WO2018155253A1 - Phosphor sheet, led chip using same, led package using same, method for producing led package, and light emitting device, backlight unit and display, each of which comprises said led package - Google Patents

Phosphor sheet, led chip using same, led package using same, method for producing led package, and light emitting device, backlight unit and display, each of which comprises said led package Download PDF

Info

Publication number
WO2018155253A1
WO2018155253A1 PCT/JP2018/004863 JP2018004863W WO2018155253A1 WO 2018155253 A1 WO2018155253 A1 WO 2018155253A1 JP 2018004863 W JP2018004863 W JP 2018004863W WO 2018155253 A1 WO2018155253 A1 WO 2018155253A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
phosphor
phosphor sheet
led chip
led package
Prior art date
Application number
PCT/JP2018/004863
Other languages
French (fr)
Japanese (ja)
Inventor
石田豊
神崎達也
長瀬亮
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018508771A priority Critical patent/JP6863367B2/en
Priority to KR1020197023319A priority patent/KR102215781B1/en
Priority to CN201880012963.XA priority patent/CN110312954B/en
Publication of WO2018155253A1 publication Critical patent/WO2018155253A1/en

Links

Images

Classifications

    • H01L33/502
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • H01L27/156
    • H01L33/50
    • H01L33/505

Definitions

  • the present invention relates to a phosphor sheet, an LED chip and an LED package using the phosphor sheet, a method for manufacturing the LED package, and a light emitting device including the LED package, a backlight unit, and a display.
  • LEDs Light-emitting diodes
  • LCD Liquid Crystal Display
  • the emission spectrum of an LED depends on the semiconductor material forming the LED chip, its emission color is limited. Therefore, in order to obtain white light for LCD backlight or general illumination using LEDs, it is necessary to dispose the inorganic phosphor suitable for each chip on the LED chip and convert the emission wavelength. Specifically, a method of installing a yellow phosphor on an LED chip that emits blue light, a method of installing a red phosphor and a green phosphor on an LED chip that emits blue light, and the like have been proposed.
  • a method of attaching a phosphor-containing sheet (hereinafter referred to as “phosphor sheet”) on the LED chip has been proposed (for example, Patent Documents 1 to 4).
  • This method has a constant amount of the phosphor disposed on the LED chip, compared to a method in which a phosphor composition in which a phosphor is dispersed in a resin is dispensed on the LED chip and cured. It is easy to make the quantity. As a result, it is excellent in that the color and brightness of the obtained white LED can be made uniform.
  • the phosphor sheet is required to have adhesiveness so as to be stuck on the LED chip.
  • Patent Document 4 by using a silicone composition containing a specific organopolysiloxane, it is excellent in processability before being attached to the LED chip, and is excellent in adhesiveness when being attached to the LED chip. It is disclosed that a phosphor sheet can be obtained. However, since this phosphor sheet has insufficient curability of the phosphor sheet after being attached to the LED chip, satisfactory adhesiveness has not been obtained. As a result, the LED chip to which the phosphor sheet is attached has a problem that the luminance is lowered due to poor adhesion.
  • an object of the present invention is to provide a phosphor sheet having both workability such as cutting and adhesion to an LED chip.
  • the present invention is a phosphor sheet containing a phosphor and a silicone resin, wherein the storage elastic modulus G ′ at 25 ° C. is 0.01 MPa or more, and the storage elastic modulus G ′ at 100 ° C. is less than 0.01 MPa. And a phosphor sheet having a storage elastic modulus G ′ at 140 ° C. of 0.05 MPa or more.
  • a phosphor sheet that is excellent in workability such as cutting and has good adhesion to an LED chip.
  • An example of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention An example of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention.
  • An example of the manufacturing method of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention An example of the sticking method of the fluorescent substance sheet which concerns on embodiment of this invention.
  • An example of the sticking method of the fluorescent substance sheet which concerns on embodiment of this invention An example of the sticking method of the fluorescent substance sheet which concerns on embodiment of this invention.
  • An example of the sticking method of the fluorescent substance sheet which concerns on embodiment of this invention An example of the sticking method of the fluorescent substance sheet which concerns on embodiment of this invention.
  • An example of the manufacturing method of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention An example of the manufacturing method of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention.
  • a phosphor sheet according to the present invention an LED chip and an LED package using the phosphor sheet, a method for manufacturing the LED package, and a light emitting device including the LED package, a backlight unit, and a display will be described in detail.
  • the present invention is not limited to the following embodiments, and can be implemented with various modifications according to the purpose and application.
  • the phosphor sheet according to the embodiment of the present invention includes a phosphor and a silicone resin, has a storage elastic modulus G ′ at 25 ° C. of 0.01 MPa or more, and a storage elastic modulus G ′ at 100 ° C. of less than 0.01 MPa. And the storage elastic modulus G ′ at 140 ° C. is 0.05 MPa or more.
  • the phosphor sheet according to the embodiment of the present invention is sufficiently elastic at room temperature (25 ° C.) because the storage elastic modulus G ′ at 25 ° C. is 0.01 MPa or more. For this reason, the phosphor sheet is cut without deformation around the cut portion against fast shearing stress such as cutting with a blade, and processability with high dimensional accuracy is obtained.
  • the upper limit of the storage elastic modulus G ′ at 25 ° C. is not particularly limited, but is preferably 2.0 MPa or less from the viewpoint of easy handling of the sample.
  • the phosphor sheet according to the embodiment of the present invention has a storage elastic modulus G ′ at 100 ° C. of less than 0.01 MPa, so that the sheet is sufficiently viscous at 100 ° C. and has high fluidity. For this reason, the phosphor sheet having this physical property is heated and heated at 100 ° C. or more to the LED chip, so that the phosphor sheet quickly flows and deforms according to the shape of the light emitting surface of the LED chip. High adhesion between the LED chip and the LED chip can be obtained. Thereby, the light extraction property from the LED chip is improved, and the luminance is improved.
  • the lower limit of the storage elastic modulus G ′ at 100 ° C. is not particularly limited. However, if the flowability of the phosphor sheet is too high at the time of heat pasting on the LED chip, it is processed by cutting or punching before pasting. Since the shape cannot be retained at the time of pasting, it is preferably 0.005 MPa or more.
  • the phosphor sheet according to the embodiment of the present invention has a storage elastic modulus G ′ at 140 ° C. of 0.05 MPa or more, so that the LED chip can finally be stably operated. If the phosphor sheet having this physical property is heated at 140 ° C. or higher, complete curing of the sheet is completed quickly and the entire resin is integrated, so that the adhesion between the phosphor sheet and the LED chip is improved. Thereby, the brightness of the LED package is also improved. Moreover, since it becomes difficult to receive the influence of the heat at the time of LED lighting in the interface part of a LED chip and a fluorescent substance sheet, peeling of a LED chip and a fluorescent substance sheet is suppressed. Therefore, the reliability of the LED package is increased.
  • the storage elastic modulus G ′ is the storage elastic modulus G ′ when the dynamic viscoelasticity measurement (temperature dependence) of the phosphor sheet is performed with a rheometer.
  • Dynamic viscoelasticity means that when shear strain is applied to a material at a sinusoidal frequency, the shear stress that appears when a steady state is reached is divided into a component (elastic component) whose strain and phase match, and the strain and phase are This is a technique for analyzing the dynamic mechanical properties of a material by decomposing it into components (viscous components) delayed by 90 °.
  • Dynamic viscoelasticity measurement (temperature dependency) can be measured using a general viscosity / viscoelasticity measuring device. In this invention, it is set as the value at the time of measuring on the following conditions.
  • Measuring device Viscosity and viscoelasticity measuring device HAAKE MARSIII (Thermo Fisher SCIENTIFIC made) Measurement conditions: OSC temperature-dependent measurement Geometry: Parallel disk type (20mm) Measurement time: 1980 seconds Angular frequency: 1 Hz Angular velocity: 6.2832 rad / sec Temperature range: 25 to 200 ° C (with low temperature control function) Temperature increase rate: 0.08333 ° C./second Sample shape: Circular (18 mm diameter) Sample thickness: 50 ⁇ m or more.
  • the dynamic viscoelasticity measurement can be stably performed.
  • the sample thickness is less than 50 ⁇ m, several films are stacked and heat-pressed on a 100 ° C. hot plate to produce an integrated film (sheet), and a sample with a desired thickness can be manufactured.
  • the storage elastic modulus G ′ is obtained by dividing the stress component whose phase matches the shear strain by the shear strain.
  • the storage elastic modulus G ′ represents the elasticity of the material against dynamic strain at each temperature and is related to the hardness of the phosphor sheet. Therefore, the storage elastic modulus G ′ at each measurement temperature affects the following characteristics regarding the phosphor sheet. For example, at 25 ° C., the storage elastic modulus G ′ affects the processability of the phosphor sheet, at 100 ° C. the fluidity and adhesion of the phosphor sheet, and at 140 ° C. Affects curability and adhesion.
  • the thickness of the phosphor sheet according to the embodiment of the present invention is not particularly limited, but is preferably 10 ⁇ m or more and 1000 ⁇ m or less. As a minimum, it is more preferable that it is 30 micrometers or more. As an upper limit, it is more preferable that it is 200 micrometers or less, It is still more preferable that it is 100 micrometers or less, It is further more preferable that it is 50 micrometers or less.
  • the thickness of the phosphor sheet is 1000 ⁇ m or less, the crack resistance is particularly excellent, and when it is 200 ⁇ m or less, the heat resistance is particularly excellent.
  • the phosphor sheet according to the embodiment of the present invention may be a laminate including other layers as necessary. Examples of other layers include a substrate and a barrier layer.
  • the phosphor sheet according to the embodiment of the present invention contains a silicone resin mainly from the viewpoint of transparency and heat resistance.
  • a curable silicone resin is preferable.
  • the curable silicone resin may be of one liquid type or two liquid type (three liquid type).
  • the curable silicone resin includes a dealcoholization type, a deoxime type, a deacetic acid type, a dehydroxylamine type and the like as a type that causes a condensation reaction with moisture in the air or a catalyst.
  • an addition reaction type silicone resin is more preferable because it has no by-products associated with the curing reaction, has a small curing shrinkage, and can easily be cured by heating.
  • the addition reaction type silicone resin is formed, for example, by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom.
  • Examples of the “compound containing an alkenyl group bonded to a silicon atom” include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane Etc.
  • Examples of the “compound having a hydrogen atom bonded to a silicon atom” include, for example, methyl hydrogen polysiloxane, dimethyl polysiloxane-CO-methyl hydrogen polysiloxane, ethyl hydrogen polysiloxane, methyl hydrogen polysiloxane-CO-methyl.
  • silicone resin examples thereof include phenyl polysiloxane.
  • addition reaction type silicone rubber examples include those formed by a hydrosilylation reaction of such a material.
  • silicone resin other well-known resins as described in, for example, JP 2010-159411 A can be used.
  • the silicone resin is preferably a crosslinked product of a crosslinkable silicone composition (hereinafter referred to as “the present composition”) containing at least the following components (A) to (D).
  • the cross-linked product of the present composition is preferably 20% by weight or more, more preferably 50% by weight or more, and further preferably 80% by weight or more.
  • R 1 is a monovalent hydrocarbon group having 1 to 14 carbon atoms, at least one is an aryl group, and at least one is an alkenyl having 2 to 6 carbon atoms.
  • R 3 is a monovalent hydrocarbon group having 1 to 14 carbon atoms, at least one is an aryl group, and at least one is an alkenyl having 2 to 6 carbon atoms.
  • the organopolysiloxane of the component (A) can have improved compatibility with the components (B) to (D) by having an aryl group. Further, the organopolysiloxane of component (A) has an alkenyl group having 2 to 6 carbon atoms, thereby causing a crosslinking reaction of components (A) to (C). Moreover, the organopolysiloxane of the component (A) has a branched structure, whereby the curability is improved and good adhesion to the LED chip can be obtained.
  • the branched structure refers to a structure in which the basic structural unit has a T unit (RSiO 3/2 ) or a Q unit (SiO 4/2 ) in the average unit formula.
  • a trifunctional unit in which one organic substituent represented by R is attached to a silicon atom is a T unit, and a tetrafunctional unit in which an organic substituent represented by R is not attached to a silicon atom.
  • the sex unit is called Q unit.
  • the presence of a branched structure in the organopolysiloxane can be confirmed by conducting an analysis such as a methyl orthoformate decomposition method on the organopolysiloxane and then performing an NMR analysis or a GPC-MALS analysis.
  • the GPC-MALS analysis can determine the molecular weight distribution and rotational radius of the organopolysiloxane. Therefore, the presence of a branched structure can be confirmed by specifying an organopolysiloxane having the same molecular weight component with a small rotation radius.
  • each value of a, b, c, d and e indicates that the obtained cross-linked product has sufficient hardness at room temperature, and softening at high temperature implements the present invention. This is a sufficient range.
  • (B) Component organopolysiloxane has an aryl group and is compatible with component (A). Thereby, the mechanical strength and transparency of the cured film of the phosphor sheet containing the silicone resin can be maintained.
  • the (B) component organopolysiloxane has an alkenyl group having 2 to 6 carbon atoms to cause a crosslinking reaction of the (A) component to the (C) component.
  • the organopolysiloxane of component (B) has a branched structure, so that the curability is improved and good adhesion to the LED chip can be obtained.
  • the organopolysiloxane of component (B) preferably has a viscosity at 25 ° C. of 20 Pa ⁇ s or less.
  • the content of component (B) is preferably in the range of 10 to 95 parts by weight with respect to 100 parts by weight of component (A). This is a range for the obtained cross-linked product to be sufficiently softened at a high temperature.
  • the organopolysiloxane of component (C) has at least two Si—H bonds in one molecule, thereby causing a crosslinking reaction of components (A) to (C).
  • the organopolysiloxane of component (C) is such that 12 to 70 mol% of the organic groups bonded to silicon atoms are aryl groups, so that the resulting crosslinked product is sufficiently softened at high temperature, and is crosslinked. Maintain the transparency and mechanical strength of objects.
  • the organopolysiloxane of component (C) is Average unit formula:
  • R 4 is an aryl group, an alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group. However, 12 to 70 mol% of R 4 is an aryl group.) It is preferable that it is organopolysiloxane represented by these.
  • R 4 is preferably a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group.
  • alkyl group for R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a heptyl group.
  • cycloalkyl group for R 4 include a cyclopentyl group and a cycloheptyl group.
  • the phenyl group content is preferably in the range of 30 to 70 mol%. This is a range in which the obtained crosslinked product can be sufficiently softened at a high temperature and the transparency and mechanical strength of the crosslinked product can be maintained.
  • the content of component (C) is such that the molar ratio of hydrogen atoms bonded to silicon atoms in component (C) with respect to the total amount of alkenyl groups in component (A) and alkenyl groups in component (B) is The amount is preferably in the range of 0.5 to 2. This is because the obtained crosslinked product has sufficient hardness at room temperature.
  • the catalyst for hydrosilylation reaction of component (D) promotes hydrosilylation reaction between alkenyl groups in component (A) and component (B) and hydrogen atoms bonded to silicon atoms in component (C). It is a catalyst for.
  • component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Of these, platinum-based catalysts are preferred because they can significantly accelerate the curing of the composition.
  • platinum catalyst examples include platinum fine powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex.
  • the platinum-based catalyst is preferably a platinum-alkenylsiloxane complex.
  • alkenylsiloxane examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like.
  • 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of the platinum-alkenylsiloxane complex is good.
  • the content of the component (D) is sufficient to promote the hydrosilylation reaction between the alkenyl group in the component (A) and the component (B) and the hydrogen atom bonded to the silicon atom in the component (C).
  • the amount is not particularly limited.
  • the content of the component (D) is such that the metal atom in the component (D) is in the range of 0.01 to 500 ppm by mass with respect to the present composition.
  • the content of the component (D) is preferably an amount such that the metal atom is in the range of 0.01 to 100 ppm, and is an amount such that the metal atom is in the range of 0.01 to 50 ppm. Is particularly preferred. This is a range in which the present composition is sufficiently crosslinked and does not cause problems such as coloring.
  • the composition comprises, as other optional components, ethynylhexanol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl-3-butyne-2- Alkyne alcohols such as all; Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7-tetramethyl-1,3 , 5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane, and a reaction inhibitor such as benzotriazole.
  • the content of the reaction inhibitor is not limited, but is preferably in the range of 1 to 5,000 ppm with respect to the weight of the present composition. By adjusting the content of the reaction inhibitor, it is possible to adjust the storage elastic modulus of the resulting silicone resin.
  • the content of the silicone resin is preferably 10% by weight or more, and more preferably 30% by weight or more of the entire phosphor sheet. Further, the content of the silicone resin is preferably 90% by weight or less, more preferably 85% by weight or less, and still more preferably 70% by weight or less.
  • the phosphor sheet according to the embodiment of the present invention is particularly preferably used for surface coating of LEDs, as will be described in detail later.
  • the light-emitting device which shows the outstanding performance can be obtained because the content rate of the silicone resin in a fluorescent substance sheet is the above ranges.
  • the phosphor absorbs light emitted from the LED chip, converts the wavelength of the light, and emits light having a wavelength different from that of the LED chip. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed to obtain a multicolor LED including white.
  • a single LED chip is used by optically combining a blue LED chip and a phosphor that emits a yellow emission color by absorbing light emitted from the LED chip. White light emission can be obtained.
  • the phosphors as described above include various phosphors such as a phosphor that emits green light, a phosphor that emits blue light, a phosphor that emits yellow light, and a phosphor that emits red light.
  • Specific phosphors used in the present invention include known phosphors such as inorganic phosphors, organic phosphors, and quantum dots.
  • As the phosphor either a fluorescent pigment or a fluorescent dye can be used.
  • the inorganic phosphor is not particularly limited as long as it can finally reproduce a predetermined color, and a known phosphor can be used.
  • the emission spectrum preferably has a peak in the wavelength region of 500 to 700 nm.
  • a phosphor is excited by excitation light in the wavelength range of 400 to 500 nm and emits light in the wavelength range of 500 to 700 nm.
  • the phosphors described above include phosphors that emit green light, phosphors that emit yellow light, and phosphors that emit red light.
  • organic phosphors used in the present invention include pyromethene compounds, coumarin dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, rhodamine dyes, pyridine dyes, pyromethene dyes, porphyrin dyes.
  • Oxazine dyes pyrazine dyes, allylsulfoamide / melamine formaldehyde co-condensation dyes, perylene phosphors, and the like. From the viewpoint of color reproducibility, a pyromethene compound is preferably used, and an organic compound represented by the general formula (4) described below is particularly preferably used.
  • a quantum dot is a semiconductor nanoparticle that emits fluorescence when excited by excitation light.
  • core-shell type semiconductor nanoparticles are preferable from the viewpoint of improving durability.
  • the core II-VI semiconductor nanoparticles, III-V semiconductor nanoparticles, multi-component semiconductor nanoparticles, and the like can be used. Specific examples include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, InP, InAs, and InGaP, but are not limited thereto. Among these, CdSe, CdTe, InP, and InGaP are preferable from the viewpoint of emitting visible light with high efficiency.
  • the shell CdS, ZnS, ZnO, GaAs, and a composite thereof can be used, but the shell is not limited thereto.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • a ligand having a Lewis basic coordinating group may be coordinated on the surface of the quantum dot.
  • the Lewis basic coordinating group include an amino group, a carboxy group, a mercapto group, a phosphine group, and a phosphine oxide group.
  • Specific examples include hexylamine, decylamine, hexadecylamine, octadecylamine, oleylamine, myristylamine, laurylamine, oleic acid, mercaptopropionic acid, trioctylphosphine, and trioctylphosphine oxide.
  • hexadecylamine, trioctylphosphine, and trioctylphosphine oxide are preferable, and trioctylphosphine oxide is particularly preferable.
  • Quantum dots coordinated with these ligands can be produced by a known synthesis method. For example, C.I. B. Murray, D.M. J. et al. Norris, M.M. G. It can be synthesized by a method described in Bawendi, Journal American Chemical Society, 1993, 115 (19), pp 8706-8715, or The Journal Physical Chemistry, 101, pp 9463-9475, 1997.
  • the quantum dot which the ligand coordinated can use a commercially available thing without a restriction
  • Fluorescent substances particularly preferably used in the present invention include inorganic fluorescent substances.
  • the inorganic phosphor used in the present invention is described below.
  • the inorganic phosphor used in the present invention preferably has a peak in the region where the emission spectrum has a wavelength of 500 to 700 nm. Such a phosphor is excited by excitation light in the wavelength range of 400 to 500 nm and emits light in the wavelength range of 500 to 700 nm. Examples of the phosphors described above include phosphors that emit green light, phosphors that emit yellow light, and phosphors that emit red light.
  • the shape of the inorganic phosphor is not particularly limited, and various shapes such as a spherical shape and a columnar shape can be used.
  • inorganic phosphors used in the present invention include YAG phosphors, TAG phosphors, silicate phosphors, nitride phosphors, oxynitride phosphors, nitride phosphors, and oxynitride phosphors. And Mn-activated double fluoride complex phosphor.
  • oxynitride phosphor is a ⁇ sialon phosphor.
  • nitride phosphors, oxynitride phosphors, and Mn-activated bifluoride complex phosphors are preferably used, and ⁇ -sialon phosphors and Mn-activated bifluoride complex phosphors are more preferably used.
  • ⁇ -sialon phosphors and Mn-activated bifluoride complex phosphors are more preferably used.
  • the phosphor sheet according to the embodiment of the present invention preferably includes a ⁇ -type sialon phosphor and a Mn-activated bifluoride complex phosphor.
  • ( ⁇ -type sialon phosphor) ⁇ -type sialon is a solid solution of ⁇ -type silicon nitride in which Al is substituted at the Si position and O is substituted at the N position. Since there are two amounts of atoms in the unit cell (unit cell) of ⁇ -sialon, Si 6-z Al z O z N 8-z is used as a general formula. Here, z is 0 to 4.2.
  • the solid solution range of ⁇ -sialon is very wide, and the molar ratio of (Si, Al) / (N, O) must be maintained at 3/4.
  • a general method for producing ⁇ -sialon is a method in which, in addition to silicon nitride, silicon oxide and aluminum nitride, or aluminum oxide and aluminum nitride are added and heated.
  • ⁇ -type sialon is a ⁇ -type sialon that emits green light with a wavelength of 520 to 550 nm when excited by ultraviolet to blue light by incorporating a light emitting element such as rare earth (Eu, Sr, Mn, Ce, etc.) into the crystal structure. Becomes a phosphor.
  • a light emitting element such as rare earth (Eu, Sr, Mn, Ce, etc.)
  • the ⁇ -sialon phosphor used in the present invention preferably has an emission spectrum having a peak in the wavelength region of 535 to 550 nm. If it is such a range, when the fluorescent substance sheet which concerns on embodiment of this invention is applied to an LED package, a favorable light emission characteristic will be acquired. Further, the average particle diameter of the ⁇ -type sialon phosphor is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 16 ⁇ m or more. Moreover, 100 micrometers or less are preferable, 50 micrometers or less are more preferable, and 19 micrometers or less are further more preferable. If it is such a range, when the fluorescent substance sheet which concerns on embodiment of this invention is applied to an LED package, a favorable light emission characteristic will be acquired.
  • the Mn-activated double fluoride complex phosphor is a phosphor having Mn as an activator and an alkali metal or alkaline earth metal fluoride complex salt as a base crystal.
  • the coordination center of the fluoride complex forming the host crystal is preferably a tetravalent metal (Si, Ti, Zr, Hf, Ge, Sn),
  • the number of coordinated fluorine atoms is preferably 6.
  • the Mn-activated bifluoride complex phosphor has the general formula A 2 MF 6 : Mn (where A is selected from the group consisting of Li, Na, K, Rb and Cs, and contains at least Na and / or K) And M is one or more tetravalent elements selected from the group consisting of Si, Ti, Zr, Hf, Ge, and Sn.
  • K 2 SiF 6 : Mn is a KSF phosphor.
  • this KSF phosphor is preferable.
  • the average particle size of the Mn-activated bifluoride complex phosphor is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 20 ⁇ m or more. Moreover, 100 micrometers or less are preferable, 70 micrometers or less are more preferable, and 40 micrometers or less are further more preferable. If it is such a range, when the fluorescent substance sheet which concerns on embodiment of this invention is applied to an LED package, a favorable light emission characteristic will be acquired.
  • the average particle diameter is the median diameter (D50).
  • the average particle diameter can be measured by observing the phosphor sheet with a scanning electron microscope (SEM). From the two-dimensional image obtained by observing the cross section of the phosphor sheet, the maximum distance among the two intersection points of the straight line intersecting the outer edge of the phosphor particle at two points is calculated, It is defined as the individual particle size of the particles.
  • the particle diameter is calculated by this method for 200 phosphor particles to be observed, and in the particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated amount from the small particle diameter side is defined as D50.
  • the content of the inorganic phosphor in the phosphor sheet is preferably 35% by weight or more of the entire phosphor sheet, more preferably 40% by weight or more, and preferably 60% by weight or more. Further preferred.
  • luminance of a fluorescent substance sheet can be raised by making the fluorescent substance content rate in a fluorescent substance sheet into such a range.
  • the phosphor content in the phosphor sheet is 90% by weight or less of the entire phosphor sheet from the viewpoint that it is easy to create a phosphor sheet excellent in workability. Preferably, it is 85% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less.
  • Examples of the phosphor that is particularly preferably used in the present invention include organic compounds represented by the general formula (4) as the organic phosphor.
  • the organic compound represented by the general formula (4) used in the present invention is described below.
  • R 5 , R 6 , Ar 1 to Ar 5 and L may be the same or different, and hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group Alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, heterocyclic group, halogen, haloalkyl group, haloalkenyl group, Haloalkynyl group, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, condensed ring and aliphatic ring formed between adjacent substituents Chosen from.
  • M represents an m-valent metal and is at least one selected from boron, beryllium, magnesium, chromium, iron, nickel, copper, zinc, and platinum.
  • hydrogen may be deuterium. The same applies to an organic compound or a partial structure thereof described below.
  • a substituted or unsubstituted aryl group having 6 to 40 carbon atoms is an aryl having 6 to 40 carbon atoms in total including the number of carbon atoms contained in the substituent substituted on the aryl group. It is a group. The same applies to other substituents that define the number of carbon atoms.
  • the substituents in the case of substitution include alkyl groups, cycloalkyl groups, heterocyclic groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, hydroxyl groups, thiol groups, alkoxy groups, alkylthio groups.
  • Aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl Group and a phosphine oxide group are preferable, and specific substituents that are preferable in the description of each substituent are preferable. Moreover, these substituents may be further substituted with the above-mentioned substituents.
  • unsubstituted means that a hydrogen atom or a deuterium atom is substituted.
  • substituted or unsubstituted in an organic compound or a partial structure thereof described below.
  • the alkyl group is, for example, a saturated aliphatic group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group.
  • a hydrocarbon group is shown.
  • This alkyl group may or may not further have a substituent.
  • an alkyl group, an aryl group, heteroaryl group etc. can be mentioned, This point is common also in the following description.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
  • the cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may or may not have a substituent.
  • the number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
  • the aralkyl group is an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group or a phenylethyl group. Any of these aliphatic hydrocarbons and aromatic hydrocarbons may be unsubstituted or may have a substituent.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • carbon number of an alkenyl group is not specifically limited, Usually, it is the range of 2-20.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
  • the alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • carbon number of an alkynyl group is not specifically limited, Usually, it is the range of 2-20.
  • the alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
  • An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good.
  • the number of carbon atoms of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom.
  • the aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6 or more and 40 or less.
  • An aryl group refers to an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, a phenanthryl group, a triphenylenyl group, or a terphenyl group.
  • the aryl group may or may not have a substituent.
  • the number of carbon atoms of the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • a heteroaryl group is one or more atoms other than carbon such as furanyl, thiophenyl, pyridyl, quinolinyl, pyrazinyl, pyrimidinyl, triazinyl, naphthyridyl, benzofuranyl, benzothiophenyl, indolyl, etc.
  • the cyclic aromatic group which has in an individual ring is shown, This may be unsubstituted or substituted.
  • the number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably in the range of 2 or more and 30 or less.
  • the heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. .
  • carbon number of a heterocyclic group is not specifically limited, Usually, it is the range of 2-20.
  • the carbonyl group, carboxyl group, and carbamoyl group may or may not have a substituent.
  • substituents include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these substituents may be further substituted.
  • An amino group is a substituted or unsubstituted amino group.
  • the amino group may or may not have a substituent.
  • substituents in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, and a branched alkyl group. .
  • aryl group and heteroaryl group a phenyl group, a naphthyl group, a pyridyl group, and a quinolinyl group are preferable. These substituents may be further substituted.
  • carbon number is not specifically limited, Preferably it is 2 or more and 50 or less, More preferably, it is 6 or more and 40 or less, Especially preferably, it is the range of 6 or more and 30 or less.
  • Halogen means fluorine, chlorine, bromine or iodine.
  • a haloalkyl group, a haloalkenyl group, or a haloalkynyl group is a group in which a part or all of the aforementioned alkyl group, alkenyl group, or alkynyl group such as a trifluoromethyl group is substituted with the aforementioned halogen, and the rest This part may be unsubstituted or substituted.
  • the aldehyde group, carbonyl group, ester group, and carbamoyl group include those substituted with aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, heterocyclic rings, and the like. The alicyclic hydrocarbon, aromatic hydrocarbon, and heterocyclic ring may be unsubstituted or substituted.
  • the silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent.
  • carbon number of a silyl group is not specifically limited, Usually, it is the range of 3-20.
  • the number of silicon is usually 1 or more and 6 or less.
  • Siloxanyl group refers to a silicon compound group via an ether bond such as trimethylsiloxanyl group. Substituents on silicon may be further substituted.
  • the organic compound represented by the general formula (4) as described above exhibits a high fluorescence quantum yield and has a small peak half-value width of the emission spectrum, it achieves both efficient color conversion and high color purity. can do.
  • a complex in which M is boron is particularly preferable because of high fluorescence quantum yield.
  • a boron fluoride complex in which L is fluorine or a fluorine-containing aryl group and m-1 is 2 is particularly preferable from the viewpoint of easy availability of materials and ease of synthesis.
  • any two adjacent substituents may be bonded to each other to form a conjugated or non-conjugated condensed ring.
  • a constituent element of the condensed ring may contain an element selected from nitrogen, oxygen, sulfur, phosphorus and silicon in addition to carbon.
  • the condensed ring may be further condensed with another ring.
  • the organic compound represented by the general formula (4) as described above has a light emitting efficiency, a color purity, a thermal stability, a light stability, a dispersibility and the like by introducing an appropriate substituent at an appropriate position. Various properties and physical properties can be adjusted.
  • the substituent Ar 5 greatly affects the durability of the organic compound represented by the general formula (4), that is, the decrease in the emission intensity of the organic compound over time.
  • Ar 5 is hydrogen
  • the reactivity of this hydrogen is high, so that this hydrogen easily reacts with moisture and oxygen in the air. This causes degradation of Ar 5.
  • Ar 5 is a substituent having a large degree of freedom of movement of the molecular chain such as an alkyl group, for example, the reactivity is certainly lowered, but the organic compounds aggregate with time in the sheet, and the result In particular, the emission intensity is reduced due to concentration quenching. Therefore, Ar 5 is preferably a group that is rigid and has a low degree of freedom of movement and is unlikely to cause aggregation. Specifically, it is a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. It is preferable that it is either.
  • Ar 5 is preferably a substituted or unsubstituted aryl group from the viewpoint of giving a higher fluorescence quantum yield, being harder to thermally decompose, and from the viewpoint of light stability.
  • aryl group a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, and an anthracenyl group are preferable from the viewpoint of not impairing the emission wavelength.
  • Ar 5 is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, or a substituted or unsubstituted naphthyl group.
  • a phenyl group, a substituted or unsubstituted biphenyl group, and a substituted or unsubstituted terphenyl group are more preferable. Particularly preferred is a substituted or unsubstituted phenyl group.
  • Ar 5 is preferably a moderately bulky substituent. Since Ar 5 has a certain amount of bulkiness, aggregation of molecules can be prevented. As a result, the luminous efficiency and durability of the organic compound are further improved.
  • a more preferred example of such a bulky substituent includes the structure of Ar 5 represented by the following general formula (5).
  • Ar 5 is preferably a group represented by the general formula (5).
  • r is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl Ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, Selected from the group consisting of phosphine oxide groups.
  • k is an integer of 1 to 3. When k is 2 or more, r may be the same or different.
  • an oxycarbonyl group may or may not have a substituent.
  • substituents for the oxycarbonyl group include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and the like, and these substituents may be further substituted.
  • r is preferably a substituted or unsubstituted aryl group.
  • aryl groups a phenyl group and a naphthyl group are particularly preferable examples.
  • k in the general formula (5) is preferably 1 or 2, and k is more preferably 2 from the viewpoint of further preventing aggregation of molecules.
  • k is 2 or more, it is preferable that at least one of r is substituted with an alkyl group.
  • the alkyl group in this case, a methyl group, an ethyl group, and a tert-butyl group are particularly preferable from the viewpoint of thermal stability.
  • r is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a halogen.
  • a methyl group, an ethyl group, a tert-butyl group, and a methoxy group are more preferable.
  • a tert-butyl group and a methoxy group are particularly preferable.
  • Ar 1 to Ar 4 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group It shows better thermal stability and light stability.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, more preferably a phenyl group or a biphenyl group. is there. Particularly preferred is a phenyl group.
  • the heteroaryl group is preferably a pyridyl group, a quinolinyl group, or a thiophenyl group, and more preferably a pyridyl group or a quinolinyl group. Particularly preferred is a pyridyl group.
  • all of Ar 1 to Ar 4 may be the same or different and each is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. Is preferred. This is because it shows better thermal stability and light stability.
  • the general formula (5) All of Ar 1 to Ar 4 represented by may be the same or different, more preferably a substituted or unsubstituted aryl group, and particularly preferably a phenyl group.
  • the inorganic phosphor converts the blue light to green light
  • the organic compound converts the blue light to the color of the inorganic phosphor.
  • Longer wavelength light that is, red light.
  • At least one of Ar 1 ⁇ Ar 4 is preferably a substituent represented by the general formula (6).
  • R 7 is selected from the group consisting of an alkyl group, a cycloalkyl group, an alkoxy group, and an alkylthio group.
  • n is an integer of 1 to 3. When n is 2 or more, each R 7 may be the same or different.
  • R 7 when R 7 is an electron donating group, it is preferable because it mainly affects the color purity.
  • the electron donating group include an alkyl group, a cycloalkyl group, an alkoxy group, and an alkylthio group.
  • an aryl group substituted with an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms or an alkylthio group having 1 to 8 carbon atoms is preferable.
  • R 7 is an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, it is more preferable because higher color purity can be obtained. Further, as the aryl group mainly affecting the luminous efficiency, an aryl group having a bulky substituent such as a t-butyl group or an adamantyl group is preferable.
  • Ar 1 and Ar 4 , and Ar 2 and Ar 3 are each preferably an aryl group having the same structure. Further, from the viewpoint of dispersibility, at least one of Ar 1 to Ar 4 is a group represented by the general formula (6), and R 7 is an alkyl group or an alkoxy group having 4 or more carbon atoms. More preferred. Among these, a t-butyl group, a methoxy group, or a t-butoxy group is particularly preferable as at least one example of Ar 1 to Ar 4 .
  • n is preferably an integer of 1 to 3, and more preferably 1 or 2 from the viewpoint of raw material availability and ease of synthesis.
  • Ar 1 ⁇ Ar 2 or Ar 3 ⁇ Ar 4 is particularly preferable because dispersibility in the film is improved and high-efficiency light emission is obtained.
  • “ ⁇ ” indicates a group having a different structure.
  • Ar 1 ⁇ Ar 2 indicates that Ar 1 and Ar 2 are groups having different structures.
  • Ar 3 ⁇ Ar 4 indicates that Ar 3 and Ar 4 are groups having different structures.
  • the aryl group represented by the general formula (6) affects various properties and physical properties such as light emission efficiency, color purity, heat resistance and light resistance of the organic compound represented by the general formula (4). Some aryl groups improve multiple properties, but none have sufficient performance in all. In particular, it is difficult to achieve both high luminous efficiency and high color purity. Therefore, if a plurality of types of aryl groups can be introduced into the organic compound represented by the general formula (4), it is expected to obtain an organic compound balanced in light emission characteristics and color purity.
  • the organic compound according to the embodiment of the present invention can arrange substituents having certain physical properties in a balanced manner on the left and right pyrrole rings, compared with the case where it is biased to one pyrrole ring. Therefore, it is possible to maximize the physical properties.
  • This effect is particularly excellent in that the luminous efficiency and color purity are improved in a balanced manner. It is preferable that at least one aryl group that affects the color purity is present in each of the pyrrole rings on both sides, from the viewpoint that the conjugated system is expanded and light emission with high color purity is obtained.
  • the organic compound according to the embodiment of the present invention introduces one or more aryl groups that affect the color purity into each of the pyrrole rings on both sides, and the aryl group that affects the luminous efficiency at other positions. Can be introduced. For this reason, the organic compound which concerns on embodiment of this invention can improve the property of both color purity and luminous efficiency to the maximum, and is therefore preferable. Note that it is preferable to introduce an aryl group that affects the color purity at the positions of Ar 2 and Ar 3 because the conjugated system is most expanded.
  • Ar 1 to Ar 4 When at least one of Ar 1 to Ar 4 is a substituted or unsubstituted alkyl group, examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert group
  • An alkyl group having 1 to 6 carbon atoms such as a butyl group, a pentyl group or a hexyl group is preferred.
  • the alkyl group is preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group from the viewpoint of excellent thermal stability. Further, from the viewpoint of preventing concentration quenching and improving the emission quantum yield, this alkyl group is more preferably a sterically bulky tert-butyl group. On the other hand, from the viewpoint of ease of synthesis and availability of raw materials, a methyl group is also preferably used as the alkyl group.
  • all of Ar 1 to Ar 4 may be the same or different, and when they are substituted or unsubstituted alkyl groups, they are soluble in a binder resin or a solvent. Is preferable.
  • the alkyl group is preferably a methyl group from the viewpoints of ease of synthesis and availability of raw materials.
  • a general formula ( Ar 1 to Ar 4 represented by 4) may all be the same or different and each represents a substituted or unsubstituted alkyl group, preferably a methyl group.
  • the inorganic phosphor converts the blue light into red light
  • the organic compound converts the blue light into the color of the inorganic phosphor.
  • Shorter wavelength light that is, green light.
  • R 5 and R 6 are hydrogen. That is, R 5 and R 6 are preferably any one of hydrogen, an alkyl group, a carbonyl group, an oxycarbonyl group, and an aryl group, but are hydrogen or an alkyl group from the viewpoint of thermal stability. Is preferred. In particular, from the viewpoint of easily obtaining a narrow half-value width in the emission spectrum, it is more preferable that at least one of R 5 and R 6 is hydrogen.
  • L is preferably an alkyl group, an aryl group, a heteroaryl group, fluorine, a fluorine-containing alkyl group, a fluorine-containing heteroaryl group or a fluorine-containing aryl group.
  • L is more preferably a fluorine or fluorine-containing aryl group because it is stable against excitation light and a higher fluorescence quantum yield is obtained.
  • L is more preferably fluorine in view of ease of synthesis.
  • the fluorine-containing aryl group is an aryl group containing fluorine, and examples thereof include a fluorophenyl group, a trifluoromethylphenyl group, and a pentafluorophenyl group.
  • the fluorine-containing heteroaryl group is a heteroaryl group containing fluorine, and examples thereof include a fluoropyridyl group, a trifluoromethylpyridyl group, and a trifluoropyridyl group.
  • the fluorine-containing alkyl group is an alkyl group containing fluorine, and examples thereof include a trifluoromethyl group and a pentafluoroethyl group.
  • At least one of R 5 , R 6 , and Ar 1 to Ar 5 is an electron withdrawing group.
  • at least one of R 1 , R 2 , and Ar 1 to Ar 4 is an electron withdrawing group
  • Ar 5 is an electron withdrawing group
  • R 5 , R 6 , Ar 1 to Ar 4 are preferably electron withdrawing groups
  • Ar 5 is preferably an electron withdrawing group.
  • the electron-withdrawing group is also called an electron-accepting group, and is an atomic group that attracts electrons from a substituted atomic group by an induced effect or a resonance effect in organic electron theory.
  • Examples of the electron-withdrawing group include those that take a positive value as the Hammett's rule substituent constant ( ⁇ p (para)).
  • the Hammett's rule substituent constant ( ⁇ p (para)) can be cited from the Chemical Handbook, Basic Revision 5 (II-380).
  • a phenyl group also has the example which takes the above positive values, in this invention, a phenyl group is not contained in an electron withdrawing group.
  • electron withdrawing groups include, for example, -F ( ⁇ p: +0.06), -Cl ( ⁇ p: +0.23), -Br ( ⁇ p: +0.23), -I ( ⁇ p: +0.18),- CO 2 R 12 ( ⁇ p: when R 12 is an ethyl group +0.45), —CONH 2 ( ⁇ p: +0.38), —COR 12 ( ⁇ p: when R 12 is a methyl group +0.49), —CF 3 ( ⁇ p: +0.50), - SO 2 R 12 ( ⁇ p: when R 12 is a methyl group +0.69), - NO 2 ( ⁇ p : +0.81) , and the like.
  • R 12 each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, substituted or unsubstituted
  • a substituted alkyl group having 1 to 30 carbon atoms and a substituted or unsubstituted cycloalkyl group having 1 to 30 carbon atoms are represented. Specific examples of these groups include the same examples as described above.
  • Preferred electron withdrawing groups include fluorine, fluorine-containing aryl groups, fluorine-containing heteroaryl groups, fluorine-containing alkyl groups, substituted or unsubstituted acyl groups, substituted or unsubstituted ester groups, substituted or unsubstituted amide groups, and substituted groups. Or an unsubstituted sulfonyl group or a cyano group is mentioned. This is because they are difficult to decompose chemically.
  • More preferred electron withdrawing groups include fluorine-containing alkyl groups, substituted or unsubstituted acyl groups, substituted or unsubstituted ester groups, and cyano groups. This is because these lead to effects of preventing concentration quenching and improving the emission quantum yield. Particularly preferred electron withdrawing groups are substituted or unsubstituted ester groups.
  • R 5 and R 6 are preferably an electron withdrawing group. This is because the stability of the organic compound represented by the general formula (4) to oxygen can be improved without impairing the luminous efficiency and color purity, and as a result, the durability of the organic compound can be improved. Because it can.
  • r is more preferably an electron withdrawing group. This is because the stability of the organic compound represented by the general formula (4) to oxygen is further improved without impairing the luminous efficiency and color purity, and as a result, the durability of the organic compound can be greatly improved. Because it can.
  • Ar 1 to Ar 4 may all be the same or different and each is a substituted or unsubstituted alkyl group, and Ar The case where 5 is group represented by General formula (5) is mentioned.
  • Ar 5 is particularly preferably a group represented by the general formula (5) in which r is included as a substituted or unsubstituted phenyl group.
  • Ar 1 to Ar 4 may be the same or different and are selected from the above general formula (6).
  • Ar 5 is a group represented by the general formula (5).
  • Ar 5 is more preferably a group represented by the general formula (5) in which r is a tert-butyl group or methoxy group, and represented by the general formula (5) in which r is a methoxy group. It is particularly preferred that
  • organic compound represented by the general formula (4) is shown, but the organic compound according to the present embodiment is not limited to these.
  • the organic compound represented by the general formula (4) can be produced, for example, by the method described in JP-T-8-509471 and JP-A-2000-208262. That is, the target pyromethene metal complex is obtained by reacting the pyromethene compound and the metal salt in the presence of a base.
  • the phosphor composition according to the embodiment of the present invention can appropriately contain other compounds as necessary in addition to the organic compound represented by the general formula (4).
  • an assist dopant such as rubrene may be contained in order to further increase the energy transfer efficiency from the excitation light to the organic compound represented by the general formula (4).
  • a desired organic light emitting material such as a coumarin dye, a perylene dye, a phthalocyanine dye, a stilbene dye, Compounds such as cyanine dyes, polyphenylene dyes, rhodamine dyes, pyridine dyes, pyromethene dyes, porphyrin dyes, oxazine dyes and pyrazine dyes can be added.
  • known light-emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots can be added in combination.
  • the content of the organic compound represented by the general formula (4) in the phosphor composition according to the embodiment of the present invention includes the molar absorption coefficient of the organic compound, the fluorescence quantum yield, the absorption intensity at the excitation wavelength, and the production.
  • it is usually 10 ⁇ 5 weight percent to 10 weight percent, more preferably 10 ⁇ 4 weight percent to 5 weight percent, based on the total weight of the phosphor composition.
  • it is 10 ⁇ 3 weight percent to 2 weight percent.
  • the phosphor sheet according to the embodiment of the present invention may contain a solvent.
  • a solvent will not be specifically limited if the viscosity of resin of a fluid state can be adjusted.
  • the solvent include toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, acetone, terpineol, texanol, methyl cellosolve, butyl carbitol, butyl carbitol acetate, propylene glycol monomethyl ether acetate, and the like.
  • the phosphor sheet according to the embodiment of the present invention contains a dispersing agent and a leveling agent for stabilizing the coating film, an adhesion assistant such as a silane coupling agent as a surface modifier of the phosphor sheet, and the like. May be.
  • the phosphor sheet according to the embodiment of the present invention may contain fine particles.
  • the fine particles include silicone fine particles, titania, silica, alumina, silicone, zirconia, ceria, aluminum nitride, silicon carbide, silicon nitride, and barium titanate.
  • the phosphor sheet according to the embodiment of the present invention may contain a silanol group-containing methylphenyl silicone resin as a heating adhesive in order to reduce the storage elastic modulus G ′ at 100 ° C. From the viewpoint of easy availability, silicone fine particles, silica fine particles, and alumina fine particles are preferably used, and silicone fine particles are particularly preferably used.
  • the phosphor sheet according to the embodiment of the present invention contains silicone fine particles, so that not only adhesiveness and workability but also film thickness uniformity is improved.
  • silicone fine particles having an average particle diameter (median type: D50) of 0.1 ⁇ m or more and 2.0 ⁇ m or less, the discharge property when using a slit die coater is excellent, and the film thickness is excellent.
  • a phosphor sheet can be obtained.
  • the average particle diameter of the silicone fine particles can be measured by the above-described method, similarly to the average particle diameter of the phosphor.
  • the average particle diameter of the silicone fine particles is more preferably 0.5 ⁇ m or more as the lower limit. Moreover, as an upper limit, it is more preferable that it is 1.0 micrometer or less.
  • the silicone fine particles are preferably fine particles made of silicone resin and / or silicone rubber.
  • silicone fine particles obtained by a method of hydrolyzing organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane, and then condensing them.
  • organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane, and then condensing them.
  • the reaction as reported in Japanese Patent Application Laid-Open No. 2003-342370 is carried out in the production of spherical organopolysilsesquioxane fine particles by hydrolyzing and condensing organosilane and / or a partial hydrolyzate thereof.
  • organosilane and / or its partial hydrolyzate is hydrolyzed and condensed, and in the presence of a polymer dispersant and a salt that act as a protective colloid in a solvent in an acidic aqueous solution, Silicone fine particles produced by adding an organosilane and / or a hydrolyzate thereof to obtain a hydrolyzate and then adding an alkali to advance the condensation reaction can also be used.
  • the content of the silicone fine particles in the phosphor sheet is preferably 0.5% by weight or more of the whole phosphor sheet, and more preferably 1% by weight or more.
  • the upper limit of the content of the silicone fine particles in the phosphor sheet is not particularly defined, but from the viewpoint of good mechanical properties, it is preferably 20% by weight or less of the entire phosphor sheet, and more preferably 10% by weight or less. .
  • a base material is an example of the support body of the fluorescent substance sheet in this invention.
  • a base material For example, a well-known metal, a film, glass, ceramic, paper etc. can be used.
  • metal plates and foils such as aluminum (including aluminum alloys), zinc, copper, and iron; cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polyphenylene sulfide, polystyrene, polypropylene, Plastic film such as polycarbonate, polyvinyl acetal, aramid, silicone, polyolefin, thermoplastic fluororesin, copolymer of tetrafluoroethylene and ethylene (ETFE); ⁇ -polyolefin resin, polycaprolactone resin, acrylic resin, silicone resin and these Film made of a copolymer resin of ethylene and ethylene; paper laminated with the plastic, paper coated with the plastic, gold There laminated or vapor-deposited papers, the metals and plastic film laminated or deposited.
  • the base material is a metal plate
  • the surface of the metal plate may be subjected to a plating treatment or ceramic treatment such as chromium or nickel.
  • glass and plastic films are preferably used because of the ease of producing the phosphor sheet and the ease of individualizing the phosphor sheet.
  • the base material is preferably a flexible film because of the adhesion when the phosphor sheet is attached to the LED chip.
  • a film with high strength is preferable so that there is no fear of breakage when handling a film-like substrate.
  • a plastic film is preferable in terms of the required characteristics and economy.
  • a plastic film selected from the group consisting of PET, polyphenylene sulfide, and polypropylene is preferable in terms of economy and handleability.
  • a polyimide film is preferable at a heat resistant surface.
  • the surface of the base material may be subjected to a release treatment in advance from the ease of peeling of the phosphor sheet from the base material.
  • the thickness of the substrate is not particularly limited, but the lower limit is preferably 25 ⁇ m or more, and more preferably 38 ⁇ m or more. Moreover, as an upper limit, 5000 micrometers or less are preferable and 3000 micrometers or less are more preferable.
  • the phosphor sheet according to the embodiment of the present invention may include a barrier layer.
  • the barrier layer is appropriately used in the case where the gas barrier property is improved with respect to the phosphor sheet.
  • the barrier layer having a barrier function against oxygen examples include, for example, silicon oxide, aluminum oxide, tin oxide, indium oxide, yttrium oxide, magnesium oxide, or a mixture thereof, or metal oxide obtained by adding other elements thereto. Or a film made of various resins such as nylon, polyvinylidene chloride, and a copolymer of ethylene and vinyl alcohol.
  • barrier layer having a barrier function against moisture examples include, for example, polyethylene, polypropylene, nylon, polyvinylidene chloride, vinylidene chloride and vinyl chloride, vinylidene chloride and acrylonitrile copolymers, and various resins such as fluorine resins. Can be mentioned.
  • the phosphor sheet according to the embodiment of the present invention has an antireflection function, an antiglare function, an antireflection antiglare function, a light diffusion function, a hard coat function (anti-resistance) according to the function required for the phosphor sheet.
  • a friction layer an antistatic function, an antifouling function, an electromagnetic wave shielding function, an infrared cut function, an ultraviolet cut function, a polarization function, and a toning function may be further provided.
  • a composition in which a phosphor is dispersed in a silicone resin (hereinafter referred to as “phosphor composition”) is prepared as a coating solution for forming a phosphor sheet.
  • a predetermined amount of the above-described silicone resin, phosphor, and additives such as silicone fine particles and a solvent are mixed as required.
  • the mixture is uniformly mixed and dispersed by a homogenizer, a revolving stirrer, a three-roller, a ball mill, a planetary ball mill, a bead mill or the like.
  • a phosphor composition is obtained.
  • Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing / dispersing or in the course of mixing / dispersing. Moreover, you may mix a specific component in advance, and you may process processes, such as aging, with respect to the completed fluorescent substance composition. It is also possible to remove the solvent from the mixture after mixing and dispersion by an evaporator to obtain a desired solid content concentration.
  • the phosphor composition produced by the method described above is applied on a substrate and dried to produce a phosphor sheet.
  • Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, kiss coater, natural roll coater, air knife coater, roll blade coater, two stream coater, rod coater, wire bar coater, applicator, dip It can be performed by a coater, curtain coater, spin coater, knife coater or the like. In order to obtain the film thickness uniformity of the phosphor sheet, it is preferably applied by a slit die coater.
  • the phosphor sheet can be dried using a general heating device such as a hot air dryer or an infrared dryer.
  • the drying conditions are usually 40 to 250 ° C. for 1 minute to 5 hours, preferably 60 ° C. to 200 ° C. for 2 minutes to 4 hours. It is also possible to dry stepwise such as step cure.
  • the phosphor sheet according to the embodiment of the present invention or a cured product thereof is attached to the light emitting surface of the LED chip, thereby forming the LED chip with the phosphor sheet in which the phosphor sheet is laminated on the surface of the LED chip. it can.
  • the LED chip to which the phosphor sheet according to the embodiment of the present invention can be applied is not particularly limited, and examples thereof include LED chips having a general structure such as lateral, vertical, and Philip chips. As such LED chips, vertical type and flip chip type LED chips having a large light emitting area are particularly preferable.
  • the light emission surface of an LED chip means the surface from which the light from an LED chip is taken out.
  • the light emitting surface of the LED chip may be a single plane or not a single plane.
  • LED chips mainly having only an upper light emitting surface can be mentioned.
  • a vertical type LED chip, an LED chip in which the side surface of the LED chip is covered with a reflective layer, and light is extracted only from the upper surface are exemplified.
  • an LED chip having an upper light emitting surface and a side light emitting surface an LED chip having a curved light emitting surface, and the like can be given.
  • an LED chip whose light emitting surface is not a single plane is preferable because it can be brightened by using light emitted from the side portion.
  • a flip chip type LED chip having an upper light emitting surface and a side light emitting surface is preferable because the light emitting area can be increased and the manufacturing process of the LED chip is easy.
  • the surface of the light emitting surface may be textured based on an optical design for improving the light emission efficiency of the LED chip.
  • the phosphor sheet according to the embodiment of the present invention may be directly attached to the LED chip or may be attached via an adhesive such as a transparent resin. From the viewpoint that the light from the LED chip can be directly incident on the phosphor sheet without being lost due to reflection or the like, the phosphor sheet according to the embodiment of the present invention is directly attached to the LED chip. Is more preferable. Thereby, uniform white light with little color variation and high efficiency can be obtained.
  • An LED package can be manufactured by mounting the LED chip with a phosphor sheet obtained by these methods on a wiring board provided with a metal wiring or the like and packaging it. After that, by incorporating it in a module, it can be suitably used for various light emitting devices such as various illuminations, liquid crystal backlights, and headlamps.
  • FIG. 1 shows a preferred example of an LED package according to an embodiment of the present invention.
  • the LED chip 1 to which the phosphor sheet 2 is attached is placed on a mounting substrate 5 having a reflector 4, and the upper surface portion of the LED chip 1 is sealed with a transparent sealing material 3. Is.
  • FIG. 1B shows that the LED chip 1 with the phosphor sheet 2 attached is placed on a mounting substrate 5 provided with a reflector 4, and the upper surface portion and the side surface portion of the LED chip 1 are sealed with a transparent sealing material 3. It has been stopped.
  • FIG. 1C shows a structure in which the phosphor sheet 2 is attached not only to the upper surface but also to the side surface of the LED chip 1 in the configuration shown in FIG.
  • the light emission wavelength can be converted by the phosphor sheet 2 even for light emission from the side surface of the LED chip, it is preferable.
  • the upper surface of the transparent sealing material 3 is formed in a lens shape.
  • FIG. 1D shows an LED chip 1 to which a phosphor sheet 2 is attached, which is placed on a mounting substrate 5 that does not have a reflector, and is sealed with a transparent sealing material 3 molded into a lens shape. It is.
  • FIG. 1 (e) shows a structure in which the phosphor sheet 2 is attached not only to the upper surface but also to the side surface of the LED chip 1 in the configuration shown in FIG. 1 (d).
  • FIG. 1 (f) uses a flip chip type LED chip 1 as the LED chip in the configuration shown in FIG. 1 (c), and the phosphor sheet 2 is not only the top and side surfaces that are the light emitting surface of the LED chip 1. The affixed so as to reach the upper surface of the mounting substrate 5. In this configuration, the phosphor sheet 2 may be attached only to the upper surface and the side surface that are the light emitting surface of the LED chip 1.
  • FIG. 1 (g) shows the configuration of the LED chip 1 and the phosphor sheet 2 in the configuration shown in FIG. 1 (d), which is the same as the configuration shown in FIG. 1 (f).
  • FIG. 1 (h) shows that the LED chip 1 is installed so as to fit the portion of the mounting substrate 5 having the reflector 4 that does not have the reflector 4, and has the same width as the interval between the reflectors 4 on the LED chip 1.
  • the phosphor sheet 2 is affixed via an adhesive 8 and further sealed with a transparent sealing material 3.
  • FIG. 1 (i) shows that the phosphor sheet 2 with the substrate 9 is used as the phosphor sheet 2 in the configuration shown in FIG. 1 (h), and the substrate 9 is not peeled off from the phosphor sheet 2.
  • the phosphor sheet 2 is affixed via an adhesive 8.
  • the LED package according to the embodiment of the present invention is not limited to these configurations.
  • the structure of each part illustrated in FIGS. 1A to 1I may be appropriately combined.
  • the structure of each part illustrated in FIGS. 1 (a) to 1 (i) is replaced with a known part other than the above, or illustrated in FIGS. 1 (a) to 1 (i).
  • the structure which combined the structure and the well-known part may be sufficient.
  • the transparent sealing material 3 may be any material as long as it is a material excellent in molding processability, transparency, heat resistance, adhesiveness and the like.
  • known resins such as epoxy resins, silicone resins (including organopolysiloxane cured products (crosslinked products) such as silicone rubber and silicone gel), urea resins, fluororesins, and polycarbonate resins can be used.
  • the material used as the transparent sealing material described above can be used.
  • the material constituting the reflector 4 is not particularly limited, and examples thereof include a material used for the transparent sealing material 3 to which fine particles are added.
  • the fine particles include titania, silica, alumina, silicone, zirconia, ceria, aluminum nitride, silicon carbide, silicon nitride, and barium titanate.
  • silica fine particles, alumina fine particles, and titania fine particles are preferably used from the viewpoint of easy availability.
  • a typical method for manufacturing an LED package using a phosphor sheet according to an embodiment of the present invention is as follows. (1) After the phosphor sheet is cut into individual pieces, it is attached to individual LED chips. A method of attaching (for example, see FIG. 2), (2) a phosphor sheet is affixed to a large number of LED chips (hereinafter referred to as “wafer level LED chips”) formed on a wafer, and then wafer dicing is performed. And a method of collectively cutting the phosphor sheet (for example, see FIG. 3), but is not limited thereto.
  • FIGS. 2 and 3 these steps will be described with reference to FIGS. 2 and 3 as appropriate.
  • the phosphor sheet according to the embodiment of the present invention is affixed to the LED chip by applying pressure while heating at a desired temperature. This is pasting by thermocompression bonding.
  • the heating temperature is preferably 60 ° C. or higher and 250 ° C. or lower, and more preferably 60 ° C. or higher and 160 ° C. or lower.
  • Resin design for increasing the difference between the storage elastic modulus G ′ of the phosphor sheet at room temperature and the elastic modulus G ′ of the phosphor sheet at the bonding temperature is facilitated by setting the heating temperature to 60 ° C. or higher. It becomes.
  • the thermal expansion or thermal contraction of the phosphor sheet can be reduced by setting the heating temperature to 250 ° C. or less, the positional accuracy of the pasting can be increased.
  • the positional accuracy of the pasting is important.
  • the heating temperature is more preferably 160 ° C. or less from the viewpoint of improving the positional accuracy of the pasting.
  • thermocompression bonding the phosphor sheet any existing apparatus can be used as long as it can be bonded at a desired temperature.
  • a thermocompression bonding tool such as a mounter or a flip chip bonder can be used.
  • a vacuum laminator or a heating unit having a heating portion of about 100 to 200 mm square is used. Crimping tools are available.
  • the phosphor sheet with the substrate is pressure-bonded to the LED chip at a desired temperature, the phosphor sheet is thermally fused, and then allowed to cool to room temperature, and the substrate is peeled off from the phosphor sheet. Since the phosphor sheet according to the embodiment of the present invention has the storage elastic modulus G ′ at 25 ° C. and 100 ° C. as described above, the phosphor sheet after being allowed to cool to room temperature after heat fusion is It can be easily peeled off from the substrate while firmly adhering to the LED chip.
  • the uniformly formed phosphor sheet is processed into a predetermined shape by processing with a laser or cutting with a blade. ,To divide. Since processing with a laser gives high energy to the phosphor sheet, depending on the processing conditions, there is a possibility that the resin in the phosphor sheet is burnt or the phosphor is deteriorated. Therefore, as a method for cutting the phosphor sheet, cutting with a blade is desirable.
  • a cutting method with a blade there are, for example, a method of pushing a simple blade and cutting it, and a method of cutting with a rotary blade, both of which can be suitably used.
  • a device for cutting with a rotary blade a device called a dicer used for cutting (dicing) a semiconductor substrate into individual chips can be suitably used. If the dicer is used, the width of the dividing line of the phosphor sheet can be precisely controlled by the thickness of the rotary blade and the condition setting, so that higher processing accuracy can be obtained than when the phosphor sheet is cut by pushing a simple blade. .
  • the whole base material may be cut into pieces, or the fluorescent sheet may be cut into pieces and the base material may not be cut.
  • the state (what is called a half cut state) in which the cut line which does not penetrate through a base material enters while a fluorescent substance sheet is separated may be sufficient.
  • each piece of the phosphor sheet can be attached to the LED chip by the above-described method.
  • peeling of the base material from the phosphor sheet may be performed before being attached to the LED chip or after being attached to the LED chip.
  • the individual phosphor chips are separated by the above-mentioned method after the individual phosphor sheets are peeled off from the substrate. Can be pasted on.
  • a phosphor sheet is bonded to a wafer level LED chip and then the phosphor sheet is cut simultaneously with wafer dicing, it is processed into a predetermined shape by laser processing or cutting with a blade. It can be divided into LED chips with phosphor sheets that have been processed and singulated. Of these cutting methods, cutting with a blade is preferable.
  • FIG. 2 is an example of a series of steps in the case where the phosphor sheet is separated into pieces together with the base material and attached to the LED chip. 2 includes a step of cutting the phosphor sheet into individual pieces and a step of attaching the phosphor sheet cut into the individual pieces to the LED chip.
  • FIG. 2A shows a state where the phosphor sheet 2 laminated with the base material 9 is fixed to the temporarily fixing sheet 11.
  • both the phosphor sheet 2 and the base material 9 are separated, they are fixed to the temporarily fixing sheet 11 so as to be easy to handle.
  • the fluorescent substance sheet 2 and the base material 9 are cut
  • the separated phosphor sheet 2 and the base material 9 are aligned on the LED chip 1 mounted on the mounting substrate 5.
  • the phosphor sheet 2 is crimped to the LED chip 1 at a desired temperature using a thermocompression bonding tool 12.
  • the base material 9 is peeled from the phosphor sheet 2.
  • the base material 9 is glass or the like, as shown in FIG. 2 (f), the base material 9 may be left as it is without being peeled off.
  • FIG. 3 shows an example of a series of steps in the case where the phosphor sheet is bonded together on the wafer level LED chip and then the wafer dicing and the phosphor sheet are collectively cut.
  • a process of attaching a phosphor sheet to a plurality of LED chips formed on a wafer in a lump, and wafer dicing and separation of LED chips to which the phosphor sheet is attached And a step of collectively performing the above.
  • the phosphor sheet 2 laminated with the base material 9 is not cut in advance.
  • the phosphor sheet 2 side is aligned with the wafer 13 having a plurality of LED chips (not shown) formed on the surface thereof.
  • the phosphor sheet 2 is thermocompression bonded to the plurality of LED chips at a desired temperature by the thermocompression bonding tool 12. At this time, it is preferable to perform the thermocompression bonding step under vacuum or reduced pressure so that air is not caught between the phosphor sheet 2 and the LED chip. Allow to cool to room temperature after thermocompression bonding.
  • the wafer 13 is diced and simultaneously the phosphor sheet 2 is cut into individual pieces. And as shown in FIG.3 (d), the LED chip 25 with the fluorescent substance sheet separated into pieces is obtained.
  • the base material 9 is not peeled off from the phosphor sheet 2, and as shown in FIG.
  • the substrate 9 may also be cut into individual pieces together with the phosphor sheet. In this way, the LED chip 26 with the base material and the phosphor sheet obtained in pieces is obtained.
  • the base material 9 is glass or the like, it may be used as it is without being peeled off from the phosphor sheet 2.
  • the substrate 9 is a plastic film, the substrate 9 may be peeled from the phosphor sheet 2 after the LED chip 26 is mounted on the substrate.
  • the phosphor sheet when the phosphor sheet is attached to the LED chip having the electrode on the upper surface, it is necessary to remove the phosphor sheet corresponding to the electrode. Therefore, before the phosphor sheet is attached to the LED chip, it is preferable that a hole is formed in advance in a portion corresponding to the electrode in the phosphor sheet.
  • the phosphor sheet according to the embodiment of the present invention can be drilled with high accuracy.
  • the phosphor sheet is attached to a portion of the LED chip that is away from the light emitting surface electrode.
  • the method of drilling is not particularly limited, but known methods such as laser processing and die punching can be suitably used.
  • Laser processing may cause scorching of the resin in the phosphor sheet or deterioration of the phosphor depending on processing conditions. Therefore, punching with a mold is more desirable.
  • punching cannot be performed after the phosphor sheet is attached to the LED chip. Therefore, it is essential to perform punching before attaching the phosphor sheet to the LED chip.
  • the size of the upper electrode is preferably 500 ⁇ m square or less so as not to reduce the area of the light emitting surface. Therefore, it is preferable that the holes provided in the phosphor sheet have a size of 500 ⁇ m square or less in accordance with the size.
  • the upper surface electrode needs to have a certain size, for example, a size of at least about 50 ⁇ m square. Become. Therefore, it is preferable that the holes provided in the phosphor sheet have a size of about 50 ⁇ m square in accordance with the size.
  • the size of the hole provided in the phosphor sheet is too large than the size of the electrode, the light emitting surface is exposed and light leakage occurs, which may deteriorate the color characteristics of the LED package.
  • the size of the electrode is too small, the wire may touch the phosphor sheet at the time of wire bonding, which may cause poor bonding. Therefore, in the hole making process with the phosphor sheet, it is preferable to process a small hole of 50 ⁇ m square or more and 500 ⁇ m square or less with high accuracy within ⁇ 10%.
  • an affixing device having an optical alignment (alignment) mechanism is used. Necessary. At this time, it is difficult in terms of work to align the phosphor sheet and the LED chip in proximity. Therefore, in practice, alignment is often performed in a state where the phosphor sheet and the LED chip are lightly contacted.
  • the phosphor sheet according to the embodiment of the present invention is not sticky at room temperature, it is easy to perform alignment while the phosphor sheet and the LED chip are lightly in contact with each other.
  • the phosphor sheet according to the embodiment of the present invention can be further heat-treated by an oven or the like as needed after being attached to the LED chip. By performing the heat treatment, the adhesion between the phosphor sheet and the LED chip can be further strengthened.
  • the LED chip to which the phosphor sheet is attached can be bonded by thermocompression when bonded to the mounting substrate at once, or can be soldered to the mounting substrate by solder reflow.
  • a mass production method of the LED package will be described.
  • a method for manufacturing an LED chip with a phosphor sheet will be described.
  • a method of attaching the phosphor sheet to the LED chip for example, as shown in FIG. 4, a method of attaching the individual phosphor sheet laminates 14 for each LED chip 1 one by one is given. It is done.
  • FIG. 5 there is a method in which the phosphor sheet 2 is affixed to a plurality of LED chips 1 in a lump, and after covering these, the package substrate 15 is cut and the LED chips 1 are individualized.
  • the first manufacturing example is shown in FIG. This is a preferable example when the base material provided in the phosphor sheet has fluidity.
  • the LED chip 1 is temporarily fixed on a pedestal 18 via a double-sided adhesive tape 17.
  • the phosphor sheet laminate 14 is laminated so that the phosphor sheet 2 is in contact with the LED chip 1.
  • the upper chamber 19 and the lower chamber 20 are depressurized while being heated.
  • the diaphragm 21 is expanded by sucking air into the upper chamber 19 through the air inlet 23.
  • the fluorescent substance sheet 2 is pressed through the base material 9, and it affixes so that the light emission surface of the LED chip 1 may be followed.
  • the laminate is taken out from the vacuum diaphragm laminator 22, and after allowing to cool, the substrate 9 is peeled from the phosphor sheet 2. Subsequently, the cut portions 24 between the LED chips are cut with a dicing cutter or the like, and the LED chips 25 with the phosphor sheet that have been separated into pieces are produced.
  • the LED chip 25 with the phosphor sheet is bonded to the package electrode 16 on the mounting substrate 15 via the gold bumps 7.
  • the LED package 10 as shown in FIG. 6F is manufactured.
  • the second production example is shown in FIG. This is another preferable example in the case where the substrate provided in the phosphor sheet has fluidity.
  • the LED chip 1 is bonded to the package electrode 16 on the mounting substrate 15 via the gold bumps 7.
  • the phosphor sheet laminate 14 is laminated so that the phosphor sheet 2 is in contact with the LED chip 1.
  • the laminate is taken out from the vacuum diaphragm laminator 22 and allowed to cool, and then the substrate 9 is peeled from the phosphor sheet 2. Subsequently, the cut portions 24 between the LED packages are cut and separated. Through the above steps, the LED package 10 as shown in FIG. 7E is manufactured.
  • the light emitting device includes the phosphor sheet described above.
  • this light-emitting device includes an LED package including the above-described phosphor sheet or a cured product thereof on a light-emitting surface of an LED chip.
  • the backlight unit according to the embodiment of the present invention is an application example of this light emitting device.
  • the backlight unit includes an LED package having the above-described phosphor sheet or a cured product thereof.
  • the backlight unit configured as described above can be used for displays, lighting, interiors, signs, signboards, and the like, but is particularly suitable for display and lighting applications.
  • a display for example, a liquid crystal display
  • this display includes an LED package having the above-described phosphor sheet or a cured product thereof.
  • the absorption spectrum and fluorescence spectrum were measured in a 4 ⁇ 10 ⁇ 6 mol / L dichloromethane solution using a U-3200 type spectrophotometer and an F-2500 type spectrophotometer (both manufactured by Hitachi, Ltd.), respectively. And measured.
  • reaction solution was cooled to room temperature, and the organic layer was separated and washed with saturated brine. The organic layer was dried over magnesium sulfate and filtered, and then the solvent was distilled off. The obtained reaction product was purified by silica gel chromatography to obtain 3,5-bis (4-tert-butylphenyl) benzaldehyde (3.5 g) as a white solid.
  • Silicone resin 1 (Si1): (A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (MeViSiO 2/2 ) 0.35 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03 (B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3 Component (C) “HPM-502” (Phenylmethylsiloxane copolymer) manufactured by Gerest Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group,
  • Silicone resin 2 (Si2): (A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.34 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03 (B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3 Component (C) (HMe 2 SiO) 2 SiPh 2 Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph:
  • Silicone resin 3 (Si3): (A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.3 (Ph 2 SiO 2/2 ) 0.33 (PhSiO 3/2 ) 0.33 (SiO 4/2 ) 0.03 (B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3 Component (C) (HMe 2 SiO) 2 SiPh 2 Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph:
  • Silicone resin 4 (Si4): (A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.2 (Ph 2 SiO 2/2 ) 0.38 (PhSiO 3/2 ) 0.38 (SiO 4/2 ) 0.03 (B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3 Component (C) (HMe 2 SiO) 2 SiPh 2 Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph:
  • Silicone resin 5 (Si5): (A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.34 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03 (B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.5 (PhSiO 3/2 ) 0.2 Component (C) (HMe 2 SiO) 2 SiPh 2 Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph:
  • Silicone resin 6 (Si6): (A) component: 31.4 parts by weight, (B) component: 2.8 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.34 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03 (B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3 Component (C) (HMe 2 SiO) 2 SiPh 2 Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph:
  • Silicone resin 7 (Si7): (A) Component: 17.4 parts by weight, (B) Component: 16.8 parts by weight (C) Component: 66.0 parts by weight, (D) Component: 0.03 parts by weight, Reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.34 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03 (B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3 Component (C) (HMe 2 SiO) 2 SiPh 2 Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl
  • Silicone resin 8 (Si8): OE6630 (Toray Dow Corning Silicone)
  • Silicone resin 9 (Si9): Resin main component 16.7 parts by weight, hardness adjusting agent 16.7 parts by weight, cross-linking agent 66.7 parts by weight, reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight
  • Ingredients for blending silicone resin Resin main component (MeViSiO 2/2 ) 0.25 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.45 (HO 1/2 ) 0.03 (corresponding to component (A))
  • MTM methyltrimethoxysilane
  • PhTM phenyltrimethoxysilane
  • ⁇ Dynamic elastic modulus measurement> The obtained phosphor sheet was cut into a circle having a diameter of 20 mm and the substrate was peeled off, and then the storage modulus was measured using the following apparatus.
  • Measuring device Viscosity and viscoelasticity measuring device HAAKE MARSIII (Thermo Fisher SCIENTIFIC made) Measurement conditions: OSC temperature-dependent measurement Geometry: Parallel disk type (20mm) Measurement time: 1980 seconds Angular frequency: 1 Hz Angular velocity: 6.2832 rad / sec Temperature range: 25 to 200 ° C (with low temperature control function) Temperature increase rate: 0.08333 ° C./sec Sample shape: Circular (diameter 18 mm).
  • ⁇ Cutting processability evaluation> The obtained phosphor sheet was cut into 1 mm ⁇ 0.3 mm square using a cutting device “GCUT” (manufactured by UHT) to produce 100 individual phosphor sheets. The individual phosphor sheets were observed with an optical microscope, and the number of samples having cracks or chips at the peripheral edge was counted. It shows that it is excellent in cutting workability, so that there are few samples with a peripheral part cracked or missing. If it is more than evaluation B, it is excellent practically.
  • the obtained phosphor sheet was cut into 1 mm ⁇ 0.3 mm square using a cutting device “GCUT” (manufactured by UHT) to produce 100 individual phosphor sheets.
  • a cutting device “GCUT” manufactured by UHT
  • the individual phosphor sheets were vacuum-adsorbed with a collet and separated from the substrate.
  • the separated phosphor sheet was attached to the LED chip surface of the LED package on which the flip chip type LED chip was mounted under the following application conditions.
  • the obtained package was connected to a DC power source and turned on, and it was confirmed whether or not it was turned on.
  • Adhesiveness is very good A: 1 piece or more and 5 pieces or less Adhesiveness is good B: 6 pieces or more and 10 pieces or less Adhesiveness is not practically problematic C: 11 pieces or more and 30 pieces or less : 31 or more Adhesiveness is very poor.
  • Example 1 (Effect of silicone composition) Using a polyethylene container having a volume of 100 ml, 18.0 g of silicone resin 1 (Si1), 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor, and 2.5 g of butyl carbitol were added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 1.
  • silicone resin 1 Si1
  • YAG1 phosphor 1
  • butyl carbitol 2.5 g
  • the phosphor composition 1 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 1. The cutting processability was good, the result that the adhesiveness was improved was obtained, and the relative luminance was also improved.
  • Example 2 (Change of silicone resin) Except that the silicone resin was changed to Si2, a phosphor sheet was prepared in the same manner as in Example 1, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 1. As shown in Table 1, from the evaluation results of Example 2, it was found that the cutting property and the adhesiveness were good if the phosphor sheet according to the embodiment of the present invention. It was also found that the relative luminance was improved.
  • Comparative Example 1 A phosphor sheet was prepared in the same manner as in Example 1 except that the silicone resin was changed to Si8, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 1. As shown in Table 1, in Comparative Example 1, the cutting workability was not a problem in practice, but the adhesion was not improved.
  • Example 3 (Change of silicone resin, addition of silicone fine particles) Using a 100 ml polyethylene container, 17.0 g of silicone resin 2 (Si2), 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring and defoaming device, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 3.
  • the phosphor composition 3 is applied on the release treatment surface of “Therapy” BX9, which is the base material, heated at 120 ° C. for 40 minutes, dried, and 80 ⁇ m thick, 100 mm square fluorescent light A body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 1. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 4 to 8 Modification of silicone composition
  • Table 1 a phosphor sheet was prepared in the same manner as in Example 3 except that the silicone resin was changed to Si3 to Si7. Thereafter, an LED package was prepared, and each measurement and evaluation was performed. went. The results are shown in Table 1. As shown in Table 1, from the evaluation results of Examples 4 to 8, it was found that the phosphor sheet according to the embodiment of the present invention has good cutting processability and improved adhesion. It was also found that the relative luminance was improved.
  • Comparative Example 2 As shown in Table 1, a phosphor sheet was prepared in the same manner as in Example 3 except that the silicone resin was changed to Si9. Thereafter, an LED package was prepared, and each measurement and evaluation was performed. The results are shown in Table 1. In Comparative Example 2, the cutting processability was not a problem in practice, but the adhesiveness was not improved. Also, the luminance was not improved.
  • Example 9 (Resin content changed to 10.0% by weight)
  • silicone resin 2 Si2
  • phosphor 1 YAG1
  • butyl carbitol Added and mixed.
  • stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 11.
  • the phosphor composition 11 is applied on the release surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 10 (Resin content is changed to 70.0% by weight)
  • a polyethylene container with a volume of 100 ml 42.4 g of silicone resin 2 (Si2), 17.5 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed.
  • Si2 silicone resin 2
  • YAG1 phosphor 1
  • silicone fine particles 0.6 g
  • butyl carbitol Added and mixed.
  • stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 12.
  • the phosphor composition 12 is applied on the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 11 (Resin content changed to 85.0 wt%) Using a 100 ml polyethylene container, 52.5 g of silicone resin 2 (Si2), 8.6 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 13.
  • the phosphor composition 13 is applied onto the release treatment surface of “therapeutic” BX9, which is a base material, heated at 120 ° C. for 40 minutes, dried, and fluorescent having a thickness of 80 ⁇ m and a 100 mm square.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 12 (Change in content of silicone fine particles to 0.5% by weight) Using a 100 ml polyethylene container, 17.0 g of silicone resin 2 (Si2), 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.3 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare a phosphor composition 14.
  • silicone resin 2 Si2
  • YAG1 phosphor 1
  • the phosphor composition 14 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, and heated and dried at 120 ° C. for 40 minutes, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 13 The silicone fine particle content is changed to 10.0% by weight
  • silicone resin 2 Si2
  • 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor 6 g
  • silicone fine particles 6 g
  • 2.5 g of butyl carbitol 2.5 g
  • stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 15.
  • the phosphor composition 15 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes, dried, and fluorescent having a thickness of 80 ⁇ m and a 100 mm square.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 14 (The silicone fine particle content is changed to 20.0% by weight) Using a polyethylene container with a volume of 100 ml, add 6 g of silicone resin 2 (Si2), 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor, 12 g of silicone fine particles, and 2.5 g of butyl carbitol and mix. did. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 16.
  • silicone resin 2 Si2
  • YAG1 phosphor 1
  • the phosphor composition 16 is applied on the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 15 (phosphor content changed to 38.0 wt%) Using a 100 ml polyethylene container, 36.4 g of silicone resin 2 (Si2), 22.7 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 17.
  • silicone resin 2 Si2
  • YAG1 phosphor 1
  • silicone fine particles 0.6 g
  • butyl carbitol butyl carbitol
  • the phosphor composition 17 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, heated and dried at 120 ° C. for 40 minutes, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 3. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 16 The phosphor content is changed to 40.0% by weight
  • silicone resin 2 Si2
  • YAG1 phosphor 1
  • 0.6 g of silicone fine particles 0.6 g
  • butyl carbitol 2.5 g
  • stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare a phosphor composition 18.
  • the phosphor composition 18 is applied on the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 3. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 17 (phosphor content changed to 63.0 wt%) Using a 100 ml polyethylene container, 21.5 g of silicone resin 2 (Si2), 37.6 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming were performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 19.
  • the phosphor composition 19 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, and heated and dried at 120 ° C. for 40 minutes, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 3. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 18 The phosphor content is changed to 80.0 wt%) Using a 100 ml polyethylene container, 11.3 g of silicone resin 2 (Si2), 47.7 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming were performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 20.
  • silicone resin 2 Si2
  • YAG1 phosphor 1
  • silicone fine particles 0.6 g
  • butyl carbitol butyl carbitol
  • the phosphor composition 20 is applied on the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 3. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
  • Example 3 A phosphor sheet was prepared in the same manner as in Example 15 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 3. As shown in Table 3, there was no practical problem with the cutting workability, but the adhesiveness was not improved.
  • Example 4 A phosphor sheet was prepared in the same manner as in Example 16 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 3. As shown in Table 3, there was no practical problem with the cutting workability, but the adhesiveness was not improved.
  • Example 5 A phosphor sheet was prepared in the same manner as in Example 17 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 3. As shown in Table 3, there was no practical problem with the cutting workability, but the adhesiveness was not improved.
  • Example 6 A phosphor sheet was prepared in the same manner as in Example 18 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 3. As shown in Table 3, the cutting processability was lowered and the adhesiveness was not improved.
  • Example 19 Modification of phosphor-1
  • silicone resin 2 Si2
  • phosphor 2 ⁇ 1
  • 25.2 g of phosphor 3 KSF1
  • silicone fine particles 0.6 g and 2.5 g of butyl carbitol
  • the phosphor composition 25 is applied on the release treatment surface of “Therapy” BX9 as a base material, heated at 120 ° C. for 30 minutes and dried, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 4. Very good results were obtained for both cutting workability and adhesiveness, and the relative luminance was greatly improved.
  • Example 7 A phosphor sheet was prepared in the same manner as in Example 19 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 4. As shown in Table 4, there was no practical problem with the cutting workability, but the adhesiveness was not improved.
  • Example 20 (Modification of phosphor-2) Using a polyethylene container with a volume of 100 ml, 60.0 g of silicone resin 2 (Si2), 1.24 ⁇ 10 ⁇ 3 g of phosphor 4 (type 21) as an organic phosphor, and phosphor 5 (type 24) 1.24 ⁇ 10 ⁇ 3 g, 1.0 g of silicone fine particles, and 2.5 g of butyl carbitol were added and mixed. Thereafter, the mixture was stirred and degassed at 1000 rpm for 5 minutes using a planetary stirring and defoaming device to prepare a phosphor composition 27.
  • silicone resin 2 Si2
  • phosphor 4 type 21
  • phosphor 5 type 24
  • the phosphor composition 27 is applied on the release surface of “Therapy” BX9, which is a base material, heated and dried at 120 ° C. for 30 minutes, and has a thickness of 80 ⁇ m and a 100 mm square fluorescence.
  • a body sheet was obtained.
  • Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above.
  • the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 5. Very good results were obtained for both cutting processability and adhesiveness, and the relative luminance was also improved.
  • Example 21 to 24 Modification of phosphor-3)
  • a phosphor composition (28 to 32) was prepared in the same manner as in Example 20 except that the organic phosphor was appropriately changed as shown in Table 5, and each of the examples was used.
  • a phosphor sheet was prepared in the same manner as in No. 20. Thereafter, an LED package was produced and evaluated using each of them. The results are shown in Table 5. From the evaluation results of Examples 21 to 24, it was found that very good results were obtained for both cutting processability and adhesiveness, and the relative luminance was improved.
  • Example 8 A phosphor composition 33 was prepared in the same manner as in Example 20 except that the silicone resin was changed to Si9 and the phosphor was changed to phosphor 4 (type 27) and phosphor 5 (type 28). A sheet was produced. Then, the LED package was produced and each measurement and evaluation were performed. The results are shown in Table 5. As shown in Table 5, there was no practical problem with the cutting processability, but the adhesiveness was not improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Filters (AREA)

Abstract

The present invention is able to provide a phosphor sheet which has excellent workability such as cutting workability, while exhibiting good adhesion to an LED chip. The present invention is a phosphor sheet which contains a phosphor and a silicone resin, and which has a storage elastic modulus at 25°C of 0.01 MPa or more, a storage elastic modulus at 100°C of less than 0.01 MPa and a storage elastic modulus G' at 140°C of 0.05 MPa or more.

