WO2014017501A1 - Wavelength-conversion component for semiconductor light-emitting device, method for manufacturing wavelength-conversion component for semiconductor light-emitting device, and thermosetting silicone composition - Google Patents

Wavelength-conversion component for semiconductor light-emitting device, method for manufacturing wavelength-conversion component for semiconductor light-emitting device, and thermosetting silicone composition Download PDF

Info

Publication number
WO2014017501A1
WO2014017501A1 PCT/JP2013/069945 JP2013069945W WO2014017501A1 WO 2014017501 A1 WO2014017501 A1 WO 2014017501A1 JP 2013069945 W JP2013069945 W JP 2013069945W WO 2014017501 A1 WO2014017501 A1 WO 2014017501A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion component
silicone
wavelength conversion
spherical
silicone composition
Prior art date
Application number
PCT/JP2013/069945
Other languages
French (fr)
Japanese (ja)
Inventor
原口 幸也
高巣 真弓子
森 寛
敏明 横尾
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2014017501A1 publication Critical patent/WO2014017501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source

Definitions

  • the present invention relates to a wavelength conversion component for a semiconductor light emitting device, a manufacturing method thereof, and a thermosetting silicone composition.
  • a semiconductor light emitting device configured to generate white light by combining a light emitting diode (LED) and a phosphor that converts a part of light (primary light) emitted from the LED into light of different wavelength (secondary light).
  • the device is known.
  • attempts have been made to make components responsible for the wavelength conversion function into components.
  • a wavelength conversion component formed of a composition in which a phosphor is dispersed in an optically transparent polymer binder.
  • Patent Document 1 discloses an “LED package” using a wavelength conversion component called “fluorescent plate”.
  • Patent Document 2 an LED device for illumination called a remote phosphor type LED device in which a large wavelength conversion component is combined with a high output LED.
  • Patent Document 2 an LED device for illumination called a remote phosphor type LED device in which a large wavelength conversion component is combined with a high output LED.
  • the remote phosphor type LED device in order to reduce the cost, it is required to reduce the amount of phosphor used in the wavelength conversion component as much as possible.
  • a light diffusing agent is added to the resin composition, which is a material, in addition to the phosphor, and the primary light is converted into phosphor particles inside the wavelength conversion component.
  • a method for increasing the chance of interaction has been proposed (FIG. 12 of Patent Document 2).
  • a silicone composition to which silicone particles are added in order to suppress the sedimentation of the phosphor has been proposed (Patent Document 3).
  • the wavelength conversion component is required to have translucency in the visible wavelength range (380 nm to 780 nm) and to be hard enough to maintain its own shape. On the other hand, from the viewpoint of productivity, it is desirable that the wavelength conversion component can be manufactured by a molding method such as injection molding or transfer molding.
  • the present invention has been made in view of such circumstances, and its main purpose is to use a wavelength conversion component having a hardness sufficient to maintain its own shape, using silicone having excellent light resistance and heat resistance as a polymer binder. It is to provide.
  • Another object of the present invention is to provide a suitable method for manufacturing such a wavelength conversion component.
  • the object of the present invention also includes providing a thermosetting silicone composition that can be suitably used as a material for such a wavelength conversion component.
  • the following wavelength conversion component is provided.
  • a wavelength conversion component that is a molded product made of a silicone composition in which a phosphor and a filler are dispersed in a silicone binder,
  • the filler includes a spherical silicone resin having a particle size of 1 ⁇ m or more, The spherical silicone resin content is 50 parts by weight or more with respect to 100 parts by weight of the silicone binder.
  • Wavelength conversion component (A2) The wavelength conversion component according to (a1), wherein the durometer hardness of the silicone composition is HDD25 or more.
  • a wavelength conversion component that is a molded product made of a silicone composition in which a phosphor and a filler are dispersed in a silicone binder,
  • the silicone binder is an elastomer having a durometer hardness of HDD20 or less
  • the filler contains a spherical silicone resin having a particle size of 1 ⁇ m or more
  • the durometer hardness of the silicone composition is HDD25 or more, Wavelength conversion component.
  • (A5) The wavelength conversion component according to any one of (a1) to (a4), wherein each of the silicone binder and the spherical silicone resin has a refractive index lower than that of silica.
  • the silicone binder has a structure in which polydimethylsiloxane is crosslinked, and the spherical silicone resin has a polyalkylsilsesquioxane structure, according to any one of the above (a1) to (a5).
  • Wavelength conversion component (A7) The wavelength conversion component according to any one of (a1) to (a6), wherein the filler does not contain a spherical silicone resin having a particle diameter of 3 ⁇ m or less.
  • the molded body is a molded body of a silicone composition having a shear rate of 120 / s and a viscosity at a temperature of 25 ° C. of 100 Pa ⁇ s or more and less than 1000 Pa ⁇ s (a1) to (a12) The wavelength conversion component according to any one of the above.
  • A14 The wavelength conversion component according to any one of (a1) to (a13), which is a disk having a diameter of 5 to 7 cm and a thickness of 0.5 to 1 mm.
  • a part of the first light emitted by the LED having an emission peak wavelength in the range of 440 to 470 nm can be transmitted, and the other part of the first light is transmitted through the first light.
  • thermosetting silicone composition for the following wavelength conversion components is provided.
  • B1 a thermosetting silicone composition in which a phosphor and a filler are mixed with addition-curable silicone,
  • the filler includes a spherical silicone resin having a particle size of 1 ⁇ m or more, The spherical silicone resin content is 50 parts by weight or more with respect to 100 parts by weight of the addition-curable silicone.
  • Thermosetting silicone composition for wavelength converting component (B2) The thermosetting silicone composition according to (b1), wherein the durometer hardness of the cured product of the thermosetting silicone composition is HDD25 or more.
  • thermosetting silicone composition in which a phosphor and a filler are mixed with addition-curable silicone,
  • the cured product of the addition-curable silicone is an elastomer having a durometer hardness of HDD 20 or less,
  • the filler contains a spherical silicone resin having a particle size of 1 ⁇ m or more,
  • the thermosetting silicone composition for wavelength conversion components whose durometer hardness of the hardened
  • the thermosetting silicone composition according to any one of (b1) to (b3), wherein a difference in refractive index between the addition-curable silicone and the spherical silicone resin is less than 0.05.
  • thermosetting silicone composition according to any one of (b1) to (b4), wherein each of the addition-curable silicone and the spherical silicone resin has a refractive index lower than that of silica.
  • the addition-curable silicone contains polydimethylsiloxane in which a methyl group is partially substituted with a vinyl group, and the spherical silicone resin has a polyalkylsilsesquioxane structure.
  • the thermosetting silicone composition according to any one of b5) is also.
  • B7 The thermosetting silicone composition according to any one of (b1) to (b6), wherein the filler does not contain a spherical silicone resin having a particle size of 3 ⁇ m or less.
  • B12 The thermosetting silicone composition according to any one of (b1) to (b11), wherein the filler further contains fumed silica.
  • thermosetting silicone composition according to any one of (b1) to (b12), wherein the durometer hardness of the cured product of the thermosetting silicone composition is HDD 35 or more.
  • thermosetting silicone composition according to any one of (b1) to (b13), wherein the viscosity at a shear rate of 120 / s and a temperature of 25 ° C. is 100 Pa ⁇ s or more and less than 1000 Pa ⁇ s.
  • the following wavelength conversion component manufacturing method is provided.
  • C1 A method for producing a wavelength conversion component, comprising the steps of curing and molding the thermosetting silicone composition according to any one of (b1) to (b14).
  • C2) The manufacturing method according to (c1), wherein in the step of performing the curing and molding, the thermosetting silicone composition is injection-molded or transfer-molded.
  • C3) The manufacturing method according to (c1) or (c2), wherein the wavelength conversion component is a disk having a diameter of 5 to 7 cm and a thickness of 0.5 to 1 mm.
  • C4 The manufacturing method according to (c1) or (c2), wherein the wavelength conversion component is a disk having a diameter of 2 to 3 cm and a thickness of 0.2 to 0.5 mm.
  • (C5) The manufacturing method according to (c1) or (c2), wherein the wavelength conversion component is a hemispherical dome having a diameter and height of 1 to 5 cm and a thickness of 0.5 to 2 mm.
  • the wavelength converting component can transmit a part of the first light emitted from the LED having the emission peak wavelength in the range of 440 to 470 nm, and transmits the other part of the first light.
  • the production method according to any one of (c1) to (c5), wherein the light can be converted into second light having a color complementary to the color of the first light.
  • a wavelength conversion component that uses silicone as a polymer binder and has a hardness sufficient to maintain its own shape.
  • the suitable manufacturing method of this wavelength conversion component is provided.
  • the thermosetting silicone composition which can be used conveniently as a material of this wavelength conversion component is provided.
  • FIG. 1 is a graph showing the relationship between the “whiteness index” and the volume ratio of spherical silica in micron-sized fillers in a silicone composition.
  • FIG. 2 is a graph showing the relationship between the “whiteness index” and the volume ratio of spherical silica in the micron size filler in the silicone composition.
  • FIG. 3 is an xy chromaticity diagram (CIE 1931).
  • FIG. 4 is a cross-sectional view of a remote phosphor type LED device including the wavelength conversion component according to the embodiment.
  • the refractive index means a refractive index at 20 ° C. at the wavelength of sodium D-line.
  • viscosity of a liquid silicone, a thermosetting silicone composition or the like when referring to the viscosity of a liquid silicone, a thermosetting silicone composition or the like, it means a viscosity at a shear rate of 120 / s and a temperature of 25 ° C. unless otherwise specified.
  • a wavelength conversion component formed of a silicone composition using silicone as a binder for dispersing a phosphor and a filler.
  • Silicone is also called an organopolysiloxane, and has a siloxane bond in the main chain, so that it is a polymer with extremely good heat resistance and light resistance.
  • the silicone binder is preferably an elastomer.
  • the silicone binder particularly preferably has a durometer hardness of 20 or less, more preferably A50 or less. Wavelength conversion components in which the silicone binder is an elastomer are difficult to crack when subjected to strain or thermal shock.
  • the durometer hardness of a silicone binder is usually about A10 or more from the point of resistance to scratches and tearing of the wavelength conversion component.
  • Addition-curable silicone is usually an organopolysiloxane having two or more hydrosilyl groups in one molecule (first component), an organopolysiloxane having two or more alkenyl groups in one molecule (second component), and Contains a curing catalyst.
  • Typical examples of the first component are polydiorganosiloxane having hydrosilyl groups at both ends, polymethylhydrosiloxane having both ends blocked with trimethylsilyl groups, methylhydrosiloxane-dimethylsiloxane copolymer, and the like.
  • a typical example of the second component is an organopolysiloxane having a silicon atom bonded to a vinyl atom at each end.
  • the hardness and heat resistance of the silicone binder can be improved by using all or part of the second component as a silicone having a branched structure introduced using trifunctional silicon (T component) or tetrafunctional silicon (Q component). it can.
  • an organopolysiloxane having both the first component and the second component that is, an organopolysiloxane having both a hydrosilyl group and an alkenyl group in one molecule.
  • the curing catalyst is a catalyst for promoting an addition reaction that occurs between the hydrosilyl group in the first component and the alkenyl group in the second component.
  • examples thereof include platinum black, second platinum chloride, and platinum chloride. Acids, reaction products of chloroplatinic acid and monohydric alcohol, complexes of chloroplatinic acid and olefins, platinum-based catalysts such as platinum bisacetoacetate, platinum-based metal catalysts such as palladium-based catalysts and rhodium-based catalysts It is done.
  • the addition curable silicone preferably further contains a curing retarder.
  • Preferred curing retarders include 3-hydroxy-3-methyl-1-butyne, 3-hydroxy-3-phenyl-1-butyne, 3- (trimethylsilyloxy) -3-methyl-1-butyne, 1-ethynyl- Examples thereof include compounds having a carbon-carbon triple bond such as 1-cyclohexanol. Organopolysiloxanes having alkynyl groups can also be used as cure retarders.
  • the curing retarder not only prolongs the pot life of the thermosetting silicone composition, but also plays an important role in suppressing the dispersion of the phosphor and filler that can occur in the mold.
  • a part of the silicone composition starts to cure before the cavity is filled with the silicone composition, and the dispersion unevenness caused by the mechanically deforming the quickly cured part. It is because it can suppress.
  • the silicone binder having a structure in which polydimethylsiloxane (dimethylsilicone) is cross-linked is particularly excellent in heat resistance and light resistance.
  • a structure can be obtained by using polydimethylsiloxane having a vinyl group bonded to a terminal silicon atom as the second component of the addition-curable silicone.
  • silicone that does not contain an aromatic group, such as methylhydrosiloxane-dimethylsiloxane copolymer, as the first component further improves the heat resistance and light resistance of the silicone binder.
  • addition-curable silicones having a low ratio of aromatic groups to hydrocarbon groups bonded to silicon atoms tend to be low in viscosity even at a temperature below room temperature, so that phosphors and fillers are easily dispersed uniformly.
  • the addition-curable silicone used as the raw material for the silicone binder preferably does not contain an aromatic group, and even if it contains an aromatic group, the number is the total number of hydrocarbon groups bonded to silicon atoms. Is preferably less than 5%.
  • the phosphor used in a general white LED can be used without limitation in the wavelength conversion component of the present invention.
  • a wavelength conversion component for a white light emitting device using a near ultraviolet LED or a violet LED as a light source usually contains a blue phosphor, a green phosphor, and a red phosphor. In addition to the green phosphor or instead of the green phosphor, a yellow phosphor can be used. The color temperature of the output light can be adjusted by changing the ratio of the content of each phosphor.
  • a wavelength conversion component for a white light emitting device using a blue LED as a light source usually contains a yellow phosphor.
  • a red phosphor is usually contained in addition to a yellow phosphor.
  • the use of the red phosphor also helps to improve the color rendering properties of the light emitting device.
  • part or all of the yellow phosphor can be replaced with a green phosphor.
  • the blue phosphor is a phosphor whose emission color is classified into “PURPULISH BLUE”, “BLUE” or “GREENISH BLUE” in the xy chromaticity diagram (CIE 1931) shown in FIG.
  • a preferred example is a blue phosphor having Eu 2+ as an activator and a crystal composed of an alkaline earth aluminate or alkaline earth halophosphate as a base, for example, (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu.
  • the green phosphor is a phosphor whose emission color is classified into “GREEN” or “YELLOWISH GREEN” in the xy chromaticity diagram (CIE 1931) shown in FIG.
  • Preferred examples include those using Eu 2+ as an activator and those using Ce 3+ as an activator.
  • the green phosphor of the Eu 2+ and activator is one that alkaline earth silicates, alkaline earth silicate nitride, sialon and the like as a matrix.
  • Green phosphors based on alkaline earth silicate crystals include (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu etc.
  • Green phosphors based on alkaline earth silicate nitride crystals include (Ba, Ca, Sr) 3 Si 6 O 12 N 2 : Eu, (Ba, Ca, Sr) 3 Si 6 O 9 N 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu and the like.
  • Examples of green phosphors based on sialon crystals include ⁇ sialon: Eu, Sr 3 Si 13 Al 3 O 2 N 21 : Eu, Sr 5 Al 5 Si 21 O 2 N 35 : Eu.
  • the green phosphor using Ce 3+ as an activator includes (Y, Gd) 3 Al 5 O 12 : Ce, Y 3 (Al, Ga) 5 O 12 : Ce, Lu based on a garnet-type oxide crystal. 3 (Al, Ga) 5 O 12 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, and CaSc 2 O 4 : Ce based on alkaline earth metal scandate crystals.
  • the yellow phosphor is a phosphor whose emission color is classified into “YELLOW GREEN”, “GREENISH YELLOW”, “YELLOW” or “YELLOWISH ORANGE” in the xy chromaticity diagram (CIE 1931) shown in FIG. .
  • Preferred examples include Ce 3+ as an activator and a garnet-type oxide crystal as a base (Y, Gd) 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, Lu 3 Al 5 O 12 : Ce or Ce 3+ as an activator and La 3 Si 6 N 11 : Ce, Ca 1.5x La 3-x Si 6 N 11 : Ce based on a lanthanum silicon nitride crystal.
  • a yellow phosphor using Eu 2+ as an activator (Ba, Sr) 2 SiO 4 : Eu (called BOSE or BOS), ⁇ sialon: Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu etc.
  • the red phosphor is a phosphor whose emission color is classified into “RED”, “REDDISH ORANGE” or “ORANGE” in the xy chromaticity diagram (CIE 1931) shown in FIG.
  • Preferable examples include those having Eu 2+ as an activator and an alkaline earth silicon nitride, ⁇ -sialon or alkaline earth silicate as a base.
  • Red phosphors based on alkaline earth siliconitride crystals include (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, (CaAlSiN 3 ) 1-x (Si (3n + 2) / 4 N n O) x : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, SrAlSi 4 N 7 : Eu, and the like.
  • Examples of red phosphors based on alkaline earth silicate crystals include (Sr, Ba) 3 SiO 5 : Eu.
  • red phosphor is a Mn 4+ activated fluoro complex phosphor.
  • a hexafluoro complex salt type represented by M 2 XF 6 : Mn is preferable, but is not limited, and a complex ion in which 5 to 7 fluorine ions are coordinated to a metal element serving as a coordination center. The inclusion can also be used.
  • the most preferred Mn 4+ -activated fluoro complex phosphor, K 2 SiF 6 to potassium hexafluorosilicate as a matrix A Mn.
  • a part of Si in K 2 SiF 6 : Mn can be substituted with Al, and a part of K can be substituted with Na.
  • red phosphors include (La, Y) 2 O 2 S: Eu, Mg 4 (F) GeO 6 : Mn, and the like.
  • a spherical silicone resin can be used as a filler for increasing hardness.
  • the spherical silicone resin is usually hard spherical fine particles made of three-dimensionally crosslinked silicone in which 95% or more of the structural units are T units.
  • the spherical silicone resin is usually 50 parts by weight or more, preferably more than 50 parts by weight, more preferably 55 parts by weight or more, particularly preferably 95 parts by weight or more, most preferably 120 parts by weight or more based on 100 parts by weight of the silicone binder. By using this ratio, it is possible to obtain a thermosetting silicone composition that provides a cured product having sufficient hardness while having fluidity necessary for injection molding or transfer molding.
  • Another approach to increase the hardness of the cured product is to introduce a trifunctional silicon (T component) or tetrafunctional silicon (Q component) into the silicone binder at a high concentration to increase the crosslink density and harden the silicone binder itself.
  • T component trifunctional silicon
  • Q component tetrafunctional silicon
  • the high-hardness silicone composition obtained by this method tends to break when subjected to strain or thermal shock.
  • a silicone composition whose hardness is increased by using a highly flexible silicone elastomer as a binder and using a spherical silicone resin as a filler is highly resistant to strain and thermal shock.
  • Spherical silicone resin usually increases the viscosity of the silicone composition before curing.
  • the degree of thickening increases as the particle size of the spherical silicone resin decreases.
  • the viscosity of the thermosetting silicone composition is preferably 100 Pa ⁇ s or more and less than 1000 Pa ⁇ s at a shear rate of 120 / s and a temperature of 25 ° C.
  • the viscosity of the silicone composition is preferably low, specifically, for example, preferably less than 500 Pa ⁇ s, and less than 400 Pa ⁇ s. More preferably, it is particularly preferably less than 300 Pa ⁇ s.
  • the amount of the spherical silicone resin contained in the silicone composition is determined in consideration of the viscosity of the silicone binder as the binder raw material and the type and amount of other fillers used at the same time, in addition to the particle size of the resin.
  • the viscosity of the silicone composition is adjusted so as to fall within an appropriate range.
  • a filler that has a particularly high thickening effect on the silicone composition is fumed silica. Since the particle size of the phosphor is usually several ⁇ m or more, the thickening effect on the silicone composition before curing is relatively small.
  • Suitable spherical silicone resins are those having a polyalkylsilsesquioxane structure, especially a polymethylsilsesquioxane structure.
  • Commercially available products include, for example, silicone resin powder (KMP-590 / 701/702 / X-52-854 / X52-1621) from Shin-Etsu Chemical Co., Ltd. and Tospearl from Momentive Performance Materials Japan (same) (Registered trademark).
  • the spherical silicone resin having such a structure has a refractive index close to that of polydimethylsiloxane, the light diffusing action when dispersed in a silicone binder containing polydimethylsiloxane in the basic skeleton is small. In other words, the silicone binder can be used without impairing its light transmittance.
  • Both the silicone binder and the spherical silicone resin usually have a lower refractive index than silica.
  • the refractive index of silicone is about 1.41 when polydimethylsiloxane is used as a basic skeleton. Since the refractive index of silica is about 1.46, the refractive index of the spherical silicone resin having a polymethylsilsesquioxane structure is between 1.41 and 1.46. Therefore, in the silicone composition according to the present invention, the refractive index difference between the spherical silicone resin and the silicone binder is preferably less than 0.05.
  • the effective refractive index of a composite in which fumed silica with a primary particle size of several tens of nanometers is dispersed in a silicone binder having a structure in which polydimethylsiloxane is crosslinked is higher than 1.41 (the refractive index of dimethyl silicone and the refractive index of silica. Therefore, the light diffusing action of the spherical silicone resin having a polymethylsilsesquioxane structure when mixed with such a composite is particularly small.
  • the particle size of the spherical silicone resin is 3 ⁇ m or less, particularly 2 ⁇ m or less, a light diffusion action that cannot be ignored depending on the amount of addition occurs. Therefore, when it is intended to control the light diffusibility of the silicone composition using a light diffusing agent, which will be described later, the components having a particle diameter of 3 ⁇ m or less contained in the spherical silicone resin are reduced, or the spherical components not containing such components are contained. It is preferable to use a silicone resin.
  • the particle size of the spherical silicone resin is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, more preferably more than 3 ⁇ m.
  • the median diameter of the spherical silicone resin is in the range of 2 to 30 ⁇ m, particularly in the range of 2 to 20 ⁇ m.
  • a mixture of particles having different median diameters can also be used.
  • the spherical silicone resin has a particle size of 30 ⁇ m or less, particularly 20 ⁇ m or less, and further 10 ⁇ m or less, an effect of stabilizing the dispersion of the phosphor in the silicone composition before curing is also expected. This is because the phosphor particle size is usually about several ⁇ m to 20 ⁇ m.
  • a light diffusing agent may be used as a filler.
  • the light diffusing agent include acrylic resin, polystyrene, silicone resin, silica, glass beads, diamond, titanium oxide, zinc oxide, barium sulfate, calcium carbonate, magnesium carbonate, magnesium hydroxide, and clay.
  • spherical silica can be preferably used as a light diffusing agent.
  • Spherical silica is true spherical silica particles used as a filler for epoxy resin used for semiconductor encapsulation.
  • the spherical silicas produced by various production methods particularly preferred is fused silica produced by a method in which a pulverized raw material meteorite is melted in a high-temperature flame and spheroidized by surface tension.
  • the refractive index of fused silica is usually 1.46 (1.46 to 1.47 in the near ultraviolet to blue wavelength region), but the refractive index of spherical silica having a larger specific surface area is lower than this.
  • a transparent light diffusing agent having a large refractive index difference from the silicone binder exhibits a large light diffusing effect in a small amount, but a slight change in the dispersion state may greatly change the characteristics of the wavelength conversion component.
  • spherical silica has a small difference in refractive index from silicone containing polydimethylsiloxane in the basic skeleton, so that the influence of the dispersion state on the characteristics of the wavelength conversion component is small. Such an effect becomes particularly remarkable when the particle diameter of the spherical silica is 3 ⁇ m or more.
  • spherical silica dispersed in the silicone composition is adjusted so as to obtain a desired light diffusibility.
  • spherical silica can be used in the ratio of 5 weight part or more and 80 weight part or less with respect to 100 weight part of silicone binders, for example.
  • the silicone composition having a small increase in viscosity due to the use of spherical silica is spherical silica having a specific surface area of 1 to 10 m 2 / g, particularly 1 to 5 m 2 / g, and a particle diameter of 1 ⁇ m or more.
  • spherical silica having a specific surface area exceeding 30 m 2 / g or spherical silica having a particle diameter of less than 1 ⁇ m can be used for the purpose of thickening the silicone composition before curing.
  • Two or more kinds of spherical silicas having different specific surface areas may be mixed and used.
  • the particle diameter of the spherical silica used in the thermosetting silicone composition is preferably 1 ⁇ m or more, and on the other hand, preferably 30 ⁇ m or less, and 20 ⁇ m or less. Is more preferable. In the case of an injection mold, the particle diameter is more preferably 15 ⁇ m or less. A mixture of particles having different median diameters can also be used. As the spherical silica, particle groups having different particle diameters can be used. In this case, it is preferable that the median diameter of the particle group is within the above preferable range.
  • Fumed silica is ultrafine particles having a large specific surface area of 50 m 2 / g or more, those commercially available as Aerosil (registered trademark) of Nippon Aerosil Co., Asahi Kasei Wacker WACKER HDK silicone Co. ( Registered trademark).
  • thixotropic properties By imparting thixotropic properties to the silicone composition before curing using fumed silica, it is possible to prevent the composition from becoming non-uniform due to sedimentation of the phosphor and filler.
  • hydrophobic fumed silica whose surface is modified with a trimethylsilyl group, a dimethylsilicone chain or the like is used, thixotropic properties can be imparted to the liquid silicone composition without causing excessive thickening.
  • the fumed silica can be preferably used at a ratio of 10 to 25 parts by weight with respect to 100 parts by weight of the silicone binder.
  • the silicone composition constituting the wavelength conversion component of the present invention includes an anti-aging agent, a radical inhibitor, an ultraviolet absorber, an adhesive as necessary.
  • an anti-aging agent e.g., a radical inhibitor, an ultraviolet absorber, an adhesive as necessary.
  • a radical inhibitor e.g., a UV absorber
  • an adhesive e
  • each material included in the silicone composition constituting the wavelength conversion component of the present invention can be confirmed by microscopic observation.
  • a material having an appropriate particle size may be selected with reference to the particle size described in a catalog or the like.
  • a compression mold, a liquid transfer mold or a liquid injection mold can be suitably used.
  • the liquid injection mold (LIM) is advantageous in that secondary processing (deburring) is unnecessary because it is difficult to generate burrs, automation is easy, and a molding cycle is easily shortened.
  • the cylinder set temperature in the liquid injection mold is usually 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 60 ° C. or lower.
  • the mold temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. or lower.
  • the injection time is usually 1 second or less for short cases and several seconds for long cases.
  • the molding time is usually 3 seconds or more, preferably 5 seconds or more, more preferably 10 seconds or more, and on the other hand, it is usually 600 seconds or less, preferably 200 seconds or less, more preferably 60 seconds or less.
  • a low temperature raw material resin is fed into a high temperature mold through a heated channel. Since the inside of the flow path is also heated, the resin viscosity increases as it approaches the mold due to a partial thermosetting reaction. If the viscosity when reaching the mold is low, the resin leaks out from the gaps in the mold and becomes burrs. Therefore, in order to prevent the generation of burrs, it is important to control the viscosity of the raw material resin and increase the mold accuracy (narrow the gap).
  • the gap of the mold is usually required to be 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the degree of cure of the resin rises in a S-curve with time on the graph with the horizontal axis representing time and the vertical axis representing the degree of cure.
  • the curing rate of the resin can be controlled by material design (selection of catalyst type, catalyst amount, use of curing rate control agent, degree of crosslinking of the resin, etc.) and molding conditions (mold temperature, filling rate, injection pressure, etc.).
  • the time from the injection of the resin into the mold to the end of curing is usually 60 seconds or less, preferably 30 seconds or less, more preferably 10 seconds or less.
  • Vacuuming the mold during molding is an effective means for promoting the inflow of resin into a narrow cavity, preventing short molding, and preventing air voids from occurring in the molded product. .
  • the molding temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. or lower. It is.
  • the molding time is usually 3 seconds or longer, preferably 5 seconds or longer, more preferably 10 seconds or longer, and is usually 1200 seconds or shorter, preferably 900 seconds or shorter, more preferably 600 seconds or shorter.
  • the molding temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. It is as follows.
  • the molding time is usually 3 seconds or longer, preferably 5 seconds or longer, more preferably 10 seconds or longer, and is usually 1200 seconds or shorter, preferably 900 seconds or shorter, more preferably 600 seconds or shorter.
  • post-cure can be performed as necessary.
  • the post-cure temperature is, for example, 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. or lower.
  • the post-cure time is, for example, 3 minutes or more, preferably 5 minutes or more, more preferably 10 minutes or more, and 24 hours or less, preferably 10 hours or less, more preferably 5 hours or less.
  • Wavelength Conversion Component The shape of the wavelength conversion component is not limited and can be any shape including a plate, a disk, a dome, and the like.
  • a typical example of a large wavelength conversion component used in a remote phosphor type LED device is a disk having a diameter of 5 to 7 cm and a thickness of 0.5 to 1 mm.
  • COB chip-on-board
  • the silicone composition constituting the wavelength conversion component preferably has a durometer hardness of HDD25 or higher, more preferably HDD35 or higher. By using a harder silicone composition, larger wavelength conversion components can be made.
  • Silicone compositions that are highly filled with fillers such as spherical silicone resin, spherical silica, and fumed silica have a low coefficient of thermal expansion, and thus can be suitably used for LED devices for lighting that generate a large amount of heat. .
  • FIG. 4 is a cross-sectional view showing an example of a remote phosphor LED device that can be configured using the wavelength conversion component of the present invention.
  • the remote phosphor type LED device 10 includes a case 1 having a recess 1a, a blue LED 2 disposed on the bottom surface of the recess 1a, and the wavelength conversion of the present invention disposed so as to close the recess 1a.
  • Component 3 is a case 1 having a recess 1a, a blue LED 2 disposed on the bottom surface of the recess 1a, and the wavelength conversion of the present invention disposed so as to close the recess 1a.
  • a wiring (not shown) for supplying current to the blue LED 2 is provided on the bottom surface of the recess of the case 1.
  • the blue LED 2 includes an SMD type package and one or more blue LED chips mounted on the package.
  • the number of blue LEDs 2 arranged on the bottom surface of the recess 1a may be one or two or more.
  • the wavelength conversion component 3 is a disk formed of a composition in which a YAG: Ce phosphor and a spherical silicone resin are dispersed in a silicone binder. The edge of this disk is tapered.
  • Blue LED 2 emits blue light by supplying current through the wiring. Part of the blue light is converted into yellow light by the YAG: Ce phosphor included in the wavelength conversion component 3, and the other part is transmitted through the wavelength conversion component 3 without being wavelength-converted. White light obtained by mixing the yellow light and the blue light transmitted through the wavelength conversion component 3 is emitted from the surface of the wavelength conversion component 3 to the outside as output light. That is, a part of the first light emitted from the LED having an emission peak wavelength in the range of 440 to 470 nm can be transmitted, and the other part of the first light can be transmitted through the color of the first light. Can be converted into a second light having a complementary color relationship.
  • a red phosphor may be added to the wavelength conversion component 3 in addition to the yellow phosphor. Adding a red phosphor to the wavelength conversion component 3 or replacing part or all of the yellow phosphor with a green phosphor can contribute to improving the color rendering properties of the remote phosphor type LED device 10.
  • the blue LED 2 can be replaced with a purple LED or a near ultraviolet LED. In this case, a blue phosphor is added to the wavelength conversion component.
  • the blue LED 2 it is also possible to adopt a chip-on-board structure in which the blue LED chip is directly mounted on the wiring provided at the bottom of the recess 1a.
  • the number of LED chips mounted on the case 1 may be one to several, may be 10 or more, and may be 50 or more.
  • Liquid A is mainly composed of dimethylpolysiloxane in which vinyl groups are substituted on both terminal silicon atoms, and a platinum complex catalyst is dispersed (vinyl group content: 0.3 mmol / g, viscosity: 5000 mPa ⁇ s).
  • Liquid B is mainly composed of a methylhydrosiloxane-dimethylsiloxane copolymer (hydrosilyl group content: 4.2 mmol / g, viscosity: 40 mPa ⁇ s). Therefore, this addition-curable silicone gives a cured product having a structure in which polydimethylsiloxane is crosslinked.
  • a curing retarder (vinyl group content: 0.2 mmol / g, alkynyl group content: 0.3 mmol / g, viscosity: 1000 mPa ⁇ s) made of an alkynyl group-containing silicone was added to the addition-curable silicone.
  • the mixing ratio of liquid A / liquid B / curing retarder was 9: 1: 0.1 by weight.
  • the viscosity of the mixture was 3500 mPa ⁇ s.
  • fumed silica hydrophobic fumed silica (BET specific surface area: 140 ⁇ 25 m 2 / g, average primary particle diameter: about 12 nm) surface-treated with a trimethylsilyl group was used.
  • spherical silica a spherical fused silica having a specific surface area of 2.2 m 2 / g and a d50 (median diameter) of 4.9 ⁇ m was used.
  • true spherical polymethylsilsesquioxane particles having a specific surface area of 20 m 2 / g and a d50 (median diameter) of 6.0 ⁇ m were used.
  • the phosphors used are all available from Mitsubishi Chemical Corporation.
  • the “whiteness index” of the silicone composition sheet to which no phosphor was added was measured using the whiteness index measurement mode of a spectrocolorimeter “SPECTROPHOTOMETER CM-2600d” manufactured by Konica Minolta Optics. That is, the “whiteness index” of the silicone composition sheet was measured when the whiteness index of the standard white plate for calibration was set to 100 in the same manner as when measuring the whiteness index determined by ASTM E313-73. .
  • the “whiteness index” of the silicone composition sheet thus measured is different from the whiteness index of ASTM E313-73, which is an index for basically evaluating an opaque object. However, it can be used as a useful index for the purpose of evaluating the light diffusibility of the silicone composition. This is because the higher the light diffusibility of the silicone composition, the greater the amount of light reflected by the sheet formed from the composition, and the higher the “whiteness index”.
  • thermosetting silicone composition was measured using a capillary rheometer.
  • thermosetting silicone composition The hardness of the cured product of the thermosetting silicone composition was measured according to JIS K7215 (1986) (plastic durometer hardness test method).
  • the thermosetting silicone composition was cured using a press molding machine under conditions of a pressure of 50 kg / cm 2 , a curing temperature of 150 ° C., and a curing time of 3 minutes to produce a disk having a diameter of 13 mm and a thickness of 3 mm.
  • a test piece was prepared by stacking two sheets. A type D durometer was used as the durometer.
  • the disk was produced by a method in which the thermosetting silicone composition was molded using a press molding machine.
  • the pressure during molding was 50 kg / cm 2 , and the curing conditions were 150 ° C. and 3 minutes.
  • the diameter of the disk was 13 mm and the thickness was 1 mm.
  • Table 1 shows the composition of the thermosetting silicone composition used as a raw material and the measurement results of the “whiteness index” for 16 types of samples S01 to S16.
  • samples S01 to S09 have substantially the same mixing ratio of the silicone binder and fumed silica (13 to 14 parts by weight of fumed silica with respect to 100 parts by weight of silicone), and the volume percentage of the silicone binder is also approximately Constant (43-44%). Therefore, it can be said that the difference in the “whiteness index” between the samples S01 to S09 is due to the difference in the volume ratio of the spherical silica in the micron size filler (spherical silica and spherical silicone resin).
  • FIG. 1 is a graph plotting the relationship between the “whiteness index” and the volume ratio of spherical silica in the micron-sized filler in the samples S01 to S09. As can be seen from FIG. 1, the “whiteness index” increases linearly as the volume ratio of spherical silica in the micron-size filler increases. This result clearly shows that mainly spherical silica is acting as a light diffusing agent.
  • Samples S10 to S14 have substantially the same mixing ratio of silicone binder and fumed silica (19 parts by weight of fumed silica with respect to 100 parts by weight of silicone), and the volume percentage of silicone binder is approximately It is constant (45 to 46%), and only the volume ratio of spherical silica in the micron size filler (spherical silica and spherical silicone resin) is different.
  • Samples S15 and S16 have the same silicone binder volume percentage (45-46%) and spherical silica volume ratio (17%) in the micron-sized filler as sample S14, but the silicone binder and fumed silica.
  • the fumed silica is 19 parts by weight for S14, 22 parts by weight for S15, and 25 parts by weight for S16 with respect to 100 parts by weight of silicone).
  • FIG. 2 is an additional plot of the results of samples S10 to S16 with respect to the graph of FIG. Also in samples S10 to S16, it can be seen that the relationship between the “whiteness index” and the volume ratio of spherical silica in the micron size filler is substantially the same as that in samples S01 to S09. This result indicates that fumed silica has substantially no effect on the light diffusibility of the silicone composition.
  • the phosphors used are yellow phosphor YAG (YAG: Ce), green phosphor ⁇ sialon ( ⁇ sialon: Eu), and red phosphor SCASN [(Sr, Ca) AlSiN 3 : Eu].
  • the amount of each material used in the produced thermosetting silicone composition was as follows: YAG: 1.01 g, ⁇ sialon: 2.35 g, SCASN: 0.64 g, addition-curable silicone: 32.5 g, fumed silica: 4. 4 g, spherical silica: 14.8 g, spherical silicone resin: 44.3 g.
  • the phosphor content in this composition is 4.0 wt%.
  • the color rendering index (Ra) of the obtained white light emitting device was 82.
  • thermosetting silicone composition The amount of each material used in the produced thermosetting silicone composition was as follows: YAG: 0.88 g, ⁇ sialon: 2.06 g, SCASN: 0.56 g, addition-curable silicone: 32.0 g, fumed silica: 4. 3 g, spherical silica: 19.8 g, spherical silicone resin: 40.4 g.
  • the phosphor content in this composition is 3.5 wt%.
  • the color rendering index (Ra) of the obtained white light emitting device was 82.
  • the brightness of this white light emitting device was substantially the same as that obtained in Experimental Example 2.
  • thermosetting silicone composition is 19 parts by weight of fumed silica, 41 parts by weight of spherical silica, and 125 parts by weight of spherical silicone resin with respect to 100 parts by weight of addition-curable silicone.
  • thermosetting silicone composition The results of viscosity measurement of this thermosetting silicone composition are shown in Table 2 below.
  • the mold temperature in the liquid injection molding is in the range of 150 to 200 ° C, the filling time into the mold is 0.1 second to 1 second, and the resin curing time in the mold is between 10 seconds to several minutes.
  • the injection pressure was adjusted between 0.5 and 2t.
  • the thickness was 1.08 to 1.12 mm, and the average value was 1.09 mm.
  • the “whiteness index” was 19.7, 19.4, and 19.3.
  • the diffuse reflectance was 16.9, 16.5, and 16.7.
  • the durometer hardness of the cured product of this curable silicone composition was HDD36.
  • the conditions for liquid injection molding were adjusted in the same manner as in Experimental Example 4 above.
  • the average value of the film thickness measured at three locations within one surface was within the range of 0.97 to 0.99 mm. Looking at the 18 wavelength conversion components, as shown in Table 4 below, the difference between the maximum value and the minimum value of the film thickness at three locations was 3% or less.
  • Table 4 also shows the correlated color temperature and xy chromaticity coordinate values of each of the 18 wavelength conversion components when a white light emitting device is configured in combination with a blue LED. ing. Parts (including blue LEDs) other than the wavelength conversion component used when configuring the white light emitting device are the same.
  • the correlated color temperature was in the range of 4007 to 4024 K, and the fluctuation range of the chromaticity coordinate value was 0.001 in the x-axis direction and 0.002 in the y-axis direction.
  • thermosetting silicone composition containing no phosphor is prepared by dispersing fumed silica, spherical silica and spherical silicone resin in a silicone binder, and the hardness of the cured product of the silicone composition and the silicone composition are prepared. The “whiteness index” of the disc was measured. The disc was produced in the same manner as in Experimental Example 1 above.
  • Table 5 shows the composition and viscosity of the silicone composition before curing, the hardness of the cured product, and the "whiteness index”.
  • the silicone compositions 1 to 4 gave a cured product having a durometer hardness close to that of the HDD 40.
  • the addition amount of the spherical silicone resin with respect to 100 parts by weight of the addition-curable silicone binder is 120 parts by weight or more.
  • the durometer hardness of the cured product was HDD20 or less.
  • Sample No. 7 is sample no. Compared with 1-4, the spherical silicone resin content was small, but a durometer hardness of HDD29 was obtained.
  • thermosetting silicone compositions 1, 2, 4 and 7 have a viscosity of less than 500 Pa ⁇ s at a shear rate of 120 / s and a temperature of 25 ° C., and are suitable for injection molding and transfer molding. It was. On the other hand, sample No. 1 in which only fumed silica was added at a high concentration to the silicone binder. The thermosetting silicone composition No. 6 had a relatively high viscosity of 751 Pa ⁇ s.
  • thermosetting silicone compositions of Nos. 1 and 2 As shown in Table 6, Sample No. containing only a spherical silicone resin having a d50 (median diameter) of 6.0 ⁇ m. Compared with the thermosetting silicone compositions of Nos. 1 and 2, sample No. 1 containing only a spherical silicone resin having a d50 (median diameter) of 2.0 ⁇ m. The thermosetting silicone compositions of 3 to 5 had a high viscosity, and the “whiteness index” of the cured product was also high.
  • thermosetting silicone composition of No. 6 both spherical silicone resins having a d50 (median diameter) of 6.0 ⁇ m and 2.0 ⁇ m are added, and spherical silica is further added.
  • the “whiteness index” of Sample No. 5 compared to the silicone composition.
  • the total amount of the spherical silicone resin added per 100 parts by weight of the binder was determined as Sample No. Even though the composition of 6 is more. This is sample no. This is probably because the composition of No. 5 had a higher content of spherical silicone resin having a d50 (median diameter) of 2.0 ⁇ m.

