WO2014019284A1 - 增强型物理下行控制信道传输方法及装置 - Google Patents

增强型物理下行控制信道传输方法及装置 Download PDF

Info

Publication number
WO2014019284A1
WO2014019284A1 PCT/CN2012/082363 CN2012082363W WO2014019284A1 WO 2014019284 A1 WO2014019284 A1 WO 2014019284A1 CN 2012082363 W CN2012082363 W CN 2012082363W WO 2014019284 A1 WO2014019284 A1 WO 2014019284A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource group
resource
type
group
physical
Prior art date
Application number
PCT/CN2012/082363
Other languages
English (en)
French (fr)
Inventor
刘昆鹏
高驰
刘江华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2015001592A priority Critical patent/MX343028B/es
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201910127232.6A priority patent/CN109818728B/zh
Priority to AU2012386920A priority patent/AU2012386920B2/en
Priority to EP12882264.0A priority patent/EP2879430B1/en
Priority to CN201280074697.6A priority patent/CN104871589B/zh
Priority to PL12882264T priority patent/PL2879430T3/pl
Priority to EP21155365.6A priority patent/EP3886350A1/en
Priority to JP2015524593A priority patent/JP6077657B2/ja
Publication of WO2014019284A1 publication Critical patent/WO2014019284A1/zh
Priority to US14/611,837 priority patent/US9756625B2/en
Priority to US15/494,330 priority patent/US10129863B2/en
Priority to US16/171,045 priority patent/US20190069281A1/en
Priority to US17/028,602 priority patent/US11553476B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to communications technologies, and in particular, to an enhanced physical downlink control channel transmission method and apparatus. Background technique
  • the physical downlink control channel Physical Downlink Control Channel, called PDCCH
  • PDCCH Physical Downlink Control Channel
  • N Physical Downlink Control Channel
  • Orthogonal Frequency Division Multiplexing (OFDM) is transmitted on the symbol
  • PDSCH Physical Downlink Shared Channel
  • the mode is multiplexed
  • the demodulation pilot is a downlink common pilot, that is, a cell-specific RS (Cell-specific RS, called CRS).
  • CRS cell-specific RS
  • a space frequency code is used. Code, called SFBC) or SFBC combined with Frequency Switched Transmit Diversity (FSTD) transmission.
  • SFBC Frequency Switched Transmit Diversity
  • E-PDCCH enhanced PDCCH
  • FDM Frequency Division Multiplexing
  • the enhanced control channel and the traffic channel are not supported to be multiplexed in one time-frequency resource block;
  • the PDCCH is demodulated based on Demodulation Reference Signals (DMRS) specific to the user equipment (User Equipment, UE).
  • DMRS Demodulation Reference Signals
  • Embodiments of the present invention provide an enhanced downlink physical control channel transmission method and apparatus, which are used to solve the transmission problem of an E-PDCCH.
  • the first aspect of the embodiments of the present invention provides an enhanced physical downlink control channel transmission method, including: in a physical resource block set, respectively sorting a first resource group in a PRB pair for each physical resource block, the first resource The group is a resource unit group eREG or REG, and the physical resource block set includes at least one physical resource block pair; the second resource group is numbered according to the correspondence between the first resource group and the second resource group in the physical resource block set, wherein The second resource group is a control channel unit eCCE group or a control channel candidate group; determining a number of the second resource group for transmitting the E-PDCCH; mapping the E-PDCCH to the corresponding first resource group for transmission according to the determined number .
  • each physical resource block pair includes N third resource groups, where N is a positive integer, and each third resource group includes M first resource groups, in the physical resource block.
  • the number set of the first resource group included in each third resource group of one physical resource block pair is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs
  • the numbering of the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set includes: each third resource group corresponding to a second resource group of the first type, according to the physical resource
  • the number of block pairs is from small to large or from large to small, and the second resource group of the first type in each physical resource block pair is sequentially numbered, wherein, in each physical resource block pair, the first type There is a corresponding relationship between the number of the second resource group and the number of the first resource group corresponding to the second resource group of the first type.
  • the number of the second resource group of the first type is continuous, the order of the number of the second resource group of the first type, and the first resource group corresponding to the second resource group of the first type The order of the largest or smallest number is the same.
  • the numbering the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set includes:
  • i is the number of the first resource group, i is an integer from 0 to L1
  • L is the number of the first resource group in a physical resource block pair
  • j is the number of the second resource group of the first type
  • m Is the number of the physical resource block pair
  • K is the number of the second resource group of the first type in each physical resource block pair
  • mod represents the modulo operation
  • the second resource group of the first type corresponds to the M belonging to the same physics.
  • the first resource group of the resource block pair, M is a positive integer.
  • each physical resource block pair includes N third resource groups, where N is a positive integer, and each third resource group includes M first resource groups, in the physical resource block.
  • the number set of the first resource group included in each third resource group of one physical resource block pair is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs
  • the order of the number of the third resource group is the same as the order of the largest number or the smallest number of the first resource group in the third resource group; according to the first resource group and the physical resource block set
  • the numbering of the second resource group includes: each third resource group corresponding to a second resource group of the first type, according to the third resource group number from small to large or large to small Sequence, sequentially numbering the second resource groups of the first type corresponding to the third resource group having the same number, and the first type corresponding to the third resource group having the same number In the second resource group, the
  • the sequence of the number of the second resource group of the first type and the first class are In the second resource group of the first type corresponding to the third resource group having the same number, the number of the second resource group of the first type is continuous, and the order of the number of the second resource group of the first type and the first type The order of the numbers of the physical resource block pairs in which the second resource group is located is the same.
  • the numbering the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set includes:
  • i is the number of the first resource group
  • i is an integer from 0 to L-1
  • L is the number of the first resource group in one physical resource block pair
  • j is the number of the second resource group of the first type
  • m is physical capital
  • K is the number of the second resource group of the first type in each physical resource block pair
  • mod represents the modulo operation
  • the second resource group of the first type corresponds to the M belonging to the same physical resource block.
  • M is a positive integer.
  • the second resource group of the first type corresponding to the third resource group of the same number, and the second resource group of the first type of the physical resource block pair A resource group mapping relationship is a cyclic shift of a mapping relationship between a second resource group of a first type and a first resource group included in each of the other physical resource block pairs.
  • the numbering the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set includes:
  • the second resource group of the second type includes M first resource groups respectively belonging to different physical resource block pairs;
  • the number of the first physical resource group in the same physical resource block pair corresponding to the second resource group of the second type is used as the number of the second resource group of the second type.
  • the numbering the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set includes:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the second type m is the number of the physical resource block pair, K is the number of the second type of the second resource group in each physical resource block pair, and mod represents the modulo operation; or
  • i is the number of the xth first resource group corresponding to the second resource group of the second type numbered j
  • i is an integer from 0 to L-1
  • L is one of the physical resource block pairs
  • m is the number of the physical resource block pair of the Xth first resource group corresponding to the second resource group of the second type numbered with the number j
  • 0 is the number of the first resource group included in the second resource group
  • C is the physical resource block pair in the physical resource block set.
  • Number, mod means modulo operation
  • floor means downward Rounding operation.
  • the numbering the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set includes:
  • the second resource group of the second type includes M first resource groups respectively belonging to different physical resource block pairs, and the physical resource block set includes a set of K second type second resource groups, where K is a positive integer, in K Within each set in the set, the mapping relationship between the second resource group of the second type and the first resource group included therein is a cyclic shift of the mapping relationship between the second resource group of each second type and the first resource group included therein Bit
  • the order of the number of the second resource group of the second type and the maximum number or the minimum number of the first resource group corresponding to the different sets of the K sets in the same physical resource block pair The order is the same.
  • the physical resource block set includes a set of K second types of second resource groups, and within each of the K sets, a second type of second resource group
  • the mapping relationship with the first resource group included therein is a cyclic shift of the mapping relationship between the second resource group of each of the second types and the first resource group included therein.
  • At least two second types of the first resource group corresponding to the at least two second resource groups of the first type of the physical resource block set and the physical resource block set The first resource group corresponding to the second resource group is the same, and the set of the number of the at least two second resource groups of the first type is the same as the set of the numbers of the at least two second resource groups of the second type.
  • the second resource group of the first type in the physical resource block set is a resource group that uses the centralized transmission E-PDCCH; the second type of the second type in the physical resource block set A resource group is a resource group that uses a discrete transmission E-PDCCH.
  • a second aspect of the embodiments of the present invention provides an apparatus for transmitting an enhanced physical downlink control channel E-PDCCH, including:
  • a sorting unit configured to sort, in a physical resource block set, a first resource group in each physical resource block pair PRB pair, where the first resource group is a resource unit group eREG or REG, physical resources
  • the source block set includes at least one physical resource block pair;
  • a numbering unit configured to number the second resource group according to a correspondence between the first resource group and the second resource group in the physical resource block set, where the second resource group is a control channel unit eCCE group or a control channel candidate group ;
  • a fifth determining unit configured to determine a number of the second resource group that transmits the E-PDCCH
  • a transmitting unit configured to map the E-PDCCH to the corresponding first resource group for transmission according to the determined number.
  • each physical resource block pair includes N third resource groups, where N is a positive integer, and each third resource group includes M first resource groups, in the physical resource block.
  • N is a positive integer
  • each third resource group includes M first resource groups, in the physical resource block.
  • the number set of the first resource group included in each third resource group of one physical resource block pair is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs
  • Each third resource group corresponds to a second resource group of the first type; the numbering unit is used to sequence the physical resource block pairs from small to large or from large to small, in turn for each physical resource block pair.
  • the second resource group of the first type is numbered, wherein, in each physical resource block pair, the number of the second resource group of the first type and the number of the first resource group corresponding to the second resource group of the first type exist Correspondence relationship.
  • each physical resource block pair the number of the second resource group of the first type and the number of the first resource group corresponding to the second resource group of the first type are corresponding to each other.
  • the relationship includes: in each physical resource block pair, the number of the second resource group of the first type is continuous, the order of the number of the second resource group of the first type, and the corresponding number of the second resource group of the first type The order of the largest or lowest number of a resource group is the same.
  • the numbering unit is configured to determine the number of the second resource group of the first type according to the following formula:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the first type m is the number of the physical resource block pair, K is the number of the second resource group of the first type in each physical resource block pair, mod represents the modulo operation, and the second resource group of the first type corresponds to M
  • M is a positive integer.
  • each physical resource block pair includes N third resources a source group, where N is a positive integer, each third resource group includes M first resource groups, and in the physical resource block set, each third resource group of one physical resource block pair includes the first resource group
  • the number set is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs, and in each physical resource block pair, the order of the number of the third resource group and the third resource group
  • the order of the largest number or the lowest number of the first resource group in the same is the same
  • each third resource group corresponds to a second resource group of the first type;
  • the numbering unit is used to grow from small to large or large to the third resource group number a small sequence, in which the second resource groups of the first type corresponding to the third resource group having the same number are sequentially numbered, and in the second resource group of the first type corresponding to the third resource group having the same number,
  • the sequence of the number of the second resource group of the first type and the first class are In the second resource group of the first type corresponding to the third resource group having the same number, the number of the second resource group of the first type is continuous, and the order of the number of the second resource group of the first type and the first type The order of the numbers of the physical resource block pairs in which the second resource group is located is the same.
  • the numbering unit is configured to determine the number of the second resource group of the first type according to the following formula:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the first type m is the number of the physical resource block pair, K is the number of the second resource group of the first type in each physical resource block pair, mod represents the modulo operation, and the second resource group of the first type corresponds to M
  • M is a positive integer.
  • the second resource group of the first type corresponding to the third resource group of the same number, and the second resource group of the first type of the physical resource block pair A resource group mapping relationship is a cyclic shift of a mapping relationship between a second resource group of a first type and a first resource group included in each of the other physical resource block pairs.
  • the second resource group of the second type includes M first resource groups that belong to different physical resource block pairs respectively;
  • the numbering unit is configured to use the number of the first physical resource group in the same physical resource block pair corresponding to the second resource group of the second type as the number of the second resource group of the second type.
  • the numbering unit is configured to determine the number of the second resource group of the second type according to the following formula:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the second type m is the number of the physical resource block pair, K is the number of the second type of the second resource group in each physical resource block pair, and mod represents the modulo operation; or
  • i is the number of the xth first resource group corresponding to the second resource group of the second type numbered j
  • i is an integer from 0 to L-1
  • L is one of the physical resource block pairs
  • the number of the first resource group, m is the number of the physical resource block pair of the Xth first resource group corresponding to the second resource group of the second type numbered with the number j
  • 0 is the number of the first resource group included in the second resource group
  • C is the physical resource block pair in the physical resource block set.
  • the number, mod represents the modulo operation
  • floor represents the rounding operation.
  • the second resource group of the second type includes M first resource groups that belong to different physical resource block pairs, and the physical resource block set includes K second types of second resources.
  • a set of groups, K is a positive integer.
  • a second resource group of the second type and a first resource group thereof are mapped to each of the second resource groups of each of the second types.
  • the numbering unit is configured to: in each of the K sets, the first one of the same physical resource block pair corresponding to the second resource group of the second type The size relationship of the numbers of the physical resource groups, numbering the second resource groups of the second type; between the different sets in the K sets, the order of the numbers of the second resource groups of the second type and the K sets The order of the largest number or the lowest number of the corresponding first resource group in the same physical resource block pair is the same.
  • the physical resource set includes K second types a set of second resource groups, in each of the K sets, a second resource group of the second type and a first resource group mapping relationship thereof are other second resource groups of each second type and The cyclic shift of the first resource group mapping relationship.
  • At least two second types of the first resource group corresponding to the at least two second resource groups of the first type of the physical resource block set and the physical resource block set The first resource group corresponding to the second resource group is the same, and the set of the number of the at least two second resource groups of the first type is the same as the set of the numbers of the at least two second resource groups of the second type.
  • the second resource group of the first type in the physical resource block set is a resource group that uses the centralized transmission E-PDCCH; the second type of the second type in the physical resource block set A resource group is a resource group that uses a discrete transmission E-PDCCH.
  • a third aspect of the embodiments of the present invention provides an apparatus for transmitting an enhanced physical downlink control channel E-PDCCH, including:
  • Transceiver for transmitting and receiving signals
  • the processor is configured to perform the following steps:
  • the first resource group in the PRB pair is sorted for each physical resource block, the first resource group is a resource unit group eREG or REG, and the physical resource block set includes at least one physical resource block pair;
  • the second resource group is numbered according to the correspondence between the first resource group and the second resource group in the physical resource block set, where the second resource group is a control channel unit eCCE group or a control channel candidate group;
  • each physical resource block pair includes N third resource groups, where N is a positive integer, and each third resource group includes M first resource groups, in the physical resource block.
  • the number set of the first resource group included in each third resource group of one physical resource block pair is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs ;
  • the processor is configured to, according to the corresponding relationship between the first resource group and the second resource group in the physical resource block set, number the second resource group: each third resource group corresponds to one a second resource group of a type, in which the number of the physical resource block pair is numbered from small to large or from large to small, and the second resource group of the first type in each physical resource block pair is sequentially numbered, where In each physical resource block pair, the number of the second resource group of the first type and the number of the first resource group corresponding to the second resource group of the first type have a corresponding relationship.
  • the number of the second resource group of the first type is continuous, the order of the number of the second resource group of the first type, and the first resource group corresponding to the second resource group of the first type The order of the largest or smallest number is the same.
  • the processor is configured to number the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set by:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the first type m is the number of the physical resource block pair, K is the number of the second resource group of the first type in each physical resource block pair, mod represents the modulo operation, and the second resource group of the first type corresponds to M
  • M is a positive integer.
  • each physical resource block pair includes N third resource groups, where N is a positive integer, and each third resource group includes M first resource groups, in the physical resource block.
  • the number set of the first resource group included in each third resource group of one physical resource block pair is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs
  • the order of the number of the third resource group is the same as the order of the largest number or the lowest number of the first resource group in the third resource group
  • the processor is configured to implement the first resource according to the following manner Corresponding relationship between the group and the second resource group in the physical resource block set, and numbering the second resource group: each third resource group corresponding to a second resource group of the first type, according to the third resource group number from small to large Or, in descending order, sequentially numbering the second resource group of the first type corresponding to the third resource group having the same number, and the third resource having the same number In the second resource group of
  • the processor is configured to number the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set by:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the first type m is the number of the physical resource block pair, K is the number of the second resource group of the first type in each physical resource block pair, mod represents the modulo operation, and the second resource group of the first type corresponds to M
  • M is a positive integer.
  • the second resource group of the first type corresponding to the third resource group of the same number, and the second resource group of the first type of the physical resource block pair A resource group mapping relationship is a cyclic shift of a mapping relationship between a second resource group of a first type and a first resource group included in each of the other physical resource block pairs.
  • the processor is configured to number the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set by:
  • the second resource group of the second type includes M first resource groups respectively belonging to different physical resource block pairs;
  • the number of the first physical resource group in the same physical resource block pair corresponding to the second resource group of the second type is used as the number of the second resource group of the second type.
  • the processor is configured to perform processing in the following manner
  • the device is configured to number the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set by:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the second type m is the number of the physical resource block pair, K is the number of the second type of the second resource group in each physical resource block pair, and mod represents the modulo operation; or
  • i is the number of the xth first resource group corresponding to the second resource group of the second type numbered j
  • i is an integer from 0 to L-1
  • L is one of the physical resource block pairs
  • the number of the first resource group, m is the number of the physical resource block pair of the Xth first resource group corresponding to the second resource group of the second type numbered with the number j
  • 0 is the number of the first resource group included in the second resource group
  • C is the physical resource block pair in the physical resource block set.
  • the number, mod represents the modulo operation
  • floor represents the rounding operation.
  • the processor is configured to number the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set by:
  • the second resource group of the second type includes M first resource groups respectively belonging to different physical resource block pairs, and the physical resource block set includes a set of K second type second resource groups, where K is a positive integer, in K Within each set in the set, the mapping relationship between the second resource group of the second type and the first resource group included therein is a cyclic shift of the mapping relationship between the second resource group of each second type and the first resource group included therein Bit
  • the order of the numbering of the second resource group of the second type between different sets in the K sets The different sets of the K sets are in the same order of the largest number or the lowest number of the corresponding first resource group in the same physical resource block pair.
  • the physical resource set includes a set of the second resource group of the second type, and each of the second set is a second resource group of the second type
  • the included first resource group mapping relationship is a cyclic shift of the mapping relationship between the second resource group of each of the second types and the first resource group included therein.
  • At least two second types of the first resource group corresponding to the at least two second resource groups of the first type of the physical resource block set and the physical resource block set The first resource group corresponding to the second resource group is the same, and the set of the number of the at least two second resource groups of the first type is the same as the set of the numbers of the at least two second resource groups of the second type.
  • the second resource group of the first type in the physical resource block set is a resource group that uses the centralized transmission E-PDCCH; the second type of the second type in the physical resource block set A resource group is a resource group that uses a discrete transmission E-PDCCH.
  • the enhanced physical downlink control channel transmission method and apparatus determines the number of the second resource group according to the relationship between the first resource group and the second resource group, and then determines the second resource group for transmitting the E-PDCCH.
  • the number of the E-PDCCH is mapped to the corresponding first resource group for transmission, and the transmission problem of the E-PDCCH is solved, and according to the numbering method in the solution, the blind detection is facilitated.
  • FIG. 1A is a flowchart of a method for transmitting an E-PDCCH according to an embodiment of the present invention
  • FIG. 1B is a flowchart of a method for receiving an E-PDCCH according to an embodiment of the present invention
  • Schematic
  • 2B is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • FIG. 3A is a schematic structural diagram of a base station according to another embodiment of the present invention
  • FIG. 3B is a schematic structural diagram of a UE according to another embodiment of the present disclosure
  • FIG. 4A is a flowchart of another E-PDCCH transmission method according to an embodiment of the present invention.
  • FIG. 4B is a schematic diagram of various numbering results provided in an embodiment of the present invention;
  • FIG. 6 is a schematic structural diagram of a numbering device according to another embodiment of the present invention.
  • FIG. 7A is a flowchart of a method for detecting a control channel according to an embodiment of the present invention.
  • FIG. 7B and FIG. 7C are schematic diagrams showing a first physical resource block set and a second physical resource block set according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a UE according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a base station according to another embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a flowchart of an E-PDCCH transmission method according to an embodiment of the present invention.
  • the executor of this embodiment may be a base station, such as a base station in an LTE system.
  • the method of this embodiment includes:
  • Step 101 Determine, according to a mapping relationship between the first resource group and the pilot port, a correspondence between the second resource group of the first type and the first resource group and the pilot port according to the specific relationship, and the second resource group of the second type. Correspondence with the first resource group and the pilot port.
  • the mapping relationship between the first resource group and the pilot port is obtained in advance by the base station.
  • the manner in which the base station obtains the mapping relationship between the first resource group and the pilot port in advance includes, but is not limited to, the following:
  • the base station and the user equipment (User Equipment, called UE) pre-define the first resource group and the pilot port. Mapping relations.
  • the base station generates a mapping relationship between the first resource group and the pilot port according to the local cell identifier (ID).
  • the base station may further send the high layer signaling to the UE, where the high layer signaling includes a mapping relationship between the first resource group and the pilot port.
  • the mapping relationship between the first resource group and the pilot port includes a physical resource unit set. a mapping relationship between the at least one first resource group and the at least one pilot port; the physical resource unit set is at least one physical resource block pair (in English, a PRB pair).
  • the first resource group is a resource unit group (eREG) or a REG;
  • the second resource group of the first type is a control channel unit (eCCE) or a control channel candidate, and the second resource group of the second type is an eCCE or a control channel candidate.
  • the second resource group of the first type corresponds to at least two first resource groups, and the second resource group of the second type corresponds to at least two first resource groups.
  • the correspondence here mainly means that the second resource group of the first type and the second type can be composed of at least two first resource groups.
  • the foregoing specific relationship is satisfied between the correspondence between the second resource group of different types and the first resource group and the pilot port.
  • the pilot port in this embodiment mainly refers to a DMRS port.
  • the second resource group of this embodiment includes two types, which are the second resource group of the first type and the second resource group of the second type.
  • the second resource group of the first type is a resource group when the E-PDCCH is transmitted in a centralized manner
  • the second resource group of the second type is a resource group when the E-PDCCH is discretely transmitted.
  • the centralized transmission means that the resource allocation for transmitting the E-PDCCH is concentrated in one or several consecutive physical resource block pairs
  • the discrete transmission refers to the resource allocation of the transmission E-PDCCH dispersed in a plurality of discontinuous physical resources. Block inside. It is explained here that in the Rdll, the SFBC is not supported when the E-PDCCH is discretely transmitted, and the multi-user common precoding (random beamforming) mechanism is adopted.
  • the first resource group is an eREG
  • an optional mapping relationship between the first resource group and the pilot port is as shown in Table 1.
  • the physical resource unit set is a physical resource block pair.
  • the physical resource block pair includes 8 eREGs and 8 eREGs—co-mapped to 4 DMRS ports, respectively DMRS port 7, DMRS port 8, and DMRS.
  • Port 9 and DMRS port 10 the mapping relationship between each eREG and DMRS port is not limited to that shown in Table 1.
  • the physical resource block set used for transmitting the E-PDCCH includes four physical resource block pairs, which are physical resource block pairs with indexes 1, 2, 3, and 4, and each physical resource block pair includes 8 eREG.
  • each eREG has a unique location index (such as the numbers 0-7 in parentheses following eREG in Table 1 or Table 2), for physical resource block pairs that include the same number of eREGs. In other words, the location index of the eREG is the same.
  • the first resource group of the first type is composed of at least two eREGs of the same physical resource block pair
  • the second resource group of the first type is composed of two eREGs of the same physical resource block pair
  • the second resource group of the type may be composed of eREG ( 0 ) and eREG ( 1 ) in the physical resource block pair indexed 1 in Table 2, and the corresponding pilot port is DMRS port 7 and 9, or the physical resource with index 1 Block pair eREG ( 2 ) and eREG ( 3 ), the corresponding pilot port is DMRS port 8 and 10, or index 1
  • the physical resource block pair is composed of eREG (4) and eREG (5), and the corresponding pilot port is DMRS port 9 and 7, or the physical resource block pair with index 1 is composed of eREG (6) and eREG (7), corresponding to
  • the pilot ports are DMRS ports 10 and 8, and may also be composed of eREGs in the physical resource block with index 2, no longer -
  • the second type of second resource group is composed of at least two eREGs of different physical resource block pairs, and the second type of second resource group is composed of two eREGs of different physical resource block pairs, for example, the second type
  • the second resource group may be composed of eREG ( 0 ) in the physical resource block pair indexed by 3 in Table 2 and eREG ( 0 ) in the physical resource block pair with index 4, and the corresponding pilot port is DMRS port 7, or may be
  • the physical resource block pair with the index of 3 is composed of eREG ( 1 ) and the physical resource block pair with index 4 is eREG ( 4 ), the corresponding pilot port is DMRS port 9, or may be a physical resource block with index 2.
  • the pair of eREG (6) and the physical resource block pair with index 3 are composed of eREG (7), the corresponding pilot ports are DMRS ports 10 and 8, and so on.
  • the pilot port corresponding to the second resource group of the first type or the second type is also determined.
  • the physical resource block set used for transmitting the E-PDCCH in Table 2 includes four physical resource block pairs, but is not limited thereto.
  • Step 102 Determine to transmit at least one second resource group of the first type or the second resource group of the second type that transmits the E-PDCCH, according to the determined second resource group of the first type or the second type, and the first resource. Corresponding relationship between the group and the pilot port, mapping at least one second resource group of the first type or the second resource group of the second type that transmits the E-PDCCH to the at least one first resource group and the pilot port for transmission .
  • the base station determines the second resource group of the at least one first type that transmits the E-PDCCH, and then according to the previously determined second resource group of the first type and the first Corresponding relationship between the resource group and the pilot port, mapping at least one second resource group of the first type of the E-PDCCH to the at least one first resource group and the pilot port for transmission.
  • the base station determines to determine at least one second resource group of the second type that transmits the E-PDCCH, and then according to the previously determined second type of the second resource group and the first resource group. And corresponding to the pilot port, mapping at least one second resource group of the second type that transmits the E-PDCCH to the at least one first resource group and the pilot port for transmission.
  • the transmission of the PDCCH adopts CRS transmission, and all CCEs of the PDCCH are transmitted. Both are mapped to the same CRS port and transmitted using SFBC or both SFBC and FSTD.
  • the E-PDCCH adopts the DMRS transmission, and the precoding is required on the DMRS (precoding in English). Therefore, the correspondence between the eCCE or the physical channel candidate of the E-PDCCH and the DMRS port needs to be clearly defined, so that the solution can be correctly completed. It can be seen that the manner of transmitting the PDCCH in the prior art is no longer applicable to the E-PDCCH.
  • the mapping relationship between the first resource group and the first resource group and the pilot port is determined according to the mapping relationship between the first resource group and the pilot port, and the second resource group of the second type is first.
  • Corresponding relationship between the resource group and the pilot port and then determining the second resource group (or the second resource group of the first type or the second resource group of the second type) used for transmitting the E-PDCCH, and then determining according to the determined Mapping the second resource group of the E-PDCCH to the corresponding first resource group and the pilot port for transmission, where the mapping between the two types of the second resource group and the first resource group and the pilot port is performed,
  • the transmission problem of the E-PDCCH is solved, and the basis for correctly demodulating the E-PDCCH is laid.
  • the physical resource unit set is a physical resource block pair, where each physical resource block pair includes 8 eREGs, 8 eREGs—co-mapped to 4 DMRS ports, respectively DMRS port 7 and DMRS port 8 DMRS port 9 and DMRS port 10, the mapping relationship between each eREG and the DMRS port is different from the mapping relationship in Table 1, but between the eREG and the DMRS port.
  • the mapping relationship is not limited to those shown in Table 1 and Table 3.
  • the physical resource block set used for transmitting the E-PDCCH includes four physical resource block pairs, which are physical resource block pairs with indexes 1, 2, 3, and 4, and each physical resource block pair includes 8 eREG.
  • the first resource group of the first type is composed of at least two eREGs of the same physical resource block pair
  • the second resource group of the first type is composed of four eREGs of the same physical resource block pair, for example,
  • the second resource group of the type may be composed of eREG ( 0 ), eREG ( 1 ), eREG ( 2 ), and eREG ( 3 ) in the physical resource block pair indexed 1 in Table 4, and the corresponding pilot port is DMRS port 7 And 8, or the physical resource block pair with index 1 is composed of eREG (4), eREG (5), eREG (6), and eREG (7), and the corresponding pilot ports are DMRS ports 9 and 10, no longer - List.
  • the second type of second resource group is composed of at least two eREGs of different physical resource block pairs, and the second type of second resource group is composed of four eREGs of different physical resource block pairs, for example, the second type
  • the second resource group may be composed of eREG ( 0 ) in the physical resource block pair indexed 1, 2, 3, and 4 in Table 2, the corresponding pilot port is DMRS port 7, or may be indexed by 1 and 2.
  • the eREG (3) constitutes, the corresponding pilot ports are DMRS ports 8 and 7, and so on.
  • Table 4 once the eREG constituting the second resource group of the first type or the second type is determined, the pilot port corresponding to the second resource group of the first type or the second type is also determined.
  • the second resource group of the first type and the second resource group of the second type may also be composed of four first resource groups, as shown in Table 5 below.
  • the second resource group of the first type and the second resource group of the second type may also be composed of two first resource groups, and the specific situation is not illustrated.
  • the second resource group of the first type is composed of four eREGs in the same physical resource block pair, and the second resource group of the first type may be the physical resource with index 1 in Table 5.
  • the block pair is composed of eREG ( 0 ) , eREG ( 1 ) , eREG ( 2 ) and eREG ( 3 ), and the corresponding pilot port is DMRS port 7, 8, 9, and 10, or the physical resource block pair with index 1
  • the eREG (4), the eREG (5), the eREG (6), and the eREG (7) are configured, and the corresponding pilot ports are DMRS ports 9, 7, 10, and 8, and may also be eREGs in the physical resource block with index 2.
  • the second resource group of the second type is composed of at least two eREGs of different physical resource block pairs, and the second resource group of the second type is composed of four eREGs of different physical resource block pairs.
  • the second resource group of the second type may be composed of eREG ( 0 ) in the physical resource block pair indexed 1, 2, 3, and 4 in Table 2, and the corresponding pilot port is DMRS port 7, or may be indexed by
  • the physical resource block pair of 1 and 2 is composed of eREG ( 2 ) and the physical resource block pair of indexes 3 and 4 are eREG ( 3 ), the corresponding pilot ports are DMRS ports 8 and 10, and so on.
  • the pilot port corresponding to the second resource group of the first type or the second type is also determined.
  • mapping relationship between the first resource group and the pilot port shown in Tables 1 and 3 above other mapping relationships may be used, for example, eREG (0) and eREG (5) correspond to port 7, eREG ( 1) Corresponding to port 10 with eREG (4), port 8, eREG (3) and eREG (6) correspond to port 10.
  • the base station determines, according to the mapping relationship between the first resource group and the pilot port, the correspondence between the second resource group of the first type and the first resource group and the pilot port according to the specific relationship.
  • the base station includes: according to the mapping relationship between the first resource group and the pilot port, the mapping relationship between the first resource group and the pilot port of the at least two first resource groups corresponding to the second resource group of the first type according to the specific relationship
  • the corresponding port set includes at least two different pilot ports, and determines that the pilot port used in the second resource group transmission of each first type is at least two first resources corresponding to the second resource group of the first type.
  • the pilot port corresponding to the first or last first resource group in the group.
  • the base station determines that at least two first resource groups corresponding to the second resource group of the first type are two first resource groups, and the two first resource groups are in the first resource group.
  • the corresponding port set in the mapping relationship with the pilot port includes two different pilot ports, namely DMRS port 7 and DMRS port 9, respectively, or DMRS port 8 and DMRS port 10, respectively.
  • the base station determines that the at least two first resource groups corresponding to the second resource group of the first type are four first resource groups, and the four first resource groups are in the foregoing first resource group.
  • the corresponding port set in the mapping relationship with the pilot port includes four different pilot ports, which are DMRS ports 7, 8, 9, and 10.
  • the base station determines that the at least two first resource groups corresponding to the second resource group of the first type are four first resource groups, and the four first resource groups are in the foregoing first resource group.
  • the corresponding port set in the mapping relationship with the pilot port includes four different pilot ports, respectively DMRS ports 7, 8, 9, and 10, or the four first resource groups in the first resource group and the pilot group
  • the corresponding port set in the mapping relationship of the port includes two different pilot ports, which are DMRS ports 7 and 9, respectively.
  • at least two corresponding to the second resource group of the first type The set of ports corresponding to the first resource group includes at least two different pilot ports.
  • one of the pilot ports is used for transmission, which is beneficial to save pilot resources.
  • the pilot port used in the first eREG or the last eREG of the corresponding at least two eREGs is selected as the transmission for the pilot port to be used for the unified transmission of the E-PDCCH between the second resource groups of the first type. use.
  • the specific relationship is specifically determined according to a pilot port used when the second resource group of the second type transmits the E-PDCCH, and determines the first a type of a pilot port used by the E-PDCCH, and determining, according to a mapping relationship between the first resource group and the pilot port, a correspondence between the first resource group of the first type and the first resource group and the pilot port, and Correspondence between the second resource of the second type and the first resource group and the pilot port.
  • the at least two first resource groups corresponding to the second resource group of the first type determined by the base station have at least two different guides in the corresponding port set in the mapping relationship between the first resource group and the pilot port.
  • the frequency port is at least two pilot ports used for transmission within each physical resource block pair when the E-PDCCH is transmitted by the at least one second type of second resource group.
  • the pilot port used for transmission in each physical resource block pair when the second resource group of the second type transmits the E-PDCCH may be predefined. For example, if the second resource group of the second type transmits the E-PDCCH, and the pilot ports used for transmission in each physical resource block pair are DMRS ports 7 and 9, the first type determined by the base station The two different pilot ports that the at least two first resource groups corresponding to the two resource groups corresponding to the first resource group and the pilot port are at least two different pilot ports are DMRS ports 7 and 9.
  • the DMRS ports used for transmission in each physical resource block pair are 7 and 9, which means that the second resource group of the first type corresponds to
  • the two e REGs are eREGs corresponding to DMRS ports 7 and 9, and may be eREG ( 0 ) and eREG ( 1 ), or eREG ( 4 ) and eREG ( 5 ).
  • the intra-transmission is performed in each physical resource block pair.
  • the number of the pilot ports is two, which may be the first pilot port and the second pilot port, or may be the third pilot port and the fourth pilot port. That is, when the E-PDCCH is transmitted by the second resource group of the second type, the number of pilot ports used for transmission in each physical resource block pair is not necessarily two, but is when a certain condition is met. Two, can also be one, three, four, and so on.
  • the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port are different.
  • the DMRS port specifically which DMRS port is not limited. And, the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port are all pilot ports to which the first resource group in the same physical resource block pair is mapped.
  • each physical resource block pair The second resource group of each first type determined by the base station corresponds to two first resource groups, and the second resource group corresponding to the first type is corresponding to the condition that the number of the pilot ports used by the internal transmission is two.
  • the corresponding port set in the mapping relationship between the first resource group and the pilot port of the two first resource groups includes two different pilot ports, and the two different pilot ports are respectively the first pilot port and the first The two pilot ports are respectively the third pilot port and the fourth pilot port.
  • each first pilot port is DMRS port 7
  • the second pilot port is DMRS port 9
  • the third pilot port is DMRS port 8
  • the fourth pilot port is DMRS port 10
  • each first The second resource group of the type corresponds to two eREGs
  • the pilot ports corresponding to the two eREGs are DMRS ports 7 and 9, or the pilot ports corresponding to the two eREGs are DMRS ports 8 and 10.
  • one pilot port in the corresponding port set is preferentially selected for transmission.
  • the second resource group of the first first type is composed of the eREG (0) corresponding to the DMRS port 7 and the eREG (1) corresponding to the DMRS port 9, the second resource of the first type
  • the group transmits the E-PDCCH based on the first eREG of the corresponding two eREGs, that is, the pilot port corresponding to the eREG (0), that is, the DMRS port 7, and the second resource group of the first type is transmitting E.
  • - PDCCH, eREG (0) and eREG (1) adopt the same precoding method as DMRS port 7, and both eREG (0) and eREG (1) perform channel estimation based on DMRS port 7.
  • the second resource group of the second first type is composed of the eREG (2) corresponding to the DMRS port 8 and the eREG (3) corresponding to the DMRS port 10, and the second resource group of the first type is transmitted.
  • the E-PDCCH is transmitted based on the first eREG of the corresponding two eREGs, the pilot port corresponding to the eREG (2), that is, the DMRS port 8, that is, when the second resource group of the first type transmits the E-PDCCH.
  • the precoding method adopted by eREG (2) and eREG (3) is the same as the precoding method adopted by DMRS port 8. Both eREG (2) and eREG (3) perform channel estimation based on DMRS port 8.
  • the second resource group of the third type is composed of the eREG (4) corresponding to the DMRS port 9 and the eREG (5) corresponding to the DMRS port 7, and the second resource group of the first type is transmitted.
  • E-PDCCH based on its The first eREG of the corresponding two eREGs, that is, the pilot port corresponding to the eREG (4), that is, the DMRS port 9 performs transmission, that is, when the second resource group of the first type transmits the E-PDCCH, the eREG (4)
  • the precoding method adopted by eREG (5) is the same as the precoding method adopted by DMRS port 9, and both eREG (4) and eREG (5) perform channel estimation based on DMRS port 9.
  • the second resource group of the fourth first type is composed of the eREG (6) corresponding to the DMRS port 10 and the eREG (7) corresponding to the DMRS port 8, the second resource group transmission of the first type
  • the E-PDCCH is transmitted based on the first eREG of the corresponding two eREGs, that is, the pilot port corresponding to the eREG (6), that is, the DMRS port 10, that is, the second resource group of the first type transmits the E-PDCCH.
  • the precoding method adopted by eREG (6) and eREG (7) is the same as that used by DMRS port 10. Both eREG (6) and eREG (7) perform channel estimation based on DMRS port 10.
  • each physical resource block pair may include four second resource groups of the first type.
  • each physical resource block pair includes a total of eight first resource groups. As shown in Table 1 - Table 5.
  • the physical resource block pair includes two different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the two first resource groups corresponding to the two first types of the second resource group.
  • the pilot ports are both the first pilot port and the second pilot port; the two first resource groups corresponding to the other two second resource groups of the first type included in the physical resource block pair are in the first resource group and the first resource group
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the frequency ports are the third pilot port and the fourth pilot port.
  • the two resource groups of the two first types corresponding to the two first resource groups corresponding to the pilot set including the first pilot port and the second pilot port in the first two types of the first type
  • the order of the two first resource groups that are sorted according to the pilot port in the two resource groups is different.
  • the two first resources corresponding to the pilot set corresponding to the third pilot port and the fourth pilot port are used.
  • the physical resource block pair with index 1 includes four second resource groups of the first type, respectively being the second resource group of the first type consisting of eREG ( 0 ) and eREG ( 1 ), by eREG ( 2) a second resource group of the first type composed of eREG (3), a second resource group of the first type consisting of eREG (4) and eREG (5), consisting of eREG (6) and eREG (7) The second resource group of the first type.
  • the second resource group of the first type consisting of eREG ( 0 ) and eREG ( 1 ) is composed of eREG ( 4 ) and eREG ( 5 )
  • the first resource group of the first type corresponds to the same pilot port, which are DMRS ports 7 and 9, respectively, and after sorting according to the pilot port, the DMRS ports 7 and 9 are in the second resource group of the two first types.
  • the order in the different is, for example, in the second resource group of the first type consisting of eREG ( 0 ) and eREG ( 1 ), the order of DMRS ports 7 and 9 is the first DMRS port 7 and the DMRS port 9 after the eREG (4) In the second resource group of the first type composed of eREG (5), the order of DMRS ports 7 and 9 is the first DMRS port 9 and the DMRS port 7.
  • a second resource group of the first type consisting of eREG (2) and eREG (3) and a second resource group of the first type consisting of eREG (6) and eREG (7) correspond to the same pilot port, respectively DMRS ports 8 and 10, and after sorting by pilot ports, DMRS ports 8 and 10 are in different order in the second resource groups of the two first types, for example, composed of eREG ( 2 ) and eREG ( 3 )
  • the order of DMRS ports 8 and 10 is the first DMRS port 8 and the DMRS port 10, in the second resource group of the first type consisting of eREG (6) and eREG (7)
  • the order of DMRS ports 8 and 10 is DMRS port 10 followed by DMRS port 8.
  • each physical resource block pair The second resource group of each first type determined by the base station corresponds to four first resource groups, and the second resource group corresponding to the first type is corresponding to the number of the pilot ports that are used for the intra-transmission.
  • the corresponding port set in the mapping relationship between the first resource group and the pilot port of the four first resource groups includes four different pilot ports, and the four different pilot ports are respectively the first pilot port, Two pilot ports, a third pilot port, and a fourth pilot port.
  • each first pilot port is DMRS port 7, the second pilot port is DMRS port 9, the third pilot port is DMRS port 8, and the fourth pilot port is DMRS port 10, then each first The second resource group of the type corresponds to four eREGs, and the pilot ports corresponding to the four eREGs are DMRS ports 7, 8, 9, and 10.
  • the pilot ports corresponding to the four eREGs are DMRS ports 7, 8, 9, and 10.
  • one pilot port in the corresponding port set is preferentially selected for transmission.
  • eREG (0) corresponding to DMRS port 7 eREG (1) corresponding to DMRS port 9, eREG (2) corresponding to DMRS port 8, and eREG (3) corresponding to DMRS port 10
  • the second resource group of the first type transmits the E-PDCCH based on a first eREG of the corresponding four eREGs, that is, a guide corresponding to eREG ( 0 )
  • the frequency port that is, the DMRS port 7, performs transmission
  • the second resource group of the first type transmits e-PDCCH, eREG (0), eREG (1), eREG (2) and eREG (3) use the same precoding method as DMRS port 7, which is the four eREG (0), eREG (1), eREG (2) and eREG (3) Both are based on DMRS port 7 for channel estimation.
  • Table 5 it consists of an eREG (4) corresponding to the DMRS port 9, an eREG (5) corresponding to the DMRS port 7, an eREG (6) corresponding to the DMRS port 10, and an eREG (7) corresponding to the DMRS port 8.
  • the first resource group of the first type transmits the E-PDCCH based on the first eREG of the corresponding four eREGs, and the pilot port corresponding to the eREG (4), That is, the DMRS port 9 performs transmission, that is, the precoding mode and the DMRS port adopted by the eREG (4), eREG (5), eREG (6), and eREG (7) when the second resource group of the first type transmits the E-PDCCH.
  • the precoding method is the same.
  • the four eREG (4), eREG (5), eREG (6) and eREG (7) are all based on DMRS port 9 for channel estimation.
  • each physical resource block pair includes two second resource groups of the first type.
  • the physical resource block includes four different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the four first resource groups corresponding to the two first types of the second resource group.
  • the pilot ports are all the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port, and are in the second resource group of the two first types included in the physical resource block pair. The order of the four first resource groups sorted by the frequency port is different.
  • the manner of ordering the pilot ports in the second resource group of the two first types included in the physical resource block pair may be any different manner, for example: a second resource of the first type included in the physical resource block pair
  • the order of the pilot ports in the group is the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port, and is in the second resource group of another first type included in the physical resource block pair.
  • the pilot ports are ordered by a second pilot port, a first pilot port, a fourth pilot port, and a third pilot port.
  • the ordering of the pilot ports in the second resource group of the first type included in the physical resource block pair is a first pilot port, a second pilot port, a third pilot port, and a fourth pilot port
  • the physical resource block ranks the pilot ports in the second resource group of the other first type included into a fourth pilot port, a third pilot port, a second pilot port, and a first pilot port.
  • the ordering of the pilot ports in the second resource group of the first type included in the physical resource block pair is a first pilot port, a third pilot port, a second pilot port, and a fourth pilot port
  • the physical resource block sorts the pilot ports in the second resource group of the other first type included into the third pilot port, the first pilot port, and the first Four pilot ports and second pilot ports.
  • the physical resource block pair with index 1 includes two second resource groups of the first type, which are respectively composed of eREG (0), eREG (1), eREG (2), and eREG (3).
  • a second resource group of the type and a second resource group of the first type consisting of eREG (4), eREG (5), eREG (6), and eREG (7).
  • the second resource group of the first type consisting of eREG ( 0 ) , eREG ( 1 ) , eREG ( 2 ) and eREG ( 3 ) and by eREG ( 4 ) , eREG ( 5 ) , eREG ( 6 ) and eREG (7)
  • the first resource group of the first type is configured to correspond to the same pilot port, which are DMRS ports 7, 8, 9, and 10, respectively, and after sorting according to the pilot port, the DMRS ports 7, 8, 9, and 10 are The order in the second resource groups of the two first types is different.
  • the order of DMRS ports 7, 8, 9, and 10 is DMRS port in order.
  • the order of 8, 9, and 10 is DMRS port 9, DMRS port 7, DMRS port 10, and DMRS port 8.
  • the order of DMRS ports 7, 8, 9, and 10 is also It may be a DMRS port 7, a DMRS port 8, a DMRS port 9, and a DMRS port 10, in a second resource group of the first type consisting of eREG (4), eREG (5), eREG (6), and eREG (7)
  • the order of DMRS ports 7, 8, 9, and 10 may be DMRS port 10, DMRS port 9, DMRS port 8 and DMRS port 7, and so on.
  • each physical resource block pair Under the condition that the number of pilot ports used in the internal transmission is two, the second resource group of each first type determined by the base station corresponds to four first resource groups, and the fourth resource group corresponding to the second type of the first type
  • the corresponding port set in the mapping relationship between the first resource group and the pilot port includes two different pilot ports, and the two different pilot ports are the first pilot port and the second The pilot port, or the third pilot port and the fourth pilot port.
  • each first pilot port is DMRS port 7
  • the second pilot port is DMRS port 8
  • the third pilot port is DMRS port 9
  • the fourth pilot port is DMRS port 10
  • each first The second resource group of the type corresponds to four eREGs
  • the pilot ports corresponding to the four eREGs are DMRS ports 7 and 8, or DMRS Ports 9 and 10.
  • one pilot port in the corresponding port set is preferentially selected for transmission.
  • eREG (0) corresponding to DMRS port 7
  • eREG (1) corresponding to DMRS port 8
  • eREG (2) corresponding to DMRS port 8
  • eREG (3) corresponding to DMRS port 7
  • the second resource group of the first type transmits the E-PDCCH based on a first eREG of the corresponding four eREGs, that is, a guide corresponding to eREG ( 0 )
  • the frequency port that is, the DMRS port 7 performs transmission
  • the second resource group of the first type uses the precoding method adopted by eREG (0), eREG (1), eREG (2), and eREG (3) when transmitting the E-PDCCH.
  • the four eREG (0), eREG (1), eREG (2) and eREG (3) are all based on DMRS port 7 for channel estimation.
  • the eREG (4) corresponding to the DMRS port 9 the eREG (5) corresponding to the DMRS port 10
  • the eREG (6) corresponding to the DMRS port 10 the eREG (7) corresponding to the DMRS port 9 are composed.
  • the first resource group of the first type transmits the E-PDCCH based on the first eREG of the corresponding four eREGs, and the pilot port corresponding to the eREG (4), That is, the DMRS port 9 performs transmission, that is, the precoding mode and the DMRS port adopted by the eREG (4), eREG (5), eREG (6), and eREG (7) when the second resource group of the first type transmits the E-PDCCH.
  • the precoding method is the same.
  • the four eREG (4), eREG (5), eREG (6) and eREG (7) are all based on DMRS port 9 for channel estimation.
  • each physical resource block pair includes two second resource groups of the first type.
  • the two first resource groups corresponding to a second resource group of the first type included in the physical resource block pair include two different ones in the corresponding port set in the mapping relationship between the first resource group and the pilot port.
  • the pilot port is a first pilot port and a second pilot port, and the first resource group corresponding to the second resource group of another first type included in the physical resource block pair is in the first resource group and the pilot.
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the port are the third pilot port and the fourth pilot port.
  • the physical resource block pair with index 1 includes two second resource groups of the first type, which are the first type consisting of eREG(0), eREG(1), eREG U) and eREG(3), respectively. a second resource group and a second resource group of the first type consisting of eREG (4), eREG (5), eREG (6), and eREG (7).
  • the first type consisting of eREG ( 0 ) , eREG ( 1 ) , eREG ( 2 ) and eREG ( 3 )
  • the second resource group and the second resource group of the first type consisting of eREG (4), eREG (5), eREG (6), and eREG (7) correspond to different pilot ports.