Description

蛍光体シート、それを用いたLEDチップおよびLEDパッケージ、LEDパッケージの製造方法、ならびにLEDパッケージを含む発光装置、バックライトユニットおよびディスプレイPhosphor sheet, LED chip and LED package using the same, LED package manufacturing method, light emitting device including LED package, backlight unit and display
 本発明は、蛍光体シート、それを用いたLEDチップおよびLEDパッケージ、LEDパッケージの製造方法、ならびにLEDパッケージを含む発光装置、バックライトユニットおよびディスプレイに関する。 The present invention relates to a phosphor sheet, an LED chip and an LED package using the phosphor sheet, a method for manufacturing the LED package, and a light emitting device including the LED package, a backlight unit, and a display.
 発光ダイオード(LED、Light Emitting Diode)は、その発光効率の目覚ましい向上を背景とし、低い消費電力、長寿命、意匠性などを特長として、液晶ディスプレイ(LCD、Liquid Crystal Display)のバックライト向けや、車のヘッドライト等の車載分野ばかりではなく、一般照明向けでも急激に市場を拡大しつつある。LEDは、環境負荷も低いことから、今後、一般照明分野でも巨大な市場を形成すると期待されている。 Light-emitting diodes (LEDs, Light Emitting Diodes) are backed by remarkable improvements in their luminous efficiencies, featuring low power consumption, long life, and design, etc., for backlights of liquid crystal displays (LCD, Liquid Crystal Display), The market is rapidly expanding not only for in-vehicle fields such as car headlights but also for general lighting. LEDs are expected to form a huge market in the general lighting field because of their low environmental impact.
 LEDの発光スペクトルは、LEDチップを形成する半導体材料に依存するため、その発光色は限られている。そのため、LEDを用いてLCDのバックライトや一般照明向けの白色光を得るためには、LEDチップ上にそれぞれのチップに適合した無機蛍光体を配置し、発光波長を変換する必要がある。具体的には、青色発光するLEDチップ上に黄色蛍光体を設置する方法、青色発光するLEDチップ上に赤色蛍光体および緑色蛍光体を設置する方法などが提案されている。 Since the emission spectrum of an LED depends on the semiconductor material forming the LED chip, its emission color is limited. Therefore, in order to obtain white light for LCD backlight or general illumination using LEDs, it is necessary to dispose the inorganic phosphor suitable for each chip on the LED chip and convert the emission wavelength. Specifically, a method of installing a yellow phosphor on an LED chip that emits blue light, a method of installing a red phosphor and a green phosphor on an LED chip that emits blue light, and the like have been proposed.
 LEDチップ上に蛍光体を設置する具体的な方法の1つとして、LEDチップ上に、蛍光体を含有したシート(以下、「蛍光体シート」という)を貼り付ける方法が提案されている(例えば、特許文献1~4参照)。この方法は、従来実用化されている、蛍光体を樹脂に分散した蛍光体組成物をLEDチップ上にディスペンスして硬化する方法と比較して、LEDチップ上に配置する蛍光体の量を一定量とすることが容易である。その結果として、得られる白色LEDの色や輝度を均一にできる点で優れている。 As a specific method for installing the phosphor on the LED chip, a method of attaching a phosphor-containing sheet (hereinafter referred to as “phosphor sheet”) on the LED chip has been proposed (for example, Patent Documents 1 to 4). This method has a constant amount of the phosphor disposed on the LED chip, compared to a method in which a phosphor composition in which a phosphor is dispersed in a resin is dispensed on the LED chip and cured. It is easy to make the quantity. As a result, it is excellent in that the color and brightness of the obtained white LED can be made uniform.
特開2009-235368号公報JP 2009-235368 A 特開2010-123802号公報JP 2010-123802 A 特許2011-102004号公報Japanese Patent No. 2011-102004 特許第5287935号公報Japanese Patent No. 5287935
 蛍光体シートをLEDチップ上に貼り付ける方法を用いる場合、蛍光体シートをLEDチップの大きさに個片化する際の切断加工や、蛍光体シートにおいて、LEDチップ上の電極部などに相当する部分の孔開け加工などを施す必要がある。そのため、加工性に優れた蛍光体シートが求められる。 When using the method of sticking the phosphor sheet on the LED chip, it corresponds to a cutting process when the phosphor sheet is singulated to the size of the LED chip, or an electrode portion on the LED chip in the phosphor sheet. It is necessary to drill holes in the part. Therefore, a phosphor sheet excellent in processability is required.
 一方で、蛍光体シートには、LEDチップ上に貼り付けるために接着性を有することが求められる。特許文献4には、ある特定のオルガノポリシロキサンを含むシリコーン組成物を用いることで、LEDチップへの貼り付け前の加工性に優れ、かつ、LEDチップへの貼り付け時の接着性にも優れた蛍光体シートが得られることが開示されている。しかし、この蛍光体シートは、LEDチップへの貼り付け後において、蛍光体シートの硬化性が不十分であるため、満足できる接着性が得られていなかった。そのことにより、その蛍光体シートを貼り付けたLEDチップは、接着性不良によって輝度が低下するといった課題を有していた。 On the other hand, the phosphor sheet is required to have adhesiveness so as to be stuck on the LED chip. In Patent Document 4, by using a silicone composition containing a specific organopolysiloxane, it is excellent in processability before being attached to the LED chip, and is excellent in adhesiveness when being attached to the LED chip. It is disclosed that a phosphor sheet can be obtained. However, since this phosphor sheet has insufficient curability of the phosphor sheet after being attached to the LED chip, satisfactory adhesiveness has not been obtained. As a result, the LED chip to which the phosphor sheet is attached has a problem that the luminance is lowered due to poor adhesion.
 本発明はかかる課題を解決するため、切断などの加工性とLEDチップへの接着性を両立する蛍光体シートを提供することを目的とする。 In order to solve such problems, an object of the present invention is to provide a phosphor sheet having both workability such as cutting and adhesion to an LED chip.
 すなわち本発明は、蛍光体およびシリコーン樹脂を含む蛍光体シートであって、25℃における貯蔵弾性率G’が0.01MPa以上であり、100℃における貯蔵弾性率G’が0.01MPa未満であり、かつ、140℃における貯蔵弾性率G’が0.05MPa以上である蛍光体シートである。 That is, the present invention is a phosphor sheet containing a phosphor and a silicone resin, wherein the storage elastic modulus G ′ at 25 ° C. is 0.01 MPa or more, and the storage elastic modulus G ′ at 100 ° C. is less than 0.01 MPa. And a phosphor sheet having a storage elastic modulus G ′ at 140 ° C. of 0.05 MPa or more.
 本発明によれば、切断などの加工性に優れ、LEDチップへの接着性も良好な蛍光体シートを提供することができる。 According to the present invention, it is possible to provide a phosphor sheet that is excellent in workability such as cutting and has good adhesion to an LED chip.
本発明の実施の形態に係る蛍光体シートを用いたLEDパッケージの一例。An example of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention. 本発明の実施の形態に係る蛍光体シートを用いたLEDパッケージの一例。An example of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention. 本発明の実施の形態に係る蛍光体シートを用いたLEDパッケージの製造方法の一例。An example of the manufacturing method of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention. 本発明の実施の形態に係る蛍光体シートの貼り付け方法の一例。An example of the sticking method of the fluorescent substance sheet which concerns on embodiment of this invention. 本発明の実施の形態に係る蛍光体シートの貼り付け方法の一例。An example of the sticking method of the fluorescent substance sheet which concerns on embodiment of this invention. 本発明の実施の形態に係る蛍光体シートの貼り付け方法の一例。An example of the sticking method of the fluorescent substance sheet which concerns on embodiment of this invention. 本発明の実施の形態に係る蛍光体シートを用いたLEDパッケージの製造方法の一例。An example of the manufacturing method of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention. 本発明の実施の形態に係る蛍光体シートを用いたLEDパッケージの製造方法の一例。An example of the manufacturing method of the LED package using the fluorescent substance sheet which concerns on embodiment of this invention.
 以下、本発明に係る蛍光体シート、それを用いたLEDチップおよびLEDパッケージ、LEDパッケージの製造方法、ならびにLEDパッケージを含む発光装置、バックライトユニットおよびディスプレイの好適な実施の形態を詳細に説明する。ただし、本発明は、以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。 Hereinafter, preferred embodiments of a phosphor sheet according to the present invention, an LED chip and an LED package using the phosphor sheet, a method for manufacturing the LED package, and a light emitting device including the LED package, a backlight unit, and a display will be described in detail. . However, the present invention is not limited to the following embodiments, and can be implemented with various modifications according to the purpose and application.
 <蛍光体シート>
 本発明の実施の形態に係る蛍光体シートは、蛍光体およびシリコーン樹脂を含み、25℃における貯蔵弾性率G’が0.01MPa以上であり、100℃における貯蔵弾性率G’が0.01MPa未満であり、かつ、140℃における貯蔵弾性率G’が0.05MPa以上である。
<Phosphor sheet>
The phosphor sheet according to the embodiment of the present invention includes a phosphor and a silicone resin, has a storage elastic modulus G ′ at 25 ° C. of 0.01 MPa or more, and a storage elastic modulus G ′ at 100 ° C. of less than 0.01 MPa. And the storage elastic modulus G ′ at 140 ° C. is 0.05 MPa or more.
 本発明の実施の形態に係る蛍光体シートは、25℃での貯蔵弾性率G’が0.01MPa以上であることにより、室温(25℃)において十分弾性的である。そのため、刃体による切断加工などの早い剪断応力に対して、蛍光体シートが切断箇所周囲の変形無しに切断され、高い寸法精度での加工性が得られる。 The phosphor sheet according to the embodiment of the present invention is sufficiently elastic at room temperature (25 ° C.) because the storage elastic modulus G ′ at 25 ° C. is 0.01 MPa or more. For this reason, the phosphor sheet is cut without deformation around the cut portion against fast shearing stress such as cutting with a blade, and processability with high dimensional accuracy is obtained.
 25℃での貯蔵弾性率G’の上限は、特に制限はないが、サンプルの取り扱いやすさの観点から、2.0MPa以下であることが好ましい。 The upper limit of the storage elastic modulus G ′ at 25 ° C. is not particularly limited, but is preferably 2.0 MPa or less from the viewpoint of easy handling of the sample.
 本発明の実施の形態に係る蛍光体シートは、100℃での貯蔵弾性率G’が0.01MPa未満であることにより、100℃においてシートが十分粘性的であり、流動性が高い。そのため、この物性を備えた蛍光体シートを100℃以上で加熱しながらLEDチップへ貼り付けることで、LEDチップの発光面の形状に応じて蛍光体シートが素早く流動、変形するので、蛍光体シートとLEDチップとの高い密着性が得られる。これによって、LEDチップからの光取出し性が向上し、輝度が向上する。 The phosphor sheet according to the embodiment of the present invention has a storage elastic modulus G ′ at 100 ° C. of less than 0.01 MPa, so that the sheet is sufficiently viscous at 100 ° C. and has high fluidity. For this reason, the phosphor sheet having this physical property is heated and heated at 100 ° C. or more to the LED chip, so that the phosphor sheet quickly flows and deforms according to the shape of the light emitting surface of the LED chip. High adhesion between the LED chip and the LED chip can be obtained. Thereby, the light extraction property from the LED chip is improved, and the luminance is improved.
 100℃での貯蔵弾性率G’の下限は、特に制限はないが、LEDチップ上への加熱貼り付け時に蛍光体シートの流動性が高すぎると、貼り付け前に切断や孔開けで加工した形状が貼り付け時に保持できなくなるので、0.005MPa以上であることが好ましい。 The lower limit of the storage elastic modulus G ′ at 100 ° C. is not particularly limited. However, if the flowability of the phosphor sheet is too high at the time of heat pasting on the LED chip, it is processed by cutting or punching before pasting. Since the shape cannot be retained at the time of pasting, it is preferably 0.005 MPa or more.
 本発明の実施の形態に係る蛍光体シートは、140℃での貯蔵弾性率G’が0.05MPa以上であることにより、最終的にLEDチップを安定的に動作させることができる。この物性を備えた蛍光体シートを140℃以上で加熱すれば、速やかにシートの完全硬化が完了し、樹脂全体が一体化するので、蛍光体シートとLEDチップとの接着性が向上する。これによって、LEDパッケージの輝度も向上する。また、LEDチップと蛍光体シートの界面部分においては、LED点灯時の熱の影響を受けにくくなるため、LEDチップと蛍光体シートの剥がれが抑制される。そのため、LEDパッケージの信頼性が高くなる。 The phosphor sheet according to the embodiment of the present invention has a storage elastic modulus G ′ at 140 ° C. of 0.05 MPa or more, so that the LED chip can finally be stably operated. If the phosphor sheet having this physical property is heated at 140 ° C. or higher, complete curing of the sheet is completed quickly and the entire resin is integrated, so that the adhesion between the phosphor sheet and the LED chip is improved. Thereby, the brightness of the LED package is also improved. Moreover, since it becomes difficult to receive the influence of the heat at the time of LED lighting in the interface part of a LED chip and a fluorescent substance sheet, peeling of a LED chip and a fluorescent substance sheet is suppressed. Therefore, the reliability of the LED package is increased.
 ここでいう貯蔵弾性率G’とは、レオメーターにより蛍光体シートの動的粘弾性測定(温度依存性)を行った場合の貯蔵弾性率G’である。動的粘弾性とは、材料にある正弦周波数で剪断歪みを加えたときに、定常状態に達した場合に現れる剪断応力を歪みと位相の一致する成分(弾性的成分)と、歪みと位相が90°遅れた成分(粘性的成分)に分解して、材料の動的な力学特性を解析する手法である。 Here, the storage elastic modulus G ′ is the storage elastic modulus G ′ when the dynamic viscoelasticity measurement (temperature dependence) of the phosphor sheet is performed with a rheometer. Dynamic viscoelasticity means that when shear strain is applied to a material at a sinusoidal frequency, the shear stress that appears when a steady state is reached is divided into a component (elastic component) whose strain and phase match, and the strain and phase are This is a technique for analyzing the dynamic mechanical properties of a material by decomposing it into components (viscous components) delayed by 90 °.
 動的粘弾性測定(温度依存性)は、一般的な粘度・粘弾性測定装置を用いて動的粘弾性測定することができる。本発明においては、以下の条件にて測定を行った場合の値とする。 Dynamic viscoelasticity measurement (temperature dependency) can be measured using a general viscosity / viscoelasticity measuring device. In this invention, it is set as the value at the time of measuring on the following conditions.
 測定装置   :粘度・粘弾性測定装置HAAKE MARSIII
 (Thermo Fisher SCIENTIFIC 製)
 測定条件  :OSC温度依存測定
 ジオメトリー:平行円板型(20mm)
 測定時間  :1980秒
 角周波数  :1Hz
 角速度   :6.2832rad/秒
 温度範囲  :25~200℃(低温温度制御機能あり)
 昇温速度  :0.08333℃/秒
 サンプル形状:円形(直径18mm)
 サンプル厚さ:50μm以上。
Measuring device: Viscosity and viscoelasticity measuring device HAAKE MARSIII
(Thermo Fisher SCIENTIFIC made)
Measurement conditions: OSC temperature-dependent measurement Geometry: Parallel disk type (20mm)
Measurement time: 1980 seconds Angular frequency: 1 Hz
Angular velocity: 6.2832 rad / sec Temperature range: 25 to 200 ° C (with low temperature control function)
Temperature increase rate: 0.08333 ° C./second Sample shape: Circular (18 mm diameter)
Sample thickness: 50 μm or more.
 測定サンプルの厚さが50μm以上であれば、安定して動的粘弾性測定を行うことができる。サンプル厚さが50μm未満の場合、数枚重ね合わせて、100℃のホットプレート上で加熱圧着して一体化した膜(シート)を作製し、所望の厚さのサンプルを作製することができる。 If the thickness of the measurement sample is 50 μm or more, the dynamic viscoelasticity measurement can be stably performed. When the sample thickness is less than 50 μm, several films are stacked and heat-pressed on a 100 ° C. hot plate to produce an integrated film (sheet), and a sample with a desired thickness can be manufactured.
 剪断歪みに位相が一致する応力成分を剪断歪みで除したものが、貯蔵弾性率G’である。貯蔵弾性率G’は、各温度における動的な歪みに対する材料の弾性を表すものであり、蛍光体シートの硬さに関連する。したがって、各測定温度における貯蔵弾性率G’は、蛍光体シートに関する以下のような特性に影響する。例えば、25℃においては、貯蔵弾性率G’は蛍光体シートの加工性に影響し、100℃においては、蛍光体シートの流動性と接着性に影響し、140℃においては、蛍光体シートの硬化性と接着性に影響する。 The storage elastic modulus G ′ is obtained by dividing the stress component whose phase matches the shear strain by the shear strain. The storage elastic modulus G ′ represents the elasticity of the material against dynamic strain at each temperature and is related to the hardness of the phosphor sheet. Therefore, the storage elastic modulus G ′ at each measurement temperature affects the following characteristics regarding the phosphor sheet. For example, at 25 ° C., the storage elastic modulus G ′ affects the processability of the phosphor sheet, at 100 ° C. the fluidity and adhesion of the phosphor sheet, and at 140 ° C. Affects curability and adhesion.
 本発明の実施の形態に係る蛍光体シートの厚さは、特に制限はないが、10μm以上、1000μm以下であることが好ましい。下限としては、30μm以上であることがより好ましい。上限としては、200μm以下であることがより好ましく、100μm以下であることがより一層好ましく、50μm以下であることがさらに好ましい。蛍光体シートの厚みが1000μm以下であると耐クラック性に特に優れ、200μm以下であると耐熱性に特に優れる。 The thickness of the phosphor sheet according to the embodiment of the present invention is not particularly limited, but is preferably 10 μm or more and 1000 μm or less. As a minimum, it is more preferable that it is 30 micrometers or more. As an upper limit, it is more preferable that it is 200 micrometers or less, It is still more preferable that it is 100 micrometers or less, It is further more preferable that it is 50 micrometers or less. When the thickness of the phosphor sheet is 1000 μm or less, the crack resistance is particularly excellent, and when it is 200 μm or less, the heat resistance is particularly excellent.
 本発明の実施の形態に係る蛍光体シートは、必要に応じて他の層を備えた積層体であってもよい。他の層としては、例えば基材、バリア層等が挙げられる。 The phosphor sheet according to the embodiment of the present invention may be a laminate including other layers as necessary. Examples of other layers include a substrate and a barrier layer.
 (シリコーン樹脂)
 本発明の実施の形態に係る蛍光体シートは、主として透明性、耐熱性の面からシリコーン樹脂を含む。
(Silicone resin)
The phosphor sheet according to the embodiment of the present invention contains a silicone resin mainly from the viewpoint of transparency and heat resistance.
 本発明で用いられるシリコーン樹脂としては、硬化型シリコーン樹脂が好ましい。硬化型シリコーン樹脂は、一液型、二液型(三液型)のいずれの液構成のものであってもよい。硬化型シリコーン樹脂には、空気中の水分あるいは触媒によって縮合反応を起こすタイプとして、脱アルコール型、脱オキシム型、脱酢酸型、脱ヒドロキシルアミン型などがある。また、触媒によってヒドロシリル化反応を起こすタイプの付加反応型がある。これらのいずれのタイプの硬化型シリコーン樹脂が使用されてもよい。特に、付加反応型のシリコーン樹脂は、硬化反応に伴う副成物がなく、硬化収縮が小さい点と、加熱により硬化を早めることが容易な点とから、より好ましい。 As the silicone resin used in the present invention, a curable silicone resin is preferable. The curable silicone resin may be of one liquid type or two liquid type (three liquid type). The curable silicone resin includes a dealcoholization type, a deoxime type, a deacetic acid type, a dehydroxylamine type and the like as a type that causes a condensation reaction with moisture in the air or a catalyst. There is also an addition reaction type in which a hydrosilylation reaction is caused by a catalyst. Any of these types of curable silicone resins may be used. In particular, an addition reaction type silicone resin is more preferable because it has no by-products associated with the curing reaction, has a small curing shrinkage, and can easily be cured by heating.
 付加反応型のシリコーン樹脂は、一例として、ケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物とのヒドロシリル化反応により、形成される。 The addition reaction type silicone resin is formed, for example, by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom.
 「ケイ素原子に結合したアルケニル基を含有する化合物」としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、プロペニルトリメトキシシラン、ノルボルネニルトリメトキシシラン、オクテニルトリメトキシシラン等が挙げられる。「ケイ素原子に結合した水素原子を有する化合物」としては、例えば、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン-CO-メチルハイドロジェンポリシロキサン、エチルハイドロジェンポリシロキサン、メチルハイドロジェンポリシロキサン-CO-メチルフェニルポリシロキサン等が挙げられる。付加反応型のシリコーンゴムとしては、このような材料のヒドロシリル化反応によって形成されるものが挙げられる。また、シリコーン樹脂としては、他にも、例えば特開2010-159411号公報に記載されているような公知のものを利用することができる。 Examples of the “compound containing an alkenyl group bonded to a silicon atom” include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane Etc. Examples of the “compound having a hydrogen atom bonded to a silicon atom” include, for example, methyl hydrogen polysiloxane, dimethyl polysiloxane-CO-methyl hydrogen polysiloxane, ethyl hydrogen polysiloxane, methyl hydrogen polysiloxane-CO-methyl. Examples thereof include phenyl polysiloxane. Examples of the addition reaction type silicone rubber include those formed by a hydrosilylation reaction of such a material. In addition, as the silicone resin, other well-known resins as described in, for example, JP 2010-159411 A can be used.
 本発明においては、シリコーン樹脂が、少なくとも下記の(A)~(D)成分を含む架橋性シリコーン組成物(以下、「本組成物」という)の架橋物であることが好ましい。ここで、シリコーン樹脂のうち、本組成物の架橋物が20重量%以上であることが好ましく、50重量%以上であることがより好ましく、80重量%以上であることがさらに好ましい。 In the present invention, the silicone resin is preferably a crosslinked product of a crosslinkable silicone composition (hereinafter referred to as “the present composition”) containing at least the following components (A) to (D). Here, in the silicone resin, the cross-linked product of the present composition is preferably 20% by weight or more, more preferably 50% by weight or more, and further preferably 80% by weight or more.
 (A)平均単位式: (A) Average unit formula:
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(平均単位式(1)中、Rは炭素数1~14の一価の炭化水素基であって、少なくとも1個はアリール基であり、かつ、少なくとも1個は炭素数2~6のアルケニル基である。Rは水素原子または炭素数1~6のアルキル基である。a、b、c、d、およびeは、0≦a≦0.1、0.2≦b≦0.9、0.1≦c≦0.6、0≦d≦0.2、0≦e≦0.1、かつa+b+c+d+e=1を満たす数である。)
で表される分岐構造を有するオルガノポリシロキサン。
(In the average unit formula (1), R 1 is a monovalent hydrocarbon group having 1 to 14 carbon atoms, at least one is an aryl group, and at least one is an alkenyl having 2 to 6 carbon atoms. R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, a, b, c, d, and e are 0 ≦ a ≦ 0.1, 0.2 ≦ b ≦ 0.9. 0.1 ≦ c ≦ 0.6, 0 ≦ d ≦ 0.2, 0 ≦ e ≦ 0.1, and a + b + c + d + e = 1.)
An organopolysiloxane having a branched structure represented by:
 (B)平均単位式: (B) Average unit formula:
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(平均単位式(2)中、Rは炭素数1~14の1価の炭化水素基であって、少なくとも1個はアリール基であり、かつ、少なくとも1個は炭素数2~6のアルケニル基である。f、gおよびhは0.1<f≦0.4、0.2≦g≦0.5、0.2≦h≦0.5、かつf+g+h=1を満たす数である。)
で表される分岐構造を有するオルガノポリシロキサン。
(In the average unit formula (2), R 3 is a monovalent hydrocarbon group having 1 to 14 carbon atoms, at least one is an aryl group, and at least one is an alkenyl having 2 to 6 carbon atoms. F, g, and h are numbers satisfying 0.1 <f ≦ 0.4, 0.2 ≦ g ≦ 0.5, 0.2 ≦ h ≦ 0.5, and f + g + h = 1. )
An organopolysiloxane having a branched structure represented by:
 (C)一分子中に少なくとも2個のSi-H結合を有し、ケイ素原子に結合した有機基のうち12~70モル%がアリール基であるオルガノポリシロキサン。 (C) Organopolysiloxane having at least two Si—H bonds in one molecule and 12 to 70 mol% of organic groups bonded to silicon atoms being aryl groups.
 (D)ヒドロシリル化反応用触媒。 (D) Catalyst for hydrosilylation reaction.
 (A)成分のオルガノポリシロキサンは、アリール基を有することで、(B)成分~(D)成分との相溶性を向上することができる。また、(A)成分のオルガノポリシロキサンは、炭素数2~6のアルケニル基を有することで、(A)成分~(C)成分の架橋反応を生じさせる。また、(A)成分のオルガノポリシロキサンは、分岐構造を有することで、硬化性が向上し、LEDチップとの良好な接着性を得ることができる。 The organopolysiloxane of the component (A) can have improved compatibility with the components (B) to (D) by having an aryl group. Further, the organopolysiloxane of component (A) has an alkenyl group having 2 to 6 carbon atoms, thereby causing a crosslinking reaction of components (A) to (C). Moreover, the organopolysiloxane of the component (A) has a branched structure, whereby the curability is improved and good adhesion to the LED chip can be obtained.
 分岐構造とは、平均単位式において、基本構成単位がT単位(RSiO3/2)やQ単位(SiO4/2)を有する構造を示す。ここで、平均単位式において、Rで表される有機置換基がケイ素原子に1個付いた3官能性の単位をT単位、Rで表される有機置換基がケイ素原子に付いていない4官能性の単位をQ単位と言う。 The branched structure refers to a structure in which the basic structural unit has a T unit (RSiO 3/2 ) or a Q unit (SiO 4/2 ) in the average unit formula. Here, in the average unit formula, a trifunctional unit in which one organic substituent represented by R is attached to a silicon atom is a T unit, and a tetrafunctional unit in which an organic substituent represented by R is not attached to a silicon atom. The sex unit is called Q unit.
 (A)成分のオルガノポリシロキサンに分岐構造を取り入れることによって、架橋反応速度が向上し、蛍光体シートにおいて良好な硬化性が得られる。 (B) By incorporating a branched structure into the organopolysiloxane of component (A), the crosslinking reaction rate is improved and good curability is obtained in the phosphor sheet.
 オルガノポリシロキサンにおける分岐構造の存在は、オルガノポリシロキサンに対しオルトギ酸メチル分解法などの処理を行った後、NMR分析やGPC-MALS分析を行うことによって、確認することができる。 The presence of a branched structure in the organopolysiloxane can be confirmed by conducting an analysis such as a methyl orthoformate decomposition method on the organopolysiloxane and then performing an NMR analysis or a GPC-MALS analysis.
 特に、GPC-MALS分析では、オルガノポリシロキサンの分子量分布と回転半径とを求めることができる。そこで、同一分子量成分のオルガノポリシロキサンのうち、回転半径が小さいものを特定することで、分岐構造の存在を確認することができる。 In particular, the GPC-MALS analysis can determine the molecular weight distribution and rotational radius of the organopolysiloxane. Therefore, the presence of a branched structure can be confirmed by specifying an organopolysiloxane having the same molecular weight component with a small rotation radius.
 平均単位式(1)において、a、b、c、dおよびeの各値は、得られる架橋物が、室温で十分な硬さが得られ、かつ高温での軟化が本発明を実施するに十分である範囲である。 In the average unit formula (1), each value of a, b, c, d and e indicates that the obtained cross-linked product has sufficient hardness at room temperature, and softening at high temperature implements the present invention. This is a sufficient range.
 (B)成分のオルガノポリシロキサンは、アリール基を有することで、(A)成分と相溶する。これにより、このシリコーン樹脂を含む蛍光体シートの硬化膜の機械的強度と、透明性とを維持することができる。また、(B)成分のオルガノポリシロキサンは、炭素数2~6のアルケニル基を有することで、(A)成分~(C)成分の架橋反応を生じさせる。また、(B)成分のオルガノポリシロキサンは、分岐構造を有することで、硬化性が向上し、LEDチップとの良好な接着性を得ることができる。 (B) Component organopolysiloxane has an aryl group and is compatible with component (A). Thereby, the mechanical strength and transparency of the cured film of the phosphor sheet containing the silicone resin can be maintained. The (B) component organopolysiloxane has an alkenyl group having 2 to 6 carbon atoms to cause a crosslinking reaction of the (A) component to the (C) component. In addition, the organopolysiloxane of component (B) has a branched structure, so that the curability is improved and good adhesion to the LED chip can be obtained.
 また、サンプルの調合等における良好な取り扱い性の観点から、(B)成分のオルガノポリシロキサンは、25℃における粘度が20Pa・s以下であることが好ましい。 In addition, from the viewpoint of good handleability in the preparation of samples and the like, the organopolysiloxane of component (B) preferably has a viscosity at 25 ° C. of 20 Pa · s or less.
 (B)成分の含有量は、(A)成分の100重量部に対して10重量部以上、95重量部以下の範囲であることが好ましい。これは、得られる架橋物が高温で十分に軟化するための範囲である。 The content of component (B) is preferably in the range of 10 to 95 parts by weight with respect to 100 parts by weight of component (A). This is a range for the obtained cross-linked product to be sufficiently softened at a high temperature.
 (C)成分のオルガノポリシロキサンは、一分子中に少なくとも2個のSi-H結合を有することで、(A)成分~(C)成分の架橋反応を生じさせる。また、(C)成分のオルガノポリシロキサンは、ケイ素原子に結合した有機基のうち12~70モル%がアリール基であることで、得られる架橋物が、高温で十分に軟化し、かつ、架橋物の透明性と機械的強度を維持する。 The organopolysiloxane of component (C) has at least two Si—H bonds in one molecule, thereby causing a crosslinking reaction of components (A) to (C). In addition, the organopolysiloxane of component (C) is such that 12 to 70 mol% of the organic groups bonded to silicon atoms are aryl groups, so that the resulting crosslinked product is sufficiently softened at high temperature, and is crosslinked. Maintain the transparency and mechanical strength of objects.
 特に本発明においては、(C)成分のオルガノポリシロキサンが、
平均単位式:
Particularly in the present invention, the organopolysiloxane of component (C) is
Average unit formula:
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(平均単位式(3)中、Rはアリール基、炭素原子数1~6のアルキル基またはシクロアルキル基である。ただし、Rの12~70モル%はアリール基である。)
で表されるオルガノポリシロキサンであることが好ましい。
(In the average unit formula (3), R 4 is an aryl group, an alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group. However, 12 to 70 mol% of R 4 is an aryl group.)
It is preferable that it is organopolysiloxane represented by these.
 平均単位式(3)中、Rはフェニル基、炭素原子数1~6のアルキル基またはシクロアルキル基であることが好ましい。Rのアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基が例示される。Rのシクロアルキル基としては、例えば、シクロペンチル基、シクロヘプチル基が例示される。なお、Rの内、フェニル基の含有量は30~70モル%の範囲であることが好ましい。これは、得られる架橋物が、高温で十分に軟化し、かつ、架橋物の透明性と機械的強度を保つことができる範囲である。 In the average unit formula (3), R 4 is preferably a phenyl group, an alkyl group having 1 to 6 carbon atoms, or a cycloalkyl group. Examples of the alkyl group for R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a heptyl group. Examples of the cycloalkyl group for R 4 include a cyclopentyl group and a cycloheptyl group. Of R 4 , the phenyl group content is preferably in the range of 30 to 70 mol%. This is a range in which the obtained crosslinked product can be sufficiently softened at a high temperature and the transparency and mechanical strength of the crosslinked product can be maintained.
 (C)成分の含有量は、(A)成分中のアルケニル基と(B)成分中のアルケニル基との合計量に対する、(C)成分中のケイ素原子に結合した水素原子のモル比が、0.5~2の範囲となるような量であることが好ましい。これは、得られる架橋物が、室温で十分な硬さが得られるためである。 The content of component (C) is such that the molar ratio of hydrogen atoms bonded to silicon atoms in component (C) with respect to the total amount of alkenyl groups in component (A) and alkenyl groups in component (B) is The amount is preferably in the range of 0.5 to 2. This is because the obtained crosslinked product has sufficient hardness at room temperature.
 (D)成分のヒドロシリル化反応用触媒は、(A)成分中および(B)成分中のアルケニル基と、(C)成分中のケイ素原子に結合した水素原子との、ヒドロシリル化反応を促進するための触媒である。(D)成分としては、例えば、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示される。これらのうち、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。 The catalyst for hydrosilylation reaction of component (D) promotes hydrosilylation reaction between alkenyl groups in component (A) and component (B) and hydrogen atoms bonded to silicon atoms in component (C). It is a catalyst for. Examples of component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Of these, platinum-based catalysts are preferred because they can significantly accelerate the curing of the composition.
 この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示される。特に、この白金系触媒は、白金-アルケニルシロキサン錯体であることが好ましい。 Examples of the platinum catalyst include platinum fine powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex. In particular, the platinum-based catalyst is preferably a platinum-alkenylsiloxane complex.
 このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-トテラメチルジシロキサンが好ましい。 Examples of the alkenylsiloxane include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like. In particular, 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of the platinum-alkenylsiloxane complex is good.
 また、この白金-アルケニルシロキサン錯体の安定性を向上させることができることから、この錯体に対して、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジアリル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,3-ジビニル-1,1,3,3-テトラフェニルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましい。特に、この錯体に対してアルケニルシロキサンを添加することが好ましい。 In addition, since the stability of the platinum-alkenylsiloxane complex can be improved, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3-diallyl- 1,1,3,3-tetramethyldisiloxane, 1,3-divinyl-1,3-dimethyl-1,3-diphenyldisiloxane, 1,3-divinyl-1,1,3,3-tetraphenyldisiloxane It is preferable to add siloxane, alkenyl siloxane such as 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, and organosiloxane oligomer such as dimethylsiloxane oligomer. In particular, it is preferable to add alkenylsiloxane to this complex.
 (D)成分の含有量は、(A)成分中および(B)成分中のアルケニル基と、(C)成分中のケイ素原子に結合した水素原子とのヒドロシリル化反応を促進するために十分な量であれば、特に限定されない。好ましくは、(D)成分の含有量は、本組成物に対して、(D)成分中の金属原子が質量単位で0.01~500ppmの範囲内となる量である。さらには、(D)成分の含有量は、この金属原子が0.01~100ppmの範囲となる量であることが好ましく、この金属原子が0.01~50ppmの範囲となる量であることが、特に好ましい。これは、本組成物が十分に架橋し、かつ着色等の問題が生じないようにする範囲である。 The content of the component (D) is sufficient to promote the hydrosilylation reaction between the alkenyl group in the component (A) and the component (B) and the hydrogen atom bonded to the silicon atom in the component (C). The amount is not particularly limited. Preferably, the content of the component (D) is such that the metal atom in the component (D) is in the range of 0.01 to 500 ppm by mass with respect to the present composition. Further, the content of the component (D) is preferably an amount such that the metal atom is in the range of 0.01 to 100 ppm, and is an amount such that the metal atom is in the range of 0.01 to 50 ppm. Is particularly preferred. This is a range in which the present composition is sufficiently crosslinked and does not cause problems such as coloring.
 本組成物は、その他任意の成分として、エチニルヘキサノール、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾール等の反応抑制剤を含有してもよい。この反応抑制剤の含有量は限定されないが、本組成物の重量に対して1~5,000ppmの範囲であることが好ましい。反応抑制剤の含有量を調整することにより、得られるシリコーン樹脂の貯蔵弾性率を調整することもできる。 The composition comprises, as other optional components, ethynylhexanol, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl-3-butyne-2- Alkyne alcohols such as all; Enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7-tetramethyl-1,3 , 5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane, and a reaction inhibitor such as benzotriazole. The content of the reaction inhibitor is not limited, but is preferably in the range of 1 to 5,000 ppm with respect to the weight of the present composition. By adjusting the content of the reaction inhibitor, it is possible to adjust the storage elastic modulus of the resulting silicone resin.
 本発明実施の形態に係る蛍光体シートにおいて、シリコーン樹脂の含有量は、蛍光体シート全体の10重量%以上であることが好ましく、30重量%以上であることがさらに好ましい。また、シリコーン樹脂の含有量は、90重量%以下であることが好ましく、85重量%以下であることがさらに好ましく、70重量%以下であることがさらに一層好ましい。 In the phosphor sheet according to the embodiment of the present invention, the content of the silicone resin is preferably 10% by weight or more, and more preferably 30% by weight or more of the entire phosphor sheet. Further, the content of the silicone resin is preferably 90% by weight or less, more preferably 85% by weight or less, and still more preferably 70% by weight or less.
 本発明の実施の形態に係る蛍光体シートは、後に詳しく説明するように、LEDの表面被覆用途に特に好ましく用いられる。その際、蛍光体シート中のシリコーン樹脂の含有率が上記のような範囲であることで、優れた性能を示す発光装置を得ることができる。 The phosphor sheet according to the embodiment of the present invention is particularly preferably used for surface coating of LEDs, as will be described in detail later. In that case, the light-emitting device which shows the outstanding performance can be obtained because the content rate of the silicone resin in a fluorescent substance sheet is the above ranges.
 (蛍光体)
 蛍光体は、LEDチップから放出される光を吸収してその光の波長を変換し、LEDチップの光と異なる波長の光を放出するものである。これにより、LEDチップから放出される光の一部と、蛍光体から放出される光の一部とが混合して、白色を含む多色系のLEDが得られる。具体的には、青色系LEDチップと、そのLEDチップから放出される光を吸収して黄色系の発光色を発光する蛍光体とを、光学的に組み合わせることによって、単一のLEDチップを用いて白色系の発光を得ることができる。
(Phosphor)
The phosphor absorbs light emitted from the LED chip, converts the wavelength of the light, and emits light having a wavelength different from that of the LED chip. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed to obtain a multicolor LED including white. Specifically, a single LED chip is used by optically combining a blue LED chip and a phosphor that emits a yellow emission color by absorbing light emitted from the LED chip. White light emission can be obtained.
 上述のような蛍光体には、緑色に発光する蛍光体、青色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体等の種々の蛍光体がある。本発明に用いられる具体的な蛍光体としては、無機蛍光体、有機蛍光体、量子ドット等公知の蛍光体が挙げられる。蛍光体は、蛍光顔料、蛍光染料のいずれも用いることができる。 The phosphors as described above include various phosphors such as a phosphor that emits green light, a phosphor that emits blue light, a phosphor that emits yellow light, and a phosphor that emits red light. Specific phosphors used in the present invention include known phosphors such as inorganic phosphors, organic phosphors, and quantum dots. As the phosphor, either a fluorescent pigment or a fluorescent dye can be used.
 無機蛍光体としては、最終的に所定の色を再現できるものであれば特に限定はなく、公知のものを用いることができる。 The inorganic phosphor is not particularly limited as long as it can finally reproduce a predetermined color, and a known phosphor can be used.
 有機蛍光体としては、発光スペクトルが波長500~700nmの領域にピークを有することが好ましい。この様な蛍光体は、波長400~500nmの範囲の励起光によって励起され、波長500~700nmの領域で発光する。上述のような蛍光体には、緑色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体が挙げられる。本発明に用いられる有機蛍光体の例としては、ピロメテン化合物、クマリン系色素、フタロシアニン系色素、スチルベン系色素、シアニン系色素、ポリフェニレン系色素、ローダミン系色素、ピリジン系色素、ピロメテン系色素、ポルフィリン色素、オキサジン系色素、ピラジン系色素、アリルスルホアミド・メラミンホルムアルデヒド共縮合染色物やペリレン系蛍光体等を挙げることができる。色再現性の観点から、ピロメテン化合物が好ましく用いられ、特に後述する一般式(4)で表される有機化合物が好ましく用いられる。 As the organic phosphor, the emission spectrum preferably has a peak in the wavelength region of 500 to 700 nm. Such a phosphor is excited by excitation light in the wavelength range of 400 to 500 nm and emits light in the wavelength range of 500 to 700 nm. Examples of the phosphors described above include phosphors that emit green light, phosphors that emit yellow light, and phosphors that emit red light. Examples of organic phosphors used in the present invention include pyromethene compounds, coumarin dyes, phthalocyanine dyes, stilbene dyes, cyanine dyes, polyphenylene dyes, rhodamine dyes, pyridine dyes, pyromethene dyes, porphyrin dyes. Oxazine dyes, pyrazine dyes, allylsulfoamide / melamine formaldehyde co-condensation dyes, perylene phosphors, and the like. From the viewpoint of color reproducibility, a pyromethene compound is preferably used, and an organic compound represented by the general formula (4) described below is particularly preferably used.
 量子ドットとは、励起光により励起されて蛍光を発光する半導体ナノ粒子である。
本発明に用いられる量子ドットとしては、コアシェル型の半導体ナノ粒子が、耐久性を向上する観点から好ましい。コアとしては、II-VI族半導体ナノ粒子、III-V族半導体ナノ粒子、及び多元系半導体ナノ粒子等を用いることができる。具体的には、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、InP、InAs、InGaP等が挙げられるが、これらに限定されない。中でも、CdSe、CdTe、InP、InGaPが、高効率で可視光を発光する観点から、好ましい。シェルとしては、CdS、ZnS、ZnO、GaAs、およびこれらの複合体を用いることができるが、これらに限定されない。量子ドットの発光波長は、通常、粒子の組成およびサイズにより調整することができる。
A quantum dot is a semiconductor nanoparticle that emits fluorescence when excited by excitation light.
As quantum dots used in the present invention, core-shell type semiconductor nanoparticles are preferable from the viewpoint of improving durability. As the core, II-VI semiconductor nanoparticles, III-V semiconductor nanoparticles, multi-component semiconductor nanoparticles, and the like can be used. Specific examples include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, InP, InAs, and InGaP, but are not limited thereto. Among these, CdSe, CdTe, InP, and InGaP are preferable from the viewpoint of emitting visible light with high efficiency. As the shell, CdS, ZnS, ZnO, GaAs, and a composite thereof can be used, but the shell is not limited thereto. The emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
 量子ドットの表面には、ルイス塩基性の配位性基を有する配位子が配位していても良い。また、ルイス塩基性の配位性基としては、アミノ基、カルボキシ基、メルカプト基、ホスフィン基、およびホスフィンオキシド基、等を挙げることができる。具体的には、ヘキシルアミン、デシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン、オレイン酸、メルカプトプロピオン酸、トリオクチルホスフィン、およびトリオクチルホスフィンオキシド等を上げることができる。なかでも、ヘキサデシルアミン、トリオクチルホスフィン、およびトリオクチルホスフィンオキシドが好ましく、トリオクチルホスフィンオキシドが特に好ましい。  A ligand having a Lewis basic coordinating group may be coordinated on the surface of the quantum dot. Examples of the Lewis basic coordinating group include an amino group, a carboxy group, a mercapto group, a phosphine group, and a phosphine oxide group. Specific examples include hexylamine, decylamine, hexadecylamine, octadecylamine, oleylamine, myristylamine, laurylamine, oleic acid, mercaptopropionic acid, trioctylphosphine, and trioctylphosphine oxide. Of these, hexadecylamine, trioctylphosphine, and trioctylphosphine oxide are preferable, and trioctylphosphine oxide is particularly preferable.
 これらの配位子が配位した量子ドットは、公知の合成方法によって作製することができる。例えば、C.B.Murray,D.J.Norris、M.G.Bawendi,Journal Amarican Chemical Society,1993,115(19),pp8706-8715、またはThe Journal Physical Chemistry,101,pp9463-9475,1997に記載された方法によって合成することができる。また、配位子が配位した量子ドットは、市販のものを何ら制限無く用いることができる。例えば、Lumidot(シグマアルドリッチ社製)を挙げることができる。 Quantum dots coordinated with these ligands can be produced by a known synthesis method. For example, C.I. B. Murray, D.M. J. et al. Norris, M.M. G. It can be synthesized by a method described in Bawendi, Journal American Chemical Society, 1993, 115 (19), pp 8706-8715, or The Journal Physical Chemistry, 101, pp 9463-9475, 1997. Moreover, the quantum dot which the ligand coordinated can use a commercially available thing without a restriction | limiting at all. For example, Lumidot (manufactured by Sigma Aldrich) can be mentioned.
 本発明に特に好ましく用いられる蛍光体としては、無機蛍光体とが挙げられる。以下に本発明に用いられる無機蛍光体、について記載する。 Fluorescent substances particularly preferably used in the present invention include inorganic fluorescent substances. The inorganic phosphor used in the present invention is described below.
 (無機蛍光体)
 本発明に用いられる無機蛍光体は、発光スペクトルが波長500~700nmの領域にピークを有することが好ましい。この様な蛍光体は、波長400~500nmの範囲の励起光によって励起され、波長500~700nmの領域で発光する。上述のような蛍光体には、緑色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体が挙げられる。
