしており、発電継続性は維持しつつも、遅滞なく保守者が修理を行える状況を形成できる。 Furthermore, the abnormality detection signal from the abnormality detection means is also displayed to the maintenance person of the wind power generation system, and it is possible to form a situation where the maintenance person can repair without delay while maintaining the power generation continuity. .
 さらに、発電・変換器部100に設けた異常検出手段から上位コントローラに異常検出信号を伝達出来る様にインターフェースを備えることで、発電・変換器部100外の上位コントローラは発電システムによるブレード減速トルク最大値が低下したことを反映したピッチ角指令値φrefを算出でき、ブレードの過回転を回避することができる。 Furthermore, by providing an interface so that an abnormality detection signal can be transmitted from the abnormality detection means provided in the power generation / converter unit 100 to the host controller, the host controller outside the power generation / converter unit 100 allows the blade deceleration torque to be maximized by the power generation system. It is possible to calculate the pitch angle command value φref reflecting the decrease in the value, and to avoid over-rotation of the blade.
 実施例2について図8を用いて説明する。実施例1では、発電・変換器部100の異常を固定子巻線電流の過電流により検出したが、図8に示す様に異常検出器2200が電流逆相成分を算出する逆相算出器2203、2204、該逆相成分算出器出力と第二の所定の閾値を大小比較して第二の所定の閾値より逆相算出器2203、2204の出力が大きい場合にはゲート調整信号CTRL1、CTRL2を1から0に変化させる比較器2205、2206を備えることにより、固定子巻線10012、10013の断線を検出し、発電機101に大きなトルク脈動を与えることを回避しても良い。ここで、第二の所定の閾値は、適切な異常検出と同時に、巻線抵抗のアンバランスやノイズによる異常誤検出を避けるため、固定子巻線10012、10013の定格電流の10~20%程度に設定することが望ましい。他の点については、実施例1と同様であり、ここでの重複説明は省略する。本実施例においても実施例1で説明したものと同様の効果を奏することが出来る。 Example 2 will be described with reference to FIG. In the first embodiment, the abnormality of the power generation / converter unit 100 is detected by the overcurrent of the stator winding current. However, as shown in FIG. 8, the abnormality detector 2200 calculates the current antiphase component 2203. 2204, when the output of the anti-phase component calculator and the second predetermined threshold are compared, and the outputs of the anti-phase calculators 2203 and 2204 are larger than the second predetermined threshold, the gate adjustment signals CTRL1 and CTRL2 are By providing the comparators 2205 and 2206 that change from 1 to 0, it is possible to detect disconnection of the stator windings 10012 and 10013 and avoid giving a large torque pulsation to the generator 101. Here, the second predetermined threshold is about 10 to 20% of the rated current of the stator windings 10012 and 10013 in order to avoid improper detection of abnormalities due to imbalance of winding resistance and noise simultaneously with appropriate abnormality detection. It is desirable to set to. About another point, it is the same as that of Example 1, and duplication description here is abbreviate | omitted. In this embodiment, the same effects as those described in the first embodiment can be obtained.
 実施例3について図9及び図10を用いて説明する。上記各実施例では、異常検出の対象を固定子下記線電流の過電流や電流逆相成分としていたが、インバータもしくはコンバータの盤内温度の異常上昇に基づき異常検出を行っても良い。発電・変換器部100は、インバータもしくはコンバータの盤内温度の異常上昇を検出し、該当する電力変換器をゲートブロックする。 Example 3 will be described with reference to FIGS. 9 and 10. In each of the above-described embodiments, the abnormality detection target is the overcurrent or current reverse phase component of the line current below the stator. However, abnormality detection may be performed based on an abnormal rise in the panel temperature of the inverter or converter. The power generation / converter unit 100 detects an abnormal rise in the temperature inside the panel of the inverter or converter, and gate-blocks the corresponding power converter.
 冷却ファン等の故障により、IGBT素子が十分に冷却されない場合、IGBT素子や盤内温度が上昇する。IGBTの温度上昇が許容される温度以上になると、IGBT素子モジュールの破裂や短絡等の甚大な被害を引き起こす可能性がある。盤内温度の異常上昇を検出し、該当電力変換器をゲートブロックすることで、さらなる発熱を抑制することができ、発電・変換器部100を安全に運転継続することが可能となる。 When the IGBT element is not sufficiently cooled due to a failure of the cooling fan or the like, the temperature of the IGBT element or the panel rises. When the temperature rise of the IGBT is higher than the allowable temperature, there is a possibility of causing serious damage such as a burst or short circuit of the IGBT element module. By detecting an abnormal rise in the panel temperature and gate-blocking the corresponding power converter, further heat generation can be suppressed, and the power generation / converter unit 100 can be safely continued.