  • the pilot ports corresponding to the second resource group of the first type consisting of eREG (0), eREG (1), eRE 2), and eRE 3) are DMRS ports 7 and 8, and are eREG (4), eREG (
  • the pilot ports corresponding to the second resource group of the first type formed by eREG (6) and eREG (7) are DMRS ports 9 and 10.
  • the at least two first resource groups corresponding to the second resource group of each second type of the E-PDCCH that are determined by the base station are corresponding to the same in different physical resource block pairs.
  • the second resource group of the second type surrounded by the solid line frame in Table 2 is two of the two physical resource block pairs indexed by 3 and 4, and the position index of the corresponding DMRS port 7 is 0.
  • the second resource group of the second type surrounded by the solid line frame in Table 4 and Table 5 is corresponding to the DMRS port 7 by the four physical resource block pairs indexed 1, 2, 3, and 4.
  • the at least two first resource groups corresponding to the second resource group of each second type of the E-PDCCH that are determined by the base station are corresponding to the same in different physical resource block pairs.
  • the second resource group of the second type which is surrounded by two dashed boxes connected by solid lines in Table 2, is a position index corresponding to the DMRS port 9 of the two physical resource block pairs indexed 3 and 4.
  • the second resource group of the second type surrounded by two dotted frames connected by solid lines in Table 4 is corresponding to the four physical resource block pairs indexed 1, 2, 3, and 4 respectively.
  • the second resource group of the second type may also be an eREG with a position index of 0 corresponding to the DMRS port 7 of the physical resource block pair with index 1 and a corresponding DMRS of the physical resource block pair with index 2.
  • the second resource group of the second type may also be an eREG with a position index of 0 corresponding to the DMRS port 7 of the physical resource block pair with index 1 and a corresponding DMRS of the physical resource block pair with index 2.
  • the eREG with the location index 1 of the port 8 and the eREG with the location index of 4 corresponding to the DMRS port 9 and the physical resource block pair with the index 4 of the physical resource block pair with the location index of 5 are the eREG corresponding to the DMRS port 10 location index of 5. Composition.
  • the second resource group corresponding to each second type of the E-PDCCH that is determined by the base station is corresponding to the implementation of the second resource group of the first type in the foregoing embodiments.
  • the at least two first resource groups are the first resource group having the same location index of the at least two first resource groups corresponding to the location index of the different physical resource block pair and the second resource group of the first type.
  • the second resource group of the second type which is surrounded by two dotted lines connected by a broken line in Table 2, is the first resource whose position index of the corresponding DMRS port 10 of the physical resource block pair with index 2 is 6.
  • the first resource group with a position index of 7 corresponding to the DMRS port of 8 in the physical resource block pair of the group and the index is 4, the second resource group of the second type and the physical resource block with the index 1 in the table 2.
  • the second resource group of the first type which is composed of two first resource groups with a location index of 6 and 7, the location index of the first resource group corresponding to the two second resource groups is the same.
  • the base station may be determined that the second resource group of the second type is a first resource group whose position index is 0 by a physical resource block with index 1 and a first resource group with a location index of 1 for a physical resource block with index 2.
  • the first resource group with a position index of 2 and the first resource group with a position index of 3 for the physical resource block pair with an index of 4 are allocated to the physical resource block with the index of 3; in addition, the base station can also determine the second resource group.
  • the second resource group of the type is the first resource group whose position index is 0 by the physical resource block pair with the index of 4, the physical resource block with the index of 3, the first resource group with the position index of 1, and the physical index of the index 2.
  • the resource group has a first resource group with a location index of 2 and a first resource group with a location index of 3 for a physical resource block with an index of 0, and the like.
  • Port 10 ereg (7) ” ereg (7) ereg (7) ereg (7) ereg (7) As shown in Table 6, if DMRS port 7 and DMRS port 9 are assigned to the second type of second resource group to transmit E-PDCCH As the pilot port used for the transmission of each physical resource block pair, and the second resource groups of the two second types transmitting the E-PDCCH are as shown by the solid line frame in Table 6, at this time, for the index 1
  • the first resource group of the physical resource block pair that can be used to form the second resource group of the first type is only shown by the dashed box in Table 6, where eREG (1) and eREG (5) cannot be used, resulting in waste. .
  • the mapping relationship between the first resource group and the pilot port is set, and then the second resource group of the first type is determined according to the first resource group and the pilot port and the specific relationship.
  • the second type of the second resource group and the corresponding pilot port may solve the above problem, and the pilot port resource can be fully utilized, and the pilot port pair can be flexibly configured to fully utilize the spatial diversity brought by the pilot port.
  • FIG. 1B is a flowchart of a method for receiving an E-PDCCH according to an embodiment of the present invention.
  • the execution subject of this embodiment is a UE, but is not limited thereto.
  • the method in this embodiment includes:
  • Step 201 Determine, according to a specific relationship, a correspondence between the second resource group of the first type and the first resource group and the pilot port, and a second resource group of the second type according to the mapping relationship between the first resource group and the pilot port. Correspondence with the first resource group and the pilot port.
  • the mapping relationship between the first resource group and the pilot port includes a mapping relationship between at least one first resource group and at least one pilot port in the physical resource unit set.
  • the first resource group is eREG or REG
  • the first type is
  • the second resource group is an eCCE or a control channel candidate
  • the second resource group of the second type is an eCCE or a control channel candidate
  • the physical resource unit set is at least one physical resource block pair
  • the second resource group of the first type corresponds to at least two A resource group
  • the second resource group of the second type corresponds to at least two first resource groups.
  • Step 202 Determine to transmit at least one second resource group of the first type or the second resource group of the second type that transmits the E-PDCCH, according to the determined second resource group and the first resource of the first type or the second type. Corresponding relationship between the group and the pilot port, receiving, by the at least one first resource group and the pilot port, at least one second resource group of the first type or the second resource group of the second type that transmits the E-PDCCH.
  • Step 201 of the embodiment refer to the description of step 101.
  • Step 202 can refer to the description of step 102, which is different from step 102.
  • the UE receives the transmission E- at the at least one first resource group and the pilot port.
  • At least one of the first type of second resource group or the second type of second resource group of the PDCCH instead of transmitting at least one of the first type of second resource group of the E-PDCCH or as in step 102
  • the second type of second resource group is mapped to the at least one first resource group and transmitted on the pilot port.
  • the process of receiving, by the UE, the at least one second resource group of the first type or the second resource group of the second type that transmits the E-PDCCH on the at least one first resource group and the pilot port is a process of blind detection.
  • the blind detection process in this embodiment is similar to the blind detection process in the prior art, and details are not described herein again.
  • the second resource group includes two types, a second resource group of the first type and a second resource group of the second type.
  • the second resource group of the first type is a resource group when the E-PDCCH is used for centralized transmission
  • the second resource group of the second type is a resource group when the E-PDCCH is discretely transmitted.
  • centralized transmission means that the resource allocation for transmitting the E-PDCCH is concentrated in one or several consecutive physical resource block pairs
  • the discrete transmission refers to the resource allocation for transmitting the E-PDCCH dispersed in multiple non-contiguous physical resources. Block inside.
  • the UE determines, according to the mapping relationship between the first resource group and the pilot port, the correspondence between the second resource group of the first type and the first resource group and the pilot port according to the specific relationship.
  • the method includes: determining, according to a mapping relationship between the first resource group and the pilot port, the mapping relationship between the first resource group and the pilot port of the at least two first resource groups corresponding to the second resource group of the first type according to the specific relationship.
  • the corresponding port set includes at least two different pilot ports, and determines that the pilot port used in the second resource group transmission of each first type is at least two first resources corresponding to the second resource group of the first type.
  • the pilot port corresponding to the first or last first resource group in the group.
  • the specific relationship is specifically determined according to a pilot port used when the second resource group of the second type transmits the E-PDCCH, and determines the first a type of a pilot port used by the E-PDCCH, and determining, according to a mapping relationship between the first resource group and the pilot port, a correspondence between the first resource group of the first type and the first resource group and the pilot port, and Correspondence between the second resource of the second type and the first resource group and the pilot port. Based on this, the at least two first resource groups corresponding to the second resource group of the first type determined by the UE have at least two different guides in the corresponding port set in the mapping relationship between the first resource group and the pilot port.
  • the frequency port is at least two pilot ports employed for transmission within each physical resource block pair when the E-PDCCH is transmitted by the at least one second type of second resource group.
  • the pilot port used for transmission in each physical resource block pair when the second resource group of the second type transmits the E-PDCCH may be predefined.
  • the intra-transmission is performed in each physical resource block pair.
  • the number of the pilot ports is two, which may be the first pilot port and the second pilot port, or may be the third pilot port and the fourth pilot port. That is, when the E-PDCCH is transmitted by the second resource group of the second type, the number of pilot ports used for transmission in each physical resource block pair is not necessarily two, but is when a certain condition is met. Two, can also be one, three, four, and so on.
  • the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port are different DMRS ports, and specifically, which DMRS port is not limited. And, the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port are all pilot ports to which the first resource group in the same physical resource block pair is mapped.
  • each physical resource block pair Under the condition that the number of pilot ports used in the internal transmission is two, the second resource group of each first type determined by the UE corresponds to two first resource groups, and the second resource group corresponding to the first type corresponds to The corresponding port set in the mapping relationship between the first resource group and the pilot port of the two first resource groups includes two different pilot ports, and the two different pilot ports are respectively the first pilot port and the first The two pilot ports are respectively the third pilot port and the fourth pilot port.
  • each physical resource block pair may include four second resource groups of the first type.
  • each The physical resource block pair includes a total of eight first resource groups. As shown in Table 1 - Table 5.
  • the physical resource block pair includes two different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the two first resource groups corresponding to the two first types of the second resource group.
  • the pilot ports are both the first pilot port and the second pilot port; the two first resource groups corresponding to the other two second resource groups of the first type included in the physical resource block pair are in the first resource group and the first resource group
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the frequency ports are the third pilot port and the fourth pilot port.
  • the two resource groups of the two first types corresponding to the two first resource groups corresponding to the pilot set including the first pilot port and the second pilot port in the first two types of the first type
  • the order of the two first resource groups that are sorted according to the pilot port in the two resource groups is different.
  • the two first resources corresponding to the pilot set corresponding to the third pilot port and the fourth pilot port are used.
  • the two first resource groups of the first type of the group are different in the order of the two first resource groups sorted by the pilot port in the second resource group of the two first types.
  • each physical resource block pair The second resource group of each first type determined by the UE corresponds to four first resource groups, and the second resource group corresponding to the first type corresponds to the condition that the number of the pilot ports used by the UE is two.
  • the corresponding port set in the mapping relationship between the first resource group and the pilot port of the four first resource groups includes four different pilot ports, and the four different pilot ports are respectively the first pilot port, Two pilot ports, a third pilot port, and a fourth pilot port.
  • each physical resource block pair includes two second resource groups of the first type.
  • the physical resource block includes four different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the four first resource groups corresponding to the two first types of the second resource group.
  • the pilot ports are all the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port, and are in the second resource group of the two first types included in the physical resource block pair. The order of the four first resource groups sorted by the frequency port is different.
  • the manner of ordering the pilot ports in the second resource group of the two first types included in the physical resource block pair may be any different manner, for example: a second resource of the first type included in the physical resource block pair
  • the order of the pilot ports in the group is the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port, and is in the second resource group of another first type included in the physical resource block pair.
  • Pilot end The order of the ports is a second pilot port, a first pilot port, a fourth pilot port, and a third pilot port.
  • the ordering of the pilot ports in the second resource group of the first type included in the physical resource block pair is a first pilot port, a second pilot port, a third pilot port, and a fourth pilot port
  • the physical resource block ranks the pilot ports in the second resource group of the other first type included into a fourth pilot port, a third pilot port, a second pilot port, and a first pilot port.
  • the ordering of the pilot ports in the second resource group of the first type included in the physical resource block pair is a first pilot port, a third pilot port, a second pilot port, and a fourth pilot port
  • the physical resource block ranks the pilot ports in the second resource group of the other first type included into a third pilot port, a first pilot port, a fourth pilot port, and a second pilot port.
  • each physical resource block pair Under the condition that the number of pilot ports used in the internal transmission is two, the second resource group of each first type determined by the UE corresponds to four first resource groups, and the fourth resource group corresponding to the second type of the first type
  • the corresponding port set in the mapping relationship between the first resource group and the pilot port includes two different pilot ports, and the two different pilot ports are the first pilot port and the second The pilot port, or the third pilot port and the fourth pilot port.
  • each physical resource block pair includes two second resource groups of the first type.
  • the two first resource groups corresponding to a second resource group of the first type included in the physical resource block pair include two different ones in the corresponding port set in the mapping relationship between the first resource group and the pilot port.
  • the pilot port is a first pilot port and a second pilot port, and the first resource group corresponding to the second resource group of another first type included in the physical resource block pair is in the first resource group and the pilot.
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the port are the third pilot port and the fourth pilot port.
  • the at least two first resource groups corresponding to the second resource group of each second type of the E-PDCCH that are determined by the UE are corresponding to the same in different physical resource block pairs.
  • the at least two first resource groups corresponding to the second resource group of each second type of the E-PDCCH that are determined by the UE are corresponding to the same in different physical resource block pairs.
  • the first resource group with different pilot ports and different position indexes.
  • the UE determines the second resource group corresponding to each second type of the transmission E-PDCCH.
  • the at least two first resource groups are the first resource group having the same location index of the at least two first resource groups corresponding to the location index of the different physical resource block pair and the second resource group of the first type.
  • the UE before using the mapping relationship between the first resource group and the pilot port, the UE needs to obtain the mapping relationship between the first resource group and the pilot port in advance.
  • the manner in which the UE obtains the mapping relationship between the first resource group and the pilot port includes: pre-defining the mapping relationship between the first resource group and the pilot port by the UE and the base station.
  • the UE and the base station pre-agree to generate a mapping relationship between the first resource group and the pilot port according to the local cell ID.
  • the base station does not need to send the mapping relationship between the first resource group and the pilot port to the UE, but the UE can directly obtain the mapping relationship between the first resource group and the pilot port.
  • the UE receives the high-level signaling sent by the base station, where the high-layer signaling includes the mapping relationship between the first resource group and the pilot port, and the UE obtains the first resource group and the pilot port from the high-layer signaling.
  • the mapping relationship is convenient for the base station to flexibly configure the mapping relationship between the first resource group and the pilot port.
  • the E-PDCCH receiving method provided by this embodiment is related to the E-PDCCH transmission method provided by the foregoing embodiment, and the UE can successfully receive the E-PDCCH, thereby solving the transmission problem of the E-PDCCH, and the method of this embodiment It can also improve the utilization of the pilot port and make full use of the spatial diversity effect brought by the pilot port.
  • FIG. 2A is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station of this embodiment includes: a first determining unit 21, a second determining unit 22, and a mapping transmitting unit 23.
  • the first determining unit 21 is configured to determine, according to a specific relationship, a correspondence between the second resource group of the first type and the first resource group and the pilot port according to the mapping relationship between the first resource group and the pilot port, and Correspondence between the second resource group of the second type and the first resource group and the pilot port.
  • the mapping relationship between the first resource group and the pilot port includes a mapping relationship between at least one first resource group and at least one pilot port in one physical resource unit set.
  • the first resource group is an eREG or a REG
  • the second resource group of the first type is an eCCE or a control channel candidate
  • the second resource group of the second type is an eCCE or a control channel candidate.
  • the physical resource unit set is at least one physical resource block pair.
  • the second resource group of the first type corresponds to at least two first resource groups, and the second type of second The resource group corresponds to at least two first resource groups. The foregoing specific relationship is satisfied between the correspondence between the second resource group of different types and the first resource group and the pilot port.
  • the second determining unit 22 is configured to determine a second resource group of the at least one first type or a second resource group of the second type that transmits the E-PDCCH.
  • the mapping transmission unit 23 is connected to the first determining unit 21 and the second determining unit 22, and is configured to determine, according to the first determining unit 21, the first resource group of the first type or the second type and the first resource group and the pilot. Corresponding relationship of the port, mapping at least one second resource group of the first type or the second resource group of the second type of the E-PDCCH determined by the second determining unit 22 to the at least one first resource group and the pilot port Transfer.
  • the second resource group of the first type is a resource group when the E-PDCCH is used for centralized transmission; and the second resource group of the second type is when the E-PDCCH is used for discrete transmission. Resource group.
  • the first determining unit 21 determines, according to the mapping relationship between the first resource group and the pilot port, the second resource group of the first type and the first resource group and the pilot according to the specific relationship.
  • Corresponding relationship of the port includes: the first determining unit 21 is configured to determine, according to the mapping relationship between the first resource group and the pilot port, the at least two first resource groups corresponding to the second resource group of the first type according to the specific relationship.
  • the corresponding port set in the mapping relationship between the first resource group and the pilot port includes at least two different pilot ports, and determines that the pilot port used for the transmission of the second resource group of each first type is the first type of the first type.
  • a pilot port corresponding to the first or last one of the at least two first resource groups corresponding to the two resource groups.
  • the first determining unit 21 determines that the at least two first resource groups corresponding to the second resource group of the first type correspond to the mapping relationship between the first resource group and the pilot port.
  • the port set includes at least two different pilot ports.
  • the first determining unit 21 is configured to determine at least two first resource groups corresponding to the first type of the second resource group in the first resource group.
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the pilot port are at least used in each physical resource block pair when the E-PDCCH is transmitted by the at least one second type of second resource group. Two pilot ports.
  • the intra-transmission is performed in each physical resource block pair.
  • each physical resource block pair The first determining unit 21 is specifically used when the pilot port is used for the first pilot port and the second pilot port, or is the third pilot port and the fourth pilot port. Determining, by the second resource group of each first type, the two first resource groups, and determining the mapping between the first resource group and the pilot port of the two first resource groups corresponding to the second resource group of the first type
  • the corresponding port set in the relationship includes two different pilot ports, which are the first pilot port and the second pilot port, respectively, or the third pilot port and the fourth pilot respectively. port.
  • each physical resource block pair includes four second resource groups of the first type.
  • each physical resource block pair includes a total of eight first resource groups.
  • the physical resource block pair includes two different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the two first resource groups corresponding to the two first types of the second resource group.
  • the pilot ports are both the first pilot port and the second pilot port, and the two first resource groups corresponding to the other two second resource groups of the first type included in the physical resource block pair are in the first resource group and the first resource group.
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the frequency ports are the third pilot port and the fourth pilot port.
  • the second resource group of the four first types included in the physical resource block pair, and the two first resources group corresponding to the pilot set corresponding to the first pilot port and the second pilot port a second resource group of a type, in which the order of the two first resource groups sorted by the pilot port in the second resource group of the two first types is different; for corresponding to the third pilot port and the fourth pilot Two first resource groups of two first types of the first resource group corresponding to the pilot set of the port, and two first resource groups sorted by the pilot port in the second resource group of the two first types The order is different.
  • each physical resource block pair The first determining unit 21 is specifically used when the pilot port is used for the first pilot port and the second pilot port, or is the third pilot port and the fourth pilot port. For determining that the first resource group of each first type corresponds to four first resource groups, and the four first resource groups corresponding to the second resource group of the first type are in the mapping relationship between the first resource group and the pilot port.
  • the set of ports includes four different pilot ports, which are a first pilot port, a second pilot port, a third pilot port, and a fourth pilot port, respectively.
  • each physical resource block pair includes two second resource groups of the first type.
  • each physical resource block pair includes a total of eight first resource groups.
  • the physical resource block includes four different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the four first resource groups corresponding to the two first types of the second resource group.
  • the pilot ports are all the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port, and are in the second resource group of the two first types included in the physical resource block pair.
  • the order of the four first resource groups sorted by the frequency port is different.
  • the manner of ordering the pilot ports in the second resource group of the two first types included in the physical resource block pair includes but is not limited to: the pilot port in the second resource group of the first type included in the physical resource block pair Sorting into a first pilot port, a second pilot port, a third pilot port, and a fourth pilot port, and sorting the pilot ports in the second resource group of another first type included in the physical resource block pair is a second pilot port, a first pilot port, a fourth pilot port, and a third pilot port.
  • the ordering of the pilot ports in the second resource group of the first type included in the physical resource block pair is the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port, in the physical resource
  • the order of the pilot ports in the second resource group of the other first type included in the block pair is a fourth pilot port, a third pilot port, a second pilot port, and a first pilot port.
  • the ordering of the pilot ports in the second resource group of the first type included in the physical resource block pair is the first pilot port, the third pilot port, the second pilot port, and the fourth pilot port, in the physical resource
  • the order of the pilot ports in the second resource group of the other first type included in the block pair is a third pilot port, a first pilot port, a fourth pilot port, and a second pilot port.
  • each physical resource block pair The first determining unit 21 is specifically used when the pilot port is used for the first pilot port and the second pilot port, or is the third pilot port and the fourth pilot port. For determining that the first resource group of each first type corresponds to four first resource groups, and the four first resource groups corresponding to the second resource group of the first type are in the mapping relationship between the first resource group and the pilot port.
  • the corresponding port set includes two different pilot ports, which are a first pilot port and a second pilot port, respectively, or a third pilot port and a fourth pilot port, respectively.
  • each physical resource block pair includes two second resource groups of the first type.
  • each physical resource block pair includes a total of eight first resource groups.
  • the two first resource groups corresponding to a second resource group of the first type included in the physical resource block pair include two different ones in the corresponding port set in the mapping relationship between the first resource group and the pilot port.
  • the pilot port is a first pilot port and a second pilot port, and the first resource group corresponding to the second resource group of another first type included in the physical resource block pair is in the first resource group and the pilot.
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the port are the third pilot port and the fourth pilot port.
  • the second determining unit 22 is specifically configured to determine that the at least two first resource groups corresponding to the second resource group of each second type that transmits the E-PDCCH are located in different physical resources.
  • the second determining unit 22 is specifically configured to determine that the at least two first resource groups corresponding to each second resource group of the second type that transmit the E-PDCCH are located differently.
  • the first resource group of the physical resource block pair corresponding to the same pilot port and having different location indexes.
  • the second determining unit 22 is specifically configured to determine, according to the implementation of the second resource group of the first type, the second resource group corresponding to each second type of the transmitted E-PDCCH.
  • the at least two first resource groups are the first resource group having the same location index of the at least two first resource groups corresponding to the location index of the different physical resource block pair and the second resource group of the first type.
  • the first pilot port is a DMRS port 7, the second pilot port is a DMRS port 9, the third pilot port is a DMRS port 8, and the fourth pilot port is a DMRS port.
  • Port 10 the first pilot port is a DMRS port 8, the second pilot port is a DMRS port 10, the third pilot port is a DMRS port 7, and the fourth pilot port is a DMRS port 9.
  • the first pilot port is a DMRS port 7, the second pilot port is a DMRS port 8, the third pilot port is a DMRS port 9, and the fourth pilot port is a DMRS port 10.
  • the first pilot port is a DMRS port 9, the second pilot port is a DMRS port 10, the third pilot port is a DMRS port 7, and the fourth pilot port is a DMRS port 8.
  • the base station in this embodiment further includes: a first acquiring unit 24.
  • the first obtaining unit 24 is configured to pre-define a mapping relationship between the first resource group and the pilot port before the first determining unit 21 uses the mapping relationship between the first resource group and the pilot port; or
  • An obtaining unit 24 is configured to generate, according to the local cell identifier, a mapping relationship between the first resource group and the pilot port before the first determining unit 21 uses the mapping relationship between the first resource group and the pilot port.
  • the base station in this embodiment further includes: a first sending unit 25.
  • the first sending unit 25 is configured to send high layer signaling, where the high layer signaling includes a mapping relationship between the first resource group and the pilot port.
  • the first sending unit 25 is mainly configured to provide a mapping relationship between the first resource group and the pilot port to the UE.
  • the first sending unit 25 is connected to the first determining unit 21 and the first obtaining unit 24.
  • the functional units of the E-PDCCH transmission base station provided in this embodiment may be used to perform the foregoing E-PDCCH transmission method.
  • the specific working principle is not described here. For details, refer to the description of the method embodiments.
  • the E-PDCCH transmission base station of the present embodiment determines, according to the specific relationship, the second resource group of the first type and the second resource group of the second type and the first resource group according to the specific relationship, according to the mapping relationship between the first resource group and the pilot port. Corresponding relationship between the pilot port and the at least one second resource group of the at least one first type of the E-PDCCH or the second resource group of the second type, and according to the previously determined first type or the second type Mapping a second resource group of the first type or the second type of the E-PDCCH to the at least one first resource group and the pilot port, where the second resource group is associated with the first resource group and the pilot port Transmission, which solves the transmission problem of E-PDCCH. Further, the E-PDCCH transmission base station of this embodiment can also improve the utilization of the pilot port and implement spatial diversity.
  • FIG. 2B is a schematic structural diagram of a UE according to an embodiment of the present invention. As shown in FIG. 2B, the UE of this embodiment includes: a third determining unit 26, a fourth determining unit 27, and a first receiving unit 28.
  • the third determining unit 26 is configured to determine, according to the mapping relationship between the first resource group and the pilot port, the correspondence between the second resource group of the first type and the first resource group and the pilot port according to the specific relationship, and the second type Correspondence between the second resource group and the first resource group and the pilot port.
  • the mapping relationship between the first resource group and the pilot port includes a mapping relationship between at least one first resource group and at least one pilot port in the physical resource unit set.
  • the first resource group is eREG or REG
  • the first type is
  • the second resource group is an eCCE or a control channel candidate
  • the second resource group of the second type is an eCCE or a control channel candidate
  • the physical resource unit set is at least one physical resource block pair
  • the second resource group of the first type corresponds to at least two A resource group
  • the second resource group of the second type corresponds to at least two first resource groups.
  • the fourth determining unit 27 is configured to determine at least one second resource group of the first type or the second resource group of the second type that transmits the E-PDCCH.
  • the first receiving unit 28 is connected to the third determining unit 26 and the fourth determining unit 27, and is configured to determine, according to the third determining unit 26, the first resource group of the first type or the second type and the first resource group and the first resource group. Corresponding relationship of the frequency ports, receiving, by the fourth determining unit 27, at least one second resource group of the first type or the second resource group of the second type that is determined by the fourth determining unit 27 on the at least one first resource group and the pilot port .
  • the second resource group of the first type is a resource group when the E-PDCCH is used for centralized transmission; and the second resource group of the second type is when the E-PDCCH is used for discrete transmission. Resource group.
  • the third determining unit 26 determines, according to the mapping relationship between the first resource group and the pilot port, the first resource group and the first resource group and the pilot according to the specific relationship.
  • Corresponding relationship of the port includes: the third determining unit 26 is configured to determine, according to the mapping relationship between the first resource group and the pilot port, the at least two first resource groups corresponding to the second resource group of the first type according to the specific relationship.
  • the corresponding port set in the mapping relationship between the first resource group and the pilot port includes at least two different pilot ports, and determines that the pilot port used for the transmission of the second resource group of each first type is the first type of the first type.
  • a pilot port corresponding to the first or last one of the at least two first resource groups corresponding to the two resource groups.
  • the third determining unit 26 determines that the at least two first resource groups corresponding to the second resource group of the first type correspond to the mapping relationship between the first resource group and the pilot port.
  • the port set includes at least two different pilot ports.
  • the third determining unit 26 is configured to determine at least two first resource groups corresponding to the first type of the second resource group in the first resource group.
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the pilot port are at least used in each physical resource block pair when the E-PDCCH is transmitted by the at least one second type of second resource group. Two pilot ports.
  • the intra-transmission is performed in each physical resource block pair.
  • each physical resource block pair The third transmission unit 26 is specifically used for the transmission of the first pilot port and the second pilot port, or the third pilot port and the fourth pilot port.
  • the corresponding port set in the relationship includes two different pilot ports, which are the first pilot port and the second pilot port, respectively, or the third pilot port and the fourth pilot respectively. port.
  • each physical resource block pair includes four second resource groups of the first type.
  • each physical resource block pair includes a total of eight first resource groups.
  • the physical resource block pair includes two different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the two first resource groups corresponding to the two first types of the second resource group.
  • the pilot ports are both the first pilot port and the second pilot port, and the two first resource groups corresponding to the other two second resource groups of the first type included in the physical resource block pair are in the first resource group and the first resource group.
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the frequency ports are the third pilot port and the fourth pilot port.
  • the second resource group of the four first types included in the physical resource block pair, and the two first resources group corresponding to the pilot set corresponding to the first pilot port and the second pilot port a second resource group of a type, in which the order of the two first resource groups sorted by the pilot port in the second resource group of the two first types is different; for corresponding to the third pilot port and the fourth pilot Two first resource groups of two first types of the first resource group corresponding to the pilot set of the port, and two first resource groups sorted by the pilot port in the second resource group of the two first types The order is different.
  • each physical resource block pair The third transmission unit 26 is specifically used for the transmission of the first pilot port and the second pilot port, or the third pilot port and the fourth pilot port. For determining that the first resource group of each first type corresponds to four first resource groups, and the four first resource groups corresponding to the second resource group of the first type are in the mapping relationship between the first resource group and the pilot port.
  • the corresponding port set includes four different pilot ports, and the four different pilot ports are respectively the first guide The frequency port, the second pilot port, the third pilot port, and the fourth pilot port.
  • each physical resource block pair includes two second resource groups of the first type.
  • each physical resource block pair includes a total of eight first resource groups.
  • the physical resource block includes four different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the four first resource groups corresponding to the two first types of the second resource group.
  • the pilot ports are all the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port, and are in the second resource group of the two first types included in the physical resource block pair.
  • the order of the four first resource groups sorted by the frequency port is different.
  • the manner of ordering the pilot ports in the second resource group of the two first types included in the physical resource block pair includes but is not limited to: the pilot port in the second resource group of the first type included in the physical resource block pair Sorting into a first pilot port, a second pilot port, a third pilot port, and a fourth pilot port, and sorting the pilot ports in the second resource group of another first type included in the physical resource block pair is a second pilot port, a first pilot port, a fourth pilot port, and a third pilot port.
  • the ordering of the pilot ports in the second resource group of the first type included in the physical resource block pair is the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port, in the physical resource
  • the order of the pilot ports in the second resource group of the other first type included in the block pair is a fourth pilot port, a third pilot port, a second pilot port, and a first pilot port.
  • the ordering of the pilot ports in the second resource group of the first type included in the physical resource block pair is the first pilot port, the third pilot port, the second pilot port, and the fourth pilot port, in the physical resource
  • the order of the pilot ports in the second resource group of the other first type included in the block pair is a third pilot port, a first pilot port, a fourth pilot port, and a second pilot port.
  • each physical resource block pair The third transmission unit 26 is specifically used for the transmission of the first pilot port and the second pilot port, or the third pilot port and the fourth pilot port. For determining that the first resource group of each first type corresponds to four first resource groups, and the four first resource groups corresponding to the second resource group of the first type are in the mapping relationship between the first resource group and the pilot port.
  • the corresponding port set includes two different pilot ports, which are a first pilot port and a second pilot port, respectively, or a third pilot port and a fourth pilot port, respectively.
  • each physical resource block pair includes two second resource groups of the first type, where In this case, each physical resource block pair contains a total of 8 first resource groups.
  • the two first resource groups corresponding to a second resource group of the first type included in the physical resource block pair include two different ones in the corresponding port set in the mapping relationship between the first resource group and the pilot port.
  • the pilot port is a first pilot port and a second pilot port, and the first resource group corresponding to the second resource group of another first type included in the physical resource block pair is in the first resource group and the pilot.
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the port are the third pilot port and the fourth pilot port.
  • the fourth determining unit 27 is specifically configured to determine that the at least two first resource groups corresponding to the second resource group of each second type that transmits the E-PDCCH are located in different physical resources.
  • the fourth determining unit 27 is specifically configured to determine the transmission.
  • the at least two first resource groups corresponding to each second resource group of the second type of the E-PDCCH are first resource groups located in different physical resource block pairs corresponding to the same pilot port and different location indexes.
  • the fourth determining unit 27 is specifically configured to determine, according to the implementation of the second resource group of the first type, the second resource group corresponding to each second type of the transmitted E-PDCCH.
  • the at least two first resource groups are the first resource group having the same location index of the at least two first resource groups corresponding to the location index of the different physical resource block pair and the second resource group of the first type.
  • the first pilot port is a DMRS port 7, the second pilot port is a DMRS port 9, the third pilot port is a DMRS port 8, and the fourth pilot port is a DMRS port.
  • Port 10 the first pilot port is a DMRS port 8, the second pilot port is a DMRS port 10, the third pilot port is a DMRS port 7, and the fourth pilot port is a DMRS port 9.
  • the first pilot port is a DMRS port 7, the second pilot port is a DMRS port 8, the third pilot port is a DMRS port 9, and the fourth pilot port is a DMRS port 10.
  • the first pilot port is a DMRS port 9, the second pilot port is a DMRS port 10, the third pilot port is a DMRS port 7, and the fourth pilot port is a DMRS port 8.
  • the base station in this embodiment further includes: a second acquiring unit 29.
  • the second obtaining unit 29 is configured to pre-define a mapping relationship between the first resource group and the pilot port before the third determining unit 26 uses the mapping relationship between the first resource group and the pilot port; or, the second obtaining unit 29, Mapping for using the first resource group and the pilot port at the third determining unit 26 Before the relationship, the mapping relationship between the first resource group and the pilot port is generated according to the local cell identifier.
  • the first receiving unit 28 is further configured to receive high layer signaling, where the high layer signaling includes a mapping relationship between the first resource group and a pilot port.
  • the first receiving unit 28 specifically receives the high layer signaling sent by the base station.
  • the functional units of the UE provided in this embodiment may be used to perform the corresponding process of the E-PDCCH receiving method shown in FIG. 1B, and the specific working principle is not described here. For details, refer to the description of the method embodiment.
  • the UE provided in this embodiment cooperates with the E-PDCCH transmission base station provided by the foregoing implementation of the present invention, completes the transmission of the E-PDCCH, improves the utilization of the pilot resources, and fully utilizes the spatial diversity provided by the pilot port.
  • FIG. 3 is a schematic structural diagram of a base station according to another embodiment of the present invention. As shown in FIG. 3A, the base station of this embodiment includes: a processor 31 and a transmitter 32.
  • the processor 31 is configured to determine, according to a mapping relationship between the first resource group and the pilot port, a correspondence between the second resource group of the first type and the first resource group and the pilot port according to the specific relationship, and the second type A correspondence between the second resource group and the first resource group and the pilot port determines a second resource group of the at least one first type or a second resource group of the second type that transmits the E-PDCCH.
  • the mapping relationship between the first resource group and the pilot port includes a mapping relationship between at least one first resource group and at least one pilot port in the physical resource unit set.
  • the first resource group is an eREG or a REG
  • the second resource group of the first type is an eCCE or a control channel candidate
  • the second resource group of the second type is an eCCE or a control channel candidate.
  • the physical resource unit set is at least one physical resource block pair.
  • the second resource group of the first type corresponds to at least two first resource groups, and the second resource group of the second type corresponds to at least two first resource groups. The foregoing specific relationship is satisfied between the correspondence between the second resource group of the different types and the first resource group and the pilot port.
  • the transmitter 32 is configured to: according to the correspondence between the second resource group of the first type or the second type determined by the processor 31 and the first resource group and the pilot port, determine at least the transmission E-PDCCH determined by the processor 31 A second resource group of the first type or a second resource group of the second type is mapped to the at least one first resource group and the pilot port for transmission.
  • the second resource group of the first type is a resource group when the E-PDCCH is used for centralized transmission, and the second resource group of the second type is when the E-PDCCH is used for discrete transmission. Resource group.
  • the processor 31 is configured according to the first resource group and the pilot port.
  • the mapping relationship between the first resource group and the first resource group and the pilot port according to the specific relationship includes: the processor 31 is specifically configured to: according to the mapping relationship between the first resource group and the pilot port, according to the mapping relationship Determining, by the specific relationship, the at least two first resource groups corresponding to the second resource group of the first type, the port set corresponding to the mapping relationship between the first resource group and the pilot port, at least two different pilot ports, and determining
  • the pilot port used by each of the first type of second resource group transmission is a pilot port corresponding to the first or last one of the at least two first resource groups corresponding to the second resource group of the first type .
  • the processor 31 determines a port corresponding to the mapping relationship between the first resource group and the pilot port of the at least two first resource groups corresponding to the second resource group of the first type.
  • the set of the at least two different pilot ports includes: the processor 31 is configured to determine at least two first resource groups corresponding to the second resource group of the first type in the first resource group and the pilot port.
  • the at least two pilot ports included in the corresponding port set in the mapping relationship are at least two pilots used in each physical resource block pair when the E-PDCCH is transmitted by the at least one second type of second resource group. port.
  • the intra-transmission is performed in each physical resource block pair.
  • each physical resource block pair The internal transmission uses two pilot ports, which are respectively transmitted by the first pilot port and the second pilot port, or are the third pilot port and the fourth pilot port, and the processor 31 is specifically configured to determine The second resource group of each first type corresponds to two first resource groups, and determines that the two first resource groups corresponding to the second resource group of the first type are in the mapping relationship between the first resource group and the pilot port.
  • the corresponding port set includes two different pilot ports, which are a first pilot port and a second pilot port, respectively, or a third pilot port and a fourth pilot port, respectively.
  • each physical resource block pair includes four second resource groups of the first type.
  • each physical resource block pair includes a total of eight first resource groups.
  • the physical resource block pair includes two different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the two first resource groups corresponding to the two first types of the second resource group. Pilot ports are all a pilot port and a second pilot port, and the two resource groups corresponding to the other two first resource groups of the second type of the first resource group are in the mapping relationship between the first resource group and the pilot port.
  • the two different pilot ports included in the corresponding port set are the third pilot port and the fourth pilot port.
  • the second resource group of the four first types included in the physical resource block pair, and the two first resources group corresponding to the pilot set corresponding to the first pilot port and the second pilot port a second resource group of a type, in which the order of the two first resource groups sorted by the pilot port in the second resource group of the two first types is different; for corresponding to the third pilot port and the fourth pilot Two first resource groups of two first types of the first resource group corresponding to the pilot set of the port, and two first resource groups sorted by the pilot port in the second resource group of the two first types The order is different.
  • each physical resource block pair The internal transmission uses two pilot ports, which are respectively transmitted by the first pilot port and the second pilot port, or are the third pilot port and the fourth pilot port, and the processor 31 is specifically configured to determine
  • Each of the first resource groups of the first type corresponds to four first resource groups, and the four first resource groups corresponding to the second resource group of the first type correspond to the mapping relationship between the first resource group and the pilot port.
  • the port set includes four different pilot ports, which are a first pilot port, a second pilot port, a third pilot port, and a fourth pilot port, respectively.
  • each physical resource block pair includes two second resource groups of the first type.
  • each physical resource block pair includes a total of eight first resource groups.
  • the physical resource block includes four different types of the corresponding port set in the mapping relationship between the first resource group and the pilot port of the four first resource groups corresponding to the two first types of the second resource group.
  • the pilot ports are all the first pilot port, the second pilot port, the third pilot port, and the fourth pilot port, and are in the second resource group of the two first types included in the physical resource block pair.
  • the order of the four first resource groups sorted by the frequency port is different.
  • the manner of ordering the pilot ports in the second resource group of the two first types included in the physical resource block pair includes but is not limited to: the pilot port in the second resource group of the first type included in the physical resource block pair Sorting into a first pilot port, a second pilot port, a third pilot port, and a fourth pilot port, and sorting the pilot ports in the second resource group of another first type included in the physical resource block pair is First The second pilot port, the first pilot port, the fourth pilot port, and the third pilot port.
  • pilot ports in the second resource group of the first type included in the physical resource block pair into a first pilot port, a second pilot port, a third pilot port, and a fourth pilot port, in physical
  • the order of the pilot ports in the second resource group of the other first type included in the resource block pair is a fourth pilot port, a third pilot port, a second pilot port, and a first pilot port.
  • the ordering of the pilot ports in the second resource group of the first type included in the physical resource block pair is the first pilot port, the third pilot port, the second pilot port, and the fourth pilot port, in the physical resource
  • the order of the pilot ports in the second resource group of the other first type included in the block pair is a third pilot port, a first pilot port, a fourth pilot port, and a second pilot port.
  • each physical resource block pair The internal transmission uses two pilot ports, which are respectively transmitted by the first pilot port and the second pilot port, or are the third pilot port and the fourth pilot port, and the processor 31 is specifically configured to determine Each of the first resource groups of the first type corresponds to four first resource groups, and the four first resource groups corresponding to the second resource group of the first type correspond to the mapping relationship between the first resource group and the pilot port.
  • the port set includes two different pilot ports, which are a first pilot port and a second pilot port, respectively, or a third pilot port and a fourth pilot port, respectively.
  • each physical resource block pair includes two second resource groups of the first type.
  • each physical resource block pair includes a total of eight first resource groups.
  • the two first resource groups corresponding to a second resource group of the first type included in the physical resource block pair include two different ones in the corresponding port set in the mapping relationship between the first resource group and the pilot port.
  • the pilot port is a first pilot port and a second pilot port, and the first resource group corresponding to the second resource group of another first type included in the physical resource block pair is in the first resource group and the pilot.
  • the two different pilot ports included in the corresponding port set in the mapping relationship of the port are the third pilot port and the fourth pilot port.
  • the processor 31 is specifically configured to determine that the at least two first resource groups corresponding to the second resource group of each second type that transmits the E-PDCCH are located in different physical resource block pairs.
  • the first resource group corresponding to the same pilot port and having the same location index.
  • the processor 31 is specifically configured to determine that at least two first resource groups corresponding to each second resource group of the second type that transmit the E-PDCCH are located in different physical resources.
  • the processor 31 is specifically configured to determine, according to the implementation of the second resource group of the first type, the at least one corresponding to the second resource group of each second type that transmits the E-PDCCH.
  • the two first resource groups are the first resource group having the same location index of the at least two first resource groups corresponding to the location index of the different physical resource block pair and the second resource group of the first type.
  • the first pilot port is a DMRS port 7, the second pilot port is a DMRS port 9, the third pilot port is a DMRS port 8, and the fourth pilot port is a DMRS port.
  • Port 10 the first pilot port is a DMRS port 8, the second pilot port is a DMRS port 10, the third pilot port is a DMRS port 7, and the fourth pilot port is a DMRS port 9.
  • the first pilot port is a DMRS port 7, the second pilot port is a DMRS port 8, the third pilot port is a DMRS port 9, and the fourth pilot port is a DMRS port 10.
  • the first pilot port is a DMRS port 9, the second pilot port is a DMRS port 10, the third pilot port is a DMRS port 7, and the fourth pilot port is a DMRS port 8.
  • the transmitter 32 is further configured to send high layer signaling, where the high layer signaling includes a mapping relationship between the first resource group and a pilot port. Specifically, the transmitter 32 sends the high layer signaling to the UE to provide the mapping relationship between the first resource group and the pilot port to the UE.
  • the processor 31 is further configured to pre-define a mapping relationship between the first resource group and the pilot port before the processor 31 uses the mapping relationship between the first resource group and the pilot port; Alternatively, the processor 31 is further configured to: before the processor 31 uses the mapping relationship between the first resource group and the pilot port, generate a mapping relationship between the first resource group and the pilot port according to the local cell identifier.
  • the base station provided by this embodiment can be used to perform the foregoing E-PDCCH transmission method.
  • the specific working principle is not described here. For details, refer to the description of the method embodiment.
  • the base station in this embodiment determines, according to a specific relationship, a second resource group of the first type and a second resource group of the second type, respectively, and the first resource group and the pilot port according to the mapping relationship between the first resource group and the pilot port. Corresponding relationship, and then determining at least one second resource group of the first type or at least one second resource group of the second type that transmits the E-PDCCH, and according to the previously determined first type or the second type of the second resource group Corresponding to the first resource group and the pilot port, the first resource group of the first type or the second type of the E-PDCCH is mapped to the at least one first resource group and the pilot port for transmission, and the solution is solved. Transmission problem of E-PDCCH.
  • FIG. 3B is a schematic structural diagram of a UE according to another embodiment of the present invention. As shown in FIG. 3B, the UE of this embodiment includes: a processor 35 and a receiver 36.
  • the processor 35 is configured to determine, according to a mapping relationship between the first resource group and the pilot port, a correspondence between the second resource group of the first type and the first resource group and the pilot port according to the specific relationship, and the second type A correspondence between the second resource group and the first resource group and the pilot port determines a second resource group of the at least one first type or a second resource group of the second type that transmits the E-PDCCH.
  • the mapping relationship between the first resource group and the pilot port includes a mapping relationship between at least one first resource group and at least one pilot port in the physical resource unit set.
  • the first resource group is eREG or REG
  • the first type is
  • the second resource group is an eCCE or a control channel candidate
  • the second resource group of the second type is an eCCE or a control channel candidate
  • the physical resource unit set is at least one physical resource block pair
  • the second resource group of the first type corresponds to at least two A resource group
  • the second resource group of the second type corresponds to at least two first resource groups.
  • the receiver 36 is configured to, according to the corresponding relationship between the first resource group of the first type or the second type determined by the processor 35 and the first resource group and the pilot port, on the at least one first resource group and the pilot port. Receiving, by the processor 35, transmitting at least one second resource group of the first type or the second resource group of the second type of the E-PDCCH.
  • the UE provided in this embodiment cooperates with the base station provided in the foregoing embodiment to complete the transmission of the E-PDCCH, and also improves the utilization of the pilot port and implements spatial diversity.
  • FIG. 4A is a flowchart of a method for transmitting an E-PDCCH according to an embodiment of the present invention.
  • the executor of this embodiment may be a base station or a UE, that is, the UE cooperates with the base station, and numbers the second resource group of the first type and the second resource group of the second type in the same manner to facilitate transmission.