Abstract

The present invention provides a wavelength-conversion component having sufficient hardness to retain its shape, the component having as a polymer binder a silicone with exceptional resistance to light and heat. The present invention relates to a wavelength-conversion component that is a molded article comprising a silicone composition having a fluorescent substance and a filler dispersed in a silicone binder, wherein the filler contains a spherical silicone resin having a particle diameter of at least 1 µm, the spherical silicon resin content being at least 50 weight parts to 100 weight parts of silicone binder.

Description

半導体発光装置用の波長変換コンポーネント、その製造方法、および、熱硬化性シリコーン組成物Wavelength conversion component for semiconductor light emitting device, method for producing the same, and thermosetting silicone composition
 本発明は、半導体発光装置用の波長変換コンポーネントとその製造方法、および、熱硬化性シリコーン組成物に関する。 The present invention relates to a wavelength conversion component for a semiconductor light emitting device, a manufacturing method thereof, and a thermosetting silicone composition.
 発光ダイオード(LED)と、該LEDが放出する光(一次光)の一部を異なる波長の光(二次光)に変換する蛍光体とを組み合わせて、白色光を生じるように構成した半導体発光装置が知られている。かかる半導体発光装置において、波長変換機能を担う要素をコンポーネント化する試みが従来から行われている。一例として、光学的に透明なポリマーバインダー中に蛍光体を分散させた組成物で形成された波長変換コンポーネントが知られている。例えば、特許文献1には、“fluorescent plate”と称する波長変換コンポーネントを使用した「LEDパッケージ」が開示されている。 A semiconductor light emitting device configured to generate white light by combining a light emitting diode (LED) and a phosphor that converts a part of light (primary light) emitted from the LED into light of different wavelength (secondary light). The device is known. In such semiconductor light emitting devices, attempts have been made to make components responsible for the wavelength conversion function into components. As an example, there is known a wavelength conversion component formed of a composition in which a phosphor is dispersed in an optically transparent polymer binder. For example, Patent Document 1 discloses an “LED package” using a wavelength conversion component called “fluorescent plate”.
 最近では、大出力のLEDに大型の波長変換コンポーネントを組み合わせた、リモート・フォスファー型LED装置と呼ばれる照明用のLED装置が開発されている(特許文献2)。リモート・フォスファー型LED装置においては、コスト低減のために、波長変換コンポーネントにおける蛍光体の使用量をできるだけ少なくすることが求められている。 Recently, an LED device for illumination called a remote phosphor type LED device in which a large wavelength conversion component is combined with a high output LED has been developed (Patent Document 2). In the remote phosphor type LED device, in order to reduce the cost, it is required to reduce the amount of phosphor used in the wavelength conversion component as much as possible.
 そこで、少量の蛍光体が効率よく波長変換に利用されるように、素材である樹脂組成物に蛍光体に加えて光拡散剤を添加し、波長変換コンポーネントの内部において一次光が蛍光体粒子と相互作用する機会を増やす方法が提案されている(特許文献2のFig.12)。また、蛍光体の沈降を抑制させるためにシリコーン粒子が添加されたシリコーン組成物が提案されている(特許文献3)。 Therefore, in order to efficiently use a small amount of phosphor for wavelength conversion, a light diffusing agent is added to the resin composition, which is a material, in addition to the phosphor, and the primary light is converted into phosphor particles inside the wavelength conversion component. A method for increasing the chance of interaction has been proposed (FIG. 12 of Patent Document 2). Moreover, a silicone composition to which silicone particles are added in order to suppress the sedimentation of the phosphor has been proposed (Patent Document 3).
日本国特開2001-111117号公報(米国特許第6504301号明細書)Japanese Laid-Open Patent Publication No. 2001-111117 (US Pat. No. 6,504,301) 米国特許出願公開第2012/0087105号明細書US Patent Application Publication No. 2012/0087105 国際公開第2011/102272号International Publication No. 2011/102272
 波長変換コンポーネントには、可視波長域(380nm~780nm)における透光性が要求される他、自ら形状を保持できるだけの硬さが要求される。一方、生産性の観点からすると、波長変換コンポーネントはインジェクションモールディング、トランスファーモールディング等のモールド法で製造できることが望ましい。 The wavelength conversion component is required to have translucency in the visible wavelength range (380 nm to 780 nm) and to be hard enough to maintain its own shape. On the other hand, from the viewpoint of productivity, it is desirable that the wavelength conversion component can be manufactured by a molding method such as injection molding or transfer molding.
 本発明はこのような事情に鑑みてなされたものであり、その主たる目的は、ポリマーバインダーとして耐光性および耐熱性に優れるシリコーンを用いた、自ら形状を保持できるだけの硬さを有する波長変換コンポーネントを提供することにある。 The present invention has been made in view of such circumstances, and its main purpose is to use a wavelength conversion component having a hardness sufficient to maintain its own shape, using silicone having excellent light resistance and heat resistance as a polymer binder. It is to provide.
 また、本発明の他の目的は、かかる波長変換コンポーネントの好適な製造方法を提供することにある。 Another object of the present invention is to provide a suitable method for manufacturing such a wavelength conversion component.
 本発明の目的には、また、かかる波長変換コンポーネントの材料として好適に使用し得る熱硬化性シリコーン組成物を提供することが含まれる。 The object of the present invention also includes providing a thermosetting silicone composition that can be suitably used as a material for such a wavelength conversion component.
 本発明によれば、下記の波長変換コンポーネントが提供される。
(a1)シリコーンバインダー中に蛍光体およびフィラーが分散されてなるシリコーン組成物からなるモールド成形体である波長変換コンポーネントであって、
 該フィラーは粒子径が1μm以上である球状シリコーンレジンを含み、
 該球状シリコーンレジンの含有量が該シリコーンバインダー100重量部に対して50重量部以上である、
波長変換コンポーネント。
(a2)前記シリコーン組成物のデュロメータ硬さがHDD25以上である、前記(a1)に記載の波長変換コンポーネント。
(a3)シリコーンバインダー中に蛍光体およびフィラーが分散されてなるシリコーン組成物からなるモールド成形体である波長変換コンポーネントであって、
 該シリコーンバインダーはデュロメータ硬さがHDD20以下のエラストマーであり、
 該フィラーは粒子径が1μm以上の球状シリコーンレジンを含有し、
 該シリコーン組成物のデュロメータ硬さがHDD25以上である、
波長変換コンポーネント。
(a4)前記シリコーンバインダーと前記球状シリコーンレジンとの屈折率差が0.05未満である、前記(a1)~(a3)のいずれか1に記載の波長変換コンポーネント。
(a5)前記シリコーンバインダーおよび前記球状シリコーンレジンがいずれもシリカより低い屈折率を有する、前記(a1)~(a4)のいずれか1に記載の波長変換コンポーネント。
(a6)前記シリコーンバインダーはポリジメチルシロキサンが架橋された構造を有しており、前記球状シリコーンレジンはポリアルキルシルセスキオキサン構造を有する、前記(a1)~(a5)のいずれか1に記載の波長変換コンポーネント。
(a7)前記フィラーが粒子径3μm以下の球状シリコーンレジンを含有しない、前記(a1)~(a6)のいずれか1に記載の波長変換コンポーネント。
(a8)前記フィラーが更に球状シリカを含む、前記(a1)~(a7)のいずれか1に記載の波長変換コンポーネント。
(a9)前記球状シリカが溶融シリカを含む、前記(a8)に記載の波長変換コンポーネント。
(a10)前記球状シリカの含有量が、前記シリコーンバインダー100重量部に対して5重量部以上80重量部以下である、前記(a9)に記載の波長変換コンポーネント。
(a11)前記フィラーが更にフュームドシリカを含む、前記(a1)~(a10)のいずれか1に記載の波長変換コンポーネント。
(a12)前記シリコーン組成物のデュロメータ硬さがHDD35以上である、前記(a1)~(a11)のいずれか1に記載の波長変換コンポーネント。
(a13)前記モールド成形体が、せん断速度120/s、温度25℃における粘度が100Pa・s以上、1000Pa・s未満であるシリコーン組成物のモールド成形体である、前記(a1)~(a12)のいずれか1に記載の波長変換コンポーネント。
(a14)直径5~7cmかつ厚さ0.5~1mmのディスクである、前記(a1)~(a13)のいずれか1に記載の波長変換コンポーネント。
(a15)直径2~3cmかつ厚さ0.2~0.5mmのディスクである、前記(a1)~(a13)のいずれか1に記載の波長変換コンポーネント。
(a16)直径および高さ1~5cmかつ厚さ0.5~2mmの半球形ドームである、前記(a1)~(a13)のいずれか1に記載の波長変換コンポーネント。
(a17)発光ピーク波長を440~470nmの範囲内に有するLEDが発する第一の光の一部が透過可能であり、かつ、該第一の光の他の一部を該第一の光の色とは補色の関係にある色を有する第二の光に変換することができる、前記(a1)~(a16)のいずれか1に記載の波長変換コンポーネント。
According to the present invention, the following wavelength conversion component is provided.
(A1) A wavelength conversion component that is a molded product made of a silicone composition in which a phosphor and a filler are dispersed in a silicone binder,
The filler includes a spherical silicone resin having a particle size of 1 μm or more,
The spherical silicone resin content is 50 parts by weight or more with respect to 100 parts by weight of the silicone binder.
Wavelength conversion component.
(A2) The wavelength conversion component according to (a1), wherein the durometer hardness of the silicone composition is HDD25 or more.
(A3) A wavelength conversion component that is a molded product made of a silicone composition in which a phosphor and a filler are dispersed in a silicone binder,
The silicone binder is an elastomer having a durometer hardness of HDD20 or less,
The filler contains a spherical silicone resin having a particle size of 1 μm or more,
The durometer hardness of the silicone composition is HDD25 or more,
Wavelength conversion component.
(A4) The wavelength conversion component according to any one of (a1) to (a3), wherein a difference in refractive index between the silicone binder and the spherical silicone resin is less than 0.05.
(A5) The wavelength conversion component according to any one of (a1) to (a4), wherein each of the silicone binder and the spherical silicone resin has a refractive index lower than that of silica.
(A6) The silicone binder has a structure in which polydimethylsiloxane is crosslinked, and the spherical silicone resin has a polyalkylsilsesquioxane structure, according to any one of the above (a1) to (a5). Wavelength conversion component.
(A7) The wavelength conversion component according to any one of (a1) to (a6), wherein the filler does not contain a spherical silicone resin having a particle diameter of 3 μm or less.
(A8) The wavelength conversion component according to any one of (a1) to (a7), wherein the filler further contains spherical silica.
(A9) The wavelength conversion component according to (a8), wherein the spherical silica includes fused silica.
(A10) The wavelength conversion component according to (a9), wherein the content of the spherical silica is 5 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the silicone binder.
(A11) The wavelength conversion component according to any one of (a1) to (a10), wherein the filler further contains fumed silica.
(A12) The wavelength conversion component according to any one of (a1) to (a11), wherein the silicone composition has a durometer hardness of HDD35 or more.
(A13) The molded body is a molded body of a silicone composition having a shear rate of 120 / s and a viscosity at a temperature of 25 ° C. of 100 Pa · s or more and less than 1000 Pa · s (a1) to (a12) The wavelength conversion component according to any one of the above.
(A14) The wavelength conversion component according to any one of (a1) to (a13), which is a disk having a diameter of 5 to 7 cm and a thickness of 0.5 to 1 mm.
(A15) The wavelength conversion component according to any one of (a1) to (a13), which is a disk having a diameter of 2 to 3 cm and a thickness of 0.2 to 0.5 mm.
(A16) The wavelength conversion component according to any one of (a1) to (a13), which is a hemispherical dome having a diameter and height of 1 to 5 cm and a thickness of 0.5 to 2 mm.
(A17) A part of the first light emitted by the LED having an emission peak wavelength in the range of 440 to 470 nm can be transmitted, and the other part of the first light is transmitted through the first light. The wavelength conversion component according to any one of (a1) to (a16), wherein the wavelength conversion component can be converted into second light having a color complementary to the color.
 本発明によれば、下記の波長変換コンポーネント用の熱硬化性シリコーン組成物が提供される。
(b1)付加硬化型シリコーンに蛍光体およびフィラーが混合されてなる熱硬化性シリコーン組成物であって、
 該フィラーは粒子径が1μm以上である球状シリコーンレジンを含み、
 該球状シリコーンレジンの含有量が該付加硬化型シリコーン100重量部に対して50重量部以上である、
波長変換コンポーネント用の熱硬化性シリコーン組成物。
(b2)前記熱硬化性シリコーン組成物の硬化物のデュロメータ硬さがHDD25以上である、前記(b1)に記載の熱硬化性シリコーン組成物。
(b3)付加硬化型シリコーンに蛍光体およびフィラーが混合されてなる熱硬化性シリコーン組成物であって、
 該付加硬化型シリコーンの硬化物はデュロメータ硬さがHDD20以下のエラストマーであり、
 該フィラーは粒子径が1μm以上の球状シリコーンレジンを含有し、
 該熱硬化性シリコーン組成物の硬化物のデュロメータ硬さがHDD25以上である、波長変換コンポーネント用の熱硬化性シリコーン組成物。
(b4)前記付加硬化型シリコーンと前記球状シリコーンレジンとの屈折率差が0.05未満である、前記(b1)~(b3)のいずれか1に記載の熱硬化性シリコーン組成物。
(b5)前記付加硬化型シリコーンおよび前記球状シリコーンレジンがいずれもシリカより低い屈折率を有する、前記(b1)~(b4)のいずれか1に記載の熱硬化性シリコーン組成物。
(b6)前記付加硬化型シリコーンは、メチル基の一部がビニル基に置換されたポリジメチルシロキサンを含有し、前記球状シリコーンレジンがポリアルキルシルセスキオキサン構造を有する、前記(b1)~(b5)のいずれか1に記載の熱硬化性シリコーン組成物。
(b7)前記フィラーが粒子径3μm以下の球状シリコーンレジンを含有しない、前記(b1)~(b6)のいずれか1に記載の熱硬化性シリコーン組成物。
(b8)前記フィラーが更に球状シリカを含む、前記(b1)~(b7)のいずれか1に記載の熱硬化性シリコーン組成物。
(b9)前記球状シリカが溶融シリカを含む、前記(b8)に記載の熱硬化性シリコーン組成物。
(b10)前記球状シリカの含有量が、前記付加硬化型シリコーン100重量部に対して5重量部以上80重量部以下である、前記(b9)に記載の熱硬化性シリコーン組成物。
(b11)硬化遅延剤を含有する、前記(b1)~(b10)のいずれか1に記載の熱硬化性シリコーン組成物。
(b12)前記フィラーが更にフュームドシリカを含む、前記(b1)~(b11)のいずれか1に記載の熱硬化性シリコーン組成物。
(b13)前記熱硬化性シリコーン組成物の硬化物のデュロメータ硬さがHDD35以上である、前記(b1)~(b12)のいずれか1に記載の熱硬化性シリコーン組成物。
(b14)せん断速度120/s、温度25℃における粘度が100Pa・s以上、1000Pa・s未満である、前記(b1)~(b13)のいずれか1に記載の熱硬化性シリコーン組成物。
According to this invention, the thermosetting silicone composition for the following wavelength conversion components is provided.
(B1) a thermosetting silicone composition in which a phosphor and a filler are mixed with addition-curable silicone,
The filler includes a spherical silicone resin having a particle size of 1 μm or more,
The spherical silicone resin content is 50 parts by weight or more with respect to 100 parts by weight of the addition-curable silicone.
Thermosetting silicone composition for wavelength converting component.
(B2) The thermosetting silicone composition according to (b1), wherein the durometer hardness of the cured product of the thermosetting silicone composition is HDD25 or more.
(B3) a thermosetting silicone composition in which a phosphor and a filler are mixed with addition-curable silicone,
The cured product of the addition-curable silicone is an elastomer having a durometer hardness of HDD 20 or less,
The filler contains a spherical silicone resin having a particle size of 1 μm or more,
The thermosetting silicone composition for wavelength conversion components whose durometer hardness of the hardened | cured material of this thermosetting silicone composition is HDD25 or more.
(B4) The thermosetting silicone composition according to any one of (b1) to (b3), wherein a difference in refractive index between the addition-curable silicone and the spherical silicone resin is less than 0.05.
(B5) The thermosetting silicone composition according to any one of (b1) to (b4), wherein each of the addition-curable silicone and the spherical silicone resin has a refractive index lower than that of silica.
(B6) The addition-curable silicone contains polydimethylsiloxane in which a methyl group is partially substituted with a vinyl group, and the spherical silicone resin has a polyalkylsilsesquioxane structure. The thermosetting silicone composition according to any one of b5).
(B7) The thermosetting silicone composition according to any one of (b1) to (b6), wherein the filler does not contain a spherical silicone resin having a particle size of 3 μm or less.
(B8) The thermosetting silicone composition according to any one of (b1) to (b7), wherein the filler further contains spherical silica.
(B9) The thermosetting silicone composition according to (b8), wherein the spherical silica includes fused silica.
(B10) The thermosetting silicone composition according to (b9), wherein the content of the spherical silica is 5 to 80 parts by weight with respect to 100 parts by weight of the addition-curable silicone.
(B11) The thermosetting silicone composition according to any one of (b1) to (b10), which contains a curing retarder.
(B12) The thermosetting silicone composition according to any one of (b1) to (b11), wherein the filler further contains fumed silica.
(B13) The thermosetting silicone composition according to any one of (b1) to (b12), wherein the durometer hardness of the cured product of the thermosetting silicone composition is HDD 35 or more.
(B14) The thermosetting silicone composition according to any one of (b1) to (b13), wherein the viscosity at a shear rate of 120 / s and a temperature of 25 ° C. is 100 Pa · s or more and less than 1000 Pa · s.
 本発明によれば、下記の波長変換コンポーネント製造方法が提供される。
(c1)前記(b1)~(b14)のいずれか1に記載の熱硬化性シリコーン組成物の硬化および成形を行うステップを有する、波長変換コンポーネントの製造方法。
(c2)前記硬化および成形を行うステップでは、前記熱硬化性シリコーン組成物をインジェクションモールドまたはトランスファーモールドする、前記(c1)に記載の製造方法。
(c3)前記波長変換コンポーネントが直径5~7cmかつ厚さ0.5~1mmのディスクである、前記(c1)または(c2)に記載の製造方法。
(c4)前記波長変換コンポーネントが直径2~3cmかつ厚さ0.2~0.5mmのディスクである、前記(c1)または(c2)に記載の製造方法。
(c5)前記波長変換コンポーネントが直径および高さ1~5cmかつ厚さ0.5~2mmの半球形ドームである、前記(c1)または(c2)に記載の製造方法。
(c6)前記波長変換コンポーネントは、発光ピーク波長を440~470nmの範囲内に有するLEDが発する第一の光の一部が透過可能であり、かつ、該第一の光の他の一部を該第一の光の色とは補色の関係にある色を有する第二の光に変換することができる、前記(c1)~(c5)のいずれか1に記載の製造方法。
According to the present invention, the following wavelength conversion component manufacturing method is provided.
(C1) A method for producing a wavelength conversion component, comprising the steps of curing and molding the thermosetting silicone composition according to any one of (b1) to (b14).
(C2) The manufacturing method according to (c1), wherein in the step of performing the curing and molding, the thermosetting silicone composition is injection-molded or transfer-molded.
(C3) The manufacturing method according to (c1) or (c2), wherein the wavelength conversion component is a disk having a diameter of 5 to 7 cm and a thickness of 0.5 to 1 mm.
(C4) The manufacturing method according to (c1) or (c2), wherein the wavelength conversion component is a disk having a diameter of 2 to 3 cm and a thickness of 0.2 to 0.5 mm.
(C5) The manufacturing method according to (c1) or (c2), wherein the wavelength conversion component is a hemispherical dome having a diameter and height of 1 to 5 cm and a thickness of 0.5 to 2 mm.
(C6) The wavelength converting component can transmit a part of the first light emitted from the LED having the emission peak wavelength in the range of 440 to 470 nm, and transmits the other part of the first light. The production method according to any one of (c1) to (c5), wherein the light can be converted into second light having a color complementary to the color of the first light.