 具体的には、図9のようにコンバータ21、22、インバータ23、24が盤内温度を検出する温度センサ350、351、352、353を備え、該温度センサの出力T11、T12、T21、T22が電力変換器コントローラ2000に入力される。図10に記載の様に電力変換器コントローラの異常検出器2200が温度判定器2207、2208を備え、該判定器がT11、T12を入力とし、第三の所定の閾値より温度センサ出力値が大きければ、ゲート調整信号CTRL1を1から0に変化させることで電力変換器31をゲートブロックし、上記温度センサ出力値T21もしくはT22が第三の所定の閾値より温度センサ出力値が大きければ、ゲート調整信号CTRL2を1から0に変化させることにより電力変換器32をゲートブロックする構成を備えることにより、電力変換器31、32の過熱による損傷を回避できる。ここで、温度センサをIGBT素子直近に設置し、盤内温度の代わりにIGBT素子温度の異常上昇を検出しても良い。他の点については、実施例1と同様であり、ここでの重複説明は省略する。本実施例においても上記実施例で説明したものと同様の効果を奏することが出来る。 Specifically, as shown in FIG. 9, the converters 21 and 22 and the inverters 23 and 24 include temperature sensors 350, 351, 352, and 353 that detect the temperature in the panel, and outputs T 11, T 12, T 21, T 22 of the temperature sensors. Is input to the power converter controller 2000. As shown in FIG. 10, the abnormality detector 2200 of the power converter controller includes temperature determination units 2207 and 2208, which input T11 and T12, and the temperature sensor output value is larger than the third predetermined threshold value. For example, the power converter 31 is gate-blocked by changing the gate adjustment signal CTRL1 from 1 to 0. If the temperature sensor output value T21 or T22 is greater than the third predetermined threshold, the gate adjustment is performed. By providing the configuration in which the power converter 32 is gate-blocked by changing the signal CTRL2 from 1 to 0, damage due to overheating of the power converters 31 and 32 can be avoided. Here, a temperature sensor may be installed in the immediate vicinity of the IGBT element, and an abnormal rise in the IGBT element temperature may be detected instead of the temperature inside the panel. About another point, it is the same as that of Example 1, and duplication description here is abbreviate | omitted. Also in this embodiment, the same effects as those described in the above embodiment can be obtained.
 実施例4について図11を用いて説明する。上記各実施例で説明した異常検出の他、発電・変換器部100は、平滑コンデンサ電圧の異常上昇を検出しても良い。そして、異常検出した際に、該当する電力変換器をゲートブロックする。インバータ23、もしくは24を電力系統2に接続するケーブルが断線した場合、該当インバータは自身の定格電力を電力系統2に送電できなくなり、該インバータが接続するコンバータから入力された電力がコンデンサを過充電してしまう可能性がある。コンデンサの過充電が起きると、コンデンサの損傷、IGBT素子の損傷等、甚大な被害が起こり得る。 Example 4 will be described with reference to FIG. In addition to the abnormality detection described in the above embodiments, the power generation / converter unit 100 may detect an abnormal increase in the smoothing capacitor voltage. When an abnormality is detected, the corresponding power converter is gate-blocked. When the cable connecting the inverter 23 or 24 to the power system 2 is disconnected, the corresponding inverter cannot transmit its rated power to the power system 2, and the power input from the converter connected to the inverter overcharges the capacitor. There is a possibility that. If the capacitor is overcharged, serious damage such as damage to the capacitor and damage to the IGBT element may occur.
 そこで、平滑コンデンサ電圧の異常上昇を検出し、該当電力変換器をゲートブロックすることにより、更なる平滑コンデンサの充電を回避することができ、発電・変換器部100の安定な運転を実現できる。具体的には、図11に示す様に異常検出器2200が平滑コンデンサ電圧vdc1、vdc2を入力とし、該平滑コンデンサ電圧と第四の所定の閾値を大小比較することにより電力変換器31、32の直流過電圧を検出する直流過電圧算出器2209、2210を備える。該直流化電圧算出器2209、2210は、平滑コンデンサ電圧vdc1が第四の所定の閾値より大きければゲート調整信号CTRL1を1から0に変化させ、また平滑コンデンサ電圧vdc2が第四の所定の閾値より大きければゲート調整信号CTRL2を1から0に変化させる。本構成を備えることで、電力変換器31、32を直流過充電による損傷から保護できる。 Therefore, by detecting an abnormal rise in the smoothing capacitor voltage and blocking the corresponding power converter, further charging of the smoothing capacitor can be avoided, and stable operation of the power generation / converter unit 100 can be realized. Specifically, as shown in FIG. 11, the abnormality detector 2200 receives the smoothing capacitor voltages vdc1 and vdc2, and compares the smoothing capacitor voltage with a fourth predetermined threshold value to compare the power converters 31 and 32. DC overvoltage calculators 2209 and 2210 for detecting a DC overvoltage are provided. The DC voltage calculators 2209 and 2210 change the gate adjustment signal CTRL1 from 1 to 0 if the smoothing capacitor voltage vdc1 is larger than the fourth predetermined threshold, and the smoothing capacitor voltage vdc2 becomes lower than the fourth predetermined threshold. If it is larger, the gate adjustment signal CTRL2 is changed from 1 to 0. By providing this configuration, the power converters 31 and 32 can be protected from damage due to DC overcharge.
 尚、実施例1から4に記載の内容については、各々を単独で使用することも考えられる他、併せて使用することも可能である。それぞれが異なる測定値に基づき、異なる事象に対する異常検出を行うので、併せて使用することで様々な異常のパターンに対して異常検出を行うことができ、異常検出精度を向上させることが可能になる。 In addition, about the content as described in Examples 1-4, it is possible to use each independently, and it is also possible to use them together. Since each detects anomalies for different events based on different measured values, it can be used together to detect anomalies for various anomaly patterns and improve the accuracy of anomaly detection. .
 実施例5について図12及び図13を用いて説明する。上記各実施例では、発電機101が永久磁石同期発電機である場合について説明したが、電磁石発電機を使用することも可能である。具体的には、図12記載のように電力系統2の電圧を変圧器55で降圧し、ダイオード整流器54で整流したのち、ブラシ52、53、及びブラシリング50、51を介して回転子巻線10020に励磁電流を流しても、永久磁石と同様に固定子巻線10012、10013に鎖交磁束を生じさせることが可能である。 Example 5 will be described with reference to FIGS. In each of the above embodiments, the case where the generator 101 is a permanent magnet synchronous generator has been described. However, an electromagnetic generator can also be used. Specifically, as shown in FIG. 12, the voltage of the electric power system 2 is stepped down by the transformer 55 and rectified by the diode rectifier 54, and then the rotor windings are passed through the brushes 52 and 53 and the brush rings 50 and 51. Even if an exciting current is supplied to 10020, a linkage flux can be generated in the stator windings 10012 and 10013 in the same manner as the permanent magnet.