  • E-PDCCH improves the efficiency of blind detection.
  • the transmission method in this embodiment includes: Step 401: Sort, in a physical resource block set, a first resource group in each PRB pair, where the first resource group is an eREG or a REG,
  • the set of physical resource blocks includes at least one of the physical resource block pairs.
  • the physical resource block set includes at least one physical resource block pair, and the physical resource
  • the first resource group in the block set is composed of the first resource group in each of the physical resource block pairs in the physical resource block set.
  • the first resource group in the physical resource block set is sequentially sorted according to the order of the physical resource block pairs, and the sort number of each first resource group is obtained.
  • each eCCE corresponds to one REG group.
  • the dotted line box in Table 7 shows the eCCE of a centralized transmitted ePDCCH.
  • the first eREG group (eREG group 1) contains (eREG (al), eREG (a2), eREG (a3), eREG (a4))
  • the second eREG group (eREG group 2) contains (eREG (a5), eREG (a6), eREG (a7), eREG (a8)
  • the third eREG group (eREG group 3) contains (eREG (a9), eREG (al 0), eREG (all), eREG (al2)), the fourth eREG group (eREG group 4) contains (eREG (al3), eREG (al4), eREG (eREG (eREG (eREG (eREG (al4), eREG (eREG (
  • the above-mentioned eREG group division manner is adopted in each PRB pair in the same control channel resource block set.
  • the eREGs in the eREG group containing the same eREG are in different order.
  • the same eREG group 1 containing the same elements eREG (al), eREG (a2), eREG (a3), eREG (a4)
  • Each eCCE of the ePDCCH of the discrete transmission may correspond to each row in Table 7, that is, within the eREG group including the same eREG element in each PRB pair, respectively, different eREG elements are formed to constitute a discrete transmission ePDCCH.
  • the eCCE as shown by the solid line in Table 7, is an eCCE of the ePDCCH of the discrete transmission.
  • an eREG group that also contains the same eREG element (eREG (al), eREG (a2), eREG (a3), eREG (a4)) in each PRB is called eREG group 1, and is in the eREG group 1 of different PRB pairs.
  • the eCCEs of the ePDCCHs of the discrete transmission are respectively formed by taking different elements.
  • eREG (al) is taken in the eREG group 1 of the PRB pair
  • eREG (a2) is taken in the eREG group 1 of the PRB pair 2
  • eREG (a3) is taken in the eREG group 1 of the PRB pair 3
  • the eREG is in the PRB pair 4
  • eREG (a4) is taken in group 1, that is, the set of all eREGs in the first row of Table 7 constitutes an eCCE of the ePDCCH of the discrete transmission
  • eREG (a2) is taken in the eREG group 1 of the PRB pair1, in the PRB pair2
  • eREG (a3) is taken in eREG group 1
  • eREG (a4) is taken in eREG group 1 of PRB pair3
  • eREG (al) is taken in eRE
  • eECs of different numbers corresponding to the eREG elements included in the centralized eCCE are respectively configured to form an eCCE of the ePDCCH of the discrete transmission.
  • the form of the number of the eREG corresponding to al ⁇ al6 in the above Table 7 may take the following form: al, a2, a3, a4 respectively correspond to the eREG number 0, 4, 8, 12;
  • A5, a6, a7, a8 correspond to eREG numbers 1, 5, 9, and 13, respectively;
  • Al3, al4, al5, al6 correspond to eREG numbers 3, 9, 11, and 15, respectively.
  • the specific resource set size may be a set including L*B eREGs, where M is the number of eREGs included in each eCCE, B is the number of PRB pairs, and the set of B*M eREGs includes only B.
  • M is the number of eREGs included in each eCCE
  • B is the number of PRB pairs
  • B*M eREGs includes only B.
  • the eCCEs of the discriminative and centralized ePDCCHs have been determined in the above manner. Based on the above principles, the eCCEs need to be numbered.
  • the purpose of the eCCEs is: First, the logical eCCEs need to be mapped to determine the correspondence between the logical eCCEs and the physical eCCEs. On the physical eCCE, or the composition of the search interval can be determined, and the resource binding relationship at the time of feedback of the HARQ needs to be associated with the index of the eCCE.
  • Step 402 No.
  • the second resource group is numbered according to the correspondence between the first resource group and the second resource group in the physical resource block set, where the second resource group is a control channel unit eCCE Group or control channel candidate group.
  • the second resource group of the first type for example, the eCCE of the centrally transmitted ePDCCH
  • the second resource group may be numbered by any of the following methods:
  • Each physical resource block pair includes N third resource groups, where N is a positive integer, each third resource group includes M first resource groups, and in the physical resource block set, each of the physical resource block pairs The number set of the first resource group included in the third resource group is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs; according to the first resource group and the physical resource block set
  • the corresponding relationship of the second resource group, the numbering of the second resource group includes: each third resource group corresponding to a second resource group of the first type, according to the number of the physical resource block pair from small to large or large to small
  • the sequence of the first resource group of the first type in each physical resource block pair wherein, in each physical resource block pair, the number of the second resource group of the first type There is a corresponding relationship between the numbers of the first resource groups corresponding to the second resource group of the first type.
  • the number of the first resource group of the first type and the number of the first resource group corresponding to the second resource group of the first type have a corresponding relationship:
  • the number of the second resource group of the first type is continuous, the order of the number of the second resource group of the first type, and the maximum number or minimum of the first resource group corresponding to the second resource group of the first type.
  • the order of the numbers is the same.
  • the first manner may include:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the first type m is the number of the physical resource block pair, K is the number of the second resource group of the first type in each physical resource block pair, mod represents the modulo operation, and the second resource group of the first type corresponds to M
  • M is a positive integer.
  • the numbering principle may be that all eCCEs in each PRB pair are sequentially sequenced from the first PRB pair, and then all eCCEs in the next PRB pair are followed. Sequence number. The order of the eCCEs in each PRB pair is in the order of the smallest number of eREGs included in each eCCE.
  • an eCCE in an PRB pair contains eREG numbers 0, 4, 8,12, another eCCE contains eREG numbers 1,5,9,13; the first eCCE contains the minimum number of eREGs 0, and the other eCCE contains the minimum number of eREGs, which can be included
  • the minimum eCCE number of the eREG with the number 0 is in front of the eCCE with the lowest numbered eREG of the contained eREG.
  • the final numbering manner can be as shown in Fig. 4B.
  • each circle represents an eCCE
  • the number in the circle represents the number of the eCCE.
  • the arrangement of eREG in Figure 4B-4E is the same as in Table 7.
  • Each physical resource block pair includes N third resource groups, where N is a positive integer, each third resource group includes M first resource groups, and in the physical resource block set, each of the physical resource block pairs The third resource group contains the number set of the first resource group and the other each physical resource block pair The number of the first resource group included in the third resource group is the same. In each physical resource block pair, the order of the number of the third resource group and the maximum number or the minimum number of the first resource group in the third resource group are the same.
  • the order of the second resource group is: according to the correspondence between the first resource group and the second resource group in the physical resource block set, each third resource group corresponds to a second resource group of the first type, According to the order of the third resource group number from small to large or from large to small, the second resource group of the first type corresponding to the third resource group having the same number is sequentially numbered, and the third resource group having the same number is sequentially used.
  • the order of the number of the second resource group of the first type and the order of the number of the physical resource block pair where the second resource group of the first type are located have a corresponding relationship.
  • the sequence of the number of the second resource group of the first type and the physical resource of the second resource group of the first type includes: in the second resource group of the first type corresponding to the third resource group having the same number, the number of the second resource group of the first type is continuous, the first type
  • the order of the numbers of the second resource group is the same as the order of the numbers of the physical resource block pairs in which the second resource group of the first type is located.
  • the second method may include:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the first type m is the number of the physical resource block pair, K is the number of the second resource group of the first type in each physical resource block pair, mod represents the modulo operation, and the second resource group of the first type corresponds to M
  • M is a positive integer.
  • the numbering principle may be that the same eREG group in all PRB pairs is sequentially numbered starting from the first PRB pair, and the same eREG group is in each Each of the PRB pairs contains the same eREG group of the eREG element, and then the next eREG group is numbered.
  • the order of the eREG group numbers is in the order of the PRB index (PRB number), for example, the same table.
  • the eREG group 1 in the number 7 is numbered according to the eREG group 1 in the PRB pair1, and the eREG group 1 in the PRB pair 2 is numbered sequentially, and the number of the eREG group 2 is performed in the same manner.
  • the numbering method can be as shown in Figure 4C. the way.
  • each circle represents the eCCE of a centralized transmission control channel, and the number within the circle represents the number of the eCCE.
  • the second resource group of the first type corresponding to the third resource group of the same number, and the second resource group of the first type of the physical resource block pair are included
  • the first resource group mapping relationship is a cyclic shift of a mapping relationship between the second resource group of the first type of each of the other physical resource block pairs and the first resource group included therein.
  • the second resource group of the second type (for example, the eCCE of the ePDCCH of the discrete transmission)
  • the second resource group may be numbered by one of the following methods:
  • the numbering of the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set includes: the second resource group of the second type includes M pairs of different physical resource blocks respectively The first resource group; the number of the first physical resource group in the same physical resource block pair corresponding to the second resource group of the second type is used as the number of the second resource group of the second type.
  • the numbering of the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set includes:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the second type m is the number of the physical resource block pair, K is the number of the second type of the second resource group in each physical resource block pair, and mod represents the modulo operation; or
  • i is the number of the xth first resource group corresponding to the second resource group of the second type numbered j
  • i is an integer from 0 to L-1
  • L is one of the physical resource block pairs
  • m is the number of the physical resource block pair of the Xth first resource group corresponding to the second resource group of the second type numbered with the number j
  • 0 is the number of the first resource group included in the second resource group
  • C is the physical resource block pair in the physical resource block set.
  • Number, mod means modulo operation
  • floor means downward Rounding operation.
  • each circle represents a discrete eCCE, and the number in the circle represents the number of the eCCE.
  • the number of each eCCE can be the same as the eREG number of the eCCE in a specific PRB pair.
  • the eCCE in the first row of Table 7 has the index of the eREG in the four PRB pairs. , 4, 8, 10, the index 0 of the eREG contained in the PRB pair is the number of its eCCE.
  • the physical resource block set includes a set of K second types of second resource groups, and within each of the K sets, a second type of second resource group and a first resource group thereof are mapped. Is a cyclic shift of the mapping relationship between the other second resource group of each second type and the first resource group it contains.
  • the numbering of the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set includes: the second resource group of the second type includes the first M belonging to different physical resource block pairs a resource group, the physical resource block set includes a set of K second type second resource groups, K is a positive integer, and within each of the K sets, a second type of the second resource group and the included A resource group mapping relationship is a cyclic shift of a mapping relationship between a second resource group of each of the second types and a first resource group included therein; and within each of the K sets, the second resource according to the second type
  • the size relationship of the number of the first physical resource group in the same physical resource block pair corresponding to the group, and the second resource group of the second type is numbered; between the different sets in the K sets, the second type
  • the order of the numbering of the two resource groups is the same as the order of the largest number or the smallest number of the corresponding first resource group in the same set of the same physical resource block pair.
  • each circle represents a discrete eCCE, and the number within the circle represents the number of the eCCE.
  • the eCCE group is a group of eCCEs.
  • the eCCE group is a group of eCCEs.
  • the eREGs in the eCCEs in the group are the same number, but the eREG numbers in the PRB pairs are different.
  • eCCE group 1 is the four eCCEs corresponding to the first four rows in Table 2.
  • Each eCCE contains eREG0, 4, 8, and 12.
  • the PRB pair in which eREG0, 4, 8, and 12 are located in different eCCEs is different.
  • Each eCCE is sequentially numbered in each eCCE group.
  • the order of the numbers is based on a specific PRB pair. For example, in the first PRB pair, the eREG index of each eCCE in the PRB pair is as small as possible. The big order is to number the eCCEs in which they are located. Then, each eCCE in the next group of eCCEs is numbered in turn.
  • the first resource group corresponding to the at least two second resource groups of the first type of the first resource group and the first resource group corresponding to the at least two second resource groups of the second type of the physical resource block set are the same, and the set of the numbers of the at least two second resource groups of the first type is the same as the set of the numbers of the at least two second resource groups of the second type.
  • the numbering manner of the centralized eCCE and the numbering manner of the discrete eCCEs may be corresponding to each other, and the corresponding relationship may be: If the numbering mode of the centralized eCCE is mode 1, the numbering manner of the discrete eCCE adopts the method 1; If the numbering mode of the centralized eCCE is mode 2, the method of numbering the discrete eCCE adopts method 2.
  • the number group of the centralized eCCE included is the same as the number group of the discrete eCCEs included.
  • the numbers of the centralized eCCEs included are 0, 4, 8, and 12, respectively, and the numbers of the discrete eCCEs are also 0, 4, 8, and 12, respectively.
  • the numbers of the centralized eCCEs included are 0, 1, 2, and 3, respectively, and the numbers of the discrete eCCEs are also 0, 1, 2, and 3, respectively. .
  • the second resource group of the first type in the physical resource block set is a centralized transmission
  • the resource group of the E-PDCCH; the second resource group of the second type in the physical resource block set is a resource group that uses the discrete transmission E-PDCCH.
  • Step 403 Determine the number of the second resource group that transmits the E-PDCCH, and map the E-PDCCH to the corresponding first resource group for transmission according to the determined number.
  • the embodiment implements numbering of the second resource group of the first type and the second resource group of the second type, which is advantageous for performing blind detection.
  • each eCCE contains four eREGs, the order of the internal mapping is not considered, and only the combination is considered.
  • the eCCE can be a centralized transmission eCCE or a discrete transmission eCCE.
  • eCCE X3 ( eREG2, eREG6, eREGl 0, eREG14 ),
  • eCCE X4 ( eREG3, eREG7, eREGl 1 , eREGl 5 ),
  • the index of the eREG included in the eCCE Yl may be composed of a combination of the indexes of the eREGs included in the eCCE XI and the eCCE X2, for example
  • eCCE Yl (eREGO, eREG4, eREG8, eREG12, eREGl, eREG5, eREG9, eREG13);
  • eCCE Y2 ( eREG2, eREG6 , eREGlO, eREG14, eREG3 , eREG7 , eREGl 1 , eREG15 ) ;
  • the combination can reach eCCE Y1 and the number of available REs is the closest to the number of available REs contained in eCCE Y2. Because (eREGO, eREG4, eREG8, eREGl 2) and (eREG2, eREG6, eREGlO, eREG14) are always on the subcarrier where the pilot is located, resulting in less available REs (eREGl, eREG5, eREG9, eREGl 3) and ( eREG3, eREG7, eREGl 1 , eREGl 5 ) ; or
  • the index of the eREG included in eCCE Yl can be composed of a combination of eCRE indexes included in eCCE XI and eCCE X2, for example
  • eCCE Yl (eREGO, eREG4, eREG8, eREG12, eREG2, eREG6, eREGlO, eREG14);
  • eCCE Y2 ( eREGl , eREG5 , eREG9 , eREGl 3 , eREG3 , eREG7 , eREGl 1 , eREG15 ) ;
  • each eCCE contains 8 eREGs
  • the control channel resource set contains 8 eREGs.
  • the eCEEO index of the eCCEO in the eight PRB pairs in Table 1 is (eREGO, eREGl, eREG4).
  • the number of eREGs included in the 7 ECCEs is the same, but the eREG is cyclically shifted in the order of mapping in different PRBpairs.
  • the cyclic shift is the order of sequential cyclic shifts.
  • the mapping order of eCCEl in 8 PRB pairs is (eREGl, eREG4, eREG5, eREG8, eREG9, eREG12, eREGl 3, eREGO)
  • One is to divide the number of the eREGs included in the above eCCE Y1 into two groups, and the eREG number included in each group is the same as the case where one eCCE includes four eREGs, and the index of the eREG of the eCCEO in the eight PRB pairs is (eREGO, eREG4, eREG8, eREGl 2), (eREG2, eREG6, eREGlO, eREG14)).
  • the first group (eREGO, eREG4, eREG8, eREG12), the second group (eREG2, eREG6, eREGlO, eREG14); then the eCCEO according to ((eREGO, eREG4, eREG8, eREGl 2), (eREG2, eREG6, eREGlO, eREG14)
  • the order of the mapping is mapped to the order of the groups in the 8 PRB pairs (the first group, the second group).
  • the eREGs contained in the seven ECCEs have the same number, but the cyclic shift is not a sequential cyclic shift, and may be, first, an inter-group shift, and then a cyclic shift within the group.
  • eCCE9 in Table 3 (the second group, the first group), is the cyclic shift of the mapping order of the eCCEO group (the first group, the second group), ie (the second group (6, 10, 14) , 2), the first group (4, 8, 12, 0)), then the order of eREGs in the first group of eCCE9 has a cyclic shift relative to the eREG order in the first group of eCCEO, within the second group
  • the order of eREGs has a cyclic shift relative to the eREG order within the second group of eCCEOs.
  • each eCCE contains 8 eREGs, eCCE and eREG mappings.
  • each eCCE contains 4 eREGs, and the discrete eCCE and eREG mapping modes 1 Table 3-1 8 PRB pairs, each eCCE contains 8 eREGs, eCCE and eREG mapping mode 1-1
  • each eCCE includes 8 eREGs
  • the mapping relationship between the eCCEs and the eREGs in the 8 PRBs, and the control channels described in Table 2 are used in the first 4 PRBs.
  • the set contains 4 PRB pairs and each eCCE contains 4 eREGs
  • the first 4 rows in Table 2 are identical to those in Table 1.
  • the mapping between the eCCE and the eREG is the loop of the mapping relationship between the first four PRBpair eCCEs and the eREG.
  • the eCCE8 in the first 4 RPB pairs to the first 4 eREGs of eCCE15 are moved 8 bits, and become the last 4 eREGs of eCCEO to eCCE7; then the first 4 RPB pairs eCCEO to eCCE7's first 4 eREG cycles move 8 bits, become eCCE8 to eCCE15's last 4 eREG
  • each eCCE contains 8 eREGs, eCCE and eREG mapping mode 1-2
  • each eCCE includes 8 eREGs
  • the mapping relationship between the eCCEs and the eREGs in the 8 PRBs, and the control channels described in Table 1 are used in the first 4 PRBs.
  • the set contains 4 PRB pairs and each eCCE contains 4 The same is true for eREG.
  • the mapping between the eCCE and the eREG is a cyclic shift of the mapping relationship between the first four PRBpair eCCEs and the eREG.
  • each eCCE contains 4 eREGs, eCCE and eREG mapping mode 1-1
  • each control channel resource set contains 8 PRB pairs, and each eCCE contains 4 eREGs.
  • the mapping between eCCE and eREG in the first four PRBs is the mapping from eCCEO to eCCE7 in Table 1.
  • the mapping between eCCE and eREG in the last four PRBs is based on the mapping method.
  • mapping method from eCCE8 to eCCE15 in 1.
  • each eCCE contains 4 eREGs, eCCE and eREG mapping mode 1-2
  • each control channel resource set contains 8 PRB pairs, and each eCCE contains 4 eREGs.
  • the mapping manner between the eCCE and the eREG of the first four PRBs is the mapping method of the eCCEs with the even numbers in Table 1.
  • the mapping manner of the eCCEs and eREGs of the last four PRBs is that the labels in Table 1 are odd.
  • Table 7.1 Four PRB pairs, each eCCE contains 8 eREGs, eCCE and eREG mapping modes
  • each eCCE contains 8 eREGs, eCCE and eREG mapping mode 2-1
  • FIG. 5 is a schematic structural diagram of an apparatus for transmitting an E-PDCCH according to an embodiment of the present invention.
  • the device may be a base station or a user equipment.
  • the E-PDCCH transmission apparatus of this embodiment includes: a sorting unit 51, a numbering unit 53, a fifth determining unit 52, and a transmitting unit 54.
  • the sorting unit 51 is configured to sort, in the physical resource block set, the first resource group in the PRB pair for each physical resource block, where the first resource group is a resource unit group eREG or REG,
  • the physical resource block set includes at least one of the physical resource block pairs.
  • the numbering unit 52 is configured to number the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set, where the second resource group is controlled Channel unit eCCE group or control channel candidate group.
  • the fifth determining unit 52 is configured to determine a number of the second resource group that transmits the E-PDCCH.
  • the transmitting unit 54 is configured to map the E-PDCCH to the corresponding first resource group for transmission according to the determined number.
  • each physical resource block pair includes N third resource groups, where N is a positive integer, each third resource group includes M first resource groups, and in the physical resource block set, one physical resource block is aligned.
  • Each third resource group includes a number set of the first resource group that is the same as a number set of the first resource group included in one of the other third physical resource block pairs, and each third resource The group corresponds to a second resource group of the first type; the numbering unit 52 is configured to order the first type of each physical resource block pair according to the number of the physical resource block pair from small to large or from large to small.
  • the two resource groups are numbered, and in each physical resource block pair, the number of the second resource group of the first type and the number of the first resource group corresponding to the second resource group of the first type have a corresponding relationship.
  • the number of the first resource group of the first type and the number of the first resource group corresponding to the second resource group of the first type have a corresponding relationship:
  • the number of the second resource group of the first type is continuous, the order of the number of the second resource group of the first type, and the maximum number or minimum of the first resource group corresponding to the second resource group of the first type.
  • the order of the numbers is the same.
  • the numbering unit 52 is configured to determine the number of the second resource group of the first type according to the following formula:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the first type m is the number of the physical resource block pair, K is the number of the second resource group of the first type in each physical resource block pair, mod represents the modulo operation, and the second resource group of the first type corresponds to M
  • M is a positive integer.
  • each physical resource block pair includes N third resource groups, where N is a positive integer, each third resource group includes M first resource groups, and in the physical resource block set, one physical resource block is aligned.
  • the number set of the first resource group included in each third resource group is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs, in each physical resource block pair
  • the order of the number of the third resource group is the same as the order of the largest number or the smallest number of the first resource group in the third resource group, and each third resource group corresponds to a second resource group of the first type; For sequentially ordering the second resource group of the first type corresponding to the third resource group having the same number in the order of the third resource group number from small to large or from large to small, in the third group having the same number In the second resource group of the first type corresponding to the resource group, the order of the number of the second resource group of the first type and the number of the physical resource block pair where the second resource group of the first type is located Sequence
  • the sequence of the number of the second resource group of the first type and the physical resource of the second resource group of the first type includes: in the second resource group of the first type corresponding to the third resource group having the same number, the number of the second resource group of the first type is continuous, the first type The order of the number of the second resource group is the same as the order of the number of the physical resource block pair in which the second resource group of the first type is located.
  • the numbering unit 52 is configured to determine the number of the second resource group of the first type according to the following formula:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the first type m is the number of the physical resource block pair, K is the number of the second resource group of the first type in each physical resource block pair, mod represents the modulo operation, and the second resource group of the first type corresponds to M
  • M is a positive integer.
  • the mapping relationship between the second resource group of the first type of the physical resource block pair and the first resource group included therein is each other A cyclic shift of a mapping relationship between a second resource group of a first type of physical resource block pairs and a first resource group included therein.
  • the second resource group of the second type includes M first resource groups respectively belonging to different physical resource block pairs; the numbering unit 52 is configured to use the same physical resource block pair corresponding to the second resource group of the second type.
  • the number of the first physical resource group in the number is the number of the second resource group of the second type.
  • the numbering unit 52 is configured to determine the number of the second resource group of the second type according to the following formula:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the second type m is the number of the physical resource block pair, K is the number of the second type of the second resource group in each physical resource block pair, and mod represents the modulo operation; or
  • i is the xth first resource corresponding to the second resource group of the second type of number j
  • the number of the group i is an integer from 0 to L1
  • L is the number of the first resource group in the pair of physical resource blocks
  • m is the number corresponding to the second resource group of the second type numbered j
  • 0 is the number of the first resource group included in the second resource group.
  • the number of the first resource group, C is the number of physical resource block pairs in the physical resource block set, mod represents a modulo operation, and floor represents a rounding operation.
  • the second resource group of the second type includes M first resource groups respectively belonging to different physical resource block pairs, and the physical resource block set includes a set of K second type second resource groups, where K is a positive integer.
  • the mapping relationship between the second resource group of the second type and the first resource group included therein is the mapping relationship between the second resource group of each second type and the first resource group included therein a cyclic shift;
  • the numbering unit 52 is configured to, according to the size relationship of the first physical resource group in the same physical resource block pair corresponding to the second resource group of the second type, in each of the K sets And numbering the second resource group of the second type; between the different sets of the K sets, the order of the number of the second resource group of the second type is in the same physical resource block pair as the different sets of the K sets The order of the largest number or the lowest number of the corresponding first resource group is the same.
  • the physical resource set includes a set of the second resource groups of the K second types, and the mapping between the second resource group of the second type and the first resource group included in each of the K sets Is a cyclic shift of the mapping relationship between the other second resource group of each second type and the first resource group it contains.
  • the first resource group corresponding to the at least two second resource groups of the first type of the first resource group and the first resource group corresponding to the at least two second resource groups of the second type of the physical resource block set are the same, and the set of the numbers of the at least two second resource groups of the first type is the same as the set of the numbers of the at least two second resource groups of the second type.
  • the second resource group of the first type in the physical resource block set is a centralized transmission
  • the resource group of the E-PDCCH; the second resource group of the second type in the physical resource block set is a resource group that uses the discrete transmission E-PDCCH.
  • FIG. 6 is a schematic structural diagram of an apparatus for transmitting an E-PDCCH according to another embodiment of the present invention.
  • the device may be a base station or a user equipment.
  • the apparatus of this embodiment includes: at least one processor 61, and a transceiver 62 for transmitting and receiving signals, wherein the processor 61 is configured to perform the following steps:
  • the first resource group is a resource group group eREG or REG, and the physical resource block set includes at least one Physical resource block pair;
  • the second resource group is numbered according to the correspondence between the first resource group and the second resource group in the physical resource block set, where the second resource group is a control channel unit eCCE group or a control Channel candidate group;
  • each physical resource block pair includes N third resource groups, where N is a positive integer, each third resource group includes M first resource groups, and in the physical resource block set, one physical resource block is aligned.
  • the number set of the first resource group included in each third resource group is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs; the processor 61 is configured to use the following manner
  • the second resource group is numbered according to the correspondence between the first resource group and the second resource group in the physical resource block set: each third resource group corresponds to a second resource group of the first type, according to the physical resource block.
  • the number of the pair is from small to large or from large to small, and the second resource group of the first type in each physical resource block pair is sequentially numbered, wherein, in each physical resource block pair, the first type There is a correspondence between the number of the second resource group and the number of the first resource group corresponding to the second resource group of the first type.
  • the number of the first resource group of the first type and the number of the first resource group corresponding to the second resource group of the first type have a corresponding relationship:
  • the number of the second resource group of the first type is continuous, the order of the number of the second resource group of the first type, and the maximum number or the minimum number of the first resource group corresponding to the second resource group of the first type. The order is the same.
  • the processor 61 is configured to: according to the correspondence between the first resource group and the second resource group in the physical resource block set, number the second resource group: Determine the number of the second resource group of the first type according to the following formula:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the first type m is the number of the physical resource block pair, K is the number of the second resource group of the first type in each physical resource block pair, mod represents the modulo operation, and the second resource group of the first type corresponds to M
  • M is a positive integer.
  • each physical resource block pair includes N third resource groups, where N is a positive integer, each third resource group includes M first resource groups, and in the physical resource block set, one physical resource block is aligned.
  • the number set of the first resource group included in each third resource group is the same as the number set of the first resource group included in one third resource group of each of the other physical resource block pairs, in each physical resource block pair
  • the order of the number of the third resource group is the same as the order of the largest number or the smallest number of the first resource group in the third resource group;
  • the processor 61 is configured to be implemented according to the first resource group and the physical resource block set by: Corresponding relationship of the second resource group, the second resource group is numbered: each third resource group corresponds to a second resource group of the first type, according to the order of the third resource group number from small to large or large to small , the second resource group of the first type corresponding to the third resource group having the same number is sequentially numbered, and the first type corresponding to the third resource group having the same number
  • the sequence of the number of the second resource group of the first type and the physical resource of the second resource group of the first type includes: in the second resource group of the first type corresponding to the third resource group having the same number, the number of the second resource group of the first type is continuous, the first type
  • the order of the numbers of the second resource group is the same as the order of the numbers of the physical resource block pairs in which the second resource group of the first type is located.
  • the processor 61 is configured to number the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set by:
  • i is the number of the first resource group
  • i is an integer from 0 to L-1
  • L is a physical resource
  • j is the number of the second resource group of the first type
  • m is the number of the pair of physical resource blocks
  • K is the second type of the first type in each pair of physical resource blocks
  • mod represents a modulo operation
  • the second resource group of the first type corresponds to the first resource group belonging to the same physical resource block pair
  • M is a positive integer.
  • the mapping relationship between the second resource group of the first type of the physical resource block pair and the first resource group included therein is each other A cyclic shift of a mapping relationship between a second resource group of a first type of physical resource block pairs and a first resource group included therein.
  • the processor 61 is configured to implement, according to the corresponding relationship between the first resource group and the second resource group in the physical resource block set, the second resource group: the second resource group of the second type includes The first resource group that belongs to the pair of different physical resource blocks respectively; the number of the first physical resource group in the same physical resource block pair corresponding to the second resource group of the second type is used as the second resource group of the second type The number.
  • the processor 61 is configured to implement the processor 61 for numbering the second resource group according to the correspondence between the first resource group and the second resource group in the physical resource block set by:
  • i is the number of the first resource group, i is an integer from 0 to L-1, L is the number of the first resource group in one physical resource block pair, and j is the number of the second resource group of the second type m is the number of the physical resource block pair, K is the number of the second type of the second resource group in each physical resource block pair, and mod represents the modulo operation; or
  • i is the number of the xth first resource group corresponding to the second resource group of the second type numbered j
  • i is an integer from 0 to L-1
  • L is one of the physical resource block pairs
  • m is the number of the physical resource block pair of the Xth first resource group corresponding to the second resource group of the second type numbered with the number j
  • 0 is the number of the first resource group included in a second resource group
  • C is the The number of physical resource block pairs in the physical resource block set
  • mod represents the modulo operation
  • floor represents the rounding operation.
  • the processor 61 is configured to implement, according to the corresponding relationship between the first resource group and the second resource group in the physical resource block set, the second resource group: the second resource group of the second type includes M first resource groups respectively belonging to different physical resource block pairs, the physical resource block set includes a set of K second type second resource groups, K is a positive integer, within each of the K sets, one
  • the mapping relationship between the second resource group of the second type and the first resource group included therein is a cyclic shift of the mapping relationship between the second resource group of each second type and the first resource group included therein;
  • the second resource group of the second type is performed according to the size relationship of the number of the first physical resource group in the same physical resource block pair corresponding to the second resource group of the second type. a number between the different sets of the K sets, the number of the second resource group of the second type, and the maximum number of the first resource group corresponding to the different set of the K sets in the same physical resource block pair or The order of the smallest numbers is the same.
  • the physical resource set includes a set of K second types of second resource groups, and within each of the K sets, a second type of second resource group and the first resource group mapping relationship thereof are A cyclic shift of the mapping relationship between the other second resource group of each second type and the first resource group it contains.
  • the first resource group corresponding to at least two second resource groups of the first type of physical resource block set and the first resource group corresponding to at least two second resource groups of the second type of physical resource block set The resource groups are the same, and the set of the numbers of the at least two second resource groups of the first type is the same as the set of the numbers of the at least two second resource groups of the second type.
  • the second resource group of the first type in the physical resource block set is a centralized transmission
  • the resource group of the E-PDCCH; the second resource group of the second type in the physical resource block set is a resource group that uses the discrete transmission E-PDCCH.
  • the apparatus provided in this embodiment implements numbering of the second resource group of the first type and the second resource group of the second type, implements transmission of the E-PDCCH, and is beneficial for blind detection.
  • each centralized control channel candidate is concentrated in an adjacent PRB pair, but different centralized control channel candidates should be dispersed as much as possible, such that the centralized control channel can obtain the gain of scheduling gain and beam-formability.
  • each control channel candidate can be transmitted in one PRB pair. Therefore, N discrete PRB pairs can be configured as aggregation. a search interval of level 1, 2 or 4, but for a control channel candidate with an aggregation level of 8, if each control channel candidate also adopts the above-configured search space, it will be discretely transmitted on different PRB pairs, which will Unable to get scheduling gain.
  • control channel detection and transmission method transmits different control channels through different sets of physical resource blocks by distinguishing different control channels, and can support transmission for more than one PRB pair by implicit definition.
  • the search interval of the control channel candidate can be more flexible for resource configuration, save control signaling, and can ensure that control channel candidates larger than one PRB pair can obtain better channel estimation performance in one PRG.
  • FIG. 7A is a flowchart of a method for detecting a control channel according to an embodiment of the present invention. As shown in FIG. 7A, the method in this embodiment includes:
  • Step 701 The user equipment UE detects a first type of control channel in the first physical resource block set, where the first physical resource block set includes at least one physical resource block pair.
  • Step 702 The UE detects a second type of control channel in the second physical resource block set, where the second physical resource block set includes at least one physical resource block pair.
  • the first type of control channel is a control channel that uses centralized transmission; and the second type of control channel is a control channel that uses discrete transmission.
  • the first type of control channel is a control channel that adopts centralized transmission and whose aggregation level is less than or equal to a preset aggregation threshold.
  • the second type of control channel uses centralized transmission and aggregation level. A control channel that is greater than the preset aggregation threshold.
  • the first type of control channel is a control channel that uses centralized transmission and the first type of control channel candidate is transmitted within one physical resource block pair;
  • the second type of control channel is A control channel that employs centralized transmission and a second type of control channel candidate for transmission within at least two physical resource block pairs.
  • the second type of control channel candidate corresponds to at least two physical resource block pairs, and the at least two physical resource block pairs corresponding to the second type of control channel candidate are in the same precoding resource block group (Precoding resource block group,
  • the cartridge is called PRG) or the same resource block group (RBB) or the same subband, which can improve channel estimation performance and demodulation performance.
  • the first physical resource block set includes at least one
  • the method before the UE detects the first type of control channel in the first physical resource block set, the method includes: the UE receives the first high layer signaling, where the first high layer signaling includes the first resource. Block collection. That is, the first physical resource block set may be configured by the network side high layer, and may be configured by static signaling configuration or dynamic signaling, which may improve the flexibility of configuring the first resource block set.
  • the network side configures a first physical resource block set for the control channel
  • the first physical resource block set includes, for example, four PRB pairs
  • the configuration manner may be configured by configuring four consecutive VRBs, or The method of resource allocation method 1 is adopted.
  • the four PRB pairs configured are PRB pair 0, PRB pair 4, PRB pair 12, and PRB pair 17 in Figure 7B.
  • the control channel candidates using centralized transmission may be transmitted on at least one PRB pair.
  • the search interval of the control channel candidate with the aggregation level of 1, 2, or 4 using the centralized transmission is at least one PRB pair in the first physical resource block set, and each control channel candidate is only in the first physical resource set. Transfer on a PRB pair.
  • a control channel candidate with aggregation level 8 of centralized transmission needs to be transmitted on two PRB pairs, and each control channel candidate is limited to be transmitted in one PRG or two RBGs or two PRB pairs in one subband.
  • One PRB pair in one PRB pair is from the first physical resource block set, and the other PRB pair is from the second physical resource block set.
  • Fig. 7C When the control channel candidates using the centralized transmission need to be transmitted on two PRB pairs, the manner shown in Fig. 7C can be employed.
  • the dotted blocks in Figure 7C form a first set of physical resource blocks, and the filled boxes form a second set of physical resource blocks.
  • the second physical resource block set and the first physical resource block set may be implicitly corresponding to each other, or may be configured to the UE in a manner of high layer signaling.
  • a recessive correspondence is: each RPB pair in the first physical resource block set belongs to a different PRG or RBG or subband, and one implicitly predefined in each RPG or RBG or subband
  • the PRB pair associated with the PRB pair in the first physical resource block set is used as the PRB pair in the second physical resource block set.
  • the manner of association may be that the distance between the PRB pair in the second physical resource block set and the PRB pair in the first physical resource block set in a PRG or RBG or subband is at least one PRB pair, as shown in FIG. 7C.
  • the location index of the PRB pair in the first physical resource block set is 0, and the location index of the PRB pair in the second physical resource block set is 1; in the PRG2, in the first physical resource block set The location index of the PRB pair is 4, the location index of the PRB pair in the second physical resource block set is 5; in the PRG 5, the PRB in the first physical resource block set The location index of the pair is 12, and the location index of the PRB pair in the second physical resource block set is 13; in PRG6, the location index of the PRB pair in the first physical resource block set is 17, in the second physical resource block set The position index of the PRB pair is 15.
  • the implicit correspondence is such that the base station can only send the first physical resource block set to the UE through the high layer signaling, which is beneficial to reducing signaling notification.
  • the second physical resource block set includes a first physical resource block set and a third physical resource block set.
  • the dotted box and the slanted box simultaneously constitute a second physical resource block set, wherein the dotted box constitutes a first physical resource block set, and the filled box constitutes a third.
  • one of the at least two physical resource block pairs corresponding to the second type of control channel candidate is a physical resource block pair in the first physical resource block set, and the remaining physical resource block pairs are at least One physical resource block pair is a physical resource block pair in the third physical resource block set.
  • the UE before the UE detects the second type of control channel in the second physical resource block set, the UE includes: obtaining, by the UE, the third resource according to the first resource block set and a preset function mapping relationship.
  • the block set can reduce signaling, making the control channel resource configuration more flexible.
  • the UE receives the second high layer signaling, where the second high layer signaling includes the third resource block set.
  • the third physical resource block set may be configured by the network side high layer, and may be configured by high-level static signaling or dynamic signaling, which is advantageous for improving the flexibility of the third physical resource block set configuration.
  • the control channel detection method provided by this embodiment enables the control channels to be divided into different types, and the detection and reception of different types of control channels are completed.
  • the control channel used in the transmission may be used in this embodiment.
  • Candidates are limited to one PRG or RBG or subband, which improves channel estimation performance and demodulation performance.
  • An embodiment of the present invention provides a method for transmitting a control channel, where the method is performed by a base station, and the method includes: determining, by the base station, a type of the control channel to be sent, and if determining that the control channel is the first type of control channel, The base station sends the control channel on the first physical resource block set. If the control channel is determined to be the second type of control channel, the base station sends the control channel on the second physical resource block set, the first physical resource block.
  • the set includes at least one physical resource block pair, and the second physical resource block set includes at least one physical resource block pair.
  • the base station if the first type of control channel is to be sent, the base station is in the first physical resource. Transmitted on the set of blocks, if the second type of control channel is to be transmitted, the base station transmits on the second set of physical resource blocks.
  • the first type of control channel is a control channel that uses centralized transmission; and the second type of control channel is a control channel that uses discrete transmission.
  • the first type of control channel is a control channel that adopts centralized transmission and whose aggregation level is less than or equal to a preset aggregation threshold; the second type of control channel adopts centralized transmission and A control channel whose aggregation level is greater than the preset aggregation threshold.
  • the first type of control channel is a control channel that uses centralized transmission and the first type of control channel candidate is transmitted within one physical resource block pair;
  • the second type of control channel is A control channel that employs centralized transmission and a second type of control channel candidate for transmission within at least two physical resource block pairs.
  • the second type of control channel candidate corresponds to at least two physical resource block pairs, and the at least two physical resource block pairs corresponding to the second type of control channel candidate are in the same PRG or the same RBG or the same subband, such that Conducive to high channel estimation performance and demodulation performance.
  • At least one of the first physical resource block set includes, in an optional implementation manner of this embodiment, before sending the first type of control channel on the first physical resource block set.
  • the method includes: the base station sends the first high layer signaling, where the first high layer signaling includes the first resource block set. That is, the first physical resource block set may be configured by the network side high layer, and may be configured by static signaling configuration or dynamic signaling, which is beneficial to improve the flexibility of configuring the first resource block set.
  • the second physical resource block set includes a first physical resource block set and a third physical resource block set.
  • one of the at least two physical resource block pairs corresponding to the second type of control channel candidate is a physical resource block pair in the first physical resource block set, and the remaining physical resource block pairs are at least One physical resource block pair is a physical resource block pair in the third physical resource block set.
  • the base station before the base station sends the second type of control channel on the second physical resource block set, the base station includes: the second base station sends the second high layer signaling, where the second high layer signaling includes the Three resource block collections. That is, the third physical resource block set may be configured by the network side high layer. It can be configured through high-level static signaling or dynamic signaling, which is beneficial to improve the flexibility of configuring the third resource block set.
  • the control channel sending method provided in this embodiment can be used to divide different types of control channels and complete transmission of different types of control channels.
  • this embodiment can limit control channel candidates used for transmission. In a PRG or RBG or subband, channel estimation performance and demodulation performance can be improved.
  • FIG. 8 is a schematic structural diagram of a UE according to another embodiment of the present invention. As shown in FIG. 8, the UE of this embodiment includes: a first detecting unit 81 and a second detecting unit 82.
  • the first detecting unit 81 is configured to detect a first type of control channel in the first physical resource block set, where the first physical resource block set includes at least one physical resource block pair.
  • the second detecting unit 82 is configured to detect a second type of control channel in the second physical resource block set, where the second physical resource block set includes at least one physical resource block pair.
  • the first type of control channel is a control channel that uses centralized transmission; and the second type of control channel is a control channel that uses discrete transmission.
  • the first type of control channel is a control channel that adopts centralized transmission and whose aggregation level is less than or equal to a preset aggregation threshold; the second type of control channel adopts centralized transmission and A control channel whose aggregation level is greater than the preset aggregation threshold.
  • the first type of control channel is a control channel that uses centralized transmission and the first type of control channel candidate is transmitted within one physical resource block pair;
  • the second type of control channel is A control channel that employs centralized transmission and a second type of control channel candidate for transmission within at least two physical resource block pairs.
  • the second type of control channel candidate corresponds to at least two physical resource block pairs, and the at least two physical resource block pairs corresponding to the second type of control channel candidate are in the same PRG or the same RBG or the same subband.
  • the at least one physical resource block pair included in the first physical resource block set is in a different precoding block group PRG or resource block group RBG or subband, which can improve channel estimation performance. And demodulation performance.
  • the second physical resource block set includes a first physical resource block set and a third physical resource block set.
  • At least two physical resource block pairs corresponding to the second type of control channel candidate are One physical resource block pair is a physical resource block pair in the first physical resource block set, and at least one of the remaining physical resource block pairs is a physical resource block pair in the third physical resource block set.
  • the UE in this embodiment further includes: a second receiving unit 83.
  • the second receiving unit 83 is configured to receive first high layer signaling, where the first high layer signaling includes a first resource block set.
  • the second receiving unit 83 is connected to the first detecting unit 81 for providing the first detecting unit 81 with the first resource block set.
  • the UE in this embodiment further includes: a third acquiring unit 84 and/or a third receiving unit 85.
  • the third obtaining unit 84 is configured to obtain the third resource block set according to the first resource block set and a preset function mapping relationship.
  • the third receiving unit 85 is configured to receive second high layer signaling, where the second high layer signaling includes a third resource block set.
  • the third obtaining unit 84 and the third receiving unit 85 are respectively connected to the second detecting unit 82 for providing the third detecting unit 82 with the third resource block set.
  • the UE provided in this embodiment may be used to perform the foregoing control channel detection method.
  • the specific working principle is not described here. For details, refer to the description of the method embodiment.
  • the UE provided in this embodiment completes the detection of the control channel, and when using the centralized transmission, limits the control channel candidates used for transmission to one PRG or RBG or subband, improving channel estimation performance and demodulation performance.
  • FIG. 9 is a schematic structural diagram of a base station according to another embodiment of the present invention. As shown in FIG. 9, the base station of this embodiment includes: a judging unit 91 and a second transmitting unit 92.
  • the determining unit 91 is configured to determine a type of the control channel to be sent, and the second sending unit 92 is configured to send the control on the first physical resource block set when the determining unit 91 determines that the control channel is the first type of control channel.
  • the channel or when the determining unit 91 determines that the control channel is the second type of control channel, transmits the control channel on the second set of physical resource blocks.
  • the first physical resource block set includes at least one physical resource block pair
  • the second physical resource block set includes at least one physical resource block pair.
  • the first type of control channel is a control channel that uses centralized transmission; and the second type of control channel is a control channel that uses discrete transmission.
  • the first type of control channel is a centralized transmission
  • the control channel of the second type of control channel is a control channel that adopts centralized transmission and whose aggregation level is greater than the preset aggregation threshold.
  • the first type of control channel is a control channel that uses centralized transmission and the first type of control channel candidate is transmitted within one physical resource block pair;
  • the second type of control channel is A control channel that employs centralized transmission and a second type of control channel candidate for transmission within at least two physical resource block pairs.
  • the second type of control channel candidate corresponds to at least two physical resource block pairs, and the at least two physical resource block pairs corresponding to the second type of control channel candidate are in the same PRG or the same RBG or the same subband.
  • the at least one physical resource block pair included in the first physical resource block set is in a different precoding block group PRG or resource block group RBG or subband, which can improve channel estimation performance. And demodulation performance.
  • the second physical resource block set includes a first physical resource block set and a third physical resource block set.
  • one of the at least two physical resource block pairs corresponding to the second type of control channel candidate is a physical resource block pair in the first physical resource block set, and the remaining physical resource block pairs are at least One physical resource block pair is a physical resource block pair in the third physical resource block set.
  • the second sending unit 92 is further configured to send the first high layer signaling, where the first high layer signaling includes the first resource block set, and the second sending unit 92 is specifically configured to be used in the first Before transmitting the control channel, the two sending unit 92 sends the first high layer signaling to the UE.
  • the second sending unit 92 is further configured to send the second high layer signaling, where the second high layer signaling includes the third resource block set.
  • the second sending unit 92 is specifically configured to send the second high layer signaling to the UE before the second sending unit 92 sends the control channel.
  • the base station provided in this embodiment can be used to perform the foregoing method for sending a control channel.
  • the specific working principle is not described here. For details, refer to the description of the method embodiment.
  • the base station provided by this embodiment can be configured to divide different types of control channels and complete transmission of different types of control channels.
  • the control channel candidates used for transmission are limited to one PRG or RBG. Or subband, which improves channel estimation performance and demodulation performance.
  • a further embodiment of the present invention provides a UE, the UE includes: at least one processor, and a memory; the memory is configured to store executable program code, where the processor reads the sequence for:
  • a second type of control channel is detected in the second set of physical resource blocks, the second set of physical resource blocks comprising at least one physical resource block pair.
  • the UE provided in this embodiment may be used to perform the foregoing control channel detection method.
  • the specific working principle is not described here. For details, refer to the description of the method embodiment.
  • the UE provided in this embodiment completes the detection of the control channel, and when using the centralized transmission, limits the control channel candidates used for transmission to one PRG or RBG or subband, improving channel estimation performance and demodulation performance.
  • Another embodiment of the present invention provides a base station, where the base station includes: a processor and a transmitter.
  • the processor is configured to determine a type of the control channel to be sent.
  • the transmitter is configured to: when the processor determines that the control channel is the first type of control channel, send the control channel on the first physical resource block set, or when the processor determines that the control channel is the second type of control channel, Sending a control channel on the set of two physical resource blocks, the first set of physical resource blocks includes at least one physical resource block pair, and the second set of physical resource blocks includes at least one physical resource block pair.
  • the base station provided in this embodiment can be used to perform the foregoing method for sending a control channel.
  • the specific working principle is not described here. For details, refer to the description of the method embodiment.
  • the base station provided by this embodiment can be configured to divide different types of control channels and complete transmission of different types of control channels.
  • the control channel candidates used for transmission are limited to one PRG or RBG. Or subband, which improves channel estimation performance and demodulation performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种增强型下行物理控制信道传输方法及装置。该方法包括:在物理资源块集合中,分别对每个物理资源块对PRB pair中的第一资源组进行排序,所述第一资源组为资源单元组eREG或REG,所述物理资源块集合包含至少一个所述物理资源块对;根据所述第一资源组和所述物理资源块集合中的第二资源组的对应关系,对所述第二资源组进行编号,其中,所述第二资源组为控制信道单元eCCE组或者控制信道候选组;确定传输E-PDCCH的所述第二资源组的编号;根据所述确定的编号,将所述E-PDCCH映射到对应的第一资源组上进行传输。本申请技术方案解决了E-PDCCH的传输问题。