 本発明によれば、ポリマーバインダーとしてシリコーンを用いた、自ら形状を保持できるだけの硬さを有する波長変換コンポーネントが提供される。また、本発明によれば、かかる波長変換コンポーネントの好適な製造方法が提供される。また、本発明によれば、かかる波長変換コンポーネントの材料として好適に使用し得る熱硬化性シリコーン組成物が提供される。 According to the present invention, there is provided a wavelength conversion component that uses silicone as a polymer binder and has a hardness sufficient to maintain its own shape. Moreover, according to this invention, the suitable manufacturing method of this wavelength conversion component is provided. Moreover, according to this invention, the thermosetting silicone composition which can be used conveniently as a material of this wavelength conversion component is provided.
図1は、シリコーン組成物における、「白色度インデックス」と、ミクロンサイズフィラーに占める球状シリカの体積比との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the “whiteness index” and the volume ratio of spherical silica in micron-sized fillers in a silicone composition. 図2は、シリコーン組成物における、「白色度インデックス」と、ミクロンサイズフィラーに占める球状シリカの体積比との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the “whiteness index” and the volume ratio of spherical silica in the micron size filler in the silicone composition. 図3は、xy色度図(CIE 1931)である。FIG. 3 is an xy chromaticity diagram (CIE 1931). 図4は、実施形態に係る波長変換コンポーネントを備えたリモート・フォスファー型LED装置の断面図である。FIG. 4 is a cross-sectional view of a remote phosphor type LED device including the wavelength conversion component according to the embodiment.
 本明細書において材料の屈折率に言及する場合、特に断らない限り、その屈折率はナトリウムD線の波長における20℃における屈折率を意味する。 In the present specification, when referring to the refractive index of a material, unless otherwise specified, the refractive index means a refractive index at 20 ° C. at the wavelength of sodium D-line.
 本明細書において液状シリコーン、熱硬化性シリコーン組成物等の粘度に言及する場合、特に断らない限り、せん断速度120/s、温度25℃における粘度を意味する。 In this specification, when referring to the viscosity of a liquid silicone, a thermosetting silicone composition or the like, it means a viscosity at a shear rate of 120 / s and a temperature of 25 ° C. unless otherwise specified.
 以下では本発明を実施形態に即して説明する。ただし、本発明は本明細書に明示的または黙示的に記載された実施形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々変形して実施することができる。 Hereinafter, the present invention will be described with reference to embodiments. However, the present invention is not limited to the embodiments described explicitly or implicitly in the present specification, and various modifications can be made without departing from the spirit of the present invention.
 1.波長変換コンポーネントの材料
 1.1 シリコーンバインダー
 本発明によれば、蛍光体およびフィラーを分散させるバインダーにシリコーンを用いたシリコーン組成物で形成された波長変換コンポーネントが提供される。
1. 1. Material for Wavelength Conversion Component 1.1 Silicone Binder According to the present invention, there is provided a wavelength conversion component formed of a silicone composition using silicone as a binder for dispersing a phosphor and a filler.
 シリコーンはオルガノポリシロキサンとも呼ばれ、シロキサン結合を主鎖に有することから、耐熱性および耐光性が極めて良好なポリマーである。 Silicone is also called an organopolysiloxane, and has a siloxane bond in the main chain, so that it is a polymer with extremely good heat resistance and light resistance.
 シリコーンバインダーはエラストマーであることが好ましい。シリコーンバインダーは特にデュロメータ硬さがHDD20以下であることが好ましく、A50以下であることがより好ましい。シリコーンバインダーがエラストマーである波長変換コンポーネントは、歪みや熱衝撃を受けたときに割れ難いものとなる。なお、波長変換コンポーネントに傷や破れに対する耐性の点から、シリコーンバインダーのデュロメータ硬さは、通常A10程度以上である。 The silicone binder is preferably an elastomer. The silicone binder particularly preferably has a durometer hardness of 20 or less, more preferably A50 or less. Wavelength conversion components in which the silicone binder is an elastomer are difficult to crack when subjected to strain or thermal shock. In addition, the durometer hardness of a silicone binder is usually about A10 or more from the point of resistance to scratches and tearing of the wavelength conversion component.
 インジェクションモールディング、トランスファーモールディングなどのモールド法によるシリコーン組成物の成形を可能とするために、シリコーンバインダーの原料にはヒドロシリル化反応によって硬化する付加硬化型シリコーンを選択することが好ましい。ヒドロシリル化反応は副生成物の発生を伴わないので、このタイプの硬化性シリコーンは金型内で好ましく硬化させることが可能である。 In order to make it possible to mold a silicone composition by a molding method such as injection molding or transfer molding, it is preferable to select an addition-curable silicone that is cured by a hydrosilylation reaction as a raw material for the silicone binder. Since the hydrosilylation reaction is not accompanied by by-products, this type of curable silicone can be cured preferably in the mold.
 付加硬化型シリコーンは、通常、1分子中に2個以上のヒドロシリル基を有するオルガノポリシロキサン(第1成分)、1分子中に2個以上のアルケニル基を有するオルガノポリシロキサン(第2成分)および硬化触媒を含有する。 Addition-curable silicone is usually an organopolysiloxane having two or more hydrosilyl groups in one molecule (first component), an organopolysiloxane having two or more alkenyl groups in one molecule (second component), and Contains a curing catalyst.
 第1成分の典型例は、両末端にヒドロシリル基を有するポリジオルガノシロキサン、両末端がトリメチルシリル基で封鎖されたポリメチルヒドロシロキサン、メチルヒドロシロキサン-ジメチルシロキサン共重合体等である。 Typical examples of the first component are polydiorganosiloxane having hydrosilyl groups at both ends, polymethylhydrosiloxane having both ends blocked with trimethylsilyl groups, methylhydrosiloxane-dimethylsiloxane copolymer, and the like.
 第2成分の典型例は、ビニル基が結合したケイ素原子を各末端に有するオルガノポリシロキサンである。第2成分の全部または一部を、3官能ケイ素(T成分)や4官能ケイ素(Q成分)を用いて分岐構造を導入したシリコーンとすることによって、シリコーンバインダーの硬度と耐熱性を高めることができる。 A typical example of the second component is an organopolysiloxane having a silicon atom bonded to a vinyl atom at each end. The hardness and heat resistance of the silicone binder can be improved by using all or part of the second component as a silicone having a branched structure introduced using trifunctional silicon (T component) or tetrafunctional silicon (Q component). it can.
 その他、第1成分と第2成分を兼用するオルガノポリシロキサン、すなわち、1分子中にヒドロシリル基とアルケニル基の両者を有するオルガノポリシロキサンも使用可能である。 In addition, it is also possible to use an organopolysiloxane having both the first component and the second component, that is, an organopolysiloxane having both a hydrosilyl group and an alkenyl group in one molecule.
 硬化触媒は、第1成分中のヒドロシリル基と第2成分中のアルケニル基との間で生じる付加反応を促進するための触媒であり、その例としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒などが挙げられる。 The curing catalyst is a catalyst for promoting an addition reaction that occurs between the hydrosilyl group in the first component and the alkenyl group in the second component. Examples thereof include platinum black, second platinum chloride, and platinum chloride. Acids, reaction products of chloroplatinic acid and monohydric alcohol, complexes of chloroplatinic acid and olefins, platinum-based catalysts such as platinum bisacetoacetate, platinum-based metal catalysts such as palladium-based catalysts and rhodium-based catalysts It is done.
 付加硬化型シリコーンは、更に、硬化遅延剤を含有することが好ましい。好ましい硬化遅延剤としては、3-ヒドロキシ-3-メチル-1-ブチン、3-ヒドロキシ-3-フェニル-1-ブチン、3-(トリメチルシリルオキシ)-3-メチル-1-ブチン、1-エチニル-1-シクロヘキサノール等の、炭素-炭素三重結合を有する化合物などが挙げられる。アルキニル基を有するオルガノポリシロキサンも硬化遅延剤として使用できる。 The addition curable silicone preferably further contains a curing retarder. Preferred curing retarders include 3-hydroxy-3-methyl-1-butyne, 3-hydroxy-3-phenyl-1-butyne, 3- (trimethylsilyloxy) -3-methyl-1-butyne, 1-ethynyl- Examples thereof include compounds having a carbon-carbon triple bond such as 1-cyclohexanol. Organopolysiloxanes having alkynyl groups can also be used as cure retarders.
 硬化遅延剤は熱硬化性シリコーン組成物のポットライフを長くするだけでなく、金型内で生じ得る蛍光体およびフィラーの分散ムラを抑制するうえで、重要な役割を果たす。シリコーン組成物の硬化を遅くすることにより、キャビティ内がシリコーン組成物で充たされる前にシリコーン組成物の一部が硬化し始め、その早く硬化した部分が機械的変形を受けることにより発生する分散ムラを抑制できるからである。 The curing retarder not only prolongs the pot life of the thermosetting silicone composition, but also plays an important role in suppressing the dispersion of the phosphor and filler that can occur in the mold. By slowing down the curing of the silicone composition, a part of the silicone composition starts to cure before the cavity is filled with the silicone composition, and the dispersion unevenness caused by the mechanically deforming the quickly cured part. It is because it can suppress.
 第2成分に分岐構造を導入した付加硬化型シリコーンはゲル化が速く進むので、硬化遅延剤とともに使用することが特に好ましい。 It is particularly preferable to use an addition-curable silicone in which a branched structure is introduced as the second component, since gelation proceeds rapidly.
 ポリジメチルシロキサン(ジメチルシリコーン)が架橋された構造を有するシリコーンバインダーの耐熱性および耐光性は特に優れたものとなる。このような構造は、付加硬化型シリコーンの第2成分として、末端ケイ素原子にビニル基が結合したポリジメチルシロキサンを用いることにより得ることができる。更に、第1成分にもメチルヒドロシロキサン-ジメチルシロキサン共重合体のような、芳香族基を含有しないシリコーンを用いることにより、シリコーンバインダーの耐熱性および耐光性は更に向上する。 The silicone binder having a structure in which polydimethylsiloxane (dimethylsilicone) is cross-linked is particularly excellent in heat resistance and light resistance. Such a structure can be obtained by using polydimethylsiloxane having a vinyl group bonded to a terminal silicon atom as the second component of the addition-curable silicone. Furthermore, the use of silicone that does not contain an aromatic group, such as methylhydrosiloxane-dimethylsiloxane copolymer, as the first component further improves the heat resistance and light resistance of the silicone binder.
 また、ケイ素原子に結合した炭化水素基に占める芳香族基の比率が低い付加硬化型シリコーンは、室温以下の温度においても粘性が低くなりやすいために、蛍光体およびフィラーを均一分散させやすい。この観点からも、シリコーンバインダーの原料に用いる付加硬化型シリコーンは芳香族基を含まないことが好ましく、芳香族基を含む場合であっても、その数はケイ素原子に結合した炭化水素基の全数の5%未満であることが好ましい。 In addition, addition-curable silicones having a low ratio of aromatic groups to hydrocarbon groups bonded to silicon atoms tend to be low in viscosity even at a temperature below room temperature, so that phosphors and fillers are easily dispersed uniformly. Also from this viewpoint, the addition-curable silicone used as the raw material for the silicone binder preferably does not contain an aromatic group, and even if it contains an aromatic group, the number is the total number of hydrocarbon groups bonded to silicon atoms. Is preferably less than 5%.
 1.2 蛍光体
 本発明の波長変換コンポーネントには、一般的な白色LEDに使用されている蛍光体を制限なく使用することができる。
1.2 Phosphor The phosphor used in a general white LED can be used without limitation in the wavelength conversion component of the present invention.
 近紫外LEDまたは紫色LEDを光源とする白色発光装置のための波長変換コンポーネントには、通常、青色蛍光体と緑色蛍光体と赤色蛍光体を含有させる。緑色蛍光体に加えて、あるいは、緑色蛍光体に代えて、黄色蛍光体を用いることもできる。各蛍光体の含有量の比率を変えることによって、出力光の色温度を調節することができる。 A wavelength conversion component for a white light emitting device using a near ultraviolet LED or a violet LED as a light source usually contains a blue phosphor, a green phosphor, and a red phosphor. In addition to the green phosphor or instead of the green phosphor, a yellow phosphor can be used. The color temperature of the output light can be adjusted by changing the ratio of the content of each phosphor.
 青色LEDを光源とする白色発光装置のための波長変換コンポーネントには、通常、黄色蛍光体を含有させる。電球色や温白色といった低色温度の白色光を発生させるためには、通常、黄色蛍光体に加えて赤色蛍光体を含有させる。赤色蛍光体の使用は発光装置の演色性の改善にも役立つ。より良好な演色性を得るために、黄色蛍光体の一部または全部を緑色蛍光体に置き換えることができる。 A wavelength conversion component for a white light emitting device using a blue LED as a light source usually contains a yellow phosphor. In order to generate white light having a low color temperature such as a light bulb color or warm white, a red phosphor is usually contained in addition to a yellow phosphor. The use of the red phosphor also helps to improve the color rendering properties of the light emitting device. In order to obtain better color rendering properties, part or all of the yellow phosphor can be replaced with a green phosphor.
 青色蛍光体とは、その発光色が、図3に示すxy色度図(CIE 1931)における「PURPULISH BLUE」、「BLUE」または「GREENISH BLUE」に区分される蛍光体である。好適例は、Eu2+を付活剤とし、アルカリ土類アルミン酸塩またはアルカリ土類ハロリン酸塩からなる結晶を母体とする青色蛍光体、例えば、(Ca,Sr,Ba)MgAl1017:Eu、(Sr,Ca,Ba,Mg)10(PO(Cl,F):Euなどである。 The blue phosphor is a phosphor whose emission color is classified into “PURPULISH BLUE”, “BLUE” or “GREENISH BLUE” in the xy chromaticity diagram (CIE 1931) shown in FIG. A preferred example is a blue phosphor having Eu 2+ as an activator and a crystal composed of an alkaline earth aluminate or alkaline earth halophosphate as a base, for example, (Ca, Sr, Ba) MgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 (Cl, F) 2 : Eu.
 緑色蛍光体とは、その発光色が、図3に示すxy色度図(CIE 1931)における「GREEN」または「YELLOWISH GREEN」に区分される蛍光体である。好適例にはEu2+を付活剤とするものと、Ce3+を付活剤とするものとがある。 The green phosphor is a phosphor whose emission color is classified into “GREEN” or “YELLOWISH GREEN” in the xy chromaticity diagram (CIE 1931) shown in FIG. Preferred examples include those using Eu 2+ as an activator and those using Ce 3+ as an activator.
 Eu2+を付活剤とする緑色蛍光体には、アルカリ土類ケイ酸塩、アルカリ土類ケイ酸窒化物、サイアロンなどを母体とするものがある。 The green phosphor of the Eu 2+ and activator, is one that alkaline earth silicates, alkaline earth silicate nitride, sialon and the like as a matrix.
 アルカリ土類ケイ酸塩結晶を母体とする緑色蛍光体には、(Ba,Ca,Sr,Mg)SiO:Eu、(Ba,Sr,Ca)(Mg,Zn)Si:Euなどがある。アルカリ土類ケイ酸窒化物結晶を母体とする緑色蛍光体には、(Ba,Ca,Sr)Si12:Eu、(Ba,Ca,Sr)Si:Eu、(Ca,Sr,Ba)Si:Euなどがある。サイアロン結晶を母体とする緑色蛍光体には、βサイアロン:Eu、SrSi13Al21:Eu、SrAlSi2135:Euなどがある。 Green phosphors based on alkaline earth silicate crystals include (Ba, Ca, Sr, Mg) 2 SiO 4 : Eu, (Ba, Sr, Ca) 2 (Mg, Zn) Si 2 O 7 : Eu etc. Green phosphors based on alkaline earth silicate nitride crystals include (Ba, Ca, Sr) 3 Si 6 O 12 N 2 : Eu, (Ba, Ca, Sr) 3 Si 6 O 9 N 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu and the like. Examples of green phosphors based on sialon crystals include β sialon: Eu, Sr 3 Si 13 Al 3 O 2 N 21 : Eu, Sr 5 Al 5 Si 21 O 2 N 35 : Eu.
 Ce3+を付活剤とする緑色蛍光体には、ガーネット型酸化物結晶を母体とする(Y,Gd)Al12:Ce、Y(Al,Ga)12:Ce、Lu(Al,Ga)12:Ce、Ca(Sc,Mg)Si12:Ceや、アルカリ土類金属スカンジウム酸塩結晶を母体とするCaSc:Ceがある。 The green phosphor using Ce 3+ as an activator includes (Y, Gd) 3 Al 5 O 12 : Ce, Y 3 (Al, Ga) 5 O 12 : Ce, Lu based on a garnet-type oxide crystal. 3 (Al, Ga) 5 O 12 : Ce, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, and CaSc 2 O 4 : Ce based on alkaline earth metal scandate crystals.
 黄色蛍光体とは、その発光色が、図3に示すxy色度図(CIE 1931)における「YELLOW GREEN」、「GREENISH YELLOW」、「YELLOW」または「YELLOWISH ORANGE」に区分される蛍光体である。 The yellow phosphor is a phosphor whose emission color is classified into “YELLOW GREEN”, “GREENISH YELLOW”, “YELLOW” or “YELLOWISH ORANGE” in the xy chromaticity diagram (CIE 1931) shown in FIG. .
 好適例には、Ce3+を付活剤とし、ガーネット型酸化物結晶を母体とする(Y,Gd)Al12:Ce、TbAl12:Ce、LuAl12:Ceや、Ce3+を付活剤とし、ランタンケイ素窒化物結晶を母体とするLaSi11:Ce、Ca1.5xLa3-xSi11:Ceなどがある。また、Eu2+を付活剤とする黄色蛍光体として、(Ba,Sr)SiO:Eu(BOSEまたはBOSと呼ばれる)、αサイアロン:Eu、(Ca,Sr,Ba)Si:Euなどがある。 Preferred examples include Ce 3+ as an activator and a garnet-type oxide crystal as a base (Y, Gd) 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, Lu 3 Al 5 O 12 : Ce or Ce 3+ as an activator and La 3 Si 6 N 11 : Ce, Ca 1.5x La 3-x Si 6 N 11 : Ce based on a lanthanum silicon nitride crystal. Further, as a yellow phosphor using Eu 2+ as an activator, (Ba, Sr) 2 SiO 4 : Eu (called BOSE or BOS), α sialon: Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu etc.
 その他、近紫外LEDまたは紫色LEDで好ましく励起し得る黄色蛍光体として、Nature Communications 3,Article number:1132で報告された「Cl_MS蛍光体」が知られている。 In addition, as a yellow phosphor that can be preferably excited by a near-ultraviolet LED or a purple LED, “Cl_MS phosphor” reported in Nature Communications 3, Article number: 1132 is known.
 赤色蛍光体とは、その発光色が、図3に示すxy色度図(CIE 1931)における「RED」、「REDDISH ORANGE」または「ORANGE」に区分される蛍光体である。好適例には、Eu2+を付活剤とし、アルカリ土類ケイ窒化物、αサイアロンまたはアルカリ土類ケイ酸塩を母体とするものが挙げられる。アルカリ土類ケイ窒化物結晶を母体とする赤色蛍光体には、(Ca,Sr,Ba)AlSi(N,O):Eu、(CaAlSiN1-x(Si(3n+2)/4O):Eu、(Ca,Sr,Ba)Si(N,O):Eu、SrAlSi:Euなどがある。アルカリ土類ケイ酸塩結晶を母体とする赤色蛍光体には、(Sr,Ba)SiO:Euなどがある。 The red phosphor is a phosphor whose emission color is classified into “RED”, “REDDISH ORANGE” or “ORANGE” in the xy chromaticity diagram (CIE 1931) shown in FIG. Preferable examples include those having Eu 2+ as an activator and an alkaline earth silicon nitride, α-sialon or alkaline earth silicate as a base. Red phosphors based on alkaline earth siliconitride crystals include (Ca, Sr, Ba) AlSi (N, O) 3 : Eu, (CaAlSiN 3 ) 1-x (Si (3n + 2) / 4 N n O) x : Eu, (Ca, Sr, Ba) 2 Si 5 (N, O) 8 : Eu, SrAlSi 4 N 7 : Eu, and the like. Examples of red phosphors based on alkaline earth silicate crystals include (Sr, Ba) 3 SiO 5 : Eu.
 赤色蛍光体の他の好適例はMn4+付活フルオロ錯体蛍光体である。MXF:Mnで表されるヘキサフルオロ錯体塩型が好ましいが、限定されるものではなく、配位中心となる金属元素に対し5個ないし7個のフッ素イオンが配位した錯イオンを含むものも使用し得る。最も好ましいMn4+付活フルオロ錯体蛍光体は、ヘキサフルオロケイ酸カリウムを母体とするKSiF:Mnである。KSiF:MnのSiの一部はAlで置換することができ、Kの一部はNaで置換することができる。 Another preferred example of the red phosphor is a Mn 4+ activated fluoro complex phosphor. A hexafluoro complex salt type represented by M 2 XF 6 : Mn is preferable, but is not limited, and a complex ion in which 5 to 7 fluorine ions are coordinated to a metal element serving as a coordination center. The inclusion can also be used. The most preferred Mn 4+ -activated fluoro complex phosphor, K 2 SiF 6 to potassium hexafluorosilicate as a matrix: A Mn. A part of Si in K 2 SiF 6 : Mn can be substituted with Al, and a part of K can be substituted with Na.
 その他の赤色蛍光体として、(La,Y)S:Eu、Mg(F)GeO:Mnなどがある。 Other red phosphors include (La, Y) 2 O 2 S: Eu, Mg 4 (F) GeO 6 : Mn, and the like.
 1.3 球状シリコーンレジン
 本発明の波長変換コンポーネントを構成するシリコーン組成物には、硬度を高めるためのフィラーとして球状シリコーンレジンを用いることができる。球状シリコーンレジンは、通常、構成単位の95%以上がT単位である三次元架橋シリコーンからなる、硬質の球状微粒子である。