(Inorganic phosphor)
The inorganic phosphor used in the present invention preferably has a peak in the region where the emission spectrum has a wavelength of 500 to 700 nm. Such a phosphor is excited by excitation light in the wavelength range of 400 to 500 nm and emits light in the wavelength range of 500 to 700 nm. Examples of the phosphors described above include phosphors that emit green light, phosphors that emit yellow light, and phosphors that emit red light.
 無機蛍光体の形状には特に制限はなく、球状、柱状など様々なものを用いることができる。 The shape of the inorganic phosphor is not particularly limited, and various shapes such as a spherical shape and a columnar shape can be used.
 本発明に用いられる無機蛍光体の例としては、YAG系蛍光体、TAG系蛍光体、シリケート蛍光体、ナイトライド系蛍光体、オキシナイトライド系蛍光体、窒化物蛍光体、酸窒化物蛍光体、Mn賦活複フッ化物錯体蛍光体等が挙げられる。酸窒化物蛍光体の好ましい例としては、βサイアロン型蛍光体が挙げられる。 Examples of inorganic phosphors used in the present invention include YAG phosphors, TAG phosphors, silicate phosphors, nitride phosphors, oxynitride phosphors, nitride phosphors, and oxynitride phosphors. And Mn-activated double fluoride complex phosphor. A preferred example of the oxynitride phosphor is a β sialon phosphor.
 中でも、窒化物蛍光体、酸窒化物蛍光体、Mn賦活複フッ化物錯体蛍光体が好ましく用いられ、β型サイアロン蛍光体、Mn賦活複フッ化物錯体蛍光体がより好ましく用いられる。これらの蛍光体を使用することで、高輝度な蛍光体シートが得られる。 Of these, nitride phosphors, oxynitride phosphors, and Mn-activated bifluoride complex phosphors are preferably used, and β-sialon phosphors and Mn-activated bifluoride complex phosphors are more preferably used. By using these phosphors, a high-luminance phosphor sheet can be obtained.
 また、本発明の実施の形態に係る蛍光体シートは、β型サイアロン蛍光体およびMn賦活複フッ化物錯体蛍光体を含むことが好ましい。 In addition, the phosphor sheet according to the embodiment of the present invention preferably includes a β-type sialon phosphor and a Mn-activated bifluoride complex phosphor.
 (β型サイアロン蛍光体)
 β型サイアロンは、β型窒化ケイ素の固溶体であり、β型窒化ケイ素結晶のSi位置にAlが、N位置にOが置換固溶したものである。β型サイアロンの単位胞(単位格子)に2式量の原子があるので、一般式として、Si6-zAl8-zが用いられる。ここで、zは、0~4.2である。β型サイアロンの固溶範囲は非常に広く、また、(Si、Al)/(N、O)のモル比は、3/4を維持する必要がある。β型サイアロンの一般的な製法は、窒化ケイ素の他に、酸化ケイ素と窒化アルミニウムとを、あるいは酸化アルミニウムと窒化アルミニウムとを加えて加熱する方法である。
(Β-type sialon phosphor)
β-type sialon is a solid solution of β-type silicon nitride in which Al is substituted at the Si position and O is substituted at the N position. Since there are two amounts of atoms in the unit cell (unit cell) of β-sialon, Si 6-z Al z O z N 8-z is used as a general formula. Here, z is 0 to 4.2. The solid solution range of β-sialon is very wide, and the molar ratio of (Si, Al) / (N, O) must be maintained at 3/4. A general method for producing β-sialon is a method in which, in addition to silicon nitride, silicon oxide and aluminum nitride, or aluminum oxide and aluminum nitride are added and heated.
 β型サイアロンは、結晶構造内に希土類などの発光元素(Eu、Sr、Mn、Ceなど)を取り込むことで、紫外から青色の光で励起して波長520~550nmの緑色発光を示すβ型サイアロン蛍光体となる。 β-type sialon is a β-type sialon that emits green light with a wavelength of 520 to 550 nm when excited by ultraviolet to blue light by incorporating a light emitting element such as rare earth (Eu, Sr, Mn, Ce, etc.) into the crystal structure. Becomes a phosphor.
 本発明に用いられるβ型サイアロン蛍光体は、発光スペクトルが波長535~550nmの領域にピークを有するものが好ましい。このような範囲であれば、本発明の実施の形態に係る蛍光体シートをLEDパッケージに適用した場合、良好な発光特性が得られる。また、β型サイアロン蛍光体の平均粒子径は、1μm以上が好ましく、10μm以上がより好ましく、16μm以上がさらに好ましい。また、100μm以下が好ましく、50μm以下がより好ましく、19μm以下がさらに好ましい。このような範囲であれば、本発明の実施の形態に係る蛍光体シートをLEDパッケージに適用した場合、良好な発光特性が得られる。 The β-sialon phosphor used in the present invention preferably has an emission spectrum having a peak in the wavelength region of 535 to 550 nm. If it is such a range, when the fluorescent substance sheet which concerns on embodiment of this invention is applied to an LED package, a favorable light emission characteristic will be acquired. Further, the average particle diameter of the β-type sialon phosphor is preferably 1 μm or more, more preferably 10 μm or more, and further preferably 16 μm or more. Moreover, 100 micrometers or less are preferable, 50 micrometers or less are more preferable, and 19 micrometers or less are further more preferable. If it is such a range, when the fluorescent substance sheet which concerns on embodiment of this invention is applied to an LED package, a favorable light emission characteristic will be acquired.
 (KSF蛍光体)
 Mn賦活複フッ化物錯体蛍光体は、Mnを賦活剤とし、アルカリ金属またはアルカリ土類金属のフッ化物錯体塩を母体結晶とする蛍光体である。このMn賦活複フッ化物錯体蛍光体において、母体結晶を形成するフッ化物錯体の配位中心は、4価金属(Si、Ti、Zr、Hf、Ge、Sn)であることが好ましく、その周りに配位するフッ素原子の数は6であることが好ましい。
(KSF phosphor)
The Mn-activated double fluoride complex phosphor is a phosphor having Mn as an activator and an alkali metal or alkaline earth metal fluoride complex salt as a base crystal. In this Mn-activated double fluoride complex phosphor, the coordination center of the fluoride complex forming the host crystal is preferably a tetravalent metal (Si, Ti, Zr, Hf, Ge, Sn), The number of coordinated fluorine atoms is preferably 6.
 Mn賦活複フッ化物錯体蛍光体は、一般式AMF:Mn(ここで、AはLi、Na、K、Rb及びCsからなる群より選ばれ、かつ少なくともNa及び/又はKを含む1種以上のアルカリ金属であり、MはSi、Ti、Zr、Hf、Ge及びSnからなる群より選ばれる1種以上の4価元素である。)で表される。上記一般式においてKSiF:MnであるものがKSF蛍光体である。本発明に用いられるMn賦活複フッ化物錯体蛍光体としては、このKSF蛍光体が好ましい。 The Mn-activated bifluoride complex phosphor has the general formula A 2 MF 6 : Mn (where A is selected from the group consisting of Li, Na, K, Rb and Cs, and contains at least Na and / or K) And M is one or more tetravalent elements selected from the group consisting of Si, Ti, Zr, Hf, Ge, and Sn. In the above general formula, K 2 SiF 6 : Mn is a KSF phosphor. As the Mn-activated double fluoride complex phosphor used in the present invention, this KSF phosphor is preferable.
 Mn賦活複フッ化物錯体蛍光体の平均粒子径は、1μm以上が好ましく、10μm以上がより好ましく、20μm以上が好ましい。また、100μm以下が好ましく、70μm以下がより好ましく、40μm以下がさらに好ましい。このような範囲であれば、本発明の実施の形態に係る蛍光体シートをLEDパッケージに適用した場合、良好な発光特性が得られる。 The average particle size of the Mn-activated bifluoride complex phosphor is preferably 1 μm or more, more preferably 10 μm or more, and preferably 20 μm or more. Moreover, 100 micrometers or less are preferable, 70 micrometers or less are more preferable, and 40 micrometers or less are further more preferable. If it is such a range, when the fluorescent substance sheet which concerns on embodiment of this invention is applied to an LED package, a favorable light emission characteristic will be acquired.
 本発明において、平均粒子径とはメジアン径(D50)のことである。平均粒子径は、蛍光体シートを走査型電子顕微鏡(SEM)で観察することによって測定することができる。蛍光体シートの断面を観察して得られる2次元画像から、蛍光体粒子の外縁と2点で交わる直線の当該2つの交点間の距離のうち、最大になる距離を算出し、それを蛍光体粒子の個別の粒子径と定義する。観測される蛍光体粒子のうち200個に対してこの方法で粒子径を算出し、そこから得られる粒度分布において、小粒径側からの通過分積算50%の粒子径をD50とする。 In the present invention, the average particle diameter is the median diameter (D50). The average particle diameter can be measured by observing the phosphor sheet with a scanning electron microscope (SEM). From the two-dimensional image obtained by observing the cross section of the phosphor sheet, the maximum distance among the two intersection points of the straight line intersecting the outer edge of the phosphor particle at two points is calculated, It is defined as the individual particle size of the particles. The particle diameter is calculated by this method for 200 phosphor particles to be observed, and in the particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated amount from the small particle diameter side is defined as D50.
 蛍光体シートを搭載したLED発光装置を対象とする場合は、機械研磨法、ミクロトーム法、CP法(Cross-sect(I)on Pol(I)sher)および集束イオンビーム(F(I)B)加工法のいずれかの方法で、蛍光体シートの断面が観測されるよう研磨を行った後、得られた断面をSEMで観察して得られる2次元画像から上述の平均粒子径を算出することができる。 When targeting LED light-emitting devices equipped with phosphor sheets, mechanical polishing, microtome, CP (Cross-sect (I) on Pol (I) sher) and focused ion beam (F (I) B) After polishing so that the cross section of the phosphor sheet is observed by any of the processing methods, the above average particle diameter is calculated from a two-dimensional image obtained by observing the obtained cross section with an SEM. Can do.
 本発明では、蛍光体シートにおける無機蛍光体の含有量は、蛍光体シート全体の35重量%以上であることが好ましく、40重量%以上であることがより好ましく、60重量%以上であることがさらに好ましい。蛍光体シート中の蛍光体含有率をこのような範囲とすることで、蛍光体シートの輝度を高めることができる。なお、蛍光体含有率の上限は特に規定されないが、作業性に優れた蛍光体シートが作成しやすいという観点から、蛍光体シートにおける蛍光体の含有量が、蛍光体シート全体の90重量%以下であることが好ましく、85重量%以下であることがより好ましく、80重量%以下であることがさらに好ましく、70重量%以下であることがさらに一層好ましい。 In the present invention, the content of the inorganic phosphor in the phosphor sheet is preferably 35% by weight or more of the entire phosphor sheet, more preferably 40% by weight or more, and preferably 60% by weight or more. Further preferred. The brightness | luminance of a fluorescent substance sheet can be raised by making the fluorescent substance content rate in a fluorescent substance sheet into such a range. In addition, although the upper limit of the phosphor content is not particularly specified, the phosphor content in the phosphor sheet is 90% by weight or less of the entire phosphor sheet from the viewpoint that it is easy to create a phosphor sheet excellent in workability. Preferably, it is 85% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less.
 本発明に特に好ましく用いられる蛍光体としては、有機蛍光体として、一般式(4)で表される有機化合物も挙げられる。以下に本発明に用いられる一般式(4)で表される有機化合物について記載する。 Examples of the phosphor that is particularly preferably used in the present invention include organic compounds represented by the general formula (4) as the organic phosphor. The organic compound represented by the general formula (4) used in the present invention is described below.
 (一般式(4)で表される有機化合物) (Organic compound represented by general formula (4))
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本実施の形態における有機化合物を表す一般式(4)において、R、R、Ar~ArおよびLは、同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、複素環基、ハロゲン、ハロアルキル基、ハロアルケニル基、ハロアルキニル基、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。Mは、m価の金属を表し、ホウ素、ベリリウム、マグネシウム、クロム、鉄、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。上記の全ての基において、水素は重水素であってもよい。このことは、以下に説明する有機化合物またはその部分構造においても同様である。 In the general formula (4) representing the organic compound in the present embodiment, R 5 , R 6 , Ar 1 to Ar 5 and L may be the same or different, and hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group Alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, heterocyclic group, halogen, haloalkyl group, haloalkenyl group, Haloalkynyl group, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, condensed ring and aliphatic ring formed between adjacent substituents Chosen from. M represents an m-valent metal and is at least one selected from boron, beryllium, magnesium, chromium, iron, nickel, copper, zinc, and platinum. In all of the above groups, hydrogen may be deuterium. The same applies to an organic compound or a partial structure thereof described below.
 また、以下の説明において、例えば炭素数6~40の置換もしくは無置換のアリール基とは、アリール基に置換した置換基に含まれる炭素数も含めて全ての炭素数が6~40となるアリール基である。炭素数を規定している他の置換基も、これと同様である。 In the following description, for example, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms is an aryl having 6 to 40 carbon atoms in total including the number of carbon atoms contained in the substituent substituted on the aryl group. It is a group. The same applies to other substituents that define the number of carbon atoms.
 また、上記の全ての基において、置換される場合における置換基としては、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基が好ましく、さらには、各置換基の説明において好ましいとする具体的な置換基が好ましい。また、これらの置換基は、さらに上述の置換基により置換されていてもよい。 Moreover, in all the above groups, the substituents in the case of substitution include alkyl groups, cycloalkyl groups, heterocyclic groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, hydroxyl groups, thiol groups, alkoxy groups, alkylthio groups. , Aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl Group and a phosphine oxide group are preferable, and specific substituents that are preferable in the description of each substituent are preferable. Moreover, these substituents may be further substituted with the above-mentioned substituents.
 「置換もしくは無置換の」という場合における「無置換」とは、水素原子または重水素原子が置換したことを意味する。以下に説明する有機化合物またはその部分構造において、「置換もしくは無置換の」という場合についても、上記と同様である。 In the case of “substituted or unsubstituted”, “unsubstituted” means that a hydrogen atom or a deuterium atom is substituted. The same applies to the case of “substituted or unsubstituted” in an organic compound or a partial structure thereof described below.
 また、上記の全ての基のうち、アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示す。このアルキル基は、さらに置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、好ましくは1以上、20以下、より好ましくは1以上、8以下の範囲である。 In addition, among all the groups described above, the alkyl group is, for example, a saturated aliphatic group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group. A hydrocarbon group is shown. This alkyl group may or may not further have a substituent. There is no restriction | limiting in particular in the additional substituent in the case of being substituted, For example, an alkyl group, an aryl group, heteroaryl group etc. can be mentioned, This point is common also in the following description. The number of carbon atoms of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
 シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、好ましくは、3以上、20以下の範囲である。 The cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may or may not have a substituent. The number of carbon atoms in the alkyl group moiety is not particularly limited, but is preferably in the range of 3 or more and 20 or less.
 アラルキル基とは、例えば、ベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示す。これらの脂肪族炭化水素と芳香族炭化水素は、いずれも無置換であってもよいし、置換基を有していてもよい。 The aralkyl group is an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group or a phenylethyl group. Any of these aliphatic hydrocarbons and aromatic hydrocarbons may be unsubstituted or may have a substituent.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、通常、2以上、20以下の範囲である。 An alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent. Although carbon number of an alkenyl group is not specifically limited, Usually, it is the range of 2-20.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。 The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to.
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、通常、2以上、20以下の範囲である。 The alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent. Although carbon number of an alkynyl group is not specifically limited, Usually, it is the range of 2-20.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、好ましくは、1以上、20以下の範囲である。 The alkoxy group refers to, for example, a functional group having an aliphatic hydrocarbon group bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It may not have. The number of carbon atoms of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、通常、1以上、20以下の範囲である。 The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
 アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介して芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上、40以下の範囲である。 An aryl ether group refers to a functional group to which an aromatic hydrocarbon group is bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good. The number of carbon atoms of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、通常、6以上、40以下の範囲である。 The aryl thioether group is a group in which an oxygen atom of an ether bond of an aryl ether group is substituted with a sulfur atom. The aromatic hydrocarbon group in the aryl ether group may or may not have a substituent. Although carbon number of an aryl ether group is not specifically limited, Usually, it is the range of 6 or more and 40 or less.
 アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、フェナントリル基、トリフェニレニル基、ターフェニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、好ましくは、6以上、40以下の範囲である。 An aryl group refers to an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, a phenanthryl group, a triphenylenyl group, or a terphenyl group. The aryl group may or may not have a substituent. The number of carbon atoms of the aryl group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
 ヘテロアリール基とは、フラニル基、チオフェニル基、ピリジル基、キノリニル基、ピラジニル基、ピリミニジニル基、トリアジニル基、ナフチリジル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基を示し、これは無置換でも置換されていてもかまわない。ヘテロアリール基の炭素数は特に限定されないが、好ましくは、2以上、30以下の範囲である。 A heteroaryl group is one or more atoms other than carbon such as furanyl, thiophenyl, pyridyl, quinolinyl, pyrazinyl, pyrimidinyl, triazinyl, naphthyridyl, benzofuranyl, benzothiophenyl, indolyl, etc. The cyclic aromatic group which has in an individual ring is shown, This may be unsubstituted or substituted. The number of carbon atoms of the heteroaryl group is not particularly limited, but is preferably in the range of 2 or more and 30 or less.
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、通常、2以上、20以下の範囲である。 The heterocyclic group refers to an aliphatic ring having atoms other than carbon, such as a pyran ring, a piperidine ring, and a cyclic amide, in the ring, which may or may not have a substituent. . Although carbon number of a heterocyclic group is not specifically limited, Usually, it is the range of 2-20.
 カルボニル基、カルボキシル基、カルバモイル基は、置換基を有していても有していなくてもよい。ここで、置換基としては、例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。 The carbonyl group, carboxyl group, and carbamoyl group may or may not have a substituent. Here, examples of the substituent include an alkyl group, a cycloalkyl group, an aryl group, and a heteroaryl group, and these substituents may be further substituted.
 アミノ基とは、置換もしくは無置換のアミノ基である。アミノ基は、置換基を有していても有していなくてもよく、置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基などが挙げられる。アリール基、ヘテロアリール基としては、フェニル基、ナフチル基、ピリジル基、キノリニル基が好ましい。これら置換基はさらに置換されてもよい。炭素数は特に限定されないが、好ましくは、2以上、50以下、より好ましくは、6以上、40以下、特に好ましくは、6以上、30以下の範囲である。 An amino group is a substituted or unsubstituted amino group. The amino group may or may not have a substituent. Examples of the substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, and a branched alkyl group. . As the aryl group and heteroaryl group, a phenyl group, a naphthyl group, a pyridyl group, and a quinolinyl group are preferable. These substituents may be further substituted. Although carbon number is not specifically limited, Preferably it is 2 or more and 50 or less, More preferably, it is 6 or more and 40 or less, Especially preferably, it is the range of 6 or more and 30 or less.
 ハロゲンとは、フッ素、塩素、臭素またはヨウ素を示す。ハロアルキル基、ハロアルケニル基、ハロアルキニル基とは、例えばトリフルオロメチル基などの、前述のアルキル基、アルケニル基、アルキニル基の一部あるいは全部が、前述のハロゲンで置換されたものを示し、残りの部分は無置換でも置換されていてもよい。また、アルデヒド基、カルボニル基、エステル基、カルバモイル基には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換されたものも含まれ、さらに脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は、無置換でも置換されていてもよい。 Halogen means fluorine, chlorine, bromine or iodine. A haloalkyl group, a haloalkenyl group, or a haloalkynyl group is a group in which a part or all of the aforementioned alkyl group, alkenyl group, or alkynyl group such as a trifluoromethyl group is substituted with the aforementioned halogen, and the rest This part may be unsubstituted or substituted. In addition, the aldehyde group, carbonyl group, ester group, and carbamoyl group include those substituted with aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, heterocyclic rings, and the like. The alicyclic hydrocarbon, aromatic hydrocarbon, and heterocyclic ring may be unsubstituted or substituted.
 シリル基とは、例えば、トリメチルシリル基などのケイ素原子への結合を有する官能基を示し、これは置換基を有していても有していなくてもよい。シリル基の炭素数は特に限定されないが、通常、3以上、20以下の範囲である。また、ケイ素数は、通常、1以上、6以下である。 The silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent. Although carbon number of a silyl group is not specifically limited, Usually, it is the range of 3-20. The number of silicon is usually 1 or more and 6 or less.
 シロキサニル基とは、例えば、トリメチルシロキサニル基などのエーテル結合を介したケイ素化合物基を示す。ケイ素上の置換基は、さらに置換されてもよい。 Siloxanyl group refers to a silicon compound group via an ether bond such as trimethylsiloxanyl group. Substituents on silicon may be further substituted.
 上述したような一般式(4)で表される有機化合物は、高い蛍光量子収率を示し、かつ、発光スペクトルのピーク半値幅が小さいため、効率的な色変換と高い色純度の双方を達成することができる。 Since the organic compound represented by the general formula (4) as described above exhibits a high fluorescence quantum yield and has a small peak half-value width of the emission spectrum, it achieves both efficient color conversion and high color purity. can do.
 一般式(4)で表される有機化合物における金属錯体の中でも、Mがホウ素である錯体は蛍光量子収率が高い点で特に好ましい。さらに、Lがフッ素または含フッ素アリール基であり、m-1が2であるフッ化ホウ素錯体が、材料の入手しやすさや、合成の容易さの点で特に好ましい。 Among the metal complexes in the organic compound represented by the general formula (4), a complex in which M is boron is particularly preferable because of high fluorescence quantum yield. Further, a boron fluoride complex in which L is fluorine or a fluorine-containing aryl group and m-1 is 2 is particularly preferable from the viewpoint of easy availability of materials and ease of synthesis.
 また、任意の隣接する2置換基(例えば一般式(4)のRとAr)が互いに結合して、共役または非共役の縮合環を形成していてもよい。このような縮合環の構成元素としては、炭素以外にも窒素、酸素、硫黄、リンおよびケイ素から選ばれる元素を含んでいてもよい。また、縮合環がさらに別の環と縮合してもよい。 Further, any two adjacent substituents (for example, R 5 and Ar 2 in formula (4)) may be bonded to each other to form a conjugated or non-conjugated condensed ring. Such a constituent element of the condensed ring may contain an element selected from nitrogen, oxygen, sulfur, phosphorus and silicon in addition to carbon. Further, the condensed ring may be further condensed with another ring.
 上述したような一般式(4)で表される有機化合物は、適切な置換基を適切な位置に導入することで、発光効率、色純度、熱的安定性、光安定性および分散性などのさまざまな特性および物性を調整することができる。 The organic compound represented by the general formula (4) as described above has a light emitting efficiency, a color purity, a thermal stability, a light stability, a dispersibility and the like by introducing an appropriate substituent at an appropriate position. Various properties and physical properties can be adjusted.
 例えば、一般式(4)で表される有機化合物の耐久性、すなわち、この有機化合物の発光強度の経時的な低下には、置換基Arが大きく影響する。具体的には、Arが水素である場合、この水素の反応性が高いため、この水素と空気中の水分や酸素とが容易に反応してしまう。このことは、Arの分解を引き起こす。また、Arが例えばアルキル基のような分子鎖の運動の自由度が大きい置換基である場合は、確かに反応性は低下するが、シート中で有機化合物同士が経時的に凝集し、結果的に濃度消光による発光強度の低下を招く。したがって、Arは、剛直であり、かつ運動の自由度が小さく凝集を引き起こしにくい基であることが好ましく、具体的には、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基のいずれかであることが好ましい。 For example, the substituent Ar 5 greatly affects the durability of the organic compound represented by the general formula (4), that is, the decrease in the emission intensity of the organic compound over time. Specifically, when Ar 5 is hydrogen, the reactivity of this hydrogen is high, so that this hydrogen easily reacts with moisture and oxygen in the air. This causes degradation of Ar 5. In addition, when Ar 5 is a substituent having a large degree of freedom of movement of the molecular chain such as an alkyl group, for example, the reactivity is certainly lowered, but the organic compounds aggregate with time in the sheet, and the result In particular, the emission intensity is reduced due to concentration quenching. Therefore, Ar 5 is preferably a group that is rigid and has a low degree of freedom of movement and is unlikely to cause aggregation. Specifically, it is a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. It is preferable that it is either.
 より高い蛍光量子収率を与え、より熱分解しづらい点、また光安定性の観点から、Arは、置換もしくは無置換のアリール基であることが好ましい。アリール基としては、発光波長を損なわないという観点から、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましい。 Ar 5 is preferably a substituted or unsubstituted aryl group from the viewpoint of giving a higher fluorescence quantum yield, being harder to thermally decompose, and from the viewpoint of light stability. As the aryl group, a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, and an anthracenyl group are preferable from the viewpoint of not impairing the emission wavelength.
 さらに、上記有機化合物の光安定性を高めるためには、Arとピロメテン骨格の炭素-炭素結合のねじれを適度に抑える必要がある。何故ならば、過度にねじれが大きいと、励起光に対する反応性が高まるなど、光安定性が低下するからである。このような観点から、Arとしては、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のナフチル基が好ましく、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基であることがより好ましい。特に好ましくは、置換もしくは無置換のフェニル基である。 Furthermore, in order to increase the light stability of the organic compound, it is necessary to moderately suppress the twist of the carbon-carbon bond of Ar 5 and the pyromethene skeleton. This is because, when the twist is excessively large, the light stability is lowered, for example, the reactivity to the excitation light is increased. From this point of view, Ar 5 is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, or a substituted or unsubstituted naphthyl group. Of these, a phenyl group, a substituted or unsubstituted biphenyl group, and a substituted or unsubstituted terphenyl group are more preferable. Particularly preferred is a substituted or unsubstituted phenyl group.
 また、Arは、適度にかさ高い置換基であることが好ましい。Arが、ある程度のかさ高さを有することにより、分子の凝集を防ぐことができる。この結果、上記有機化合物の発光効率や耐久性がより向上する。 Ar 5 is preferably a moderately bulky substituent. Since Ar 5 has a certain amount of bulkiness, aggregation of molecules can be prevented. As a result, the luminous efficiency and durability of the organic compound are further improved.
 このようなかさ高い置換基のさらに好ましい例としては、下記一般式(5)で表されるArの構造が挙げられる。 A more preferred example of such a bulky substituent includes the structure of Ar 5 represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 すなわち、上記有機化合物を表す一般式(4)において、Arは、一般式(5)で表される基であることが好ましい。このArを表す一般式(5)において、rは、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基からなる群より選ばれる。kは1~3の整数である。kが2以上である場合、rは、それぞれ同じでも異なってもよい。 That is, in the general formula (4) representing the organic compound, Ar 5 is preferably a group represented by the general formula (5). In the general formula (5) representing this Ar 5 , r is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl Ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, Selected from the group consisting of phosphine oxide groups. k is an integer of 1 to 3. When k is 2 or more, r may be the same or different.
 これらの基のうち、例えば、オキシカルボニル基は、置換基を有していても有していなくてもよい。オキシカルボニル基の置換基としては、例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。 Of these groups, for example, an oxycarbonyl group may or may not have a substituent. Examples of the substituent for the oxycarbonyl group include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, and the like, and these substituents may be further substituted.
 より高い蛍光量子収率を与えることができるという観点から、rは、置換もしくは無置換のアリール基であることが好ましい。このアリール基の中でも、特に、フェニル基、ナフチル基が好ましい例として挙げられる。rがアリール基である場合、一般式(5)のkは、1もしくは2であることが好ましく、分子の凝集をより防ぐという観点から、kは、2であることがより好ましい。さらに、kが2以上である場合、rの少なくとも1つは、アルキル基で置換されていることが好ましい。この場合のアルキル基としては、熱的安定性の観点から、メチル基、エチル基およびtert-ブチル基が特に好ましい例として挙げられる。 From the viewpoint that a higher fluorescence quantum yield can be provided, r is preferably a substituted or unsubstituted aryl group. Among these aryl groups, a phenyl group and a naphthyl group are particularly preferable examples. When r is an aryl group, k in the general formula (5) is preferably 1 or 2, and k is more preferably 2 from the viewpoint of further preventing aggregation of molecules. Furthermore, when k is 2 or more, it is preferable that at least one of r is substituted with an alkyl group. As the alkyl group in this case, a methyl group, an ethyl group, and a tert-butyl group are particularly preferable from the viewpoint of thermal stability.
 また、蛍光波長や吸収波長を制御したり、溶媒との相溶性を高めたりするという観点から、rは、置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基またはハロゲンであることが好ましく、メチル基、エチル基、tert-ブチル基、メトキシ基がより好ましい。分散性の観点からは、tert-ブチル基、メトキシ基が特に好ましい。rがtert-ブチル基またはメトキシ基であることは、分子同士の凝集による消光を防ぐことについてより有効である。 Further, from the viewpoint of controlling the fluorescence wavelength and absorption wavelength, and increasing the compatibility with the solvent, r is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or a halogen. , A methyl group, an ethyl group, a tert-butyl group, and a methoxy group are more preferable. From the viewpoint of dispersibility, a tert-butyl group and a methoxy group are particularly preferable. When r is a tert-butyl group or a methoxy group, it is more effective for preventing quenching due to aggregation between molecules.
 Ar~Arが全て水素の場合に比べ、Ar~Arの少なくとも1つが置換もしくは無置換のアルキル基や置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基である場合の方が、より良い熱的安定性および光安定性を示す。 Compared to the case where all of Ar 1 to Ar 4 are hydrogen, at least one of Ar 1 to Ar 4 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group It shows better thermal stability and light stability.
 Ar~Arの少なくとも1つが置換もしくは無置換のアリール基である場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基が好ましく、さらに好ましくは、フェニル基、ビフェニル基である。特に好ましくは、フェニル基である。 When at least one of Ar 1 to Ar 4 is a substituted or unsubstituted aryl group, the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, or a naphthyl group, more preferably a phenyl group or a biphenyl group. is there. Particularly preferred is a phenyl group.
 Ar~Arの少なくとも1つが置換もしくは無置換のヘテロアリール基である場合、ヘテロアリール基としては、ピリジル基、キノリニル基、チオフェニル基が好ましく、さらに好ましくは、ピリジル基、キノリニル基である。特に好ましくは、ピリジル基である。 When at least one of Ar 1 to Ar 4 is a substituted or unsubstituted heteroaryl group, the heteroaryl group is preferably a pyridyl group, a quinolinyl group, or a thiophenyl group, and more preferably a pyridyl group or a quinolinyl group. Particularly preferred is a pyridyl group.
 また、上記有機化合物を表す一般式(4)において、Ar~Arが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基であることが好ましい。これは、より良い熱的安定性および光安定性を示すからである。本実施の形態に係る蛍光体組成物などにおいて、上記有機化合物が、これと組み合わせられる無機蛍光体に比べて発光体からの発光光をより長波長の光へ変換する場合、一般式(5)に表されるAr~Arは全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基であることがより好ましく、フェニル基が特に好ましい。この場合、例えば、発光体からの発光光が青色光であれば、無機蛍光体は、この青色光を緑色光へ変換し、上記有機化合物は、この青色光を、この無機蛍光体の色変換よりも長波長の光、すなわち、赤色光へ変換する。 In the general formula (4) representing the organic compound, all of Ar 1 to Ar 4 may be the same or different and each is a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. Is preferred. This is because it shows better thermal stability and light stability. In the phosphor composition and the like according to the present embodiment, when the organic compound converts light emitted from the light emitter into light having a longer wavelength than the inorganic phosphor combined therewith, the general formula (5) All of Ar 1 to Ar 4 represented by may be the same or different, more preferably a substituted or unsubstituted aryl group, and particularly preferably a phenyl group. In this case, for example, if the light emitted from the light emitter is blue light, the inorganic phosphor converts the blue light to green light, and the organic compound converts the blue light to the color of the inorganic phosphor. Longer wavelength light, that is, red light.
 さらに、上記有機化合物を表す一般式(4)において、Ar~Arのうち少なくとも1つは、一般式(6)で表される置換基であることが好ましい。これにより、高色純度と耐久性の両立ができる。 Further, in the general formula (4) representing the organic compound, at least one of Ar 1 ~ Ar 4 is preferably a substituent represented by the general formula (6). Thereby, both high color purity and durability can be achieved.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(6)において、Rは、アルキル基、シクロアルキル基、アルコキシ基およびアルキルチオ基からなる群より選ばれる。nは、1~3の整数である。nが2以上の場合、各Rは、同じでも異なってもよい。 In the general formula (6), R 7 is selected from the group consisting of an alkyl group, a cycloalkyl group, an alkoxy group, and an alkylthio group. n is an integer of 1 to 3. When n is 2 or more, each R 7 may be the same or different.
 一般式(6)で表されるアリール基において、Rが電子供与性基である場合、主に色純度に影響を与えることから、好ましい。電子供与性基としては、アルキル基、シクロアルキル基、アルコキシ基またはアルキルチオ基などが挙げられる。特に、炭素数1~8のアルキル基、炭素数1~8のシクロアルキル基、炭素数1~8のアルコキシ基または炭素数1~8のアルキルチオ基で置換されたアリール基が好ましい。Rが炭素数1~8のアルキル基または炭素数1~8のアルコキシ基である場合は、より高い色純度を得られることから、より好ましい。また、主に発光効率に影響を与えるアリール基としては、t-ブチル基、アダマンチル基などのかさ高い置換基を有するアリール基が好ましい。 In the aryl group represented by the general formula (6), when R 7 is an electron donating group, it is preferable because it mainly affects the color purity. Examples of the electron donating group include an alkyl group, a cycloalkyl group, an alkoxy group, and an alkylthio group. In particular, an aryl group substituted with an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms or an alkylthio group having 1 to 8 carbon atoms is preferable. When R 7 is an alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, it is more preferable because higher color purity can be obtained. Further, as the aryl group mainly affecting the luminous efficiency, an aryl group having a bulky substituent such as a t-butyl group or an adamantyl group is preferable.
 また、耐熱性と色純度の観点から、ArとAr、ArとArは、それぞれ同じ構造のアリール基であることが好ましい。さらに、分散性の観点から、Ar~Arのうち少なくとも1つは、一般式(6)で表される基であってRが炭素数4以上のアルキル基またはアルコキシ基であることがより好ましい。中でも、t-ブチル基、メトキシ基またはt-ブトキシ基であることが、Ar~Arのうち少なくとも1つの例として、特に好ましく挙げられる。 From the viewpoint of heat resistance and color purity, Ar 1 and Ar 4 , and Ar 2 and Ar 3 are each preferably an aryl group having the same structure. Further, from the viewpoint of dispersibility, at least one of Ar 1 to Ar 4 is a group represented by the general formula (6), and R 7 is an alkyl group or an alkoxy group having 4 or more carbon atoms. More preferred. Among these, a t-butyl group, a methoxy group, or a t-butoxy group is particularly preferable as at least one example of Ar 1 to Ar 4 .
 一般式(6)において、nは、1~3の整数であることが好ましく、原料入手と合成の容易さの観点から、1または2であることがより好ましい。 In the general formula (6), n is preferably an integer of 1 to 3, and more preferably 1 or 2 from the viewpoint of raw material availability and ease of synthesis.
 一方、上記有機化合物を表す一般式(4)において、Ar≠ArまたはAr≠Arであることは、膜中での分散性が向上し、高効率発光が得られるので、特に好ましい。ここで、「≠」は、異なる構造の基であることを示す。例えば、Ar≠Arは、ArとArとが異なる構造の基であることを示す。Ar≠Arは、ArとArとが異なる構造の基であることを示す。Ar≠ArまたはAr≠Arであるとは、言い換えると、「Ar=ArかつAr=Ar」ではないということである。すなわち、Ar~Arの任意の組合せのうち、(1)Ar=Ar=Ar=Arであるもの、および(2)Ar=ArかつAr=Arであって、Ar≠Arであるもの、が除かれることを表す。 On the other hand, in the general formula (4) representing the organic compound, Ar 1 ≠ Ar 2 or Ar 3 ≠ Ar 4 is particularly preferable because dispersibility in the film is improved and high-efficiency light emission is obtained. . Here, “≠” indicates a group having a different structure. For example, Ar 1 ≠ Ar 2 indicates that Ar 1 and Ar 2 are groups having different structures. Ar 3 ≠ Ar 4 indicates that Ar 3 and Ar 4 are groups having different structures. In other words, Ar 1 ≠ Ar 2 or Ar 3 ≠ Ar 4 means that “Ar 1 = Ar 2 and Ar 3 = Ar 4 ” is not satisfied. That is, among arbitrary combinations of Ar 1 to Ar 4 , (1) Ar 1 = Ar 2 = Ar 3 = Ar 4 and (2) Ar 1 = Ar 2 and Ar 3 = Ar 4 , Ar 1 ≠ Ar 3 is excluded.
 一般式(6)で表されるアリール基により、一般式(4)で表される有機化合物の発光効率、色純度、耐熱性および耐光性などのさまざまな特性および物性に影響を与える。複数の性質を向上させるアリール基もあるが、全てにおいて十分な性能を示すアリール基は皆無である。特に、高発光効率と高色純度の両立が難しい。そのため、一般式(4)で表される有機化合物に対し複数種類のアリール基を導入できれば、発光特性や色純度などにバランスの取れた有機化合物を得ることが期待される。 The aryl group represented by the general formula (6) affects various properties and physical properties such as light emission efficiency, color purity, heat resistance and light resistance of the organic compound represented by the general formula (4). Some aryl groups improve multiple properties, but none have sufficient performance in all. In particular, it is difficult to achieve both high luminous efficiency and high color purity. Therefore, if a plurality of types of aryl groups can be introduced into the organic compound represented by the general formula (4), it is expected to obtain an organic compound balanced in light emission characteristics and color purity.
 Ar=Ar=Ar=Arである有機化合物は、一種類のアリール基しか有することができない。また、Ar=ArかつAr=Arであって、Ar≠Arである有機化合物は、特定の物性を有するアリール基が片方のピロール環に偏ることとなる。この場合、発光効率と色純度との関係で後述するように各々のアリール基が有する物性を最大限に引き出すことが難しい。 An organic compound in which Ar 1 = Ar 2 = Ar 3 = Ar 4 can have only one kind of aryl group. Further, in an organic compound in which Ar 1 = Ar 2 and Ar 3 = Ar 4 and Ar 1 ≠ Ar 3 , an aryl group having specific physical properties is biased to one pyrrole ring. In this case, it is difficult to maximize the physical properties of each aryl group as will be described later in relation to the luminous efficiency and color purity.
 これに対し、本発明の実施の形態に係る有機化合物は、ある物性を有する置換基を左右のピロール環にバランスよく配置することが可能となるため、片方のピロール環に偏らせた場合と比べて、最大限にその物性を発揮させることが可能となる。 On the other hand, the organic compound according to the embodiment of the present invention can arrange substituents having certain physical properties in a balanced manner on the left and right pyrrole rings, compared with the case where it is biased to one pyrrole ring. Therefore, it is possible to maximize the physical properties.
 この効果は、発光効率と色純度とをバランスよく向上させる点において、特に優れている。色純度に影響を与えるアリール基は、両側のピロール環にそれぞれ1つ以上有していることが、共役系が拡張して高色純度の発光が得られる点で好ましい。しかし、Ar=ArかつAr=Arであって、Ar≠Arである有機化合物は、例えば一方のピロール環に色純度に影響を与えるアリール基を導入した場合に、他方のピロール環に発光効率に影響を与えるアリール基を導入すると、色純度に影響を与えるアリール基が片側のピロール環に偏るため、共役系が十分に拡張せず、色純度が十分に向上しない。また、他方のピロール環に、同様に色純度に影響を与えるアリール基であって別の構造のものを導入すると、発光効率を向上させることができない。 This effect is particularly excellent in that the luminous efficiency and color purity are improved in a balanced manner. It is preferable that at least one aryl group that affects the color purity is present in each of the pyrrole rings on both sides, from the viewpoint that the conjugated system is expanded and light emission with high color purity is obtained. However, when Ar 1 = Ar 2 and Ar 3 = Ar 4 and Ar 1 ≠ Ar 3 , for example, when an aryl group that affects color purity is introduced into one pyrrole ring, the other When an aryl group that affects the luminous efficiency is introduced into the pyrrole ring, the aryl group that affects the color purity is biased to the pyrrole ring on one side, so that the conjugated system is not sufficiently expanded and the color purity is not sufficiently improved. In addition, if an aryl group having a different structure that similarly affects the color purity is introduced into the other pyrrole ring, the light emission efficiency cannot be improved.
 これに対し、本発明の実施の形態に係る有機化合物は、色純度に影響を与えるアリール基を両側のピロール環にそれぞれ1つ以上導入し、それ以外の位置に発光効率に影響を与えるアリール基を導入することができる。このため、本発明の実施の形態に係る有機化合物は、色純度および発光効率の両方の性質を最大限に向上させることができ、故に好ましい。なお、ArおよびArの位置に色純度に影響を与えるアリール基を導入した場合が、最も共役系が拡張されるため、好ましい。 On the other hand, the organic compound according to the embodiment of the present invention introduces one or more aryl groups that affect the color purity into each of the pyrrole rings on both sides, and the aryl group that affects the luminous efficiency at other positions. Can be introduced. For this reason, the organic compound which concerns on embodiment of this invention can improve the property of both color purity and luminous efficiency to the maximum, and is therefore preferable. Note that it is preferable to introduce an aryl group that affects the color purity at the positions of Ar 2 and Ar 3 because the conjugated system is most expanded.