Description

增强型物理下行控制信道传输方法及装置
本申请要求于 2012 年 8 月 2 日提交中国专利局、 申请号为 PCT/CN2012/079598, 发明名称为 "增强型物理下行控制信道传输方法及设 备" 的 PCT专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术, 尤其涉及一种增强型物理下行控制信道传输方法 及装置。 背景技术
LTE版本(Release ) 8/9/10 中, 物理下行控制信道 ( Physical Downlink Control Channel, 筒称为 PDCCH )在每个子帧的前 N ( N=l , 2, 3, 4 )个 正交频分复用 ( Orthogonal Frequency Division Multiplexing , 筒称为 OFDM ) 符号上传输, 且与物理下行共享信道( Physical Downlink Shared Channel , 筒 称为 PDSCH ) 以时分复用 (Time-Division Multiplexing, 筒称为 TDM ) 的方 式进行复用,其解调导频为下行公共导频,即小区专有导频(Cell-specific RS, 筒称为 CRS ) , 为保证传输的可靠性, 采用了空频码( Space Frequency Block Code, 筒称为 SFBC )或 SFBC结合频域选择性发射分集( Frequency Switched Transmit Diversity , 筒称为 FSTD ) 的传输方式。
随着非均匀网络的大规模部署, Rd-11中, PDCCH在容量、 覆盖范围和 协调干扰等方面受到较大挑战, 于是提出 了 增强型 PDCCH ( Enhanced-PDCCH, E-PDCCH )。 E-PDCCH位于 PDSCH区域内,与 PDSCH 的复用方式为频分复用 (Frequency Division Multiplexing, FDM ) ,此夕卜, 不 支持增强控制信道和业务信道在一个时频资源块内复用; E-PDCCH基于用户 设备(User Equipment, 筒称为 UE ) 特定的解调参考信号 (Demodulation Reference Signals, DMRS )来解调。 由上述可见, E-PDCCH占用的时频资源 与现有技术中 PDCCH 不同, 不能直接使用传输 PDCCH 的方式来传输 E-PDCCH, 因此, 需要解决 E-PDCCH的传输问题。 发明内容 本发明实施例提供一种增强型下行物理控制信道传输方法及装置, 用以 解决 E-PDCCH的传输问题。
本发明实施例第一方面提供一种增强型物理下行控制信道传输方法, 包 括: 在物理资源块集合中, 分别对每个物理资源块对 PRB pair中的第一资源 组进行排序, 第一资源组为资源单元组 eREG或 REG, 物理资源块集合包含 至少一个物理资源块对; 根据第一资源组和物理资源块集合中的第二资源组 的对应关系,对第二资源组进行编号,其中,第二资源组为控制信道单元 eCCE 组或者控制信道候选组; 确定传输 E-PDCCH 的第二资源组的编号; 根据确 定的编号, 将 E-PDCCH映射到对应的第一资源组上进行传输。
在上述方法的任一可选实施方式中, 每个物理资源块对包括 N个第三资 源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资 源块集合中, 一个物理资源块对中的每个第三资源组包含的第一资源组的编 号集合与其他每个物理资源块对中的一个第三资源组包含的第一资源组的编 号集合相同;根据第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二资源组进行编号包括: 每个第三资源组对应一个第一类型的第二资源 组, 按照物理资源块对的编号从小到大或从大到小的顺序, 依次为每个物理 资源块对中的第一类型的第二资源组进行编号, 其中, 在每个物理资源块对 中, 第一类型的第二资源组的编号和第一类型的第二资源组对应的第一资源 组的编号存在对应关系。
在上述方法的任一可选实施方式中, 在每个物理资源块对中, 第一类型 的第二资源组的编号和第一类型的第二资源组对应的第一资源组的编号存在 对应关系包括:
在每个物理资源块对中, 第一类型的第二资源组的编号是连续的, 第一 类型的第二资源组的编号的顺序和第一类型的第二资源组对应的第一资源组 的最大编号或最小编号的顺序相同。
在上述方法的任一可选实施方式中, 根据第一资源组和物理资源块集合 中的第二资源组的对应关系, 对第二资源组进行编号包括:
根据以下公式, 确定第一类型的第二资源组的编号: j=K*m+(i mod K),
其中, i是第一资源组的编号, i是 0到 L-l的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理 资源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
在上述方法的任一可选实施方式中, 每个物理资源块对包括 N个第三资 源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资 源块集合中, 一个物理资源块对中的每个第三资源组包含的第一资源组的编 号集合与其他每个物理资源块对中的一个第三资源组包含的第一资源组的编 号集合相同, 在每个物理资源块对中, 第三资源组的编号的顺序与第三资源 组中的第一资源组的最大编号或最小编号的顺序相同; 根据第一资源组和物 理资源块集合中的第二资源组的对应关系, 对第二资源组进行编号包括: 每 个第三资源组对应一个第一类型的第二资源组, 按照第三资源组编号从小到 大或从大到小的顺序, 依次对在具有相同编号的第三资源组对应的第一类型 的第二资源组进行编号, 在具有相同编号的第三资源组对应的第一类型的第 二资源组中, 第一类型的第二资源组的编号的顺序和第一类型的第二资源组 所在的物理资源块对的编号的顺序存在对应关系。
在上述方法的任一可选实施方式中, 在具有相同编号的第三资源组对应 的第一类型的第二资源组中, 第一类型的第二资源组的编号的顺序和第一类 在具有相同编号的第三资源组对应的第一类型的第二资源组中, 第一类 型的第二资源组的编号是连续的, 第一类型的第二资源组的编号的顺序和第 一类型的第二资源组所在的物理资源块对的编号的顺序相同。
在上述方法的任一可选实施方式中, 根据第一资源组和物理资源块集合 中的第二资源组的对应关系, 对第二资源组进行编号包括:
根据以下公式, 确定第一类型的第二资源组的编号:
j= (i mod K)*K+m,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
在上述方法的任一可选实施方式中, 对于相同编号的第三资源组对应的 第一类型的第二资源组, 一个物理资源块对中的第一类型的第二资源组与其 包含的第一资源组映射关系是其他每个物理资源块对中的一个第一类型的第 二资源组与其包含的第一资源组映射关系的循环移位。
在上述方法的任一可选实施方式中, 根据第一资源组和物理资源块集合 中的第二资源组的对应关系, 对第二资源组进行编号包括:
第二类型的第二资源组包括 M个分别属于不同物理资源块对的第一资源 组;
使用第二类型的第二资源组对应的同一个物理资源块对中的第一物理资 源组的编号作为第二类型的第二资源组的编号。
在上述方法的任一可选实施方式中, 根据第一资源组和物理资源块集合 中的第二资源组的对应关系, 对第二资源组进行编号包括:
根据以下公式, 确定第二类型的第二资源组的编号:
j= (i-K*m)modl6,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第二类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第二类型的第二资源组的个数, mod表示取模操作; 或者
根据以下公式, 确定第二类型的第二资源组的编号:
i= ( j + X * K) mod N,
m = ( floor ( j / ( M * K ) ) * M + x) mod C,
其中, i是编号为 j的第二类型的所述第二资源组对应的第 x个第一资源 组的编号, i是 0到 L-1的整数, L是一个所述物理资源块对中的第一资源组 的个数, m是编号为 j的第二类型的所述第二资源组对应的第 X个第一资源 组所在的物理资源块对的编号, K=floor(P/0), P为一个物理资源块对中第一 资源组的个数, 0为一个第二资源组中包含的第一资源组的个数, C是所述 物理资源块集合中物理资源块对的个数, mod表示取模操作, floor表示向下 取整操作。
在上述方法的任一可选实施方式中, 根据第一资源组和物理资源块集合 中的第二资源组的对应关系, 对第二资源组进行编号包括:
第二类型的第二资源组包括 M个分别属于不同物理资源块对的第一资源 组, 物理资源块集合包括 K个第二类型的第二资源组的集合, K为正整数, 在 K个集合中的每个集合内, 一个第二类型的第二资源组与其包含的第一资 源组映射关系是其他每个第二类型的第二资源组与其包含的第一资源组映射 关系的循环移位;
在 K个集合中的每个集合内, 按照第二类型的第二资源组对应的同一个 物理资源块对中的第一物理资源组的编号的大小关系, 对第二类型的第二资 源组进行编号;
在 K个集合中的不同集合之间, 第二类型的第二资源组的编号的顺序与 K个集合中的不同集合在同一物理资源块对中对应的第一资源组的最大编号 或最小编号的顺序相同。
在上述方法的任一可选实施方式中, 物理资源块集合包括 K个第二类型 的第二资源组的集合, 在 K个集合中的每个集合内, 一个第二类型的第二资 源组与其包含的第一资源组映射关系是其他每个第二类型的第二资源组与其 包含的第一资源组映射关系的循环移位。
在上述方法的任一可选实施方式中, 如果物理资源块集合中的至少两个 第一类型的第二资源组对应的第一资源组与物理资源块集合中的至少两个第 二类型的第二资源组对应的第一资源组相同, 至少两个第一类型的第二资源 组的编号的集合与至少两个第二类型的第二资源组的编号的集合相同。
在上述方法的任一可选实施方式中, 物理资源块集合中的第一类型的第 二资源组为采用集中式传输 E-PDCCH 的资源组; 物理资源块集合中的第二 类型的第二资源组为采用离散式传输 E-PDCCH的资源组。 本发明实施例的第二方面提供了一种增强型物理下行控制信道 E-PDCCH的传输装置, 包括:
排序单元,用于在物理资源块集合中,分别对每个物理资源块对 PRB pair 中的第一资源组进行排序, 第一资源组为资源单元组 eREG或 REG, 物理资 源块集合包含至少一个物理资源块对;
编号单元, 用于根据第一资源组和物理资源块集合中的第二资源组的对 应关系, 对第二资源组进行编号, 其中, 第二资源组为控制信道单元 eCCE 组或者控制信道候选组;
第五确定单元, 用于确定传输 E-PDCCH的第二资源组的编号; 传输单元, 用于根据确定的编号, 将 E-PDCCH映射到对应的第一资源 组上进行传输。
在上述方法的任一可选实施方式中, 每个物理资源块对包括 N个第三资 源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资 源块集合中, 一个物理资源块对中的每个第三资源组包含的第一资源组的编 号集合与其他每个物理资源块对中的一个第三资源组包含的第一资源组的编 号集合相同, 每个第三资源组对应一个第一类型的第二资源组; 编号单元用 于按照物理资源块对的编号从小到大或从大到小的顺序, 依次为每个物理资 源块对中的第一类型的第二资源组进行编号, 其中, 在每个物理资源块对中, 第一类型的第二资源组的编号和第一类型的第二资源组对应的第一资源组的 编号存在对应关系。
在上述方法的任一可选实施方式中, 在每个物理资源块对中, 第一类型 的第二资源组的编号和第一类型的第二资源组对应的第一资源组的编号存在 对应关系包括: 在每个物理资源块对中, 第一类型的第二资源组的编号是连 续的, 第一类型的第二资源组的编号的顺序和第一类型的第二资源组对应的 第一资源组的最大编号或最小编号的顺序相同。
在上述方法的任一可选实施方式中, 编号单元用于根据以下公式, 确定 第一类型的第二资源组的编号:
j=K*m+(i mod K),
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理 资源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
在上述方法的任一可选实施方式中, 每个物理资源块对包括 N个第三资 源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资 源块集合中, 一个物理资源块对中的每个第三资源组包含的第一资源组的编 号集合与其他每个物理资源块对中的一个第三资源组包含的第一资源组的编 号集合相同, 在每个物理资源块对中, 第三资源组的编号的顺序与第三资源 组中的第一资源组的最大编号或最小编号的顺序相同, 每个第三资源组对应 一个第一类型的第二资源组; 编号单元用于按照第三资源组编号从小到大或 从大到小的顺序, 依次对在具有相同编号的第三资源组对应的第一类型的第 二资源组进行编号, 在具有相同编号的第三资源组对应的第一类型的第二资 源组中, 第一类型的第二资源组的编号的顺序和第一类型的第二资源组所在 的物理资源块对的编号的顺序存在对应关系。
在上述方法的任一可选实施方式中, 在具有相同编号的第三资源组对应 的第一类型的第二资源组中, 第一类型的第二资源组的编号的顺序和第一类 在具有相同编号的第三资源组对应的第一类型的第二资源组中, 第一类 型的第二资源组的编号是连续的, 第一类型的第二资源组的编号的顺序和第 一类型的第二资源组所在的物理资源块对的编号的顺序相同。
在上述方法的任一可选实施方式中, 编号单元用于根据以下公式, 确定 第一类型的第二资源组的编号:
j= (i mod K)*K+m,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
在上述方法的任一可选实施方式中, 对于相同编号的第三资源组对应的 第一类型的第二资源组, 一个物理资源块对中的第一类型的第二资源组与其 包含的第一资源组映射关系是其他每个物理资源块对中的一个第一类型的第 二资源组与其包含的第一资源组映射关系的循环移位。
在上述方法的任一可选实施方式中, 第二类型的第二资源组包括 M个分 别属于不同物理资源块对的第一资源组; 编号单元用于使用第二类型的第二资源组对应的同一个物理资源块对中 的第一物理资源组的编号作为第二类型的第二资源组的编号。
在上述方法的任一可选实施方式中, 编号单元用于根据以下公式, 确定 第二类型的第二资源组的编号:
j= (i-K*m)modl6,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第二类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第二类型的第二资源组的个数, mod表示取模操作; 或者
编号单元用于根据以下公式, 确定第二类型的第二资源组的编号: i= (j + X * K) mod N,
m = ( floor ( j / ( M * K ) ) * M + x) mod C,
其中, i是编号为 j的第二类型的所述第二资源组对应的第 x个第一资源 组的编号, i是 0到 L-1的整数, L是一个所述物理资源块对中的第一资源组 的个数, m是编号为 j的第二类型的所述第二资源组对应的第 X个第一资源 组所在的物理资源块对的编号, K=floor(P/0), P为一个物理资源块对中第一 资源组的个数, 0为一个第二资源组中包含的第一资源组的个数, C是所述 物理资源块集合中物理资源块对的个数, mod表示取模操作, floor表示向下 取整操作。
在上述方法的任一可选实施方式中, 第二类型的第二资源组包括 M个分 别属于不同物理资源块对的第一资源组, 物理资源块集合包括 K个第二类型 的第二资源组的集合, K为正整数, 在 K个集合中的每个集合内, 一个第二 类型的第二资源组与其包含的第一资源组映射关系是其他每个第二类型的第 二资源组与其包含的第一资源组映射关系的循环移位; 编号单元用于在 K个 集合中的每个集合内, 按照第二类型的第二资源组对应的同一个物理资源块 对中的第一物理资源组的编号的大小关系, 对第二类型的第二资源组进行编 号; 在 K个集合中的不同集合之间, 第二类型的第二资源组的编号的顺序与 K个集合中的不同集合在同一物理资源块对中对应的第一资源组的最大编号 或最小编号的顺序相同。
在上述方法的任一可选实施方式中, 物理资源集合包括 K个第二类型的 第二资源组的集合, 在 K个集合中的每个集合内, 一个第二类型的第二资源 组与其包含的第一资源组映射关系是其他每个第二类型的第二资源组与其包 含的第一资源组映射关系的循环移位。
在上述方法的任一可选实施方式中, 如果物理资源块集合中的至少两个 第一类型的第二资源组对应的第一资源组与物理资源块集合中的至少两个第 二类型的第二资源组对应的第一资源组相同, 至少两个第一类型的第二资源 组的编号的集合与至少两个第二类型的第二资源组的编号的集合相同。
在上述方法的任一可选实施方式中, 物理资源块集合中的第一类型的第 二资源组为采用集中式传输 E-PDCCH 的资源组; 物理资源块集合中的第二 类型的第二资源组为采用离散式传输 E-PDCCH的资源组。 本发明实施例的第三方面提供了一种增强型物理下行控制信道 E-PDCCH的传输装置, 包括:
收发器, 用于收发信号;
处理器, 用于执行以下步骤:
在物理资源块集合中, 分别对每个物理资源块对 PRB pair中的第一资源 组进行排序, 第一资源组为资源单元组 eREG或 REG, 物理资源块集合包含 至少一个物理资源块对;
根据第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二 资源组进行编号, 其中, 第二资源组为控制信道单元 eCCE组或者控制信道 候选组;
确定传输 E-PDCCH的第二资源组的编号;
根据确定的编号, 将 E-PDCCH映射到对应的第一资源组上进行传输。 在上述方法的任一可选实施方式中, 每个物理资源块对包括 N个第三资 源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资 源块集合中, 一个物理资源块对中的每个第三资源组包含的第一资源组的编 号集合与其他每个物理资源块对中的一个第三资源组包含的第一资源组的编 号集合相同;
处理器用于通过以下方式实现根据第一资源组和物理资源块集合中的第 二资源组的对应关系, 对第二资源组进行编号: 每个第三资源组对应一个第 一类型的第二资源组,按照物理资源块对的编号从小到大或从大到小的顺序, 依次为每个物理资源块对中的第一类型的第二资源组进行编号, 其中, 在每 个物理资源块对中, 第一类型的第二资源组的编号和第一类型的第二资源组 对应的第一资源组的编号存在对应关系。
在上述方法的任一可选实施方式中, 在每个物理资源块对中, 第一类型 的第二资源组的编号和第一类型的第二资源组对应的第一资源组的编号存在 对应关系包括:
在每个物理资源块对中, 第一类型的第二资源组的编号是连续的, 第一 类型的第二资源组的编号的顺序和第一类型的第二资源组对应的第一资源组 的最大编号或最小编号的顺序相同。
在上述方法的任一可选实施方式中, 处理器用于通过以下方式实现根据 第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二资源组进 行编号:
根据以下公式, 确定第一类型的第二资源组的编号:
j=K*m+(i mod K),
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理 资源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
在上述方法的任一可选实施方式中, 每个物理资源块对包括 N个第三资 源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资 源块集合中, 一个物理资源块对中的每个第三资源组包含的第一资源组的编 号集合与其他每个物理资源块对中的一个第三资源组包含的第一资源组的编 号集合相同, 在每个物理资源块对中, 第三资源组的编号的顺序与第三资源 组中的第一资源组的最大编号或最小编号的顺序相同; 处理器用于通过以下 方式实现根据第一资源组和物理资源块集合中的第二资源组的对应关系, 对 第二资源组进行编号: 每个第三资源组对应一个第一类型的第二资源组, 按 照第三资源组编号从小到大或从大到小的顺序, 依次对在具有相同编号的第 三资源组对应的第一类型的第二资源组进行编号, 在具有相同编号的第三资 源组对应的第一类型的第二资源组中, 第一类型的第二资源组的编号的顺序 在上述方法的任一可选实施方式中, 在具有相同编号的第三资源组对应 的第一类型的第二资源组中, 第一类型的第二资源组的编号的顺序和第一类 在具有相同编号的第三资源组对应的第一类型的第二资源组中, 第一类 型的第二资源组的编号是连续的, 第一类型的第二资源组的编号的顺序和第 一类型的第二资源组所在的物理资源块对的编号的顺序相同。
在上述方法的任一可选实施方式中, 处理器用于通过以下方式实现根据 第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二资源组进 行编号:
根据以下公式, 确定第一类型的第二资源组的编号:
j= (i mod K)*K+m,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
在上述方法的任一可选实施方式中, 对于相同编号的第三资源组对应的 第一类型的第二资源组, 一个物理资源块对中的第一类型的第二资源组与其 包含的第一资源组映射关系是其他每个物理资源块对中的一个第一类型的第 二资源组与其包含的第一资源组映射关系的循环移位。
在上述方法的任一可选实施方式中, 处理器用于通过以下方式实现根据 第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二资源组进 行编号:
第二类型的第二资源组包括 M个分别属于不同物理资源块对的第一资源 组;
使用第二类型的第二资源组对应的同一个物理资源块对中的第一物理资 源组的编号作为第二类型的第二资源组的编号。
在上述方法的任一可选实施方式中, 处理器用于通过以下方式实现处理 器用于通过以下方式实现根据第一资源组和物理资源块集合中的第二资源组 的对应关系, 对第二资源组进行编号:
根据以下公式, 确定第二类型的第二资源组的编号:
j= (i-K*m)modl6,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第二类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第二类型的第二资源组的个数, mod表示取模操作; 或者
根据以下公式, 确定第二类型的第二资源组的编号:
i= ( j + X * K) mod N,
m = ( floor ( j / ( M * K ) ) * M + x) mod C,
其中, i是编号为 j的第二类型的所述第二资源组对应的第 x个第一资源 组的编号, i是 0到 L-1的整数, L是一个所述物理资源块对中的第一资源组 的个数, m是编号为 j的第二类型的所述第二资源组对应的第 X个第一资源 组所在的物理资源块对的编号, K=floor(P/0), P为一个物理资源块对中第一 资源组的个数, 0为一个第二资源组中包含的第一资源组的个数, C是所述 物理资源块集合中物理资源块对的个数, mod表示取模操作, floor表示向下 取整操作。
在上述方法的任一可选实施方式中, 处理器用于通过以下方式实现根据 第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二资源组进 行编号:
第二类型的第二资源组包括 M个分别属于不同物理资源块对的第一资源 组, 物理资源块集合包括 K个第二类型的第二资源组的集合, K为正整数, 在 K个集合中的每个集合内, 一个第二类型的第二资源组与其包含的第一资 源组映射关系是其他每个第二类型的第二资源组与其包含的第一资源组映射 关系的循环移位;
在 K个集合中的每个集合内, 按照第二类型的第二资源组对应的同一个 物理资源块对中的第一物理资源组的编号的大小关系, 对第二类型的第二资 源组进行编号;
在 K个集合中的不同集合之间, 第二类型的第二资源组的编号的顺序与 K个集合中的不同集合在同一物理资源块对中对应的第一资源组的最大编号 或最小编号的顺序相同。
在上述方法的任一可选实施方式中, 物理资源集合包括 Κ个第二类型的 第二资源组的集合, 在 Κ个集合中的每个集合内, 一个第二类型的第二资源 组与其包含的第一资源组映射关系是其他每个第二类型的第二资源组与其包 含的第一资源组映射关系的循环移位。
在上述方法的任一可选实施方式中, 如果物理资源块集合中的至少两个 第一类型的第二资源组对应的第一资源组与物理资源块集合中的至少两个第 二类型的第二资源组对应的第一资源组相同, 至少两个第一类型的第二资源 组的编号的集合与至少两个第二类型的第二资源组的编号的集合相同。
在上述方法的任一可选实施方式中, 物理资源块集合中的第一类型的第 二资源组为采用集中式传输 E-PDCCH 的资源组; 物理资源块集合中的第二 类型的第二资源组为采用离散式传输 E-PDCCH的资源组。 本发明实施例提供的增强型物理下行控制信道传输方法及装置, 根据第 一资源组与第二资源组的关系, 确定第二资源组的编号, 然后, 确定传输 E-PDCCH的第二资源组的编号, 将 E-PDCCH映射到相应的第一资源组上进 行传输, 解决了 E-PDCCH 的传输问题, 并且, 根据该方案中的编号方法, 有利于进行盲检测。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A为本发明一实施例提供的 E-PDCCH传输方法的流程图; 图 1B为本发明一实施例提供的 E-PDCCH接收方法的流程图; 图 2A为本发明一实施例提供的基站的结构示意图;
图 2B为本发明一实施例提供的 UE的结构示意图;
图 3A为本发明另一实施例提供的基站的结构示意图; 图 3B为本发明另一实施例提供的 UE的结构示意图;
图 4A为本发明一实施例提供的另一种 E-PDCCH传输方法的流程图; 图 4B-图 4E为本发明一实施例中提供的各种编号结果的示意图; 图 5为本发明一实施例提供的编号装置的结构示意图;
图 6为本发明另一实施例提供的编号装置的结构示意图;
图 7A为本发明一实施例提供的控制信道检测方法的流程图;
图 7B和图 7C为本发明一实施例提供的第一物理资源块集合和第二物理 资源块集合的示意图;
图 8为本发明又一实施例提供的 UE的结构示意图;
图 9为本发明又一实施例提供的基站的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1A为本发明一实施例提供的 E-PDCCH传输方法的流程图。本实施例 的执行主体可以是基站, 例如 LTE系统中的基站。 图 1A所示, 本实施例的 方法包括:
步骤 101、 根据第一资源组与导频端口的映射关系, 按照特定关系确定 第一类型的第二资源组与第一资源组及导频端口的对应关系, 以及第二类型 的第二资源组与第一资源组及导频端口的对应关系。
其中, 第一资源组与导频端口的映射关系是基站预先获取的。 其中, 基 站预先获取第一资源组与导频端口的映射关系的方式包括但不限于以下几 种: 基站与用户设备(User Equipment, 筒称为 UE )预先定义第一资源组与 导频端口的映射关系。 或者, 基站根据本地小区标识(ID )生成第一资源组 与导频端口的映射关系。 可选的, 基站还可以向 UE发送高层信令, 所述高 层信令包括第一资源组与导频端口的映射关系。
其中, 第一资源组与导频端口的映射关系包括一个物理资源单元集合中 至少一个第一资源组与至少一个导频端口的映射关系; 所述物理资源单元集 合为至少一个物理资源块对 (英文为 PRB pair )。 第一资源组为资源单元组 ( eREG )或 REG; 第一类型的第二资源组为控制信道单元(eCCE )或者控 制信道候选, 第二类型的第二资源组为 eCCE或者控制信道候选。 第一类型 的第二资源组至少对应两个第一资源组, 第二类型的第二资源组至少对应两 个第一资源组。 这里的对应主要是指第一类型的和第二类型的第二资源组可 由至少两个第一资源组构成。 其中, 不同类型的第二资源组与第一资源组及 导频端口的对应关系之间满足上述特定关系。 本实施例中的导频端口主要是 指 DMRS端口。
由上述可见, 本实施例的第二资源组包括两个类型, 为第一类型的第二 资源组和第二类型的第二资源组。 可选的, 第一类型的第二资源组为采用集 中式传输 E-PDCCH 时的资源组, 第二类型的第二资源组为采用离散式传输 E-PDCCH时的资源组。 这里集中式传输指的是传输 E-PDCCH的资源分配集 中在一个或几个连续的物理资源块对内, 离散式传输指的是传输 E-PDCCH 的资源分配分散在不连续的多个物理资源块对内。 在此说明, 在 Rdll 中, 采用离散式传输 E-PDCCH时不支持 SFBC, 采用多用户公共预编码(随机波 束赋形 )机制。
以第一资源组为 eREG,则第一资源组与导频端口的一种可选映射关系如 表 1所示。
表 1
Figure imgf000017_0001
Figure imgf000018_0001
如表 1所示, 物理资源单元集合为一个物理资源块对, 该物理资源块对 包括 8个 eREG, 8个 eREG—共映射到 4个 DMRS端口, 分别为 DMRS端 口 7、 DMRS端口 8、 DMRS端口 9和 DMRS端口 10, 每个 eREG与 DMRS 端口之间的映射关系并不限于表 1所示。
基于上述表 1 , 第一类型的和第二类型的第二资源组与第一资源组及导 频端口的一种可选对应关系如表 2所示。
表 2
Figure imgf000018_0002
如表 2所示, 传输 E-PDCCH使用的物理资源块集合包括 4个物理资源 块对, 分别为索引为 1、 2、 3和 4的物理资源块对, 每个物理资源块对包括 8个 eREG。在每个物理资源块对中,每个 eREG都有一个唯一的位置索引(如 表 1或表 2中 eREG后面括号中的数字 0-7 ) , 对于包括相同数量的 eREG的 物理资源块对而言, 其中 eREG的位置索引相同。 其中, 第一类型的第二资 源组由同一物理资源块对中至少两个 eREG构成, 以第一类型的第二资源组 由同一物理资源块对中的两个 eREG构成为例, 则第一类型的第二资源组可 以由表 2中索引为 1的物理资源块对中 eREG ( 0 )和 eREG ( 1 )构成, 对应 的导频端口为 DMRS端口 7和 9, 或索引为 1的物理资源块对中 eREG ( 2 ) 和 eREG ( 3 )构成, 对应的导频端口为 DMRS端口 8和 10, 或索引为 1的 物理资源块对中 eREG ( 4 )和 eREG ( 5 )构成, 对应的导频端口为 DMRS 端口 9和 7, 或索引为 1的物理资源块对中 eREG ( 6 )和 eREG ( 7 )构成, 对应的导频端口为 DMRS端口 10和 8,还可以是索引为 2的物理资源块中的 eREG构成, 不再——列举。第二类型的第二资源组由不同物理资源块对中至 少两个 eREG构成, 以第二类型的第二资源组由不同物理资源块对中的两个 eREG构成为例,则第二类型的第二资源组可以由表 2中索引为 3的物理资源 块对中 eREG ( 0 )和索引为 4的物理资源块对中 eREG ( 0 )构成, 对应的导 频端口为 DMRS端口 7, 或者可以由索引为 3的物理资源块对中 eREG ( 1 ) 和索引为 4的物理资源块对中 eREG ( 4 )构成, 对应的导频端口为 DMRS端 口 9, 或者可以由索引为 2的物理资源块对中 eREG ( 6 )和索引为 3的物理 资源块对中 eREG ( 7 )构成, 对应的导频端口为 DMRS端口 10和 8, 等等。 如表 2所示, 一旦确定出构成第一类型的或第二类型的第二资源组的 eREG, 则第一类型的或第二类型的第二资源组对应的导频端口也就确定了。
在此说明, 表 2中示出传输 E-PDCCH使用的物理资源块集合包括 4个 物理资源块对, 但不限于此。
步骤 102、确定传输 E-PDCCH的至少一个第一类型的第二资源组或第二 类型的第二资源组, 根据所确定的第一类型的或第二类型的第二资源组与第 一资源组及导频端口的对应关系, 将传输该 E-PDCCH 的至少一个第一类型 的第二资源组或第二类型的第二资源组映射到至少一个第一资源组及导频端 口上进行传输。
其中, 如果需要采用集中式传输 E-PDCCH, 则基站会确定出传输该 E-PDCCH的至少一个第一类型的第二资源组,然后根据之前确定的第一类型 的第二资源组与第一资源组及导频端口的对应关系, 将传输 E-PDCCH的至 少一个第一类型的第二资源组映射到至少一个第一资源组及导频端口上进行 传输。
如果需要采用离散式传输 E-PDCCH, 则基站会确定出传输该 E-PDCCH 的至少一个第二类型的第二资源组, 然后根据之前确定的第二类型的第二资 源组与第一资源组及导频端口的对应关系, 将传输 E-PDCCH 的至少一个第 二类型的第二资源组映射到至少一个第一资源组及导频端口上进行传输。
现有技术中 PDCCH的传输采用的是 CRS传输,传输 PDCCH的所有 CCE 都映射到相同的 CRS端口上, 并且采用 SFBC或者同时采用 SFBC和 FSTD 的方式进行传输。 而 E-PDCCH采用的是 DMRS传输, 在 DMRS上面需要进 行预编码(英文为 precoding ) , 因此, 需要明确传输 E-PDCCH的 eCCE或 物理信道候选与 DMRS端口之间的对应关系, 才能正确完成解调, 可见现有 技术中传输 PDCCH的方式不再适用于 E-PDCCH。 而本实施例根据第一资源 组与导频端口的映射关系, 确定第一类型第二资源组与第一资源组及导频端 口的对应关系, 以及第二类型的第二资源组与第一资源组及导频端口的对应 关系, 然后确定传输 E-PDCCH使用的第二资源组(或者是第一类型的第二 资源组, 或者是第二类型的第二资源组) , 然后根据确定的两种类型的第二 资源组分别与第一资源组及导频端口之间的对应关系, 将传输 E-PDCCH 的 第二资源组映射到相应的第一资源组和导频端口上进行传输, 解决了 E-PDCCH的传输问题, 同时为正确解调 E-PDCCH打下了基础。
在本实施例的一个可选实施方式中, 第一资源组与导频端口的另一可选 映射关系如表 3所示。
表 3
Figure imgf000020_0001
如表 3所示, 物理资源单元集合为一个物理资源块对, 其中每个物理资 源块对包括 8个 eREG, 8个 eREG—共映射到 4个 DMRS端口,分别为 DMRS 端口 7、 DMRS端口 8、 DMRS端口 9和 DMRS端口 10,每个 eREG与 DMRS 端口之间的映射关系与表 1中的映射关系不同, 但 eREG与 DMRS端口之间 的映射关系并不限于表 1和表 3所示。
基于上述表 3 , 第一类型的和第二类型的第二资源组与第一资源组及导 频端口的另一种可选对应关系如表 4所示。
表 4
Figure imgf000021_0001
如表 4所示, 传输 E-PDCCH使用的物理资源块集合包括 4个物理资源 块对, 分别为索引为 1、 2、 3和 4的物理资源块对, 每个物理资源块对包括 8 个 eREG。 其中, 第一类型的第二资源组由同一物理资源块对中至少两个 eREG构成,以第一类型的第二资源组由同一物理资源块对中的四个 eREG构 成为例, 则第一类型的第二资源组可以由表 4中索引为 1的物理资源块对中 eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 )和 eREG ( 3 )构成, 对应的导频端口 为 DMRS端口 7和 8,或索引为 1的物理资源块对中 eREG ( 4 )、 eREG ( 5 )、 eREG ( 6 )和 eREG ( 7 )构成, 对应的导频端口为 DMRS端口 9和 10, 不 再——列举。 第二类型的第二资源组由不同物理资源块对中至少两个 eREG 构成, 以第二类型的第二资源组由不同物理资源块对中的四个 eREG构成为 例, 则第二类型的第二资源组可以由表 2中索引为 1、 2、 3和 4的物理资源 块对中的 eREG ( 0 )构成, 对应的导频端口为 DMRS端口 7, 或者可以由索 引为 1和 2的物理资源块对中 eREG ( 2 )和索引为 3和 4的物理资源块对中 eREG ( 3 )构成, 对应的导频端口为 DMRS端口 8和 7, 等等。 如表 4所示, 一旦确定出构成第一类型的或第二类型的第二资源组的 eREG,则第一类型的 或第二类型的第二资源组对应的导频端口也就确定了。
在此说明, 在表 1所示基础上, 第一类型的第二资源组和第二类型的第 二资源组也可以由四个第一资源组构成, 如下表 5所示。 相应的, 在表 3所 示基础上, 第一类型的第二资源组和第二类型的第二资源组也可以由两个第 一资源组构成, 具体情况也不再举例说明。
表 5
Figure imgf000022_0001
如表 5 所示, 以第一类型的第二资源组由同一物理资源块对中的四个 eREG构成为例,则第一类型的第二资源组可以由表 5中索引为 1的物理资源 块对中 eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 )和 eREG ( 3 )构成, 对应的导 频端口为 DMRS端口 7、 8、 9和 10,或索引为 1的物理资源块对中 eREG( 4 )、 eREG ( 5 ) 、 eREG ( 6 )和 eREG ( 7 )构成, 对应的导频端口为 DMRS端口 9、 7、 10和 8,还可以是索引为 2的物理资源块中的 eREG ( 0 )、 eREG ( 1 )、 eREG ( 4 )和 eREG ( 5 )构成, 对应的导频端口为 DMRS端口 7和 9, 不再 ——列举。 第二类型的第二资源组由不同物理资源块对中至少两个 eREG构 成, 以第二类型的第二资源组由不同物理资源块对中的四个 eREG构成为例, 则第二类型的第二资源组可以由表 2中索引为 1、 2、 3和 4的物理资源块对 中的 eREG ( 0 )构成, 对应的导频端口为 DMRS端口 7, 或者可以由索引为 1和 2的物理资源块对中 eREG ( 2 )和索引为 3和 4的物理资源块对中 eREG ( 3 )构成, 对应的导频端口为 DMRS端口 8和 10, 等等。 如表 5所示, 一 旦确定出构成第一类型的或第二类型的第二资源组的 eREG,则第一类型的或 第二类型的第二资源组对应的导频端口也就确定了。
另夕卜,除了上述表 1和表 3所示第一资源组与导频端口的映射关系之外, 还可以是其他映射关系, 例如 eREG ( 0 )和 eREG ( 5 )对应端口 7, eREG ( 1 )和 eREG ( 4 )对应端口 10, eREG ( 2 )和 eREG ( 7 )对应端口 8, eREG ( 3 )和 eREG ( 6 )对应端口 10。
在本实施例的一个可选实施方式中, 基站根据第一资源组与导频端口的 映射关系, 按照特定关系确定第一类型的第二资源组与第一资源组及导频端 口的对应关系包括: 基站根据第一资源组与导频端口的映射关系, 按照特定 关系确定第一类型的第二资源组对应的至少两个第一资源组在上述第一资源 组与导频端口的映射关系中对应的端口集合至少包含两个不同的导频端口, 并确定每个第一类型的第二资源组传输采用的导频端口为第一类型的第二资 源组对应的至少两个第一资源组中第一个或者最后一个第一资源组对应的导 频端口。 举例说明, 如表 2所示, 基站确定出第一类型的第二资源组对应的 至少两个第一资源组为两个第一资源组, 这两个第一资源组在上述第一资源 组与导频端口的映射关系中对应的端口集合包含两个不同的导频端口, 分别 为 DMRS端口 7和 DMRS端口 9, 或者分别为 DMRS端口 8和 DMRS端口 10。 再例如, 如表 4所示, 基站确定出第一类型的第二资源组对应的至少两 个第一资源组为四个第一资源组, 这四个第一资源组在上述第一资源组与导 频端口的映射关系中对应的端口集合包含四个不同的导频端口, 分别为 DMRS端口 7、 8、 9和 10。 再例如, 如表 5所示, 基站确定出第一类型的第 二资源组对应的至少两个第一资源组为四个第一资源组, 这四个第一资源组 在上述第一资源组与导频端口的映射关系中对应的端口集合包含四个不同的 导频端口, 分别为 DMRS端口 7、 8、 9和 10, 或者这四个第一资源组在上述 第一资源组与导频端口的映射关系中对应的端口集合包含两个不同的导频端 口, 分别为 DMRS端口 7和 9。 总之, 第一类型的第二资源组对应的至少两 个第一资源组对应的端口集合至少包括两个不同的导频端口。 优选的, 对于 第一类型的第二资源组来说, 在传输时使用其中一个导频端口, 有利于节约 导频资源。 为了不同第一类型的第二资源组之间能够统一传输 E-PDCCH 时 使用的导频端口, 规定选择所对应的至少两个 eREG中第一个 eREG或最后 一个 eREG对应的导频端口作为传输使用。
在本实施例的一可选实施方式中, 为了提高第一资源组的利用率, 上述 特定关系具体为根据第二类型的第二资源组传输 E-PDCCH 时使用的导频端 口, 确定第一类型的传输 E-PDCCH使用的导频端口, 进而根据第一资源组 与导频端口的映射关系, 确定第一类型的第一资源组与第一资源组及导频端 口的对应关系, 以及第二类型的第二资源与第一资源组及导频端口的对应关 系。 基于此, 基站所确定的第一类型的第二资源组对应的至少两个第一资源 组在上述第一资源组与导频端口的映射关系中对应的端口集合至少包含的两 个不同的导频端口为由至少一个第二类型的第二资源组传输 E-PDCCH时在 每个物理资源块对内传输采用的至少两个导频端口。 其中, 第二类型的第二 资源组传输 E-PDCCH 时在每个物理资源块对内传输使用的导频端口可以预 先定义。 举例说明, 如果第二类型的第二资源组传输 E-PDCCH 时, 在每个 物理资源块对内传输使用的导频端口为 DMRS端口 7和 9, 则基站所确定出 的第一类型的第二资源组对应的至少两个第一资源组在上述第一资源组与导 频端口的映射关系中对应的端口集合至少包含的两个不同的导频端口为 DMRS端口 7和 9。 如表 2所示, 如果第二类型的第二资源组传输 E-PDCCH 时在每个物理资源块对中传输使用的 DMRS端口为 7和 9, 意味着第一类型 的第二资源组对应的两个 eREG为对应于 DMRS端口为 7和 9的 eREG, 可 以是 eREG ( 0 )和 eREG ( 1 ) , 或者是 eREG ( 4 )和 eREG ( 5 ) 。
在本实施例的一可选实施方式中, 当传输 E-PDCCH的至少一个第二类 型的第二资源组的个数大于预设个数门限时, 在每个物理资源块对内传输采 用的导频端口的个数为两个, 可以是第一导频端口和第二导频端口, 或者可 以是第三导频端口和第四导频端口。 也就是说, 由第二类型的第二资源组传 输 E-PDCCH时, 在每个物理资源块对内传输采用的导频端口的个数不是必 须为两个, 而是在满足一定条件时为两个, 还可以是一个、 三个、 四个等。 其中, 第一导频端口、 第二导频端口、 第三导频端口和第四导频端口是不同 的 DMRS端口, 具体是哪个 DMRS端口不做限定。 并且, 第一导频端口、 第 二导频端口、 第三导频端口和第四导频端口是同一物理资源块对内的第一资 源组所映射到的全部导频端口。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口的个数为两个的条件下, 基站确定出的每个第一 类型的第二资源组对应两个第一资源组, 且第一类型的第二资源组对应的两 个第一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合包 含两个不同的导频端口, 这两个不同的导频端口分别为第一导频端口和第二 导频端口, 或者分别为第三导频端口和第四导频端口。 结合表 2, 假设第一 导频端口为 DMRS端口 7、 第二导频端口为 DMRS端口 9, 第三导频端口为 DMRS端口 8、 第四导频端口为 DMRS端口 10, 则每个第一类型的第二资源 组对应两个 eREG, 这两个 eREG对应的导频端口为 DMRS端口 7和 9, 或 者这两个 eREG对应的导频端口为 DMRS端口 8和 10。 其中, 对于每个第一 类型第二资源组来说, 在真正传输 E-PDCCH 时, 优先选择对应的端口集合 中的一个导频端口进行传输。例如,在表 2中,由对应于 DMRS端口 7的 eREG (0)和对应于 DMRS端口 9的 eREG (1)组成第一个第一类型的第二资源组,该 第一类型的第二资源组传输 E-PDCCH时基于其对应的两个 eREG中的第一 个 eREG, 即 eREG ( 0 )对应的导频端口, 即 DMRS端口 7进行传输, 该第 一类型的第二资源组在传输 E-PDCCH时, eREG ( 0 )和 eREG ( 1 )采用的 预编码方式和 DMRS端口 7采用的预编码方式相同, 这两个 eREG ( 0 )和 eREG ( 1 )均基于 DMRS端口 7进行信道估计。 在表 2中, 由对应于 DMRS 端口 8的 eREG (2)和对应于 DMRS端口 10的 eREG (3)组成第二个第一类型 的第二资源组, 该第一类型的第二资源组传输 E-PDCCH 时基于其对应的两 个 eREG中的第一个 eREG, eREG ( 2 )对应的导频端口, 即 DMRS端口 8 进行传输,即该第一类型的第二资源组传输 E-PDCCH时, eREG ( 2 )和 eREG ( 3 )采用的预编码方式和 DMRS端口 8采用的预编码方式相同,这两个 eREG ( 2 )和 eREG ( 3 ) 均基于 DMRS端口 8进行信道估计。 在表 2中, 由对应 于 DMRS端口 9的 eREG (4)和对应于 DMRS端口 7的 eREG (5)组成第三个 第一类型的第二资源组, 该第一类型的第二资源组传输 E-PDCCH 时基于其 对应的两个 eREG 中的第一个 eREG , 即 eREG ( 4 )对应的导频端口, 即 DMRS端口 9进行传输,即该第一类型的第二资源组传输 E-PDCCH时, eREG ( 4 )和 eREG ( 5 )采用的预编码方式和 DMRS端口 9采用的预编码方式相 同, 这两个 eREG ( 4 )和 eREG ( 5 ) 均基于 DMRS端口 9进行信道估计。 在表 2中,由对应于 DMRS端口 10的 eREG (6)和对应于 DMRS端口 8的 eREG (7)组成第四个第一类型的第二资源组, 该第一类型的第二资源组传输 E-PDCCH时基于其对应的两个 eREG中的第一个 eREG, 即 eREG ( 6 )对应 的导频端口, 即 DMRS端口 10进行传输, 即该第一类型的第二资源组传输 E-PDCCH时, eREG ( 6 )和 eREG ( 7 )采用的预编码方式和 DMRS端口 10 采用的预编码方式相同, 这两个 eREG ( 6 )和 eREG ( 7 ) 均基于 DMRS端 口 10进行信道估计。
进一步, 在每个第一类型的第二资源组对应两个第一资源组的基础上, 每个物理资源块对可以包含四个第一类型的第二资源组。 在该情况下, 每个 物理资源块对共包括 8个第一资源组。 如表 1-表 5所示。 其中, 物理资源块 对包含的两个第一类型的第二资源组对应的两个第一资源组在上述第一资源 组与导频端口的映射关系中对应的端口集合包含的两个不同的导频端口均为 第一导频端口和第二导频端口; 物理资源块对包含的另外两个第一类型的第 二资源组对应的两个第一资源组在上述第一资源组与导频端口的映射关系中 对应的端口集合包含的两个不同的导频端口均为第三导频端口和第四导频端 口。 而且, 对于对应于包含第一导频端口和第二导频端口的导频集合对应的 两个第一资源组的两个第一类型的第二资源组, 在这两个第一类型的第二资 源组内按照导频端口进行排序的两个第一资源组的顺序不同; 同理, 对于对 应于包含第三导频端口和第四导频端口的导频集合对应的两个第一资源组的 两个第一类型的第二资源组, 在这两个第一类型的第二资源组内按照导频端 口进行排序的两个第一资源组的顺序不同。 结合表 2, 索引为 1 的物理资源 块对包括四个第一类型的第二资源组, 分别为由 eREG ( 0 )和 eREG ( 1 )构 成的第一类型的第二资源组, 由 eREG ( 2 )和 eREG ( 3 )构成的第一类型的 第二资源组, 由 eREG ( 4 )和 eREG ( 5 )构成的第一类型的第二资源组, 由 eREG ( 6 )和 eREG ( 7 )构成的第一类型的第二资源组。 其中, 由 eREG ( 0 ) 和 eREG ( 1 )构成的第一类型的第二资源组和由 eREG ( 4 )和 eREG ( 5 )构 成的第一类型的第二资源组对应相同的导频端口,分别为 DMRS端口 7和 9, 并且按照导频端口排序后, DMRS端口 7和 9在这两个第一类型的第二资源 组中的顺序不同, 例如, 在由 eREG ( 0 )和 eREG ( 1 )构成的第一类型的第 二资源组中, DMRS端口 7和 9的顺序为先 DMRS端口 7后 DMRS端口 9, 在由 eREG ( 4 )和 eREG ( 5 )构成的第一类型的第二资源组中, DMRS端口 7和 9的顺序为先 DMRS端口 9后 DMRS端口 7。 由 eREG ( 2 )和 eREG ( 3 ) 构成的第一类型的第二资源组和由 eREG ( 6 )和 eREG ( 7 )构成的第一类型 的第二资源组对应相同的导频端口, 分别为 DMRS端口 8和 10, 并且按照导 频端口排序后, DMRS端口 8和 10在这两个第一类型的第二资源组中的顺序 不同, 例如, 在由 eREG ( 2 )和 eREG ( 3 )构成的第一类型的第二资源组中, DMRS端口 8和 10的顺序为先 DMRS端口 8后 DMRS端口 10, 在由 eREG ( 6 )和 eREG ( 7 )构成的第一类型的第二资源组中, DMRS端口 8和 10的 顺序为先 DMRS端口 10后 DMRS端口 8。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口的个数为两个的条件下, 基站确定出的每个第一 类型的第二资源组对应四个第一资源组, 且第一类型的第二资源组对应的四 个第一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合包 含四个不同的导频端口, 这四个不同的导频端口分别为第一导频端口、 第二 导频端口、 第三导频端口和第四导频端口。 结合表 5 , 假设第一导频端口为 DMRS端口 7、 第二导频端口为 DMRS端口 9, 第三导频端口为 DMRS端口 8、 第四导频端口为 DMRS端口 10, 则每个第一类型的第二资源组对应四个 eREG, 这四个 eREG对应的导频端口为 DMRS端口 7、 8、 9和 10。 其中, 对于每个第一类型第二资源组来说, 在真正传输 E-PDCCH 时, 优先选择对 应的端口集合中的一个导频端口进行传输。例如,在表 5中,由对应于 DMRS 端口 7的 eREG (0)、对应于 DMRS端口 9的 eREG (1)、对应于 DMRS端口 8 的 eREG ( 2 )和对应于 DMRS端口 10的 eREG ( 3 )组成第一个第一类型的 第二资源组, 该第一类型的第二资源组传输 E-PDCCH 时基于其对应的四个 eREG中的第一个 eREG, 即 eREG ( 0 )对应的导频端口, 即 DMRS端口 7 进行传输, 该第一类型的第二资源组在传输 E-PDCCH时, eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 )和 eREG ( 3 )采用的预编码方式和 DMRS端口 7采用的 预编码方式相同, 这四个 eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 )和 eREG ( 3 ) 均基于 DMRS端口 7进行信道估计。 在表 5中, 由对应于 DMRS端口 9的 eREG (4)、对应于 DMRS端口 7的 eREG (5)、对应于 DMRS端口 10的 eREG (6)和对应于 DMRS端口 8的 eREG (7)组成第二个第一类型的第二资源组,该 第一类型的第二资源组传输 E-PDCCH时基于其对应的四个 eREG中的第一 个 eREG, eREG ( 4 )对应的导频端口, 即 DMRS端口 9进行传输, 即该第 一类型的第二资源组传输 E-PDCCH时, eREG ( 4 )、 eREG ( 5 )、 eREG ( 6 ) 和 eREG ( 7 )采用的预编码方式和 DMRS端口 9采用的预编码方式相同, 这 四个 eREG ( 4 ) 、 eREG ( 5 ) 、 eREG ( 6 )和 eREG ( 7 )均基于 DMRS端口 9进行信道估计。