 また、図13に記載のように、発電機101は、固定子501に備えられ、電力系統2により励磁されるコイル60と、回転子502に備えられ、コイル60により発生した交流磁束の鎖交により非接触で電力系統2より交流電力を得るコイル61と、回転子502に備えられ、コイル61に誘起された交流電圧を整流するダイオード整流器54とを備え、回転子巻線10020に励磁電流を供給する構成を備え、発電機のメンテナンスを低減しても良い。即ち、本構成によれば電磁石発電機に対する励磁電流を非接触のコイル60、コイル61間の誘導電流から得ており、ブラシを通じて(直接に)接触して励磁電流を得る必要が無くなる。故に、ブラシレス構造を実現できる。 Further, as shown in FIG. 13, the generator 101 is provided in the stator 501, and is provided in the coil 60 excited by the power system 2 and the rotor 502, and the alternating magnetic flux generated by the coil 60 is linked. A coil 61 that obtains AC power from the power system 2 in a non-contact manner, and a diode rectifier 54 that is provided in the rotor 502 and rectifies the AC voltage induced in the coil 61, and provides excitation current to the rotor winding 10020. It is possible to reduce the maintenance of the generator by providing a supply structure. That is, according to this configuration, the exciting current for the electromagnet generator is obtained from the induced current between the non-contact coil 60 and the coil 61, and it is not necessary to obtain the exciting current by contacting (directly) through the brush. Therefore, a brushless structure can be realized.
 本実施例の様に、高価な永久磁石を使わなくても、出力密度の高い発電機を構成し、なおかつ発電システムに故障が発生した場合でも、健全な固定子巻線と電力変換器を用いた高い発電継続を実現できる。なおかつ、図13の構成の場合はメンテナンスが必要なブラシを削除することができるため、電磁石発電機を用いた場合でも、ブラシ交換のためのメンテナンスを不要化でき、発電継続性を改善した風力発電システムを実現できる。 Even if expensive permanent magnets are not used as in this embodiment, a generator with high output density is configured, and even when a failure occurs in the power generation system, sound stator windings and power converters are used. High power generation continuity can be realized. Furthermore, in the case of the configuration shown in FIG. 13, it is possible to delete a brush that requires maintenance, so even when an electromagnetic generator is used, maintenance for brush replacement can be eliminated, and wind power generation with improved power generation continuity can be achieved. A system can be realized.
 尚、上記の各実施例においては各電力変換器が一つずつインバータ及びコンバータを備える例について説明したが、後述する様に、電力系統側に配置されるインバータやコンデンサについては共有化することも可能である。即ち、電力変換器が各々インバータ及びコンバータを備えることは必要であるが、各々備えるインバータについては、電力変換器が各々独立に有しなければならないものではない。 In each of the above embodiments, each power converter has been described with an inverter and a converter. However, as will be described later, inverters and capacitors arranged on the power system side may be shared. Is possible. That is, it is necessary for each power converter to include an inverter and a converter, but for each inverter, each power converter does not have to be independently provided.
 実施例6について図14及び図15を用いて説明する。上記の各実施例においては各電力変換器が一つずつインバータ及びコンバータを備える例について説明したが、図14に記載の様に、電力変換器31と32は、直流部を共有する構成とし、発電・変換器部100は、単一のインバータにより電力系統2に発電電力を送電する構成としても良い。この場合、直流回路が共通となるため、コンバータ21とコンバータ22の直流回路電圧は等しくなる。直流回路電圧が等しくなることで、(コントローラ2111がインバータ制御を行う必要がなく、)コントローラ2110が直流電圧センサ303の出力値に基づいてインバータ23を制御することで発電機101から得た発電電力を電力系統2に送電することができる。また、インバータ24が不要になるため、インバータ24の交流出力電流を検出する電流センサが不要となる。ゆえに、本構成とすることにより、電力変換器32側の平滑コンデンサ32cdc及び該平滑コンデンサ32cdcの電圧を検出するための電圧センサ308の削減、系統電流検出用電流センサ309の削減が可能となる。 Example 6 will be described with reference to FIGS. 14 and 15. In each of the embodiments described above, an example in which each power converter includes one inverter and a converter has been described. However, as illustrated in FIG. 14, the power converters 31 and 32 have a configuration in which a DC unit is shared, The power generation / converter unit 100 may be configured to transmit the generated power to the power system 2 by a single inverter. In this case, since the DC circuit is common, the DC circuit voltages of the converter 21 and the converter 22 are equal. Since the DC circuit voltages become equal (the controller 2111 does not need to perform inverter control), the controller 2110 controls the inverter 23 based on the output value of the DC voltage sensor 303 to obtain the generated power from the generator 101. Can be transmitted to the electric power system 2. Further, since the inverter 24 is unnecessary, a current sensor for detecting the AC output current of the inverter 24 is not required. Therefore, with this configuration, it is possible to reduce the smoothing capacitor 32cdc on the power converter 32 side, the voltage sensor 308 for detecting the voltage of the smoothing capacitor 32cdc, and the current sensor 309 for system current detection.