 Ar~Arの少なくとも1つが置換もしくは無置換のアルキル基である場合、アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基といった炭素数1~6のアルキル基が好ましい。さらに、このアルキル基としては、熱的安定性に優れるという観点から、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が好ましい。また、濃度消光を防ぎ、発光量子収率を向上させるという観点では、このアルキル基として、立体的にかさ高いtert-ブチル基がより好ましい。一方、合成の容易さ、原料入手の容易さという観点から、このアルキル基として、メチル基も好ましく用いられる。 When at least one of Ar 1 to Ar 4 is a substituted or unsubstituted alkyl group, examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert group An alkyl group having 1 to 6 carbon atoms such as a butyl group, a pentyl group or a hexyl group is preferred. Further, the alkyl group is preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group from the viewpoint of excellent thermal stability. Further, from the viewpoint of preventing concentration quenching and improving the emission quantum yield, this alkyl group is more preferably a sterically bulky tert-butyl group. On the other hand, from the viewpoint of ease of synthesis and availability of raw materials, a methyl group is also preferably used as the alkyl group.
 一方、上記有機化合物を表す一般式(4)において、Ar~Arが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基である場合、バインダー樹脂や溶媒への溶解性が良好なため、好ましい。この場合、アルキル基としては、合成の容易さ、原料入手の容易さという観点から、メチル基が好ましい。例えば、本実施の形態に係る蛍光体組成物などにおいて、上記有機化合物が、これと組み合わせられる無機蛍光体に比べて発光体からの発光光をより短波長の光へ変換する場合、一般式(4)に表されるAr~Arは全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基であり、好ましくはメチル基である。具体的には、発光体からの発光光が青色光であれば、無機蛍光体は、この青色光を赤色光へ変換し、上記有機化合物は、この青色光を、この無機蛍光体の色変換よりも短波長の光、すなわち、緑色光へ変換する。 On the other hand, in the general formula (4) representing the organic compound, all of Ar 1 to Ar 4 may be the same or different, and when they are substituted or unsubstituted alkyl groups, they are soluble in a binder resin or a solvent. Is preferable. In this case, the alkyl group is preferably a methyl group from the viewpoints of ease of synthesis and availability of raw materials. For example, in the phosphor composition according to the present embodiment, when the organic compound converts light emitted from a light emitter into light having a shorter wavelength than an inorganic phosphor combined therewith, a general formula ( Ar 1 to Ar 4 represented by 4) may all be the same or different and each represents a substituted or unsubstituted alkyl group, preferably a methyl group. Specifically, if the light emitted from the light emitter is blue light, the inorganic phosphor converts the blue light into red light, and the organic compound converts the blue light into the color of the inorganic phosphor. Shorter wavelength light, that is, green light.
 このような有機化合物を表す一般式(4)において、RおよびRのうち少なくとも1つは、水素である。すなわち、RおよびRは、水素、アルキル基、カルボニル基、オキシカルボニル基、アリール基のうちの何れかであることが好ましいが、熱的安定性の観点から、水素またはアルキル基であることが好ましい。特に、発光スペクトルにおいて狭い半値幅を得やすいという観点から、RおよびRのうち少なくとも1つは、水素であることがより好ましい。 In the general formula (4) representing such an organic compound, at least one of R 5 and R 6 is hydrogen. That is, R 5 and R 6 are preferably any one of hydrogen, an alkyl group, a carbonyl group, an oxycarbonyl group, and an aryl group, but are hydrogen or an alkyl group from the viewpoint of thermal stability. Is preferred. In particular, from the viewpoint of easily obtaining a narrow half-value width in the emission spectrum, it is more preferable that at least one of R 5 and R 6 is hydrogen.
 また、Lは、アルキル基、アリール基、ヘテロアリール基、フッ素、含フッ素アルキル基、含フッ素ヘテロアリール基または含フッ素アリール基であることが好ましい。特に、励起光に対して安定であって、より高い蛍光量子収率が得られることから、Lは、フッ素または含フッ素アリール基であることがより好ましい。さらに、Lは、合成の容易さから、フッ素であることがより一層好ましい。 Further, L is preferably an alkyl group, an aryl group, a heteroaryl group, fluorine, a fluorine-containing alkyl group, a fluorine-containing heteroaryl group or a fluorine-containing aryl group. In particular, L is more preferably a fluorine or fluorine-containing aryl group because it is stable against excitation light and a higher fluorescence quantum yield is obtained. Further, L is more preferably fluorine in view of ease of synthesis.
 ここで、含フッ素アリール基とは、フッ素を含むアリール基であり、例えば、フルオロフェニル基、トリフルオロメチルフェニル基およびペンタフルオロフェニル基などが挙げられる。含フッ素ヘテロアリール基とは、フッ素を含むヘテロアリール基であり、例えば、フルオロピリジル基、トリフルオロメチルピリジル基およびトリフルオロピリジル基などが挙げられる。含フッ素アルキル基とは、フッ素を含むアルキル基であり、例えば、トリフルオロメチル基やペンタフルオロエチル基などが挙げられる。 Here, the fluorine-containing aryl group is an aryl group containing fluorine, and examples thereof include a fluorophenyl group, a trifluoromethylphenyl group, and a pentafluorophenyl group. The fluorine-containing heteroaryl group is a heteroaryl group containing fluorine, and examples thereof include a fluoropyridyl group, a trifluoromethylpyridyl group, and a trifluoropyridyl group. The fluorine-containing alkyl group is an alkyl group containing fluorine, and examples thereof include a trifluoromethyl group and a pentafluoroethyl group.
 また、一般式(4)で表される有機化合物の別の態様として、R、R、Ar~Arのうち少なくとも1つが電子吸引基であることが好ましい。特に、(1)R、R、Ar~Arのうち少なくとも1つが電子吸引基であること、(2)Arが電子吸引基であること、または(3)R、R、Ar~Arのうち少なくとも1つが電子吸引基であり、かつ、Arが電子吸引基であること、が好ましい。このように有機化合物のピロメテン骨格に電子吸引基を導入することで、ピロメテン骨格の電子密度を大幅に下げることができる。これにより、上記有機化合物の酸素に対する安定性がより向上し、この結果、上記有機化合物の耐久性をより向上させることができる。 As another embodiment of the organic compound represented by the general formula (4), it is preferable that at least one of R 5 , R 6 , and Ar 1 to Ar 5 is an electron withdrawing group. In particular, (1) at least one of R 1 , R 2 , and Ar 1 to Ar 4 is an electron withdrawing group, (2) Ar 5 is an electron withdrawing group, or (3) R 5 , R 6 , Ar 1 to Ar 4 are preferably electron withdrawing groups, and Ar 5 is preferably an electron withdrawing group. Thus, by introducing an electron withdrawing group into the pyromethene skeleton of the organic compound, the electron density of the pyromethene skeleton can be significantly reduced. Thereby, the stability with respect to oxygen of the organic compound is further improved, and as a result, the durability of the organic compound can be further improved.
 電子吸引基とは、電子受容性基とも呼称し、有機電子論において、誘起効果や共鳴効果により、置換した原子団から、電子を引き付ける原子団である。電子吸引基としては、ハメット則の置換基定数(σp(パラ))として、正の値をとるものが挙げられる。ハメット則の置換基定数(σp(パラ))は、化学便覧基礎編改訂5版(II-380頁)から引用することができる。なお、フェニル基も、上記のような正の値をとる例もあるが、本発明において、電子吸引基にフェニル基は含まれない。 The electron-withdrawing group is also called an electron-accepting group, and is an atomic group that attracts electrons from a substituted atomic group by an induced effect or a resonance effect in organic electron theory. Examples of the electron-withdrawing group include those that take a positive value as the Hammett's rule substituent constant (σp (para)). The Hammett's rule substituent constant (σp (para)) can be cited from the Chemical Handbook, Basic Revision 5 (II-380). In addition, although a phenyl group also has the example which takes the above positive values, in this invention, a phenyl group is not contained in an electron withdrawing group.
 電子吸引基の例として、例えば、-F(σp:+0.06)、-Cl(σp:+0.23)、-Br(σp:+0.23)、-I(σp:+0.18)、-CO12(σp:R12がエチル基の時+0.45)、-CONH(σp:+0.38)、-COR12(σp:R12がメチル基の時+0.49)、-CF(σp:+0.50)、-SO12(σp:R12がメチル基の時+0.69)、-NO(σp:+0.81)等が挙げられる。R12は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のシクロアルキル基を表す。これら各基の具体例としては、上記と同様の例が挙げられる。 Examples of electron withdrawing groups include, for example, -F (σp: +0.06), -Cl (σp: +0.23), -Br (σp: +0.23), -I (σp: +0.18),- CO 2 R 12 (σp: when R 12 is an ethyl group +0.45), —CONH 2 (σp: +0.38), —COR 12 (σp: when R 12 is a methyl group +0.49), —CF 3 (σp: +0.50), - SO 2 R 12 (σp: when R 12 is a methyl group +0.69), - NO 2 (σp : +0.81) , and the like. R 12 each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, substituted or unsubstituted A substituted alkyl group having 1 to 30 carbon atoms and a substituted or unsubstituted cycloalkyl group having 1 to 30 carbon atoms are represented. Specific examples of these groups include the same examples as described above.
 好ましい電子吸引基としては、フッ素、含フッ素アリール基、含フッ素ヘテロアリール基、含フッ素アルキル基、置換もしくは無置換のアシル基、置換もしくは無置換のエステル基、置換もしくは無置換のアミド基、置換もしくは無置換のスルホニル基またはシアノ基が挙げられる。何故なら、これらは、化学的に分解しにくいからである。 Preferred electron withdrawing groups include fluorine, fluorine-containing aryl groups, fluorine-containing heteroaryl groups, fluorine-containing alkyl groups, substituted or unsubstituted acyl groups, substituted or unsubstituted ester groups, substituted or unsubstituted amide groups, and substituted groups. Or an unsubstituted sulfonyl group or a cyano group is mentioned. This is because they are difficult to decompose chemically.
 より好ましい電子吸引基としては、含フッ素アルキル基、置換もしくは無置換のアシル基、置換もしくは無置換のエステル基またはシアノ基が挙げられる。何故なら、これらは、濃度消光を防ぎ、発光量子収率を向上させる効果につながるからである。特に好ましい電子吸引基は、置換もしくは無置換のエステル基である。 More preferred electron withdrawing groups include fluorine-containing alkyl groups, substituted or unsubstituted acyl groups, substituted or unsubstituted ester groups, and cyano groups. This is because these lead to effects of preventing concentration quenching and improving the emission quantum yield. Particularly preferred electron withdrawing groups are substituted or unsubstituted ester groups.
 上記有機化合物を表す一般式(4)において、RおよびRのうち少なくとも1つは、電子吸引基であることが好ましい。何故なら、発光効率および色純度を損なうことなく、一般式(4)で表される有機化合物の酸素に対する安定性を向上させることができ、この結果、上記有機化合物の耐久性を向上させることができるからである。 In the general formula (4) representing the organic compound, at least one of R 5 and R 6 is preferably an electron withdrawing group. This is because the stability of the organic compound represented by the general formula (4) to oxygen can be improved without impairing the luminous efficiency and color purity, and as a result, the durability of the organic compound can be improved. Because it can.
 また、上記有機化合物のArを表す一般式(5)において、rは、電子吸引基であることがより好ましい。何故なら、発光効率および色純度を損なうことなく、一般式(4)で表される有機化合物の酸素に対する安定性がさらに向上し、この結果、上記有機化合物の耐久性を大幅に向上させることができるからである。 In the general formula (5) representing Ar 5 of the organic compound, r is more preferably an electron withdrawing group. This is because the stability of the organic compound represented by the general formula (4) to oxygen is further improved without impairing the luminous efficiency and color purity, and as a result, the durability of the organic compound can be greatly improved. Because it can.
 一般式(4)で表される有機化合物の好ましい例の一つとして、Ar~Arが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基であって、さらに、Arが一般式(5)で表される基である場合が挙げられる。この場合、Arは、rが置換もしくは無置換のフェニル基として含まれる一般式(5)で表される基であることが特に好ましい。 As one of preferable examples of the organic compound represented by the general formula (4), Ar 1 to Ar 4 may all be the same or different and each is a substituted or unsubstituted alkyl group, and Ar The case where 5 is group represented by General formula (5) is mentioned. In this case, Ar 5 is particularly preferably a group represented by the general formula (5) in which r is included as a substituted or unsubstituted phenyl group.
 また、一般式(4)で表される有機化合物の好ましい例の別の一つとして、Ar~Arが全て、それぞれ同じでも異なっていてもよく、上述の一般式(6)から選ばれるものであり、さらに、Arが一般式(5)で表される基である場合が挙げられる。この場合、Arは、rがtert-ブチル基、メトキシ基として含まれる一般式(5)で表される基であることがより好ましく、rがメトキシ基として含まれる一般式(5)で表される基であることが特に好ましい。 As another preferred example of the organic compound represented by the general formula (4), all of Ar 1 to Ar 4 may be the same or different and are selected from the above general formula (6). And Ar 5 is a group represented by the general formula (5). In this case, Ar 5 is more preferably a group represented by the general formula (5) in which r is a tert-butyl group or methoxy group, and represented by the general formula (5) in which r is a methoxy group. It is particularly preferred that
 以下に、一般式(4)で表される有機化合物の一例を示すが、本実施の形態に係る有機化合物は、これらに限定されるものではない。 Hereinafter, an example of the organic compound represented by the general formula (4) is shown, but the organic compound according to the present embodiment is not limited to these.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 一般式(4)で表される有機化合物は、例えば特表平8-509471号公報や特開2000-208262号公報に記載の方法で製造することができる。すなわち、ピロメテン化合物と金属塩とを塩基共存下で反応することにより、目的とするピロメテン系金属錯体が得られる。 The organic compound represented by the general formula (4) can be produced, for example, by the method described in JP-T-8-509471 and JP-A-2000-208262. That is, the target pyromethene metal complex is obtained by reacting the pyromethene compound and the metal salt in the presence of a base.
 また、ピロメテン-フッ化ホウ素錯体の合成については、J.Org.Chem.,vol.64,No.21,pp7813-7819(1999)、Angew.Chem.,Int.Ed.Engl.,vol.36,pp1333-1335(1997)などに記載されている方法を参考にして、一般式(4)で表される有機化合物を製造することができる。 Also, for the synthesis of pyromethene-boron fluoride complex, see J.H. Org. Chem. , Vol. 64, no. 21, pp 7813-7819 (1999), Angew. Chem. , Int. Ed. Engl. , Vol. 36, pp 1333-1335 (1997) and the like, an organic compound represented by the general formula (4) can be produced.
 本発明の実施の形態に係る蛍光体組成物は、一般式(4)で表される有機化合物以外に、必要に応じてその他の化合物を適宜含有することができる。例えば、励起光から一般式(4)で表される有機化合物へのエネルギー移動効率を更に高めるために、ルブレンなどのアシストドーパントを含有してもよい。また、一般式(4)で表される有機化合物の発光色以外の発光色を加味したい場合は、所望の有機発光材料、例えば、クマリン系色素、ペリレン系色素、フタロシアニン系色素、スチルベン系色素、シアニン系色素、ポリフェニレン系色素、ローダミン系色素、ピリジン系色素、ピロメテン系色素、ポルフィリン色素、オキサジン系色素、ピラジン系色素などの化合物を添加することができる。その他、これらの有機発光材料以外でも、無機蛍光体、蛍光顔料、蛍光染料、量子ドットなどの公知の発光材料を組み合わせて添加することも可能である。 The phosphor composition according to the embodiment of the present invention can appropriately contain other compounds as necessary in addition to the organic compound represented by the general formula (4). For example, an assist dopant such as rubrene may be contained in order to further increase the energy transfer efficiency from the excitation light to the organic compound represented by the general formula (4). In addition, when it is desired to add a light emission color other than the light emission color of the organic compound represented by the general formula (4), a desired organic light emitting material such as a coumarin dye, a perylene dye, a phthalocyanine dye, a stilbene dye, Compounds such as cyanine dyes, polyphenylene dyes, rhodamine dyes, pyridine dyes, pyromethene dyes, porphyrin dyes, oxazine dyes and pyrazine dyes can be added. In addition to these organic light-emitting materials, known light-emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots can be added in combination.
 以下に、一般式(4)で表される有機化合物以外の有機発光材料の一例を示すが、本発明は、特にこれらに限定されるものではない。 Hereinafter, examples of organic light-emitting materials other than the organic compound represented by the general formula (4) will be shown, but the present invention is not particularly limited thereto.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 本発明の実施の形態に係る蛍光体組成物における一般式(4)で表される有機化合物の含有量は、有機化合物のモル吸光係数、蛍光量子収率および励起波長における吸収強度、並びに作製するフィルムの厚みや透過率にもよるが、通常は蛍光体組成物全体の重量に対して、10-5重量パーセント~10重量パーセントであり、10-4重量パーセント~5重量パーセントであることがさらに好ましく、10-3重量パーセント~2重量パーセントであることが特に好ましい。 The content of the organic compound represented by the general formula (4) in the phosphor composition according to the embodiment of the present invention includes the molar absorption coefficient of the organic compound, the fluorescence quantum yield, the absorption intensity at the excitation wavelength, and the production. Depending on the thickness and transmittance of the film, it is usually 10 −5 weight percent to 10 weight percent, more preferably 10 −4 weight percent to 5 weight percent, based on the total weight of the phosphor composition. Preferably, it is 10 −3 weight percent to 2 weight percent.
 (溶媒)
 本発明の実施の形態に係る蛍光体シートは、溶媒を含んでいてもよい。溶媒は、流動状態の樹脂の粘度を調整できるものであれば、特に限定されない。この溶媒としては、例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、アセトン、テルピネオール、テキサノール、メチルセルソルブ、ブチルカルビトール、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。
(solvent)
The phosphor sheet according to the embodiment of the present invention may contain a solvent. A solvent will not be specifically limited if the viscosity of resin of a fluid state can be adjusted. Examples of the solvent include toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, acetone, terpineol, texanol, methyl cellosolve, butyl carbitol, butyl carbitol acetate, propylene glycol monomethyl ether acetate, and the like.
 (その他の成分)
 本発明の実施の形態に係る蛍光体シートは、塗布膜安定化のための分散剤やレベリング剤、蛍光体シートの表面の改質剤としてシランカップリング剤等の接着補助剤等を含有していてもよい。
(Other ingredients)
The phosphor sheet according to the embodiment of the present invention contains a dispersing agent and a leveling agent for stabilizing the coating film, an adhesion assistant such as a silane coupling agent as a surface modifier of the phosphor sheet, and the like. May be.
 また、本発明の実施の形態に係る蛍光体シートは、微粒子を含有していてもよい。微粒子の例としては、シリコーン微粒子やチタニア、シリカ、アルミナ、シリコーン、ジルコニア、セリア、窒化アルミ、炭化ケイ素、窒化ケイ素、チタン酸バリウムなどが挙げられる。また、本発明の実施の形態に係る蛍光体シートは、100℃における貯蔵弾性率G’を低下させるため、加熱粘着剤として、シラノール基含有メチルフェニル系シリコーンレジンを含有してもよい。入手しやすいという観点からシリコーン微粒子、シリカ微粒子、アルミナ微粒子が好ましく用いられ、特にシリコーン微粒子が好ましく用いられる。 Moreover, the phosphor sheet according to the embodiment of the present invention may contain fine particles. Examples of the fine particles include silicone fine particles, titania, silica, alumina, silicone, zirconia, ceria, aluminum nitride, silicon carbide, silicon nitride, and barium titanate. In addition, the phosphor sheet according to the embodiment of the present invention may contain a silanol group-containing methylphenyl silicone resin as a heating adhesive in order to reduce the storage elastic modulus G ′ at 100 ° C. From the viewpoint of easy availability, silicone fine particles, silica fine particles, and alumina fine particles are preferably used, and silicone fine particles are particularly preferably used.
 本発明の実施の形態に係る蛍光体シートは、シリコーン微粒子を含有することで、接着性や加工性だけでなく、膜厚均一性も良好となる。特に、平均粒子径(メジアン系:D50)が0.1μm以上、2.0μm以下であるシリコーン微粒子を用いることで、スリットダイコーターを用いた場合の吐出性に優れ、膜厚均一性に優れた蛍光体シートを得ることができる。 The phosphor sheet according to the embodiment of the present invention contains silicone fine particles, so that not only adhesiveness and workability but also film thickness uniformity is improved. In particular, by using silicone fine particles having an average particle diameter (median type: D50) of 0.1 μm or more and 2.0 μm or less, the discharge property when using a slit die coater is excellent, and the film thickness is excellent. A phosphor sheet can be obtained.
 シリコーン微粒子の平均粒子径は、蛍光体の平均粒子径と同様、上述の方法で測定することができる。シリコーン微粒子の平均粒子径は、下限としては0.5μm以上であることがより好ましい。また、上限としては1.0μm以下であることがより好ましい。 The average particle diameter of the silicone fine particles can be measured by the above-described method, similarly to the average particle diameter of the phosphor. The average particle diameter of the silicone fine particles is more preferably 0.5 μm or more as the lower limit. Moreover, as an upper limit, it is more preferable that it is 1.0 micrometer or less.
 シリコーン微粒子は、シリコーン樹脂および/またはシリコーンゴムからなる微粒子が好ましい。特に、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシランなどのオルガノシランを加水分解し、次いで縮合させる方法により得られるシリコーン微粒子が好ましい。これらの中で、オルガノシランおよび/またはその部分加水分解物を加水分解・縮合させ、球状オルガノポリシルセスキオキサン微粒子を製造するにあたり、特開2003-342370号公報で報告されているような反応溶液内に高分子分散剤を添加する方法により得られたシリコーン微粒子を用いることが好ましい。 The silicone fine particles are preferably fine particles made of silicone resin and / or silicone rubber. In particular, silicone fine particles obtained by a method of hydrolyzing organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane, and then condensing them. preferable. Among these, the reaction as reported in Japanese Patent Application Laid-Open No. 2003-342370 is carried out in the production of spherical organopolysilsesquioxane fine particles by hydrolyzing and condensing organosilane and / or a partial hydrolyzate thereof. It is preferable to use silicone fine particles obtained by a method of adding a polymer dispersant in the solution.
 また、シリコーン微粒子を製造するに当たり、オルガノシランおよび/またはその部分加水分解物を加水分解・縮合させ、酸性水溶液に溶媒中で保護コロイドとして作用する高分子分散剤及び塩を存在させた状態で、オルガノシランおよび/またはその加水分解物を添加し加水分解物を得た後、アルカリを添加し縮合反応を進行させることにより製造したシリコーン微粒子を用いることもできる。 In addition, in the production of silicone fine particles, organosilane and / or its partial hydrolyzate is hydrolyzed and condensed, and in the presence of a polymer dispersant and a salt that act as a protective colloid in a solvent in an acidic aqueous solution, Silicone fine particles produced by adding an organosilane and / or a hydrolyzate thereof to obtain a hydrolyzate and then adding an alkali to advance the condensation reaction can also be used.
 蛍光体シートにおけるシリコーン微粒子の含有量は、蛍光体シート全体の0.5重量%以上であることが好ましく、1重量%以上であることがさらに好ましい。蛍光体シートにおけるシリコーン微粒子の含有量の上限は特に規定されないが、良好な機械物性の観点から、蛍光体シート全体の20重量%以下であることが好ましく、10重量%以下であることがより好ましい。 The content of the silicone fine particles in the phosphor sheet is preferably 0.5% by weight or more of the whole phosphor sheet, and more preferably 1% by weight or more. The upper limit of the content of the silicone fine particles in the phosphor sheet is not particularly defined, but from the viewpoint of good mechanical properties, it is preferably 20% by weight or less of the entire phosphor sheet, and more preferably 10% by weight or less. .
 (基材)
 基材は、本発明における蛍光体シートの支持体の一例である。基材としては、特に制限なく、例えば、公知の金属、フィルム、ガラス、セラミック、紙等を使用することができる。具体的には、アルミニウム(アルミニウム合金も含む)、亜鉛、銅、鉄などの金属の板や箔;セルロースアセテート、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリエステル、ポリアミド、ポリイミド、ポリフェニレンサルファイド、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール、アラミド、シリコーン、ポリオレフィン、熱可塑性フッ素樹脂、テトラフルオロエチレンとエチレンの共重合体(ETFE)などのプラスチックのフィルム;α-ポリオレフィン樹脂、ポリカプロラクトン樹脂、アクリル樹脂、シリコーン樹脂およびこれらとエチレンの共重合樹脂からなるプラスチックのフィルム;上記プラスチックがラミネートされた紙、上記プラスチックによりコーティングされた紙、上記金属がラミネートまたは蒸着された紙、上記金属がラミネートまたは蒸着されたプラスチックフィルムなどが挙げられる。また、基材が金属板の場合、金属板表面にクロム系やニッケル系などのメッキ処理やセラミック処理されていてもよい。
(Base material)
A base material is an example of the support body of the fluorescent substance sheet in this invention. There is no restriction | limiting in particular as a base material, For example, a well-known metal, a film, glass, ceramic, paper etc. can be used. Specifically, metal plates and foils such as aluminum (including aluminum alloys), zinc, copper, and iron; cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polyphenylene sulfide, polystyrene, polypropylene, Plastic film such as polycarbonate, polyvinyl acetal, aramid, silicone, polyolefin, thermoplastic fluororesin, copolymer of tetrafluoroethylene and ethylene (ETFE); α-polyolefin resin, polycaprolactone resin, acrylic resin, silicone resin and these Film made of a copolymer resin of ethylene and ethylene; paper laminated with the plastic, paper coated with the plastic, gold There laminated or vapor-deposited papers, the metals and plastic film laminated or deposited. Moreover, when the base material is a metal plate, the surface of the metal plate may be subjected to a plating treatment or ceramic treatment such as chromium or nickel.
 これらの中でも、蛍光体シートの作製のし易さや蛍光体シートの個片化のし易さから、ガラスやプラスチックフィルムが好ましく用いられる。特に、蛍光体シートをLEDチップに貼りつける際の密着性から、基材は柔軟なフィルム状であることが好ましい。また、フィルム状の基材を取り扱う際に破断などの恐れがないように、強度が高いフィルムが好ましい。それらの要求特性や経済性の面で、プラスチックフィルムが好ましい。プラスチックフィルムの中でも、経済性、取り扱い性の面で、PET、ポリフェニレンサルファイド、ポリプロピレンからなる群より選ばれるプラスチックフィルムが好ましい。また、蛍光体シートを乾燥させる場合や蛍光体シートをLEDチップに貼り付ける際に200℃以上の高温を必要とする場合は、耐熱性の面でポリイミドフィルムが好ましい。基材からの蛍光体シートの剥離のし易さから、基材は、あらかじめ表面が離型処理されていてもよい。 Among these, glass and plastic films are preferably used because of the ease of producing the phosphor sheet and the ease of individualizing the phosphor sheet. In particular, the base material is preferably a flexible film because of the adhesion when the phosphor sheet is attached to the LED chip. Moreover, a film with high strength is preferable so that there is no fear of breakage when handling a film-like substrate. A plastic film is preferable in terms of the required characteristics and economy. Among the plastic films, a plastic film selected from the group consisting of PET, polyphenylene sulfide, and polypropylene is preferable in terms of economy and handleability. Moreover, when drying a fluorescent substance sheet, or when attaching a fluorescent substance sheet to a LED chip, when a high temperature of 200 degreeC or more is required, a polyimide film is preferable at a heat resistant surface. The surface of the base material may be subjected to a release treatment in advance from the ease of peeling of the phosphor sheet from the base material.
 基材の厚さは特に制限はないが、下限としては25μm以上が好ましく、38μm以上がより好ましい。また、上限としては5000μm以下が好ましく、3000μm以下がより好ましい。 The thickness of the substrate is not particularly limited, but the lower limit is preferably 25 μm or more, and more preferably 38 μm or more. Moreover, as an upper limit, 5000 micrometers or less are preferable and 3000 micrometers or less are more preferable.
 (その他の層) 
 本発明の実施の形態に係る蛍光体シートは、バリア層を備えていてもよい。バリア層は、蛍光体シートに対してガスバリア性を向上する場合などにおいて適宜用いられる。
(Other layers)
The phosphor sheet according to the embodiment of the present invention may include a barrier layer. The barrier layer is appropriately used in the case where the gas barrier property is improved with respect to the phosphor sheet.
 酸素に対してバリア機能を有するバリア層としては、例えば、酸化ケイ素、酸化アルミニウム、酸化スズ、酸化インジウム、酸化イットリウム、酸化マグネシウムなど、またはこれらの混合物、またはこれらに他の元素を添加した金属酸化物からなる膜;あるいはナイロン、ポリ塩化ビニリデン、エチレンとビニルアルコールの共重合物などの各種樹脂からなる膜などを挙げることができる。 Examples of the barrier layer having a barrier function against oxygen include, for example, silicon oxide, aluminum oxide, tin oxide, indium oxide, yttrium oxide, magnesium oxide, or a mixture thereof, or metal oxide obtained by adding other elements thereto. Or a film made of various resins such as nylon, polyvinylidene chloride, and a copolymer of ethylene and vinyl alcohol.
 また、水分に対してバリア機能を有するバリア層としては、例えば、ポリエチレン、ポリプロピレン、ナイロン、ポリ塩化ビニリデン、塩化ビニリデンと塩化ビニル、塩化ビニリデンとアクリロニトリルの共重合物、フッ素系樹脂などの各種樹脂からなる膜を挙げることができる。 Examples of the barrier layer having a barrier function against moisture include, for example, polyethylene, polypropylene, nylon, polyvinylidene chloride, vinylidene chloride and vinyl chloride, vinylidene chloride and acrylonitrile copolymers, and various resins such as fluorine resins. Can be mentioned.
 また、本発明の実施の形態に係る蛍光体シートは、蛍光体シートに要求される機能に応じて、反射防止機能、防眩機能、反射防止防眩機能、光拡散機能、ハードコート機能(耐摩擦機能)、帯電防止機能、防汚機能、電磁波シールド機能、赤外線カット機能、紫外線カット機能、偏光機能、調色機能を有した補助層をさらに備えていてもよい。 In addition, the phosphor sheet according to the embodiment of the present invention has an antireflection function, an antiglare function, an antireflection antiglare function, a light diffusion function, a hard coat function (anti-resistance) according to the function required for the phosphor sheet. A friction layer), an antistatic function, an antifouling function, an electromagnetic wave shielding function, an infrared cut function, an ultraviolet cut function, a polarization function, and a toning function may be further provided.
 <蛍光体シートの作製方法>
 以下に、本発明の実施の形態に係る蛍光体シートの作製方法の一例を説明する。なお、以下に説明する作製方法は一例であり、蛍光体シートの作製方法はこれに限定されない。
<Method for producing phosphor sheet>
Below, an example of the preparation method of the fluorescent substance sheet which concerns on embodiment of this invention is demonstrated. In addition, the manufacturing method demonstrated below is an example, and the manufacturing method of a fluorescent substance sheet is not limited to this.
 まず、蛍光体シート形成用の塗布液として、蛍光体をシリコーン樹脂に分散した組成物(以下「蛍光体組成物」という)を作製する。前述した、シリコーン樹脂、蛍光体、並びに必要に応じシリコーン微粒子等の添加材および溶剤等を所定量混合する。上記の成分を所定の組成になるよう混合した後、その混合物を、ホモジナイザー、自公転型攪拌機、3本ローラー、ボールミル、遊星式ボールミル、ビーズミル等の撹拌・混練機で均質に混合分散することで、蛍光体組成物が得られる。 First, a composition in which a phosphor is dispersed in a silicone resin (hereinafter referred to as “phosphor composition”) is prepared as a coating solution for forming a phosphor sheet. A predetermined amount of the above-described silicone resin, phosphor, and additives such as silicone fine particles and a solvent are mixed as required. After mixing the above components so as to have a predetermined composition, the mixture is uniformly mixed and dispersed by a homogenizer, a revolving stirrer, a three-roller, a ball mill, a planetary ball mill, a bead mill or the like. A phosphor composition is obtained.
 混合分散後、もしくは混合分散の過程で、真空もしくは減圧条件下で脱泡することも好ましく行われる。また、ある特定の成分を事前に混合してもよいし、でき上がった蛍光体組成物に対しエージング等の処理をしても構わない。エバポレーターによって、混合分散後の混合物から溶剤を除去して所望の固形分濃度にすることも可能である。 Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing / dispersing or in the course of mixing / dispersing. Moreover, you may mix a specific component in advance, and you may process processes, such as aging, with respect to the completed fluorescent substance composition. It is also possible to remove the solvent from the mixture after mixing and dispersion by an evaporator to obtain a desired solid content concentration.
 上述した方法で作製した蛍光体組成物を基材上に塗布し、乾燥させ、蛍光体シートを作製する。塗布は、リバースロールコーター、ブレードコーター、スリットダイコーター、ダイレクトグラビアコーター、オフセットグラビアコーター、キスコーター、ナチュラルロールコーター、エアーナイフコーター、ロールブレードコーター、トゥーストリームコーター、ロッドコーター、ワイヤーバーコーター、アプリケーター、ディップコーター、カーテンコーター、スピンコーター、ナイフコーター等により行うことができる。蛍光体シートの膜厚均一性を得るためには、スリットダイコーターで塗布することが好ましい。 The phosphor composition produced by the method described above is applied on a substrate and dried to produce a phosphor sheet. Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, kiss coater, natural roll coater, air knife coater, roll blade coater, two stream coater, rod coater, wire bar coater, applicator, dip It can be performed by a coater, curtain coater, spin coater, knife coater or the like. In order to obtain the film thickness uniformity of the phosphor sheet, it is preferably applied by a slit die coater.
 蛍光体シートの乾燥は、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用いて行うことができる。この場合、乾燥条件は、通常、40~250℃で1分~5時間、好ましくは60℃~200℃で2分~4時間である。また、ステップキュア等の段階的に乾燥することも可能である。 The phosphor sheet can be dried using a general heating device such as a hot air dryer or an infrared dryer. In this case, the drying conditions are usually 40 to 250 ° C. for 1 minute to 5 hours, preferably 60 ° C. to 200 ° C. for 2 minutes to 4 hours. It is also possible to dry stepwise such as step cure.
 蛍光体シートを作製した後、必要に応じて基材を変更することも可能である。この場合、簡易的な方法としてはホットプレートを用いて基材の貼り替えを行なう方法や、真空ラミネーターやドライフィルムラミネーターを用いて基材の貼り替えを行なう方法などが挙げられる。 It is also possible to change the substrate as necessary after producing the phosphor sheet. In this case, as a simple method, there are a method of replacing the substrate using a hot plate, a method of replacing the substrate using a vacuum laminator or a dry film laminator, and the like.
 <蛍光体シートの適用例>
 本発明の実施の形態に係る蛍光体シート、またはその硬化物を、LEDチップの発光面に貼り付けることで、LEDチップの表面に蛍光体シートが積層された、蛍光体シート付きLEDチップを形成できる。本発明の実施の形態に係る蛍光体シートを適用できるLEDチップには、特に制限はなく、ラテラル、バーティカル、フィリップチップなどの、一般的な構造のLEDチップが挙げられる。そのようなLEDチップとしては、特に、発光面積が大きいバーティカルタイプおよびフリップチップタイプのLEDチップが好ましい。なお、LEDチップの発光面とは、LEDチップからの光が取り出される面をいう。
<Application example of phosphor sheet>
The phosphor sheet according to the embodiment of the present invention or a cured product thereof is attached to the light emitting surface of the LED chip, thereby forming the LED chip with the phosphor sheet in which the phosphor sheet is laminated on the surface of the LED chip. it can. The LED chip to which the phosphor sheet according to the embodiment of the present invention can be applied is not particularly limited, and examples thereof include LED chips having a general structure such as lateral, vertical, and Philip chips. As such LED chips, vertical type and flip chip type LED chips having a large light emitting area are particularly preferable. In addition, the light emission surface of an LED chip means the surface from which the light from an LED chip is taken out.
 ここで、LEDチップの発光面が単一平面の場合と、単一平面ではない場合がある。単一平面の場合としては、主に上部発光面のみを有するLEDチップが挙げられる。具体的には、バーティカルタイプのLEDチップや、LEDチップの側面を反射層で覆い、上面からのみ光が取り出されるようにしたLEDチップなどが例示される。一方、単一平面ではない場合としては、上部発光面および側部発光面を有するLEDチップや、曲面発光面を持つLEDチップなどが挙げられる。 Here, the light emitting surface of the LED chip may be a single plane or not a single plane. In the case of a single plane, LED chips mainly having only an upper light emitting surface can be mentioned. Specifically, a vertical type LED chip, an LED chip in which the side surface of the LED chip is covered with a reflective layer, and light is extracted only from the upper surface are exemplified. On the other hand, as a case where it is not a single plane, an LED chip having an upper light emitting surface and a side light emitting surface, an LED chip having a curved light emitting surface, and the like can be given.
 これらのLEDチップのうち、側部からの発光を利用して明るくすることができることから、発光面が単一平面でないLEDチップが好ましい。特に、発光面積を大きくできること、およびLEDチップの製造プロセスが容易なことから、上部発光面と側部発光面を有するフリップチップタイプのLEDチップが好ましい。また、LEDチップの発光効率を向上させるための光学的な設計に基づいて、発光面の表面をテクスチャー加工しても良い。 Among these LED chips, an LED chip whose light emitting surface is not a single plane is preferable because it can be brightened by using light emitted from the side portion. In particular, a flip chip type LED chip having an upper light emitting surface and a side light emitting surface is preferable because the light emitting area can be increased and the manufacturing process of the LED chip is easy. Further, the surface of the light emitting surface may be textured based on an optical design for improving the light emission efficiency of the LED chip.
 本発明の実施の形態に係る蛍光体シートは、直接、LEDチップに貼り付けてもよいし、透明樹脂などの接着剤を介して貼り付けてもよい。LEDチップからの光を反射などによってロスすることなく、直接、蛍光体シートへ入射させることができるという観点から、本発明の実施の形態に係る蛍光体シートを、直接、LEDチップに貼り付ける方が、より好ましい。これにより、色バラツキが少なく高効率で均一な白色光を得ることができる。 The phosphor sheet according to the embodiment of the present invention may be directly attached to the LED chip or may be attached via an adhesive such as a transparent resin. From the viewpoint that the light from the LED chip can be directly incident on the phosphor sheet without being lost due to reflection or the like, the phosphor sheet according to the embodiment of the present invention is directly attached to the LED chip. Is more preferable. Thereby, uniform white light with little color variation and high efficiency can be obtained.
 これらの方法で得られた蛍光体シート付きLEDチップを、金属配線等を備えた配線基板に実装してパッケージ化することで、LEDパッケージを作製できる。その後、モジュールに組み込むことで、各種照明や液晶バックライト、ヘッドランプをはじめとする様々な発光装置に好適に使用することができる。 An LED package can be manufactured by mounting the LED chip with a phosphor sheet obtained by these methods on a wiring board provided with a metal wiring or the like and packaging it. After that, by incorporating it in a module, it can be suitably used for various light emitting devices such as various illuminations, liquid crystal backlights, and headlamps.
 図1に、本発明の実施の形態に係るLEDパッケージの好適な例を示す。図1(a)は、蛍光体シート2が貼り付けられたLEDチップ1が、リフレクター4を備えた実装基板5に設置され、透明封止材3によってLEDチップ1の上面部分を封止されたものである。 FIG. 1 shows a preferred example of an LED package according to an embodiment of the present invention. In FIG. 1A, the LED chip 1 to which the phosphor sheet 2 is attached is placed on a mounting substrate 5 having a reflector 4, and the upper surface portion of the LED chip 1 is sealed with a transparent sealing material 3. Is.
 図1(b)は、蛍光体シート2が貼り付けられたLEDチップ1が、リフレクター4を備えた実装基板5に設置され、透明封止材3によってLEDチップ1の上面部分および側面部分を封止されたものである。 FIG. 1B shows that the LED chip 1 with the phosphor sheet 2 attached is placed on a mounting substrate 5 provided with a reflector 4, and the upper surface portion and the side surface portion of the LED chip 1 are sealed with a transparent sealing material 3. It has been stopped.
 図1(c)は、図1(b)に示す構成において、LEDチップ1の上面だけでなく側面にも蛍光体シート2が貼り付けられたものである。この実施形態では、LEDチップの側面からの発光に対しても蛍光体シート2により発光波長を変換できるため、好ましい。さらに、透明封止材3の上面をレンズ状に形成している。 FIG. 1C shows a structure in which the phosphor sheet 2 is attached not only to the upper surface but also to the side surface of the LED chip 1 in the configuration shown in FIG. In this embodiment, since the light emission wavelength can be converted by the phosphor sheet 2 even for light emission from the side surface of the LED chip, it is preferable. Furthermore, the upper surface of the transparent sealing material 3 is formed in a lens shape.
 図1(d)は、蛍光体シート2が貼り付けられたLEDチップ1が、リフレクターを備えていない実装基板5に設置され、レンズ状に成型された透明封止材3によって封止されたものである。 FIG. 1D shows an LED chip 1 to which a phosphor sheet 2 is attached, which is placed on a mounting substrate 5 that does not have a reflector, and is sealed with a transparent sealing material 3 molded into a lens shape. It is.
 図1(e)は、図1(d)に示す構成において、LEDチップ1の上面だけでなく側面にも蛍光体シート2が貼り付けられたものである。 FIG. 1 (e) shows a structure in which the phosphor sheet 2 is attached not only to the upper surface but also to the side surface of the LED chip 1 in the configuration shown in FIG. 1 (d).
 図1(f)は、図1(c)に示す構成において、LEDチップとしてフリップチップタイプのLEDチップ1を用い、蛍光体シート2が、LEDチップ1の発光面である上面および側面だけでなく、実装基板5の上面まで及ぶように貼り付けられたものである。なお、この構成において、蛍光体シート2が、LEDチップ1の発光面である上面および側面だけに貼り付けられていてもよい。 FIG. 1 (f) uses a flip chip type LED chip 1 as the LED chip in the configuration shown in FIG. 1 (c), and the phosphor sheet 2 is not only the top and side surfaces that are the light emitting surface of the LED chip 1. The affixed so as to reach the upper surface of the mounting substrate 5. In this configuration, the phosphor sheet 2 may be attached only to the upper surface and the side surface that are the light emitting surface of the LED chip 1.
 図1(g)は、図1(d)に示す構成において、LEDチップ1および蛍光体シート2の構成を、図1(f)に示す構成と同様にしたものである。 FIG. 1 (g) shows the configuration of the LED chip 1 and the phosphor sheet 2 in the configuration shown in FIG. 1 (d), which is the same as the configuration shown in FIG. 1 (f).
 図1(h)は、LEDチップ1が、リフレクター4を備えた実装基板5の、リフレクター4を有しない部分にぴったり合うように設置され、LEDチップ1の上部に、リフレクター4の間隔と同一幅の蛍光体シート2が接着剤8を介して貼り付けられ、さらに透明封止材3によって封止されたものである。 FIG. 1 (h) shows that the LED chip 1 is installed so as to fit the portion of the mounting substrate 5 having the reflector 4 that does not have the reflector 4, and has the same width as the interval between the reflectors 4 on the LED chip 1. The phosphor sheet 2 is affixed via an adhesive 8 and further sealed with a transparent sealing material 3.
 図1(i)は、図1(h)に示す構成において、蛍光体シート2として、基材9付きの蛍光体シート2を用いられ、基材9を蛍光体シート2から剥離せずに、蛍光体シート2が接着剤8を介して貼り付けられたものである。 FIG. 1 (i) shows that the phosphor sheet 2 with the substrate 9 is used as the phosphor sheet 2 in the configuration shown in FIG. 1 (h), and the substrate 9 is not peeled off from the phosphor sheet 2. The phosphor sheet 2 is affixed via an adhesive 8.
 本発明の実施の形態に係るLEDパッケージはこれらの構成に限られない。例えば、図1(a)~図1(i)に例示された各パーツの構造を適宜組み合わせた構成であってもよい。また、図1(a)~図1(i)に例示された各パーツの構造を、これら以外の公知のパーツに置き換えた構成や、図1(a)~図1(i)に例示された構成と公知のパーツとを組み合わせた構成であってもよい。 The LED package according to the embodiment of the present invention is not limited to these configurations. For example, the structure of each part illustrated in FIGS. 1A to 1I may be appropriately combined. Also, the structure of each part illustrated in FIGS. 1 (a) to 1 (i) is replaced with a known part other than the above, or illustrated in FIGS. 1 (a) to 1 (i). The structure which combined the structure and the well-known part may be sufficient.