在上述每个第一类型的第二资源组对应四个第一资源组的基础上, 每个 物理资源块对内包含两个第一类型的第二资源组。 在该情况下, 每个物理资 源块对内共包含八个第一资源组。 其中, 物理资源块对包含的两个第一类型 的第二资源组对应的四个第一资源组在上述第一资源组与导频端口的映射关 系中对应的端口集合包含的四个不同的导频端口均为第一导频端口、 第二导 频端口、 第三导频端口和第四导频端口, 且在物理资源块对包含的两个第一 类型的第二资源组内按照导频端口排序的四个第一资源组的顺序不同。其中, 在物理资源块对包含的两个第一类型的第二资源组内的导频端口排序方式可 以是任何不同的方式, 例如: 在物理资源块对包含的一个第一类型的第二资 源组内导频端口的排序为第一导频端口、 第二导频端口、 第三导频端口和第 四导频端口, 在物理资源块对包含的另一个第一类型的第二资源组内导频端 口的排序为第二导频端口、 第一导频端口、 第四导频端口和第三导频端口。 或者, 在物理资源块对包含的一个第一类型的第二资源组内导频端口的排序 为第一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 在物理资 源块对包含的另一个第一类型的第二资源组内导频端口的排序为第四导频端 口、 第三导频端口、 第二导频端口和第一导频端口。 或者, 在物理资源块对 包含的一个第一类型的第二资源组内导频端口的排序为第一导频端口、 第三 导频端口、 第二导频端口和第四导频端口, 在物理资源块对包含的另一个第 一类型的第二资源组内导频端口的排序为第三导频端口、 第一导频端口、 第 四导频端口和第二导频端口。
结合表 5, 索引为 1 的物理资源块对包括两个第一类型的第二资源组, 分别为由 eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 )和 eREG ( 3 )构成的第一类 型的第二资源组和由 eREG ( 4 ) 、 eREG ( 5 ) 、 eREG ( 6 )和 eREG ( 7 )构 成的第一类型的第二资源组。 其中, 由 eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 ) 和 eREG ( 3 )构成的第一类型的第二资源组和由 eREG ( 4 ) 、 eREG ( 5 ) 、 eREG ( 6 )和 eREG ( 7 )构成的第一类型的第二资源组对应相同的导频端口, 分别为 DMRS端口 7、 8、 9和 10, 并且按照导频端口排序后, DMRS端口 7、 8、 9和 10在这两个第一类型的第二资源组中的顺序不同。 例如, 在由 eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 )和 eREG ( 3 )构成的第一类型的第二资源组 中, DMRS端口 7、 8、 9和 10的顺序依次为 DMRS端口 7、 DMRS端口 9、 DMRS端口 8和 DMRS端口 10, 在由 eREG ( 4 ) 、 eREG ( 5 ) 、 eREG ( 6 ) 和 eREG ( 7 )构成的第一类型的第二资源组中, DMRS端口 7、 8、 9和 10 的顺序依次为 DMRS端口 9、 DMRS端口 7、 DMRS端口 10和 DMRS端口 8。 除此之外, 在由 eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 )和 eREG ( 3 )构成的 第一类型的第二资源组中, DMRS端口 7、 8、 9和 10的顺序还可以是 DMRS 端口 7、 DMRS端口 8、 DMRS端口 9和 DMRS端口 10, 在由 eREG ( 4 ) 、 eREG ( 5 )、 eREG ( 6 )和 eREG ( 7 )构成的第一类型的第二资源组中, DMRS 端口 7、 8、 9和 10的顺序可以是 DMRS端口 10、 DMRS端口 9、 DMRS端 口 8和 DMRS端口 7, 等等。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口的个数为两个的条件下, 基站确定出的每个第一 类型的第二资源组对应四个第一资源组, 第一类型的第二资源组对应的四个 第一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合包含 两个不同的导频端口, 这两个不同的导频端口分别为第一导频端口和第二导 频端口, 或者为第三导频端口和第四导频端口。 结合表 4, 假设第一导频端 口为 DMRS端口 7、 第二导频端口为 DMRS端口 8, 第三导频端口为 DMRS 端口 9、 第四导频端口为 DMRS端口 10, 则每个第一类型的第二资源组对应 四个 eREG,这四个 eREG对应的导频端口为 DMRS端口 7和 8,或者为 DMRS 端口 9和 10。其中,对于每个第一类型第二资源组来说,在真正传输 E-PDCCH 时, 优先选择对应的端口集合中的一个导频端口进行传输。 例如, 在表 4中, 由对应于 DMRS端口 7的 eREG (0)、 对应于 DMRS端口 8的 eREG (1)、 对 应于 DMRS端口 8的 eREG ( 2 )和对应于 DMRS端口 7的 eREG ( 3 )组成 第一个第一类型的第二资源组, 该第一类型的第二资源组传输 E-PDCCH 时 基于其对应的四个 eREG中的第一个 eREG, 即 eREG ( 0 )对应的导频端口, 即 DMRS端口 7进行传输, 该第一类型的第二资源组在传输 E-PDCCH时, eREG ( 0 )、 eREG ( 1 )、 eREG ( 2 )和 eREG ( 3 )采用的预编码方式和 DMRS 端口 7采用的预编码方式相同, 这四个 eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 ) 和 eREG( 3 )均基于 DMRS端口 7进行信道估计。在表 4中,由对应于 DMRS 端口 9的 eREG (4)、 对应于 DMRS端口 10的 eREG (5)、 对应于 DMRS端口 10的 eREG (6)和对应于 DMRS端口 9的 eREG (7)组成第二个第一类型的第 二资源组, 该第一类型的第二资源组传输 E-PDCCH 时基于其对应的四个 eREG中的第一个 eREG, eREG ( 4 )对应的导频端口, 即 DMRS端口 9进 行传输, 即该第一类型的第二资源组传输 E-PDCCH时, eREG ( 4 ) 、 eREG ( 5 ) 、 eREG ( 6 )和 eREG ( 7 )采用的预编码方式和 DMRS端口 9采用的 预编码方式相同, 这四个 eREG ( 4 ) 、 eREG ( 5 ) 、 eREG ( 6 )和 eREG ( 7 ) 均基于 DMRS端口 9进行信道估计。
在上述每个第一类型的第二资源组对应四个第一资源组的基础上, 每个 物理资源块对内包含两个第一类型的第二资源组。 在该情况下, 每个物理资 源块对内共包含八个第一资源组。 其中, 物理资源块对内包含的一个第一类 型的第二资源组对应的四个第一资源组在上述第一资源组与导频端口的映射 关系中对应的端口集合包含的两个不同的导频端口为第一导频端口和第二导 频端口, 物理资源块对内包含的另一个第一类型的第二资源组对应的四个第 一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合包含的 两个不同的导频端口为第三导频端口和第四导频端口。 结合表 4, 索引为 1 的物理资源块对包括两个第一类型的第二资源组,分别为由 eREG( 0 )、eREG ( 1 )、 eREG U )和 eREG ( 3 )构成的第一类型的第二资源组和由 eREG ( 4 )、 eREG ( 5 ) 、 eREG ( 6 )和 eREG ( 7 )构成的第一类型的第二资源组。 其中, 由 eREG ( 0 ) 、 eREG ( 1 ) 、 eREG ( 2 )和 eREG ( 3 )构成的第一类型的第 二资源组和由 eREG ( 4 ) 、 eREG ( 5 ) 、 eREG ( 6 )和 eREG ( 7 )构成的第 一类型的第二资源组对应不同的导频端口。例如, 由 eREG ( 0 ) 、 eREG ( 1 ) 、 eRE 2 )和 eRE 3 )构成的第一类型的第二资源组对应的导频端口为 DMRS 端口 7和 8, 由 eREG ( 4 ) 、 eREG ( 5 ) 、 eREG ( 6 )和 eREG ( 7 )构成的 第一类型的第二资源组对应的导频端口为 DMRS端口 9和 10。
在上述各实施例或实施方式的基础上, 基站确定的传输 E-PDCCH 的每 个第二类型的第二资源组对应的至少两个第一资源组为位于不同物理资源块 对中对应于同一导频端口且位置索引相同的第一资源组。 例如, 如表 2中实 线框所围的第二类型的第二资源组, 是由索引为 3和 4的两个物理资源块对 中均对应 DMRS端口 7的位置索引均为 0的两个 eREG构成的资源组。 又例 如, 如表 4和表 5中实线框所围的第二类型的第二资源组,是由索引为 1、 2、 3和 4的四个物理资源块对中均对应于 DMRS端口 7的位置索引均为 0的四 个 eREG构成的资源组。
在上述各实施例或实施方式的基础上, 基站确定的传输 E-PDCCH 的每 个第二类型的第二资源组对应的至少两个第一资源组为位于不同物理资源块 对中对应于同一导频端口且位置索引不同的第一资源组。 例如, 如表 2中用 实线连接的两个虚线框所围的第二类型的第二资源组, 是由索引为 3和 4的 两个物理资源块对中均对应 DMRS端口 9的位置索引分别为 1和 4的两个 eREG构成的资源组。又例如,如表 4中用实线连接的两个虚线框所围的第二 类型的第二资源组, 是由索引为 1、 2、 3和 4的四个物理资源块对中分别对 应于 DMRS端口 8和 7且位置索引分别为 2和 3的四个 eREG构成的资源组。 又例如, 结合表 4, 第二类型的第二资源组还可以是由索引为 1 的物理资源 块对中对应 DMRS端口 7位置索引为 0的 eREG、 索引为 2的物理资源块对 中对应 DMRS端口 8位置索引为 1的 eREG、 索引为 3的物理资源块对中对 应 DMRS端口 8位置索引为 2的 eREG和索引为 4的物理资源块对中对应 DMRS端口 7位置索引为 3的 eREG构成。 再例如, 结合表 4, 第二类型的 第二资源组还可以是由索引为 1的物理资源块对中对应 DMRS端口 7位置索 引为 0的 eREG、 索引为 2的物理资源块对中对应 DMRS端口 8位置索引为 1的 eREG、 索引为 3的物理资源块对中对应 DMRS端口 9位置索引为 4的 eREG和索引为 4的物理资源块对中对应 DMRS端口 10位置索引为 5的 eREG 构成。
在本实施例的一可选实施方式中, 基于上述各实施方式中第一类型的第 二资源组的实现, 基站确定出的传输 E-PDCCH 的每个第二类型的第二资源 组对应的至少两个第一资源组为位于不同物理资源块对中位置索引与第一类 型的第二资源组对应的至少两个第一资源组的位置索引相同的第一资源组。 例如, 如表 2中以虚线连接的两个虚线框所围的第二类型的第二资源组, 是 由索引为 2的物理资源块对中对应 DMRS端口 10的位置索引为 6的第一资 源组和索引为 4的物理资源块对中对应的 DMRS端口为 8的位置索引为 7的 第一资源组构成, 该第二类型的第二资源组与表 2中由索引为 1的物理资源 块对中位置索引为 6和 7的两个第一资源组构成的第一类型的第二资源组对 应, 这两个第二资源组对应的第一资源组的位置索引相同。 再例如, 结合表 5 , 如果第一类型的第二资源组由索引为 1的物理资源块对中位置索引为 0、 1、 2、 和 3的四个第一资源组构成, 则基站根据此可以确定第二类型的第二 资源组为由索引为 1的物理资源块对中位置索引为 0的第一资源组、 索引为 2的物理资源块对内位置索引为 1的第一资源组、 索引为 3的物理资源块对 中位置索引为 2的第一资源组和索引为 4的物理资源块对中位置索引为 3的 第一资源组构成; 除此之外, 基站还可以确定第二类型的第二资源组由索引 为 4的物理资源块对中位置索引为 0的第一资源组、 索引为 3的物理资源块 对中位置索引为 1的第一资源组、 索引为 2的物理资源块对中位置索引为 2 的第一资源组和索引为 0的物理资源块对中位置索引为 3的第一资源组构成, 等多种构成方式。
下面说明上述各实施例方式产生的有益效果。 为了在同一物理资源块对 中进一步获取的空间分集, 通常的做法是通过分配多个导频端口实现。 但如 果导频端口分配不合适, 就会造成导频端口资源的浪费并且也不利于进行信 道估计。举例说明,表 6所示为第一资源组与 DMRS端口的又一种映射关系。
表 6
Figure imgf000032_0001
Port 7 ereg (1) ereg (1) ereg (1) ereg (1)
Port 8 lereg (2) ; ereg (2) ereg (2) ereg (2)
Port 8 :、 reg (3) : ereg (3) ereg (3) ereg (3)
Port 9 ereg (4) ereg (4) ereg (4) ereg (4)
Port 9 ereg (5) ereg (5) ereg (5) ereg (5)
Port 10 ereg (6) Ϊ ereg (6) ereg (6) ereg (6)
Port 10 、ereg (7) 」 ereg (7) ereg (7) ereg (7) 如表 6所示,如果将 DMRS端口 7和 DMRS端口 9分配给第二类型的第 二资源组传输 E-PDCCH 时作为每个物理资源块对中传输使用的导频端口, 且传输 E-PDCCH的两个第二类型的第二资源组如表 6中的实线框所示, 此 时, 对于索引为 1的物理资源块对中能够用于构成第一类型的第二资源组的 第一资源组仅为表 6中虚线框所示, 其中, eREG ( 1 )和 eREG ( 5 )无法被 使用, 造成了浪费。 而在本发明上述各实施例或实施方式中, 设置第一资源 组与导频端口的映射关系, 然后根据第一资源组与导频端口以及特定关系确 定第一类型的第二资源组、 第二类型的第二资源组以及对应的导频端口等可 能解决上述问题, 能够充分利用导频端口资源, 并且能够灵活配置导频端口 对, 充分利用导频端口带来的空间分集。
图 1B为本发明一实施例提供的 E-PDCCH接收方法的流程图。本实施例 的执行主体为 UE, 但不限于此。 如图 1B所示, 本实施例的方法包括:
步骤 201、 根据第一资源组与导频端口的映射关系, 按照特定关系确定 第一类型的第二资源组与第一资源组及导频端口的对应关系, 以及第二类型 的第二资源组与第一资源组及导频端口的对应关系。
其中, 第一资源组与导频端口的映射关系包括一个物理资源单元集合中 至少一个第一资源组与至少一个导频端口的映射关系; 第一资源组为 eREG 或 REG, 第一类型的第二资源组为 eCCE或者控制信道候选, 第二类型的第 二资源组为 eCCE或者控制信道候选, 物理资源单元集合为至少一个物理资 源块对; 第一类型的第二资源组至少对应两个第一资源组, 第二类型的第二 资源组至少对应两个第一资源组。 其中, 不同类型的第二资源组与第一资源 组及导频端口的对应关系之间满足上述特定关系。
步骤 202、确定传输 E-PDCCH的至少一个第一类型的第二资源组或第二 类型的第二资源组, 根据所确定的第一类型的或第二类型的第二资源组与第 一资源组及导频端口的对应关系, 在至少一个第一资源组及导频端口上接收 传输 E-PDCCH的至少一个第一类型的第二资源组或第二类型的第二资源组。
本实施例步骤 201可参见步骤 101的描述, 步骤 202可参见步骤 102的 描述, 其与步骤 102的区别在于: 本实施例中 UE在至少一个第一资源组及 导频端口上接收传输 E-PDCCH 的至少一个所述第一类型的第二资源组或第 二类型的第二资源组, 而不是像步骤 102中那样将传输 E-PDCCH的至少一 个所述第一类型的第二资源组或第二类型的第二资源组映射到至少一个第一 资源组及导频端口上传输。其中, UE在至少一个第一资源组及导频端口上接 收传输 E-PDCCH 的至少一个所述第一类型的第二资源组或第二类型的第二 资源组的过程是盲检测的过程, 本实施例中的盲检测过程与现有技术中的盲 检测过程类似, 在此不再赘述。
在本实施例中, 第二资源组包括两个类型, 为第一类型的第二资源组和 第二类型的第二资源组。 可选的, 第一类型的第二资源组为采用集中式传输 E-PDCCH时的资源组, 第二类型的第二资源组为采用离散式传输 E-PDCCH 时的资源组。 这里集中式传输指的是传输 E-PDCCH 的资源分配集中在一个 或几个连续的物理资源块对内, 离散式传输指的是传输 E-PDCCH 的资源分 配分散在不连续的多个物理资源块对内。
其中, 第一资源组与导频端口的一种可选映射关系的举例说明可参见表 1和表 3所示, 但不限于此。
在本实施例的一个可选实施方式中, UE根据第一资源组与导频端口的映 射关系, 按照特定关系确定第一类型的第二资源组与第一资源组及导频端口 的对应关系包括: UE根据第一资源组与导频端口的映射关系,按照特定关系 确定第一类型的第二资源组对应的至少两个第一资源组在上述第一资源组与 导频端口的映射关系中对应的端口集合至少包含两个不同的导频端口, 并确 定每个第一类型的第二资源组传输采用的导频端口为第一类型的第二资源组 对应的至少两个第一资源组中第一个或者最后一个第一资源组对应的导频端 口。 在本实施例的一可选实施方式中, 为了提高第一资源组的利用率, 上述 特定关系具体为根据第二类型的第二资源组传输 E-PDCCH 时使用的导频端 口, 确定第一类型的传输 E-PDCCH使用的导频端口, 进而根据第一资源组 与导频端口的映射关系, 确定第一类型的第一资源组与第一资源组及导频端 口的对应关系, 以及第二类型的第二资源与第一资源组及导频端口的对应关 系。基于此, UE所确定的第一类型的第二资源组对应的至少两个第一资源组 在上述第一资源组与导频端口的映射关系中对应的端口集合至少包含的两个 不同的导频端口为由至少一个第二类型的第二资源组传输 E-PDCCH 时在每 个物理资源块对内传输采用的至少两个导频端口。 其中, 第二类型的第二资 源组传输 E-PDCCH 时在每个物理资源块对内传输使用的导频端口可以预先 定义。
在本实施例的一可选实施方式中, 当传输 E-PDCCH的至少一个第二类 型的第二资源组的个数大于预设个数门限时, 在每个物理资源块对内传输采 用的导频端口的个数为两个, 可以是第一导频端口和第二导频端口, 或者可 以是第三导频端口和第四导频端口。 也就是说, 由第二类型的第二资源组传 输 E-PDCCH时, 在每个物理资源块对内传输采用的导频端口的个数不是必 须为两个, 而是在满足一定条件时为两个, 还可以是一个、 三个、 四个等。 其中, 第一导频端口、 第二导频端口、 第三导频端口和第四导频端口是不同 的 DMRS端口, 具体是哪个 DMRS端口不做限定。 并且, 第一导频端口、 第 二导频端口、 第三导频端口和第四导频端口是同一物理资源块对内的第一资 源组所映射到的全部导频端口。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口的个数为两个的条件下, UE确定出的每个第一类 型的第二资源组对应两个第一资源组, 且第一类型的第二资源组对应的两个 第一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合包含 两个不同的导频端口, 这两个不同的导频端口分别为第一导频端口和第二导 频端口, 或者分别为第三导频端口和第四导频端口。
进一步, 在每个第一类型的第二资源组对应两个第一资源组的基础上, 每个物理资源块对可以包含四个第一类型的第二资源组。 在该情况下, 每个 物理资源块对共包括 8个第一资源组。 如表 1-表 5所示。 其中, 物理资源块 对包含的两个第一类型的第二资源组对应的两个第一资源组在上述第一资源 组与导频端口的映射关系中对应的端口集合包含的两个不同的导频端口均为 第一导频端口和第二导频端口; 物理资源块对包含的另外两个第一类型的第 二资源组对应的两个第一资源组在上述第一资源组与导频端口的映射关系中 对应的端口集合包含的两个不同的导频端口均为第三导频端口和第四导频端 口。 而且, 对于对应于包含第一导频端口和第二导频端口的导频集合对应的 两个第一资源组的两个第一类型的第二资源组, 在这两个第一类型的第二资 源组内按照导频端口进行排序的两个第一资源组的顺序不同; 同理, 对于对 应于包含第三导频端口和第四导频端口的导频集合对应的两个第一资源组的 两个第一类型的第二资源组, 在这两个第一类型的第二资源组内按照导频端 口进行排序的两个第一资源组的顺序不同。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口的个数为两个的条件下, UE确定出的每个第一类 型的第二资源组对应四个第一资源组, 且第一类型的第二资源组对应的四个 第一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合包含 四个不同的导频端口, 这四个不同的导频端口分别为第一导频端口、 第二导 频端口、 第三导频端口和第四导频端口。
在上述每个第一类型的第二资源组对应四个第一资源组的基础上, 每个 物理资源块对内包含两个第一类型的第二资源组。 在该情况下, 每个物理资 源块对内共包含八个第一资源组。 其中, 物理资源块对包含的两个第一类型 的第二资源组对应的四个第一资源组在上述第一资源组与导频端口的映射关 系中对应的端口集合包含的四个不同的导频端口均为第一导频端口、 第二导 频端口、 第三导频端口和第四导频端口, 且在物理资源块对包含的两个第一 类型的第二资源组内按照导频端口排序的四个第一资源组的顺序不同。其中, 在物理资源块对包含的两个第一类型的第二资源组内的导频端口排序方式可 以是任何不同的方式, 例如: 在物理资源块对包含的一个第一类型的第二资 源组内导频端口的排序为第一导频端口、 第二导频端口、 第三导频端口和第 四导频端口, 在物理资源块对包含的另一个第一类型的第二资源组内导频端 口的排序为第二导频端口、 第一导频端口、 第四导频端口和第三导频端口。 或者, 在物理资源块对包含的一个第一类型的第二资源组内导频端口的排序 为第一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 在物理资 源块对包含的另一个第一类型的第二资源组内导频端口的排序为第四导频端 口、 第三导频端口、 第二导频端口和第一导频端口。 或者, 在物理资源块对 包含的一个第一类型的第二资源组内导频端口的排序为第一导频端口、 第三 导频端口、 第二导频端口和第四导频端口, 在物理资源块对包含的另一个第 一类型的第二资源组内导频端口的排序为第三导频端口、 第一导频端口、 第 四导频端口和第二导频端口。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口的个数为两个的条件下, UE确定出的每个第一类 型的第二资源组对应四个第一资源组, 第一类型的第二资源组对应的四个第 一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合包含两 个不同的导频端口, 这两个不同的导频端口分别为第一导频端口和第二导频 端口, 或者为第三导频端口和第四导频端口。
在上述每个第一类型的第二资源组对应四个第一资源组的基础上, 每个 物理资源块对内包含两个第一类型的第二资源组。 在该情况下, 每个物理资 源块对内共包含八个第一资源组。 其中, 物理资源块对内包含的一个第一类 型的第二资源组对应的四个第一资源组在上述第一资源组与导频端口的映射 关系中对应的端口集合包含的两个不同的导频端口为第一导频端口和第二导 频端口, 物理资源块对内包含的另一个第一类型的第二资源组对应的四个第 一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合包含的 两个不同的导频端口为第三导频端口和第四导频端口。
在上述各实施例或实施方式的基础上, UE确定的传输 E-PDCCH的每个 第二类型的第二资源组对应的至少两个第一资源组为位于不同物理资源块对 中对应于同一导频端口且位置索引相同的第一资源组。
在上述各实施例或实施方式的基础上, UE确定的传输 E-PDCCH的每个 第二类型的第二资源组对应的至少两个第一资源组为位于不同物理资源块对 中对应于同一导频端口且位置索引不同的第一资源组。 在本实施例的一可选实施方式中, 基于上述各实施方式中第一类型的第 二资源组的实现, UE确定出的传输 E-PDCCH的每个第二类型的第二资源组 对应的至少两个第一资源组为位于不同物理资源块对中位置索引与第一类型 的第二资源组对应的至少两个第一资源组的位置索引相同的第一资源组。
上述各可选实施方式的详细描述可参见图 1A所示实施例中相应描述, 在此不再赘述。
在本实施的另一可选实施方式中, UE在使用第一资源组与导频端口的映 射关系之前, 需要预先获取第一资源组与导频端口的映射关系。 其中, UE获 取第一资源组与导频端口的映射关系的方式包括: UE与基站预先定义第一资 源组与导频端口的映射关系。 或者, UE与基站预先约定, 根据本地小区 ID 生成第一资源组与导频端口的映射关系。在这两种情况下,基站不需要向 UE 发送第一资源组与导频端口的映射关系, 而是 UE可以直接获取第一资源组 与导频端口的映射关系。 另一种方式是: UE接收基站发送的高层信令, 该高 层信令包括所述第一资源组与导频端口的映射关系, UE从高层信令中获取第 一资源组与导频端口的映射关系, 这种方式便于基站灵活配置第一资源组与 导频端口的映射关系。
本实施例提供的 E-PDCCH接收方法,与上述实施例提供的 E-PDCCH传 输方法相对应, UE可以成功接收 E-PDCCH, 从而解决了 E-PDCCH的传输 问题, 另外, 本实施例的方法还可以提高导频端口的利用率, 并且可以充分 利用导频端口带来的空间分集效果。
图 2A为本发明一实施例提供的基站的结构示意图。 如图 2A所示, 本实 施例的基站包括: 第一确定单元 21、 第二确定单元 22和映射传输单元 23。
其中, 第一确定单元 21 , 用于根据第一资源组与导频端口的映射关系, 按照特定关系确定第一类型的第二资源组与第一资源组及导频端口的对应关 系, 以及第二类型的第二资源组与第一资源组及导频端口的对应关系。
其中, 第一资源组与导频端口的映射关系包括一个物理资源单元集合中 至少一个第一资源组与至少一个导频端口的映射关系。 第一资源组为 eREG 或 REG, 第一类型的第二资源组为 eCCE或者控制信道候选, 第二类型的第 二资源组为 eCCE或者控制信道候选。 物理资源单元集合为至少一个物理资 源块对。 第一类型的第二资源组至少对应两个第一资源组, 第二类型的第二 资源组至少对应两个第一资源组。 其中, 不同类型的第二资源组与第一资源 组及导频端口的对应关系之间满足上述特定关系。
第二确定单元 22, 用于确定传输 E-PDCCH的至少一个第一类型的第二 资源组或第二类型的第二资源组。
映射传输单元 23, 与第一确定单元 21和第二确定单元 22连接, 用于根 据第一确定单元 21 确定的第一类型的或第二类型的第二资源组与第一资源 组及导频端口的对应关系, 将第二确定单元 22确定的传输 E-PDCCH的至少 一个第一类型的第二资源组或第二类型的第二资源组映射到至少一个第一资 源组及导频端口上进行传输。
在本实施例的一可选实施方式中, 第一类型的第二资源组为采用集中式 传输 E-PDCCH 时的资源组; 第二类型的第二资源组为采用离散式传输 E-PDCCH时的资源组。
在本实施例的一可选实施方式中,第一确定单元 21根据第一资源组与导 频端口的映射关系, 按照特定关系确定第一类型的第二资源组与第一资源组 及导频端口的对应关系包括:第一确定单元 21具体用于根据第一资源组与导 频端口的映射关系, 按照特定关系确定第一类型的第二资源组对应的至少两 个第一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合至 少包含两个不同的导频端口, 并确定每个第一类型的第二资源组传输采用的 导频端口为第一类型的第二资源组对应的至少两个第一资源组中第一个或者 最后一个第一资源组对应的导频端口。
在本实施例的一可选实施方式中,第一确定单元 21确定第一类型的第二 资源组对应的至少两个第一资源组在上述第一资源组与导频端口的映射关系 中对应的端口集合至少包含两个不同的导频端口包括:第一确定单元 21更为 具体的用于确定第一类型的第二资源组对应的至少两个第一资源组在上述第 一资源组与导频端口的映射关系中对应的端口集合至少包含的两个不同的导 频端口为由至少一个第二类型的第二资源组传输 E-PDCCH 时在每个物理资 源块对内传输采用的至少两个导频端口。
在本实施例的一可选实施方式中, 当传输 E-PDCCH的至少一个第二类 型的第二资源组的个数大于预设个数门限时, 在每个物理资源块对内传输采 用的导频端口为两个, 分别为第一导频端口和第二导频端口传输, 或者为第 三导频端口和第四导频端口。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口为两个, 分别为第一导频端口和第二导频端口传 输, 或者为第三导频端口和第四导频端口的条件下, 第一确定单元 21具体用 于确定每个第一类型的第二资源组对应两个第一资源组, 并确定第一类型的 第二资源组对应的两个第一资源组在上述第一资源组与导频端口的映射关系 中对应的端口集合包含两个不同的导频端口, 这两个不同的导频端口分别为 第一导频端口和第二导频端口, 或者分别为第三导频端口和第四导频端口。
基于上述, 每个物理资源块对内包含四个第一类型的第二资源组, 在该 情况下, 每个物理资源块对内共包含 8个第一资源组。 其中, 物理资源块对 包含的两个第一类型的第二资源组对应的两个第一资源组在上述第一资源组 与导频端口的映射关系中对应的端口集合包含的两个不同的导频端口均为第 一导频端口和第二导频端口, 物理资源块对包含的另外两个第一类型的第二 资源组对应的两个第一资源组在上述第一资源组与导频端口的映射关系中对 应的端口集合包含的两个不同的导频端口均为第三导频端口和第四导频端 口。
上述物理资源块对包含的四个第一类型的第二资源组, 对于对应于包含 第一导频端口和第二导频端口的导频集合对应的两个第一资源组的两个第一 类型的第二资源组, 在两个第一类型的第二资源组内按照导频端口进行排序 的两个第一资源组的顺序不同; 对于对应于包含第三导频端口和第四导频端 口的导频集合对应的两个第一资源组的两个第一类型的第二资源组, 在两个 第一类型的第二资源组内按照导频端口进行排序的两个第一资源组的顺序不 同。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口为两个, 分别为第一导频端口和第二导频端口传 输, 或者为第三导频端口和第四导频端口的条件下, 第一确定单元 21具体用 于确定每个第一类型的第二资源组对应四个第一资源组, 第一类型的第二资 源组对应的四个第一资源组在上述第一资源组与导频端口的映射关系中对应 的端口集合包含四个不同的导频端口, 这四个不同的导频端口分别为第一导 频端口、 第二导频端口、 第三导频端口和第四导频端口。
基于上述, 每个物理资源块对内包含两个第一类型的第二资源组, 在该 情况下, 每个物理资源块对内共包含 8个第一资源组。 其中, 物理资源块对 包含的两个第一类型的第二资源组对应的四个第一资源组在上述第一资源组 与导频端口的映射关系中对应的端口集合包含的四个不同的导频端口均为第 一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 且在物理资源 块对包含的两个第一类型的第二资源组内按照导频端口排序的四个第一资源 组的顺序不同。
在物理资源块对包含的两个第一类型的第二资源组内的导频端口排序方 式包括但不限于: 在物理资源块对包含的一个第一类型的第二资源组内导频 端口的排序为第一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 在物理资源块对包含的另一个第一类型的第二资源组内导频端口的排序为第 二导频端口、 第一导频端口、 第四导频端口和第三导频端口。 或者
在物理资源块对包含的一个第一类型的第二资源组内导频端口的排序为 第一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 在物理资源 块对包含的另一个第一类型的第二资源组内导频端口的排序为第四导频端 口、 第三导频端口、 第二导频端口和第一导频端口。 或者
在物理资源块对包含的一个第一类型的第二资源组内导频端口的排序为 第一导频端口、 第三导频端口、 第二导频端口和第四导频端口, 在物理资源 块对包含的另一个第一类型的第二资源组内导频端口的排序为第三导频端 口、 第一导频端口、 第四导频端口和第二导频端口。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口为两个, 分别为第一导频端口和第二导频端口传 输, 或者为第三导频端口和第四导频端口的条件下, 第一确定单元 21具体用 于确定每个第一类型的第二资源组对应四个第一资源组, 第一类型的第二资 源组对应的四个第一资源组在上述第一资源组与导频端口的映射关系中对应 的端口集合包含两个不同的导频端口, 这两个不同的导频端口分别为第一导 频端口和第二导频端口, 或者分别为第三导频端口和第四导频端口。 基于上述, 每个物理资源块对内包含两个第一类型的第二资源组, 在该 情况下, 每个物理资源块对内共包含 8个第一资源组。 其中, 物理资源块对 内包含的一个第一类型的第二资源组对应的四个第一资源组在上述第一资源 组与导频端口的映射关系中对应的端口集合包含的两个不同的导频端口为第 一导频端口和第二导频端口, 物理资源块对内包含的另一个第一类型的第二 资源组对应的四个第一资源组在上述第一资源组与导频端口的映射关系中对 应的端口集合包含的两个不同的导频端口为第三导频端口和第四导频端口。
在本实施例的一可选实施方式中, 第二确定单元 22 具体用于确定传输 E-PDCCH 的每个第二类型的第二资源组对应的至少两个第一资源组为位于 不同物理资源块对中对应于同一导频端口且位置索引相同的第一资源组。
在本实施例的一可选实施方式中, 第二确定单元 22 具体用于确定传输 E-PDCCH 的每个所述第二类型的第二资源组对应的至少两个第一资源组为 位于不同物理资源块对中对应于同一导频端口且位置索引不同的第一资源 组。
在本实施例的一可选实施方式中, 基于上述第一类型的第二资源组的实 现, 第二确定单元 22具体用于确定传输 E-PDCCH的每个第二类型的第二资 源组对应的至少两个第一资源组为位于不同物理资源块对中位置索引与第一 类型的第二资源组对应的至少两个第一资源组的位置索引相同的第一资源 组。
在本实施例的一可选实施方式中, 上述第一导频端口为 DMRS端口 7, 第二导频端口为 DMRS端口 9, 第三导频端口为 DMRS端口 8, 第四导频端 口为 DMRS端口 10。 或者, 上述第一导频端口为 DMRS端口 8, 第二导频端 口为 DMRS端口 10,第三导频端口为 DMRS端口 7,第四导频端口为 DMRS 端口 9。 或者, 上述第一导频端口为 DMRS端口 7, 第二导频端口为 DMRS 端口 8, 第三导频端口为 DMRS端口 9, 第四导频端口为 DMRS端口 10。 或 者, 上述第一导频端口为 DMRS端口 9, 第二导频端口为 DMRS端口 10, 第 三导频端口为 DMRS端口 7, 第四导频端口为 DMRS端口 8。
在本实施例的一可选实施方式中, 本实施例的基站还包括: 第一获取单 元 24。 第一获取单元 24, 用于在第一确定单元 21使用第一资源组与导频端 口的映射关系之前, 预先定义第一资源组与导频端口的映射关系; 或者, 第 一获取单元 24, 用于在第一确定单元 21使用第一资源组与导频端口的映射 关系之前, 根据本地小区标识生成第一资源组与导频端口的映射关系。
在本实施例的一可选实施方式中, 本实施例的基站还包括: 第一发送单 元 25。 第一发送单元 25, 用于发送高层信令, 所述高层信令包括第一资源组 与导频端口的映射关系。 第一发送单元 25主要用于向 UE提供第一资源组与 导频端口的映射关系。 可选的, 第一发送单元 25与第一确定单元 21和第一 获取单元 24连接。
本实施例提供的 E-PDCCH 传输基站的各功能单元可用于执行上述 E-PDCCH传输方法的流程, 其具体工作原理不再赘述, 详见方法实施例的描 述。
本实施例的 E-PDCCH传输基站, 根据第一资源组与导频端口的映射关 系, 按照特定关系确定第一类型的第二资源组和第二类型的第二资源组分别 与第一资源组及导频端口的对应关系, 然后确定传输 E-PDCCH 的至少一个 第一类型的第二资源组或者至少一个第二类型的第二资源组, 并根据之前确 定的第一类型或第二类型的第二资源组与第一资源组及导频端口的对应关 系, 将传输 E-PDCCH 的第一类型的或第二类型的第二资源组映射到至少一 个第一资源组和导频端口上进行传输, 解决了 E-PDCCH 的传输问题。 进一 步, 本实施例的 E-PDCCH传输基站还能提高导频端口的利用率, 实现空间 分集。
图 2B为本发明一实施例提供的 UE的结构示意图。 如图 2B所示, 本实 施例的 UE包括: 第三确定单元 26、 第四确定单元 27和第一接收单元 28。
第三确定单元 26, 用于根据第一资源组与导频端口的映射关系, 按照特 定关系确定第一类型的第二资源组与第一资源组及导频端口的对应关系, 以 及第二类型的第二资源组与第一资源组及导频端口的对应关系。
其中, 第一资源组与导频端口的映射关系包括一个物理资源单元集合中 至少一个第一资源组与至少一个导频端口的映射关系; 第一资源组为 eREG 或 REG, 第一类型的第二资源组为 eCCE或者控制信道候选, 第二类型的第 二资源组为 eCCE或者控制信道候选, 物理资源单元集合为至少一个物理资 源块对; 第一类型的第二资源组至少对应两个第一资源组, 第二类型的第二 资源组至少对应两个第一资源组。 其中, 不同类型的第二资源组与第一资源 组及导频端口的对应关系之间满足上述特定关系。
第四确定单元 27, 用于确定传输 E-PDCCH的至少一个第一类型的第二 资源组或第二类型的第二资源组。
第一接收单元 28, 与第三确定单元 26和第四确定单元 27连接, 用于根 据第三确定单元 26确定的第一类型的或第二类型的第二资源组与第一资源 组及导频端口的对应关系, 在至少一个第一资源组及导频端口上接收第四确 定单元 27确定的传输 E-PDCCH的至少一个第一类型的第二资源组或第二类 型的第二资源组。
在本实施例的一可选实施方式中, 第一类型的第二资源组为采用集中式 传输 E-PDCCH 时的资源组; 第二类型的第二资源组为采用离散式传输 E-PDCCH时的资源组。
在本实施例的一可选实施方式中,第三确定单元 26根据第一资源组与导 频端口的映射关系, 按照特定关系确定第一类型的第二资源组与第一资源组 及导频端口的对应关系包括:第三确定单元 26具体用于根据第一资源组与导 频端口的映射关系, 按照特定关系确定第一类型的第二资源组对应的至少两 个第一资源组在上述第一资源组与导频端口的映射关系中对应的端口集合至 少包含两个不同的导频端口, 并确定每个第一类型的第二资源组传输采用的 导频端口为第一类型的第二资源组对应的至少两个第一资源组中第一个或者 最后一个第一资源组对应的导频端口。
在本实施例的一可选实施方式中,第三确定单元 26确定第一类型的第二 资源组对应的至少两个第一资源组在上述第一资源组与导频端口的映射关系 中对应的端口集合至少包含两个不同的导频端口包括:第三确定单元 26更为 具体的用于确定第一类型的第二资源组对应的至少两个第一资源组在上述第 一资源组与导频端口的映射关系中对应的端口集合至少包含的两个不同的导 频端口为由至少一个第二类型的第二资源组传输 E-PDCCH 时在每个物理资 源块对内传输采用的至少两个导频端口。
在本实施例的一可选实施方式中, 当传输 E-PDCCH的至少一个第二类 型的第二资源组的个数大于预设个数门限时, 在每个物理资源块对内传输采 用的导频端口为两个, 分别为第一导频端口和第二导频端口传输, 或者为第 三导频端口和第四导频端口。 在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口为两个, 分别为第一导频端口和第二导频端口传 输, 或者为第三导频端口和第四导频端口的条件下, 第三确定单元 26具体用 于确定每个第一类型的第二资源组对应两个第一资源组, 并确定第一类型的 第二资源组对应的两个第一资源组在上述第一资源组与导频端口的映射关系 中对应的端口集合包含两个不同的导频端口, 这两个不同的导频端口分别为 第一导频端口和第二导频端口, 或者分别为第三导频端口和第四导频端口。
基于上述, 每个物理资源块对内包含四个第一类型的第二资源组, 在该 情况下, 每个物理资源块对内共包含 8个第一资源组。 其中, 物理资源块对 包含的两个第一类型的第二资源组对应的两个第一资源组在上述第一资源组 与导频端口的映射关系中对应的端口集合包含的两个不同的导频端口均为第 一导频端口和第二导频端口, 物理资源块对包含的另外两个第一类型的第二 资源组对应的两个第一资源组在上述第一资源组与导频端口的映射关系中对 应的端口集合包含的两个不同的导频端口均为第三导频端口和第四导频端 口。
上述物理资源块对包含的四个第一类型的第二资源组, 对于对应于包含 第一导频端口和第二导频端口的导频集合对应的两个第一资源组的两个第一 类型的第二资源组, 在两个第一类型的第二资源组内按照导频端口进行排序 的两个第一资源组的顺序不同; 对于对应于包含第三导频端口和第四导频端 口的导频集合对应的两个第一资源组的两个第一类型的第二资源组, 在两个 第一类型的第二资源组内按照导频端口进行排序的两个第一资源组的顺序不 同。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口为两个, 分别为第一导频端口和第二导频端口传 输, 或者为第三导频端口和第四导频端口的条件下, 第三确定单元 26具体用 于确定每个第一类型的第二资源组对应四个第一资源组, 第一类型的第二资 源组对应的四个第一资源组在上述第一资源组与导频端口的映射关系中对应 的端口集合包含四个不同的导频端口, 这四个不同的导频端口分别为第一导 频端口、 第二导频端口、 第三导频端口和第四导频端口。
基于上述, 每个物理资源块对内包含两个第一类型的第二资源组, 在该 情况下, 每个物理资源块对内共包含 8个第一资源组。 其中, 物理资源块对 包含的两个第一类型的第二资源组对应的四个第一资源组在上述第一资源组 与导频端口的映射关系中对应的端口集合包含的四个不同的导频端口均为第 一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 且在物理资源 块对包含的两个第一类型的第二资源组内按照导频端口排序的四个第一资源 组的顺序不同。
在物理资源块对包含的两个第一类型的第二资源组内的导频端口排序方 式包括但不限于: 在物理资源块对包含的一个第一类型的第二资源组内导频 端口的排序为第一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 在物理资源块对包含的另一个第一类型的第二资源组内导频端口的排序为第 二导频端口、 第一导频端口、 第四导频端口和第三导频端口。 或者
在物理资源块对包含的一个第一类型的第二资源组内导频端口的排序为 第一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 在物理资源 块对包含的另一个第一类型的第二资源组内导频端口的排序为第四导频端 口、 第三导频端口、 第二导频端口和第一导频端口。 或者
在物理资源块对包含的一个第一类型的第二资源组内导频端口的排序为 第一导频端口、 第三导频端口、 第二导频端口和第四导频端口, 在物理资源 块对包含的另一个第一类型的第二资源组内导频端口的排序为第三导频端 口、 第一导频端口、 第四导频端口和第二导频端口。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口为两个, 分别为第一导频端口和第二导频端口传 输, 或者为第三导频端口和第四导频端口的条件下, 第三确定单元 26具体用 于确定每个第一类型的第二资源组对应四个第一资源组, 第一类型的第二资 源组对应的四个第一资源组在上述第一资源组与导频端口的映射关系中对应 的端口集合包含两个不同的导频端口, 这两个不同的导频端口分别为第一导 频端口和第二导频端口, 或者分别为第三导频端口和第四导频端口。
基于上述, 每个物理资源块对内包含两个第一类型的第二资源组, 在该 情况下, 每个物理资源块对内共包含 8个第一资源组。 其中, 物理资源块对 内包含的一个第一类型的第二资源组对应的四个第一资源组在上述第一资源 组与导频端口的映射关系中对应的端口集合包含的两个不同的导频端口为第 一导频端口和第二导频端口, 物理资源块对内包含的另一个第一类型的第二 资源组对应的四个第一资源组在上述第一资源组与导频端口的映射关系中对 应的端口集合包含的两个不同的导频端口为第三导频端口和第四导频端口。
在本实施例的一可选实施方式中, 第四确定单元 27 具体用于确定传输 E-PDCCH 的每个第二类型的第二资源组对应的至少两个第一资源组为位于 不同物理资源块对中对应于同一导频端口且位置索引相同的第一资源组。
在本实施例的一可选实施方式中, 第四确定单元 27 具体用于确定传输
E-PDCCH 的每个所述第二类型的第二资源组对应的至少两个第一资源组为 位于不同物理资源块对中对应于同一导频端口且位置索引不同的第一资源 组。
在本实施例的一可选实施方式中, 基于上述第一类型的第二资源组的实 现, 第四确定单元 27具体用于确定传输 E-PDCCH的每个第二类型的第二资 源组对应的至少两个第一资源组为位于不同物理资源块对中位置索引与第一 类型的第二资源组对应的至少两个第一资源组的位置索引相同的第一资源 组。
在本实施例的一可选实施方式中, 上述第一导频端口为 DMRS端口 7, 第二导频端口为 DMRS端口 9, 第三导频端口为 DMRS端口 8, 第四导频端 口为 DMRS端口 10。 或者, 上述第一导频端口为 DMRS端口 8, 第二导频端 口为 DMRS端口 10,第三导频端口为 DMRS端口 7,第四导频端口为 DMRS 端口 9。 或者, 上述第一导频端口为 DMRS端口 7, 第二导频端口为 DMRS 端口 8, 第三导频端口为 DMRS端口 9, 第四导频端口为 DMRS端口 10。 或 者, 上述第一导频端口为 DMRS端口 9, 第二导频端口为 DMRS端口 10, 第 三导频端口为 DMRS端口 7, 第四导频端口为 DMRS端口 8。
在本实施例的一可选实施方式中, 本实施例的基站还包括: 第二获取单 元 29。 第二获取单元 29, 用于在第三确定单元 26使用第一资源组与导频端 口的映射关系之前, 预先定义第一资源组与导频端口的映射关系; 或者, 第 二获取单元 29, 用于在第三确定单元 26使用第一资源组与导频端口的映射 关系之前, 根据本地小区标识生成第一资源组与导频端口的映射关系。
在本实施例的一可选实施方式中,所述第一接收单元 28还用于接收高层 信令, 所述高层信令包括第一资源组与导频端口的映射关系。 第一接收单元 28具体接收基站发送的高层信令。
本实施例提供的 UE的各功能单元可用于执行图 1B所示 E-PDCCH接收 方法的相应流程, 其具体工作原理不再赘述, 详见方法实施例的描述。
本实施例提供的 UE与本发明上述实施提供的 E-PDCCH传输基站相配 合, 完成了 E-PDCCH 的传输, 同时提高了导频资源的利用率, 充分利用了 导频端口提供的空间分集。
图 3A为本发明另一实施例提供的基站的结构示意图。 如图 3A所示, 本 实施例的基站包括: 处理器 31和发送器 32。
处理器 31 , 用于根据第一资源组与导频端口的映射关系, 按照特定关系 确定第一类型的第二资源组与第一资源组及导频端口的对应关系, 以及第二 类型的第二资源组与第一资源组及导频端口的对应关系,确定传输 E-PDCCH 的至少一个第一类型的第二资源组或第二类型的第二资源组。
其中, 第一资源组与导频端口的映射关系包括一个物理资源单元集合中 至少一个第一资源组与至少一个导频端口的映射关系。 第一资源组为 eREG 或 REG, 第一类型的第二资源组为 eCCE或者控制信道候选; 第二类型的第 二资源组为 eCCE或者控制信道候选。 物理资源单元集合为至少一个物理资 源块对。 第一类型的第二资源组至少对应两个第一资源组, 第二类型的第二 资源组至少对应两个第一资源组。 其中, 不同类型的第二资源组与第一资源 组及导频端口的对应关系之间满足上述特定关系。
发送器 32, 用于根据处理器 31确定的第一类型的或第二类型的第二资 源组与第一资源组及导频端口的对应关系,将处理器 31确定的传输 E-PDCCH 的至少一个第一类型的第二资源组或第二类型的第二资源组映射到至少一个 第一资源组及导频端口上进行传输。
在本实施例的一个可选实施方式中, 第一类型的第二资源组为采用集中 式传输 E-PDCCH 时的资源组; 第二类型的第二资源组为采用离散式传输 E-PDCCH时的资源组。
在本实施例的一可选实施方式中,处理器 31根据第一资源组与导频端口 的映射关系, 按照特定关系确定第一类型的第二资源组与第一资源组及导频 端口的对应关系包括:处理器 31具体用于根据第一资源组与导频端口的映射 关系, 按照特定关系确定第一类型的第二资源组对应的至少两个第一资源组 在上述第一资源组与导频端口的映射关系中对应的端口集合至少包含两个不 同的导频端口, 并确定每个第一类型的第二资源组传输采用的导频端口为第 一类型的第二资源组对应的至少两个第一资源组中第一个或者最后一个第一 资源组对应的导频端口。