 図14の構成を実現する際は、電力変換器コントローラ2000は、図15に記載の様に、コントローラ2110は、コンバータ21のゲート信号を駆動するゲート信号Gate_021、インバータ23のゲート信号を駆動するゲート信号Gate_023を出力し、コントローラ2111は、コンバータ22のゲート信号を駆動するゲート信号Gate_022を出力し、コンバータ21、22のゲート信号のみ異常検出器2200の出力に応じてゲート信号を調整する構成とする。コントローラ2000としては異常検出器2200の出力によりコンバータのIGBTのみOFFすることを可能とする構成が上記実施例との大きな差異であり、直流部を共有する構成においてのゲートブロックとは、インバータ内のIGBTはOFFとはせず、コンバータ内の全IGBTをOFFする様に制御することに当たる。この場合にも、異常を検出したときには異常を検出した電力変換器または異常を検出した固定子巻線に接続される電力変換器によって、当該固定子巻線の電流を遮断して健全な固定子巻線と電力変換器で発電を継続させる。 When the configuration of FIG. 14 is realized, the power converter controller 2000 includes a gate signal Gate — 021 for driving the gate signal of the converter 21 and a gate for driving the gate signal of the inverter 23 as shown in FIG. The signal Gate — 023 is output, and the controller 2111 outputs a gate signal Gate — 022 that drives the gate signal of the converter 22, and only the gate signals of the converters 21 and 22 are adjusted according to the output of the abnormality detector 2200. . The configuration of the controller 2000 that allows only the IGBT of the converter to be turned off by the output of the abnormality detector 2200 is a significant difference from the above-described embodiment, and the gate block in the configuration sharing the DC section is different from that in the inverter. The IGBT is not turned OFF, and is equivalent to controlling all the IGBTs in the converter to be turned OFF. Also in this case, when an abnormality is detected, the current of the stator winding is cut off by the power converter that detects the abnormality or the power converter that is connected to the stator winding that detects the abnormality. Continue power generation with windings and power converter.
 本実施例によれば、平滑コンデンサ電圧を検出するための電圧センサの削減、系統電流検出用電流センサの削減が可能となり、簡素な構成を実現しつつ、上記各実施例の様な異常検出を同様に行うことが可能になる。 According to the present embodiment, it is possible to reduce the number of voltage sensors for detecting the smoothing capacitor voltage and the number of current sensors for system current detection, and to realize abnormality detection as in the above embodiments while realizing a simple configuration. It is possible to do the same.
 実施例7について、図16ないし図19を用いて説明する。本実施例では、発電・変換器部100のうち、コンバータ21、22に代えて、三レベル変換器であるコンバータ125、126を備えており、また、発電機201の固定子巻線20013を、固定子巻線20012に対して電気角で略60度ずれて配置している。 Example 7 will be described with reference to FIGS. 16 to 19. In this embodiment, instead of the converters 21 and 22 in the power generation / converter unit 100, converters 125 and 126 that are three-level converters are provided, and the stator winding 20013 of the generator 201 is The stator winding 20012 is arranged with a deviation of about 60 degrees in electrical angle.
 三レベル変換器は2レベル変換器に比べて、より正弦波に近い波形を出力でき、交流出力電圧におけるdV/dtを抑制できるので、固定子巻線の絶縁性能に対する要求を軽減できる。一方、発電機端子における力率が1以外のときには直流回路中性点から交流出力電圧の周波数の3倍の電力変動が発生するため、コンバータ125、126やインバータ123のコンデンサ電圧が半導体スイッチング素子の耐圧範囲に収まるよう、大容量のコンデンサを搭載しなければならなくなる。 The three-level converter can output a waveform closer to a sine wave than the two-level converter and can suppress dV / dt in the AC output voltage, thereby reducing the requirement for the insulation performance of the stator winding. On the other hand, when the power factor at the generator terminal is other than 1, a power fluctuation of three times the frequency of the AC output voltage occurs from the neutral point of the DC circuit, so that the capacitor voltages of the converters 125, 126 and the inverter 123 are A large-capacitance capacitor must be mounted so as to be within the breakdown voltage range.
 これに対し、本実施例では、固定子巻線20012、20013を電気角で60度ずれるよう、配置をずらすことにより、上記直流回路中性点を変動させる電圧変動が相殺し、直流中性点電圧変動を低減し、電力変換器131が搭載しなければいけないコンデンサ容量を低減することが可能である。 On the other hand, in this embodiment, by shifting the arrangement so that the stator windings 20012, 20013 are shifted by 60 degrees in electrical angle, the voltage fluctuation that fluctuates the DC circuit neutral point cancels out, and the DC neutral point is offset. It is possible to reduce voltage fluctuation and reduce the capacitor capacity that the power converter 131 must be mounted.
 以下、図16ないし図19を用いて詳細に説明する。 Hereinafter, this will be described in detail with reference to FIGS.
 本実施例の電力変換器は、図16に記載のように、発電機201に接続されるコンバータが三レベルコンバータ125、126であり、その直流回路は互いに接続される。 In the power converter of the present embodiment, as shown in FIG. 16, the converters connected to the generator 201 are the three- level converters 125 and 126, and their DC circuits are connected to each other.
 本実施例においてもコンバータ125とコンバータ126の主回路構成は等しくしており、コンバータ125の構成のみ図17を用いて説明する。無論、コンバータ125とコンバータ126について常に等しい主回路構成としなければならない訳ではなく、異なる構成とすることも可能である。同様の部品を使用することで、部品の種類削減を行うことが出来る。 Also in this embodiment, the main circuit configurations of the converter 125 and the converter 126 are the same, and only the configuration of the converter 125 will be described with reference to FIG. Of course, the converter 125 and the converter 126 do not always have to have the same main circuit configuration, and may have different configurations. By using similar parts, the types of parts can be reduced.