1.3 Spherical Silicone Resin In the silicone composition constituting the wavelength conversion component of the present invention, a spherical silicone resin can be used as a filler for increasing hardness. The spherical silicone resin is usually hard spherical fine particles made of three-dimensionally crosslinked silicone in which 95% or more of the structural units are T units.
 シリコーンバインダー100重量部に対して、球状シリコーンレジンを、通常50重量部以上、好ましくは50重量部超、より好ましくは55重量部以上、特に好ましくは95重量部以上、最も好ましくは120重量部以上の割合で用いることにより、インジェクションモールディングやトランスファーモールディングに必要な流動性を備えつつ、十分な硬度を有する硬化物を与える、熱硬化性シリコーン組成物を得ることができる。 The spherical silicone resin is usually 50 parts by weight or more, preferably more than 50 parts by weight, more preferably 55 parts by weight or more, particularly preferably 95 parts by weight or more, most preferably 120 parts by weight or more based on 100 parts by weight of the silicone binder. By using this ratio, it is possible to obtain a thermosetting silicone composition that provides a cured product having sufficient hardness while having fluidity necessary for injection molding or transfer molding.
 硬化物の硬度を高める別のアプローチとして、シリコーンバインダーに3官能ケイ素(T成分)や4官能ケイ素(Q成分)を高濃度に導入して架橋密度を上げ、シリコーンバインダーそのものを硬くする方法も採用可能であるが、この方法で得られる高硬度のシリコーン組成物は歪みや熱衝撃を受けたときに割れ易いものとなる。それに対して、バインダーには柔軟性の高いシリコーンエラストマーを使用し、フィラーとして球状シリコーンレジンを使用することにより硬度を高めたシリコーン組成物は、歪みや熱衝撃に対する耐性の高いものとなる。 Another approach to increase the hardness of the cured product is to introduce a trifunctional silicon (T component) or tetrafunctional silicon (Q component) into the silicone binder at a high concentration to increase the crosslink density and harden the silicone binder itself. Although possible, the high-hardness silicone composition obtained by this method tends to break when subjected to strain or thermal shock. On the other hand, a silicone composition whose hardness is increased by using a highly flexible silicone elastomer as a binder and using a spherical silicone resin as a filler is highly resistant to strain and thermal shock.
 球状シリコーンレジンは、通常、硬化前のシリコーン組成物の粘度を増加させる。増粘の程度は、球状シリコーンレジンの粒子径が小さくなる程大きくなる。熱硬化性シリコーン組成物の粘度は、せん断速度120/s、温度25℃において、100Pa・s以上、1000Pa・s未満であることが好ましい。特に、一般的な圧送ポンプを用いてインジェクションモールディングを行うには、シリコーン組成物の粘度は低いことが好ましく、具体的には、例えば、500Pa・s未満であることが好ましく、400Pa・s未満であることが更に好ましく、300Pa・s未満であることが特に好ましい。 Spherical silicone resin usually increases the viscosity of the silicone composition before curing. The degree of thickening increases as the particle size of the spherical silicone resin decreases. The viscosity of the thermosetting silicone composition is preferably 100 Pa · s or more and less than 1000 Pa · s at a shear rate of 120 / s and a temperature of 25 ° C. In particular, in order to perform injection molding using a general pumping pump, the viscosity of the silicone composition is preferably low, specifically, for example, preferably less than 500 Pa · s, and less than 400 Pa · s. More preferably, it is particularly preferably less than 300 Pa · s.
 従って、シリコーン組成物に含まれる球状シリコーンレジンの量は、当該レジンの粒子径の他に、バインダー原料であるシリコーンバインダーの粘度と、同時に用いる他のフィラーの種類および量を考慮して、硬化前のシリコーン組成物の粘度が適切な範囲となるように調節する。シリコーン組成物に対する増粘効果が特に高いフィラーは、フュームドシリカである。蛍光体は、その粒子サイズが通常数μm以上であることから、硬化前のシリコーン組成物に対する増粘効果が比較的小さい。 Therefore, the amount of the spherical silicone resin contained in the silicone composition is determined in consideration of the viscosity of the silicone binder as the binder raw material and the type and amount of other fillers used at the same time, in addition to the particle size of the resin. The viscosity of the silicone composition is adjusted so as to fall within an appropriate range. A filler that has a particularly high thickening effect on the silicone composition is fumed silica. Since the particle size of the phosphor is usually several μm or more, the thickening effect on the silicone composition before curing is relatively small.
 好適な球状シリコーンレジンは、ポリアルキルシルセスキオキサン構造、とりわけポリメチルシルセスキオキサン構造を有するものである。市販品としては、例えば、信越化学工業(株)のシリコーンレジンパウダー(KMP-590・701・702/X-52-854/X52-1621)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)のトスパール(登録商標)などが挙げられる。 Suitable spherical silicone resins are those having a polyalkylsilsesquioxane structure, especially a polymethylsilsesquioxane structure. Commercially available products include, for example, silicone resin powder (KMP-590 / 701/702 / X-52-854 / X52-1621) from Shin-Etsu Chemical Co., Ltd. and Tospearl from Momentive Performance Materials Japan (same) (Registered trademark).
 かかる構造を有する球状シリコーンレジンは、屈折率がポリジメチルシロキサンに近いので、ポリジメチルシロキサンを基本骨格に含むシリコーンバインダーに分散されたときの光拡散作用が小さい。換言すれば、かかるシリコーンバインダーに対して、その光透過性を損なわずに用いることができる。 Since the spherical silicone resin having such a structure has a refractive index close to that of polydimethylsiloxane, the light diffusing action when dispersed in a silicone binder containing polydimethylsiloxane in the basic skeleton is small. In other words, the silicone binder can be used without impairing its light transmittance.
 シリコーンバインダーおよび球状シリコーンレジンの屈折率は、通常どちらもシリカより低い。シリコーンの屈折率は、ポリジメチルシロキサンを基本骨格とするものでは約1.41となる。シリカの屈折率は約1.46であるから、ポリメチルシルセスキオキサン構造の球状シリコーンレジンの屈折率は1.41と1.46の間の値となる。従って、本発明に係るシリコーン組成物においては、球状シリコーンレジンとシリコーンバインダーとの屈折率差が0.05未満となり好ましい。 Both the silicone binder and the spherical silicone resin usually have a lower refractive index than silica. The refractive index of silicone is about 1.41 when polydimethylsiloxane is used as a basic skeleton. Since the refractive index of silica is about 1.46, the refractive index of the spherical silicone resin having a polymethylsilsesquioxane structure is between 1.41 and 1.46. Therefore, in the silicone composition according to the present invention, the refractive index difference between the spherical silicone resin and the silicone binder is preferably less than 0.05.
 ポリジメチルシロキサンが架橋された構造のシリコーンバインダーに一次粒子径が数十nmのフュームドシリカを分散させたコンポジットの実効屈折率は1.41より高い値(ジメチルシリコーンの屈折率とシリカの屈折率の中間の値)となるので、かかるコンポジットと混合されたときのポリメチルシルセスキオキサン構造の球状シリコーンレジンの光拡散作用は特に小さくなる。 The effective refractive index of a composite in which fumed silica with a primary particle size of several tens of nanometers is dispersed in a silicone binder having a structure in which polydimethylsiloxane is crosslinked is higher than 1.41 (the refractive index of dimethyl silicone and the refractive index of silica. Therefore, the light diffusing action of the spherical silicone resin having a polymethylsilsesquioxane structure when mixed with such a composite is particularly small.
 ただし、バインダーとの屈折率差が僅かであっても、球状シリコーンレジンの粒子径が3μm以下、特に2μm以下になると、添加量によっては無視できないレベルの光拡散作用が生じる。従って、後述する光拡散剤を用いてシリコーン組成物の光拡散性を制御しようとする場合には、球状シリコーンレジンに含まれる粒子径3μm以下の成分を減らすか、あるいは、かかる成分を含まない球状シリコーンレジンを用いることが好ましい。 However, even if the refractive index difference from the binder is small, if the particle size of the spherical silicone resin is 3 μm or less, particularly 2 μm or less, a light diffusion action that cannot be ignored depending on the amount of addition occurs. Therefore, when it is intended to control the light diffusibility of the silicone composition using a light diffusing agent, which will be described later, the components having a particle diameter of 3 μm or less contained in the spherical silicone resin are reduced, or the spherical components not containing such components are contained. It is preferable to use a silicone resin.
 一方で、一実施形態においては、このような粒子径の小さな球状シリコーンレジンを光拡散剤として利用することもまた可能である。従って、球状シリコーンレジンの粒子径は、通常1μm以上、好ましくは2μm以上、更に好ましくは3μm超である。 On the other hand, in one embodiment, it is also possible to use a spherical silicone resin having such a small particle diameter as a light diffusing agent. Accordingly, the particle size of the spherical silicone resin is usually 1 μm or more, preferably 2 μm or more, more preferably more than 3 μm.
 硬化前のシリコーン組成物がインジェクションモールディングやトランスファーモールディングに適した流動性を備えるためには、球状シリコーンレジンのメジアン径が2~30μmの範囲内、特に2~20μmの範囲内であることが好ましい。メジアン径の異なる粒子群を混合して用いることもできる。球状シリコーンレジンの粒子径が30μm以下、特に20μm以下、更に10μm以下であるときには、硬化前のシリコーン組成物中における蛍光体の分散を安定化させる効果も期待される。蛍光体の粒子サイズは通常数μm~20μm程度だからである。 In order for the silicone composition before curing to have fluidity suitable for injection molding or transfer molding, it is preferable that the median diameter of the spherical silicone resin is in the range of 2 to 30 μm, particularly in the range of 2 to 20 μm. A mixture of particles having different median diameters can also be used. When the spherical silicone resin has a particle size of 30 μm or less, particularly 20 μm or less, and further 10 μm or less, an effect of stabilizing the dispersion of the phosphor in the silicone composition before curing is also expected. This is because the phosphor particle size is usually about several μm to 20 μm.
 1.4 光拡散剤
 本発明の波長変換コンポーネントを構成するシリコーン組成物には、フィラーとして光拡散剤を用いてもよい。使用可能な光拡散剤として、アクリルレジン、ポリスチレン、シリコーンレジン、シリカ、ガラスビーズ、ダイヤモンド、酸化チタン、酸化亜鉛、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、クレーなどを例示できる。
1.4 Light Diffusing Agent In the silicone composition constituting the wavelength conversion component of the present invention, a light diffusing agent may be used as a filler. Examples of the light diffusing agent that can be used include acrylic resin, polystyrene, silicone resin, silica, glass beads, diamond, titanium oxide, zinc oxide, barium sulfate, calcium carbonate, magnesium carbonate, magnesium hydroxide, and clay.
 ポリジメチルシロキサンが架橋された構造のシリコーンをバインダーに用いる場合には、光拡散剤として球状シリカを好ましく用いることができる。 When silicone having a structure in which polydimethylsiloxane is crosslinked is used as a binder, spherical silica can be preferably used as a light diffusing agent.
 球状シリカとは、半導体封止に用いられるエポキシ樹脂用のフィラーなどとして利用されている、真球状のシリカ微粒子である。様々な製造方法で製造される球状シリカの中でも特に好ましいものとして、粉砕された原料硅石を高温の火炎中で溶融し表面張力で球状化させる方法で製造される溶融シリカが挙げられる。 Spherical silica is true spherical silica particles used as a filler for epoxy resin used for semiconductor encapsulation. Among the spherical silicas produced by various production methods, particularly preferred is fused silica produced by a method in which a pulverized raw material meteorite is melted in a high-temperature flame and spheroidized by surface tension.
 溶融シリカの屈折率は、通常1.46(近紫外~青色波長域においては1.46~1.47)であるが、より大きな比表面積を有する球状シリカの屈折率はこれよりも低くなる。 The refractive index of fused silica is usually 1.46 (1.46 to 1.47 in the near ultraviolet to blue wavelength region), but the refractive index of spherical silica having a larger specific surface area is lower than this.
 シリコーンバインダーとの屈折率差が大きく透明な光拡散剤は、少量で大きな光拡散効果を発揮する反面、その分散状態の僅かな変化が、波長変換コンポーネントの特性を大きく変動させる可能性がある。それに対して、球状シリカは、ポリジメチルシロキサンを基本骨格に含むシリコーンとの屈折率差が小さいので、その分散状態の変動が波長変換コンポーネントの特性に与える影響は小さなものとなる。このような効果が特に顕著となるのは、球状シリカの粒子径が3μm以上のときである。 A transparent light diffusing agent having a large refractive index difference from the silicone binder exhibits a large light diffusing effect in a small amount, but a slight change in the dispersion state may greatly change the characteristics of the wavelength conversion component. On the other hand, spherical silica has a small difference in refractive index from silicone containing polydimethylsiloxane in the basic skeleton, so that the influence of the dispersion state on the characteristics of the wavelength conversion component is small. Such an effect becomes particularly remarkable when the particle diameter of the spherical silica is 3 μm or more.
 シリコーン組成物中に分散させる球状シリカの量は、所望の光拡散性が得られるように調節する。限定するものではないが、シリコーンバインダー100重量部に対して、例えば5重量部以上80重量部以下の割合で球状シリカを用いることができる。 The amount of spherical silica dispersed in the silicone composition is adjusted so as to obtain a desired light diffusibility. Although it does not limit, spherical silica can be used in the ratio of 5 weight part or more and 80 weight part or less with respect to 100 weight part of silicone binders, for example.
 球状シリカの使用によるシリコーン組成物の粘度上昇が小さいのは、比表面積が1~10m/g、特に1~5m/gであり、かつ、粒子径が1μm以上の球状シリカである。但し、比表面積が30m/gを超える球状シリカや、粒子径が1μm未満の球状シリカは、硬化前のシリコーン組成物を増粘する目的等で使用することもできる。互いに比表面積の異なる2種以上の球状シリカを混合して使用してもよい。 The silicone composition having a small increase in viscosity due to the use of spherical silica is spherical silica having a specific surface area of 1 to 10 m 2 / g, particularly 1 to 5 m 2 / g, and a particle diameter of 1 μm or more. However, spherical silica having a specific surface area exceeding 30 m 2 / g or spherical silica having a particle diameter of less than 1 μm can be used for the purpose of thickening the silicone composition before curing. Two or more kinds of spherical silicas having different specific surface areas may be mixed and used.
 インジェクションモールドやトランスファーモールドを行う場合には、熱硬化性シリコーン組成物に用いる球状シリカの粒子径が1μm以上であることが好ましく、また、一方で30μm以下であることが好ましく、20μm以下であることが更に好ましい。インジェクションモールドの場合は、更に、該粒子径が15μm以下であることがより好ましい。メジアン径の異なる粒子群を混合して用いることもできる。球状シリカとしては、粒子径の異なる粒子群を用いることもできる。この場合、粒子群のメジアン径が上記の好ましい範囲内であることが好ましい。 When performing injection molding or transfer molding, the particle diameter of the spherical silica used in the thermosetting silicone composition is preferably 1 μm or more, and on the other hand, preferably 30 μm or less, and 20 μm or less. Is more preferable. In the case of an injection mold, the particle diameter is more preferably 15 μm or less. A mixture of particles having different median diameters can also be used. As the spherical silica, particle groups having different particle diameters can be used. In this case, it is preferable that the median diameter of the particle group is within the above preferable range.
 1.5 フュームドシリカ
 本発明の波長変換コンポーネントを構成するシリコーン組成物には、フュームドシリカを用いることが好ましい。
1.5 Fumed Silica It is preferable to use fumed silica for the silicone composition constituting the wavelength conversion component of the present invention.
 フュームドシリカは50m/g以上という大きな比表面積を有する超微粒子であり、市販されているものとしては、日本アエロジル(株)のアエロジル(登録商標)、旭化成ワッカーシリコーン(株)のWACKER HDK(登録商標)などが挙げられる。 Fumed silica is ultrafine particles having a large specific surface area of 50 m 2 / g or more, those commercially available as Aerosil (registered trademark) of Nippon Aerosil Co., Asahi Kasei Wacker WACKER HDK silicone Co. ( Registered trademark).
 フュームドシリカを用いて硬化前のシリコーン組成物にチキソトロピー性を付与することによって、蛍光体やフィラーの沈降による組成物の不均一化を防止できる。特に、トリメチルシリル基、ジメチルシリコーン鎖などで表面修飾した疎水性フュームドシリカを用いると、過度な増粘を引き起こすことなく、液状シリコーン組成物にチキソトロピー性を付与できる。フュームドシリカは、好ましくは、シリコーンバインダー100重量部に対して10~25重量部の割合で用いることができる。 By imparting thixotropic properties to the silicone composition before curing using fumed silica, it is possible to prevent the composition from becoming non-uniform due to sedimentation of the phosphor and filler. In particular, when hydrophobic fumed silica whose surface is modified with a trimethylsilyl group, a dimethylsilicone chain or the like is used, thixotropic properties can be imparted to the liquid silicone composition without causing excessive thickening. The fumed silica can be preferably used at a ratio of 10 to 25 parts by weight with respect to 100 parts by weight of the silicone binder.
 1.6 その他の添加剤
 本発明の波長変換コンポーネントを構成するシリコーン組成物には、上述の蛍光体およびフィラーの他に、必要に応じて、老化防止剤、ラジカル禁止剤、紫外線吸収剤、接着性改良剤、難燃剤、界面活性剤、保存安定性改良剤、オゾン劣化防止剤、光安定剤、可塑剤、カップリング剤、酸化防止剤、熱安定剤、帯電防止剤、離型剤などの各種添加剤を加えることができる。
1.6 Other Additives In addition to the above-described phosphor and filler, the silicone composition constituting the wavelength conversion component of the present invention includes an anti-aging agent, a radical inhibitor, an ultraviolet absorber, an adhesive as necessary. Such as property improvers, flame retardants, surfactants, storage stability improvers, antiozonants, light stabilizers, plasticizers, coupling agents, antioxidants, thermal stabilizers, antistatic agents, mold release agents, etc. Various additives can be added.
 1.7 各材料の粒子径
 本発明の波長変換コンポーネントを構成するシリコーン組成物に含まれる各材料の粒子径は、顕微鏡観察により確認することができる。市販の材料を用いる場合は、カタログ等に記載された粒子径を参照して、適切な粒子径の材料を選択すれば良い。
1.7 Particle Diameter of Each Material The particle diameter of each material included in the silicone composition constituting the wavelength conversion component of the present invention can be confirmed by microscopic observation. When using a commercially available material, a material having an appropriate particle size may be selected with reference to the particle size described in a catalog or the like.
 2.モールド成形
 本発明の波長変換コンポーネントの製造には、コンプレッションモールド、液状トランスファーモールドまたは液状インジェクションモールドを好適に用いることができる。中でも液状インジェクションモールド(LIM)は、バリが発生し難いので二次加工(バリ取り)が不要である、自動化が容易である、成形サイクルの短縮化が容易である等の利点がある。
2. Molding For the production of the wavelength conversion component of the present invention, a compression mold, a liquid transfer mold or a liquid injection mold can be suitably used. Among them, the liquid injection mold (LIM) is advantageous in that secondary processing (deburring) is unnecessary because it is difficult to generate burrs, automation is easy, and a molding cycle is easily shortened.
 液状インジェクションモールドにおけるシリンダー設定温度は、通常100℃以下、好ましくは80℃以下、より好ましくは60℃以下である。金型温度は、通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上であり、また、一方、通常300℃以下、好ましくは250℃以下、より好ましくは200℃以下である。射出時間は、通常、短い場合で1秒以下、長い場合でも数秒である。成形時間は、通常3秒以上、好ましくは5秒以上、より好ましくは10秒以上であり、また、一方、通常600秒以下、好ましくは200秒以下、より好ましくは60秒以下である。 The cylinder set temperature in the liquid injection mold is usually 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 60 ° C. or lower. The mold temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. or lower. The injection time is usually 1 second or less for short cases and several seconds for long cases. The molding time is usually 3 seconds or more, preferably 5 seconds or more, more preferably 10 seconds or more, and on the other hand, it is usually 600 seconds or less, preferably 200 seconds or less, more preferably 60 seconds or less.