在本实施例的一可选实施方式中,处理器 31确定第一类型的第二资源组 对应的至少两个第一资源组在上述第一资源组与导频端口的映射关系中对应 的端口集合至少包含两个不同的导频端口包括:处理器 31更为具体的用于确 定第一类型的第二资源组对应的至少两个第一资源组在上述第一资源组与导 频端口的映射关系中对应的端口集合至少包含的两个不同的导频端口为由至 少一个第二类型的第二资源组传输 E-PDCCH 时在每个物理资源块对内传输 采用的至少两个导频端口。
在本实施例的一可选实施方式中, 当传输 E-PDCCH的至少一个第二类 型的第二资源组的个数大于预设个数门限时, 在每个物理资源块对内传输采 用的导频端口为两个, 分别为第一导频端口和第二导频端口传输, 或者为第 三导频端口和第四导频端口。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口为两个, 分别为第一导频端口和第二导频端口传 输, 或者为第三导频端口和第四导频端口的条件下, 处理器 31具体用于确定 每个第一类型的第二资源组对应两个第一资源组, 并确定第一类型的第二资 源组对应的两个第一资源组在上述第一资源组与导频端口的映射关系中对应 的端口集合包含两个不同的导频端口, 这两个不同的导频端口分别为第一导 频端口和第二导频端口, 或者分别为第三导频端口和第四导频端口。
基于上述, 每个物理资源块对内包含四个第一类型的第二资源组, 在该 情况下, 每个物理资源块对内共包含 8个第一资源组。 其中, 物理资源块对 包含的两个第一类型的第二资源组对应的两个第一资源组在上述第一资源组 与导频端口的映射关系中对应的端口集合包含的两个不同的导频端口均为第 一导频端口和第二导频端口, 物理资源块对包含的另外两个第一类型的第二 资源组对应的两个第一资源组在上述第一资源组与导频端口的映射关系中对 应的端口集合包含的两个不同的导频端口均为第三导频端口和第四导频端 口。
上述物理资源块对包含的四个第一类型的第二资源组, 对于对应于包含 第一导频端口和第二导频端口的导频集合对应的两个第一资源组的两个第一 类型的第二资源组, 在两个第一类型的第二资源组内按照导频端口进行排序 的两个第一资源组的顺序不同; 对于对应于包含第三导频端口和第四导频端 口的导频集合对应的两个第一资源组的两个第一类型的第二资源组, 在两个 第一类型的第二资源组内按照导频端口进行排序的两个第一资源组的顺序不 同。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口为两个, 分别为第一导频端口和第二导频端口传 输, 或者为第三导频端口和第四导频端口的条件下, 处理器 31具体用于确定 每个第一类型的第二资源组对应四个第一资源组, 第一类型的第二资源组对 应的四个第一资源组在上述第一资源组与导频端口的映射关系中对应的端口 集合包含四个不同的导频端口,这四个不同的导频端口分别为第一导频端口、 第二导频端口、 第三导频端口和第四导频端口。
基于上述, 每个物理资源块对内包含两个第一类型的第二资源组, 在该 情况下, 每个物理资源块对内共包含 8个第一资源组。 其中, 物理资源块对 包含的两个第一类型的第二资源组对应的四个第一资源组在上述第一资源组 与导频端口的映射关系中对应的端口集合包含的四个不同的导频端口均为第 一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 且在物理资源 块对包含的两个第一类型的第二资源组内按照导频端口排序的四个第一资源 组的顺序不同。
在物理资源块对包含的两个第一类型的第二资源组内的导频端口排序方 式包括但不限于: 在物理资源块对包含的一个第一类型的第二资源组内导频 端口的排序为第一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 在物理资源块对包含的另一个第一类型的第二资源组内导频端口的排序为第 二导频端口、 第一导频端口、 第四导频端口和第三导频端口。 或者 在物理资源块对包含的一个第一类型的第二资源组内导频端口的排序为 第一导频端口、 第二导频端口、 第三导频端口和第四导频端口, 在物理资源 块对包含的另一个第一类型的第二资源组内导频端口的排序为第四导频端 口、 第三导频端口、 第二导频端口和第一导频端口。 或者
在物理资源块对包含的一个第一类型的第二资源组内导频端口的排序为 第一导频端口、 第三导频端口、 第二导频端口和第四导频端口, 在物理资源 块对包含的另一个第一类型的第二资源组内导频端口的排序为第三导频端 口、 第一导频端口、 第四导频端口和第二导频端口。
在本实施例的一可选实施方式中, 基于上述, 即在传输 E-PDCCH 的至 少一个第二类型的第二资源组的个数大于预设个数门限时, 在每个物理资源 块对内传输采用的导频端口为两个, 分别为第一导频端口和第二导频端口传 输, 或者为第三导频端口和第四导频端口的条件下, 处理器 31具体用于确定 每个第一类型的第二资源组对应四个第一资源组, 第一类型的第二资源组对 应的四个第一资源组在上述第一资源组与导频端口的映射关系中对应的端口 集合包含两个不同的导频端口, 这两个不同的导频端口分别为第一导频端口 和第二导频端口, 或者分别为第三导频端口和第四导频端口。
基于上述, 每个物理资源块对内包含两个第一类型的第二资源组, 在该 情况下, 每个物理资源块对内共包含 8个第一资源组。 其中, 物理资源块对 内包含的一个第一类型的第二资源组对应的四个第一资源组在上述第一资源 组与导频端口的映射关系中对应的端口集合包含的两个不同的导频端口为第 一导频端口和第二导频端口, 物理资源块对内包含的另一个第一类型的第二 资源组对应的四个第一资源组在上述第一资源组与导频端口的映射关系中对 应的端口集合包含的两个不同的导频端口为第三导频端口和第四导频端口。
在本实施例的一可选实施方式中,处理器 31具体用于确定传输 E-PDCCH 的每个第二类型的第二资源组对应的至少两个第一资源组为位于不同物理资 源块对中对应于同一导频端口且位置索引相同的第一资源组。
在本实施例的一可选实施方式中,处理器 31具体用于确定传输 E-PDCCH 的每个所述第二类型的第二资源组对应的至少两个第一资源组为位于不同物 理资源块对中对应于同一导频端口且位置索引不同的第一资源组。 在本实施例的一可选实施方式中, 基于上述第一类型的第二资源组的实 现, 处理器 31具体用于确定传输 E-PDCCH的每个第二类型的第二资源组对 应的至少两个第一资源组为位于不同物理资源块对中位置索引与第一类型的 第二资源组对应的至少两个第一资源组的位置索引相同的第一资源组。
在本实施例的一可选实施方式中, 上述第一导频端口为 DMRS端口 7, 第二导频端口为 DMRS端口 9, 第三导频端口为 DMRS端口 8, 第四导频端 口为 DMRS端口 10。 或者, 上述第一导频端口为 DMRS端口 8, 第二导频端 口为 DMRS端口 10,第三导频端口为 DMRS端口 7,第四导频端口为 DMRS 端口 9。 或者, 上述第一导频端口为 DMRS端口 7, 第二导频端口为 DMRS 端口 8, 第三导频端口为 DMRS端口 9, 第四导频端口为 DMRS端口 10。 或 者, 上述第一导频端口为 DMRS端口 9, 第二导频端口为 DMRS端口 10, 第 三导频端口为 DMRS端口 7, 第四导频端口为 DMRS端口 8。
在本实施例的一可选实施方式中, 发送器 32还用于发送高层信令, 所述 高层信令包括上述第一资源组与导频端口的映射关系。 具体的, 发送器 32向 UE发送高层信令, 以将上述第一资源组与导频端口的映射关系提供给 UE。
在本实施例的一可选实施方式中, 处理器 31还用于在处理器 31使用第 一资源组与导频端口的映射关系之前, 预先定义第一资源组与导频端口的映 射关系; 或者, 处理器 31还用于在处理器 31使用第一资源组与导频端口的 映射关系之前, 根据本地小区标识生成第一资源组与所述导频端口的映射关 系。
本实施例提供的基站可用于执行上述 E-PDCCH传输方法的流程, 其具 体工作原理不再赘述, 详见方法实施例的描述。
本实施例的基站, 根据第一资源组与导频端口的映射关系, 按照特定关 系确定第一类型的第二资源组和第二类型的第二资源组分别与第一资源组及 导频端口的对应关系, 然后确定传输 E-PDCCH 的至少一个第一类型的第二 资源组或者至少一个第二类型的第二资源组, 并根据之前确定的第一类型或 第二类型的第二资源组与第一资源组及导频端口的对应关系, 将传输 E-PDCCH 的第一类型的或第二类型的第二资源组映射到至少一个第一资源 组和导频端口上进行传输, 解决了 E-PDCCH 的传输问题。 进一步, 本实施 例的 E-PDCCH传输基站还能提高导频端口的利用率, 实现空间分集。 图 3B为本发明另一实施例提供的 UE的结构示意图。 如图 3B所示, 本 实施例的 UE包括: 处理器 35和接收器 36。
处理器 35, 用于根据第一资源组与导频端口的映射关系, 按照特定关系 确定第一类型的第二资源组与第一资源组及导频端口的对应关系, 以及第二 类型的第二资源组与第一资源组及导频端口的对应关系,确定传输 E-PDCCH 的至少一个第一类型的第二资源组或第二类型的第二资源组。
其中, 第一资源组与导频端口的映射关系包括一个物理资源单元集合中 至少一个第一资源组与至少一个导频端口的映射关系; 第一资源组为 eREG 或 REG, 第一类型的第二资源组为 eCCE或者控制信道候选, 第二类型的第 二资源组为 eCCE或者控制信道候选, 物理资源单元集合为至少一个物理资 源块对; 第一类型的第二资源组至少对应两个第一资源组, 第二类型的第二 资源组至少对应两个第一资源组。 其中, 不同类型的第二资源组与第一资源 组及导频端口的对应关系之间满足上述特定关系。
接收器 36, 用于根据处理器 35确定的第一类型的或第二类型的第二资 源组与第一资源组及导频端口的对应关系, 在至少一个第一资源组及导频端 口上接收处理器 35确定的传输 E-PDCCH的至少一个第一类型的第二资源组 或第二类型的第二资源组。 流程, 其具体工作原理以及其他功能可参见上述方法实施例的描述, 在此不 再赘述。
本实施例提供的 UE,与上述实施例提供的基站相配合,完成了 E-PDCCH 的传输, 另外还可以提高导频端口的利用率, 实现空间分集。
图 4A为本发明一实施例提供的 E-PDCCH的传输方法的流程图。本实施 例的执行主体可以是基站, 也可以是 UE, 即 UE与基站相配合, 采用相同的 方式为第一类型的第二资源组和第二类型的第二资源组进行编号, 以便于传 输 E-PDCCH,提高盲检测的效率。如图 4A所示, 本实施例的传输方法包括: 步骤 401、 在物理资源块集合中, 分别对每个 PRB pair中的第一资源组 进行排序, 所述第一资源组为 eREG或 REG, 所述物理资源块集合包含至少 一个所述物理资源块对。
在本实施例中, 物理资源块集合包含至少一个物理资源块对, 物理资源 块集合中的第一资源组由物理资源块集合中每个物理资源块对中的第一资源 组构成。 按照物理资源块对的顺序, 依次将物理资源块集合中的第一资源组 进行排序, 获得每个第一资源组的排序编号。
表 7
Figure imgf000054_0001
如表 7所示,假设物理资源块集合包括四个物理资源块对,一个 PRB pair 中包含 L个 eREG, 例如 L=16 , 则对于 ai, i=l ~16 , al到 al6对应于 eREG 的 index索引, al到 al6取值为 0到 15中互不相同的数。 在同一个控制信道 资源块集合中的各个 PRB pair中, L个 eREG划分为相同的 K个 eREG组。 如果 K=4, 16个 eREG划分为 4个 eREG组。
对于集中式的传输的 ePDCCH的 eCCE, 每个 eCCE对应一个 REG组, 表 7中虚线框所示为一个集中式的传输的 ePDCCH的 eCCE。 如表 7所示, 在一个 PRB pair中, 4个 eCCE分别对应这 4个 REG组,第一个 eREG组( eREG 组 1 ) 包含(eREG (al), eREG (a2), eREG (a3), eREG (a4) ) , 第二个 eREG 组(eREG组 2 ) 包含(eREG (a5), eREG (a6), eREG (a7), eREG (a8) ) , 第 三个 eREG组( eREG组 3 )包含( eREG (a9) , eREG (al 0) , eREG (all), eREG (al2) ) , 第四个 eREG组( eREG组 4 )包含( eREG (al3), eREG (al4), eREG (al5), eREG (al6) ) 。
同一个控制信道资源块集合中的各个 PRB pair中, 都采用上述的 eREG 组的划分方式。 对于不同的 PRB pair, 各个包含相同 eREG的 eREG组中, eREG的排列顺序不同。 例如, 同样是包含相同元素(eREG (al), eREG (a2), eREG (a3), eREG (a4) )的 eREG组 1 , 在 PRB pairl中的排列顺序是 ( eREG (al), eREG (a2), eREG (a3), eREG (a4) ) ,在 PRB pair2中的排列顺序是( eREG (a2), eREG (a3), eREG (a4), eREG (al) ),在 PRB pair3 中的排列顺序是( eREG (a3), eREG (a4), eREG (al), eREG (a2) ),在 PRB pair3 中的排列顺序是( eREG (a4), eREG (al), eREG (a2), eREG (a3) )。排列顺序也可以不是不同 PRB pair 的循环移位。 其他 eREG组也可以采用类似的排列方式, 在此不再赞述。
通过上述方式, 获得集中式传输的 ePDCCH的 eCCE。
离散式传输的 ePDCCH的每个 eCCE可以对应于表 7中的每一行, 即, 在每个 PRB pair内的包含相同的 eREG元素的 eREG组内, 分别取不同的 eREG元素构成离散式传输的 ePDCCH的 eCCE,如表 7中实线框所示为离散 式传输的 ePDCCH的一个 eCCE。 例如, 每个 PRB内同样包含相同 eREG元 素 (eREG (al), eREG (a2), eREG (a3), eREG (a4) ) 的 eREG组称为 eREG 组 1 , 在不同 PRB pair的 eREG组 1内分别取不同的元素构成离散式传输的 ePDCCH的 eCCE。例如,在 PRB pairl的 eREG组 1内取 eREG (al),在 PRB pair2的 eREG组 1内取 eREG (a2) ,在 PRB pair3的 eREG组 1内取 eREG (a3) , 在 PRB pair 4的 eREG组 1内取 eREG (a4) , 即, 表 7中第一行的所有 eREG 的集合构成一个离散式传输的 ePDCCH的 eCCE; 在 PRB pairl的 eREG组 1 内取 eREG (a2), 在 PRB pair2的 eREG组 1内取 eREG (a3), 在 PRB pair3的 eREG组 1内取 eREG (a4), 在 PRB pair 4的 eREG组 1内取 eREG (al), 即, 表 7 中第二行的所有 eREG的集合构成另外一个离散式传输的 ePDCCH的 eCCE,类似的,表 7每一行圈起来构成一个离散式传输的 ePDCCH的 eCCE。 这种方式也可以理解为, 在各个 PRB pair内, 分别取集中式的 eCCE内包含 的 eREG元素对应的不同编号的 eREG构成离散式传输的 ePDCCH的 eCCE。
其中,上述表 7中 al~al6对应的 eREG的编号的形式可以采用如下形式: al , a2, a3, a4分别对应于 eREG编号 0,4,8,12;
a5, a6, a7, a8分别对应于 eREG编号 1,5,9,13;
a9, alO, all , al2分别对应于 eREG编号 2,6,10,14;
al3, al4, al5, al6分别对应于 eREG编号 3,9,11,15。
所述的特定的资源集合大小可以为包含 L*B个 eREG的集合, M为每个 eCCE包含的 eREG的个数, B为 PRB pair的个数, B*M个 eREG的集合为 只包含 B个 eREG的索引的集合。
离散式和集中式 ePDCCH的 eCCE的形式已经通过上述方式确定, 基于 上述原则, 需要对 eCCE进行编号, eCCE编号的目的是: 由于首先需要确定 逻辑 eCCE与物理 eCCE的对应关系, 使得逻辑 eCCE如何映射到物理 eCCE 上, 或者可以确定搜索区间的构成, 以及 HARQ的反馈时候的资源绑定关系 需要与 eCCE的索引相关联。
步骤 402、 根据所述第一资源组和所述物理资源块集合中的第二资源组 的对应关系, 对所述第二资源组进行编号, 其中, 所述第二资源组为控制信 道单元 eCCE组或者控制信道候选组。
优选地,对于第一类型的所述第二资源组(例如,集中式传输的 ePDCCH 的 eCCE ) , 可以通过以下任一方式对该第二资源组进行编号:
方式一
每个物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个第三 资源组包括 M个第一资源组, 在物理资源块集合中, 一个物理资源块对中的 每个第三资源组包含的第一资源组的编号集合与其他每个物理资源块对中的 一个第三资源组包含的第一资源组的编号集合相同; 根据第一资源组和物理 资源块集合中的第二资源组的对应关系, 对第二资源组进行编号包括: 每个 第三资源组对应一个第一类型的第二资源组, 按照物理资源块对的编号从小 到大或从大到小的顺序, 依次为每个物理资源块对中的第一类型的第二资源 组进行编号, 其中, 在每个物理资源块对中, 第一类型的第二资源组的编号 和第一类型的第二资源组对应的第一资源组的编号存在对应关系。 可选地, 在每个物理资源块对中, 第一类型的第二资源组的编号和第一 类型的第二资源组对应的第一资源组的编号存在对应关系包括: 在每个物理 资源块对中, 第一类型的第二资源组的编号是连续的, 第一类型的第二资源 组的编号的顺序和第一类型的第二资源组对应的第一资源组的最大编号或最 小编号的顺序相同。
在本发明的一个优选实现方式中, 方式一可以包括:
根据第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二 资源组进行编号包括: 根据以下公式, 确定第一类型的第二资源组的编号: j=K*m+(i mod K),
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理 资源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
例如,对于集中式传输的控制信道的 eCCE,其编号原则可以为按照从第 一个 PRB pair开始, 先顺序将每个 PRB pair内的所有 eCCE编号, 再接着对 下一个 PRB pair内的所有 eCCE顺序编号。 在每个 PRB pair内对 eCCE的编 号的顺序是按照每个 eCCE内包含的 eREG的最小编号按照从小到大的顺序 进行排列, 例如, 一个 PRB pair中的一个 eCCE包含的 eREG编号 0,4,8,12, 另一个 eCCE包含的 eREG编号 1,5,9,13; 第一个 eCCE包含的 eREG的最小 编号为 0, 另一个 eCCE包含的 eREG的最小编号为 1 , 此时, 可以将包含的 eREG的最小编号为 0的 eCCE编号在包含的 eREG的最小编号为 1的 eCCE 前面。 通过本实施例中的方法, 最终的编号方式可以如图 4B所示, 在图 4B 中,每个圈代表一个 eCCE,圈内的编号代表 eCCE的编号。图 4B-4E中 eREG 的排列方式与表七中相同。
方式二
每个物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个第三 资源组包括 M个第一资源组, 在物理资源块集合中, 一个物理资源块对中的 每个第三资源组包含的第一资源组的编号集合与其他每个物理资源块对中的 一个第三资源组包含的第一资源组的编号集合相同, 在每个物理资源块对 中, 第三资源组的编号的顺序与第三资源组中的第一资源组的最大编号或最 小编号的顺序相同; 根据第一资源组和物理资源块集合中的第二资源组的对 应关系, 对第二资源组进行编号包括: 每个第三资源组对应一个第一类型的 第二资源组, 按照第三资源组编号从小到大或从大到小的顺序, 依次对在具 有相同编号的第三资源组对应的第一类型的第二资源组进行编号, 在具有相 同编号的第三资源组对应的第一类型的第二资源组中, 第一类型的第二资源 组的编号的顺序和第一类型的第二资源组所在的物理资源块对的编号的顺序 存在对应关系。
可选地,在具有相同编号的第三资源组对应的第一类型的第二资源组中, 第一类型的第二资源组的编号的顺序和第一类型的第二资源组所在的物理资 源块对的编号的顺序存在对应关系包括: 在具有相同编号的第三资源组对应 的第一类型的第二资源组中, 第一类型的第二资源组的编号是连续的, 第一 类型的第二资源组的编号的顺序和第一类型的第二资源组所在的物理资源块 对的编号的顺序相同。
在本发明实施例的一个优选实例中, 方式二可以包括:
根据以下公式, 确定第一类型的第二资源组的编号:
j= (i mod K)*K+m,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
例如,对于集中式传输的控制信道的 eCCE,其编号原则可以为按照从第 一个 PRB pair开始, 先顺序将所有 PRB pair内的相同的 eREG组进行编号, 所述相同的 eREG组是在每个 PRB pair内均包含相同的 eREG元素的 eREG 组,再接着对下个 eREG组进行编号,对 eREG组编号的顺序是按照 PRB index ( PRB编号) 的从小到大的顺序, 例如, 同样对于表 7中的 eREG组 1 , 编 号按照先编号 PRB pairl内的 eREG组 1 , 再编号 PRB pair2内的 eREG组 1 , 依次编号, 同样方式再进行 eREG组 2的编号。编号方式可以如图 4C所示的 方式。 在图 4C中, 每个圈代表一个集中式传输的控制信道的 eCCE, 圈内的 编号代表 eCCE的编号。
优选地, 在上述方式一和方式二中, 对于相同编号的第三资源组对应的 第一类型的第二资源组, 一个物理资源块对中的第一类型的所述第二资源组 与其包含的第一资源组映射关系是其他每个物理资源块对中的一个第一类型 的所述第二资源组与其包含的第一资源组映射关系的循环移位。
可选地,对于第二类型的所述第二资源组(例如, 离散式传输的 ePDCCH 的 eCCE ) , 可以通过以下方法之一对该第二资源组进行编号:
方法一、
优选地,根据第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二资源组进行编号包括: 第二类型的第二资源组包括 M个分别属于不同 物理资源块对的第一资源组; 使用第二类型的第二资源组对应的同一个物理 资源块对中的第一物理资源组的编号作为第二类型的第二资源组的编号。
可选地,根据第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二资源组进行编号包括:
根据以下公式, 确定第二类型的第二资源组的编号:
j= (i-K*m)modl6,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第二类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第二类型的第二资源组的个数, mod表示取模操作; 或者
根据以下公式, 确定第二类型的第二资源组的编号:
i= (j + X * K) mod N,
m = ( floor ( j / ( M * K ) ) * M + x) mod C,
其中, i是编号为 j的第二类型的所述第二资源组对应的第 x个第一资源 组的编号, i是 0到 L-1的整数, L是一个所述物理资源块对中的第一资源组 的个数, m是编号为 j的第二类型的所述第二资源组对应的第 X个第一资源 组所在的物理资源块对的编号, K=floor(P/0), P为一个物理资源块对中第一 资源组的个数, 0为一个第二资源组中包含的第一资源组的个数, C是所述 物理资源块集合中物理资源块对的个数, mod表示取模操作, floor表示向下 取整操作。
例如,如图 4D所示,每个圈代表一个离散式的 eCCE,圈中数字代表 eCCE 的编号。编号方式可以采用每个 eCCE的编号与该 eCCE在某一特定 PRB pair 内包含的 eREG的编号相同, 例如, 表 7中第一行的 eCCE在四个 PRB pair 中包含的 eREG的 index依次为 0,4,8, 10 ,则以其在 PRB pairl中的包含的 eREG 的索引 0作为其 eCCE的编号。
优选地, 物理资源块集合包括 K个第二类型的第二资源组的集合, 在 K 个集合中的每个集合内, 一个第二类型的第二资源组与其包含的第一资源组 映射关系是其他每个第二类型的第二资源组与其包含的第一资源组映射关系 的循环移位。
方法二、
根据第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二 资源组进行编号包括: 第二类型的第二资源组包括 M个分别属于不同物理资 源块对的第一资源组, 物理资源块集合包括 K个第二类型的第二资源组的集 合, K为正整数, 在 K个集合中的每个集合内, 一个第二类型的第二资源组 与其包含的第一资源组映射关系是其他每个第二类型的第二资源组与其包含 的第一资源组映射关系的循环移位; 在 K个集合中的每个集合内, 按照第二 类型的第二资源组对应的同一个物理资源块对中的第一物理资源组的编号的 大小关系, 对第二类型的第二资源组进行编号; 在 K个集合中的不同集合之 间, 第二类型的第二资源组的编号的顺序与 K个集合中的不同集合在同一物 理资源块对中对应的第一资源组的最大编号或最小编号的顺序相同。
例如, 如图 4E所示, 每个圈代表一个离散式的 eCCE, 圈内的编号代表 eCCE的编号。 编号方式可以采用先将一个 eCCE组内编号, 所述的 eCCE组 是指一组 eCCE, 该组内各个 eCCE包含的 eREG是相同的编号, 只是在各个 PRB pair中的 eREG编号是不同的。 例如, eCCE组 1为表 2中前 4行对应的 4个 eCCE。 每个 eCCE均包含 eREG0,4,8,12, 不同的 eCCE中 eREG0,4,8,12 所在的 PRB pair是不同的。先在每个 eCCE组内对各个 eCCE进行顺序编号, 编号的顺序是以某个特定 PRB pair为基准, 例如, 第一个 PRB pair中, 每个 eCCE在该 PRB pair内的 eREG的索引按照从小到大的顺序对其所在的 eCCE 进行编号。 再依次对下一组 eCCE组内的各个 eCCE进行编号。 优选地, 如果物理资源块集合中的至少两个第一类型的第二资源组对应 的第一资源组与物理资源块集合中的至少两个第二类型的第二资源组对应的 第一资源组相同, 至少两个第一类型的第二资源组的编号的集合与至少两个 第二类型的第二资源组的编号的集合相同。
例如, 上述集中式的 eCCE的编号方式和离散式的 eCCE的编号方式存 在对应关系, 其对应关系可以为: 如果集中式 eCCE的编号方式为方式 1 , 则 离散式 eCCE的编号方式采用方法 1;如果集中式 eCCE的编号方式为方式 2, 则离散式 eCCE的编号方式采用方法 2。
上述的对应关系的原则是: 在特定的资源集合内, 包含的集中式 eCCE 的编号组与包含的离散式 eCCE的编号组是相同的。 例如, 对于图 1与图 3 中的虚线框内的资源集合中, 包含的集中式 eCCE的编号分别为 0,4,8,12, 离 散式 eCCE的编号也分别为 0,4,8,12。 同样, 对于图 2与图 4中的虚线框内的 资源结合中, 包含的集中式 eCCE的编号分别为 0,1,2,3, 离散式 eCCE的编 号也分别为 0,1,2,3。
可选地, 物理资源块集合中的第一类型的第二资源组为采用集中式传输
E-PDCCH的资源组;物理资源块集合中的第二类型的第二资源组为采用离散 式传输 E-PDCCH的资源组。
步骤 403、确定传输 E-PDCCH的所述第二资源组的编号, 根据所述确定 的编号, 将所述 E-PDCCH映射到对应的第一资源组上进行传输。
由上述可见, 本实施例实现了对第一类型的第二资源组和第二类型的第 二资源组进行编号, 有利于进行盲检测。 对于每个 eCCE包含 4个 eREG 的情况, 不考虑内部具体映射的顺序, 只考虑组合的情况, 有如下 4种情况, 此 eCCE可以为集中式传输的 eCCE 或者为离散式传输的 eCCE
eCCE XI ( eREGO, eREG4, eREG8, eREG12 ) ,
eCCE X2 ( eREGl , eREG5, eREG9, eREG13 ) ,
eCCE X3 ( eREG2, eREG6, eREGl 0, eREG14 ) ,
eCCE X4 ( eREG3, eREG7, eREGl 1 , eREGl 5 ) ,
当每个 eCCE包含 8个 eREG时, eCCE Yl 包含的 eREG的索引, 可以由 eCCE XI和 eCCE X2包含的 eREG的索引的组合构成, 例如
eCCE Yl ( eREGO, eREG4, eREG8, eREG12, eREGl , eREG5, eREG9, eREG13 ) ;
eCCE Y2 ( eREG2, eREG6 , eREGlO, eREG14, eREG3 , eREG7 , eREGl 1 , eREG15 ) ;
在这种情况下,当 CRS端口数为 1个的时候,这种组合可以达到 eCCE Y1 包含的可用 RE 的个数与 eCCE Y2 包含的可用 RE 的个数最接近。 因为 ( eREGO, eREG4, eREG8, eREGl 2 )与( eREG2, eREG6, eREGlO, eREG14 ) 总是同时在导频所在的子载波上,导致可用 RE少于(eREGl , eREG5, eREG9, eREGl 3 ) 与 (eREG3, eREG7, eREGl 1 , eREGl 5 ) ; 或者
因为(eREGl , eREG5, eREG9, eREG13 )与(eREG3, eREG7, eREGl 1 , eREG15 ) 总是同时在导频所在的子载波上, 导致可用 RE 少于 (eREGO, eREG4, eREG8, eREG12 )与 (eREG2, eREG6, eREGlO, eREG14 ) 。 因 此必须将这样同时在导频所在的 eREG组分散在两个 eCCE中。
或者
eCCE Yl 包含的 eREG的索引, 可以由 eCCE XI和 eCCE X2包含的 eREG的索引的组合构成, 例如
eCCE Yl ( eREGO, eREG4, eREG8, eREG12, eREG2, eREG6, eREGlO, eREG14 ) ;
eCCE Y2 ( eREGl , eREG5, eREG9, eREGl 3, eREG3, eREG7, eREGl 1 , eREG15 ) ;
对于离散式传输的 eCCE, 每个 eCCE包含 8个 eREG, 并且控制信道资 源集合包含 8个 eREG, 此时有两种方式,
方式 1:
一个是将上述 eCCE Yl包含的 eREG的编号按照从小到大的顺序, 分别 顺序映射到 8个 eREG中, 例如表 1中的 eCCEO在 8个 PRB pair中的 eREG 的索引为 (eREGO, eREGl , eREG4, eREG5, eREG8, eREG9, eREG12, eREG13 ) , 有 7个 ECCE中包含的 eREG的编号与其相同, 但是其 eREG在 不同 PRBpair中映射顺序的循环移位。 循环移位为顺序循环移位的顺序。 例 如 eCCEl的在 8个 PRB pair的映射顺序为( eREGl , eREG4, eREG5 , eREG8 , eREG9 , eREG12, eREGl 3 , eREGO )
方式 2:
一个是将上述 eCCE Yl包含的 eREG的编号分成两组, 每个组内包含的 eREG的编号与一个 eCCE包含 4个 eREG情况相同, eCCEO在 8个 PRB pair 中的 eREG的索引为 ( (eREGO, eREG4, eREG8 , eREGl 2 ) , ( eREG2, eREG6 , eREGlO, eREG14 ) )。第一组(eREGO, eREG4, eREG8 , eREG12 ) , 第二组(eREG2, eREG6 , eREGlO, eREG14 ); 则 eCCEO按照( (eREGO, eREG4, eREG8 , eREGl 2 ) , ( eREG2, eREG6 , eREGlO , eREG14 ) ) 的 顺序分别映射到 8个 PRB pair中, 其组的映射顺序 (第一组, 第二组 ) 。 则 有 7个 ECCE中包含的 eREG的编号与其相同, 但是其循环移位不是顺序循 环移位, 可以是, 首先是组间移位, 然后是组内的循环移位。 例如, 表 3 中 的 eCCE9 , (第二组, 第一组), 是 eCCEO的组的映射顺序(第一组, 第二 组) 的循环移位, 即 (第二组(6,10,14,2 ) , 第一组(4,8,12 , 0 ) ) , 然后 eCCE9的第一组内的 eREG的顺序相对于 eCCEO的第一组内的 eREG顺序有 个循环移位, 第二组内的 eREG的顺序相对于 eCCEO的第二组内的 eREG顺 序有个循环移位。 或者没有组间的循环, 只有组内循环移位, 例如 eCCEl相 对于 eCCEO,组间没有移位, 只有组内移位.其具体编号方式可以为表 4, 表 8 的方式。 8个包含相同 eREG 索引的 eCCE中,相对一个 eCCE的 eREG映射 关系, 有三个是组间没有移位, 只有组内移位, 另外 4个是既有组内移位, 又有组间移位, 有一效果是, 每个组内可以重用一个 eCCE包含 4个 eREG 的映射方式, 实现筒单。
表 1.1 8个 PRB pair, 每个 eCCE包含 8个 eREG, eCCE和 eREG映射 方 3
Figure imgf000063_0001
表 2.1 4个 PRB pair,每个 eCCE包含 4个 eREG ,离散式 eCCE和 eREG 映射方式 1
Figure imgf000064_0001
表 3.1 8个 PRB pair, 每个 eCCE包含 8个 eREG, eCCE和 eREG映射 方式 1-1
Figure imgf000064_0002
对于一个控制信道资源集合中包括 8个 PRB pair,并且每个 eCCE包含 8 个 eREG, 则 8个 PRB中的 eCCE与 eREG的映射关系, 在前 4个 PRB内采 用与表 2中描述的控制信道集合中包含 4个 PRB pair并且每个 eCCE包含 4 个 eREG的情况相同, 可以看到表 2中的前 4行与表 1中完全相同,
但是后 4行,也就是在后 4个 PRB pair( PRB pair 4, PRB pair 5, PRB pair 6, PRB pair 7 )中, eCCE与 eREG的映射,是前 4个 PRBpair eCCE与 eREG 映射关系的循环移位, 例如, 循环移动 8位, 则前 4个 RPB pair中的 eCCE8 到 eCCE15的前 4个 eREG循环移动 8位, 变为 eCCEO到 eCCE7的后 4个 eREG; 则前 4个 RPB pair中的 eCCEO到 eCCE7的前 4个 eREG循环移动 8 位, 变为 eCCE8到 eCCE15的后 4个 eREG
或者
表 4.1 8个 PRB pair, 每个 eCCE包含 8个 eREG, eCCE和 eREG映射 方式 1-2
Figure imgf000064_0003
对于一个控制信道资源集合中包括 8个 PRB pair,并且每个 eCCE包含 8 个 eREG, 则 8个 PRB中的 eCCE与 eREG的映射关系, 在前 4个 PRB内采 用与表 1中描述的控制信道集合中包含 4个 PRB pair并且每个 eCCE包含 4 个 eREG的情况相同, 可以看到表 2中的前 4行与表 1中完全相同, 但是后 4行,也就是在后 4个 PRB pair( PRB pair 4, PRB pair 5, PRB pair 6, PRB pair 7 )中, eCCE与 eREG的映射,是前 4个 PRBpair eCCE与 eREG 映射关系的循环移位, 例如, 循环移动 4位, 则 eCCE ( i, j-4 ) 中的前 4个 eREG与表 2中相同, 后 4个 eREG与 eCCE ( i+4, j-4 )对应的 eREG编号相 同, 其中, i为 eCCE的编号, j为 0到 3的整数, 指其包含的第 j个 eREG。 表 5.1 8个 PRB pair, 每个 eCCE包含 4个 eREG, eCCE和 eREG映 射方式 1-1
对于表 5, 每个控制信道资源集合中包含 8个 PRB pair, 并且每个 eCCE 包含 4个 eREG的情况
则前 4个 PRB的 eCCE与 eREG的映射方式采用的是表 1 中的 eCCEO 到 eCCE7的映射方式,后 4个 PRB的 eCCE与 eREG的映射方式采用的是表
1中的 eCCE8到 eCCE15的映射方式。
表 6.1 8个 PRB pair, 每个 eCCE包含 4个 eREG, eCCE和 eREG映射 方式 1-2
Figure imgf000065_0001
对于表 6, 每个控制信道资源集合中包含 8个 PRB pair, 并且每个 eCCE 包含 4个 eREG的情况
则前 4个 PRB的 eCCE与 eREG的映射方式采用的是表 1中的标号为偶 数的 eCCE的映射方式, 后 4个 PRB的 eCCE与 eREG的映射方式采用的是 表 1中的标号为奇数的 eCCE的映射方式。 或者奇数互换。 表 7.1 4个 PRB pair, 每个 eCCE包含 8个 eREG, eCCE和 eREG映射 方式
Figure imgf000066_0001
表 8.1 8个 PRB pair, 每个 eCCE包含 8个 eREG, eCCE和 eREG映射 方式 2-1
Figure imgf000066_0002
图 5为本发明一实施例提供的 E-PDCCH的传输装置的结构示意图。 该 装置可以是基站, 也可以是用户设备。 如图 5 所示, 本实施例的 E-PDCCH 的传输装置包括: 排序单元 51、 编号单元 53、 第五确定单元 52、 和传输单 元 54
其中, 排序单元 51 , 用于在物理资源块集合中, 分别对每个物理资源块 对 PRB pair中的第一资源组进行排序, 所述第一资源组为资源单元组 eREG 或 REG, 所述物理资源块集合包含至少一个所述物理资源块对。
编号单元 52, 用于根据所述第一资源组和所述物理资源块集合中的第二 资源组的对应关系, 对所述第二资源组进行编号, 其中, 所述第二资源组为 控制信道单元 eCCE组或者控制信道候选组。
第五确定单元 52用于确定传输 E-PDCCH的所述第二资源组的编号。 传输单元 54用于根据所述确定的编号, 将所述 E-PDCCH映射到对应的 第一资源组上进行传输。
优选地, 每个物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资源块集合中, 一个物理资源 块对中的每个第三资源组包含的第一资源组的编号集合与其他每个物理资源 块对中的一个第三资源组包含的第一资源组的编号集合相同, 每个第三资源 组对应一个第一类型的第二资源组;编号单元 52用于按照物理资源块对的编 号从小到大或从大到小的顺序, 依次为每个物理资源块对中的第一类型的第 二资源组进行编号, 其中, 在每个物理资源块对中, 第一类型的第二资源组 的编号和第一类型的第二资源组对应的第一资源组的编号存在对应关系。
可选地, 在每个物理资源块对中, 第一类型的第二资源组的编号和第一 类型的第二资源组对应的第一资源组的编号存在对应关系包括: 在每个物理 资源块对中, 第一类型的第二资源组的编号是连续的, 第一类型的第二资源 组的编号的顺序和第一类型的第二资源组对应的第一资源组的最大编号或最 小编号的顺序相同。
可选地, 编号单元 52用于根据以下公式, 确定第一类型的第二资源组的 编号:
j=K*m+(i mod K),
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理 资源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
优选地, 每个物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资源块集合中, 一个物理资源 块对中的每个第三资源组包含的第一资源组的编号集合与其他每个物理资源 块对中的一个第三资源组包含的第一资源组的编号集合相同, 在每个物理资 源块对中, 第三资源组的编号的顺序与第三资源组中的第一资源组的最大编 号或最小编号的顺序相同,每个第三资源组对应一个第一类型的第二资源组; 编号单元 52用于按照第三资源组编号从小到大或从大到小的顺序,依次对在 具有相同编号的第三资源组对应的第一类型的第二资源组进行编号, 在具有 相同编号的第三资源组对应的第一类型的第二资源组中, 第一类型的第二资 源组的编号的顺序和第一类型的第二资源组所在的物理资源块对的编号的顺 序存在对应关系。
可选地,在具有相同编号的第三资源组对应的第一类型的第二资源组中, 第一类型的第二资源组的编号的顺序和第一类型的第二资源组所在的物理资 源块对的编号的顺序存在对应关系包括: 在具有相同编号的第三资源组对应 的第一类型的第二资源组中, 第一类型的第二资源组的编号是连续的, 第一 类型的第二资源组的编号的顺序和第一类型的第二资源组所在的物理资源块 对的编号的顺序相同。
优选地, 编号单元 52用于根据以下公式, 确定第一类型的第二资源组的 编号:
j= (i mod K)*K+m,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
优选地, 对于相同编号的第三资源组对应的第一类型的第二资源组, 一 个物理资源块对中的第一类型的第二资源组与其包含的第一资源组映射关系 是其他每个物理资源块对中的一个第一类型的第二资源组与其包含的第一资 源组映射关系的循环移位。
可选地, 第二类型的第二资源组包括 M个分别属于不同物理资源块对的 第一资源组;编号单元 52用于使用第二类型的第二资源组对应的同一个物理 资源块对中的第一物理资源组的编号作为第二类型的第二资源组的编号。
优选地, 编号单元 52用于根据以下公式, 确定第二类型的第二资源组的 编号:
j= (i-K*m)modl6,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第二类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第二类型的第二资源组的个数, mod表示取模操作; 或者
编号单元 52用于根据以下公式, 确定第二类型的第二资源组的编号: i= ( j + X * K) mod N,
m = ( floor ( j / ( M * K ) ) * M + x) mod C,
其中, i是编号为 j的第二类型的所述第二资源组对应的第 x个第一资源 组的编号, i是 0到 L-l的整数, L是一个所述物理资源块对中的第一资源组 的个数, m是编号为 j的第二类型的所述第二资源组对应的第 X个第一资源 组所在的物理资源块对的编号, K=floor(P/0), P为一个物理资源块对中第一 资源组的个数, 0为一个第二资源组中包含的第一资源组的个数, C是所述 物理资源块集合中物理资源块对的个数, mod表示取模操作, floor表示向下 取整操作。
优选地, 第二类型的第二资源组包括 M个分别属于不同物理资源块对的 第一资源组, 物理资源块集合包括 K个第二类型的第二资源组的集合, K为 正整数, 在 K个集合中的每个集合内, 一个第二类型的第二资源组与其包含 的第一资源组映射关系是其他每个第二类型的第二资源组与其包含的第一资 源组映射关系的循环移位; 编号单元 52用于在 K个集合中的每个集合内, 按照第二类型的第二资源组对应的同一个物理资源块对中的第一物理资源组 的编号的大小关系, 对第二类型的第二资源组进行编号; 在 K个集合中的不 同集合之间, 第二类型的第二资源组的编号的顺序与 K个集合中的不同集合 在同一物理资源块对中对应的第一资源组的最大编号或最小编号的顺序相 同。
可选地, 物理资源集合包括 K个第二类型的第二资源组的集合, 在 K个 集合中的每个集合内, 一个第二类型的第二资源组与其包含的第一资源组映 射关系是其他每个第二类型的第二资源组与其包含的第一资源组映射关系的 循环移位。
优选地, 如果物理资源块集合中的至少两个第一类型的第二资源组对应 的第一资源组与物理资源块集合中的至少两个第二类型的第二资源组对应的 第一资源组相同, 至少两个第一类型的第二资源组的编号的集合与至少两个 第二类型的第二资源组的编号的集合相同。
优选地, 物理资源块集合中的第一类型的第二资源组为采用集中式传输
E-PDCCH的资源组;物理资源块集合中的第二类型的第二资源组为采用离散 式传输 E-PDCCH的资源组。
本实施例的传输装置实现了对第一类型的第二资源组和第二类型的第二 资源组的编号, 从而实现对 E-PDCCH的传输, 且有利于进行盲检测。 图 6为本发明另一实施例提供的 E-PDCCH的传输装置的结构示意图。 该装置可以是基站, 也可以是用户设备。 如图 6所示, 本实施例的装置包括: 至少一个处理器 61 , 以及收发器 62, 收发器 62用于收发信号, 其中, 处理 器 61用于执行以下步骤:
在物理资源块集合中, 分别对每个物理资源块对 PRB pair中的第一资源 组进行排序, 所述第一资源组为资源单元组 eREG或 REG, 所述物理资源块 集合包含至少一个所述物理资源块对;
根据所述第一资源组和所述物理资源块集合中的第二资源组的对应关 系,对所述第二资源组进行编号,其中,所述第二资源组为控制信道单元 eCCE 组或者控制信道候选组;
确定传输 E-PDCCH的所述第二资源组的编号;
根据所述确定的编号, 将所述 E-PDCCH映射到对应的第一资源组上进 行传输。
优选地, 每个物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资源块集合中, 一个物理资源 块对中的每个第三资源组包含的第一资源组的编号集合与其他每个物理资源 块对中的一个第三资源组包含的第一资源组的编号集合相同;处理器 61用于 通过以下方式实现根据第一资源组和物理资源块集合中的第二资源组的对应 关系, 对第二资源组进行编号: 每个第三资源组对应一个第一类型的第二资 源组, 按照物理资源块对的编号从小到大或从大到小的顺序, 依次为每个物 理资源块对中的第一类型的第二资源组进行编号, 其中, 在每个物理资源块 对中, 第一类型的第二资源组的编号和第一类型的第二资源组对应的第一资 源组的编号存在对应关系。
优选地, 在每个物理资源块对中, 第一类型的第二资源组的编号和第一 类型的第二资源组对应的第一资源组的编号存在对应关系包括: 在每个物理 资源块对中, 第一类型的第二资源组的编号是连续的, 第一类型的第二资源 组的编号的顺序和第一类型的第二资源组对应的第一资源组的最大编号或最 小编号的顺序相同。
可选地,处理器 61用于通过以下方式实现根据第一资源组和物理资源块 集合中的第二资源组的对应关系, 对第二资源组进行编号: 根据以下公式, 确定第一类型的第二资源组的编号:
j=K*m+(i mod K),
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理 资源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
优选地, 每个物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个第三资源组包括 M个第一资源组, 在物理资源块集合中, 一个物理资源 块对中的每个第三资源组包含的第一资源组的编号集合与其他每个物理资源 块对中的一个第三资源组包含的第一资源组的编号集合相同, 在每个物理资 源块对中, 第三资源组的编号的顺序与第三资源组中的第一资源组的最大编 号或最小编号的顺序相同;处理器 61用于通过以下方式实现根据第一资源组 和物理资源块集合中的第二资源组的对应关系, 对第二资源组进行编号: 每 个第三资源组对应一个第一类型的第二资源组, 按照第三资源组编号从小到 大或从大到小的顺序, 依次对在具有相同编号的第三资源组对应的第一类型 的第二资源组进行编号, 在具有相同编号的第三资源组对应的第一类型的第 二资源组中, 第一类型的第二资源组的编号的顺序和第一类型的第二资源组 所在的物理资源块对的编号的顺序存在对应关系。
可选地,在具有相同编号的第三资源组对应的第一类型的第二资源组中, 第一类型的第二资源组的编号的顺序和第一类型的第二资源组所在的物理资 源块对的编号的顺序存在对应关系包括: 在具有相同编号的第三资源组对应 的第一类型的第二资源组中, 第一类型的第二资源组的编号是连续的, 第一 类型的第二资源组的编号的顺序和第一类型的第二资源组所在的物理资源块 对的编号的顺序相同。
优选地,处理器 61用于通过以下方式实现根据第一资源组和物理资源块 集合中的第二资源组的对应关系, 对第二资源组进行编号:
根据以下公式, 确定第一类型的第二资源组的编号:
j= (i mod K)*K+m,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第一类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第一类型的第二资源组的个数, mod表示取模操作, 第一类型的第二资源组对应 M个属于同一物理资源块对 的第一资源组, M为正整数。
优选地, 对于相同编号的第三资源组对应的第一类型的第二资源组, 一 个物理资源块对中的第一类型的第二资源组与其包含的第一资源组映射关系 是其他每个物理资源块对中的一个第一类型的第二资源组与其包含的第一资 源组映射关系的循环移位。
可选地,处理器 61用于通过以下方式实现根据第一资源组和物理资源块 集合中的第二资源组的对应关系, 对第二资源组进行编号: 第二类型的第二 资源组包括 M个分别属于不同物理资源块对的第一资源组; 使用第二类型的 第二资源组对应的同一个物理资源块对中的第一物理资源组的编号作为第二 类型的第二资源组的编号。
优选地, 处理器 61用于通过以下方式实现处理器 61用于通过以下方式 实现根据第一资源组和物理资源块集合中的第二资源组的对应关系, 对第二 资源组进行编号:
根据以下公式, 确定第二类型的第二资源组的编号:
j= (i-K*m)modl6,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个物理资源 块对中的第一资源组的个数, j是第二类型的第二资源组的编号, m是物理资 源块对的编号, K是每个物理资源块对中的第二类型的第二资源组的个数, mod表示取模操作; 或者
根据以下公式, 确定第二类型的第二资源组的编号:
i= ( j + X * K) mod N,
m = ( floor ( j / ( M * K ) ) * M + x) mod C,