 透明封止材3は、成形加工性、透明性、耐熱性、接着性等に優れる材料であればいかなるものであってもよい。例えば、エポキシ樹脂、シリコーン樹脂(シリコーンゴム、シリコーンゲル等のオルガノポリシロキサン硬化物(架橋物)を含む)、ウレア樹脂、フッ素樹脂、ポリカーボネート樹脂などの公知のものを用いることができる。 The transparent sealing material 3 may be any material as long as it is a material excellent in molding processability, transparency, heat resistance, adhesiveness and the like. For example, known resins such as epoxy resins, silicone resins (including organopolysiloxane cured products (crosslinked products) such as silicone rubber and silicone gel), urea resins, fluororesins, and polycarbonate resins can be used.
 接着剤8としては、上述した透明封止材として用いられる材料を用いることができる。 As the adhesive 8, the material used as the transparent sealing material described above can be used.
 リフレクター4を構成する材料としては、特に制限はないが、透明封止材3に用いられる材料に微粒子を添加したものなどが挙げられる。微粒子としては、チタニア、シリカ、アルミナ、シリコーン、ジルコニア、セリア、窒化アルミ、炭化ケイ素、窒化ケイ素、チタン酸バリウムなどが挙げられる。これらの微粒子の中でも、入手しやすいという観点から、シリカ微粒子、アルミナ微粒子、チタニア微粒子が好ましく用いられる。 The material constituting the reflector 4 is not particularly limited, and examples thereof include a material used for the transparent sealing material 3 to which fine particles are added. Examples of the fine particles include titania, silica, alumina, silicone, zirconia, ceria, aluminum nitride, silicon carbide, silicon nitride, and barium titanate. Among these fine particles, silica fine particles, alumina fine particles, and titania fine particles are preferably used from the viewpoint of easy availability.
 <蛍光体シートの貼り付け方法、蛍光体シートを用いたLEDパッケージの製造方法>
 次に、本発明の実施の形態に係る蛍光体シートの、LEDチップへの貼り付け方法、および本発明の実施の形態に係る蛍光体シートを用いたLEDパッケージの製造方法を説明する。
<Phosphor sheet attaching method, LED package manufacturing method using phosphor sheet>
Next, a method for attaching the phosphor sheet according to the embodiment of the present invention to the LED chip and a method for manufacturing an LED package using the phosphor sheet according to the embodiment of the present invention will be described.
 本発明の実施の形態に係る蛍光体シートを用いたLEDパッケージの代表的な製造方法は、後述するように、(1)蛍光体シートを個片に切断してから、個別のLEDチップに貼り付ける方法(例えば、図2参照)、(2)ウェハ上に形成された多数のLEDチップ(以下、「ウェハレベルのLEDチップ」)に蛍光体シートを一括して貼り付けてから、ウェハのダイシングと蛍光体シートの切断を一括して行う方法(例えば、図3参照)、があるが、これらに限定されない。以下、適宜図2および図3を参照しながら、これらの工程を説明する。 As will be described later, a typical method for manufacturing an LED package using a phosphor sheet according to an embodiment of the present invention is as follows. (1) After the phosphor sheet is cut into individual pieces, it is attached to individual LED chips. A method of attaching (for example, see FIG. 2), (2) a phosphor sheet is affixed to a large number of LED chips (hereinafter referred to as “wafer level LED chips”) formed on a wafer, and then wafer dicing is performed. And a method of collectively cutting the phosphor sheet (for example, see FIG. 3), but is not limited thereto. Hereinafter, these steps will be described with reference to FIGS. 2 and 3 as appropriate.
 (蛍光体シートをLEDチップに貼り付ける工程)
 本発明の実施の形態に係る蛍光体シートは、所望の温度で加熱しながら加圧することで、LEDチップに貼り付けられる。これは、加熱圧着による貼り付けである。
(Process of attaching the phosphor sheet to the LED chip)
The phosphor sheet according to the embodiment of the present invention is affixed to the LED chip by applying pressure while heating at a desired temperature. This is pasting by thermocompression bonding.
 加熱温度は、60℃以上250℃以下が好ましく、60℃以上160℃以下がより好ましい。加熱温度を60℃以上にすることで、室温での蛍光体シートの貯蔵弾性率G’と、貼り付け温度での蛍光体シートの弾性率G’との差を大きくするための樹脂設計が容易となる。また、加熱温度を250℃以下にすることで、蛍光体シートの熱膨張または熱収縮を小さくすることができるので、貼り付けの位置精度を高めることができる。 The heating temperature is preferably 60 ° C. or higher and 250 ° C. or lower, and more preferably 60 ° C. or higher and 160 ° C. or lower. Resin design for increasing the difference between the storage elastic modulus G ′ of the phosphor sheet at room temperature and the elastic modulus G ′ of the phosphor sheet at the bonding temperature is facilitated by setting the heating temperature to 60 ° C. or higher. It becomes. Moreover, since the thermal expansion or thermal contraction of the phosphor sheet can be reduced by setting the heating temperature to 250 ° C. or less, the positional accuracy of the pasting can be increased.
 特に、蛍光体シートに予め孔開け加工を施して、LEDチップ上の所定部分と位置合わせを行う場合などには、貼り付けの位置精度は重要である。貼り付けの位置精度を高める観点から、加熱温度は、160℃以下であることがより好ましい。 In particular, when the phosphor sheet is previously perforated and aligned with a predetermined portion on the LED chip, the positional accuracy of the pasting is important. The heating temperature is more preferably 160 ° C. or less from the viewpoint of improving the positional accuracy of the pasting.
 蛍光体シートを加熱圧着するための装置としては、所望の温度で圧着できる装置であれば既存の任意の装置が利用できる。図2(c)~(d)に示すように、個片化された蛍光体シートを加熱圧着する場合には、例えば、マウンターやフリップチップボンダーなどの加熱圧着ツールが利用できる。 As an apparatus for thermocompression bonding the phosphor sheet, any existing apparatus can be used as long as it can be bonded at a desired temperature. As shown in FIGS. 2 (c) to 2 (d), when the singulated phosphor sheet is subjected to thermocompression bonding, for example, a thermocompression bonding tool such as a mounter or a flip chip bonder can be used.
 また、図3(a)~(b)に示すように、ウェハレベルのLEDチップに一括して蛍光体シートを貼り付ける場合には、真空ラミネーターや、100~200mm角程度の加熱部分を有する加熱圧着ツールが利用できる。 Further, as shown in FIGS. 3A to 3B, when a phosphor sheet is attached to a wafer level LED chip at a time, a vacuum laminator or a heating unit having a heating portion of about 100 to 200 mm square is used. Crimping tools are available.
 いずれの場合も、所望の温度で基材付き蛍光体シートをLEDチップに圧着して、蛍光体シートを熱融着させてから、室温まで放冷し、蛍光体シートから基材を剥離する。本発明の実施の形態に係る蛍光体シートは、25℃および100℃における貯蔵弾性率G’が前述のような関係にあるので、熱融着後に室温まで放冷却した後の蛍光体シートは、LEDチップに強固に密着しつつ、基材から容易に剥離することが可能となる。 In either case, the phosphor sheet with the substrate is pressure-bonded to the LED chip at a desired temperature, the phosphor sheet is thermally fused, and then allowed to cool to room temperature, and the substrate is peeled off from the phosphor sheet. Since the phosphor sheet according to the embodiment of the present invention has the storage elastic modulus G ′ at 25 ° C. and 100 ° C. as described above, the phosphor sheet after being allowed to cool to room temperature after heat fusion is It can be easily peeled off from the substrate while firmly adhering to the LED chip.
 (蛍光体シートを切断する工程)
 蛍光体シートを切断する方法には、LEDチップへの貼り付け前に予め個片に切断する方法と、ウェハレベルのLEDチップに蛍光体シートを貼り付けてからウェハのダイシングと同時に蛍光体シートを切断する方法がある。
(Process of cutting the phosphor sheet)
There are two methods for cutting the phosphor sheet: a method in which the phosphor sheet is cut in advance before being attached to the LED chip, and a method in which the phosphor sheet is attached to the wafer level LED chip and then the wafer is diced. There is a way to cut.
 図2に示すように、LEDチップへの貼り付け前に蛍光体シートを切断する場合には、均一に形成された蛍光体シートを、レーザーによる加工、あるいは刃物による切削によって所定の形状に加工し、分割する。レーザーによる加工は、蛍光体シートに高エネルギーが付与されるので、加工条件によっては、蛍光体シート中の樹脂の焼け焦げや蛍光体の劣化を引き起こす可能性がある。したがって、蛍光体シートの切断の方法としては、刃物による切削が望ましい。 As shown in FIG. 2, when the phosphor sheet is cut before being attached to the LED chip, the uniformly formed phosphor sheet is processed into a predetermined shape by processing with a laser or cutting with a blade. ,To divide. Since processing with a laser gives high energy to the phosphor sheet, depending on the processing conditions, there is a possibility that the resin in the phosphor sheet is burnt or the phosphor is deteriorated. Therefore, as a method for cutting the phosphor sheet, cutting with a blade is desirable.
 刃物での切削方法としては、例えば、単純な刃物を押し込んで切る方法と、回転刃によって切る方法があり、いずれも好適に使用できる。回転刃によって切断する装置としては、ダイサーと呼ばれる、半導体基板を個別のチップに切断(ダイシング)するのに用いる装置が好適に利用できる。ダイサーを用いれば、回転刃の厚みや条件設定により、蛍光体シートの分割ラインの幅を精密に制御できるため、単純な刃物の押し込みにより蛍光体シートを切断する場合よりも高い加工精度が得られる。 As a cutting method with a blade, there are, for example, a method of pushing a simple blade and cutting it, and a method of cutting with a rotary blade, both of which can be suitably used. As a device for cutting with a rotary blade, a device called a dicer used for cutting (dicing) a semiconductor substrate into individual chips can be suitably used. If the dicer is used, the width of the dividing line of the phosphor sheet can be precisely controlled by the thickness of the rotary blade and the condition setting, so that higher processing accuracy can be obtained than when the phosphor sheet is cut by pushing a simple blade. .
 基材と積層された状態の蛍光体シートを切断する場合には、基材ごと個片化しても良いし、蛍光体シートは個片化しつつ、基材は切断しなくても構わない。あるいは、蛍光体シートは個片化しつつ、基材は貫通しない切り込みラインが入る状態(所謂ハーフカットの状態)でも良い。 When the phosphor sheet in a state of being laminated with the base material is cut, the whole base material may be cut into pieces, or the fluorescent sheet may be cut into pieces and the base material may not be cut. Or the state (what is called a half cut state) in which the cut line which does not penetrate through a base material enters while a fluorescent substance sheet is separated may be sufficient.
 蛍光体シートを基材ごと個片化した場合は、各個片の蛍光体シートを上述の方法でLEDチップに貼り付けることができる。その際、蛍光体シートからの基材の剥離は、LEDチップへの貼り付け前に行ってもよいし、LEDチップへの貼り付け後に行ってもよい。また、基材を蛍光体シートから剥離せずそのまま残してもよい。 When the phosphor sheet is divided into individual pieces together with the base material, each piece of the phosphor sheet can be attached to the LED chip by the above-described method. In that case, peeling of the base material from the phosphor sheet may be performed before being attached to the LED chip or after being attached to the LED chip. Moreover, you may leave a base material as it is, without peeling from a fluorescent substance sheet.
 蛍光体シートは個片化しつつ、基材は切断されないか、または所謂ハーフカットの状態である場合は、各個片の蛍光体シートを基材から剥離してから、上述の方法で個別のLEDチップに貼り付けることができる。 When the phosphor sheet is divided into individual pieces and the substrate is not cut or is in a so-called half-cut state, the individual phosphor chips are separated by the above-mentioned method after the individual phosphor sheets are peeled off from the substrate. Can be pasted on.
 図3に示すように、ウェハレベルのLEDチップに蛍光体シートを貼り付けてから、ウェハのダイシングと同時に蛍光体シートを切断する場合には、レーザーによる加工、あるいは刃物による切削によって所定の形状に加工し、個片化された、蛍光体シート付きのLEDチップに分割することができる。これらの切削方法のうち、刃物による切削が好ましい。 As shown in FIG. 3, when a phosphor sheet is bonded to a wafer level LED chip and then the phosphor sheet is cut simultaneously with wafer dicing, it is processed into a predetermined shape by laser processing or cutting with a blade. It can be divided into LED chips with phosphor sheets that have been processed and singulated. Of these cutting methods, cutting with a blade is preferable.
 (蛍光体シートを用いたLEDパッケージの製造方法の具体例)
 図2は、蛍光体シートを基材ごと個片化して、LEDチップに貼り付ける場合の、一連の工程の一例である。図2の工程には、蛍光体シートを個片に切断する工程、および該個片に切断された蛍光体シートをLEDチップに貼り付ける工程が含まれる。
(Specific example of LED package manufacturing method using phosphor sheet)
FIG. 2 is an example of a series of steps in the case where the phosphor sheet is separated into pieces together with the base material and attached to the LED chip. 2 includes a step of cutting the phosphor sheet into individual pieces and a step of attaching the phosphor sheet cut into the individual pieces to the LED chip.
 図2(a)は、基材9と積層された状態の蛍光体シート2を仮固定シート11に固定したところである。図2に示した工程では、蛍光体シート2と基材9はいずれも個片化するので、取り扱いが容易なように仮固定シート11に固定しておく。次に、図2(b)に示すように、蛍光体シート2と基材9を切断して個片化する。 FIG. 2A shows a state where the phosphor sheet 2 laminated with the base material 9 is fixed to the temporarily fixing sheet 11. In the process shown in FIG. 2, since both the phosphor sheet 2 and the base material 9 are separated, they are fixed to the temporarily fixing sheet 11 so as to be easy to handle. Next, as shown in FIG.2 (b), the fluorescent substance sheet 2 and the base material 9 are cut | disconnected and separated into pieces.
 続いて、図2(c)に示すように、実装基板5に実装されたLEDチップ1の上に、個片化された蛍光体シート2と基材9を位置合わせする。そして、図2(d)に示すように、加熱圧着ツール12を用いて、所望の温度で蛍光体シート2をLEDチップ1に圧着する。このとき、蛍光体シート2とLEDチップ1の間に空気を噛み込まないように、圧着工程は真空下あるいは減圧下で行うことが好ましい。圧着後に室温まで放冷する。 Subsequently, as shown in FIG. 2C, the separated phosphor sheet 2 and the base material 9 are aligned on the LED chip 1 mounted on the mounting substrate 5. Then, as shown in FIG. 2 (d), the phosphor sheet 2 is crimped to the LED chip 1 at a desired temperature using a thermocompression bonding tool 12. At this time, it is preferable to perform the pressure bonding step under vacuum or reduced pressure so that air is not caught between the phosphor sheet 2 and the LED chip 1. Allow to cool to room temperature after crimping.
 次に、図2(e)に示すように、蛍光体シート2から基材9を剥離する。ここで、基材9がガラス等の場合、図2(f)に示すように、基材9を剥離せずにそのまま残しても良い。 Next, as shown in FIG. 2 (e), the base material 9 is peeled from the phosphor sheet 2. Here, when the base material 9 is glass or the like, as shown in FIG. 2 (f), the base material 9 may be left as it is without being peeled off.
 図3は、ウェハレベルのLEDチップに蛍光体シートを一括して貼り付けてから、ウェハのダイシングと蛍光体シートの切断を一括して行う場合の、一連の工程の一例である。図3の工程には、ウェハ上に形成された複数のLEDチップに、蛍光体シートを一括して貼り付ける工程、およびウェハのダイシングと、蛍光体シートが貼り付けられたLEDチップの個片化とを一括して行う工程が含まれる。 FIG. 3 shows an example of a series of steps in the case where the phosphor sheet is bonded together on the wafer level LED chip and then the wafer dicing and the phosphor sheet are collectively cut. In the process of FIG. 3, a process of attaching a phosphor sheet to a plurality of LED chips formed on a wafer in a lump, and wafer dicing and separation of LED chips to which the phosphor sheet is attached And a step of collectively performing the above.
 図3(a)に示すように、基材9と積層された状態の蛍光体シート2には、予め切断加工は施されない。その蛍光体シート2の側を、複数のLEDチップ(図示せず)を表面に形成したウェハ13に対向させて、位置合わせする。 As shown in FIG. 3A, the phosphor sheet 2 laminated with the base material 9 is not cut in advance. The phosphor sheet 2 side is aligned with the wafer 13 having a plurality of LED chips (not shown) formed on the surface thereof.
 次に、図3(b)に示すように、加熱圧着ツール12により、所望の温度で蛍光体シート2を複数のLEDチップに一括して加熱圧着する。このとき、蛍光体シート2とLEDチップとの間に空気を噛み込まないように、加熱圧着工程は真空下あるいは減圧下で行うことが好ましい。加熱圧着後に室温まで放冷する。 Next, as shown in FIG. 3 (b), the phosphor sheet 2 is thermocompression bonded to the plurality of LED chips at a desired temperature by the thermocompression bonding tool 12. At this time, it is preferable to perform the thermocompression bonding step under vacuum or reduced pressure so that air is not caught between the phosphor sheet 2 and the LED chip. Allow to cool to room temperature after thermocompression bonding.
 次に、図3(c)に示すように、蛍光体シート2から基材9を剥離した後、ウェハ13をダイシングすると同時に、蛍光体シート2を切断して個片化する。そして、図3(d)に示すように、個片化された、蛍光体シート付きのLEDチップ25を得る。 Next, as shown in FIG. 3C, after the base material 9 is peeled from the phosphor sheet 2, the wafer 13 is diced and simultaneously the phosphor sheet 2 is cut into individual pieces. And as shown in FIG.3 (d), the LED chip 25 with the fluorescent substance sheet separated into pieces is obtained.
 また、図3(c)~(d)の工程に代えて、図3(e)に示すように、蛍光体シート2から基材9を剥離せず、図3(f)に示すように、基材9も蛍光体シートと一緒に切断して個片化してもよい。こうして、個片化された、基材および蛍光体シート付きのLEDチップ26を得る。この場合、基材9がガラス等の場合は、蛍光体シート2から剥離せずそのまま用いても良い。基材9がプラスチックフィルムの場合は、LEDチップ26を基板に実装した後、基材9を蛍光体シート2から剥離しても良い。 Further, in place of the steps of FIGS. 3C to 3D, as shown in FIG. 3E, the base material 9 is not peeled off from the phosphor sheet 2, and as shown in FIG. The substrate 9 may also be cut into individual pieces together with the phosphor sheet. In this way, the LED chip 26 with the base material and the phosphor sheet obtained in pieces is obtained. In this case, when the base material 9 is glass or the like, it may be used as it is without being peeled off from the phosphor sheet 2. When the substrate 9 is a plastic film, the substrate 9 may be peeled from the phosphor sheet 2 after the LED chip 26 is mounted on the substrate.
 図2および図3のいずれの工程においても、上面に電極を備えたLEDチップに蛍光体シートを貼り付ける場合には、電極に対応する部分の蛍光体シートを除去する必要がある。そのため、蛍光体シートをLEDチップへ貼り付ける前に、蛍光体シートにおいて、その電極に対応する部分に、予め孔開け加工をしておくことが好ましい。本発明の実施の形態に係る蛍光体シートには、高精度の孔開け加工が可能である。 2 and 3, when the phosphor sheet is attached to the LED chip having the electrode on the upper surface, it is necessary to remove the phosphor sheet corresponding to the electrode. Therefore, before the phosphor sheet is attached to the LED chip, it is preferable that a hole is formed in advance in a portion corresponding to the electrode in the phosphor sheet. The phosphor sheet according to the embodiment of the present invention can be drilled with high accuracy.
 すなわち、本発明の実施の形態に係るLEDパッケージの製造方法では、蛍光体シートを、LEDチップの発光面の電極を避けた部分に貼り付けることが好ましい。 That is, in the LED package manufacturing method according to the embodiment of the present invention, it is preferable that the phosphor sheet is attached to a portion of the LED chip that is away from the light emitting surface electrode.
 孔開け加工の方法は、特に制限されないが、例えば、レーザー加工、金型パンチングなどの公知の方法が好適に使用できる。レーザー加工は、加工条件によっては、蛍光体シート中の樹脂の焼け焦げや蛍光体の劣化を引き起こす可能性がある。したがって、金型によるパンチング加工がより望ましい。パンチング加工を実施する場合、蛍光体シートをLEDチップに貼り付けた後ではパンチング加工は不可能であるので、蛍光体シートをLEDチップに貼り付ける前にパンチング加工を施すことが必須となる。 The method of drilling is not particularly limited, but known methods such as laser processing and die punching can be suitably used. Laser processing may cause scorching of the resin in the phosphor sheet or deterioration of the phosphor depending on processing conditions. Therefore, punching with a mold is more desirable. When punching is performed, punching cannot be performed after the phosphor sheet is attached to the LED chip. Therefore, it is essential to perform punching before attaching the phosphor sheet to the LED chip.
 金型によるパンチング加工では、LEDチップに備わる電極の形状や大きさなどに応じて、金型を設計することで、任意の形状や大きさの孔を開けることができる。1mm角程の大きさのLEDチップにおいて、上面の電極の大きさは、発光面の面積を小さくしないために、500μm角以下であることが好ましい。したがって、蛍光体シートに施される孔は、その大きさに合わせて500μm角以下の大きさであることが好ましい。また、LEDチップの上面の電極と、LEDチップを実装する実装基板との間でワイヤーボンディングなどを行う場合、その上面電極はある程度の大きさが必要であり、例えば、少なくとも50μm角程度の大きさとなる。したがって、蛍光体シートに施される孔は、その大きさに合わせて50μm角程度の大きさであることが好ましい。 In punching with a metal mold, holes of any shape and size can be opened by designing the metal mold according to the shape and size of the electrode provided on the LED chip. In the LED chip having a size of about 1 mm square, the size of the upper electrode is preferably 500 μm square or less so as not to reduce the area of the light emitting surface. Therefore, it is preferable that the holes provided in the phosphor sheet have a size of 500 μm square or less in accordance with the size. Further, when wire bonding or the like is performed between the electrode on the upper surface of the LED chip and the mounting substrate on which the LED chip is mounted, the upper surface electrode needs to have a certain size, for example, a size of at least about 50 μm square. Become. Therefore, it is preferable that the holes provided in the phosphor sheet have a size of about 50 μm square in accordance with the size.
 蛍光体シートに施される孔の大きさは、電極の大きさより大きすぎると、発光面が露出して光漏れが発生し、LEDパッケージの色特性が低下するおそれがある。また、電極の大きさより小さすぎると、ワイヤーボンディング時にワイヤが蛍光体シートに触れて、接合不良を起こすおそれがある。従って、蛍光体シートでの孔開け加工においては、50μm角以上500μm角以下という小さい孔を、±10%以内の高精度で加工することが好ましい。 If the size of the hole provided in the phosphor sheet is too large than the size of the electrode, the light emitting surface is exposed and light leakage occurs, which may deteriorate the color characteristics of the LED package. On the other hand, if the size of the electrode is too small, the wire may touch the phosphor sheet at the time of wire bonding, which may cause poor bonding. Therefore, in the hole making process with the phosphor sheet, it is preferable to process a small hole of 50 μm square or more and 500 μm square or less with high accuracy within ± 10%.
 切断加工や、必要に応じ孔開け加工を施した蛍光体シートを、LEDチップの所定部分に位置合わせして貼り付ける場合には、光学的な位置合わせ(アラインメント)機構を持つ、貼り付け装置が必要となる。このとき、蛍光体シートとLEDチップを近接させて位置合わせすることは作業的に難しい。そこで、実用的には蛍光体シートとLEDチップを軽く接触させた状態で位置合わせを行うことが良く行われる。 When a phosphor sheet that has been subjected to cutting or drilling as necessary is aligned and pasted to a predetermined portion of the LED chip, an affixing device having an optical alignment (alignment) mechanism is used. Necessary. At this time, it is difficult in terms of work to align the phosphor sheet and the LED chip in proximity. Therefore, in practice, alignment is often performed in a state where the phosphor sheet and the LED chip are lightly contacted.
 このとき、蛍光体シートが粘着性を持っていると、蛍光体シートをLEDチップに接触させてから動かすことは非常に困難である。これに対し、本発明の実施の形態に係る蛍光体シートであれば、室温では粘着性がないので、蛍光体シートとLEDチップを軽く接触した状態で、位置合わせを行うことが容易である。 At this time, if the phosphor sheet is sticky, it is very difficult to move the phosphor sheet after contacting the LED chip. On the other hand, since the phosphor sheet according to the embodiment of the present invention is not sticky at room temperature, it is easy to perform alignment while the phosphor sheet and the LED chip are lightly in contact with each other.
 本発明の実施の形態に係る蛍光体シートは、LEDチップに貼り付けた後、必要に応じて、オーブン等により更に加熱処理を行うことが可能である。加熱処理を行うことで、蛍光体シートとLEDチップとの接着をより強固にすることができる。 The phosphor sheet according to the embodiment of the present invention can be further heat-treated by an oven or the like as needed after being attached to the LED chip. By performing the heat treatment, the adhesion between the phosphor sheet and the LED chip can be further strengthened.
 また、蛍光体シートを貼り付けたLEDチップは、実装基板に一括して接合させる場合に加熱圧着での接合を行うことや、実装基板に半田リフローでハンダ付けを行うことも可能である。 In addition, the LED chip to which the phosphor sheet is attached can be bonded by thermocompression when bonded to the mounting substrate at once, or can be soldered to the mounting substrate by solder reflow.
 本発明の実施の形態に係る蛍光体シートを用いたLEDパッケージの製造方法の別の実施形態として、LEDパッケージの量産的な製造方法を説明する。まず、蛍光体シート付きLEDチップの製造方法を説明する。LEDチップへの蛍光体シートの貼り付け方法としては、例えば、図4に示すように、個々のLEDチップ1毎に、個片化した蛍光体シート積層体14を一つずつ貼り付ける方法が挙げられる。また、図5に示すように、複数のLEDチップ1に一括で蛍光体シート2を貼り付け、これらを被覆した後、パッケージ基板15をカットしてLEDチップ1を個別化する方法が挙げられる。 As another embodiment of the LED package manufacturing method using the phosphor sheet according to the embodiment of the present invention, a mass production method of the LED package will be described. First, a method for manufacturing an LED chip with a phosphor sheet will be described. As a method of attaching the phosphor sheet to the LED chip, for example, as shown in FIG. 4, a method of attaching the individual phosphor sheet laminates 14 for each LED chip 1 one by one is given. It is done. In addition, as shown in FIG. 5, there is a method in which the phosphor sheet 2 is affixed to a plurality of LED chips 1 in a lump, and after covering these, the package substrate 15 is cut and the LED chips 1 are individualized.
 次に、本発明の実施の形態に係る蛍光体シートを用いたLEDパッケージの製造方法のさらに別の実施形態として、2つの方法を例示する。 Next, two methods will be exemplified as still another embodiment of the method for manufacturing an LED package using the phosphor sheet according to the embodiment of the present invention.
 一つめの製造例を図6に示す。これは、蛍光体シートに備えられた基材が流動性を有する場合の好ましい例である。 The first manufacturing example is shown in FIG. This is a preferable example when the base material provided in the phosphor sheet has fluidity.
 図6(a)に示すように、台座18上に両面粘着テープ17を介してLEDチップ1を仮固定する。図6(b)に示すように、蛍光体シート積層体14を、蛍光体シート2がLEDチップ1に接するようにして積層する。 As shown in FIG. 6A, the LED chip 1 is temporarily fixed on a pedestal 18 via a double-sided adhesive tape 17. As shown in FIG. 6B, the phosphor sheet laminate 14 is laminated so that the phosphor sheet 2 is in contact with the LED chip 1.
 図6(c)に示すように、図6(b)の積層物を真空ダイアフラムラミネーター22の下部チャンバー20に入れた後、加熱しながら上部チャンバー19および下部チャンバー20を減圧する。基材9が流動するまで減圧加熱を行った後、上部チャンバー19に、吸気口23を通じて大気を吸入することで、ダイアフラム21を膨張させる。そして、基材9を通じて蛍光体シート2を押圧し、LEDチップ1の発光面に追従するように貼り付ける。 As shown in FIG. 6 (c), after the laminate of FIG. 6 (b) is put into the lower chamber 20 of the vacuum diaphragm mura terminator 22, the upper chamber 19 and the lower chamber 20 are depressurized while being heated. After heating under reduced pressure until the base material 9 flows, the diaphragm 21 is expanded by sucking air into the upper chamber 19 through the air inlet 23. And the fluorescent substance sheet 2 is pressed through the base material 9, and it affixes so that the light emission surface of the LED chip 1 may be followed.
 図6(d)に示すように、上下チャンバーを大気圧に戻したのち、積層物を真空ダイアフラムラミネーター22から取り出し、放冷後に基材9を蛍光体シート2から剥離する。続いて、LEDチップの間の切断箇所24をダイシングカッターなどで切断し、個片化した蛍光体シート付きLEDチップ25を作製する。 As shown in FIG. 6 (d), after returning the upper and lower chambers to atmospheric pressure, the laminate is taken out from the vacuum diaphragm laminator 22, and after allowing to cool, the substrate 9 is peeled from the phosphor sheet 2. Subsequently, the cut portions 24 between the LED chips are cut with a dicing cutter or the like, and the LED chips 25 with the phosphor sheet that have been separated into pieces are produced.
 図6(e)に示すように、蛍光体シート付きLEDチップ25を、実装基板15上のパッケージ電極16に、金バンプ7を介して接合する。以上の工程により、図6(f)に示すような、LEDパッケージ10が製造される。 As shown in FIG. 6 (e), the LED chip 25 with the phosphor sheet is bonded to the package electrode 16 on the mounting substrate 15 via the gold bumps 7. Through the above steps, the LED package 10 as shown in FIG. 6F is manufactured.
 二つ目の製造例を図7に示す。これは、蛍光体シートに備えられた基材が流動性を有する場合の、別の好ましい例である。 The second production example is shown in FIG. This is another preferable example in the case where the substrate provided in the phosphor sheet has fluidity.
 図7(a)に示すように、LEDチップ1を、実装基板15上のパッケージ電極16に、金バンプ7を介して接合する。 As shown in FIG. 7A, the LED chip 1 is bonded to the package electrode 16 on the mounting substrate 15 via the gold bumps 7.
 図7(b)に示すように、蛍光体シート積層体14を、蛍光体シート2がLEDチップ1に接するようにして積層する。 As shown in FIG. 7B, the phosphor sheet laminate 14 is laminated so that the phosphor sheet 2 is in contact with the LED chip 1.
 図7(c)に示すように、図7(b)の積層物を真空ダイアフラムラミネーター22の下部チャンバー20に入れた後、図6の製造例と同様の方法により、蛍光体シート2をLEDチップ1の発光面に貼り付ける。 As shown in FIG.7 (c), after putting the laminated body of FIG.7 (b) in the lower chamber 20 of the vacuum diaphragm laminator 22, by the method similar to the manufacture example of FIG. Affix to 1 light emitting surface.
 図7(d)に示すように、上下チャンバーを大気圧に戻したのち、積層物を真空ダイアフラムラミネーター22から取り出し、放冷後に基材9を蛍光体シート2から剥離する。続いて、LEDパッケージの間の切断箇所24を切断し個片化する。以上の工程により、図7(e)に示すような、LEDパッケージ10が製造される。 As shown in FIG. 7 (d), after returning the upper and lower chambers to atmospheric pressure, the laminate is taken out from the vacuum diaphragm laminator 22 and allowed to cool, and then the substrate 9 is peeled from the phosphor sheet 2. Subsequently, the cut portions 24 between the LED packages are cut and separated. Through the above steps, the LED package 10 as shown in FIG. 7E is manufactured.
 <発光装置、バックライトユニット、ディスプレイ>
 本発明の実施の形態に係る発光装置は、上述した蛍光体シートを備える。例えば、この発光装置は、上述した蛍光体シートまたはその硬化物をLEDチップの発光面に備えたLEDパッケージ、を備える。
<Light emitting device, backlight unit, display>
The light emitting device according to the embodiment of the present invention includes the phosphor sheet described above. For example, this light-emitting device includes an LED package including the above-described phosphor sheet or a cured product thereof on a light-emitting surface of an LED chip.
 本発明の実施の形態に係るバックライトユニットは、この発光装置の一応用例である。例えば、このバックライトユニットは、上述した蛍光体シートまたはその硬化物を有するLEDパッケージを備える。このように構成されるバックライトユニットは、ディスプレイ、照明、インテリア、標識、看板、などの用途に使用できるが、特にディスプレイや照明用途に好適に用いられる。 The backlight unit according to the embodiment of the present invention is an application example of this light emitting device. For example, the backlight unit includes an LED package having the above-described phosphor sheet or a cured product thereof. The backlight unit configured as described above can be used for displays, lighting, interiors, signs, signboards, and the like, but is particularly suitable for display and lighting applications.
 本発明の実施の形態に係るディスプレイ(例えば液晶ディスプレイ)は、このバックライトユニットの一適用例である。例えば、このディスプレイは、上述した蛍光体シートまたはその硬化物を有するLEDパッケージを備える。 A display (for example, a liquid crystal display) according to an embodiment of the present invention is an application example of this backlight unit. For example, this display includes an LED package having the above-described phosphor sheet or a cured product thereof.
 以下に、本発明を実施例により、具体的に説明する。ただし、本発明は、これらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these.
 <基材>    
BX9:離型処理済みポリエチレンテレフタレート(ポリエチレンテレフタレートフィルム)“セラピール”BX9(東レフィルム加工(株)製、平均膜厚50μm)
 <無機蛍光体>
 ・蛍光体1(YAG1):
  (株)ネモト・ルミマテリアル社製“YAG81003”(YAG蛍光体)
 ・蛍光体2(β1):
  デンカ(株)社製“GR-SW532D”(β型サイアロン蛍光体)
  ピーク波長:538nm 平均粒径(D50):16μm
 ・蛍光体3(KSF1):
  (株)ネモト・ルミマテリアル社製 KSF蛍光体サンプルA
  平均粒径(D50):50μm。
<Base material>
BX9: Release-treated polyethylene terephthalate (polyethylene terephthalate film) “Therapel” BX9 (manufactured by Toray Film Processing Co., Ltd., average film thickness 50 μm)
<Inorganic phosphor>
-Phosphor 1 (YAG1):
"YAG81003" (YAG phosphor) manufactured by Nemoto Lumi Materials Co., Ltd.
-Phosphor 2 (β1):
“GR-SW532D” (β type sialon phosphor) manufactured by Denka Co., Ltd.
Peak wavelength: 538 nm Average particle diameter (D50): 16 μm
-Phosphor 3 (KSF1):
KSF phosphor sample A manufactured by Nemoto Lumimaterial Co., Ltd.
Average particle diameter (D50): 50 μm.
 <有機蛍光体>
 有機蛍光体の合成例を以下に示す。H-NMRは、超伝導FTNMR EX-270(日本電子(株)製)を用い、重クロロホルム溶液にて測定を行った。HPLCは、高速液体クロマトグラフ LC-10((株)島津製作所製)を用い、0.1g/Lのクロロホルム溶液にて測定した。カラムの展開溶媒としては、0.1%リン酸水溶液とアセトニトリルとの混合溶液を用いた。吸収スペクトルおよび蛍光スペクトルは、それぞれ、U-3200形分光光度計、F-2500形蛍光分光光度計(ともに日立製作所(株)製)を用い、4×10-6mol/Lのジクロロメタン溶液中にて測定を行った。
<Organic phosphor>
Synthesis examples of organic phosphors are shown below. 1 H-NMR was measured with deuterated chloroform solution using superconducting FTNMR EX-270 (manufactured by JEOL Ltd.). HPLC was measured with a 0.1 g / L chloroform solution using a high performance liquid chromatograph LC-10 (manufactured by Shimadzu Corporation). As a developing solvent for the column, a mixed solution of 0.1% phosphoric acid aqueous solution and acetonitrile was used. The absorption spectrum and fluorescence spectrum were measured in a 4 × 10 −6 mol / L dichloromethane solution using a U-3200 type spectrophotometer and an F-2500 type spectrophotometer (both manufactured by Hitachi, Ltd.), respectively. And measured.
 (合成例1)
 以下に、合成例1の有機蛍光体(T21)の合成方法について説明する。有機蛍光体(T21)の合成方法では、4-t-ブチルベンズアルデヒド12.2g、4-メトキシアセトフェノン11.3g、3M水酸化カリウム水溶液32mlとエタノール20mlの混合溶液を窒素気流下、室温で12時間撹拌した。析出した固体をろ取し、冷エタノール50mlで2回洗浄した。真空乾燥した後、3-(4-t-ブチルフェニル)-1-(4-メトキシフェニル)プロペノン17gを得た。
(Synthesis Example 1)
Below, the synthesis | combining method of the organic fluorescent substance (T21) of the synthesis example 1 is demonstrated. In the organic phosphor (T21) synthesis method, 12.2 g of 4-t-butylbenzaldehyde, 11.3 g of 4-methoxyacetophenone, 32 ml of a 3M aqueous potassium hydroxide solution and 20 ml of ethanol were mixed for 12 hours at room temperature under a nitrogen stream. Stir. The precipitated solid was collected by filtration and washed twice with 50 ml of cold ethanol. After vacuum drying, 17 g of 3- (4-t-butylphenyl) -1- (4-methoxyphenyl) propenone was obtained.
 つぎに、3-(4-t-ブチルフェニル)-1-(4-メトキシフェニル)プロペノン17g、ジエチルアミン21.2g、ニトロメタン17.7gとメタノール580mlの混合溶液を窒素気流下、14時間、加熱還流した。得られた溶液を、室温に冷却後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、3-(4-t-ブチルフェニル)-1-(4-メトキシフェニル)-4-ニトロブタン-1-オン16gを得た。 Next, a mixed solution of 17 g of 3- (4-t-butylphenyl) -1- (4-methoxyphenyl) propenone, 21.2 g of diethylamine, 17.7 g of nitromethane and 580 ml of methanol was heated to reflux for 14 hours under a nitrogen stream. did. The resulting solution was cooled to room temperature and then evaporated. After purification by silica gel column chromatography and vacuum drying, 16 g of 3- (4-tert-butylphenyl) -1- (4-methoxyphenyl) -4-nitrobutan-1-one was obtained.
 つぎに、メタノール230mlと濃硫酸46mlの混合溶液を窒素気流下、0℃で撹拌した。あらかじめ調整した3-(4-t-ブチルフェニル)-1-(4-メトキシフェニル)-4-ニトロブタン-1-オン1.42g、メタノール40mlとテトラヒドロフラン80mlの混合溶液を窒素気流下、水酸化カリウム粉末1.12gを加え、室温で1時間撹拌したものをゆっくり滴下し、室温でさらに1時間撹拌した。ついで、0℃まで冷却後、水50mlを加え、4M水酸化ナトリウム水溶液で中和し、ジクロロメタン50mlで抽出した。有機層を水30mlで2回洗浄し、硫酸ナトリウムで乾燥後、エバポレートし、粘調体を得た。 Next, a mixed solution of 230 ml of methanol and 46 ml of concentrated sulfuric acid was stirred at 0 ° C. under a nitrogen stream. A prepared solution of 3- (4-t-butylphenyl) -1- (4-methoxyphenyl) -4-nitrobutan-1-one (1.42 g), methanol (40 ml) and tetrahydrofuran (80 ml) was added in a nitrogen stream under potassium hydroxide. 1.12 g of powder was added, and the mixture stirred at room temperature for 1 hour was slowly added dropwise, and the mixture was further stirred at room temperature for 1 hour. Then, after cooling to 0 ° C., 50 ml of water was added, neutralized with 4M aqueous sodium hydroxide solution, and extracted with 50 ml of dichloromethane. The organic layer was washed twice with 30 ml of water, dried over sodium sulfate and evaporated to obtain a viscous product.
 つぎに、得られた粘調体、酢酸アンモニウム1.54gと酢酸20mlの混合溶液を窒素気流下、100℃で1時間、加熱還流した。ついで、室温に冷却後、氷水を加え、4M水酸化ナトリウム水溶液で中和し、ジクロロメタン50mlで抽出した。有機層を水30mlで2回洗浄し、硫酸ナトリウムで乾燥後、エバポレートした。エタノール20mlで洗浄し、真空乾燥した後、4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール555mgを得た。 Next, a mixed solution of the obtained viscous material, 1.54 g of ammonium acetate and 20 ml of acetic acid was heated to reflux at 100 ° C. for 1 hour under a nitrogen stream. Then, after cooling to room temperature, ice water was added, neutralized with 4M aqueous sodium hydroxide solution, and extracted with 50 ml of dichloromethane. The organic layer was washed twice with 30 ml of water, dried over sodium sulfate and evaporated. After washing with 20 ml of ethanol and vacuum drying, 555 mg of 4- (4-t-butylphenyl) -2- (4-methoxyphenyl) pyrrole was obtained.
 つぎに、2-ベンゾイル-3,5-ビス(4-t-ブチルフェニル)ピロール357mg、4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール250mg、オキシ塩化リン138mgと1,2-ジクロロエタン10mlの混合溶液を窒素気流下、9時間、加熱還流した。ついで、室温に冷却後、ジイソプロピルエチルアミン847mg、三フッ化ホウ素ジエチルエーテル錯体931mgを加え、3時間攪拌した。水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、下記に示す有機蛍光体(T21)を合成した。  Next, 357 mg of 2-benzoyl-3,5-bis (4-t-butylphenyl) pyrrole, 250 mg of 4- (4-t-butylphenyl) -2- (4-methoxyphenyl) pyrrole, 138 mg of phosphorus oxychloride, A mixed solution of 10 ml of 1,2-dichloroethane was heated to reflux for 9 hours under a nitrogen stream. Next, after cooling to room temperature, 847 mg of diisopropylethylamine and 931 mg of boron trifluoride diethyl ether complex were added and stirred for 3 hours. 20 ml of water was injected and extracted with 30 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. After purification by silica gel column chromatography and vacuum drying, an organic phosphor (T21) shown below was synthesized.
 H-NMR(CDCl(d=ppm)):1.18(s,18H)、1.35(s,9H)、3.85(s,3H)、6.37-6.99(m,17H)、7.45(d,2H)、7.87(d,4H)。 1 H-NMR (CDCl 3 (d = ppm)): 1.18 (s, 18H), 1.35 (s, 9H), 3.85 (s, 3H), 6.37-6.99 (m , 17H), 7.45 (d, 2H), 7.87 (d, 4H).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 (合成例2)
 以下に、合成例2の有機蛍光体(T22)の合成方法について説明する。有機蛍光体(T22)の合成方法では、4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール300mg、2-メトキシベンゾイルクロリド201mgとトルエン10mlの混合溶液を窒素気流下、120℃で6時間加熱した。ついで、室温に冷却後、エバポレートした。エタノール20mlで洗浄し、真空乾燥した後、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mgを得た。
(Synthesis Example 2)
Below, the synthesis | combining method of the organic fluorescent substance (T22) of the synthesis example 2 is demonstrated. In the synthesis method of the organic phosphor (T22), a mixed solution of 300 mg of 4- (4-t-butylphenyl) -2- (4-methoxyphenyl) pyrrole, 201 mg of 2-methoxybenzoyl chloride and 10 ml of toluene was placed under a nitrogen stream. Heated at 120 ° C. for 6 hours. Subsequently, it was evaporated after cooling to room temperature. After washing with 20 ml of ethanol and vacuum drying, 260 mg of 2- (2-methoxybenzoyl) -3- (4-tert-butylphenyl) -5- (4-methoxyphenyl) pyrrole was obtained.
 つぎに、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mg、4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール180mg、メタンスルホン酸無水物206mgと脱気したトルエン10mlの混合溶液を窒素気流下、125℃で7時間加熱した。ついで、室温に冷却後、水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、エバポレートし、真空乾燥した。 Next, 260 mg of 2- (2-methoxybenzoyl) -3- (4-tert-butylphenyl) -5- (4-methoxyphenyl) pyrrole, 4- (4-tert-butylphenyl) -2- (4- A mixed solution of 180 mg of methoxyphenyl) pyrrole, 206 mg of methanesulfonic anhydride and 10 ml of degassed toluene was heated at 125 ° C. for 7 hours under a nitrogen stream. Then, after cooling to room temperature, 20 ml of water was poured and extracted with 30 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, evaporated and dried in vacuo.
 つぎに、得られたピロメテン体とトルエン10mlの混合溶液を窒素気流下、ジイソプロピルエチルアミン305mg、三フッ化ホウ素ジエチルエーテル錯体670mgを加え、室温で3時間攪拌した。ついで、水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、下記に示す有機蛍光体(T22)を合成した。 Next, 305 mg of diisopropylethylamine and 670 mg of boron trifluoride diethyl ether complex were added to the mixed solution of the obtained pyromethene and 10 ml of toluene under a nitrogen stream, and the mixture was stirred at room temperature for 3 hours. Then, 20 ml of water was injected and extracted with 30 ml of dichloromethane. The organic layer was washed twice with 20 ml of water, dried over magnesium sulfate and evaporated. The organic phosphor (T22) shown below was synthesized by purification by silica gel column chromatography.
 H-NMR(CDCl(d=ppm)):1.19(s,18H)、3.42(s,3H)、3.85(s,6H)、5.72(d,1H)、6.20(t,1H)、6.42-6.97(m,16H)、7.89(d,4H)。 1 H-NMR (CDCl 3 (d = ppm)): 1.19 (s, 18H), 3.42 (s, 3H), 3.85 (s, 6H), 5.72 (d, 1H), 6.20 (t, 1H), 6.42-6.97 (m, 16H), 7.89 (d, 4H).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 (合成例3)
 以下に、合成例3の有機蛍光体(T23)の合成方法について説明する。有機蛍光体(T23)の合成方法では、1,2-ジクロロエタン30ml中に、2-(2-メトキシベンゾイル)-3,5-ビス(4-t-ブチルフェニル)ピロール5.0g、2,4-ビス(4-t-ブチルフェニル)ピロール3.3g、オキシ塩化リン1.5gを入れ、加熱環流下、12時間反応させた。ついで、室温に冷却した後、ジイソプロピルエチルアミン5.2g、三フッ化ホウ素ジエチルエーテル錯体5.6gを加え、6時間撹拌した。50mlの水を加え、ジクロロメタンを投入後、有機層を抽出し、濃縮して、シリカゲルを用いたカラムクロマトグラフィーによる精製をした後、さらに昇華精製を行い、下記に示す有機蛍光体(T23)を合成した。
(Synthesis Example 3)
Below, the synthesis | combining method of the organic fluorescent substance (T23) of the synthesis example 3 is demonstrated. In the method of synthesizing the organic phosphor (T23), 5.0 g of 2- (2-methoxybenzoyl) -3,5-bis (4-tert-butylphenyl) pyrrole, 2,4 in 30 ml of 1,2-dichloroethane. -3.3 g of bis (4-t-butylphenyl) pyrrole and 1.5 g of phosphorus oxychloride were added and reacted for 12 hours under heating and reflux. Then, after cooling to room temperature, 5.2 g of diisopropylethylamine and 5.6 g of boron trifluoride diethyl ether complex were added and stirred for 6 hours. 50 ml of water was added, dichloromethane was added, the organic layer was extracted, concentrated, purified by column chromatography using silica gel, and further purified by sublimation to obtain the organic phosphor (T23) shown below. Synthesized.
 H-NMR(CDCl(d=ppm)):1.07(s,9H)、2.13(s,6H)、2.39(s,6H)、6.47(t,4H)、6.63(s,8H)、6.75(d,2H)、7.23(d,4H)、7.80(d,4H)。 1 H-NMR (CDCl 3 (d = ppm)): 1.07 (s, 9H), 2.13 (s, 6H), 2.39 (s, 6H), 6.47 (t, 4H), 6.63 (s, 8H), 6.75 (d, 2H), 7.23 (d, 4H), 7.80 (d, 4H).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 (合成例4)