 液状インジェクションモールドでは、低温の原料樹脂が加熱された流路を通して高温の金型に送り込まれる。流路内も加熱されているために、部分的な熱硬化反応によって樹脂粘度は金型に近づくにつれて高くなっていく。金型に到達したときの粘度が低い場合には、樹脂が金型の隙間から漏れ出てバリとなる。したがって、バリ発生を防止するには、原料樹脂の粘度制御と、金型精度を高くすること(隙間を狭くすること)が重要である。金型の隙間は、通常10μm以下であることが要求され、好ましくは5μm以下、更に好ましくは3μm以下である。 In the liquid injection mold, a low temperature raw material resin is fed into a high temperature mold through a heated channel. Since the inside of the flow path is also heated, the resin viscosity increases as it approaches the mold due to a partial thermosetting reaction. If the viscosity when reaching the mold is low, the resin leaks out from the gaps in the mold and becomes burrs. Therefore, in order to prevent the generation of burrs, it is important to control the viscosity of the raw material resin and increase the mold accuracy (narrow the gap). The gap of the mold is usually required to be 10 μm or less, preferably 5 μm or less, more preferably 3 μm or less.
 一方、原料樹脂の粘度上昇が速すぎる場合には、金型への未充填が発生する。バリの発生を抑え、かつ金型への未充填を防止するには、横軸を時間、縦軸を硬化度としたグラフ上において、樹脂の硬化度が時間とともにS字カーブを描くように上昇するようにすることが理想的である。樹脂の硬化速度は、材料設計(触媒種の選択、触媒量、硬化速度制御剤の使用、樹脂の架橋度等)および成型条件(金型温度、充填速度、射出圧力等)によって制御できる。金型内への樹脂の射出から硬化終了までの時間は、通常60秒以下、好ましくは30秒以下、さらに好ましくは10秒以下である。 On the other hand, when the viscosity increase of the raw material resin is too fast, unfilling of the mold occurs. In order to suppress the occurrence of burrs and prevent unfilling of the mold, the degree of cure of the resin rises in a S-curve with time on the graph with the horizontal axis representing time and the vertical axis representing the degree of cure. Ideally. The curing rate of the resin can be controlled by material design (selection of catalyst type, catalyst amount, use of curing rate control agent, degree of crosslinking of the resin, etc.) and molding conditions (mold temperature, filling rate, injection pressure, etc.). The time from the injection of the resin into the mold to the end of curing is usually 60 seconds or less, preferably 30 seconds or less, more preferably 10 seconds or less.
 成型時に金型内を真空にすることは、狭いキャビティへの樹脂の流入を促進し、ショートモールドを防止し、また、成形品にエアボイドが発生するのを防止するうえで、有効な手段である。 Vacuuming the mold during molding is an effective means for promoting the inflow of resin into a narrow cavity, preventing short molding, and preventing air voids from occurring in the molded product. .
 コンプレッションモールドの場合、成形温度は、通常80℃以上、好ましくは100℃以上、さらに好ましくは120℃以上であり、また、一方、通常300℃以下、好ましくは250℃以下、さらに好ましくは200℃以下である。成形時間は、通常3秒以上、好ましくは5秒以上、さらに好ましくは10秒以上であり、また、一方、通常1200秒以下、好ましくは900秒以下、さらに好ましくは600秒以下である。 In the case of a compression mold, the molding temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. or lower. It is. The molding time is usually 3 seconds or longer, preferably 5 seconds or longer, more preferably 10 seconds or longer, and is usually 1200 seconds or shorter, preferably 900 seconds or shorter, more preferably 600 seconds or shorter.
 液状トランスファーモールドの場合、成形温度は、通常80℃以上、好ましくは100℃以上、さらに好ましくは120℃以上であり、また、一方、通常300℃以下、好ましくは250℃以下、さらに好ましくは200℃以下である。成形時間は、通常3秒以上、好ましくは5秒以上、さらに好ましくは10秒以上であり、また、一方、通常1200秒以下、好ましくは900秒以下、さらに好ましくは600秒以下である。 In the case of a liquid transfer mold, the molding temperature is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. It is as follows. The molding time is usually 3 seconds or longer, preferably 5 seconds or longer, more preferably 10 seconds or longer, and is usually 1200 seconds or shorter, preferably 900 seconds or shorter, more preferably 600 seconds or shorter.
 いずれの成形法を用いる場合でも、必要に応じてポストキュアを行うことができる。ポストキュア温度は、例えば100℃以上、好ましくは150℃以上、さらに好ましくは200℃以上であり、また、一方、300℃以下、好ましくは250℃以下、さらに好ましくは200℃以下である。ポストキュア時間は、例えば、3分間以上、好ましくは5分間以上、さらに好ましくは10分間以上であり、また、一方、24時間以下、好ましくは10時間以下、さらに好ましくは5時間以下である。 Regardless of which molding method is used, post-cure can be performed as necessary. The post-cure temperature is, for example, 100 ° C. or higher, preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 200 ° C. or lower. The post-cure time is, for example, 3 minutes or more, preferably 5 minutes or more, more preferably 10 minutes or more, and 24 hours or less, preferably 10 hours or less, more preferably 5 hours or less.
 3.波長変換コンポーネント
 波長変換コンポーネントの形状に限定はなく、プレート、ディスク、ドーム等を含む任意の形状とすることができる。
3. Wavelength Conversion Component The shape of the wavelength conversion component is not limited and can be any shape including a plate, a disk, a dome, and the like.
 リモート・フォスファー型LED装置で用いられる大型の波長変換コンポーネントの典型例として、直径5~7cmかつ厚さ0.5~1mmのディスクなどが挙げられる。また、チップオンボード(COB)構造のLEDモジュールに組み合わせて用いる波長変換コンポーネントの形態として、2~3cmかつ厚さ0.2~0.5mmのディスク、直径および高さ1~5cmかつ厚さ0.5~2mmの半球形ドーム、等を挙げることができる。 A typical example of a large wavelength conversion component used in a remote phosphor type LED device is a disk having a diameter of 5 to 7 cm and a thickness of 0.5 to 1 mm. As a form of wavelength conversion component used in combination with a chip-on-board (COB) LED module, a disk having a thickness of 2 to 3 cm and a thickness of 0.2 to 0.5 mm, a diameter and a height of 1 to 5 cm, and a thickness of 0 And a hemispherical dome of 5 to 2 mm.
 これらの形状を自ら保持できるために、波長変換コンポーネントを構成するシリコーン組成物はデュロメータ硬さが好ましくはHDD25以上、より好ましくはHDD35以上である。より硬いシリコーン組成物を用いることにより、より大型の波長変換コンポーネントを作ることができる。 In order to be able to hold these shapes by themselves, the silicone composition constituting the wavelength conversion component preferably has a durometer hardness of HDD25 or higher, more preferably HDD35 or higher. By using a harder silicone composition, larger wavelength conversion components can be made.
 球状シリコーンレジン、球状シリカ、フュームドシリカ等のフィラーを高充填して硬度を高めたシリコーン組成物は熱膨張係数が低くなるので、発熱量の大きな照明用のLED装置に好適に用いることができる。 Silicone compositions that are highly filled with fillers such as spherical silicone resin, spherical silica, and fumed silica have a low coefficient of thermal expansion, and thus can be suitably used for LED devices for lighting that generate a large amount of heat. .
 4.リモート・フォスファー型LED装置
 図4は、本発明の波長変換コンポーネントを用いて構成することのできるリモート・フォスファー型LED装置の一例を示す断面図である。リモート・フォスファー型LED装置10は、凹所1aを有するケース1と、該凹所1aの底面上に配置された青色LED2と、該凹所1aを塞ぐように配置された本発明の波長変換コンポーネント3とを有している。
4). Remote Phosphor LED Device FIG. 4 is a cross-sectional view showing an example of a remote phosphor LED device that can be configured using the wavelength conversion component of the present invention. The remote phosphor type LED device 10 includes a case 1 having a recess 1a, a blue LED 2 disposed on the bottom surface of the recess 1a, and the wavelength conversion of the present invention disposed so as to close the recess 1a. Component 3.
 ケース1の凹所の底面上には、青色LED2に電流を供給するための配線(図示せず)が設けられている。青色LED2は、詳細な図示は省略するが、SMD型パッケージと該パッケージ上にマウントされた1個以上の青色LEDチップとから構成されている。凹所1aの底面上に配置される青色LED2の個数は1個であってもよいし、2個以上であってもよい。 A wiring (not shown) for supplying current to the blue LED 2 is provided on the bottom surface of the recess of the case 1. Although not shown in detail, the blue LED 2 includes an SMD type package and one or more blue LED chips mounted on the package. The number of blue LEDs 2 arranged on the bottom surface of the recess 1a may be one or two or more.
 波長変換コンポーネント3は、シリコーンバインダー中にYAG:Ce蛍光体と球状シリコーンレジンを分散させてなる組成物で形成されたディスクである。このディスクの縁部はテーパされている。 The wavelength conversion component 3 is a disk formed of a composition in which a YAG: Ce phosphor and a spherical silicone resin are dispersed in a silicone binder. The edge of this disk is tapered.
 配線を通して電流を供給することにより青色LED2は青色光を放出する。その青色光の一部は波長変換コンポーネント3に含まれるYAG:Ce蛍光体によって黄色光に変換され、他の一部は波長変換されることなく波長変換コンポーネント3を透過する。この黄色光と、波長変換コンポーネント3を透過する青色光とが混成してなる白色光が、波長変換コンポーネント3の表面から出力光として外部に放出される。すなわち、発光ピーク波長を440~470nmの範囲内に有するLEDが発する第一の光の一部が透過可能であり、かつ、該第一の光の他の一部を該第一の光の色とは補色の関係にある色を有する第二の光に変換することができる。 Blue LED 2 emits blue light by supplying current through the wiring. Part of the blue light is converted into yellow light by the YAG: Ce phosphor included in the wavelength conversion component 3, and the other part is transmitted through the wavelength conversion component 3 without being wavelength-converted. White light obtained by mixing the yellow light and the blue light transmitted through the wavelength conversion component 3 is emitted from the surface of the wavelength conversion component 3 to the outside as output light. That is, a part of the first light emitted from the LED having an emission peak wavelength in the range of 440 to 470 nm can be transmitted, and the other part of the first light can be transmitted through the color of the first light. Can be converted into a second light having a complementary color relationship.
 リモート・フォスファー型LED装置10の出力光の色温度を低下させるには、波長変換コンポーネント3に黄色蛍光体に加えて赤色蛍光体を添加すればよい。波長変換コンポーネント3に赤色蛍光体を添加することや、黄色蛍光体の一部または全部を緑色蛍光体に置き換えることは、リモート・フォスファー型LED装置10の演色性改善に寄与し得る。 In order to lower the color temperature of the output light of the remote phosphor type LED device 10, a red phosphor may be added to the wavelength conversion component 3 in addition to the yellow phosphor. Adding a red phosphor to the wavelength conversion component 3 or replacing part or all of the yellow phosphor with a green phosphor can contribute to improving the color rendering properties of the remote phosphor type LED device 10.
 青色LED2を紫色LEDまたは近紫外LEDに置き換えることができるが、その場合には波長変換コンポーネントに青色蛍光体を添加する。 The blue LED 2 can be replaced with a purple LED or a near ultraviolet LED. In this case, a blue phosphor is added to the wavelength conversion component.
 青色LED2を用いる代わりに、凹所1aの底に設けられた配線上に青色LEDチップを直接実装するチップオンボード構造を採用することも可能である。この場合にケース1に実装するLEDチップの数は、1個から数個であってもよく、10個以上であってもよく、更には50個以上であってもよい。 Instead of using the blue LED 2, it is also possible to adopt a chip-on-board structure in which the blue LED chip is directly mounted on the wiring provided at the bottom of the recess 1a. In this case, the number of LED chips mounted on the case 1 may be one to several, may be 10 or more, and may be 50 or more.
 5.実験結果
 5.1 材料
 シリコーンバインダーの原料には、市販の2液型の付加硬化型シリコーンを用いた。この付加硬化型シリコーンはA液とB液とからなり、該A液とB液とを重量比9:1で混合し10分間/100℃という条件で硬化させて得られる硬化物のデュロメータ硬さはA45(製造者による公称値)である。
5. Experimental Results 5.1 Material A commercially available two-component addition-curable silicone was used as a raw material for the silicone binder. This addition-curing type silicone comprises liquid A and liquid B, and the durometer hardness of the cured product obtained by mixing the liquid A and liquid B at a weight ratio of 9: 1 and curing them at 10 minutes / 100 ° C. Is A45 (nominal value by the manufacturer).
 A液は主成分が両末端ケイ素原子にビニル基が置換されたジメチルポリシロキサンで、白金錯体触媒が分散されている(ビニル基含量:0.3mmol/g、粘度:5000mPa・s)。B液は主成分がメチルヒドロシロキサン-ジメチルシロキサン共重合体である(ヒドロシリル基含量:4.2mmol/g、粘度:40mPa・s)。従って、この付加硬化型シリコーンは、ポリジメチルシロキサンが架橋された構造を有する硬化物を与える。 Liquid A is mainly composed of dimethylpolysiloxane in which vinyl groups are substituted on both terminal silicon atoms, and a platinum complex catalyst is dispersed (vinyl group content: 0.3 mmol / g, viscosity: 5000 mPa · s). Liquid B is mainly composed of a methylhydrosiloxane-dimethylsiloxane copolymer (hydrosilyl group content: 4.2 mmol / g, viscosity: 40 mPa · s). Therefore, this addition-curable silicone gives a cured product having a structure in which polydimethylsiloxane is crosslinked.
 かかる付加硬化型シリコーンに、アルキニル基含有シリコーンからなる硬化遅延剤(ビニル基含量:0.2mmol/g、アルキニル基含量:0.3mmol/g、粘度:1000mPa・s)を添加して使用した。A液/B液/硬化遅延剤の混合比率は重量比で9:1:0.1とした。混合物の粘度は3500mPa・sであった。 A curing retarder (vinyl group content: 0.2 mmol / g, alkynyl group content: 0.3 mmol / g, viscosity: 1000 mPa · s) made of an alkynyl group-containing silicone was added to the addition-curable silicone. The mixing ratio of liquid A / liquid B / curing retarder was 9: 1: 0.1 by weight. The viscosity of the mixture was 3500 mPa · s.
 フュームドシリカとしては、トリメチルシリル基で表面処理された疎水性フュームドシリカ(BET比表面積:140±25m/g、一次粒子の平均径:約12nm)を用いた。球状シリカとしては、比表面積:2.2m/g、d50(メジアン径):4.9μmの球状溶融シリカを用いた。 As the fumed silica, hydrophobic fumed silica (BET specific surface area: 140 ± 25 m 2 / g, average primary particle diameter: about 12 nm) surface-treated with a trimethylsilyl group was used. As the spherical silica, a spherical fused silica having a specific surface area of 2.2 m 2 / g and a d50 (median diameter) of 4.9 μm was used.
 球状シリコーンレジンとしては、比表面積:20m/g、d50(メジアン径):6.0μmの真球状ポリメチルシルセスキオキサン粒子を用いた。使用した蛍光体は、いずれも三菱化学(株)等より入手できるものである。 As the spherical silicone resin, true spherical polymethylsilsesquioxane particles having a specific surface area of 20 m 2 / g and a d50 (median diameter) of 6.0 μm were used. The phosphors used are all available from Mitsubishi Chemical Corporation.
 5.2 測定方法
 5.2.1 「白色度インデックス」
 蛍光体を添加しないシリコーン組成物シートの「白色度インデックス」を、コニカミノルタオプティクス(株)製分光測色計「SPECTROPHOTOMETER CM-2600d」の白色度インデックス測定モードを用いて測定した。すなわち、ASTM E313-73が定める白色度インデックスを測定する場合と同様にして、校正用の標準白色板の白色度インデックスを100としたときの、シリコーン組成物シートの「白色度インデックス」を測定した。
5.2 Measuring method 5.2.1 “Whiteness index”
The “whiteness index” of the silicone composition sheet to which no phosphor was added was measured using the whiteness index measurement mode of a spectrocolorimeter “SPECTROPHOTOMETER CM-2600d” manufactured by Konica Minolta Optics. That is, the “whiteness index” of the silicone composition sheet was measured when the whiteness index of the standard white plate for calibration was set to 100 in the same manner as when measuring the whiteness index determined by ASTM E313-73. .
 測定の際には、シートにより反射されなかった評価光(シートを透過した評価光)が環境中に放出されるように、シートの裏側(評価光の入射側ではない側)を環境中に解放した。厳密にいえば、このようにして測定されるシリコーン組成物シートの「白色度インデックス」は、基本的に不透明な対象物を評価する指標であるASTM E313-73の白色度インデックスとは異なる。しかし、シリコーン組成物の光拡散性を評価する目的においては有用な指標として利用することができる。なぜなら、シリコーン組成物の光拡散性が高い程、該組成物で形成したシートで反射される光の量が多くなり、「白色度インデックス」が高くなるからである。 During measurement, the back side of the sheet (the side other than the incident side of the evaluation light) is released into the environment so that the evaluation light that has not been reflected by the sheet (evaluation light that has passed through the sheet) is emitted into the environment. did. Strictly speaking, the “whiteness index” of the silicone composition sheet thus measured is different from the whiteness index of ASTM E313-73, which is an index for basically evaluating an opaque object. However, it can be used as a useful index for the purpose of evaluating the light diffusibility of the silicone composition. This is because the higher the light diffusibility of the silicone composition, the greater the amount of light reflected by the sheet formed from the composition, and the higher the “whiteness index”.
 5.2.2 粘度
 熱硬化性シリコーン組成物の粘度はキャピラリーレオメータを用いて測定した。
5.2.2 Viscosity The viscosity of the thermosetting silicone composition was measured using a capillary rheometer.
 5.2.3 硬さ
 熱硬化性シリコーン組成物の硬化物の硬さ測定は、JIS K7215(1986年)(プラスチックのデュロメータ硬さ試験方法)に準拠して行った。熱硬化性シリコーン組成物を、プレス成型機を用いて圧力50kg/cm、硬化温度150℃、硬化時間3分間という条件で硬化させて直径13mm、厚さ3mmのディスクを作製し、このディスクを2枚重ねたものを試験片とした。デュロメータには、タイプDデュロメータを用いた。
5.2.3 Hardness The hardness of the cured product of the thermosetting silicone composition was measured according to JIS K7215 (1986) (plastic durometer hardness test method). The thermosetting silicone composition was cured using a press molding machine under conditions of a pressure of 50 kg / cm 2 , a curing temperature of 150 ° C., and a curing time of 3 minutes to produce a disk having a diameter of 13 mm and a thickness of 3 mm. A test piece was prepared by stacking two sheets. A type D durometer was used as the durometer.
 5.3 試作および評価結果
 5.3.1 実験例1
 シリコーンバインダー(付加硬化型シリコーン)に超微粒子フィラーとしてフュームドシリカ、ミクロンサイズフィラーとして球状シリカおよび球状シリコーンレジンを分散させた、蛍光体非含有のシリコーン組成物からなるディスクを作製し、該ディスクの光拡散性を「白色度インデックス」を指標として評価した。
5.3 Trial manufacture and evaluation results 5.3.1 Experimental example 1
A disk made of a phosphor-free silicone composition in which fumed silica as an ultrafine filler and spherical silica and spherical silicone resin as micron-sized fillers are dispersed in a silicone binder (addition-curable silicone) is prepared. Light diffusivity was evaluated using the “whiteness index” as an index.
 ディスクの作製は、熱硬化性シリコーン組成物を、プレス成型機を用いて成型する方法で行った。成型時の圧力は50kg/cmとし、硬化条件は150℃、3分間とした。ディスクの直径は13mm、厚さは1mmとした。 The disk was produced by a method in which the thermosetting silicone composition was molded using a press molding machine. The pressure during molding was 50 kg / cm 2 , and the curing conditions were 150 ° C. and 3 minutes. The diameter of the disk was 13 mm and the thickness was 1 mm.
 下記表1に、16種類のサンプルS01~S16についての、原料に用いた熱硬化性シリコーン組成物の組成と、「白色度インデックス」の測定結果を示す。 Table 1 below shows the composition of the thermosetting silicone composition used as a raw material and the measurement results of the “whiteness index” for 16 types of samples S01 to S16.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 16種類のサンプルのうち、サンプルS01~S09はシリコーンバインダーとフュームドシリカの混合比が略等しく(シリコーン100重量部に対しフュームドシリカ13~14重量部)、かつ、シリコーンバインダーの体積百分率も略一定(43~44%)である。したがって、サンプルS01~S09の間における「白色度インデックス」の違いは、ミクロンサイズフィラー(球状シリカと球状シリコーンレジン)に占める球状シリカの体積比の違いによるものといえる。 Of the 16 samples, samples S01 to S09 have substantially the same mixing ratio of the silicone binder and fumed silica (13 to 14 parts by weight of fumed silica with respect to 100 parts by weight of silicone), and the volume percentage of the silicone binder is also approximately Constant (43-44%). Therefore, it can be said that the difference in the “whiteness index” between the samples S01 to S09 is due to the difference in the volume ratio of the spherical silica in the micron size filler (spherical silica and spherical silicone resin).