 コンバータ125は、1アームに6つのIGBT素子および直流中性点に接続する2つのダイオードを備える。IGBT素子のオン、オフにより、フィルタ121filには平滑コンデンサ131dcpの正側電位、直流中性点電位、平滑コンデンサ131dcnの負電位、の3つのレベルの電位を出力可能である。 The converter 125 includes six IGBT elements and two diodes connected to a DC neutral point in one arm. By turning on and off the IGBT element, three levels of potentials can be output to the filter 121fil: the positive potential of the smoothing capacitor 131dcp, the DC neutral point potential, and the negative potential of the smoothing capacitor 131dcn.
 コンバータ125が交流電圧をフィルタ121filに出力するとき、平滑コンデンサ131dcp、131dcnの放電電力に差が発生し、脈動が発生する。 When converter 125 outputs an AC voltage to filter 121fil, a difference occurs in the discharge power of smoothing capacitors 131dcp and 131dcn, and pulsation occurs.
 図18に、本実施例の発電機201の構成を示す。図4において説明した発電機101と比べ、固定子603が固定子601に対して電気角60度だけ位相がずれている。固定子巻線20012、20013が電気角で60度ずれることにより、コンバータ125とコンバータ126の出力電圧、出力電流はともに60度位相がずれるため、電力脈動も基本波相当で60度だけ位相がずれる。基本波の電気角60度は、基本波の3倍の周波数を有する脈動電力では3倍の180度に相当する。故に、発電機201の固定子巻線20012、20013を電気角で60度ずらすことにより、上記脈動を相殺することが可能である。 FIG. 18 shows the configuration of the generator 201 of this embodiment. Compared with the generator 101 described in FIG. 4, the stator 603 is out of phase with the stator 601 by an electrical angle of 60 degrees. When the stator windings 20012, 20013 are shifted by 60 degrees in electrical angle, the output voltages and output currents of the converter 125 and the converter 126 are both shifted by 60 degrees, so that the power pulsation is also equivalent to the fundamental wave and is shifted by 60 degrees. . An electrical angle of 60 degrees of the fundamental wave corresponds to 180 degrees, which is three times that of pulsating power having a frequency three times that of the fundamental wave. Therefore, the pulsation can be canceled by shifting the stator windings 20012, 20013 of the generator 201 by 60 degrees in electrical angle.
 この様子を図19に示す。該図に示す様に、コンバータ125から直流中性点に流れ込む脈動電力Pdcn1と、Pdcn2の位相が180度ずれることで正負が反転し、コンデンサ131pdcp、131dcnの中点に流れ込む脈動電力は各々足し合わされた結果、相殺される。 This is shown in FIG. As shown in the figure, the pulsating power Pdcn1 flowing from the converter 125 to the DC neutral point and the phase of Pdcn2 are shifted by 180 degrees, so that the positive and negative are reversed, and the pulsating powers flowing into the midpoints of the capacitors 131pdcp and 131dcn are added together. As a result, it is offset.
 本実施例によれば、出力密度の高い発電機を構成し、なおかつ発電システムに故障が発生した場合でも、健全な固定子巻線と電力変換器を用いた高い発電継続を実現できる。また、発電・変換器部200のコンバータを三レベル変換器とすることにより、発電機201の巻線絶縁設計を容易にすることが可能である。さらに、本実施例の特徴である発電機201の固定子巻線20012、20013の位相を60度ずらすことにより、三レベルコンバータ125、126から直流中性点に流れ込む脈動電力を相殺することができ、小容量のコンデンサで電力変換器31を構成することが可能である。 According to the present embodiment, a generator having a high output density is configured, and even when a failure occurs in the power generation system, high power continuation using a sound stator winding and a power converter can be realized. Moreover, the winding insulation design of the generator 201 can be facilitated by using a three-level converter as the converter of the generator / converter unit 200. Furthermore, the pulsating power flowing from the three- level converters 125 and 126 to the DC neutral point can be canceled by shifting the phases of the stator windings 20012 and 20013 of the generator 201 by 60 degrees, which is a feature of this embodiment. It is possible to configure the power converter 31 with a small-capacitance capacitor.
 尚、上記各実施例では風力発電システムを対象にして説明したが、風力発電システムに特有のブレードのピッチ角制御等に関する部分以外は、必ずしも風力発電システムに適用対象が限定されるものではない。 Although the above embodiments have been described with reference to the wind power generation system, the application target is not necessarily limited to the wind power generation system except for the part related to the pitch angle control of the blades specific to the wind power generation system.
1  風力発電システム
2  電力系統
10  ブレード
11  ハブ
14  シャフト
31、32  電力変換器
21、22、25、26  コンバータ
23、24  インバータ
100  発電・変換器部
101  発電機
501、503  固定子
502  回転子
301、303、305、306、308  電圧センサ
302、307、309  電流センサ
1000  上位コントローラ
2000  電力変換器コントローラ
2200  異常検出器
10012、10013  固定子巻線
10020  回転子巻線
DESCRIPTION OF SYMBOLS 1 Wind power generation system 2 Electric power system 10 Blade 11 Hub 14 Shaft 31, 32 Power converter 21, 22, 25, 26 Converter 23, 24 Inverter 100 Electric power generation / converter part 101 Generator 501, 503 Stator 502 Rotor 301, 303, 305, 306, 308 Voltage sensor 302, 307, 309 Current sensor 1000 Host controller 2000 Power converter controller 2200 Abnormality detector 10012, 1003 Stator winding 10020 Rotor winding