 以下に、合成例4の有機蛍光体(T24)の合成方法について説明する。有機蛍光体(T24)の合成方法では、3,5-ジブロモベンズアルデヒド(3.0g)、4-t-ブチルフェニルボロン酸(5.3g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.4g)、炭酸カリウム(2.0g)をフラスコに入れ、窒素置換した。ここに、脱気したトルエン(30mL)および脱気した水(10mL)を加え、4時間還流した。反応溶液を室温まで冷却し、有機層を、分液した後に飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルクロマトグラフィーにより精製し、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(3.5g)を白色固体として得た。
(Synthesis Example 4)
Below, the synthesis | combining method of the organic fluorescent substance (T24) of the synthesis example 4 is demonstrated. In the synthesis method of the organic phosphor (T24), 3,5-dibromobenzaldehyde (3.0 g), 4-t-butylphenylboronic acid (5.3 g), tetrakis (triphenylphosphine) palladium (0) (0. 4 g) and potassium carbonate (2.0 g) were placed in a flask and purged with nitrogen. To this was added degassed toluene (30 mL) and degassed water (10 mL), and the mixture was refluxed for 4 hours. The reaction solution was cooled to room temperature, and the organic layer was separated and washed with saturated brine. The organic layer was dried over magnesium sulfate and filtered, and then the solvent was distilled off. The obtained reaction product was purified by silica gel chromatography to obtain 3,5-bis (4-tert-butylphenyl) benzaldehyde (3.5 g) as a white solid.
 つぎに、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(1.5g)と2,4-ジメチルピロール(0.7g)を反応溶液に入れ、脱水ジクロロメタン(200mL)およびトリフルオロ酢酸(1滴)を加えて、窒素雰囲気下、4時間撹拌した。ついで、2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(0.85g)の脱水ジクロロメタン溶液を加え、さらに1時間撹拌した。反応終了後、三弗化ホウ素ジエチルエーテル錯体(7.0mL)およびジイソプロピルエチルアミン(7.0mL)を加えて、4時間撹拌した後、さらに水(100mL)を加えて撹拌し、有機層を分液した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルクロマトグラフィーにより精製し、下記に示す有機蛍光体(T24)を合成した。 Next, 3,5-bis (4-t-butylphenyl) benzaldehyde (1.5 g) and 2,4-dimethylpyrrole (0.7 g) were added to the reaction solution, dehydrated dichloromethane (200 mL) and trifluoroacetic acid ( 1 drop) was added and stirred under a nitrogen atmosphere for 4 hours. Subsequently, a dehydrated dichloromethane solution of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.85 g) was added and further stirred for 1 hour. After completion of the reaction, boron trifluoride diethyl ether complex (7.0 mL) and diisopropylethylamine (7.0 mL) were added and stirred for 4 hours, then water (100 mL) was further added and stirred, and the organic layer was separated. did. The organic layer was dried over magnesium sulfate and filtered, and then the solvent was distilled off. The obtained reaction product was purified by silica gel chromatography to synthesize the organic phosphor (T24) shown below.
 H-NMR(CDCl(d=ppm)):7.95(s,1H)、7.63-7.48(m,10H)、6.00(s,2H)、2.58(s,6H)、1.50(s,6H)、1.37(s,18H)。 1 H-NMR (CDCl 3 (d = ppm)): 7.95 (s, 1H), 7.63-7.48 (m, 10H), 6.00 (s, 2H), 2.58 (s , 6H), 1.50 (s, 6H), 1.37 (s, 18H).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 (合成例5)
 以下に、合成例5の有機蛍光体(T25)の合成方法について説明する。有機蛍光体(T25)の合成方法では、ピロール原料として、2,4-ジメチルピロールの代わりに2,4-ジメチルピロール-3-カルボン酸エチルを用いた以外は、合成例4と同様にして、有機蛍光体(T25)を合成した。
(Synthesis Example 5)
Below, the synthesis | combining method of the organic fluorescent substance (T25) of the synthesis example 5 is demonstrated. The organic phosphor (T25) was synthesized in the same manner as in Synthesis Example 4, except that ethyl 2,4-dimethylpyrrole-3-carboxylate was used instead of 2,4-dimethylpyrrole as the pyrrole raw material. An organic phosphor (T25) was synthesized.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 (合成例6)
 以下に、合成例6の有機蛍光体(T26)の合成方法について説明する。有機蛍光体(T26)の合成方法では、ボロン酸原料として、4-t-ブチルフェニルボロン酸の代わりに4-(メトキシカルボニル)フェニルボロン酸を用いた以外は、合成例5と同様にして、有機蛍光体(T26)を合成した。
(Synthesis Example 6)
Below, the synthesis | combining method of the organic fluorescent substance (T26) of the synthesis example 6 is demonstrated. The organic phosphor (T26) was synthesized in the same manner as in Synthesis Example 5, except that 4- (methoxycarbonyl) phenylboronic acid was used in place of 4-t-butylphenylboronic acid as the boronic acid raw material. An organic phosphor (T26) was synthesized.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 <シリコーン樹脂>
 シリコーン樹脂として以下のものを使用した。
<Silicone resin>
The following were used as silicone resins.
 ・シリコーン樹脂1(Si1):
(A)成分:28.5重量部、(B)成分:5.7重量部(C)成分:66.0重量部、(D)成分:0.03重量部、反応抑制剤:0.025重量部
 (A)成分 (MeViSiO2/2)0.35(Ph2SiO2/2)0.3(PhSiO3/2)0.32(SiO4/2)0.03
 (B)成分 (Me3SiO1/2)0.3(PhViSiO2/2)0.4(PhSiO3/2)0.3
 (C)成分 ゲレスト社製“HPM-502”(フェニルメチルシロキサンコポリマー)
 (D)成分 白金錯体 (1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液)白金含有量5重量%
  反応抑制剤 1-エチニルヘキサノール
  ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基。
Silicone resin 1 (Si1):
(A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (MeViSiO 2/2 ) 0.35 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03
(B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3
Component (C) “HPM-502” (Phenylmethylsiloxane copolymer) manufactured by Gerest
Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight
Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group.
 ・シリコーン樹脂2(Si2):
(A)成分:28.5重量部、(B)成分:5.7重量部(C)成分:66.0重量部、(D)成分:0.03重量部、反応抑制剤:0.025重量部
 (A)成分 (Me3SiO1/2)0.01(MeViSiO2/2)0.34(Ph2SiO2/2)0.3(PhSiO3/2)0.32(SiO4/2)0.03
 (B)成分 (Me3SiO1/2)0.3(PhViSiO2/2)0.4(PhSiO3/2)0.3
 (C)成分 (HMe2SiO)2SiPh2
 (D)成分 白金錯体 (1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液)白金含有量5重量%
 反応抑制剤 1-エチニルヘキサノール
          ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基。
Silicone resin 2 (Si2):
(A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.34 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03
(B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3
Component (C) (HMe 2 SiO) 2 SiPh 2
Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight
Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group.
 ・シリコーン樹脂3(Si3):
(A)成分:28.5重量部、(B)成分:5.7重量部(C)成分:66.0重量部、(D)成分:0.03重量部、反応抑制剤:0.025重量部
 (A)成分 (Me3SiO1/2)0.01(MeViSiO2/2)0.3(Ph2SiO2/2)0.33(PhSiO3/2)0.33(SiO4/2)0.03
 (B)成分 (Me3SiO1/2)0.3(PhViSiO2/2)0.4(PhSiO3/2)0.3
 (C)成分 (HMe2SiO)2SiPh2
 (D)成分 白金錯体 (1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液)白金含有量5重量%
 反応抑制剤 1-エチニルヘキサノール
          ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基。
Silicone resin 3 (Si3):
(A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.3 (Ph 2 SiO 2/2 ) 0.33 (PhSiO 3/2 ) 0.33 (SiO 4/2 ) 0.03
(B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3
Component (C) (HMe 2 SiO) 2 SiPh 2
Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight
Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group.
 ・シリコーン樹脂4(Si4):
(A)成分:28.5重量部、(B)成分:5.7重量部(C)成分:66.0重量部、(D)成分:0.03重量部、反応抑制剤:0.025重量部
 (A)成分 (Me3SiO1/2)0.01(MeViSiO2/2)0.2(Ph2SiO2/2)0.38(PhSiO3/2)0.38(SiO4/2)0.03
 (B)成分 (Me3SiO1/2)0.3(PhViSiO2/2)0.4(PhSiO3/2)0.3
 (C)成分 (HMe2SiO)2SiPh2 
 (D)成分 白金錯体 (1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液)白金含有量5重量%
 反応抑制剤 1-エチニルヘキサノール
          ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基。
Silicone resin 4 (Si4):
(A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.2 (Ph 2 SiO 2/2 ) 0.38 (PhSiO 3/2 ) 0.38 (SiO 4/2 ) 0.03
(B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3
Component (C) (HMe 2 SiO) 2 SiPh 2
Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight
Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group.
 ・シリコーン樹脂5(Si5):
(A)成分:28.5重量部、(B)成分:5.7重量部(C)成分:66.0重量部、(D)成分:0.03重量部、反応抑制剤:0.025重量部
 (A)成分 (Me3SiO1/2)0.01(MeViSiO2/2)0.34(Ph2SiO2/2)0.3(PhSiO3/2)0.32(SiO4/2)0.03
 (B)成分 (Me3SiO1/2)0.3(PhViSiO2/2)0.5(PhSiO3/2)0.2
 (C)成分 (HMe2SiO)2SiPh2
 (D)成分 白金錯体 (1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液)白金含有量5重量%
 反応抑制剤 1-エチニルヘキサノール
          ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基。
Silicone resin 5 (Si5):
(A) component: 28.5 parts by weight, (B) component: 5.7 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.34 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03
(B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.5 (PhSiO 3/2 ) 0.2
Component (C) (HMe 2 SiO) 2 SiPh 2
Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight
Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group.
 ・シリコーン樹脂6(Si6):
(A)成分:31.4重量部、(B)成分:2.8重量部(C)成分:66.0重量部、(D)成分:0.03重量部、反応抑制剤:0.025重量部
 (A)成分 (Me3SiO1/2)0.01(MeViSiO2/2)0.34(Ph2SiO2/2)0.3(PhSiO3/2)0.32(SiO4/2)0.03
 (B)成分 (Me3SiO1/2)0.3(PhViSiO2/2)0.4(PhSiO3/2)0.3
 (C)成分 (HMe2SiO)2SiPh2
 (D)成分 白金錯体 (1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液)白金含有量5重量%
 反応抑制剤 1-エチニルヘキサノール
          ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基。
Silicone resin 6 (Si6):
(A) component: 31.4 parts by weight, (B) component: 2.8 parts by weight (C) component: 66.0 parts by weight, (D) component: 0.03 parts by weight, reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.34 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03
(B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3
Component (C) (HMe 2 SiO) 2 SiPh 2
Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight
Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group.
 ・シリコーン樹脂7(Si7):
(A)成分:17.4重量部、(B)成分:16.8重量部(C)成分:66.0重量部、(D)成分:0.03重量部、反応抑制剤:0.025重量部
 (A)成分 (Me3SiO1/2)0.01(MeViSiO2/2)0.34(Ph2SiO2/2)0.3(PhSiO3/2)0.32(SiO4/2)0.03
 (B)成分 (Me3SiO1/2)0.3(PhViSiO2/2)0.4(PhSiO3/2)0.3
 (C)成分 (HMe2SiO)2SiPh2
 (D)成分 白金錯体 (1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液)白金含有量5重量%
 反応抑制剤 1-エチニルヘキサノール
          ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基。
Silicone resin 7 (Si7):
(A) Component: 17.4 parts by weight, (B) Component: 16.8 parts by weight (C) Component: 66.0 parts by weight, (D) Component: 0.03 parts by weight, Reaction inhibitor: 0.025 Part by weight (A) component (Me 3 SiO 1/2 ) 0.01 (MeViSiO 2/2 ) 0.34 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.32 (SiO 4/2 ) 0.03
(B) Component (Me 3 SiO 1/2 ) 0.3 (PhViSiO 2/2 ) 0.4 (PhSiO 3/2 ) 0.3
Component (C) (HMe 2 SiO) 2 SiPh 2
Component (D) Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Platinum content 5% by weight
Reaction inhibitor 1-Ethynylhexanol * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group.
 ・シリコーン樹脂8(Si8):OE6630(東レ・ダウコーニングシリコーン)。 Silicone resin 8 (Si8): OE6630 (Toray Dow Corning Silicone)
 ・シリコーン樹脂9(Si9):
樹脂主成分16.7重量部、硬度調整剤16.7重量部、架橋剤66.7重量部、反応抑制剤0.025重量部、白金触媒0.03重量部
 シリコーン樹脂を配合するための成分
 樹脂主成分  (MeViSiO2/2)0.25(Ph2SiO2/2)0.3(PhSiO3/2)0.45(HO1/2)0.03 ((A)成分に相当する)
   硬度調整剤 ViMe2SiO(MePhSiO)17.5SiMe2Vi ((B)成分に相当する)
   架橋剤 (HMe2SiO)2SiPh2 ((C)成分に相当する)
 ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基
 反応抑制剤 1-エチニルヘキサノール
 白金触媒 白金錯体 (1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液) 白金含有量5重量% ((D)成分に相当する)。
Silicone resin 9 (Si9):
Resin main component 16.7 parts by weight, hardness adjusting agent 16.7 parts by weight, cross-linking agent 66.7 parts by weight, reaction inhibitor 0.025 parts by weight, platinum catalyst 0.03 parts by weight Ingredients for blending silicone resin Resin main component (MeViSiO 2/2 ) 0.25 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.45 (HO 1/2 ) 0.03 (corresponding to component (A))
Hardness modifier ViMe 2 SiO (MePhSiO) 17.5 SiMe 2 Vi (corresponds to component (B))
Crosslinking agent (HMe 2 SiO) 2 SiPh 2 (corresponds to component (C))
* However, Me: Methyl group, Vi: Vinyl group, Ph: Phenyl group Reaction inhibitor 1-Ethynylhexanol Platinum catalyst Platinum complex (1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution) Contains platinum Amount 5% by weight (corresponding to component (D)).
 <シリコーン微粒子>
 2Lの四つ口丸底フラスコに、攪拌機、温度計、環流管、滴下ロートを取り付けた。そのフラスコに、界面活性剤としてポリエーテル変性シロキサン“BYK333”を1ppm含む2.5%のアンモニア水2Lを入れ、300rpmで攪拌しつつ、オイルバスにて昇温した。内温が50℃に到達したところで、滴下ロートから、メチルトリメトキシシラン(MTM)とフェニルトリメトキシシラン(PhTM)の混合物(MTM/PhTM=23/77mol%)200gを、30分かけて滴下した。そのままの温度で、さらに60分間撹拌を続けた後、酢酸(試薬特級)約5gを添加した。混合物を撹拌した後、濾過を行い、濾過器上に粒子を得た。その粒子を、600mLの水で2回と、200mLのメタノールで1回、洗浄し、それぞれ濾過した。濾過器上のケークを取り出し、解砕後、10時間かけて凍結乾燥することにより、白色粉末60gを得た。得られた白色粉末は、SEMで観察したところ、単分散球状の微粒子であった。この微粒子の屈折率を液浸法により測定した結果、1.54であった。この微粒子を透過型電子顕微鏡(TEM)を用いた断面TEMで観察した結果、粒子内が単一構造の微粒子であることが確認できた。
<Silicon fine particles>
A stirrer, thermometer, reflux tube, and dropping funnel were attached to a 2 L four-necked round bottom flask. The flask was charged with 2 L of 2.5% aqueous ammonia containing 1 ppm of polyether-modified siloxane “BYK333” as a surfactant, and heated with an oil bath while stirring at 300 rpm. When the internal temperature reached 50 ° C., 200 g of a mixture of methyltrimethoxysilane (MTM) and phenyltrimethoxysilane (PhTM) (MTM / PhTM = 23/77 mol%) was dropped from the dropping funnel over 30 minutes. . Stirring was continued for 60 minutes at the same temperature, and then about 5 g of acetic acid (special grade reagent) was added. The mixture was stirred and then filtered to obtain particles on a filter. The particles were washed twice with 600 mL water and once with 200 mL methanol and filtered, respectively. The cake on the filter was taken out, crushed, and freeze-dried over 10 hours to obtain 60 g of white powder. The obtained white powder was monodisperse spherical fine particles as observed with SEM. The refractive index of the fine particles was measured by a liquid immersion method and found to be 1.54. As a result of observing the fine particles with a cross-sectional TEM using a transmission electron microscope (TEM), it was confirmed that the particles were fine particles having a single structure.
 <動的弾性率測定>
 得られた蛍光体シートについて、直径20mmの円形に切り取り、基材を剥離した後、以下の装置を使用し貯蔵弾性率を測定した。
<Dynamic elastic modulus measurement>
The obtained phosphor sheet was cut into a circle having a diameter of 20 mm and the substrate was peeled off, and then the storage modulus was measured using the following apparatus.
 測定装置   :粘度・粘弾性測定装置HAAKE MARSIII
 (Thermo Fisher SCIENTIFIC 製)
 測定条件  :OSC温度依存測定
 ジオメトリー:平行円板型(20mm)
 測定時間  :1980秒
 角周波数  :1Hz
 角速度   :6.2832rad/秒
 温度範囲  :25~200℃(低温温度制御機能あり)
 昇温速度  :0.08333℃/秒
 サンプル形状:円形(直径18mm)。
Measuring device: Viscosity and viscoelasticity measuring device HAAKE MARSIII
(Thermo Fisher SCIENTIFIC made)
Measurement conditions: OSC temperature-dependent measurement Geometry: Parallel disk type (20mm)
Measurement time: 1980 seconds Angular frequency: 1 Hz
Angular velocity: 6.2832 rad / sec Temperature range: 25 to 200 ° C (with low temperature control function)
Temperature increase rate: 0.08333 ° C./sec Sample shape: Circular (diameter 18 mm).
 <切断加工性評価>
 得られた蛍光体シートについて、カッティング装置“GCUT”(UHT社製)を用いて、1mm×0.3mm角にカットし、個片の蛍光体シート100個を作製した。光学顕微鏡で個片の蛍光体シートを観察し、周縁部に割れや欠けのあるサンプルの個数を数えた。周縁部が割れ、または欠けているサンプルの数が少ないほど、切断加工性に優れていることを示す。評価B以上であれば、実用上優れている。
S:0個          切断加工性が非常に良好
A:1個以上3個以下    切断加工性が良好
B:4個以上10個以下   切断加工性が実用上問題ない
C:11個以上30個以下  切断加工性が悪い
D:31個以上       切断加工性が非常に悪い。
<Cutting processability evaluation>
The obtained phosphor sheet was cut into 1 mm × 0.3 mm square using a cutting device “GCUT” (manufactured by UHT) to produce 100 individual phosphor sheets. The individual phosphor sheets were observed with an optical microscope, and the number of samples having cracks or chips at the peripheral edge was counted. It shows that it is excellent in cutting workability, so that there are few samples with a peripheral part cracked or missing. If it is more than evaluation B, it is excellent practically.
S: 0 pieces Cutting workability is very good A: 1 piece or more 3 pieces or less Cutting workability is good B: 4 pieces or more and 10 pieces or less No cutting workability is practically problematic C: 11 pieces or more and 30 pieces or less Poor property D: 31 or more Cutting workability is very bad.
 <LEDパッケージの製造方法>
 得られた蛍光体シートについて、カッティング装置“GCUT”(UHT社製)を用いて、1mm×0.3mm角にカットし、個片の蛍光体シート100個を作製した。フリップチップボンディング装置(東レエンジニアリング製)を用いて、個片の蛍光体シートをコレットで真空吸着して基材から剥離した。剥離した個片の蛍光体シートを、以下の貼り付け条件で、フリップチップ型LEDチップが実装されたLEDパッケージのLEDチップ表面に貼り付けた。得られたパッケージを直流電源につないで点灯させ、点灯するか否かを確認した。
<Manufacturing method of LED package>
The obtained phosphor sheet was cut into 1 mm × 0.3 mm square using a cutting device “GCUT” (manufactured by UHT) to produce 100 individual phosphor sheets. Using a flip chip bonding apparatus (manufactured by Toray Engineering Co., Ltd.), the individual phosphor sheets were vacuum-adsorbed with a collet and separated from the substrate. The separated phosphor sheet was attached to the LED chip surface of the LED package on which the flip chip type LED chip was mounted under the following application conditions. The obtained package was connected to a DC power source and turned on, and it was confirmed whether or not it was turned on.
 (貼り付け条件)
加熱条件:140℃
加圧条件:80N
加圧時間:20秒。
(Paste conditions)
Heating conditions: 140 ° C
Pressure condition: 80N
Pressurization time: 20 seconds.
 <接着性評価>
 得られたLEDパッケージを用いて、LEDチップと蛍光体シートとの界面にピンセットを入れた後、ピンセットで蛍光体シートを持ち上げて、LEDチップと蛍光体シートとの接着性を確認した。接着性の良好なサンプルは、ピンセットで持ち上げても蛍光体シートは剥離しない。接着性の悪いサンプルは、蛍光体シートがLEDチップから剥がれてしまう。光学顕微鏡での観察を行い、剥がれのあるサンプルの個数を数えた。剥がれているサンプルの数が少ないほど、接着性に優れていることを示す。評価B以上であれば、実用上優れている。
S:0個          接着性が非常に良好
A:1個以上5個以下    接着性が良好
B:6個以上10個以下   接着性が実用上問題ない
C:11個以上30個以下  接着性が悪い
D:31個以上       接着性が非常に悪い。
<Adhesion evaluation>
Using the obtained LED package, tweezers were put at the interface between the LED chip and the phosphor sheet, and then the phosphor sheet was lifted with tweezers to confirm the adhesion between the LED chip and the phosphor sheet. The sample with good adhesion does not peel off the phosphor sheet even when lifted with tweezers. In a sample with poor adhesion, the phosphor sheet is peeled off from the LED chip. Observation with an optical microscope was performed, and the number of samples with peeling was counted. The smaller the number of samples peeled, the better the adhesion. If it is more than evaluation B, it is excellent practically.
S: 0 pieces Adhesiveness is very good A: 1 piece or more and 5 pieces or less Adhesiveness is good B: 6 pieces or more and 10 pieces or less Adhesiveness is not practically problematic C: 11 pieces or more and 30 pieces or less : 31 or more Adhesiveness is very poor.
 <全光束測定>
 作製したLEDパッケージに1Wの電力を投入してLEDチップを点灯させ、全光束測定システム(HM-3000、大塚電子社製)を用いて、全光束(lm)を測定した。比較例1における全光束を100としたときの相対的な輝度を算出した。
<Total luminous flux measurement>
1 W of electric power was applied to the manufactured LED package to turn on the LED chip, and the total luminous flux (lm) was measured using a total luminous flux measurement system (HM-3000, manufactured by Otsuka Electronics Co., Ltd.). The relative luminance was calculated when the total luminous flux in Comparative Example 1 was 100.
 (実施例1)(シリコーン組成物の効果)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂1(Si1)を18.0g、無機蛍光体として蛍光体1(YAG1)を42.0g、ブチルカルビトールを2.5g添加して、混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物1を作製した。
(Example 1) (Effect of silicone composition)
Using a polyethylene container having a volume of 100 ml, 18.0 g of silicone resin 1 (Si1), 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor, and 2.5 g of butyl carbitol were added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 1.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物1を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表1に示す。切断加工性が良好で、接着性も向上する結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 1 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 1. The cutting processability was good, the result that the adhesiveness was improved was obtained, and the relative luminance was also improved.
 (実施例2)(シリコーン樹脂の変更)
 シリコーン樹脂をSi2に変更したこと以外は、実施例1と同様の操作で蛍光体シートを作製し、その後、LEDパッケージを作製して、各測定および評価を行った。結果を表1に示す。表1に示されるように、実施例2の評価結果から、本発明の実施の形態に係る蛍光体シートであれば、切断加工性と接着性が良好であることがわかった。また、相対輝度も向上することがわかった。
(Example 2) (Change of silicone resin)
Except that the silicone resin was changed to Si2, a phosphor sheet was prepared in the same manner as in Example 1, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 1. As shown in Table 1, from the evaluation results of Example 2, it was found that the cutting property and the adhesiveness were good if the phosphor sheet according to the embodiment of the present invention. It was also found that the relative luminance was improved.
 (比較例1)
 シリコーン樹脂をSi8に変更した以外は、実施例1と同様の操作で蛍光体シートを作製し、その後、LEDパッケージを作製して、各測定および評価を行った。結果を表1に示す。表1に示されるように、比較例1では切断加工性は実用上問題ないが接着性は改善されなかった。
(Comparative Example 1)
A phosphor sheet was prepared in the same manner as in Example 1 except that the silicone resin was changed to Si8, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 1. As shown in Table 1, in Comparative Example 1, the cutting workability was not a problem in practice, but the adhesion was not improved.
 (実施例3)(シリコーン樹脂の変更、シリコーン微粒子添加)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を17.0g、無機蛍光体として蛍光体1(YAG1)を42.0g、シリコーン微粒子を0.6g、ブチルカルビトールを2.5g添加して、混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物3を作製した。
(Example 3) (Change of silicone resin, addition of silicone fine particles)
Using a 100 ml polyethylene container, 17.0 g of silicone resin 2 (Si2), 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring and defoaming device, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 3.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物3を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表1に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 3 is applied on the release treatment surface of “Therapy” BX9, which is the base material, heated at 120 ° C. for 40 minutes, dried, and 80 μm thick, 100 mm square fluorescent light A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 1. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例4~8)(シリコーン組成物の変更)
 表1に示すように、シリコーン樹脂をSi3~Si7にそれぞれ変更したこと以外は、実施例3と同様の操作で蛍光体シートを作製し、その後、LEDパッケージを作製して、各測定および評価を行った。結果を表1に示す。表1に示されるように、実施例4~8の評価結果から、本発明の実施の形態に係る蛍光体シートであれば、切断加工性が良好で、接着性も向上することがわかった。また、相対輝度も向上することがわかった。
(Examples 4 to 8) (Modification of silicone composition)
As shown in Table 1, a phosphor sheet was prepared in the same manner as in Example 3 except that the silicone resin was changed to Si3 to Si7. Thereafter, an LED package was prepared, and each measurement and evaluation was performed. went. The results are shown in Table 1. As shown in Table 1, from the evaluation results of Examples 4 to 8, it was found that the phosphor sheet according to the embodiment of the present invention has good cutting processability and improved adhesion. It was also found that the relative luminance was improved.
 (比較例2)
 表1に示すように、シリコーン樹脂をSi9に変更したこと以外は、実施例3と同様の操作で蛍光体シートを作製し、その後、LEDパッケージを作製して、各測定および評価を行った。結果を表1に示す。比較例2では、切断加工性は実用上問題ないが、接着性は改善されなかった。また、輝度も向上しなかった。
(Comparative Example 2)
As shown in Table 1, a phosphor sheet was prepared in the same manner as in Example 3 except that the silicone resin was changed to Si9. Thereafter, an LED package was prepared, and each measurement and evaluation was performed. The results are shown in Table 1. In Comparative Example 2, the cutting processability was not a problem in practice, but the adhesiveness was not improved. Also, the luminance was not improved.
 (実施例9)(樹脂含有量を10.0重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を5.96g、無機蛍光体として蛍光体1(YAG1)を53.6g、シリコーン微粒子を0.6g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物11を作製した。
(Example 9) (Resin content changed to 10.0% by weight)
Using a 100 ml polyethylene container, 5.96 g of silicone resin 2 (Si2), 53.6 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming device, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 11.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物11を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表2に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 11 is applied on the release surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例10)(樹脂含有量を70.0重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を42.4g、無機蛍光体として蛍光体1(YAG1)を17.5g、シリコーン微粒子を0.6g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物12を作製した。
(Example 10) (Resin content is changed to 70.0% by weight)
Using a polyethylene container with a volume of 100 ml, 42.4 g of silicone resin 2 (Si2), 17.5 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming device, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 12.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物12を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表2に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 12 is applied on the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例11)(樹脂含有量を85.0重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を52.5g、無機蛍光体として蛍光体1(YAG1)を8.6g、シリコーン微粒子を0.6g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物13を作製した。
(Example 11) (Resin content changed to 85.0 wt%)
Using a 100 ml polyethylene container, 52.5 g of silicone resin 2 (Si2), 8.6 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 13.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物13を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表2に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 13 is applied onto the release treatment surface of “therapeutic” BX9, which is a base material, heated at 120 ° C. for 40 minutes, dried, and fluorescent having a thickness of 80 μm and a 100 mm square. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例12)(シリコーン微粒子含有量を0.5重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を17.0g、無機蛍光体として蛍光体1(YAG1)を42.0g、シリコーン微粒子を0.3g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物14を作製した。
(Example 12) (Change in content of silicone fine particles to 0.5% by weight)
Using a 100 ml polyethylene container, 17.0 g of silicone resin 2 (Si2), 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.3 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare a phosphor composition 14.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物14を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表2に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 14 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, and heated and dried at 120 ° C. for 40 minutes, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例13)(シリコーン微粒子含有量を10.0重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を11.0g、無機蛍光体として蛍光体1(YAG1)を42.0g、シリコーン微粒子を6g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物15を作製した。
(Example 13) (The silicone fine particle content is changed to 10.0% by weight)
Using a 100 ml polyethylene container, 11.0 g of silicone resin 2 (Si2), 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor, 6 g of silicone fine particles, and 2.5 g of butyl carbitol were added. And mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 15.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物15を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表2に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 15 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes, dried, and fluorescent having a thickness of 80 μm and a 100 mm square. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例14)(シリコーン微粒子含有量を20.0重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を6g、無機蛍光体として蛍光体1(YAG1)を42.0g、シリコーン微粒子を12g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物16を作製した。
(Example 14) (The silicone fine particle content is changed to 20.0% by weight)
Using a polyethylene container with a volume of 100 ml, add 6 g of silicone resin 2 (Si2), 42.0 g of phosphor 1 (YAG1) as an inorganic phosphor, 12 g of silicone fine particles, and 2.5 g of butyl carbitol and mix. did. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 16.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物16を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表2に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 16 is applied on the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 2. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例15)(蛍光体含有量を38.0重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を36.4g、無機蛍光体として蛍光体1(YAG1)を22.7g、シリコーン微粒子を0.6g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物17を作製した。
(Example 15) (phosphor content changed to 38.0 wt%)
Using a 100 ml polyethylene container, 36.4 g of silicone resin 2 (Si2), 22.7 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 17.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物17を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表3に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 17 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, heated and dried at 120 ° C. for 40 minutes, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 3. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例16)(蛍光体含有量を40.0重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を35.2g、無機蛍光体として蛍光体1(YAG1)を23.8g、シリコーン微粒子を0.6g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物18を作製した。
(Example 16) (The phosphor content is changed to 40.0% by weight)
Using a 100 ml polyethylene container, 35.2 g of silicone resin 2 (Si2), 23.8 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare a phosphor composition 18.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物18を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表3に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 18 is applied on the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 3. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例17)(蛍光体含有量を63.0重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を21.5g、無機蛍光体として蛍光体1(YAG1)を37.6g、シリコーン微粒子を0.6g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物19を作製した。
(Example 17) (phosphor content changed to 63.0 wt%)
Using a 100 ml polyethylene container, 21.5 g of silicone resin 2 (Si2), 37.6 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming were performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 19.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物19を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表3に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 19 is applied onto the release treatment surface of “Therapy” BX9, which is a base material, and heated and dried at 120 ° C. for 40 minutes, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 3. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (実施例18)(蛍光体含有量を80.0重量%に変更)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を11.3g、無機蛍光体として蛍光体1(YAG1)を47.7g、シリコーン微粒子を0.6g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物20を作製した。
(Example 18) (The phosphor content is changed to 80.0 wt%)
Using a 100 ml polyethylene container, 11.3 g of silicone resin 2 (Si2), 47.7 g of phosphor 1 (YAG1) as an inorganic phosphor, 0.6 g of silicone fine particles, and 2.5 g of butyl carbitol Added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming were performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare phosphor composition 20.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物20を塗布し、120℃で40分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表3に示す。切断加工性、接着性ともに良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 20 is applied on the release treatment surface of “Therapy” BX9, which is a base material, heated at 120 ° C. for 40 minutes and dried, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 3. Good results were obtained for both cutting processability and adhesion, and the relative luminance was also improved.
 (比較例3)
 シリコーン樹脂をSi9に変更した以外は、実施例15と同様の操作で蛍光体シートを作製し、その後、LEDパッケージを作製して、各測定および評価を行った。結果を表3に示す。表3に示されるように、切断加工性は実用上問題ないが、接着性は改善されなかった。
(Comparative Example 3)
A phosphor sheet was prepared in the same manner as in Example 15 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 3. As shown in Table 3, there was no practical problem with the cutting workability, but the adhesiveness was not improved.
 (比較例4)
 シリコーン樹脂をSi9に変更した以外は、実施例16と同様の操作で蛍光体シートを作製し、その後、LEDパッケージを作製して、各測定および評価を行った。結果を表3に示す。表3に示されるように、切断加工性は実用上問題ないが、接着性は改善されなかった。
(Comparative Example 4)
A phosphor sheet was prepared in the same manner as in Example 16 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 3. As shown in Table 3, there was no practical problem with the cutting workability, but the adhesiveness was not improved.
 (比較例5)
 シリコーン樹脂をSi9に変更した以外は、実施例17と同様の操作で蛍光体シートを作製し、その後、LEDパッケージを作製して、各測定および評価を行った。結果を表3に示す。表3に示されるように、切断加工性は実用上問題ないが、接着性は改善されなかった。
(Comparative Example 5)
A phosphor sheet was prepared in the same manner as in Example 17 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 3. As shown in Table 3, there was no practical problem with the cutting workability, but the adhesiveness was not improved.
 (比較例6)
 シリコーン樹脂をSi9に変更した以外は、実施例18と同様の操作で蛍光体シートを作製し、その後、LEDパッケージを作製して、各測定および評価を行った。結果を表3に示す。表3に示されるように、切断加工性は低下し、接着性も改善されなかった。
(Comparative Example 6)
A phosphor sheet was prepared in the same manner as in Example 18 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 3. As shown in Table 3, the cutting processability was lowered and the adhesiveness was not improved.
 (実施例19)(蛍光体の変更-1)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を17.0g、無機蛍光体として蛍光体2(β1)を16.8g、蛍光体3(KSF1)を25.2g、シリコーン微粒子を0.6g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡した後、3本ロールにて6回混合分散し、蛍光体組成物25を作製した。
(Example 19) (Modification of phosphor-1)
Using a 100 ml polyethylene container, 17.0 g of silicone resin 2 (Si2), 16.8 g of phosphor 2 (β1) as an inorganic phosphor, 25.2 g of phosphor 3 (KSF1), and silicone fine particles 0.6 g and 2.5 g of butyl carbitol were added and mixed. Thereafter, using a planetary stirring / defoaming apparatus, stirring and defoaming was performed at 1000 rpm for 5 minutes, and then mixed and dispersed six times with three rolls to prepare a phosphor composition 25.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物25を塗布し、120℃で30分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表4に示す。切断加工性、接着性ともに非常に良好な結果が得られ、相対輝度も大きく向上した。 Using a slit die coater, the phosphor composition 25 is applied on the release treatment surface of “Therapy” BX9 as a base material, heated at 120 ° C. for 30 minutes and dried, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 4. Very good results were obtained for both cutting workability and adhesiveness, and the relative luminance was greatly improved.
 (比較例7)
 シリコーン樹脂をSi9に変更した以外は、実施例19と同様の操作で蛍光体シートを作製し、その後、LEDパッケージを作製して、各測定および評価を行った。結果を表4に示す。表4に示されるように、切断加工性は実用上問題ないが、接着性は改善されなかった。
(Comparative Example 7)
A phosphor sheet was prepared in the same manner as in Example 19 except that the silicone resin was changed to Si9, and then an LED package was prepared and subjected to each measurement and evaluation. The results are shown in Table 4. As shown in Table 4, there was no practical problem with the cutting workability, but the adhesiveness was not improved.
 (実施例20)(蛍光体の変更-2)
 容積100mlのポリエチレン製容器を用いて、シリコーン樹脂2(Si2)を60.0g、有機蛍光体として蛍光体4(タイプ21)を1.24×10-3g、蛍光体5(タイプ24)を1.24×10-3g、シリコーン微粒子を1.0g、ブチルカルビトールを2.5g添加して混合した。その後、遊星式撹拌・脱泡装置を用い、1000rpmで5分間撹拌・脱泡し、蛍光体組成物27を作製した。
(Example 20) (Modification of phosphor-2)
Using a polyethylene container with a volume of 100 ml, 60.0 g of silicone resin 2 (Si2), 1.24 × 10 −3 g of phosphor 4 (type 21) as an organic phosphor, and phosphor 5 (type 24) 1.24 × 10 −3 g, 1.0 g of silicone fine particles, and 2.5 g of butyl carbitol were added and mixed. Thereafter, the mixture was stirred and degassed at 1000 rpm for 5 minutes using a planetary stirring and defoaming device to prepare a phosphor composition 27.
 スリットダイコーターを用いて、基材である“セラピール”BX9の離型処理面上に、蛍光体組成物27を塗布し、120℃で30分間加熱、乾燥し、厚さ80μm、100mm角の蛍光体シートを得た。前述した方法で、動的弾性率測定、切断加工性評価を実施した。また、前述した方法でLEDパッケージを作製し、接着性評価、全光束測定を実施した。結果を表5に示す。切断加工性、接着性ともに非常に良好な結果が得られ、相対輝度も向上した。 Using a slit die coater, the phosphor composition 27 is applied on the release surface of “Therapy” BX9, which is a base material, heated and dried at 120 ° C. for 30 minutes, and has a thickness of 80 μm and a 100 mm square fluorescence. A body sheet was obtained. Dynamic elastic modulus measurement and cutting workability evaluation were performed by the methods described above. Moreover, the LED package was produced by the method mentioned above, adhesiveness evaluation, and total luminous flux measurement were implemented. The results are shown in Table 5. Very good results were obtained for both cutting processability and adhesiveness, and the relative luminance was also improved.
 (実施例21~24)(蛍光体の変更-3)
 実施例21~24では、表5に示すように有機蛍光体を適宜変更したこと以外は、実施例20と同様の操作で蛍光体組成物(28~32)を作製し、各々用いて実施例20と同様の操作で蛍光体シートを作製した。その後、各々用いてLEDパッケージを作製し、評価を行った。その結果を表5に示す。これら実施例21~24の評価結果から、切断加工性、接着性ともに非常に良好な結果が得られ、相対輝度が向上することがわかった。
(Examples 21 to 24) (Modification of phosphor-3)
In Examples 21 to 24, a phosphor composition (28 to 32) was prepared in the same manner as in Example 20 except that the organic phosphor was appropriately changed as shown in Table 5, and each of the examples was used. A phosphor sheet was prepared in the same manner as in No. 20. Thereafter, an LED package was produced and evaluated using each of them. The results are shown in Table 5. From the evaluation results of Examples 21 to 24, it was found that very good results were obtained for both cutting processability and adhesiveness, and the relative luminance was improved.
 (比較例8)
 シリコーン樹脂をSi9に変更し、蛍光体を蛍光体4(タイプ27)と蛍光体5(タイプ28)に変更した以外は、実施例20と同様の操作で蛍光体組成物33を作製、蛍光体シートを作製した。その後、LEDパッケージを作製して、各測定および評価を行った。結果を表5に示す。表5に示されるように、切断加工性は実用上問題ないが、接着性は改善されなかった。
(Comparative Example 8)
A phosphor composition 33 was prepared in the same manner as in Example 20 except that the silicone resin was changed to Si9 and the phosphor was changed to phosphor 4 (type 27) and phosphor 5 (type 28). A sheet was produced. Then, the LED package was produced and each measurement and evaluation were performed. The results are shown in Table 5. As shown in Table 5, there was no practical problem with the cutting processability, but the adhesiveness was not improved.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
1  LEDチップ
2  蛍光体シート
3  透明封止材
4  リフレクター
5  実装基板
6  電極
7  金バンプ
8  透明接着剤
9  基材
10 LEDパッケージ
11 仮固定シート
12 加熱圧着ツール
13 LEDチップを表面に形成したウェハ
14 蛍光体シート積層体
15 パッケージ基板
16 パッケージ電極
17 両面粘着テープ
18 台座
19 上部チャンバー
20 下部チャンバー
21 ダイアフラム
22 真空ダイアフラムラミネーター
23 吸気/排気口
24 切断部分
25 蛍光体シート付きLEDチップ
26 基材付き蛍光体シート付きLEDチップ
DESCRIPTION OF SYMBOLS 1 LED chip 2 Phosphor sheet 3 Transparent sealing material 4 Reflector 5 Mounting board 6 Electrode 7 Gold bump 8 Transparent adhesive 9 Base material 10 LED package 11 Temporary fixing sheet 12 Thermocompression bonding tool 13 Wafer 14 on which the LED chip is formed Phosphor sheet laminate 15 Package substrate 16 Package electrode 17 Double-sided adhesive tape 18 Base 19 Upper chamber 20 Lower chamber 21 Diaphragm 22 Vacuum diaphragm muraminator 23 Intake / exhaust port 24 Cut portion 25 LED chip with phosphor sheet 26 Phosphor with substrate LED chip with sheet

Claims (19)

  1. 蛍光体およびシリコーン樹脂を含む蛍光体シートであって、25℃における貯蔵弾性率G’が0.01MPa以上であり、100℃における貯蔵弾性率G’が0.01MPa未満であり、かつ、140℃における貯蔵弾性率G’が0.05MPa以上である蛍光体シート。 A phosphor sheet containing a phosphor and a silicone resin, having a storage elastic modulus G ′ at 25 ° C. of 0.01 MPa or more, a storage elastic modulus G ′ at 100 ° C. of less than 0.01 MPa, and 140 ° C. A phosphor sheet having a storage elastic modulus G ′ of 0.05 MPa or more.
  2. 前記シリコーン樹脂が、少なくとも下記の(A)~(D)成分を含む架橋性シリコーン組成物の架橋物である、請求項1記載の蛍光体シート。
     (A)平均単位式:
    Figure JPOXMLDOC01-appb-C000001
    (平均単位式(1)中、Rは炭素数1~14の一価の炭化水素基であって、少なくとも1個はアリール基であり、かつ、少なくとも1個は炭素数2~6のアルケニル基である。Rは水素原子または炭素数1~6のアルキル基である。a、b、c、d、およびeは、0≦a≦0.1、0.2≦b≦0.9、0.1≦c≦0.6、0≦d≦0.2、0≦e≦0.1、かつa+b+c+d+e=1を満たす数である。)
    で表される分岐構造を有するオルガノポリシロキサン
     (B)平均単位式:
    Figure JPOXMLDOC01-appb-C000002
    (平均単位式(2)中、Rは炭素数1~14の1価の炭化水素基であって、少なくとも1個はアリール基であり、かつ、少なくとも1個は炭素数2~6のアルケニル基である。f、gおよびhは0.1<f≦0.4、0.2≦g≦0.5、0.2≦h≦0.5、かつf+g+h=1を満たす数である。)
    で表される分岐構造を有するオルガノポリシロキサン
     (C)一分子中に少なくとも2個のSi-H結合を有し、ケイ素原子に結合した有機基のうち12~70モル%がアリール基であるオルガノポリシロキサン
     (D)ヒドロシリル化反応用触媒
    The phosphor sheet according to claim 1, wherein the silicone resin is a crosslinked product of a crosslinkable silicone composition containing at least the following components (A) to (D).
    (A) Average unit formula:
    Figure JPOXMLDOC01-appb-C000001
    (In the average unit formula (1), R 1 is a monovalent hydrocarbon group having 1 to 14 carbon atoms, at least one is an aryl group, and at least one is an alkenyl having 2 to 6 carbon atoms. R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, a, b, c, d, and e are 0 ≦ a ≦ 0.1, 0.2 ≦ b ≦ 0.9. 0.1 ≦ c ≦ 0.6, 0 ≦ d ≦ 0.2, 0 ≦ e ≦ 0.1, and a + b + c + d + e = 1.)
    Organopolysiloxane having a branched structure represented by (B) Average unit formula:
    Figure JPOXMLDOC01-appb-C000002
    (In the average unit formula (2), R 3 is a monovalent hydrocarbon group having 1 to 14 carbon atoms, at least one is an aryl group, and at least one is an alkenyl having 2 to 6 carbon atoms. F, g, and h are numbers satisfying 0.1 <f ≦ 0.4, 0.2 ≦ g ≦ 0.5, 0.2 ≦ h ≦ 0.5, and f + g + h = 1. )
    (C) Organopolysiloxane having at least two Si—H bonds in one molecule and 12 to 70 mol% of organic groups bonded to silicon atoms being aryl groups Polysiloxane (D) Hydrosilylation catalyst
  3. 前記(B)成分の含有量が、前記(A)成分100重量部に対して10重量部以上、95重量部以下である、請求項2記載の蛍光体シート。 The phosphor sheet according to claim 2, wherein a content of the component (B) is 10 parts by weight or more and 95 parts by weight or less with respect to 100 parts by weight of the component (A).
  4. (C)成分が平均単位式:
    Figure JPOXMLDOC01-appb-C000003
    (平均単位式(3)中、Rはアリール基、炭素原子数1~6のアルキル基またはシクロアルキル基である。ただし、Rのうち12~70モル%はアリール基である。)
    で表されるオルガノポリシロキサンである、請求項1~3のいずれかに記載の蛍光体シート。
    Component (C) is an average unit formula:
    Figure JPOXMLDOC01-appb-C000003
    (In the average unit formula (3), R 4 is an aryl group, an alkyl group having 1 to 6 carbon atoms or a cycloalkyl group. However, 12 to 70 mol% of R 4 is an aryl group.)
    The phosphor sheet according to any one of claims 1 to 3, which is an organopolysiloxane represented by the formula:
  5. 前記蛍光体の含有量が、40重量%以上90重量%以下である、請求項1~4のいずれかに記載の蛍光体シート。 The phosphor sheet according to any one of claims 1 to 4, wherein a content of the phosphor is 40 wt% or more and 90 wt% or less.
  6. 前記蛍光体が、β型サイアロン蛍光体および一般式AMF:Mn(ここで、AはLi、Na、K、Rb及びCsからなる群より選ばれ、かつ少なくともNa及び/又はKを含む1種以上のアルカリ金属であり、MはSi、Ti、Zr、Hf、Ge及びSnからなる群より選ばれる1種以上の4価元素である。)で表されるMn賦活複フッ化物蛍光体を含む、請求項1~5のいずれかに記載の蛍光体シート。 The phosphor is a β-sialon phosphor and a general formula A 2 MF 6 : Mn (where A is selected from the group consisting of Li, Na, K, Rb and Cs, and includes at least Na and / or K) Mn-activated polyfluoride phosphor represented by the following formula: M is one or more alkali metals, and M is one or more tetravalent elements selected from the group consisting of Si, Ti, Zr, Hf, Ge, and Sn. The phosphor sheet according to any one of claims 1 to 5, comprising:
  7. 前記蛍光体が、ピロメテン化合物であることを特徴とする請求項1~4のいずれかに記載の蛍光体シート。 5. The phosphor sheet according to claim 1, wherein the phosphor is a pyromethene compound.
  8. 前記蛍光体が、一般式(4)で表される化合物であることを特徴とする請求項7に記載の蛍光体シート。
    (R、R、Ar~ArおよびLは同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。Mはm価の金属を表し、ホウ素、ベリリウム、マグネシウム、クロム、鉄、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。)
    The phosphor sheet according to claim 7, wherein the phosphor is a compound represented by the general formula (4).
    (R 5 , R 6 , Ar 1 to Ar 5 and L may be the same or different, and hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, Alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heteroaryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group , An amino group, a nitro group, a silyl group, a siloxanyl group, a condensed ring formed between adjacent substituents and an aliphatic ring, M represents an m-valent metal, boron, beryllium, magnesium, At least one selected from chromium, iron, nickel, copper, zinc, platinum Seeds.)
  9. 一般式(4)のMがホウ素、Lがフッ素または含フッ素アリール基、m-1が2である請求項8に記載の蛍光体シート。 The phosphor sheet according to claim 8, wherein M in the general formula (4) is boron, L is fluorine or a fluorine-containing aryl group, and m-1 is 2.
  10. 一般式(4)において、Arが一般式(5)で表される基である、請求項8もしくは9に記載の蛍光体シート。
    Figure JPOXMLDOC01-appb-C000005
    (rは、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基からなる群より選ばれる。kは1~3の整数である。kが2以上である場合、rはそれぞれ同じでも異なっても良い。)
    The phosphor sheet according to claim 8 or 9, wherein in the general formula (4), Ar 5 is a group represented by the general formula (5).
    Figure JPOXMLDOC01-appb-C000005
    (R is hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, hetero It is selected from the group consisting of an aryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, and phosphine oxide group. Is an integer of 1 to 3. When k is 2 or more, r may be the same or different.
  11. 請求項1~10のいずれかに記載の蛍光体シートまたはその硬化物を備えた、LEDチップ。 An LED chip comprising the phosphor sheet according to any one of claims 1 to 10 or a cured product thereof.
  12. 請求項1~10のいずれかに記載の蛍光体シートまたはその硬化物を備えた、LEDパッケージ。 An LED package comprising the phosphor sheet according to any one of claims 1 to 10 or a cured product thereof.
  13. 請求項1~10のいずれかに記載の蛍光体シートを個片に切断する工程、および該個片に切断された蛍光体シートをLEDチップに貼り付ける工程を含む、LEDパッケージの製造方法。 A method for manufacturing an LED package, comprising: a step of cutting the phosphor sheet according to any one of claims 1 to 10 into individual pieces; and a step of attaching the phosphor sheet cut into the individual pieces to an LED chip.
  14. 前記蛍光体シートを、前記LEDチップの発光面の電極を避けた部分に貼り付ける、請求項13記載のLEDパッケージの製造方法。 The manufacturing method of the LED package of Claim 13 which affixes the said fluorescent substance sheet on the part which avoided the electrode of the light emission surface of the said LED chip.
  15. ウェハ上に形成された複数のLEDチップに、請求項1~10のいずれかに記載の蛍光体シートを一括して貼り付ける工程、および前記ウェハのダイシングと、前記蛍光体シートが貼り付けられたLEDチップの個片化とを、一括して行う工程を含む、LEDパッケージの製造方法。 A process of affixing the phosphor sheet according to any one of claims 1 to 10 to a plurality of LED chips formed on a wafer, dicing the wafer, and affixing the phosphor sheet The manufacturing method of an LED package including the process of lump-dividing LED chip collectively.
  16. 前記蛍光体シートを前記LEDチップに貼り付ける時の加熱温度が60℃以上250℃以下である、請求項13~15のいずれかに記載のLEDパッケージの製造方法。 The method for manufacturing an LED package according to any one of claims 13 to 15, wherein a heating temperature when the phosphor sheet is attached to the LED chip is 60 ° C or higher and 250 ° C or lower.
  17. 請求項12に記載のLEDパッケージを含む、発光装置。 A light emitting device comprising the LED package according to claim 12.
  18. 請求項12に記載のLEDパッケージを含む、バックライトユニット。 A backlight unit comprising the LED package according to claim 12.
  19. 請求項12に記載のLEDパッケージを含む、ディスプレイ。 A display comprising the LED package according to claim 12.
PCT/JP2018/004863 2017-02-23 2018-02-13 Phosphor sheet, led chip using same, led package using same, method for producing led package, and light emitting device, backlight unit and display, each of which comprises said led package WO2018155253A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018508771A JP6863367B2 (en) 2017-02-23 2018-02-13 Fluorescent material sheet, LED chip and LED package using it, manufacturing method of LED package, and light emitting device including LED package, backlight unit and display
KR1020197023319A KR102215781B1 (en) 2017-02-23 2018-02-13 Phosphor sheet, LED chip and LED package using the same, manufacturing method of LED package, and light emitting device including LED package, backlight unit and display
CN201880012963.XA CN110312954B (en) 2017-02-23 2018-02-13 Phosphor sheet, LED chip and LED package using same, method for manufacturing LED package, and light-emitting device, backlight module, and display each including LED package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017031751 2017-02-23
JP2017-031751 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018155253A1 true WO2018155253A1 (en) 2018-08-30

Family

ID=63252608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004863 WO2018155253A1 (en) 2017-02-23 2018-02-13 Phosphor sheet, led chip using same, led package using same, method for producing led package, and light emitting device, backlight unit and display, each of which comprises said led package

Country Status (5)

Country Link
JP (1) JP6863367B2 (en)
KR (1) KR102215781B1 (en)
CN (1) CN110312954B (en)
TW (1) TWI753113B (en)
WO (1) WO2018155253A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126911A (en) * 2019-02-04 2020-08-20 デンカ株式会社 Method of manufacturing multiple mounting substrates, group of multiple wiring substrates, group of multiple phosphor substrates, group of multiple mounting substrates, and group of multiple light-emitting substrates
WO2023032734A1 (en) * 2021-08-31 2023-03-09 ダウ・東レ株式会社 Curable silicone composition, cured object therefrom, and method for producing said cured object
WO2023032735A1 (en) * 2021-08-31 2023-03-09 ダウ・東レ株式会社 Curable silicone composition, cured product thereof, and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11094530B2 (en) 2019-05-14 2021-08-17 Applied Materials, Inc. In-situ curing of color conversion layer
US11239213B2 (en) * 2019-05-17 2022-02-01 Applied Materials, Inc. In-situ curing of color conversion layer in recess
CN110256676B (en) * 2019-05-24 2022-03-08 中山大学 Phenyl hydrogen-containing siloxane resin, high-refractive-index LED packaging silicon resin composition and preparation method thereof
TWI710074B (en) * 2019-05-31 2020-11-11 台灣沛晶股份有限公司 Packaging structure of optical sensing chip
KR102625710B1 (en) * 2021-09-24 2024-01-16 주식회사 루츠 A manufacturing method of a fluorescent substance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001791A (en) * 2011-06-16 2013-01-07 Toray Ind Inc Phosphor-containing sheet, led emitter using the same and method for producing the same
JP2013001792A (en) * 2011-06-16 2013-01-07 Toray Ind Inc Fluorescent substance-containing sheet, led emitter using the same and method for producing the same
JP2014022704A (en) * 2012-07-24 2014-02-03 Toray Ind Inc Phosphor containing resin sheet and light-emitting device and manufacturing method thereof
JP2014116587A (en) * 2012-11-16 2014-06-26 Toray Ind Inc Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
WO2015093329A1 (en) * 2013-12-19 2015-06-25 東レ・ダウコーニング株式会社 Silicone adhesive film and semiconductor device
WO2016190283A1 (en) * 2015-05-26 2016-12-01 東レ株式会社 Pyrromethene-boron complex, color-changing composition, color-changing film, light source unit including same, display, and lighting

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858198B2 (en) 2007-04-10 2010-12-28 Shin-Etsu Chemical Co., Ltd. Phosphor-containing adhesive silicone composition, composition sheet formed of the composition, and method of producing light emitting device using the sheet
JP5190993B2 (en) 2008-11-20 2013-04-24 日東電工株式会社 Sheet for optical semiconductor encapsulation
JP5397944B2 (en) 2009-11-11 2014-01-22 日東電工株式会社 Phosphor-containing composite sheet
JP2015181140A (en) * 2012-07-27 2015-10-15 三菱化学株式会社 Wavelength conversion component for semiconductor light emitting device, method for producing the same, and thermosetting silicone composition
JP6641997B2 (en) * 2014-06-30 2020-02-05 東レ株式会社 Laminated body and method for manufacturing light emitting device using the same
JP6459354B2 (en) * 2014-09-30 2019-01-30 日亜化学工業株式会社 Translucent member and method for manufacturing the same, light emitting device and method for manufacturing the same
JP6520553B2 (en) * 2014-12-19 2019-05-29 日亜化学工業株式会社 Light emitting device
KR102344621B1 (en) * 2015-07-17 2021-12-30 도레이 카부시키가이샤 Color conversion composition, color conversion film, and backlight unit, display and lighting comprising same
WO2017094618A1 (en) * 2015-11-30 2017-06-08 東レ株式会社 Resin composition, sheet-shaped molded article of same, light-emitting device using same, and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001791A (en) * 2011-06-16 2013-01-07 Toray Ind Inc Phosphor-containing sheet, led emitter using the same and method for producing the same
JP2013001792A (en) * 2011-06-16 2013-01-07 Toray Ind Inc Fluorescent substance-containing sheet, led emitter using the same and method for producing the same
JP2014022704A (en) * 2012-07-24 2014-02-03 Toray Ind Inc Phosphor containing resin sheet and light-emitting device and manufacturing method thereof
JP2014116587A (en) * 2012-11-16 2014-06-26 Toray Ind Inc Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
WO2015093329A1 (en) * 2013-12-19 2015-06-25 東レ・ダウコーニング株式会社 Silicone adhesive film and semiconductor device
WO2016190283A1 (en) * 2015-05-26 2016-12-01 東レ株式会社 Pyrromethene-boron complex, color-changing composition, color-changing film, light source unit including same, display, and lighting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126911A (en) * 2019-02-04 2020-08-20 デンカ株式会社 Method of manufacturing multiple mounting substrates, group of multiple wiring substrates, group of multiple phosphor substrates, group of multiple mounting substrates, and group of multiple light-emitting substrates
JP7352358B2 (en) 2019-02-04 2023-09-28 デンカ株式会社 Manufacturing method for multiple mounting boards
WO2023032734A1 (en) * 2021-08-31 2023-03-09 ダウ・東レ株式会社 Curable silicone composition, cured object therefrom, and method for producing said cured object
WO2023032735A1 (en) * 2021-08-31 2023-03-09 ダウ・東レ株式会社 Curable silicone composition, cured product thereof, and method for producing same

Also Published As

Publication number Publication date
JPWO2018155253A1 (en) 2019-12-12
KR102215781B1 (en) 2021-02-16
TW201840722A (en) 2018-11-16
JP6863367B2 (en) 2021-04-21
CN110312954A (en) 2019-10-08
KR20190118153A (en) 2019-10-17
CN110312954B (en) 2021-10-22
TWI753113B (en) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2018155253A1 (en) Phosphor sheet, led chip using same, led package using same, method for producing led package, and light emitting device, backlight unit and display, each of which comprises said led package
JP6760077B2 (en) Manufacturing method of phosphor composition, phosphor sheet and formation using them, LED chip, LED package, light emitting device, backlight unit, display and LED package
TWI657599B (en) Fluorescent substance composition, fluorescent substance sheet, fluorescent substance sheet laminate and led chip using them, led package and method for producing the same
JP5287935B2 (en) Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof
US10934482B2 (en) Color conversion composition, color conversion sheet, and light-emitting body, lighting device, backlight unit, and display each including same
JP6299870B2 (en) Pyromethene boron complex, color conversion composition, color conversion film, and light source unit including the same, display and illumination
JP6641997B2 (en) Laminated body and method for manufacturing light emitting device using the same
TW201340414A (en) Phosphor encapsulating sheet, light emitting diode device, and producing method thereof
EP2712908A2 (en) Phosphor adhesive sheet, optical semiconductor element-phosphor layer pressure-sensitive adhesive body, and optical semiconductor device
WO2017221777A1 (en) Light-emitting body, light source unit in which same is used, display, and illumination device
JP5488761B2 (en) Laminated body and method for manufacturing light emitting diode with wavelength conversion layer
TW201419590A (en) Phosphor layer-covered optical semiconductor element, producing method thereof, optical semiconductor device, and producing method thereof
KR20150079588A (en) Fluorescent-material-containing resin sheet and light-emitting device
JP2014116587A (en) Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
JP5953797B2 (en) Manufacturing method of semiconductor light emitting device
CN108291090B (en) Resin composition, sheet-shaped molded article thereof, light-emitting device using same, and method for producing same
JP2017142887A (en) Illumination, backlight unit, and display
JP2017141318A (en) Led package, illumination device, backlight unit, and display

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508771

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023319

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758043

Country of ref document: EP

Kind code of ref document: A1