 そのサンプルS01~S09における「白色度インデックス」とミクロンサイズフィラーに占める球状シリカの体積比との関係をプロットしたグラフが図1である。図1によれば、ミクロンサイズフィラーに占める球状シリカの体積比の増加とともに、「白色度インデックス」が直線的に増加していることが判る。この結果は、主として球状シリカが光拡散剤として作用していることを明白に示している。 FIG. 1 is a graph plotting the relationship between the “whiteness index” and the volume ratio of spherical silica in the micron-sized filler in the samples S01 to S09. As can be seen from FIG. 1, the “whiteness index” increases linearly as the volume ratio of spherical silica in the micron-size filler increases. This result clearly shows that mainly spherical silica is acting as a light diffusing agent.
 サンプルS10~15について見ると、サンプルS10~S14は、シリコーンバインダーとフュームドシリカの混合比が略等しく(シリコーン100重量部に対しフュームドシリカ19重量部)、かつ、シリコーンバインダーの体積百分率が略一定(45~46%)であり、ミクロンサイズフィラー(球状シリカと球状シリコーンレジン)に占める球状シリカの体積比のみが異なっている。 Looking at Samples S10 to S15, Samples S10 to S14 have substantially the same mixing ratio of silicone binder and fumed silica (19 parts by weight of fumed silica with respect to 100 parts by weight of silicone), and the volume percentage of silicone binder is approximately It is constant (45 to 46%), and only the volume ratio of spherical silica in the micron size filler (spherical silica and spherical silicone resin) is different.
 一方、サンプルS15とS16は、シリコーンバインダーの体積百分率(45~46%)と、ミクロンサイズフィラーに占める球状シリカの体積比(17%)がサンプルS14と同じであるが、シリコーンバインダーとフュームドシリカの混合比が異なっている(シリコーン100重量部に対してフュームドシリカがS14では19重量部、S15では22重量部、S16では25重量部)。 Samples S15 and S16, on the other hand, have the same silicone binder volume percentage (45-46%) and spherical silica volume ratio (17%) in the micron-sized filler as sample S14, but the silicone binder and fumed silica. (The fumed silica is 19 parts by weight for S14, 22 parts by weight for S15, and 25 parts by weight for S16 with respect to 100 parts by weight of silicone).
 図2は、図1のグラフに対してサンプルS10~S16の結果を追加的にプロットしたものである。サンプルS10~S16においても、「白色度インデックス」とミクロンサイズフィラーに占める球状シリカの体積比との関係は、サンプルS01~S09におけるそれと略同じであることが判る。この結果は、フュームドシリカがシリコーン組成物の光拡散性に対して実質的に影響していないことを示している。 FIG. 2 is an additional plot of the results of samples S10 to S16 with respect to the graph of FIG. Also in samples S10 to S16, it can be seen that the relationship between the “whiteness index” and the volume ratio of spherical silica in the micron size filler is substantially the same as that in samples S01 to S09. This result indicates that fumed silica has substantially no effect on the light diffusibility of the silicone composition.
 5.3.2 実験例2
 表1のサンプルS05(「白色度インデックス」が18.2)の組成をベースとして蛍光体を添加した熱硬化性シリコーン組成物を用いて、厚さ1mm、直径60mmのディスク形波長変換コンポーネントをプレス成型法により作製した。そして、その波長変換コンポーネントを青色LEDと組み合わせて相関色温度約4000Kのリモート・フォスファー型白色発光装置を作製した。
5.3.2 Experimental Example 2
A disk-shaped wavelength conversion component having a thickness of 1 mm and a diameter of 60 mm is pressed using a thermosetting silicone composition to which a phosphor is added based on the composition of sample S05 in Table 1 (“whiteness index” is 18.2). It was produced by a molding method. Then, the wavelength conversion component was combined with a blue LED to produce a remote phosphor type white light emitting device having a correlated color temperature of about 4000K.
 使用した蛍光体は、黄色蛍光体のYAG(YAG:Ce)、緑色蛍光体のβサイアロン(βサイアロン:Eu)、赤色蛍光体のSCASN[(Sr,Ca)AlSiN:Eu]である。作製した熱硬化性シリコーン組成物における各材料の使用量は、YAG:1.01g、βサイアロン:2.35g、SCASN:0.64g、付加硬化型シリコーン:32.5g、フュームドシリカ:4.4g、球状シリカ:14.8g、球状シリコーンレジン:44.3gである。この組成物における蛍光体の含有量は4.0wt%である。 The phosphors used are yellow phosphor YAG (YAG: Ce), green phosphor β sialon (β sialon: Eu), and red phosphor SCASN [(Sr, Ca) AlSiN 3 : Eu]. The amount of each material used in the produced thermosetting silicone composition was as follows: YAG: 1.01 g, β sialon: 2.35 g, SCASN: 0.64 g, addition-curable silicone: 32.5 g, fumed silica: 4. 4 g, spherical silica: 14.8 g, spherical silicone resin: 44.3 g. The phosphor content in this composition is 4.0 wt%.
 得られた白色発光装置の演色評価数(Ra)は82であった。 The color rendering index (Ra) of the obtained white light emitting device was 82.
 5.3.3 実験例3
 表1のサンプルS08(「白色度インデックス」が21.4)の組成をベースとして蛍光体を添加した熱硬化性シリコーン組成物を用いて、厚さ1mm、直径60mmのディスク形波長変換コンポーネントをプレス成型法により作製した。そして、その波長変換コンポーネントを青色LEDと組み合わせて相関色温度約4000Kのリモート・フォスファー型白色発光装置を作製した。
5.3.3 Experimental Example 3
A disk-shaped wavelength conversion component having a thickness of 1 mm and a diameter of 60 mm was pressed using a thermosetting silicone composition to which a phosphor was added based on the composition of sample S08 in Table 1 (“whiteness index” was 21.4). It was produced by a molding method. Then, the wavelength conversion component was combined with a blue LED to produce a remote phosphor type white light emitting device having a correlated color temperature of about 4000K.
 使用した蛍光体は上記実験例2と同じである。作製した熱硬化性シリコーン組成物における各材料の使用量は、YAG:0.88g、βサイアロン:2.06g、SCASN:0.56g、付加硬化型シリコーン:32.0g、フュームドシリカ:4.3g、球状シリカ:19.8g、球状シリコーンレジン:40.4gである。この組成物における蛍光体の含有量は3.5wt%である。 The phosphor used is the same as in Experimental Example 2 above. The amount of each material used in the produced thermosetting silicone composition was as follows: YAG: 0.88 g, β sialon: 2.06 g, SCASN: 0.56 g, addition-curable silicone: 32.0 g, fumed silica: 4. 3 g, spherical silica: 19.8 g, spherical silicone resin: 40.4 g. The phosphor content in this composition is 3.5 wt%.
 得られた白色発光装置の演色評価数(Ra)は82であった。この白色発光装置の明るさは実験例2で得たものと略同じであった。 The color rendering index (Ra) of the obtained white light emitting device was 82. The brightness of this white light emitting device was substantially the same as that obtained in Experimental Example 2.
 5.3.4 実験例4
 付加硬化型シリコーン:350g、フュームドシリカ:67g、球状シリカ:145gおよび球状シリコーンレジン:438gを混合して作製した熱硬化性シリコーン組成物から、液状インジェクションモールド法によって直径60mm、厚さ1mm(設計値)の蛍光体を含まないディスクを作製した。作製した熱硬化性シリコーン組成物のフィラー含有量は、付加硬化型シリコーン100重量部に対してフュームドシリカが19重量部、球状シリカが41重量部、球状シリコーンレジンが125重量部である。
5.3.4 Experimental Example 4
Addition-curable silicone: 350 g, fumed silica: 67 g, spherical silica: 145 g, and spherical silicone resin: 438 g. Value) phosphor was not produced. The filler content of the produced thermosetting silicone composition is 19 parts by weight of fumed silica, 41 parts by weight of spherical silica, and 125 parts by weight of spherical silicone resin with respect to 100 parts by weight of addition-curable silicone.
 この熱硬化性シリコーン組成物の粘度測定の結果を下記表2に示す。 The results of viscosity measurement of this thermosetting silicone composition are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 液状インジェクションモールディングにおける金型温度は150~200℃の範囲内で、金型への充填時間は0.1秒~1秒、金型内での樹脂硬化時間は10秒~数分の間で、射出圧は0.5~2tの間で、それぞれ調節した。 The mold temperature in the liquid injection molding is in the range of 150 to 200 ° C, the filling time into the mold is 0.1 second to 1 second, and the resin curing time in the mold is between 10 seconds to several minutes. The injection pressure was adjusted between 0.5 and 2t.
 作製したディスクから2枚を選んで、その厚さを各5箇所で測定したところ、1.08~1.12mmであり、平均値は1.09mmであった。また、作製したディスクから3枚を選んでそれぞれの「白色度インデックス」と波長450nmにおける拡散反射率を測定したところ、「白色度インデックス」は19.7、19.4および19.3であり、拡散反射率は16.9、16.5および16.7であった。 When two discs were selected from the manufactured discs and the thicknesses were measured at five locations, the thickness was 1.08 to 1.12 mm, and the average value was 1.09 mm. In addition, when three discs were selected from the manufactured discs and the “whiteness index” and the diffuse reflectance at a wavelength of 450 nm were measured, the “whiteness index” was 19.7, 19.4, and 19.3. The diffuse reflectance was 16.9, 16.5, and 16.7.
 5.3.5 実験例5
 付加硬化型シリコーン:329g、フュームドシリカ:72g、球状シリカ:132g、球状シリコーンレジン:405gおよびYAG蛍光体:62gを混合して作製した熱硬化性シリコーン組成物から、液状インジェクションモールド法によって直径60mm、厚さ1mm(設計値)のディスク状の波長変換コンポーネントを作製した。作製した波長変換コンポーネント中のフィラーおよび蛍光体の含有量は、付加硬化型シリコーン100重量部に対してフュームドシリカが22重量部、球状シリカが40重量部、球状シリコーンレジンが123重量部、YAG蛍光体が19重量部である。
5.3.5 Experimental Example 5
Addition-curable silicone: 329 g, fumed silica: 72 g, spherical silica: 132 g, spherical silicone resin: 405 g, and YAG phosphor: 62 g. A disk-shaped wavelength conversion component having a thickness of 1 mm (design value) was produced. The content of the filler and phosphor in the prepared wavelength conversion component is 22 parts by weight of fumed silica, 40 parts by weight of spherical silica, 123 parts by weight of spherical silicone resin, and 100 parts by weight of YAG. The phosphor is 19 parts by weight.
 この硬化性シリコーン組成物の粘度測定の結果を下記表3に示す。 The results of viscosity measurement of this curable silicone composition are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この硬化性シリコーン組成物の硬化物のデュロメータ硬さはHDD36であった。液状インジェクションモールディングの条件は、上記実験例4と同様にして調整した。 The durometer hardness of the cured product of this curable silicone composition was HDD36. The conditions for liquid injection molding were adjusted in the same manner as in Experimental Example 4 above.
 作製した複数の波長変換コンポーネントの間には厚さのバラツキが生じたが、1枚の中の面内3箇所で測定した膜厚の平均値が0.97~0.99mmの範囲内となった18枚の波長変換コンポーネントについて見ると、下記表4に示すように、3箇所の膜厚の最大値と最小値の差は3%以下であった。 Although there was a variation in thickness between the manufactured wavelength conversion components, the average value of the film thickness measured at three locations within one surface was within the range of 0.97 to 0.99 mm. Looking at the 18 wavelength conversion components, as shown in Table 4 below, the difference between the maximum value and the minimum value of the film thickness at three locations was 3% or less.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4には、また、この18枚の波長変換コンポーネントのそれぞれについて、青色LEDと組み合わせて白色発光装置を構成したときの、その白色発光装置の相関色温度およびxy色度座標値を併せて示している。白色発光装置を構成する際に用いた波長変換コンポーネント以外の部品(青色LEDを含む)は同一である。表4に示すように、相関色温度は4007~4024Kという範囲に収まり、色度座標値の変動幅はx軸方向で0.001、y軸方向で0.002であった。 Table 4 also shows the correlated color temperature and xy chromaticity coordinate values of each of the 18 wavelength conversion components when a white light emitting device is configured in combination with a blue LED. ing. Parts (including blue LEDs) other than the wavelength conversion component used when configuring the white light emitting device are the same. As shown in Table 4, the correlated color temperature was in the range of 4007 to 4024 K, and the fluctuation range of the chromaticity coordinate value was 0.001 in the x-axis direction and 0.002 in the y-axis direction.
 5.3.6 実験例6
 シリコーンバインダーにフュームドシリカ、球状シリカおよび球状シリコーンレジンを分散させた、蛍光体を含有しない熱硬化性シリコーン組成物を作製し、該シリコーン組成物の硬化物の硬度と、該シリコーン組成物から作製したディスクの「白色度インデックス」を測定した。ディスクの作製は上記実験例1と同様にして行った。
5.3.6 Experimental Example 6
A thermosetting silicone composition containing no phosphor is prepared by dispersing fumed silica, spherical silica and spherical silicone resin in a silicone binder, and the hardness of the cured product of the silicone composition and the silicone composition are prepared. The “whiteness index” of the disc was measured. The disc was produced in the same manner as in Experimental Example 1 above.
 硬化前のシリコーン組成物の組成および粘度と、硬化物の硬度および「白色度インデックス」の測定結果を下記表5に示す。 Table 5 below shows the composition and viscosity of the silicone composition before curing, the hardness of the cured product, and the "whiteness index".
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、サンプルNo.1~4のシリコーン組成物はデュロメータ硬さがHDD40に近い硬化物を与えた。これらの組成物では付加硬化型シリコーンバインダー100重量部に対する球状シリコーンレジンの添加量が120重量部以上である。 As shown in Table 5, sample no. The silicone compositions 1 to 4 gave a cured product having a durometer hardness close to that of the HDD 40. In these compositions, the addition amount of the spherical silicone resin with respect to 100 parts by weight of the addition-curable silicone binder is 120 parts by weight or more.
 それに対し、フュームドシリカと球状シリカを含有するが球状シリコーンレジンを含有しないサンプルNo.5と、フィラーがフュームドシリカのみであるサンプルNo.6のシリコーン組成物では、硬化物のデュロメータ硬さがHDD20以下となった。また、サンプルNo.7のシリコーン組成物は、サンプルNo.1~4に比べると球状シリコーンレジンの含有量が少ないが、デュロメータ硬さがHDD29の硬化物を与えた。 In contrast, Sample No. containing fumed silica and spherical silica but not containing spherical silicone resin. 5 and Sample No. in which the filler is only fumed silica. In the silicone composition of No. 6, the durometer hardness of the cured product was HDD20 or less. Sample No. The silicone composition of No. 7 is sample no. Compared with 1-4, the spherical silicone resin content was small, but a durometer hardness of HDD29 was obtained.
 また、サンプルNo.1、2、4および7の熱硬化性シリコーン組成物は、せん断速度120/sで温度25℃°のときの粘度が500Pa・s未満であり、インジェクションモールディングやトランスファーモールディングに好適な粘性を備えていた。それに対して、シリコーンバインダーにフュームドシリカのみを高濃度に添加したサンプルNo.6の熱硬化性シリコーン組成物の粘度は、751Pa・sという比較的高い値であった。 Sample No. The thermosetting silicone compositions 1, 2, 4 and 7 have a viscosity of less than 500 Pa · s at a shear rate of 120 / s and a temperature of 25 ° C., and are suitable for injection molding and transfer molding. It was. On the other hand, sample No. 1 in which only fumed silica was added at a high concentration to the silicone binder. The thermosetting silicone composition No. 6 had a relatively high viscosity of 751 Pa · s.
 5.3.7 実験例7
 この実験では球状シリコーンレジンとして、上記各実験で使用したd50(メジアン径)6.0μmのものに加え、d50(メジアン径)2.0μmの真球状ポリメチルシルセスキオキサン粒子を用いた。この2種類の球状シリコーンレジンを用いて上記実験例1と同様に蛍光体を含有しない熱硬化性シリコーン組成物を作製し、せん断速度120/sで温度25℃°のときの粘度を測定するとともに、該シリコーン組成物を硬化させて得たディスクの「白色度インデックス」を測定した。
5.3.7 Experimental Example 7
In this experiment, as the spherical silicone resin, in addition to the d50 (median diameter) of 6.0 μm used in each of the above experiments, true spherical polymethylsilsesquioxane particles having a d50 (median diameter) of 2.0 μm were used. Using these two types of spherical silicone resins, a thermosetting silicone composition containing no phosphor was prepared in the same manner as in Experimental Example 1, and the viscosity at a shear rate of 120 / s and a temperature of 25 ° C. was measured. The “whiteness index” of the disk obtained by curing the silicone composition was measured.
 結果を表6に示す。 The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、d50(メジアン径)が6.0μmの球状シリコーンレジンのみを含有するサンプルNo.1および2の熱硬化性シリコーン組成物と比較すると、d50(メジアン径)が2.0μmの球状シリコーンレジンのみを含有するサンプルNo.3~5の熱硬化性シリコーン組成物は粘度が高く、また、硬化物の「白色度インデックス」も高い値となった。 As shown in Table 6, Sample No. containing only a spherical silicone resin having a d50 (median diameter) of 6.0 μm. Compared with the thermosetting silicone compositions of Nos. 1 and 2, sample No. 1 containing only a spherical silicone resin having a d50 (median diameter) of 2.0 μm. The thermosetting silicone compositions of 3 to 5 had a high viscosity, and the “whiteness index” of the cured product was also high.
 サンプルNo.6の熱硬化性シリコーン組成物には、球状シリコーンレジンとしてd50(メジアン径)が6.0μmのものと2.0μmのものの両方が添加され、更に球状シリカが添加されているが、その硬化物の「白色度インデックス」はサンプルNo.5のシリコーン組成物と比べて低かった。バインダー100重量部あたりの球状シリコーンレジンの添加量の総量はサンプルNo.6の組成物の方が多いにも拘わらずである。これは、サンプルNo.5の組成物の方が、d50(メジアン径)2.0μmの球状シリコーンレジンの含有量が多かったためと考えられる。 Sample No. In the thermosetting silicone composition of No. 6, both spherical silicone resins having a d50 (median diameter) of 6.0 μm and 2.0 μm are added, and spherical silica is further added. The “whiteness index” of Sample No. 5 compared to the silicone composition. The total amount of the spherical silicone resin added per 100 parts by weight of the binder was determined as Sample No. Even though the composition of 6 is more. This is sample no. This is probably because the composition of No. 5 had a higher content of spherical silicone resin having a d50 (median diameter) of 2.0 μm.
 5.3.8 実験例8
 付加硬化型シリコーン100重量部に対してフュームドシリカを28重量部、球状シリカを54重量部、球状シリコーンレジン(平均粒子径6.0μm)を97重量部、蛍光体(YAG、βサイアロン、SCASNを含む)を20重量部の比率で添加した熱硬化性シリコーン組成物を約3.2kg作製した。このシリコーン組成物の硬化物のデュロメータ硬さはHDD36であった。
5.3.8 Experimental Example 8
28 parts by weight of fumed silica, 54 parts by weight of spherical silica, 97 parts by weight of spherical silicone resin (average particle diameter 6.0 μm), phosphor (YAG, β sialon, SCASN) with respect to 100 parts by weight of addition-curable silicone About 3.2 kg of a thermosetting silicone composition was added. The durometer hardness of the cured product of this silicone composition was HDD36.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2012年7月27日付で出願された日本特許出願(特願2012-167550)、2012年9月18日付で出願された日本特許出願(特願2012-204381)ならびに2013年1月31日付で出願された日本特許出願(特願2013-017484)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention. The present application includes a Japanese patent application filed on July 27, 2012 (Japanese Patent Application No. 2012-167550), a Japanese patent application filed on September 18, 2012 (Japanese Patent Application No. 2012-204381), and 2013 This is based on a Japanese patent application (Japanese Patent Application No. 2013-017844) filed on May 31, and is incorporated by reference in its entirety.
1 ケース
2 青色LED
3 波長変換コンポーネント
10 リモート・フォスファー型LED装置
1 Case 2 Blue LED
3 Wavelength conversion component 10 Remote phosphor type LED device