Claims (11)

  1.  回転子と、該回転子に対向する固定子と、該固定子に設けられる複数の固定子巻線を備える発電機と、
     電力系統側に配置されるインバータと、発電機側に配置されるコンバータと、該インバータ及び該コンバータの間に配置されるコンデンサとを備え、かつ、前記固定子巻線毎に設けられる電力変換器と、
     前記固定子巻線または前記電力変換器毎に設けられ、該固定子巻線または電力変換器の状態を検出するセンサと、
     前記センサの出力に基づき、前記固定子巻線または電力変換器の異常を検出する異常検出手段とを備え、
     該異常検出手段は、前記固定子巻線または電力変換器毎に、異常があるか否かを出力し、
     該異常検出手段から異常があると出力された場合には、異常が検出された前記電力変換器、または異常が検出された前記固定子巻線に設けられる前記電力変換器で前記固定子巻線の電流を遮断することを特徴とする発電システム。
    A generator comprising a rotor, a stator facing the rotor, and a plurality of stator windings provided on the stator;
    A power converter provided with an inverter disposed on the power system side, a converter disposed on the generator side, a capacitor disposed between the inverter and the converter, and provided for each stator winding When,
    A sensor that is provided for each of the stator windings or the power converter and detects a state of the stator winding or the power converter;
    An abnormality detecting means for detecting an abnormality of the stator winding or power converter based on the output of the sensor;
    The abnormality detection means outputs whether there is an abnormality for each stator winding or power converter,
    When an abnormality is output from the abnormality detection means, the stator winding is detected by the power converter in which an abnormality is detected or the power converter provided in the stator winding in which an abnormality is detected. A power generation system characterized by cutting off the current.
  2.  請求項1に記載の発電システムであって、
     更に風を受けて回転するブレードと、該ブレードの回転に伴って回転するシャフトと、前記ブレードのピッチ角を制御するピッチ角制御手段とを備え、
     前記回転子は前記シャフトの回転に伴って回転し、
     前記異常検出手段から異常があると出力された場合には、前記ピッチ角制御手段を用いて前記ブレードのピッチ角を調整し、受風面積を減らすことを特徴とする発電システム。
    The power generation system according to claim 1,
    Furthermore, a blade that rotates by receiving wind, a shaft that rotates as the blade rotates, and a pitch angle control means that controls the pitch angle of the blade,
    The rotor rotates as the shaft rotates,
    When the abnormality detection unit outputs an abnormality, the power generation system reduces the wind receiving area by adjusting the pitch angle of the blade using the pitch angle control unit.
  3.  請求項1または2に記載の発電システムであって、
     前記固定子は前記回転子を挟んで二つ設けられ、各前記固定子毎に前記固定子巻線が備えられることを特徴とする発電システム。
    The power generation system according to claim 1 or 2,
    Two stators are provided across the rotor, and the stator winding is provided for each of the stators.
  4.  請求項3に記載の発電システムであって、
     前記電力変換器における前記インバータ及び前記コンデンサは電力変換器間で共有され、前記コンバータは三レベル変換器であり、
     二つの前記固定子毎に備えられる前記固定子巻線に誘起される誘起電圧が前記固定子巻線間で等しくなると共に、前記固定子巻線同士の電気角が略60度ずれる様に配置されることを特徴とする発電システム。
    The power generation system according to claim 3,
    The inverter and the capacitor in the power converter are shared between power converters, the converter is a three level converter,
    The induction voltages induced in the stator windings provided for each of the two stators are equal between the stator windings, and the electrical angle between the stator windings is shifted by approximately 60 degrees. A power generation system characterized by that.
  5.  請求項1ないし4のいずれか一つに記載の発電システムであって、
     前記固定子巻線毎に、前記異常検出手段は過電流検出手段を備えており、
     前記センサは前記固定子巻線に流れる電流を測定すると共に、測定した電流値を前記過電流検出手段に出力し、
     前記過電流検出手段は、測定した電流値を所定の閾値と比較して前記測定電流値が前記閾値を上回る場合には、異常であると出力することを特徴とする発電システム。
    The power generation system according to any one of claims 1 to 4,
    For each stator winding, the abnormality detection means includes an overcurrent detection means,
    The sensor measures the current flowing through the stator winding and outputs the measured current value to the overcurrent detection means.
    The overcurrent detection means compares the measured current value with a predetermined threshold value, and outputs an abnormality when the measured current value exceeds the threshold value.
  6.  請求項1ないし4のいずれか一つに記載の発電システムであって、
     前記固定子巻線毎に、前記異常検出手段は電流の逆相成分値を算出する逆相算出器及び該逆相算出器が算出した逆相成分値を所定の閾値と比較する比較手段を備えており、
     前記センサは前記固定子巻線に流れる電流を測定すると共に、測定した電流値を前記逆相算出器に出力し、
     前記比較手段は、該逆相算出器が算出した逆相成分値を所定の閾値と比較して前記逆相成分値が前記閾値を上回る場合には、異常であると出力することを特徴とする発電システム。
    The power generation system according to any one of claims 1 to 4,
    For each stator winding, the abnormality detection means includes a negative phase calculator for calculating a negative phase component value of a current and a comparison means for comparing the negative phase component value calculated by the negative phase calculator with a predetermined threshold value. And