其中, i是编号为 j的第二类型的所述第二资源组对应的第 x个第一资源 组的编号, i是 0到 L-1的整数, L是一个所述物理资源块对中的第一资源组 的个数, m是编号为 j的第二类型的所述第二资源组对应的第 X个第一资源 组所在的物理资源块对的编号, K=floor(P/0), P为一个物理资源块对中第一 资源组的个数, 0为一个第二资源组中包含的第一资源组的个数, C是所述 物理资源块集合中物理资源块对的个数, mod表示取模操作, floor表示向下 取整操作。
可选地,处理器 61用于通过以下方式实现根据第一资源组和物理资源块 集合中的第二资源组的对应关系, 对第二资源组进行编号: 第二类型的第二 资源组包括 M个分别属于不同物理资源块对的第一资源组, 物理资源块集合 包括 K个第二类型的第二资源组的集合, K为正整数, 在 K个集合中的每个 集合内, 一个第二类型的第二资源组与其包含的第一资源组映射关系是其他 每个第二类型的第二资源组与其包含的第一资源组映射关系的循环移位; 在
K个集合中的每个集合内, 按照第二类型的第二资源组对应的同一个物理资 源块对中的第一物理资源组的编号的大小关系, 对第二类型的第二资源组进 行编号; 在 K个集合中的不同集合之间, 第二类型的第二资源组的编号的顺 序与 K个集合中的不同集合在同一物理资源块对中对应的第一资源组的最大 编号或最小编号的顺序相同。
优选地, 物理资源集合包括 K个第二类型的第二资源组的集合, 在 K个 集合中的每个集合内, 一个第二类型的第二资源组与其包含的第一资源组映 射关系是其他每个第二类型的第二资源组与其包含的第一资源组映射关系的 循环移位。
可选地, 如果物理资源块集合中的至少两个第一类型的第二资源组对应 的第一资源组与物理资源块集合中的至少两个第二类型的第二资源组对应的 第一资源组相同, 至少两个第一类型的第二资源组的编号的集合与至少两个 第二类型的第二资源组的编号的集合相同。
可选地, 物理资源块集合中的第一类型的第二资源组为采用集中式传输
E-PDCCH的资源组;物理资源块集合中的第二类型的第二资源组为采用离散 式传输 E-PDCCH的资源组。
本实施例提供的装置实现了对第一类型的第二资源组和第二类型的第二 资源组的编号, 实现了 E-PDCCH的传输, 且有利于进行盲检测。
对于每个集中式的控制信道候选最好是集中在相邻的 PRB pair, 但是不 同的集中式的控制信道候选应该尽量分散, 这样集中式的控制信道可以获得 调度增益和波束赋性的增益。 对于聚合级别为 1 , 2或 4, 每个控制信道候选 都可以在一个 PRB pair内传输,因此可以配置 N个离散的 PRB pair做为聚合 级别为 1 , 2或 4的搜索区间, 但是对于聚合级别为 8的控制信道候选, 如果 每个控制信道候选也采用上述配置的搜索空间, 就会被离散在不同的 PRB pair上传输, 这将无法获得调度增益。 针对该问题, 本发明以下实施例提供 的控制信道检测和发送方法通过区分不同的控制信道, 通过不同的物理资源 块集合传输不同的控制信道, 并且可以支持通过隐性定义针对大于一个 PRB pair传输的控制信道候选的搜索区间, 这样可以更灵活的进行资源配置, 节 省控制信令,并且可以保证大于一个 PRB pair的控制信道候选在一个 PRG内 获得更好的信道估计性能。
图 7A为本发明一实施例提供的控制信道检测方法的流程图。如图 7A所 示, 本实施例的方法包括:
步骤 701、用户设备 UE在第一物理资源块集合中检测第一类型的控制信 道, 所述第一物理资源块集合包含至少一个物理资源块对。
步骤 702、 UE在第二物理资源块集合中检测第二类型的控制信道, 所述 第二物理资源块集合包含至少一个物理资源块对。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输的控制信道; 第二类型的控制信道为采用离散式传输的控制信道。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输并且聚合级别小于等于预设聚合门限的控制信道; 第二类型的控制信道为 采用集中式传输并且聚合级别大于预设聚合门限的控制信道。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输并且第一类型的控制信道候选在一个物理资源块对内传输的控制信道; 第 二类型的控制信道为采用集中式传输并且第二类型的控制信道候选在至少两 个物理资源块对内传输的控制信道。
进一步可选的, 第二类型的控制信道候选对应至少两个物理资源块对, 第二类型的控制信道候选对应的至少两个物理资源块对在同一预编码资源块 组 ( Precoding resource block group , 筒称为 PRG )或同一资源块组 ( Resource Block Group, 筒称为 RBG )或同一子带中, 这样可以提高信道估计性能和解 调性能。
在本实施例的一可选实施方式中, 第一物理资源块集合包含的至少一个 在本实施例的一可选实施方式中, UE在第一物理资源块集合中检测第一 类型的控制信道之前包括: UE接收第一高层信令, 所述第一高层信令包括第 一资源块集合。 即第一物理资源块集合可以是网络侧高层配置的, 具体可以 通过静态信令配置或者动态信令配置, 这种方式可以提高配置第一资源块集 合的灵活性。
如图 7B所示, 网络侧为控制信道配置第一物理资源块集合,该第一物理 资源块集合例如包含 4个 PRB pair, 所述的配置方式可以采用配置连续的 4 个 VRB的方式, 或者采用资源分配方式 1的方式。 配置的 4个 PRB pair是 图 7B中的 PRB pair 0, PRB pair 4, PRB pair 12, PRB pair 17。
其中,采用集中式传输的控制信道候选可以在至少一个 PRB pair上传输。 例如, 采用集中式传输的聚合级别为 1 , 2, 或 4的控制信道候选的搜索区间 为第一物理资源块集合中的至少一个 PRB pair, 每个控制信道候选只在第一 物理资源集合中的一个 PRB pair上传输。 采用集中式传输的聚合级别为 8的 控制信道候选需要在两个 PRB pair上传输, 则每个控制信道候选限定在一个 PRG内或者一个 RBG或者一个子带中的两个 PRB pair上传输, 两个 PRB pair中的一个 PRB pair来自第一物理资源块集合, 另一个 PRB pair来自第二 物理资源块集合。 当采用集中式传输的控制信道候选需要在两个 PRB pair上 传输时, 可采用图 7C所示的方式。 图 7C中带点的方框构成第一物理资源块 集合, 带填充的方框构成第二物理资源块集合。
可选的, 第二物理资源块集合与第一物理资源块集合可以采用隐性对应 的关系, 或者也可以是高层信令的方式配置给 UE。 其中, 一种隐性对应关系 为: 在第一物理资源块集合中的每个 RPB pair均属于不同的 PRG或 RBG或 子带, 则在每个 RPG或 RBG或子带内隐性预定义一个与第一物理资源块集 合中的 PRB pair相关联的 PRB pair作为第二物理资源块集合中的 PRB pair。 例如, 关联的方式可以是第二物理资源块集合中的 PRB pair与第一物理资源 块集合中的 PRB pair在一个 PRG或 RBG或子带内的距离是循环相差至少一 个 PRB pair, 如图 7C所示, 在 PRG1内, 第一物理资源块集合中的 PRB pair 的位置索引是 0,第二物理资源块集合中的 PRB pair的位置索引是 1;在 PRG2 内, 第一物理资源块集合中的 PRB pair的位置索引是 4, 第二物理资源块集 合中的 PRB pair的位置索引是 5;在 PRG5内,第一物理资源块集合中的 PRB pair的位置索引是 12, 第二物理资源块集合中的 PRB pair的位置索引是 13; 在 PRG6内, 第一物理资源块集合中的 PRB pair的位置索引是 17, 第二物理 资源块集合中的 PRB pair的位置索引是 15。这种隐式对应关系使得基站仅可 以通过高层信令向 UE发送第一物理资源块集合, 有利于减少信令通知。
在本实施例的一可选实施方式中, 第二物理资源块集合包括第一物理资 源块集合和第三物理资源块集合。如图 7C所示, 带点的方框和带斜线的方框 同时构成第二物理资源块集合, 其中, 带点的方框构成第一物理资源块集合, 带填充的方框构成第三物理资源块集合。
基于上述, 第二类型的控制信道候选对应的至少两个物理资源块对中有 一个物理资源块对是所述第一物理资源块集合中的物理资源块对, 其余物理 资源块对中至少有一个物理资源块对是所述第三物理资源块集合中的物理资 源块对。
在本实施例的一可选实施方式中, UE在第二物理资源块集合中检测第二 类型的控制信道之前包括: UE根据第一资源块集合和预先设定的函数映射关 系获得第三资源块集合, 可以减少信令通知, 使得控制信道资源配置方式更 加灵活。 或者, UE接收第二高层信令, 所述第二高层信令包括所述第三资源 块集合。 即第三物理资源块集合可以是网络侧高层配置的, 可以通过高层静 态信令配置或者动态信令配置, 这种方式有利于提高第三物理资源块集合配 置的灵活性。
本实施例提供的控制信道检测方法,使得控制信道可以分为不同的类型, 完成了不同类型的控制信道的检测与接收, 另外在采用集中式传输时, 本实 施例可以将传输采用的控制信道候选限定在一个 PRG或者 RBG或者子带, 可以提高信道估计性能和解调性能。
本发明一实施例提供一种控制信道发送方法,该方法的执行主体为基站, 该方法具体包括: 基站判断待发送控制信道的类型, 如果判断出该控制信道 为第一类型的控制信道, 则基站在第一物理资源块集合上发送该控制信道, 如果判断出该控制信道为第二类型的控制信道, 则基站在第二物理资源块集 合上发送该控制信道,所述第一物理资源块集合包含至少一个物理资源块对, 所述第二物理资源块集合包含至少一个物理资源块对。
具体的, 如果要发送的是第一类型的控制信道, 则基站在第一物理资源 块集合上发送, 如果要发送的是第二类型的控制信道, 则基站在第二物理资 源块集合上发送。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输的控制信道; 第二类型的控制信道为采用离散式传输的控制信道。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输并且聚合级别小于等于预设聚合门限的控制信道; 所述第二类型的控制信 道为采用集中式传输并且聚合级别大于所述预设聚合门限的控制信道。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输并且第一类型的控制信道候选在一个物理资源块对内传输的控制信道; 第 二类型的控制信道为采用集中式传输并且第二类型的控制信道候选在至少两 个物理资源块对内传输的控制信道。
进一步可选的, 第二类型的控制信道候选对应至少两个物理资源块对, 第二类型的控制信道候选对应的至少两个物理资源块对在同一 PRG或同一 RBG或同一子带中, 这样有利于高信道估计性能和解调性能。
在本实施例的一可选实施方式中, 第一物理资源块集合包含的至少一个 在本实施例的一可选实施方式中, 在第一物理资源块集合上发送第一类 型的控制信道之前包括: 基站发送第一高层信令, 所述第一高层信令包括第 一资源块集合。 即第一物理资源块集合可以是网络侧高层配置的, 具体可以 通过静态信令配置或者动态信令配置, 这种方式有利于提高配置第一资源块 集合的灵活性。
在本实施例的一可选实施方式中, 第二物理资源块集合包括第一物理资 源块集合和第三物理资源块集合。
基于上述, 第二类型的控制信道候选对应的至少两个物理资源块对中有 一个物理资源块对是所述第一物理资源块集合中的物理资源块对, 其余物理 资源块对中至少有一个物理资源块对是所述第三物理资源块集合中的物理资 源块对。
在本实施例的一可选实施方式中, 基站在第二物理资源块集合上发送第 二类型的控制信道之前包括: 基站发送第二高层信令, 所述第二高层信令包 括所述第三资源块集合。 即第三物理资源块集合可以是网络侧高层配置的, 可以通过高层静态信令配置或者动态信令配置, 这种方式有利于提高配置第 三资源块集合的灵活性。
本实施例提供的控制信道发送方法, 使得可以对控制信道划分不同的类 型, 完成了不同类型的控制信道的发送, 另外在采用集中式传输时, 本实施 例可以将传输采用的控制信道候选限定在一个 PRG或者 RBG或者子带, 可 以提高信道估计性能和解调性能。
图 8为本发明又一实施例提供的 UE的结构示意图。 如图 8所示, 本实 施例的 UE包括: 第一检测单元 81和第二检测单元 82。
第一检测单元 81 , 用于在第一物理资源块集合中检测第一类型的控制信 道, 所述第一物理资源块集合包含至少一个物理资源块对。
第二检测单元 82, 用于在第二物理资源块集合中检测第二类型的控制信 道, 所述第二物理资源块集合包含至少一个物理资源块对。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输的控制信道; 第二类型的控制信道为采用离散式传输的控制信道。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输并且聚合级别小于等于预设聚合门限的控制信道; 所述第二类型的控制信 道为采用集中式传输并且聚合级别大于所述预设聚合门限的控制信道。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输并且第一类型的控制信道候选在一个物理资源块对内传输的控制信道; 第 二类型的控制信道为采用集中式传输并且第二类型的控制信道候选在至少两 个物理资源块对内传输的控制信道。
进一步可选的, 第二类型的控制信道候选对应至少两个物理资源块对, 第二类型的控制信道候选对应的至少两个物理资源块对在同一 PRG或同一 RBG或同一子带中。
在本实施例的一可选实施方式中, 第一物理资源块集合包含的至少一个 物理资源块对在不同的预编码块组 PRG或资源块组 RBG或子带中, 这样可 以提高信道估计性能和解调性能。
在本实施例的一可选实施方式中, 第二物理资源块集合包括第一物理资 源块集合和第三物理资源块集合。
基于上述, 第二类型的控制信道候选对应的至少两个物理资源块对中有 一个物理资源块对是所述第一物理资源块集合中的物理资源块对, 其余物理 资源块对中至少有一个物理资源块对是所述第三物理资源块集合中的物理资 源块对。
在本实施例的一可选实施方式中, 本实施例的 UE还包括: 第二接收单 元 83。 第二接收单元 83 , 用于接收第一高层信令, 所述第一高层信令包括第 一资源块集合。 第二接收单元 83与第一检测单元 81连接, 用于向第一检测 单元 81提供第一资源块集合。
在本实施例的一可选实施方式中, 本实施例的 UE还包括: 第三获取单 元 84和 /或第三接收单元 85。
第三获取单元 84, 用于根据第一资源块集合和预先设定的函数映射关系 获得所述第三资源块集合。
第三接收单元 85 , 用于接收第二高层信令, 所述第二高层信令包括第三 资源块集合。第三获取单元 84和第三接收单元 85分别与第二检测单元 82连 接, 用于向第二检测单元 82提供第三资源块集合。
本实施例提供的 UE可用于执行上述控制信道检测方法的流程, 具体工 作原理不再赘述, 详见方法实施例的描述。
本实施例提供的 UE, 完成了对控制信道的检测, 并且在采用集中式传输 时, 将传输采用的控制信道候选限定在一个 PRG或者 RBG或者子带, 提高 了信道估计性能和解调性能。
图 9为本发明又一实施例提供的基站的结构示意图。 如图 9所示, 本实 施例的基站包括: 判断单元 91和第二发送单元 92。
判断单元 91 , 用于判断待发送控制信道的类型; 第二发送单元 92, 用于 在判断单元 91判断出控制信道为第一类型的控制信道时,在第一物理资源块 集合上发送该控制信道,或在判断单元 91判断出控制信道为第二类型的控制 信道时, 在第二物理资源块集合上发送该控制信道。 其中, 第一物理资源块 集合包含至少一个物理资源块对, 第二物理资源块集合包含至少一个物理资 源块对。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输的控制信道; 第二类型的控制信道为采用离散式传输的控制信道。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输并且聚合级别小于等于预设聚合门限的控制信道; 所述第二类型的控制信 道为采用集中式传输并且聚合级别大于所述预设聚合门限的控制信道。
在本实施例的一可选实施方式中, 第一类型的控制信道为采用集中式传 输并且第一类型的控制信道候选在一个物理资源块对内传输的控制信道; 第 二类型的控制信道为采用集中式传输并且第二类型的控制信道候选在至少两 个物理资源块对内传输的控制信道。
进一步可选的, 第二类型的控制信道候选对应至少两个物理资源块对, 第二类型的控制信道候选对应的至少两个物理资源块对在同一 PRG或同一 RBG或同一子带中。
在本实施例的一可选实施方式中, 第一物理资源块集合包含的至少一个 物理资源块对在不同的预编码块组 PRG或资源块组 RBG或子带中, 这样可 以提高信道估计性能和解调性能。
在本实施例的一可选实施方式中, 第二物理资源块集合包括第一物理资 源块集合和第三物理资源块集合。
基于上述, 第二类型的控制信道候选对应的至少两个物理资源块对中有 一个物理资源块对是所述第一物理资源块集合中的物理资源块对, 其余物理 资源块对中至少有一个物理资源块对是所述第三物理资源块集合中的物理资 源块对。
在本实施例的一可选实施方式中,第二发送单元 92还用于发送第一高层 信令,所述第一高层信令包括第一资源块集合第二发送单元 92具体用于在第 二发送单元 92发送控制信道之前, 向 UE发送第一高层信令。
在本实施例的一可选实施方式中,第二发送单元 92还用于发送第二高层 信令, 所述第二高层信令包括所述第三资源块集合。 第二发送单元 92具体用 于在第二发送单元 92发送控制信道之前, 向 UE发送第二高层信令。
本实施例提供的基站可用于执行上述控制信道发送方法的流程, 具体工 作原理不再赘述, 详见方法实施例的描述。
本实施例提供的基站, 使得可以对控制信道划分不同的类型, 完成了对 不同类型的控制信道的发送, 另外在采用集中式传输时, 支持将传输采用的 控制信道候选限定在一个 PRG或者 RBG或者子带, 提高了信道估计性能和 解调性能。 本发明又一实施例提供一种 UE, 该 UE包括: 至少一个处理器, 以及存 储器; 所述存储器用于存储可执行程序代码, 其中, 所述处理器通过读取所 序, 以用于:
在第一物理资源块集合中检测第一类型的控制信道, 所述第一物理资源 块集合包含至少一个物理资源块对;
在第二物理资源块集合中检测第二类型的控制信道, 所述第二物理资源 块集合包含至少一个物理资源块对。
本实施例提供的 UE可用于执行上述控制信道检测方法的流程, 具体工 作原理不再赘述, 详见方法实施例的描述。
本实施例提供的 UE, 完成了对控制信道的检测, 并且在采用集中式传输 时, 将传输采用的控制信道候选限定在一个 PRG或者 RBG或者子带, 提高 了信道估计性能和解调性能。
本发明又一实施例提供一种基站, 该基站包括: 处理器和发送器。
处理器, 用于判断待发送控制信道的类型。 发送器用于在处理器判断出 控制信道为第一类型的控制信道时,在第一物理资源块集合上发送控制信道, 或在处理器判断出控制信道为第二类型的控制信道时, 在第二物理资源块集 合上发送控制信道, 所述第一物理资源块集合包含至少一个物理资源块对, 所述第二物理资源块集合包含至少一个物理资源块对。
本实施例提供的基站可用于执行上述控制信道发送方法的流程, 具体工 作原理不再赘述, 详见方法实施例的描述。
本实施例提供的基站, 使得可以对控制信道划分不同的类型, 完成了对 不同类型的控制信道的发送, 另外在采用集中式传输时, 支持将传输采用的 控制信道候选限定在一个 PRG或者 RBG或者子带, 提高了信道估计性能和 解调性能。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。 最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利 要求 书
1、 一种增强型物理下行控制信道 E-PDCCH的传输方法, 其特征在于, 包括:
在物理资源块集合中, 分别对每个物理资源块对 PRB pair中的第一资源 组进行排序, 所述第一资源组为资源单元组 eREG或 REG, 所述物理资源块 集合包含至少一个所述物理资源块对;
根据所述第一资源组和所述物理资源块集合中的第二资源组的对应关 系,对所述第二资源组进行编号,其中,所述第二资源组为控制信道单元 eCCE 组或者控制信道候选;
确定传输 E-PDCCH的所述第二资源组的编号;
根据所述确定的编号, 将所述 E-PDCCH映射到对应的第一资源组上进 行传输。
2、 根据权利要求 1所述的方法, 其特征在于,
每个所述物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个 所述第三资源组包括 M个所述第一资源组, 在所述物理资源块集合中, 一个 物理资源块对中的每个所述第三资源组包含的第一资源组的编号集合与其他 每个物理资源块对中的一个第三资源组包含的第一资源组的编号集合相同; 根据所述第一资源组和所述物理资源块集合中的第二资源组的对应关 系, 对所述第二资源组进行编号包括: 每个所述第三资源组对应一个第一类 型的所述第二资源组,按照物理资源块对的编号从小到大或从大到小的顺序, 依次为每个物理资源块对中的第一类型的所述第二资源组进行编号, 其中, 在每个物理资源块对中, 第一类型的所述第二资源组的编号和第一类型的所 述第二资源组对应的第一资源组的编号存在对应关系。
3、 根据权利要求 2所述的方法, 其特征在于, 在每个物理资源块对中, 第一类型的所述第二资源组的编号和第一类型的所述第二资源组对应的第一 资源组的编号存在对应关系包括:
在每个物理资源块对中, 第一类型的所述第二资源组的编号是连续的, 第一类型的所述第二资源组的编号的顺序和第一类型的所述第二资源组对应 的第一资源组的最大编号或最小编号的顺序相同。
4、 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 根据所述第 一资源组和所述物理资源块集合中的第二资源组的对应关系, 对所述第二资 源组进行编号包括:
根据以下公式, 确定第一类型的所述第二资源组的编号:
j=K*m+(i mod K),
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个所述物理 资源块对中的第一资源组的个数, j是第一类型的所述第二资源组的编号, m是物理资源块对的编号, K是每个所述物理资源块对中的第一类型的所述 第二资源组的个数, mod表示取模操作, 第一类型的所述第二资源组对应 M 个属于同一物理资源块对的第一资源组, M为正整数。
5、 根据权利要求 1所述的方法, 其特征在于,
每个所述物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个 所述第三资源组包括 M个所述第一资源组, 在所述物理资源块集合中, 一个 物理资源块对中的每个所述第三资源组包含的第一资源组的编号集合与其他 每个物理资源块对中的一个第三资源组包含的第一资源组的编号集合相同, 在每个所述物理资源块对中, 所述第三资源组的编号的顺序与所述第三资源 组中的第一资源组的最大编号或最小编号的顺序相同;
根据所述第一资源组和所述物理资源块集合中的第二资源组的对应关 系, 对所述第二资源组进行编号包括: 每个所述第三资源组对应一个第一类 型的所述第二资源组,按照所述第三资源组编号从小到大或从大到小的顺序, 依次对在具有相同编号的第三资源组对应的第一类型的所述第二资源组进行 编号, 在具有相同编号的第三资源组对应的第一类型的所述第二资源组中, 第一类型的所述第二资源组的编号的顺序和第一类型的所述第二资源组所在 的物理资源块对的编号的顺序存在对应关系。
6、 根据权利要求 5所述的方法, 其特征在于, 在具有相同编号的第三资 源组对应的第一类型的所述第二资源组中, 第一类型的所述第二资源组的编 号的顺序和第一类型的所述第二资源组所在的物理资源块对的编号的顺序存 在对应关系包括:
在具有相同编号的第三资源组对应的第一类型的所述第二资源组中, 第 一类型的所述第二资源组的编号是连续的, 第一类型的所述第二资源组的编 号的顺序和第一类型的所述第二资源组所在的物理资源块对的编号的顺序相 同。
7、 根据权利要求 1、 5至 6中任一项所述的方法, 其特征在于, 根据所 述第一资源组和所述物理资源块集合中的第二资源组的对应关系, 对所述第 二资源组进行编号包括:
根据以下公式, 确定第一类型的所述第二资源组的编号:
j= (i mod K)*K+m,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个所述物理 资源块对中的第一资源组的个数, j是第一类型的所述第二资源组的编号, m 是物理资源块对的编号, K是每个所述物理资源块对中的第一类型的所述第 二资源组的个数, mod表示取模操作, 第一类型的所述第二资源组对应 M个 属于同一物理资源块对的第一资源组, M为正整数。
8、 根据权利要求 2至 3、 5至 6中任一项所述的方法, 其特征在于, 对于相同编号的第三资源组对应的第一类型的第二资源组, 一个物理资 源块对中的第一类型的所述第二资源组与其包含的第一资源组映射关系是其 他每个物理资源块对中的一个第一类型的所述第二资源组与其包含的第一资 源组映射关系的循环移位。
9、 根据权利要求 2至 4中任一项所述的方法, 其特征在于, 根据所述第 一资源组和所述物理资源块集合中的第二资源组的对应关系, 对所述第二资 源组进行编号包括:
第二类型的所述第二资源组包括 M个分别属于不同物理资源块对的第一 资源组;
使用第二类型的所述第二资源组对应的同一个物理资源块对中的第一物 理资源组的编号作为第二类型的所述第二资源组的编号。
10、 根据权利要求 9所述的方法, 其特征在于, 根据所述第一资源组和 所述物理资源块集合中的第二资源组的对应关系, 对所述第二资源组进行编 号包括:
根据以下公式, 确定第二类型的所述第二资源组的编号:
j= (i-K*m)modl6,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个所述物理 资源块对中的第一资源组的个数, j是第二类型的所述第二资源组的编号, m 是物理资源块对的编号, K是每个所述物理资源块对中的第二类型的所述第 二资源组的个数, mod表示取模操作; 或者
根据以下公式, 确定第二类型的所述第二资源组的编号:
i= (j + X * K) mod N,
m = ( floor ( j / ( M * K ) ) * M + x) mod C,
其中, i是编号为 j的第二类型的所述第二资源组对应的第 x个第一资源 组的编号, i是 0到 L-1的整数, L是一个所述物理资源块对中的第一资源组 的个数, m是编号为 j的第二类型的所述第二资源组对应的第 X个第一资源 组所在的物理资源块对的编号, K=floor(P/0), P为一个物理资源块对中第一 资源组的个数, 0为一个第二资源组中包含的第一资源组的个数, C是所述 物理资源块集合中物理资源块对的个数, mod表示取模操作, floor表示向下 取整操作。
11、 根据权利要求 5至 7中任一项所述的方法, 其特征在于, 根据所述 第一资源组和所述物理资源块集合中的第二资源组的对应关系, 对所述第二 资源组进行编号包括:
第二类型的所述第二资源组包括 M个分别属于不同物理资源块对的第一 资源组, 所述物理资源块集合包括 K个第二类型的所述第二资源组的集合, K为正整数, 在所述 K个集合中的每个集合内, 一个第二类型的所述第二资 源组与其包含的第一资源组映射关系是其他每个第二类型的所述第二资源组 与其包含的第一资源组映射关系的循环移位;
在所述 K个集合中的每个集合内, 按照第二类型的所述第二资源组对应 的同一个物理资源块对中的第一物理资源组的编号的大小关系, 对第二类型 的所述第二资源组进行编号;
在所述 K个集合中的不同集合之间, 第二类型的所述第二资源组的编号 的顺序与所述 K个集合中的不同集合在同一物理资源块对中对应的第一资源 组的最大编号或最小编号的顺序相同。
12、 根据权利要求 9或 10所述的方法, 其特征在于,
所述物理资源块集合包括 K个第二类型的所述第二资源组的集合, 在所 述 K个集合中的每个集合内, 一个第二类型的所述第二资源组与其包含的第 一资源组映射关系是其他每个第二类型的所述第二资源组与其包含的第一资 源组映射关系的循环移位。
13、 根据权利要求 9至 12中任一项所述的方法, 其特征在于,
如果所述物理资源块集合中的至少两个第一类型的所述第二资源组对应 的第一资源组与所述物理资源块集合中的至少两个第二类型的所述第二资源 组对应的第一资源组相同, 所述至少两个第一类型的第二资源组的编号的集 合与所述至少两个第二类型的第二资源组的编号的集合相同。
14、 根据权利要求 1至 13中任一项所述的方法, 其特征在于, 所述物理 资源块集合中的第一类型的第二资源组为采用集中式传输所述 E-PDCCH 的 资源组; 所述物理资源块集合中的第二类型的第二资源组为采用离散式传输 所述 E-PDCCH的资源组。
15、 一种增强型物理下行控制信道 E-PDCCH的传输装置, 其特征在于, 包括:
排序单元,用于在物理资源块集合中,分别对每个物理资源块对 PRB pair 中的第一资源组进行排序, 所述第一资源组为资源单元组 eREG或 REG, 所 述物理资源块集合包含至少一个所述物理资源块对;
编号单元, 用于根据所述第一资源组和所述物理资源块集合中的第二资 源组的对应关系, 对所述第二资源组进行编号, 其中, 所述第二资源组为控 制信道单元 ecCE组或者控制信道候选组;
第五确定单元, 用于确定传输 E-PDCCH的所述第二资源组的编号; 传输单元, 用于根据所述确定的编号, 将所述 E-PDCCH映射到对应的 第一资源组上进行传输。
16、 根据权利要求 15所述的装置, 其特征在于,
每个所述物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个 所述第三资源组包括 M个所述第一资源组, 在所述物理资源块集合中, 一个 物理资源块对中的每个所述第三资源组包含的第一资源组的编号集合与其他 每个物理资源块对中的一个第三资源组包含的第一资源组的编号集合相同, 每个所述第三资源组对应一个第一类型的所述第二资源组;
所述编号单元用于按照物理资源块对的编号从小到大或从大到小的顺 序, 依次为每个物理资源块对中的第一类型的所述第二资源组进行编号, 其 中, 在每个物理资源块对中, 第一类型的所述第二资源组的编号和第一类型 的所述第二资源组对应的第一资源组的编号存在对应关系。
17、根据权利要求 16所述的装置,其特征在于,在每个物理资源块对中, 第一类型的所述第二资源组的编号和第一类型的所述第二资源组对应的第一 资源组的编号存在对应关系包括:
在每个物理资源块对中, 第一类型的所述第二资源组的编号是连续的, 第一类型的所述第二资源组的编号的顺序和第一类型的所述第二资源组对应 的第一资源组的最大编号或最小编号的顺序相同。
18、 根据权利要求 15至 17中任一项所述的装置, 其特征在于, 所述编号单元用于根据以下公式, 确定第一类型的所述第二资源组的编 j=K*m+(i mod K),
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个所述物理 资源块对中的第一资源组的个数, j是第一类型的所述第二资源组的编号, m是物理资源块对的编号, K是每个所述物理资源块对中的第一类型的所述 第二资源组的个数, mod表示取模操作, 第一类型的所述第二资源组对应 M 个属于同一物理资源块对的第一资源组, M为正整数。
19、 根据权利要求 15所述的装置, 其特征在于,
每个所述物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个 所述第三资源组包括 M个所述第一资源组, 在所述物理资源块集合中, 一个 物理资源块对中的每个所述第三资源组包含的第一资源组的编号集合与其他 每个物理资源块对中的一个第三资源组包含的第一资源组的编号集合相同, 在每个所述物理资源块对中, 所述第三资源组的编号的顺序与所述第三资源 组中的第一资源组的最大编号或最小编号的顺序相同, 每个所述第三资源组 对应一个第一类型的所述第二资源组;
所述编号单元用于按照所述第三资源组编号从小到大或从大到小的顺 序, 依次对在具有相同编号的第三资源组对应的第一类型的所述第二资源组 进行编号, 在具有相同编号的第三资源组对应的第一类型的所述第二资源组 中, 第一类型的所述第二资源组的编号的顺序和第一类型的所述第二资源组 所在的物理资源块对的编号的顺序存在对应关系。
20、 根据权利要求 19所述的装置, 其特征在于, 在具有相同编号的第三 资源组对应的第一类型的所述第二资源组中, 第一类型的所述第二资源组的 编号的顺序和第一类型的所述第二资源组所在的物理资源块对的编号的顺序 存在对应关系包括:
在具有相同编号的第三资源组对应的第一类型的所述第二资源组中, 第 一类型的所述第二资源组的编号是连续的, 第一类型的所述第二资源组的编 号的顺序和第一类型的所述第二资源组所在的物理资源块对的编号的顺序相 同。
21、 根据权利要求 15、 19至 20中任一项所述的装置, 其特征在于, 所述编号单元用于根据以下公式, 确定第一类型的所述第二资源组的编 j= (i mod K)*K+m,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个所述物理 资源块对中的第一资源组的个数, j是第一类型的所述第二资源组的编号, m 是物理资源块对的编号, K是每个所述物理资源块对中的第一类型的所述第 二资源组的个数, mod表示取模操作, 第一类型的所述第二资源组对应 M个 属于同一物理资源块对的第一资源组, M为正整数。
22、根据权利要求 16至 17、 19至 20中任一项所述的装置,其特征在于, 对于相同编号的第三资源组对应的第一类型的第二资源组, 一个物理资 源块对中的第一类型的所述第二资源组与其包含的第一资源组映射关系是其 他每个物理资源块对中的一个第一类型的所述第二资源组与其包含的第一资 源组映射关系的循环移位。
23、 根据权利要求 16至 18中任一项所述的装置, 其特征在于, 第二类型的所述第二资源组包括 M个分别属于不同物理资源块对的第一 资源组;
所述编号单元用于使用第二类型的所述第二资源组对应的同一个物理资 源块对中的第一物理资源组的编号作为第二类型的所述第二资源组的编号。
24、 根据权利要求 23所述的装置, 其特征在于,
所述编号单元用于根据以下公式, 确定第二类型的所述第二资源组的编 号: j= (i-K*m)modl6,
其中, i是第一资源组的编号, i是 0到 L-l的整数, L是一个所述物理 资源块对中的第一资源组的个数, j是第二类型的所述第二资源组的编号, m 是物理资源块对的编号, K是每个所述物理资源块对中的第二类型的所述第 二资源组的个数, mod表示取模操作; 或者
所述编号单元用于根据以下公式, 确定第二类型的所述第二资源组的编 i= (j + X * K) mod N,
m = ( floor ( j / ( M * K ) ) * M + x) mod C,
其中, i是编号为 j的第二类型的所述第二资源组对应的第 x个第一资源 组的编号, i是 0到 L-1的整数, L是一个所述物理资源块对中的第一资源组 的个数, m是编号为 j的第二类型的所述第二资源组对应的第 X个第一资源 组所在的物理资源块对的编号, K=floor(P/0), P为一个物理资源块对中第一 资源组的个数, 0为一个第二资源组中包含的第一资源组的个数, C是所述 物理资源块集合中物理资源块对的个数, mod表示取模操作, floor表示向下 取整操作。
25、 根据权利要求 19至 21中任一项所述的装置, 其特征在于, 第二类型的所述第二资源组包括 M个分别属于不同物理资源块对的第一 资源组, 所述物理资源块集合包括 K个第二类型的所述第二资源组的集合, K为正整数, 在所述 K个集合中的每个集合内, 一个第二类型的所述第二资 源组与其包含的第一资源组映射关系是其他每个第二类型的所述第二资源组 与其包含的第一资源组映射关系的循环移位;
所述编号单元用于在所述 K个集合中的每个集合内, 按照第二类型的所 述第二资源组对应的同一个物理资源块对中的第一物理资源组的编号的大小 关系, 对第二类型的所述第二资源组进行编号;
在所述 K个集合中的不同集合之间, 第二类型的所述第二资源组的编号 的顺序与所述 K个集合中的不同集合在同一物理资源块对中对应的第一资源 组的最大编号或最小编号的顺序相同。
26、 根据权利要求 23或 24所述的装置, 其特征在于,
所述物理资源集合包括 K个第二类型的所述第二资源组的集合, 在所述 K个集合中的每个集合内, 一个第二类型的所述第二资源组与其包含的第一 资源组映射关系是其他每个第二类型的所述第二资源组与其包含的第一资源 组映射关系的循环移位。
27、 根据权利要求 23至 26中任一项所述的装置, 其特征在于, 如果所述物理资源块集合中的至少两个第一类型的所述第二资源组对应 的第一资源组与所述物理资源块集合中的至少两个第二类型的所述第二资源 组对应的第一资源组相同, 所述至少两个第一类型的第二资源组的编号的集 合与所述至少两个第二类型的第二资源组的编号的集合相同。
28、 根据权利要求 15至 27中任一项所述的装置, 其特征在于, 所述物 理资源块集合中的第一类型的第二资源组为采用集中式传输所述 E-PDCCH 的资源组; 所述物理资源块集合中的第二类型的第二资源组为采用离散式传 输所述 E-PDCCH的资源组。
29、 一种增强型物理下行控制信道 E-PDCCH的传输装置, 其特征在于, 包括:
收发器, 用于收发信号;
处理器, 用于执行以下步骤:
在物理资源块集合中, 分别对每个物理资源块对 PRB pair中的第一资源 组进行排序, 所述第一资源组为资源单元组 eREG或 REG, 所述物理资源块 集合包含至少一个所述物理资源块对;
根据所述第一资源组和所述物理资源块集合中的第二资源组的对应关 系,对所述第二资源组进行编号,其中,所述第二资源组为控制信道单元 eCCE 组或者控制信道候选组;
确定传输 E-PDCCH的所述第二资源组的编号;
根据所述确定的编号, 将所述 E-PDCCH映射到对应的第一资源组上进 行传输。
30、 根据权利要求 29所述的装置, 其特征在于,
每个所述物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个 所述第三资源组包括 M个所述第一资源组, 在所述物理资源块集合中, 一个 物理资源块对中的每个所述第三资源组包含的第一资源组的编号集合与其他 每个物理资源块对中的一个第三资源组包含的第一资源组的编号集合相同; 所述处理器用于通过以下方式实现根据所述第一资源组和所述物理资源 块集合中的第二资源组的对应关系, 对所述第二资源组进行编号: 每个所述 第三资源组对应一个第一类型的所述第二资源组, 按照物理资源块对的编号 从小到大或从大到小的顺序, 依次为每个物理资源块对中的第一类型的所述 第二资源组进行编号, 其中, 在每个物理资源块对中, 第一类型的所述第二 资源组的编号和第一类型的所述第二资源组对应的第一资源组的编号存在对 应关系。
31、根据权利要求 30所述的装置,其特征在于,在每个物理资源块对中, 第一类型的所述第二资源组的编号和第一类型的所述第二资源组对应的第一 资源组的编号存在对应关系包括:
在每个物理资源块对中, 第一类型的所述第二资源组的编号是连续的, 第一类型的所述第二资源组的编号的顺序和第一类型的所述第二资源组对应 的第一资源组的最大编号或最小编号的顺序相同。
32、 根据权利要求 29至 31中任一项所述的装置, 其特征在于, 所述处 理器用于通过以下方式实现根据所述第一资源组和所述物理资源块集合中的 第二资源组的对应关系, 对所述第二资源组进行编号:
根据以下公式, 确定第一类型的所述第二资源组的编号:
j=K*m+(i mod K),
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个所述物理 资源块对中的第一资源组的个数, j是第一类型的所述第二资源组的编号, m是物理资源块对的编号, K是每个所述物理资源块对中的第一类型的所述 第二资源组的个数, mod表示取模操作, 第一类型的所述第二资源组对应 M 个属于同一物理资源块对的第一资源组, M为正整数。
33、 根据权利要求 29所述的装置, 其特征在于,
每个所述物理资源块对包括 N个第三资源组, 其中, N是正整数, 每个 所述第三资源组包括 M个所述第一资源组, 在所述物理资源块集合中, 一个 物理资源块对中的每个所述第三资源组包含的第一资源组的编号集合与其他 每个物理资源块对中的一个第三资源组包含的第一资源组的编号集合相同, 在每个所述物理资源块对中, 所述第三资源组的编号的顺序与所述第三资源 组中的第一资源组的最大编号或最小编号的顺序相同;
所述处理器用于通过以下方式实现根据所述第一资源组和所述物理资源 块集合中的第二资源组的对应关系, 对所述第二资源组进行编号: 每个所述 第三资源组对应一个第一类型的所述第二资源组, 按照所述第三资源组编号 从小到大或从大到小的顺序, 依次对在具有相同编号的第三资源组对应的第 一类型的所述第二资源组进行编号, 在具有相同编号的第三资源组对应的第 一类型的所述第二资源组中, 第一类型的所述第二资源组的编号的顺序和第
34、 根据权利要求 33所述的装置, 其特征在于, 在具有相同编号的第三 资源组对应的第一类型的所述第二资源组中, 第一类型的所述第二资源组的 编号的顺序和第一类型的所述第二资源组所在的物理资源块对的编号的顺序 存在对应关系包括:
在具有相同编号的第三资源组对应的第一类型的所述第二资源组中, 第 一类型的所述第二资源组的编号是连续的, 第一类型的所述第二资源组的编 号的顺序和第一类型的所述第二资源组所在的物理资源块对的编号的顺序相 同。
35、 根据权利要求 29、 33至 34中任一项所述的装置, 其特征在于, 所 述处理器用于通过以下方式实现根据所述第一资源组和所述物理资源块集合 中的第二资源组的对应关系, 对所述第二资源组进行编号:
根据以下公式, 确定第一类型的所述第二资源组的编号:
j= (i mod K)*K+m,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个所述物理 资源块对中的第一资源组的个数, j是第一类型的所述第二资源组的编号, m 是物理资源块对的编号, K是每个所述物理资源块对中的第一类型的所述第 二资源组的个数, mod表示取模操作, 第一类型的所述第二资源组对应 M个 属于同一物理资源块对的第一资源组, M为正整数。
36、根据权利要求 30至 31、 33至 34中任一项所述的装置,其特征在于, 对于相同编号的第三资源组对应的第一类型的第二资源组, 一个物理资 源块对中的第一类型的所述第二资源组与其包含的第一资源组映射关系是其 他每个物理资源块对中的一个第一类型的所述第二资源组与其包含的第一资 源组映射关系的循环移位。
37、 根据权利要求 30至 32中任一项所述的装置, 其特征在于, 所述处 理器用于通过以下方式实现根据所述第一资源组和所述物理资源块集合中的 第二资源组的对应关系, 对所述第二资源组进行编号:
第二类型的所述第二资源组包括 M个分别属于不同物理资源块对的第一 资源组;
使用第二类型的所述第二资源组对应的同一个物理资源块对中的第一物 理资源组的编号作为第二类型的所述第二资源组的编号。
38、 根据权利要求 37所述的装置, 其特征在于, 所述处理器用于通过以 下方式实现所述处理器用于通过以下方式实现根据所述第一资源组和所述物 理资源块集合中的第二资源组的对应关系, 对所述第二资源组进行编号: 根据以下公式, 确定第二类型的所述第二资源组的编号:
j= (i-K*m)modl6,
其中, i是第一资源组的编号, i是 0到 L-1的整数, L是一个所述物理 资源块对中的第一资源组的个数, j是第二类型的所述第二资源组的编号, m 是物理资源块对的编号, K是每个所述物理资源块对中的第二类型的所述第 二资源组的个数, mod表示取模操作; 或者
根据以下公式, 确定第二类型的所述第二资源组的编号:
i= ( j + X * K) mod N,
m = ( floor ( j / ( M * K ) ) * M + x) mod C,
其中, i是编号为 j的第二类型的所述第二资源组对应的第 x个第一资源 组的编号, i是 0到 L-1的整数, L是一个所述物理资源块对中的第一资源组 的个数, m是编号为 j的第二类型的所述第二资源组对应的第 X个第一资源 组所在的物理资源块对的编号, K=floor(P/0), P为一个物理资源块对中第一 资源组的个数, 0为一个第二资源组中包含的第一资源组的个数, C是所述 物理资源块集合中物理资源块对的个数, mod表示取模操作, floor表示向下 取整操作。
39、 根据权利要求 33至 35中任一项所述的装置, 其特征在于, 所述处 理器用于通过以下方式实现根据所述第一资源组和所述物理资源块集合中的 第二资源组的对应关系, 对所述第二资源组进行编号: 第二类型的所述第二资源组包括 M个分别属于不同物理资源块对的第一 资源组, 所述物理资源块集合包括 K个第二类型的所述第二资源组的集合, K为正整数, 在所述 K个集合中的每个集合内, 一个第二类型的所述第二资 源组与其包含的第一资源组映射关系是其他每个第二类型的所述第二资源组 与其包含的第一资源组映射关系的循环移位;
在所述 K个集合中的每个集合内, 按照第二类型的所述第二资源组对应 的同一个物理资源块对中的第一物理资源组的编号的大小关系, 对第二类型 的所述第二资源组进行编号;
在所述 K个集合中的不同集合之间, 第二类型的所述第二资源组的编号 的顺序与所述 K个集合中的不同集合在同一物理资源块对中对应的第一资源 组的最大编号或最小编号的顺序相同。
40、 根据权利要求 37或 38所述的装置, 其特征在于,
所述物理资源集合包括 K个第二类型的所述第二资源组的集合, 在所述 K个集合中的每个集合内, 一个第二类型的所述第二资源组与其包含的第一 资源组映射关系是其他每个第二类型的所述第二资源组与其包含的第一资源 组映射关系的循环移位。
41、 根据权利要求 37至 40中任一项所述的装置, 其特征在于, 如果所述物理资源块集合中的至少两个第一类型的所述第二资源组对应 的第一资源组与所述物理资源块集合中的至少两个第二类型的所述第二资源 组对应的第一资源组相同, 所述至少两个第一类型的第二资源组的编号的集 合与所述至少两个第二类型的第二资源组的编号的集合相同。
42、 根据权利要求 29至 41中任一项所述的装置, 其特征在于, 所述物 理资源块集合中的第一类型的第二资源组为采用集中式传输所述 E-PDCCH 的资源组; 所述物理资源块集合中的第二类型的第二资源组为采用离散式传 输所述 E-PDCCH的资源组。
PCT/CN2012/082363 2012-08-02 2012-09-28 增强型物理下行控制信道传输方法及装置 WO2014019284A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
PL12882264T PL2879430T3 (pl) 2012-08-02 2012-09-28 Sposób i urządzenie do transmisji rozszerzonego fizycznego kanału sterującego łącza w dół
CN201910127232.6A CN109818728B (zh) 2012-08-02 2012-09-28 增强型物理下行控制信道传输方法及装置
AU2012386920A AU2012386920B2 (en) 2012-08-02 2012-09-28 Enhanced physical downlink control channel transmission method and device
EP12882264.0A EP2879430B1 (en) 2012-08-02 2012-09-28 Enhanced physical downlink control channel transmission method and device
CN201280074697.6A CN104871589B (zh) 2012-08-02 2012-09-28 增强型物理下行控制信道传输方法及装置
MX2015001592A MX343028B (es) 2012-08-02 2012-09-28 Metodo y aparato de transmision de canal de control de enlace descendente fisico mejorado.
EP21155365.6A EP3886350A1 (en) 2012-08-02 2012-09-28 Enhanced physical downlink control channel transmission method and apparatus
JP2015524593A JP6077657B2 (ja) 2012-08-02 2012-09-28 エンハンスト物理ダウンリンク制御チャネル伝送の方法及び装置
US14/611,837 US9756625B2 (en) 2012-08-02 2015-02-02 Enhanced physical downlink control channel transmission method and apparatus
US15/494,330 US10129863B2 (en) 2012-08-02 2017-04-21 Enhanced physical downlink control channel transmission method and apparatus
US16/171,045 US20190069281A1 (en) 2012-08-02 2018-10-25 Enhanced physical downlink control channel transmission method and apparatus
US17/028,602 US11553476B2 (en) 2012-08-02 2020-09-22 Enhanced physical downlink control channel transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/079598 WO2014019202A1 (zh) 2012-08-02 2012-08-02 增强型物理下行控制信道传输方法及设备
CNPCT/CN2012/079598 2012-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/611,837 Continuation US9756625B2 (en) 2012-08-02 2015-02-02 Enhanced physical downlink control channel transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2014019284A1 true WO2014019284A1 (zh) 2014-02-06