Claims (17)

  1.  シリコーンバインダー中に蛍光体およびフィラーが分散されてなるシリコーン組成物からなるモールド成形体である波長変換コンポーネントであって、
     該フィラーは粒子径が1μm以上である球状シリコーンレジンを含み、
     該球状シリコーンレジンの含有量が該シリコーンバインダー100重量部に対して50重量部以上である、
    波長変換コンポーネント。
    A wavelength conversion component that is a molded body made of a silicone composition in which a phosphor and a filler are dispersed in a silicone binder,
    The filler includes a spherical silicone resin having a particle size of 1 μm or more,
    The spherical silicone resin content is 50 parts by weight or more with respect to 100 parts by weight of the silicone binder.
    Wavelength conversion component.
  2.  前記シリコーン組成物のデュロメータ硬さがHDD25以上である、請求項1に記載の波長変換コンポーネント。 The wavelength conversion component according to claim 1, wherein the durometer hardness of the silicone composition is HDD25 or more.
  3.  シリコーンバインダー中に蛍光体およびフィラーが分散されてなるシリコーン組成物からなるモールド成形体である波長変換コンポーネントであって、
     該シリコーンバインダーはデュロメータ硬さがHDD20以下のエラストマーであり、
     該フィラーは粒子径が1μm以上の球状シリコーンレジンを含有し、
     該シリコーン組成物のデュロメータ硬さがHDD25以上である、
    波長変換コンポーネント。
    A wavelength conversion component that is a molded body made of a silicone composition in which a phosphor and a filler are dispersed in a silicone binder,
    The silicone binder is an elastomer having a durometer hardness of HDD20 or less,
    The filler contains a spherical silicone resin having a particle size of 1 μm or more,
    The durometer hardness of the silicone composition is HDD25 or more,
    Wavelength conversion component.
  4.  前記シリコーンバインダーと前記球状シリコーンレジンとの屈折率差が0.05未満である、請求項1~3のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of claims 1 to 3, wherein a difference in refractive index between the silicone binder and the spherical silicone resin is less than 0.05.
  5.  前記シリコーンバインダーおよび前記球状シリコーンレジンがいずれもシリカより低い屈折率を有する、請求項1~4のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of claims 1 to 4, wherein each of the silicone binder and the spherical silicone resin has a refractive index lower than that of silica.
  6.  前記シリコーンバインダーはポリジメチルシロキサンが架橋された構造を有しており、前記球状シリコーンレジンはポリアルキルシルセスキオキサン構造を有する、請求項1~5のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of claims 1 to 5, wherein the silicone binder has a structure in which polydimethylsiloxane is crosslinked, and the spherical silicone resin has a polyalkylsilsesquioxane structure.
  7.  前記フィラーが粒子径3μm以下の球状シリコーンレジンを含有しない、請求項1~6のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of claims 1 to 6, wherein the filler does not contain a spherical silicone resin having a particle diameter of 3 µm or less.
  8.  前記フィラーが更に球状シリカを含む、請求項1~7のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of claims 1 to 7, wherein the filler further contains spherical silica.
  9.  前記球状シリカが溶融シリカを含む、請求項8に記載の波長変換コンポーネント。 The wavelength conversion component according to claim 8, wherein the spherical silica includes fused silica.
  10.  前記球状シリカの含有量が、前記シリコーンバインダー100重量部に対して5重量部以上80重量部以下である、請求項8または9に記載の波長変換コンポーネント。 The wavelength conversion component according to claim 8 or 9, wherein the content of the spherical silica is 5 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the silicone binder.
  11.  前記フィラーが更にフュームドシリカを含む、請求項1~10のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of Claims 1 to 10, wherein the filler further contains fumed silica.
  12.  前記シリコーン組成物のデュロメータ硬さがHDD35以上である、請求項1~11のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of claims 1 to 11, wherein the durometer hardness of the silicone composition is HDD35 or more.
  13.  前記モールド成形体が、せん断速度120/s、温度25℃における粘度が100Pa・s以上、1000Pa・s未満であるシリコーン組成物のモールド成形体である、請求項1~12のいずれか一項に記載の波長変換コンポーネント。 The molded body according to any one of claims 1 to 12, wherein the molded body is a molded body of a silicone composition having a shear rate of 120 / s and a viscosity at a temperature of 25 ° C of 100 Pa · s or more and less than 1000 Pa · s. The described wavelength conversion component.
  14.  直径5~7cmかつ厚さ0.5~1mmのディスクである、請求項1~13のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of claims 1 to 13, which is a disc having a diameter of 5 to 7 cm and a thickness of 0.5 to 1 mm.
  15.  直径2~3cmかつ厚さ0.2~0.5mmのディスクである、請求項1~13のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of claims 1 to 13, which is a disc having a diameter of 2 to 3 cm and a thickness of 0.2 to 0.5 mm.
  16.  直径および高さ1~5cmかつ厚さ0.5~2mmの半球形ドームである、請求項1~13のいずれか一項に記載の波長変換コンポーネント。 The wavelength conversion component according to any one of claims 1 to 13, which is a hemispherical dome having a diameter and height of 1 to 5 cm and a thickness of 0.5 to 2 mm.
  17.  発光ピーク波長を440~470nmの範囲内に有するLEDが発する第一の光の一部が透過可能であり、かつ、該第一の光の他の一部を該第一の光の色とは補色の関係にある色を有する第二の光に変換することができる、請求項1~16のいずれか一項に記載の波長変換コンポーネント。 A part of the first light emitted by the LED having an emission peak wavelength in the range of 440 to 470 nm can be transmitted, and the other part of the first light is the color of the first light. The wavelength conversion component according to any one of claims 1 to 16, wherein the wavelength conversion component can be converted into a second light having a complementary color relationship.
PCT/JP2013/069945 2012-07-27 2013-07-23 Wavelength-conversion component for semiconductor light-emitting device, method for manufacturing wavelength-conversion component for semiconductor light-emitting device, and thermosetting silicone composition WO2014017501A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012167550 2012-07-27
JP2012-167550 2012-07-27
JP2012204381 2012-09-18
JP2012-204381 2012-09-18
JP2013017484A JP2015181140A (en) 2012-07-27 2013-01-31 Wavelength conversion component for semiconductor light emitting device, method for producing the same, and thermosetting silicone composition
JP2013-017484 2013-01-31