    The sensor measures the current flowing through the stator winding and outputs the measured current value to the negative phase calculator.
    The comparison unit compares the negative phase component value calculated by the negative phase calculator with a predetermined threshold value, and outputs an abnormality when the negative phase component value exceeds the threshold value. Power generation system.
  7.  請求項1ないし4のいずれか一つに記載の発電システムであって、
     前記固定子巻線毎に、前記異常検出手段は温度判定器を備えており、
     前記センサは前記インバータまたは前記コンバータの温度を測定すると共に、測定した温度を前記温度判定器に出力し、
     前記温度判定器は、測定した温度を所定の閾値と比較して前記測定温度が前記閾値を上回る場合には、異常であると出力することを特徴とする発電システム。
    The power generation system according to any one of claims 1 to 4,
    For each stator winding, the abnormality detection means includes a temperature determiner,
    The sensor measures the temperature of the inverter or the converter, and outputs the measured temperature to the temperature determiner.
    The temperature determination device compares the measured temperature with a predetermined threshold value, and outputs an abnormality when the measured temperature exceeds the threshold value.
  8.  請求項1ないし4のいずれか一つに記載の発電システムであって、
     前記固定子巻線毎に、前記異常検出手段は過電圧算出器を備えており、
     前記センサは前記コンデンサの電圧を測定すると共に、測定した電圧を前記過電圧算出器に出力し、
     前記過電圧算出器は、測定した電圧を所定の閾値と比較して前記測定電圧が前記閾値を上回る場合には、異常であると出力することを特徴とする発電システム。
    The power generation system according to any one of claims 1 to 4,
    For each stator winding, the abnormality detection means includes an overvoltage calculator,
    The sensor measures the voltage of the capacitor and outputs the measured voltage to the overvoltage calculator.
    The overvoltage calculator compares the measured voltage with a predetermined threshold and outputs an abnormality when the measured voltage exceeds the threshold.
  9.  請求項1ないし8のいずれか一つに記載の発電システムであって、
     前記固定子に設けられ、電力系統により励磁される第1のコイルと、
     前記回転子に設けられ、前記第1のコイルにより発生した交流磁束の鎖交により非接触で電力系統より交流電力を得る第2のコイルと、
     前記回転子に設けられ、前記第2のコイルに誘起された交流電圧を整流するダイオード整流器と、
     前記回転子に設けられ、前記ダイオード整流器から励磁電流を供給される回転子巻線を備え、
     該回転子巻線に流れる励磁電流が生じさせる磁束が前記回転子の回転に伴って時間的に変化することで、前記固定子巻線に交流電流を発生させることを特徴とする発電システム。
    A power generation system according to any one of claims 1 to 8,
    A first coil provided on the stator and excited by a power system;
    A second coil that is provided in the rotor and obtains AC power from a power system in a non-contact manner by linkage of AC magnetic flux generated by the first coil;
    A diode rectifier provided in the rotor and rectifying an AC voltage induced in the second coil;
    A rotor winding provided on the rotor and supplied with an excitation current from the diode rectifier;
    A power generation system, wherein a magnetic flux generated by an exciting current flowing through the rotor winding changes with time as the rotor rotates, thereby generating an alternating current in the stator winding.
  10.  請求項1ないし3、または5ないし9のいずれか一つに記載の発電システムであって、 前記電力変換器における前記インバータ及び前記コンデンサは電力変換器間で共有されることを特徴とする発電システム。 The power generation system according to any one of claims 1 to 3, or 5 to 9, wherein the inverter and the capacitor in the power converter are shared between the power converters. .
  11.  請求項1ないし10のいずれか一つに記載の発電システムであって、
     更に異常であるか否かを表示する表示器と、該表示器に接続される通信システムを備えており、
     前記異常検出手段は、該表示器にも異常があるか否かを出力し、
     前記表示器は前記異常検出手段からの出力に応じて表示を切り替え、
     前記通信システムは前記異常検出手段が異常を検出した際には、発電システム外の通信端末に異常が検出されたことを通信で伝達することを特徴とする発電システム。
    The power generation system according to any one of claims 1 to 10,
    In addition, a display device that displays whether or not it is abnormal, and a communication system connected to the display device,
    The abnormality detection means outputs whether or not there is an abnormality in the display,
    The indicator switches the display according to the output from the abnormality detection means,
    When the abnormality detecting means detects an abnormality, the communication system transmits, via communication, that the abnormality has been detected to a communication terminal outside the power generation system.
PCT/JP2013/068805 2012-07-30 2013-07-10 Power generation system WO2014021066A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013003764.5T DE112013003764T5 (en) 2012-07-30 2013-07-10 Electric power generator system
GB1419765.1A GB2518989A (en) 2012-07-30 2013-07-10 Power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-167904 2012-07-30
JP2012167904A JP5988750B2 (en) 2012-07-30 2012-07-30 Power generation system

Publications (1)

Publication Number Publication Date
WO2014021066A1 true WO2014021066A1 (en) 2014-02-06

Family

ID=50027751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068805 WO2014021066A1 (en) 2012-07-30 2013-07-10 Power generation system

Country Status (4)

Country Link
JP (1) JP5988750B2 (en)
DE (1) DE112013003764T5 (en)
GB (1) GB2518989A (en)
WO (1) WO2014021066A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255777A4 (en) * 2015-02-03 2018-08-22 Mitsubishi Heavy Industries, Ltd. Electric power generation control device, electric power converter control device, electric power generation control method and program
CN114265449A (en) * 2021-12-24 2022-04-01 天津瑞源电气有限公司 Heat preservation device and method for simulating low-temperature starting temperature abnormity of converter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145347B (en) * 2020-09-03 2022-07-01 上海电气风电集团股份有限公司 Wind power generation system and control method and device thereof
EP4199341A1 (en) 2021-12-20 2023-06-21 Vestas Wind Systems A/S Method for operating a permanent magnet generator in the event of a fault

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202333A (en) * 2006-01-27 2007-08-09 Nissan Motor Co Ltd Rotating electric machine
JP2008278567A (en) * 2007-04-26 2008-11-13 Hitachi Ltd Rotary electric machine and ac generator
JP2008301584A (en) * 2007-05-30 2008-12-11 Hitachi Ltd Wind turbine generator system and control method for power converter
JP2010035418A (en) * 2009-11-13 2010-02-12 Hitachi Ltd Method for controlling wind power generation system
JP2010222815A (en) * 2009-03-23 2010-10-07 Sumitomo Heavy Ind Ltd Hybrid construction machinery
WO2011131522A2 (en) * 2010-04-19 2011-10-27 Wobben, Aloys Method for the operation of a wind turbine
WO2012073504A2 (en) * 2010-11-30 2012-06-07 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and operation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993008634A1 (en) * 1991-10-14 1993-04-29 Muneaki Takara Rotary electric machine
EP1318589B1 (en) * 2001-12-10 2013-02-13 ABB Schweiz AG Wind energy system and method for operating such a system
JP2006067784A (en) * 2004-07-28 2006-03-09 Shiro Kanehara Rotating machine
JP2007295778A (en) * 2006-04-27 2007-11-08 Toshihiro Abe Elementary particle motor and elementary particle repulsion type high-speed torque fluctuation three-phase motor therewith
JP4899109B2 (en) * 2008-12-22 2012-03-21 西芝電機株式会社 Power supply circuit failure detection device
JPWO2011155278A1 (en) * 2010-06-10 2013-08-01 Thk株式会社 Fluid power generator and fluid power generator control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202333A (en) * 2006-01-27 2007-08-09 Nissan Motor Co Ltd Rotating electric machine
JP2008278567A (en) * 2007-04-26 2008-11-13 Hitachi Ltd Rotary electric machine and ac generator
JP2008301584A (en) * 2007-05-30 2008-12-11 Hitachi Ltd Wind turbine generator system and control method for power converter
JP2010222815A (en) * 2009-03-23 2010-10-07 Sumitomo Heavy Ind Ltd Hybrid construction machinery
JP2010035418A (en) * 2009-11-13 2010-02-12 Hitachi Ltd Method for controlling wind power generation system
WO2011131522A2 (en) * 2010-04-19 2011-10-27 Wobben, Aloys Method for the operation of a wind turbine
WO2012073504A2 (en) * 2010-11-30 2012-06-07 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and operation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255777A4 (en) * 2015-02-03 2018-08-22 Mitsubishi Heavy Industries, Ltd. Electric power generation control device, electric power converter control device, electric power generation control method and program
US10707790B2 (en) 2015-02-03 2020-07-07 Mitsubishi Heavy Industries, Ltd. Electric power generation control device for causing a reduction in a torque command, electric power generation control method and program
CN114265449A (en) * 2021-12-24 2022-04-01 天津瑞源电气有限公司 Heat preservation device and method for simulating low-temperature starting temperature abnormity of converter
CN114265449B (en) * 2021-12-24 2023-02-10 天津瑞源电气有限公司 Heat preservation device and method for simulating low-temperature starting temperature abnormity of converter

Also Published As

Publication number Publication date
DE112013003764T5 (en) 2015-08-20
GB201419765D0 (en) 2014-12-24
JP2014027824A (en) 2014-02-06
JP5988750B2 (en) 2016-09-07
GB2518989A (en) 2015-04-08

Similar Documents

Publication Publication Date Title
US8018082B2 (en) Method and apparatus for controlling a wind turbine
EP3004637B2 (en) Methods for operating wind turbine system having dynamic brake
EP2551984B1 (en) Power plant control system and method for influencing high voltage characteristics
CA2769295C (en) A wind turbine comprising a generator with a segmented stator
US7843078B2 (en) Method and apparatus for generating power in a wind turbine
US9726144B2 (en) Method for optimizing the operation of a wind turbine
EP3096005B1 (en) Limit for derating scheme used in wind turbine control
US10742149B1 (en) System and method for reactive power control of a wind turbine by varying switching frequency of rotor side converter
US20130147201A1 (en) Contactless power transfer device and method
JP5373018B2 (en) Wind power generation system
JP5988750B2 (en) Power generation system
US8598725B1 (en) Utilizing flux controllable PM electric machines for wind turbine applications
US9088150B2 (en) Overvoltage clipping device for a wind turbine and method
Xiang et al. Switching frequency dynamic control for DFIG wind turbine performance improvement around synchronous speed
US9494139B2 (en) System and method for controlling a power output of a wind turbine generator
US9080553B2 (en) Method and apparatus for control of redundant devices in a wind turbine
US10288040B2 (en) Current limit calculation for wind turbine control
US10218298B2 (en) Spillover of reactive current to line side converter
JP2015001212A (en) Output control device and output control method for wind power generator, and wind power generation system
EP3503381B1 (en) Methods for providing electrical power to wind turbine components
JP5855790B2 (en) Power conversion system and control method thereof
WO2014147702A1 (en) Rotating electric machine system and control method for same
JP2017163660A (en) Wind power generation system
JP2018121476A (en) Wind power generation facility and method for operating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13826545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1419765

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20130710

WWE Wipo information: entry into national phase

Ref document number: 1419765.1

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120130037645

Country of ref document: DE

Ref document number: 112013003764

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13826545

Country of ref document: EP

Kind code of ref document: A1