Family

ID=50027125

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/079598 WO2014019202A1 (zh) 2012-08-02 2012-08-02 增强型物理下行控制信道传输方法及设备
PCT/CN2012/082363 WO2014019284A1 (zh) 2012-08-02 2012-09-28 增强型物理下行控制信道传输方法及装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079598 WO2014019202A1 (zh) 2012-08-02 2012-08-02 增强型物理下行控制信道传输方法及设备

Country Status (8)

Country Link
US (4) US9756625B2 (zh)
EP (2) EP3886350A1 (zh)
JP (3) JP6077657B2 (zh)
CN (1) CN103718630A (zh)
AU (1) AU2012386920B2 (zh)
MX (1) MX343028B (zh)
PL (1) PL2879430T3 (zh)
WO (2) WO2014019202A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526044A (ja) * 2012-08-02 2015-09-07 ▲ホア▼▲ウェイ▼技術有限公司 制御チャネルを送受信するための方法、基地局、およびユーザ機器
WO2016041570A1 (en) * 2014-09-15 2016-03-24 Nokia Solutions And Networks Oy Downlink control channel for single carrier transmission
KR101857671B1 (ko) 2014-05-22 2018-05-14 엘지전자 주식회사 Mimo 송신기에서 re 그룹을 형성하는 방법
CN109392011A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种信息的发送方法及设备

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019208A1 (zh) 2012-08-02 2014-02-06 华为技术有限公司 传输控制信息的方法、装置及系统
CN103718630A (zh) 2012-08-02 2014-04-09 华为技术有限公司 增强型物理下行控制信道传输方法及设备
WO2016015340A1 (zh) * 2014-08-01 2016-02-04 华为技术有限公司 数据传输的方法和用户设备
CN106888437B (zh) * 2015-12-15 2020-07-07 华为技术有限公司 一种群组多播和群组创建的方法以及移动网络平台
CN107294676B (zh) * 2016-03-31 2020-10-20 电信科学技术研究院 导频映射方法、导频信号传输方法及装置、基站和终端
WO2017217584A1 (ko) * 2016-06-12 2017-12-21 엘지전자 주식회사 Fdr 모드로 동작하는 환경에서의 harq 프로시저를 수행하는 방법 및 이를 위한 장치
CN108135030B (zh) * 2016-09-30 2020-10-23 华为技术有限公司 传输物理控制信道的指示方法及其装置
CN111479327B (zh) * 2016-11-24 2024-09-13 上海朗帛通信技术有限公司 一种用于多天线系统的ue、基站中的方法和装置
CN108366424B (zh) * 2017-01-26 2021-10-26 华为技术有限公司 一种资源分配方法、相关设备及系统
CN109964437B (zh) * 2017-02-08 2021-07-27 上海朗帛通信技术有限公司 一种用于动态调度的终端、基站中的方法和装置
EP3583705A1 (en) * 2017-02-17 2019-12-25 Intel IP Corporation Physical downlink control channel (pdcch) demodulation reference signal (dmrs) transmission and reception
CN115603869A (zh) * 2017-05-03 2023-01-13 Idac控股公司(Us) 用于在受到低时延业务量影响时提升eMBB的HARQ反馈性能的方法和装置
CN109150484B (zh) 2017-05-04 2020-01-21 华为技术有限公司 一种控制信息传输方法、相关装置及计算机存储介质
CN109150447B (zh) * 2017-06-16 2022-09-27 中兴通讯股份有限公司 信息发送、数据解调方法及装置、通信节点、网络侧设备
EP3664326A4 (en) * 2017-08-04 2020-11-11 Shanghai Langbo Communication Technology Company Limited METHOD AND DEVICE FOR WIRELESS COMMUNICATION BETWEEN USER AND BASE STATION
EP4207651A1 (en) 2017-09-15 2023-07-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control information in wireless communication system
KR102444828B1 (ko) 2017-09-29 2022-09-19 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어채널을 송수신하는 방법 및 장치
KR102581454B1 (ko) 2017-11-10 2023-09-22 삼성전자주식회사 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
US10776163B1 (en) * 2018-03-16 2020-09-15 Amazon Technologies, Inc. Non-hierarchical management system for application programming interface resources
WO2019182423A1 (en) 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting downlink control information in wireless communication system
US10973016B2 (en) 2018-03-23 2021-04-06 Samsung Electronics Co., Ltd Method and apparatus for transmitting downlink control information in wireless communication system
KR102696561B1 (ko) 2018-05-11 2024-08-21 삼성전자주식회사 무선 통신 시스템에서 pdcch를 송수신하는 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159470A (zh) * 2007-11-02 2008-04-09 中兴通讯股份有限公司 下行控制信令指示信道到物理资源的映射方法
CN101212416A (zh) * 2007-12-25 2008-07-02 中兴通讯股份有限公司 一种物理信道的映射方法
WO2009041770A2 (en) * 2007-09-24 2009-04-02 Lg Electronics Inc. Method of allocating resource in wireless communication system
CN101594215A (zh) * 2008-05-26 2009-12-02 中兴通讯股份有限公司 控制信道单元数量确定方法及装置、控制信道管理方法
CN102612094A (zh) * 2012-04-01 2012-07-25 华为技术有限公司 一种控制信令资源单元确定方法、基站及用户设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913099B1 (ko) 2008-01-07 2009-08-21 엘지전자 주식회사 분산형 가상자원블록 스케쥴링 방법
CN101252422B (zh) 2008-03-20 2013-06-05 中兴通讯股份有限公司 物理混合重传指示信道的分配方法
CN101895988B (zh) 2009-05-22 2013-06-05 中兴通讯股份有限公司 一种控制信道资源的分配方法及装置
US8583128B2 (en) 2009-07-13 2013-11-12 Intel Mobile Communications GmbH Apparatus and method for mapping physical control channels
CN101702644B (zh) 2009-11-02 2014-08-13 中兴通讯股份有限公司 一种物理混合重传指示信道的传输方法和装置
CN102082600A (zh) 2009-12-01 2011-06-01 中兴通讯股份有限公司 中继链路下行控制信息配置方法及传输基站、中继站与方法
US9210736B2 (en) 2010-04-22 2015-12-08 Lg Electronics Inc. Method for transceiving signals between a base station and a relay node in a wireless communication system, and apparatus for same
WO2011137383A1 (en) * 2010-04-30 2011-11-03 Interdigital Patent Holdings, Inc. Downlink control in heterogeneous networks
KR101868622B1 (ko) 2010-06-17 2018-06-18 엘지전자 주식회사 R-pdcch 전송 및 수신 방법과 그 장치
US8548514B2 (en) 2010-08-11 2013-10-01 Lg-Ericsson Co., Ltd. Method for resource element group downsizing of R-PDCCH and mobile telecommunication system for the same
CN102307083A (zh) 2011-08-12 2012-01-04 电信科学技术研究院 信道状态信息的非周期反馈及其调度方法、装置及系统
CN102420685B (zh) 2011-11-07 2014-08-06 电信科学技术研究院 一种传输控制信息的方法及装置
CN102395206B (zh) * 2011-11-08 2015-07-15 电信科学技术研究院 下行控制信息的传输方法和设备
CN102611524B (zh) 2011-12-19 2015-02-04 电信科学技术研究院 一种传输信息的方法、系统及设备
CN102573094B (zh) * 2012-01-17 2015-04-08 电信科学技术研究院 一种传输dci的方法及装置
US9179456B2 (en) 2012-02-07 2015-11-03 Samsung Electronics Co., Ltd. Methods and apparatus for downlink control channels transmissions in wireless communications systems
CN102571287B (zh) 2012-02-08 2015-02-25 普天信息技术研究院有限公司 E-pdcch的加扰方法和ack/nack的传输方法
EP2829005A1 (en) 2012-03-19 2015-01-28 Telefonaktiebolaget L M Ericsson (Publ) Aggregation of resources in enhanced control channels
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
KR102098055B1 (ko) * 2012-04-30 2020-04-07 삼성전자 주식회사 무선 통신 시스템의 제어 채널 송수신 방법 및 장치
US20130301562A1 (en) * 2012-05-09 2013-11-14 Mediatek, Inc. Methods for Resource Multiplexing of Distributed and Localized transmission in Enhanced Physical Downlink Control Channel
WO2014003293A1 (ko) * 2012-06-25 2014-01-03 엘지전자 주식회사 무선 통신 시스템에서 향상된 제어 채널을 송신하는 방법 및 이를 위한 장치
JP5829987B2 (ja) 2012-07-23 2015-12-09 株式会社Nttドコモ 無線通信方法、無線通信システム及び無線基地局
WO2014017822A2 (ko) 2012-07-24 2014-01-30 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2014019181A1 (zh) * 2012-08-01 2014-02-06 华为技术有限公司 一种控制信道传输方法及装置
CN103718630A (zh) * 2012-08-02 2014-04-09 华为技术有限公司 增强型物理下行控制信道传输方法及设备
CN104871589B (zh) 2012-08-02 2019-03-01 华为技术有限公司 增强型物理下行控制信道传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041770A2 (en) * 2007-09-24 2009-04-02 Lg Electronics Inc. Method of allocating resource in wireless communication system
CN101159470A (zh) * 2007-11-02 2008-04-09 中兴通讯股份有限公司 下行控制信令指示信道到物理资源的映射方法
CN101212416A (zh) * 2007-12-25 2008-07-02 中兴通讯股份有限公司 一种物理信道的映射方法
CN101594215A (zh) * 2008-05-26 2009-12-02 中兴通讯股份有限公司 控制信道单元数量确定方法及装置、控制信道管理方法
CN102612094A (zh) * 2012-04-01 2012-07-25 华为技术有限公司 一种控制信令资源单元确定方法、基站及用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2879430A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526044A (ja) * 2012-08-02 2015-09-07 ▲ホア▼▲ウェイ▼技術有限公司 制御チャネルを送受信するための方法、基地局、およびユーザ機器
US10623156B2 (en) 2012-08-02 2020-04-14 Huawei Technologies Co., Ltd. Methods for transmitting and receiving control channel, base station, and user equipment
US9641300B2 (en) 2012-08-02 2017-05-02 Huawei Technologies Co., Ltd. Method for transmitting and receiving control channel, base station, and user equipment
US9673947B2 (en) 2012-08-02 2017-06-06 Huawei Technologies Co., Ltd. Methods for transmitting and receiving control channel, base station, and user equipment
US10084580B2 (en) 2012-08-02 2018-09-25 Huawei Technologies Co., Ltd. Methods for transmitting and receiving control channel, base station, and user equipment
US9998261B2 (en) 2014-05-22 2018-06-12 Lg Electronics Inc. Method by which MIMO transmitter forms RE group
KR101857671B1 (ko) 2014-05-22 2018-05-14 엘지전자 주식회사 Mimo 송신기에서 re 그룹을 형성하는 방법
CN107005376A (zh) * 2014-09-15 2017-08-01 诺基亚通信公司 用于单载波传输的下行链路控制信道
US10292147B2 (en) 2014-09-15 2019-05-14 Nokia Solutions And Networks Oy Downlink control channel for single carrier transmission
WO2016041570A1 (en) * 2014-09-15 2016-03-24 Nokia Solutions And Networks Oy Downlink control channel for single carrier transmission
CN107005376B (zh) * 2014-09-15 2020-08-28 诺基亚技术有限公司 用于单载波传输的下行链路控制信道的方法和装置
CN109392011A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种信息的发送方法及设备
US11212789B2 (en) 2017-08-11 2021-12-28 Huawei Technologies Co., Ltd. Information sending method and device
CN109392011B (zh) * 2017-08-11 2022-09-02 华为技术有限公司 一种信息的发送方法及设备

Also Published As

Publication number Publication date
EP2879430A4 (en) 2015-07-08
JP6445595B2 (ja) 2018-12-26
AU2012386920A1 (en) 2015-03-19
MX2015001592A (es) 2015-07-17
US20150146670A1 (en) 2015-05-28
EP3886350A1 (en) 2021-09-29
US20190069281A1 (en) 2019-02-28
US9756625B2 (en) 2017-09-05
EP2879430A1 (en) 2015-06-03
MX343028B (es) 2016-10-21
PL2879430T3 (pl) 2021-10-11
US20210007093A1 (en) 2021-01-07
US10129863B2 (en) 2018-11-13
EP2879430B1 (en) 2021-03-10
JP2019068444A (ja) 2019-04-25
JP6689354B2 (ja) 2020-04-28
CN103718630A (zh) 2014-04-09
AU2012386920B2 (en) 2016-04-28
JP6077657B2 (ja) 2017-02-08
US20170230947A1 (en) 2017-08-10
JP2017103794A (ja) 2017-06-08
US11553476B2 (en) 2023-01-10
JP2015526043A (ja) 2015-09-07
WO2014019202A1 (zh) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2014019284A1 (zh) 增强型物理下行控制信道传输方法及装置
EP2840825B1 (en) Method and device for transmitting information on enhanced physical downlink control channel
US20150009937A1 (en) Method for sending control information and method for receiving control information, base station, and user equipment
CN104871589B (zh) 增强型物理下行控制信道传输方法及装置
AU2012391349B2 (en) Method and apparatus for allocating control channel candidates
WO2014019206A1 (zh) 控制信道的传输、接收方法、基站和用户设备
WO2013139211A1 (zh) ePDCCH资源确定方法及装置
WO2014183472A1 (zh) 增强物理混合自动重传请求指示信道的传输方法及装置
WO2013139246A1 (zh) 一种控制信令的发送、解调方法与系统及终端
WO2014043890A1 (zh) 控制信息的传输方法、用户设备以及基站
WO2014019234A1 (zh) 控制信息发送方法、接收方法和装置
WO2014015519A1 (zh) 控制信道的传输方法、装置及设备
WO2014019144A1 (zh) 控制信道传输方法及基站、终端
WO2014044215A1 (zh) ePDCCH传输方法及装置、基站、用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882264

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/001592

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012882264

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012386920

Country of ref document: AU

Date of ref document: 20120928

Kind code of ref document: A