Publications (1)

Publication Number Publication Date
WO2014017501A1 true WO2014017501A1 (en) 2014-01-30

Family

ID=49997310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069945 WO2014017501A1 (en) 2012-07-27 2013-07-23 Wavelength-conversion component for semiconductor light-emitting device, method for manufacturing wavelength-conversion component for semiconductor light-emitting device, and thermosetting silicone composition

Country Status (3)

Country Link
JP (1) JP2015181140A (en)
TW (1) TW201414019A (en)
WO (1) WO2014017501A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141742A (en) * 2015-02-02 2016-08-08 富士フイルム株式会社 Phosphor dispersion composition and fluorescent molded body obtained by using the same, wavelength conversion film, wavelength conversion member, backlight unit, and liquid crystal display device
WO2017033426A1 (en) * 2015-08-25 2017-03-02 デクセリアルズ株式会社 Wavelength conversion member, fluorescent sheet, white light source device, and display device
JP2019214741A (en) * 2019-09-05 2019-12-19 デクセリアルズ株式会社 Wavelength conversion member, phosphor sheet, white light source device, and display device
CN111149432A (en) * 2017-09-20 2020-05-12 美题隆精密光学(上海)有限公司 Fluorescent wheel with inorganic binder

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6805505B2 (en) * 2015-03-05 2020-12-23 日亜化学工業株式会社 Light emitting device
TWI735496B (en) * 2015-12-22 2021-08-11 日商琳得科股份有限公司 Curable composition, production method of curable composition, cured product and use method of curable composition
JP7049769B2 (en) * 2017-02-22 2022-04-07 株式会社本田電子技研 Sensor for automatic door open / close control
WO2018155253A1 (en) * 2017-02-23 2018-08-30 東レ株式会社 Phosphor sheet, led chip using same, led package using same, method for producing led package, and light emitting device, backlight unit and display, each of which comprises said led package
US11335835B2 (en) 2017-12-20 2022-05-17 Lumileds Llc Converter fill for LED array
WO2019158648A1 (en) 2018-02-19 2019-08-22 Signify Holding B.V. Sealed device with light engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321832A (en) * 2005-05-17 2006-11-30 Konishi Kagaku Ind Co Ltd Resin composition for sealing optical semiconductor and optical semiconductor device using the same
JP2007131758A (en) * 2005-11-11 2007-05-31 Kaneka Corp Silicone-based composition containing silicone-based polymer particle
JP2009173694A (en) * 2008-01-21 2009-08-06 Kaneka Corp Silicone-based polymer particle and curable resin composition containing the particle
WO2009157288A1 (en) * 2008-06-25 2009-12-30 シャープ株式会社 Light-emitting device and method for producing same
JP2013021284A (en) * 2011-06-14 2013-01-31 Nitto Denko Corp Sealing sheet and optical semiconductor element device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321832A (en) * 2005-05-17 2006-11-30 Konishi Kagaku Ind Co Ltd Resin composition for sealing optical semiconductor and optical semiconductor device using the same
JP2007131758A (en) * 2005-11-11 2007-05-31 Kaneka Corp Silicone-based composition containing silicone-based polymer particle
JP2009173694A (en) * 2008-01-21 2009-08-06 Kaneka Corp Silicone-based polymer particle and curable resin composition containing the particle
WO2009157288A1 (en) * 2008-06-25 2009-12-30 シャープ株式会社 Light-emitting device and method for producing same
JP2013021284A (en) * 2011-06-14 2013-01-31 Nitto Denko Corp Sealing sheet and optical semiconductor element device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101999157B1 (en) * 2015-02-02 2019-07-11 후지필름 가부시키가이샤 A phosphor dispersing composition, and a fluorescent molded article, a wavelength converting film, a wavelength converting member, a backlight unit, a liquid crystal display
WO2016125481A1 (en) * 2015-02-02 2016-08-11 富士フイルム株式会社 Fluorophor dispersion composition and fluorescent molded article obtained using same, wavelength-converting film, wavelength-converting member, backlight unit, liquid crystal display
US10619092B2 (en) 2015-02-02 2020-04-14 Fujifilm Corporation Wavelength conversion film
JP2016141742A (en) * 2015-02-02 2016-08-08 富士フイルム株式会社 Phosphor dispersion composition and fluorescent molded body obtained by using the same, wavelength conversion film, wavelength conversion member, backlight unit, and liquid crystal display device
KR20170102507A (en) * 2015-02-02 2017-09-11 후지필름 가부시키가이샤 A phosphor dispersing composition, and a fluorescent molded article, a wavelength converting film, a wavelength converting member, a backlight unit, a liquid crystal display
JP2017043682A (en) * 2015-08-25 2017-03-02 デクセリアルズ株式会社 Wavelength conversion member, phosphor sheet, white light source device, and display device
EP3343648A4 (en) * 2015-08-25 2019-03-27 Dexerials Corporation Wavelength conversion member, fluorescent sheet, white light source device, and display device
CN107924975A (en) * 2015-08-25 2018-04-17 迪睿合电子材料有限公司 Wavelength convert component, phosphor plates, white light source device and display device
WO2017033426A1 (en) * 2015-08-25 2017-03-02 デクセリアルズ株式会社 Wavelength conversion member, fluorescent sheet, white light source device, and display device
CN111149432A (en) * 2017-09-20 2020-05-12 美题隆精密光学(上海)有限公司 Fluorescent wheel with inorganic binder
US11578264B2 (en) 2017-09-20 2023-02-14 Materion Precision Optics (Shanghai) Limited Phosphor wheel with inorganic binder
CN111149432B (en) * 2017-09-20 2023-05-12 美题隆精密光学(上海)有限公司 Fluorescent wheel with inorganic binder
JP2019214741A (en) * 2019-09-05 2019-12-19 デクセリアルズ株式会社 Wavelength conversion member, phosphor sheet, white light source device, and display device

Also Published As

Publication number Publication date
TW201414019A (en) 2014-04-01
JP2015181140A (en) 2015-10-15

Similar Documents

Publication Publication Date Title
WO2014017501A1 (en) Wavelength-conversion component for semiconductor light-emitting device, method for manufacturing wavelength-conversion component for semiconductor light-emitting device, and thermosetting silicone composition
JP6217831B2 (en) Material for resin molded body and method for producing resin molded body
US9318670B2 (en) Materials for photoluminescence wavelength converted solid-state light emitting devices and arrangements
JP2012256651A (en) Resin package for semiconductor light-emitting device and manufacturing method therefor and semiconductor light-emitting device having resin package
JP5760655B2 (en) RESIN PACKAGE FOR SEMICONDUCTOR LIGHT EMITTING DEVICE, SEMICONDUCTOR LIGHT EMITTING DEVICE HAVING THE RESIN PACKAGE AND METHOD FOR MANUFACTURING THE SAME
JP5919903B2 (en) Package for semiconductor light emitting device, semiconductor light emitting device having the package, and method for manufacturing the same
TW201203619A (en) Package for semiconductor light-emitting device and semiconductor light-emitting device
JP5821316B2 (en) Manufacturing method of resin package for semiconductor light emitting device and manufacturing method of semiconductor light emitting device having the resin package for semiconductor light emitting device
JP2013004923A (en) Post attached reflector for semiconductor light-emitting device, resin package for semiconductor light-emitting device, and semiconductor light-emitting device
JP2014116587A (en) Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
JP2013183013A (en) Package sheet for semiconductor light emitting device, manufacturing method of the same, package for semiconductor light emitting device, manufacturing method of package for semiconductor light emitting device, and semiconductor light emitting device
JP2018041860A (en) Wavelength conversion sheet, sheet covering element, and optical semiconductor device
JP5738541B2 (en) Optical semiconductor device
JP2013004905A (en) Semiconductor light-emitting device package and semiconductor light-emitting device
JP2014078691A (en) Wavelength conversion component for semiconductor light-emitting device and semiconductor light-emitting device
TW201813139A (en) Photosemiconductor element with reflection layer and phosphor layer
US20100213490A1 (en) Sealing composition for light emitting device and light emitting device including the same
JP2013213133A (en) Adhesive composition for led device
JP5834519B2 (en) Material for resin molded body for semiconductor light emitting device and molded body thereof
JP2012134362A (en) Semiconductor light-emitting device package and light-emitting device
JP2016184751A (en) Sealing material for LED element
JP2014084427A (en) Wavelength conversion component for semiconductor light emitting device
JP6435594B2 (en) Silicone resin composition
TWI789736B (en) Thermosetting silicone composition, sheet, and silicone cured product
JP6510468B2 (en) Curable silicone resin composition and method of preparing curable silicone resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP