TW201813139A - Photosemiconductor element with reflection layer and phosphor layer - Google Patents

Photosemiconductor element with reflection layer and phosphor layer Download PDF

Info

Publication number
TW201813139A
TW201813139A TW106119939A TW106119939A TW201813139A TW 201813139 A TW201813139 A TW 201813139A TW 106119939 A TW106119939 A TW 106119939A TW 106119939 A TW106119939 A TW 106119939A TW 201813139 A TW201813139 A TW 201813139A
Authority
TW
Taiwan
Prior art keywords
optical semiconductor
phosphor layer
layer
reflective layer
semiconductor element
Prior art date
Application number
TW106119939A
Other languages
Chinese (zh)
Inventor
常誠
松田広和
河野広希
Original Assignee
日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工股份有限公司 filed Critical 日東電工股份有限公司
Publication of TW201813139A publication Critical patent/TW201813139A/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

A photosemiconductor element with a reflection layer and a phosphor layer provided with: a photosemiconductor element having a light-emitting surface and a counterface surface arranged facing the light-emitting surface with an interval therebetween in the vertical direction; a phosphor layer that covers at least the light-emitting surface; and a reflection layer arranged, for both the photosemiconductor element and the phosphor layer, on the orthogonally outer side that is orthogonal to the vertical direction. The phosphor layer has an inside portion arranged on the upper side of the photosemiconductor element and an outside portion arranged on, or so as to include, a virtual plane extending along the light-emitting surface to the outside of the photosemiconductor element.

Description

附反射層及螢光體層之光半導體元件Optical semiconductor device with reflection layer and phosphor layer

本發明係關於一種附反射層及螢光體層之光半導體元件。The invention relates to an optical semiconductor device with a reflective layer and a phosphor layer.

自先前以來,作為可發出高能量之光之發光裝置,已知有白色發光裝置(白色光半導體裝置)。於白色發光裝置例如設置有:二極體基板,其將電力供給至LED(light-emitting diode,發光二極體);LED(發光二極體),其安裝於上述二極體基板,且發出藍色光;螢光體層,其可將藍色光轉換為黃色光,且被覆LED;密封層,其將LED密封;及反射層,其設置於LED之周圍,且使光向前方反射。此種白色發光裝置係藉由自LED發光且透過密封層及螢光體層之藍色光、與於螢光體層將藍色光之一部分進行波長轉換而得之黃色光之混色而發出高能量之白色光。 而且,近年來,如投光照明或頂壁照明般要求指向性高、照度良好之白色發光裝置。作為此種發光裝置,提出例如專利文獻1之發光裝置。 專利文獻1之發光裝置中,於發光二極體元件之上表面(發光面)配置有以如下方式形成之螢光體層,即,該螢光體層係下表面為與發光二極體元件之上表面相同形狀之圖案,且上表面成為寬幅,於發光二極體元件之側面配置有反射樹脂層。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2012-222315號公報之圖7(e)Conventionally, as a light emitting device capable of emitting high-energy light, a white light emitting device (white light semiconductor device) is known. For example, a white light-emitting device is provided with a diode substrate that supplies power to a light-emitting diode (LED) and an LED (light-emitting diode) that is mounted on the diode substrate and emits light. Blue light; a phosphor layer that converts blue light to yellow light and covers the LED; a sealing layer that seals the LED; and a reflective layer that is placed around the LED and reflects the light forward. This white light-emitting device emits high-energy white light by mixing the blue light emitted from the LED and transmitted through the sealing layer and the phosphor layer, and the yellow light obtained by wavelength conversion of a part of the blue light in the phosphor layer. . Furthermore, in recent years, white light-emitting devices with high directivity and good illuminance, such as flood lighting or ceiling lighting, are required. As such a light-emitting device, for example, a light-emitting device of Patent Document 1 is proposed. In the light-emitting device of Patent Document 1, a phosphor layer formed on the upper surface (light-emitting surface) of the light-emitting diode element is arranged in such a manner that the lower surface of the phosphor layer is above the light-emitting diode element. A pattern with the same shape on the surface and a wide width on the upper surface is provided with a reflective resin layer on the side of the light emitting diode element. [Prior Art Document] [Patent Document] [Patent Document 1] Figure 7 (e) of Japanese Patent Laid-Open No. 2012-222315

[發明所欲解決之問題] 然而,於專利文獻1之發光裝置中,螢光體層係將發光二極體元件之上表面與螢光體層之下表面形成為相同之圖案。因此,於將螢光體層配置於發光二極體元件之上表面時,若螢光體層之位置於寬度方向偏移,則於發光二極體元件之上表面存在未配置螢光體層之部位,其結果產生無法發揮所需之光學特性之不良情況。因此,專利文獻1之發光裝置於寬度方向上需要較高之位置精度,期望對其進行改善。 本發明之目的在於提供一種可製造具有良好之指向性及正面照度、且可謀求位置精度之提高之光半導體裝置的附反射層及螢光體層之光半導體元件。 [解決問題之技術手段] 本發明[1]係一種附反射層及螢光體層之光半導體元件,其具備:光半導體元件,其具有發光面及相對於上述發光面於上下方向隔開間隔而對向配置之對向面;螢光體層,其至少被覆上述發光面;及反射層,其相對於上述光半導體元件及上述螢光體層之兩者,而配置於與上述上下方向正交之正交方向外側;且上述螢光體層具有:內側部分,其配置於上述光半導體元件之上側;及外側部分,其配置於沿上述發光面向上述光半導體元件之外側延伸之假想面上或以包含上述假想面之方式而配置。 根據此種附反射層及螢光體層之光半導體元件,反射層相對於光半導體元件及螢光體層之兩者,而配置於該等之正交方向外側。因此,可將自螢光體層及光半導體元件之側面放射或反射之光向上側反射。因而,指向性及正面照度良好。 又,螢光體層具有配置於向光半導體元件之外側延伸之假想面上之外側部分、或以包含假想面之方式而配置之外側部分。因此,螢光體層之下表面相對於光半導體元件之發光面而變寬。因而,於將螢光體層配置於發光二極體元件之發光面時,假設即便螢光體層之位置在相對於所需之位置正交之方向偏移,螢光體層之外側部分亦可確實地被覆光半導體元件之發光面。其結果,於正交方向上,可謀求螢光體層相對於光半導體元件之位置精度之提高。 本發明[2]包含上述[1]之附反射層及螢光體層之光半導體元件,其滿足下述式(1)及(2): 90°<θ1 <160°……(1) A≦Y……(2) (式中,θ1 表示連結上述光半導體元件之上述發光面之端緣與上述反射層之上端緣之內端緣之直線、與上述發光面所成之角度; A表示上述發光面與上述螢光體層之上表面之上下方向距離; Y表示上述發光面與上述反射層之上端緣之內端緣之上下方向距離)。 此種附反射層及螢光體層之光半導體元件中,自附反射層及螢光體層之光半導體元件照射之光之配向角良好,故指向性變得更佳。 本發明[3]包含上述[1]或[2]之附反射層及螢光體層之光半導體元件,其中上述反射層於100 μm厚度之以450 nm波長之光照射時之反射率為80%以上。 此種附反射層及螢光體層之光半導體元件之正面照度變得更佳。 本發明[4]包含上述[1]至[3]中任一項之附反射層及螢光體層之光半導體元件,其滿足下述式(3): B<X……(3) (式中,B表示上述光半導體元件之上述對向面之端緣、與上述反射層之下端緣之內端緣之距離;X表示上述光半導體元件之上述發光面之端緣、與上述螢光體層之上述假想面上之外端緣之上述正交方向距離)。 此種附反射層及螢光體層之光半導體元件之指向性及正面照度變得更佳。 本發明[5]包含上述[1]至[4]中任一項之附反射層及螢光體層之光半導體元件,其中上述反射層接觸於上述光半導體元件之上述發光面與上述對向面之間之側面整個面。 此種附反射層及螢光體層之光半導體元件之指向性及正面照度變得更佳。 本發明[6]包含上述[1]至[3]中任一項之附反射層及螢光體層之光半導體元件,其中上述螢光體層接觸於上述光半導體元件之上述發光面與上述對向面之間之側面整個面。 此種附反射層及螢光體層之光半導體元件之光之提取效率變得良好。 本發明[7]包含上述[1]至[6]中任一項之附反射層及螢光體層之光半導體元件,其進而具備配置於上述螢光體層之上側之擴散層。 此種附反射層及螢光體層之光半導體元件之指向性及正面照度變得更佳。 本發明[8]包含上述[7]之附反射層及螢光體層之光半導體元件,其滿足下述式(4): A+C≦Y……(4) (式中,C表示上述擴散層之上下方向長度)。 此種附反射層及螢光體層之光半導體元件之正面照度變得更佳。 [發明之效果] 根據本發明之附反射層及螢光體層之光半導體元件,可製造一方面實現螢光體層相對於光半導體元件之位置精度之提高一方面具有良好之指向性及正面照度的光半導體裝置。[Problems to be Solved by the Invention] However, in the light-emitting device of Patent Document 1, the phosphor layer is formed in the same pattern on the upper surface of the light-emitting diode element and the lower surface of the phosphor layer. Therefore, when the phosphor layer is disposed on the upper surface of the light emitting diode element, if the position of the phosphor layer is shifted in the width direction, there is a portion on the upper surface of the light emitting diode element where the phosphor layer is not disposed. As a result, there is a problem that the required optical characteristics cannot be exhibited. Therefore, the light-emitting device of Patent Document 1 requires high position accuracy in the width direction, and it is desired to improve it. An object of the present invention is to provide an optical semiconductor device with a reflective layer and a phosphor layer that can manufacture an optical semiconductor device that has good directivity and frontal illuminance and can improve the positional accuracy. [Technical means to solve the problem] The present invention [1] is an optical semiconductor element with a reflective layer and a phosphor layer, and includes: an optical semiconductor element having a light-emitting surface and spaced apart from the light-emitting surface in the vertical direction. Opposite faces arranged oppositely; a phosphor layer covering at least the light emitting surface; and a reflective layer arranged on a positive orthogonal to the vertical direction with respect to both the optical semiconductor element and the phosphor layer And the phosphor layer includes: an inner portion that is disposed on the upper side of the optical semiconductor element; and an outer portion that is disposed on an imaginary plane extending along the light emitting surface outside the optical semiconductor element or includes the above Configured in an imaginary way. According to such an optical semiconductor device with a reflective layer and a phosphor layer, the reflective layer is disposed on the outer side of the orthogonal direction with respect to both the optical semiconductor device and the phosphor layer. Therefore, light emitted or reflected from the side surfaces of the phosphor layer and the optical semiconductor element can be reflected to the upper side. Therefore, directivity and frontal illumination are good. In addition, the phosphor layer has an outer portion disposed on an imaginary surface extending to the outer side of the optical semiconductor element, or an outer portion disposed so as to include the imaginary surface. Therefore, the lower surface of the phosphor layer is wider than the light emitting surface of the optical semiconductor element. Therefore, when the phosphor layer is arranged on the light-emitting surface of the light-emitting diode element, it is assumed that even if the position of the phosphor layer is shifted in a direction orthogonal to a desired position, the outer side portion of the phosphor layer can be reliably Cover the light emitting surface of the optical semiconductor device. As a result, it is possible to improve the positional accuracy of the phosphor layer with respect to the optical semiconductor element in the orthogonal direction. The present invention [2] The optical semiconductor device including the reflective layer and the phosphor layer of the above [1], which satisfies the following formulas (1) and (2): 90 ° <θ 1 <160 ° ... (1) A ≦ Y ... (2) (where θ 1 represents an angle formed by a straight line connecting the end edge of the light emitting surface of the optical semiconductor element with the inner end edge of the upper edge of the reflective layer and the light emitting surface; A Represents the distance between the light emitting surface and the upper surface of the phosphor layer in the up-down direction; Y represents the distance between the light emitting surface and the inner edge of the upper edge of the reflection layer in the up-down direction). In such an optical semiconductor device with a reflective layer and a phosphor layer, the alignment angle of light irradiated from the optical semiconductor device with a reflective layer and a phosphor layer is good, so the directivity becomes better. [3] The optical semiconductor device according to the present invention [3] comprising the above-mentioned [1] or [2] with a reflective layer and a phosphor layer, wherein the reflectivity of the above-mentioned reflective layer when irradiated with light of a wavelength of 450 nm at a thickness of 100 μm is 80% the above. The front-side illuminance of such an optical semiconductor device with a reflective layer and a phosphor layer becomes better. [4] The present invention [4] includes an optical semiconductor device with a reflective layer and a phosphor layer according to any one of the above [1] to [3], which satisfies the following formula (3): B <X ... (3) (formula Among them, B represents the distance between the edge of the facing surface of the optical semiconductor element and the inner edge of the lower edge of the reflective layer; X represents the edge of the light emitting surface of the optical semiconductor element, and the phosphor layer The distance in the orthogonal direction from the outer edge of the imaginary plane). The directivity and frontal illuminance of such an optical semiconductor device with a reflective layer and a phosphor layer become better. [5] The present invention [5] includes an optical semiconductor element with a reflective layer and a phosphor layer according to any one of the above [1] to [4], wherein the reflective layer is in contact with the light-emitting surface and the opposite surface of the optical semiconductor element Between the sides of the entire surface. The directivity and frontal illuminance of such an optical semiconductor device with a reflective layer and a phosphor layer become better. [6] The present invention [6] includes an optical semiconductor element with a reflective layer and a phosphor layer according to any one of the above [1] to [3], wherein the phosphor layer is in contact with the light emitting surface of the optical semiconductor element and the opposite The entire side between the sides. The light extraction efficiency of such a semiconductor device with a reflective layer and a phosphor layer becomes good. The present invention [7] includes the optical semiconductor device with a reflective layer and a phosphor layer according to any one of the above [1] to [6], and further includes a diffusion layer disposed on the upper side of the phosphor layer. The directivity and frontal illuminance of such an optical semiconductor device with a reflective layer and a phosphor layer become better. [8] The present invention [8] includes an optical semiconductor device with a reflective layer and a phosphor layer in the above [7], which satisfies the following formula (4): A + C ≦ Y ... (4) (where C represents the above-mentioned diffusion layer) Vertical length). The front-side illuminance of such an optical semiconductor device with a reflective layer and a phosphor layer becomes better. [Effects of the Invention] According to the optical semiconductor device with a reflective layer and a phosphor layer of the present invention, it is possible to manufacture an optical semiconductor device that can improve the positional accuracy of the phosphor layer relative to the optical semiconductor device. On the one hand, it has good directivity and frontal illumination. Optical semiconductor device.

<第1實施形態> 於圖1B中,紙面上下方向係上下方向(第1方向,厚度方向),紙面上側係上側(第1方向一側,厚度方向一側),紙面下側係下側(第1方向另一側,厚度方向另一側)。紙面左右方向係左右方向(與第1方向正交之第2方向,相對於上下方向而正交之方向之一例),紙面左側係左側(第2方向一側),紙面右側係右側(第2方向另一側)。紙厚方向係前後方向(與第1方向及第2方向正交之第3方向,相對於上下方向而正交之方向之一例),紙面近前側係前側(第3方向一側),紙面深側係後側(第3方向另一側)。具體而言,依據各圖之方向箭頭。 參照圖1A~圖1B,對本發明之附反射層及螢光體層之光半導體元件(以下亦僅稱為附二層之元件)之第1實施形態進行說明。 再者,附二層之元件並非係光半導體裝置(發光裝置),亦即,不包含光半導體裝置中所具備之基板(電極基板)。具體而言,附二層之元件具備光半導體元件、螢光體層、及反射層(反射構件),且視需要而具備擴散層。附二層之元件較佳為包含光半導體元件、螢光體層及反射層,或包含光半導體元件、螢光體層、反射層及擴散層。亦即,附二層之元件以尚未與光半導體裝置之基板上所具備之電極電性連接之方式構成。又,附二層之元件係光半導體裝置之一零件,即係用以製作光半導體裝置之零件,且係零件單獨流通、產業上可利用之器件。 如圖1A~圖1B所示,附二層之元件1具備光半導體元件2、螢光體層3、及反射層4。 光半導體元件2例如係將電能轉換為光能之LED(發光二極體元件)或LD(半導體雷射元件,Laser Diode(雷射二極體))。較佳為,光半導體元件2係發出藍色光之藍色LED。另一方面,光半導體元件2不包含技術領域與光半導體元件不同之電晶體等整流器(半導體元件)。 光半導體元件2具有沿左右方向及前後方向之大致平板形狀。又,光半導體元件2具有俯視大致矩形狀(較佳為俯視大致正方形狀)。光半導體元件2具備發光面21、對向面22、及側面23。 發光面21係光半導體元件2之上表面。發光面21具有平坦之形狀。於發光面21上設置有螢光體層3(下述)。 對向面22係光半導體元件2之下表面,且係形成有電極24之面。對向面22相對於發光面21隔開間隔而對向配置於下側。電極24設置有複數個(2個),其具有自對向面22向下側稍突出之形狀。 側面23將發光面21之周端緣與對向面22之周端緣加以連結。 光半導體元件2之尺寸可適當設定,具體而言,厚度(上下方向長度)例如為0.1 μm以上,較佳為0.2 μm以上,更佳為10 μm以上,又,例如為500 μm以下,較佳為200 μm以下。光半導體元件2之左右方向及/或前後方向之長度分別例如為200 μm以上,較佳為500 μm以上,又,例如為3000 μm以下,較佳為2000 μm以下。 螢光體層3以被覆光半導體元件2之發光面21及側面23之方式配置於光半導體元件2之上側及側部。螢光體層3具有俯視大致矩形狀(較佳為俯視大致正方形狀),且以於上下方向投影時包含光半導體元件2之方式而形成。螢光體層3具備配置於光半導體元件2之上側之內側部分31、及配置於內側部分31之外側之外側部分32。 內側部分31具有沿左右方向及前後方向之大致平板形狀,且以於俯視下成為與光半導體元件2相同形狀之方式而形成。即,內側部分31之下表面整個面與光半導體元件2之發光面21整個面接觸,且被覆該發光面21整個面。 外側部分32具有沿上下方向之俯視大致矩形框狀。外側部分32具備上側部分32a與下側部分32b。又,外側部分32係於上側部分32a與下側部分32b之間,包含沿發光面21向光半導體元件2之左右方向及前後方向之外側延伸之假想面6。即,外側部分32藉由假想面6而於上下方向劃分為上側部分32a與下側部分32b。 外側部分32之上側部分32a配置於內側部分31之外側,內側部分31之周端緣與上側部分32a之內周端緣一體地連續。 外側部分32之下側部分32b與光半導體元件2之側面23接觸,且以被覆該側面23之方式配置於光半導體元件2之外側。即,下側部分32b之內周端面與光半導體元件2之側面23整個面接觸。 螢光體層3之內側部分31之厚度、即發光面21與螢光體層3之上表面之上下方向距離(圖1B中所示之A)例如為10 μm以上,較佳為50 μm以上,又,例如為300 μm以下,較佳為150 μm以下。 上述上下方向距離A與發光面21之左右方向或前後方向之長度(正交方向距離)之比例如為1:100~30:100,較佳為5:100~15:100。 螢光體層3之外側部分32之左右方向或前後方向之長度,即,光半導體元件2之發光面21之端緣(點m)、與螢光體層3之假想面6上之外端緣(點k)之左右方向或前後方向之距離(圖1B中所示之X)例如為10 μm以上,較佳為50 μm以上,更佳為70 μm以上,又,例如為2000 μm以下,較佳為1500 μm以下,更佳為500 μm以下,再佳為150 μm以下。 上述距離X與發光面21之左右方向或前後方向之長度之比例如為1:100~150:100,較佳為5:100~100:100,更佳為7:100~50:100。 螢光體層3例如係由含有螢光體及樹脂之螢光組合物而形成。 螢光體將自光半導體元件2發出之光進行波長轉換。作為螢光體,可舉出例如可將藍色光轉換為黃色光之黃色螢光體、及可將藍色光轉換為紅色光之紅色螢光體等。 作為黃色螢光體,可舉出例如(Ba,Sr,Ca)2 SiO4 ;Eu,(Sr,Ba)2 SiO4 :Eu(正矽酸鋇(BOS,barium orthosilicate))等矽酸鹽螢光體,例如Y3 Al5 O12 :Ce(YAG(釔-鋁-石榴石yttrium aluminum garnet):Ce)、Tb3 Al3 O12 :Ce(TAG(鋱-鋁-石榴石):Ce)等具有石榴石型結晶構造之石榴石型螢光體,例如Ca-α-SiAlON等氮氧化物螢光體等。 作為紅色螢光體,可舉出例如CaAlSiN3 :Eu、CaSiN2 :Eu等氮化物螢光體等。 作為螢光體之形狀,可舉出例如球狀、板狀、及針狀等。 螢光體之最大長度之平均值(於球狀之情形時為平均粒徑)例如為0.1 μm以上,較佳為1 μm以上,又,例如為200 μm以下,較佳為100 μm以下。 螢光體可單獨使用或將2種以上併用。 螢光體之調配比例相對於螢光組合物例如為10質量%以上,較佳為20質量%以上,又,例如為80質量%以下,較佳為70質量%以下。 樹脂係於螢光組合物中使螢光體均勻地分散之基質,例如作為樹脂,可舉出例如硬化性樹脂、熱可塑性樹脂。較佳可舉出硬化性樹脂。作為硬化性樹脂,可舉出2段反應硬化性樹脂、1段反應硬化性樹脂等熱硬化性樹脂。 2段反應硬化性樹脂具有2個反應機構,於第1段反應中,可自A-階段狀態進行B-階段化(半硬化),其次,於第2段反應中,可自B-階段狀態進行C-階段化(完全硬化)。亦即,2段反應硬化性樹脂係可藉由適度之加熱條件而成為B-階段狀態之熱硬化性樹脂。B-階段狀態係熱硬化性樹脂為液狀之A-階段狀態、與完全硬化之C-階段狀態之間之狀態,其係硬化及凝膠化稍微進展、且壓縮彈性模數小於C-階段狀態之壓縮彈性模數之半固體狀態或固體狀態。 1段反應硬化性樹脂具有1個反應機構,於第1段反應中可自A-階段狀態進行C-階段化(完全硬化)。此種1段反應硬化性樹脂包含如下之熱硬化性樹脂,即,其可於第1段反應之中途停止該反應而自A-階段狀態成為B-階段狀態,並且可藉由其後之進一步加熱再開始第1段反應,自B-階段狀態進行C-階段化(完全硬化)。亦即,該熱硬化性樹脂包含可成為B-階段狀態之熱硬化性樹脂。又,1段反應硬化性樹脂亦可包含如下之熱硬化性樹脂,即,無法以於1段反應之中途停止之方式而控制,亦即,無法成為B-階段狀態,而是一下子自A-階段狀態進行C-階段化(完全硬化)。 作為熱硬化性樹脂,較佳可舉出可成為B-階段狀態之熱硬化性樹脂。 作為可成為B-階段狀態之熱硬化性樹脂,可舉出例如聚矽氧樹脂、環氧樹脂、聚胺酯樹脂、聚醯亞胺樹脂、酚樹脂、尿素樹脂、三聚氰胺樹脂、及不飽和聚酯樹脂等。作為可成為B-階段狀態之熱硬化性樹脂,較佳可舉出聚矽氧樹脂、環氧樹脂,更佳可舉出聚矽氧樹脂。 作為聚矽氧樹脂,可舉出例如於分子內含有苯基之苯基系聚矽氧樹脂,例如於分子內含有甲基之甲基系聚矽氧樹脂等。 熱硬化性樹脂可單獨使用或將2種以上併用。 樹脂之調配比例為螢光體(及添加劑)之調配比例之剩餘部分,相對於螢光組合物例如為20質量%以上,較佳為30質量%以上,又,例如為90質量%以下,較佳為80質量%以下。 於螢光組合物中,亦可以適當之比例含有光擴散性粒子(下述)、填充材料(下述)、搖變性賦予粒子(下述)等公知之添加劑(下述)。 於含有光擴散性粒子之情形時,光擴散性粒子之調配比例相對於螢光組合物例如為1質量%以上,較佳為10質量%以上,又,例如為60質量%以下,較佳為50質量%以下。 於含有填充材料之情形時,填充材料之調配比例相對於螢光組合物例如為1質量%以上,較佳為10質量%以上,又,例如為60質量%以下,較佳為50質量%以下。 於含有搖變性賦予粒子之情形時,搖變性賦予粒子之調配比例相對於螢光組合物例如為0.1質量%以上,較佳為0.5質量%以上,又,例如為10質量%以下,較佳為3質量%以下。 反射層4相對於光半導體元件2及螢光體層3之兩者配置於左右方向外側及前後方向外側。反射層4具有於上下方向延伸之俯視大致矩形框狀。 反射層4之內周端緣(面)與螢光體層3之側面之整個面接觸,且被覆該側面之整個面。又,反射層4以於左右方向或前後方向投影時包含光半導體元件2及螢光體層3之方式而配置。又,反射層4之上端緣於上下方向上與螢光體層3之上表面一致,反射層4之下端緣於上下方向上與螢光體層3之下表面及光半導體元件2之對向面22一致。即,反射層4以如下方式形成,即,其上表面與螢光體層3之上表面成為同一平面,且其下表面與螢光體層3之下表面及光半導體元件2之對向面22成為同一平面。 又,反射層4較佳為滿足下述式(1),更佳為滿足下述式(1'),再佳為滿足下述式(1")。 90°<θ1 <160°……(1) 100°<θ1 <160°……(1') 100°<θ1 <150°……(1") θ1 表示沿俯視下左右方向或前後方向連結光半導體元件2之發光面21之端緣(點m)與反射層4之上端緣之內端緣(點n)的直線L1(參照圖1B)、與發光面21所成之角度。 又,光半導體元件2之發光面21、反射層4之上端緣之內端緣(點n)之上下方向距離Y(即,反射層4之內端緣與假想面6之交點(點k)、與反射層4之上端緣之內端緣(點n)之距離Y)例如為10 μm以上,較佳為50 μm以上,更佳為150 μm以上,又,例如為800 μm以下,較佳為500 μm以下,更佳為250 μm以下。藉由使距離Y為上述下限以上而可使色調良好,且可降低色之不均。另一方面,藉由使距離Y為上述上限以下而可使散熱性良好,且可使附二層之元件1之可靠性提高。 再者,於第1實施形態中,滿足A=Y之關係式(2')。 又,反射層4以相對於光半導體元件2之對向面22成大致直角之方式於上下方向延伸。即,自製造容易性、指向性及照度之觀點而言,反射層4之內端緣之面、與螢光體層3之最下表面所成之角度θ2 例如為88°以上且92°以下,較佳為90°。 自指向性之觀點而言,反射層4之左右方向或前後方向之長度(尤其上端緣之左右方向或前後方向長度,圖1B中所示之D)例如超過0 μm,較佳為50 μm以上,更佳為100 μm以上,又,例如為500 μm以下,較佳為300 μm以下。 自反射層4之下端緣之內端緣至光半導體元件2之對向面22之端緣為止的左右方向或前後方向之距離(圖1B中所示之B)例如超過0 μm,較佳為10 μm以上,更佳為50 μm以上,再佳為70 μm以上,又,例如為2000 μm以下,較佳為1500 μm以下,更佳為500 μm以下,再佳為150 μm以下。 反射層4於設為100 μm厚度且以450 nm波長之光照射時之反射率例如為70%以上,較佳為80%以上,更佳為90%以上,又,例如為100%以下。藉由將反射率設為上述範圍內而可使正面照度更佳。關於反射率之測定方法,可藉由以下方法而求出反射率,即,使用紫外可見近紅外分光光度計,利用積分球之光路確認方法而測定450 nm波長下之反射率。 反射層4於設為100 μm厚度且以450 nm波長之光照射時之透光率例如為20%以下,較佳為10%以下。透光率之測定方法於實施例中詳細敍述。 反射層4例如係由含有光反射成分及樹脂之反射組合物而形成。 光反射成分係不使光透過而使其反射之粒子,可舉出例如白色無機粒子、白色有機粒子等白色粒子等。自照度、耐久性之觀點而言,較佳可舉出白色無機粒子。 作為構成白色無機粒子之材料,可舉出例如氧化鈦、氧化鋅、氧化鋯、氧化鋁等氧化物,例如鉛白(鹼性碳酸鉛)、碳酸鈣等碳酸鹽,例如高嶺土等黏土礦物等。自照度之觀點而言,較佳可舉出氧化物,更佳可舉出氧化鈦。 光反射成分之平均粒徑例如為0.1 μm以上,較佳為0.2 μm以上,又,例如為10 μm以下,較佳為2.0 μm以下。 於本發明中,粒子之平均粒徑以D50值之形式算出,具體而言,藉由雷射繞射式粒度分佈計而測定。 光反射成分之含有比例相對於反射組合物例如為1質量%以上,較佳為5質量%以上,更佳為10質量%以上,又,例如為50質量%以下,較佳為30質量%以下。 樹脂係於反射組合物中使光反射成分均勻地一分散之基質,例如,樹脂與螢光組合物中所含之樹脂相同。 樹脂之調配比例係光反射成分(及添加劑)之調配比例之剩餘部分,例如相對於反射組合物例如為10質量%以上,較佳為20質量%以上,更佳為25質量%以上,又,例如為99質量%以下,較佳為75質量%以下,更佳為未達50質量%。 反射組合物中,亦可以適當之比例含有光擴散性粒子、填充材料、搖變性賦予粒子等添加劑。 光擴散性粒子係使光擴散之透明性之粒子,可舉出例如與樹脂之折射率差較高之粒子。光擴散性粒子與樹脂之折射率差例如為0.04以上,較佳為0.10以上,又例如為0.50以下。藉此,可使反射層4內之光之擴散提高而使反射率進一步提高。 具體而言,可舉出光擴散性無機粒子、光擴散性有機粒子等。 作為光擴散性無機粒子,可舉出例如二氧化矽粒子、複合無機氧化物粒子(玻璃粒子等)。 複合無機氧化物粒子較佳為玻璃粒子,具體而言,含有二氧化矽、或二氧化矽及氧化硼作為主成分,又,含有氧化鋁、氧化鈣、氧化鋅、氧化鍶、氧化鎂、氧化鋯、氧化鋇、及氧化銻等作為副成分。複合無機氧化物粒子中之主成分之含有比例相對於複合無機氧化物粒子例如為40質量%以上,較佳為50質量%以上,又,例如為90質量%以下,較佳為80質量%以下。副成分之含有比例係上述主成分之含有比例之剩餘部分。 作為光擴散性有機粒子,可舉出例如丙烯酸系樹脂粒子、苯乙烯系樹脂、丙烯酸-苯乙烯系樹脂粒子、聚矽氧系樹脂粒子、聚碳酸酯系樹脂粒子、苯胍胺系樹脂粒子、聚烯烴系樹脂粒子、聚酯系樹脂粒子、聚醯胺系樹脂粒子、及聚醯亞胺系樹脂粒子等。 光擴散性粒子之折射率例如為1.40以上且1.60以下。光擴散性粒子與樹脂之折射率差例如為0.04以上,較佳為0.10以上,又,例如為0.50以下。折射率例如藉由阿貝折射計測定。 作為光擴散性粒子,自光擴散性、耐久性之觀點而言,較佳可舉出光擴散性無機粒子,更佳可舉出二氧化矽粒子、複合無機氧化物粒子。 光擴散性粒子之平均粒徑例如為1.0 μm以上,較佳為5.0 μm以上,又,例如為100 μm以下,較佳為50 μm以下。 於反射組合物含有光擴散性粒子之情形時,光擴散性粒子之含有比例相對於反射組合物例如為1質量%以上,較佳為10質量%以上,更佳為超過20質量%,又,例如為50質量%以下,較佳為40質量%以下。 填充材料為透明性之粒子,且為與樹脂之折射率差較低之粒子。具體而言係與樹脂之折射率差為0.03以下,較佳為0.01以下之粒子。藉此,可確保反射層4之透明性,並且可提高反射層4之剛性。 填充材料之折射率例如為1.40以上,較佳為1.45以上,又例如為1.60以下,較佳為1.55以下。 作為此種填充材料,可列舉與光擴散性粒子相同材料之粒子,較佳可列舉無機粒子,更佳可列舉氧化矽粒子、複合無機氧化物粒子(玻璃粒子等)。 填充材料之平均粒徑例如為1.0 μm以上,較佳為5.0 μm以上,又例如為100 μm以下,較佳為50 μm以下。 再者,於用於本發明之粒子中,光擴散性粒子或填充材料即便材料相同,亦可根據與樹脂之折射率差而適當區分。 於反射組合物含有填充材料之情形時,填充材料之含有比例相對於反射組合物而例如為1質量%以上,較佳為10質量%以上,更佳為超過20質量%以上,又例如為50質量%以下,更佳為40質量%以下。 搖變性賦予粒子係用以對反射組合物賦予搖變性或使搖變性提高之粒子,自反射性之觀點而言,較佳可舉出煙熏二氧化矽(煙霧二氧化矽)等奈米二氧化矽等。 作為煙熏二氧化矽,例如為藉由二甲基二氯矽烷、聚矽氧油等表面處理劑使表面疏水化後之疏水性煙霧二氧化矽、及未進行表面處理之親水性煙霧二氧化矽之任一者均可。 奈米二氧化矽(尤其煙熏二氧化矽)之平均粒徑例如為1 nm以上,較佳為5 nm以上,又,例如為200 nm以下,較佳為50 nm以下。又,奈米二氧化矽(尤其煙熏二氧化矽)之比表面積(BET(Brunauer–Emmett–Teller)法)例如為50 m2 /g以上,較佳為200 m2 /g以上,又,例如為500 m2 /g以下。 於反射組合物含有搖變性賦予粒子之情形時,反射組合物中之搖變性賦予粒子之含有比例例如為0.1質量%以上,較佳為0.5質量%以上,又,例如為10質量%以下,較佳為3質量%以下。 自附二層之元件1放出之光之半值角例如為130度以下,較佳為125度以下,更佳為120度以下,又,例如為90度以上,較佳為100度以上。半值角之測定方法於實施例中詳細敍述。 自附二層之元件1放出之光之配向角(COA)例如為0.10度以下,較佳為0.05度以下,更佳為0.03度以下,又,例如為0.01度以上。配向角之測定方法於實施例中詳細敍述。 自附二層之元件1放出之光之正面照度例如超過60%,較佳為100%以上,更佳為110%以上,再佳為120%以上,又,例如為130%以下。正面照度之測定方法於實施例中詳細敍述。 <第1實施形態之製造方法> 參照圖2A~圖2G,對第1實施形態之附二層之元件1之製造方法進行說明。第1實施形態之附二層之元件1之製造方法例如具備暫時固定片材準備步驟、暫時固定步驟、螢光體層形成步驟、螢光體層去除步驟、反射層形成步驟、及切斷步驟。 首先,如圖2A所示於暫時固定片材準備步驟中,準備暫時固定片材。 暫時固定片材40可準備公知或市售之片材,例如具備支持基材41、及配置於支持基材41上之感壓接著劑層42。 作為支持基材41,可舉出例如聚乙烯膜、聚酯膜(PET(polyethylene terephthalate,聚對苯二甲酸乙二酯)等)等聚合物膜,例如陶瓷片材,例如金屬箔等。 感壓接著劑層42配置於支持基材41之上表面整個面。感壓接著劑層42於支持基材41之上表面具有片材形狀。感壓接著劑層42例如係由藉由處理(例如紫外線之照射或加熱等)而使感壓接著力降低之感壓接著劑所形成。感壓接著劑層42之厚度例如為1 μm以上,較佳為10 μm以上,又,例如為1000 μm以下,較佳為500 μm以下。 其次,如圖2B所示,於暫時固定步驟中,將複數個光半導體元件2於左右方向及前後方向彼此隔開間隔而暫時固定於暫時固定片材40上。 具體而言,將複數個光半導體元件2之對向面22感壓接著於感壓接著劑層42之上表面。此時,以使複數個電極24埋設於感壓接著劑層42中之方式對感壓接著劑層42按壓光半導體元件2。 其次,如圖2C所示,於螢光體層形成步驟中,將螢光體層3以被覆光半導體元件2之方式配置於暫時固定片材40上。 具體而言,準備於剝離片材上配置有螢光體層3之螢光體轉印片材,繼而,以使光半導體元件2埋設於螢光體層3中之方式,對配置有光半導體元件2之暫時固定片材40按壓螢光體轉印片材且積層,繼而,將剝離片材自螢光體層3剝離。 關於螢光體轉印片材之製作,例如調配螢光組合物與溶劑,調製螢光組合物之清漆,將清漆塗佈於剝離片材之表面且使其乾燥。其後,於螢光組合物含有可成為B-階段狀態之熱硬化性樹脂之情形時,使螢光組合物進行B-階段化(半硬化)。具體而言,對螢光組合物進行加熱。藉此,於剝離片材上形成螢光體層3。 如此般,光半導體元件2之發光面21及側面23、以及暫時固定片材40之上表面(自光半導體元件2露出之上表面)藉由螢光體層3而被覆。即,獲得附螢光體層之光半導體元件集合體9 其次,如圖2D所示,於螢光體層去除步驟中,將附螢光體層之光半導體元件集合體9之螢光體層3之一部分去除。 具體而言,以使螢光體層3成為所需之尺寸之方式,將彼此相鄰之光半導體元件2之間的螢光體層3去除。例如,使用寬幅之晶圓切割機(切割刀片)43(參照圖2D)將螢光體層3切削成俯視大致柵格形狀。 藉此,於附螢光體層之光半導體元件集合體9中,於螢光體層3去除後之部分形成間隙44。 其次,如圖2E所示,於反射層形成步驟中,於間隙44中形成反射層4。 具體而言,準備於剝離片材上配置有所需圖案之反射層4之反射層轉印片材,繼而,以將反射層4填充至間隙44之方式對附螢光體層之光半導體元件集合體9按壓反射層轉印片材且積層,繼而,將剝離片材自反射層4剝離。 對於反射層轉印片材,例如調配反射組合物與溶劑,調製反射組合物之清漆,將清漆塗佈於剝離片材之表面且使其乾燥。其後,於反射組合物含有可成為B-階段狀態之熱硬化性樹脂之情形時,使反射組合物進行B-階段化(半硬化)。具體而言,對反射組合物進行加熱。藉此形成反射層4。其後,藉由公知之方法使反射層4圖案化以成為與間隙44對應之圖案。 再者,亦可不使用反射層轉印片材而是將反射組合物之清漆直接灌注至間隙44中,且對清漆進行加熱乾燥。 其後,螢光體層3及/或反射層4於含有熱硬化性樹脂、且為B-階段狀態或A-階段狀態之情形時,例如藉由烘箱等實施進一步之加熱,使螢光體層3及/或反射層4硬化(完全硬化,C-階段化)。 藉此,於暫時固定片材40上積層複數個光半導體元件2、螢光體層3、及反射層4。即,獲得附反射層及螢光體層之光半導體元件集合體10。 其次,如圖2F所示,於切斷步驟中,將附反射層及螢光體層之光半導體元件集合體10切斷(單片化)。 具體而言,於彼此相鄰之光半導體元件2之間,如圖2E之假想線所示將反射層4切斷。藉此,針對每複數個光半導體元件2而單片化。 為了切斷反射層4,例如使用以下裝置,即,使用有寬度狹窄之圓盤狀之晶圓切割機之切割裝置,例如使用有切斷刀具之切割裝置,例如雷射照射裝置等切斷裝置。 繼而,如圖2F之假想線所示,將暫時固定片材40自光半導體元件2剝離。 藉此,獲得附二層之元件1。 再者,如參照圖2G般,將附二層之元件1覆晶安裝於二極體基板等電極基板7上,獲得發光二極體裝置等光半導體裝置8。 電極基板7具有大致平板形狀,具體而言,其係由將導體層作為電路圖案積層於絕緣基板之上表面之積層板而形成。絕緣基板例如包含矽基板、陶瓷基板、塑膠基板(例如聚醯亞胺樹脂基板)等。導體層例如由金、銅、銀、鎳等導體而形成。導體層具備用以與單數之光半導體元件2電性連接之電極(未圖示)。電極基板7之厚度例如為25 μm以上,較佳為50 μm以上,又,例如為2000 μm以下,較佳為1000 μm以下。 <作用效果> 於第1實施形態之附二層之元件1中,將反射層4相對於光半導體元件2及螢光體層3之兩者配置於該等之左右方向及前後方向之外側。因此,可使自螢光體層3及光半導體元件2之側面23放射或反射之光向上側反射。因而,指向性及正面照度良好。 又,螢光體層3與光半導體元件2之側面23之整個面接觸。因此,光之提取效率變得良好。 又,螢光體層3具有以包含向光半導體元件2之外側延伸之假想面6之方式而配置之外側部分32。因此,在將螢光體層3配置於光半導體元件2之發光面21時(例如參照圖2C或圖2D),假設即便螢光體層3自光半導體元件2之發光面21於左右方向或前後方向偏移,亦可抑制於光半導體元件2之發光面21上產生未被螢光體層3被覆之非被覆部分。即,螢光體層3之外側部分32可確實地被覆光半導體元件2之發光面21。其結果,可謀求於左右方向及前後方向上螢光體層3相對於光半導體元件2之位置精度之提高。 而且,附二層之元件1係藉由對二極體基板等電極基板7進行安裝而用以製造發光二極體裝置等光半導體裝置8之零件,根據該附二層之元件1,可謀求位置精度之提高,並且可製造具有良好之指向性及正面照度之光半導體裝置8。 又,附二層之元件1在安裝於電極基板7之前,能夠與測試用機器連接等而進行發光性能(指向性、照度、色調等)之確認。因此,可預防當產生與所需之性能不相符之光半導體裝置8時併入至該光半導體裝置8中之電極基板7之回收作業等,因此附二層之元件1作為光半導體裝置8之製造用之零件為有用。 <第1實施形態之變化例> 於第1實施形態之變化例中,對與第1實施形態相同之構件及步驟標註相同之參照符號,省略其詳細之說明。 於圖1B之實施形態中,將光半導體元件2、螢光體層3及反射層4形成為俯視大致正方形狀,但例如亦可將該等之一部分或全部形成為俯視大致長方形狀。 於該情形時,以使光半導體元件2之發光面21之端緣(點m)、與螢光體層3之發光面21上之外端緣(點k)之距離X成為最短之方式而選擇點m及點k。繼而,根據該所選擇之點m、點k及此時之側剖視圖而決定θ1 、θ2 、A、B、D、X、Y、L1等。繼而,於以至少使X成為最短之方式選擇點m及點k之條件下,較佳為滿足式(1)~(2')。進而,於與該所選擇之側剖視圖正交之側剖視圖上決定上述θ1 等之情形時,更佳亦為滿足式(1)~(2')。 於圖1B之實施形態中,螢光體層3係以使其上表面與反射層4之上表面成為同一平面之方式而形成,但如圖3所示,例如螢光體層3亦可以使其上表面位於較反射層4之上表面更靠下側之方式而形成。 於圖3之實施形態中,滿足A<Y之關係式(2")。 又,於圖1B之實施形態中,螢光體層3係以使其上表面與反射層4之上表面成為同一平面之方式而形成,但如圖4所示,例如螢光體層3亦可以使其上表面位於較反射層4之上表面更靠上側之方式而形成。 於圖4之實施形態中,滿足Y<A之關係式。 圖3及圖4之實施形態亦包含於本發明,且發揮與圖1B之實施形態相同之作用效果。 於本發明中,自指向性之觀點而言,較佳可舉出圖1B(A=Y)、圖3之實施形態(A<Y)。即,較佳為滿足A≦Y之關係式(2)。 又,於滿足A≦Y之關係式(2)時,自反射層4之上端緣之內端緣(點n)至螢光體層3之上表面為止的上下方向距離(Y-A)例如為100 μm以下,較佳為50 μm以下,又,例如為0 μm以上。藉由將上述距離設為上述範圍內而可使操作性良好。又,可容易地使用搬送筒夾等搬送器具進行固持及搬運。 於圖1B之實施形態中,螢光體層3之上表面露出,但如圖5所示,例如亦可於螢光體層3之上表面配置擴散層5。 擴散層5具有沿左右方向及前後方向之大致平板形狀,且以於俯視下與螢光體層3之內側部分31成為相同形狀之方式而形成。又,擴散層5之上表面於上下方向上,與反射層4之上端緣一致。即,擴散層5係以使其上表面與反射層4之上表面成為同一平面之方式而形成。 擴散層5之厚度(上下方向長度,圖5中所示之C)例如為10 μm以上,較佳為50 μm以上,又,例如為240 μm以下,較佳為150 μm以下。 擴散層5於設為100 μm厚度且以450 nm波長之光照射時之透光率例如為60%以上,較佳為80%以上,又,例如為100%以下。 擴散層5例如係由含有透明樹脂及光擴散性粒子之擴散透明組合物而形成。 透明樹脂可舉出與反射層4中上述樹脂相同者,較佳可舉出聚矽氧樹脂。 透明樹脂之調配比例例如相對於擴散透明組合物例如為5質量%以上,較佳為10質量%以上,更佳為25質量%以上,又,例如為99質量%以下,較佳為80質量%以下,更佳為未達50質量%。 光擴散性粒子可舉出與反射層4中上述光擴散性粒子相同者。其中,自良好之透光率及前方擴散性之觀點而言,較佳可舉出與透明樹脂(例如聚矽氧樹脂)之折射率差較高之光擴散性無機粒子,更佳可舉出氧化矽粒子、複合無機氧化物粒子,再佳可舉出氧化矽粒子及複合無機氧化物粒子之組合。 光擴散性粒子之含有比例相對於擴散透明組合物例如為1質量%以上,較佳為20質量%以上,更佳為超過50質量%,又,例如為95質量%以下,較佳為90質量%以下,更佳為75質量%以下,進而佳為40質量%以下。 又,擴散透明組合物亦可以適當之比例含有填充材料、搖變性賦予粒子等公知之添加劑。 填充材料可列舉與於反射層4所述之填充材料相同者,較佳可列舉氧化矽粒子、複合無機氧化物粒子(玻璃粒子等)。 於含有填充材料之情形時,填充材料之含有比例相對於擴散透明組合物而例如為1質量%以上,較佳為10質量%以上,更佳為超過20質量%,又例如為50質量%以下,更佳為40質量%以下。 搖變性賦予粒子可舉出與反射層4中上述搖變性賦予粒子相同者,較佳可舉出奈米二氧化矽。 於含有搖變性賦予粒子之情形時,搖變性賦予粒子之調配比例相對於擴散透明組合物例如為0.1質量%以上,較佳為0.5質量%以上,又,例如為10質量%以下,較佳為3質量%以下。 圖5之實施形態亦包含於本發明,且發揮與圖1B之實施形態相同之作用效果。自指向性及正面照度變得更佳觀點而言,較佳可舉出圖5之實施形態。 又,於圖5之實施形態中,擴散層5係以使其上表面與反射層4之上表面成為同一平面之方式而形成,雖未圖示,但例如擴散層5亦可以使其上表面位於較反射層4之上表面更靠上側或更靠下側之方式而形成。 於本發明中,自指向性之觀點而言,較佳可舉出圖5之實施形態(A+C=Y)、及擴散層5之上表面位於較反射層4之上表面更靠下側之實施形態(A+C<Y)。即,較佳為滿足A+C≦Y之關係式(4)之實施形態。 進而,反射層4之上端緣之內端緣(點n)與擴散層5之上表面之上下方向距離{Y-(A+C)}例如為100 μm以下,較佳為50 μm以下,又,例如為0 μm以上。藉由將上述距離設為上述範圍內而可使操作性良好。又,可容易地使用搬送筒夾等搬送器具進行固持及搬運。 <第2實施形態> 參照圖6A~圖6B,對本發明之附二層之元件1之第2實施形態進行說明。 於第2實施形態中,對與第1實施形態相同之構件及步驟標註相同之參照符號,省略其詳細之說明。 如圖6A~圖6B所示,附二層之元件1具備光半導體元件2、螢光體層3、及反射層4。 螢光體層3以被覆光半導體元件2之發光面21之方式而配置於光半導體元件2之上側。螢光體層3具有沿左右方向及前後方向之大致平板形狀。又,螢光體層3具有俯視大致矩形狀,且以於上下方向投影時包含光半導體元件2之方式而形成。螢光體層3具備配置於光半導體元件2之上側之內側部分31、及配置於內側部分31之外側之外側部分32。 內側部分31具有沿左右方向及前後方向之大致平板形狀,且以於俯視下與光半導體元件2成為相同形狀之方式而形成。即,內側部分31之下表面整個面被覆光半導體元件2之發光面21之整個面。 外側部分32配置於內側部分31之外側,內側部分31之周端緣與外側部分32之內周端緣一體地連續。外側部分32具有俯視下大致矩形框狀之大致平板狀,且具有與內側部分31相同之厚度(上下方向長度)。又,外側部分32配置於假想面6上。即,外側部分32之下表面與假想面6一致。 外側部分32與內側部分31之左右方向或前後方向之長度之比,例如為1:100~50:100,較佳為7:100~25:100。 反射層4相對於光半導體元件2及螢光體層3之兩者,配置於左右方向外側及前後方向外側。反射層4具有於上下方向延伸之俯視大致矩形框狀。 反射層4具有上部4a、及配置於上部4a之下側之下部4b。 上部4a配置於螢光體層3之左右方向外側及前後方向外側,並與螢光體層3之側面之整個面接觸,且被覆該側面之整個面。即,上部4a之內周端面與螢光體層3之側面整個面接觸。 上部4a以於左右方向或前後方向投影時包含螢光體層3之方式而形成。具體而言,於上下方向上,上部4a之上端緣(反射層4之上端緣)與螢光體層3之上表面一致,下部4b之下端緣與螢光體層3之下表面一致。 下部4b中,其上端與上部4a之下端一體地連續,且以朝左右方向內側及前後方向內側變得較上部4a更寬幅之方式而形成。下部4b配置於光半導體元件2之左右方向外側及前後方向外側,並與光半導體元件2之側面23之整個面接觸,且被覆該側面23之整個面。即,下部4b之內周端面與光半導體元件2之側面23之整個面接觸。 下部4b以於左右方向或前後方向投影時包含光半導體元件2之方式而形成。具體而言,於上下方向上,下部4b之上端緣與光半導體元件2之發光面21一致,下部4b之下端緣(反射層4之下端緣)與光半導體元件2之對向面22一致。即,反射層4係以使其上表面與螢光體層3之上表面成為同一平面、且使其下表面與螢光體層3之下表面及光半導體元件2之對向面22成為同一平面之方式而形成。 又,反射層4較佳為滿足上述式(1),更佳為滿足上述式(1'),再佳為滿足上述式(1")。 於反射層4中,光半導體元件2之發光面21與反射層4之上端緣之內端緣之上下方向距離Y與第1實施形態相同。即,於第2實施形態中,滿足A=Y之關係式(2')。 反射層4之內端緣之面與螢光體層3之最下表面所成之角度θ2 、及反射層4之左右方向或前後方向之長度(尤其上端緣之左右方向或前後方向之長度)D與第1實施形態相同。 再者,自反射層4之下端緣之內端緣至光半導體元件2之對向面22之端緣為止之左右方向或前後方向之距離B為0 μm。上述距離X與第1實施形態相同。關於左右方向或前後方向之距離B,滿足B<X之關係式(3)。 <第2實施形態之製造方法> 參照圖7A~圖7E,對第2實施形態之附二層之元件1之製造方法進行說明。第2實施形態之附二層之元件1之製造方法例如具備螢光體層準備步驟、光半導體元件配置步驟、螢光體層去除步驟、反射層形成步驟、及切斷步驟。 首先,如圖7A所示,於螢光體層準備步驟中準備螢光體層3。 例如,使用第1實施形態中上述螢光體層形成步驟中之螢光體層轉印片材。 其次,如圖7B所示,於光半導體元件配置步驟中,於螢光體層3上,於左右方向及前後方向彼此隔開間隔而配置複數個光半導體元件2。 具體而言,以使螢光體層3之上表面與光半導體元件2之發光面21接觸之方式將複數個光半導體元件2排列配置於螢光體層3上。藉此,獲得附螢光體層之光半導體元件集合體9。 其次,如圖7C所示,於螢光體層去除步驟中,將附螢光體層之光半導體元件集合體9之螢光體層3之一部分去除。 例如,如第1實施形態之螢光體層去除步驟中之以上所述,使用寬幅之晶圓切割機(切割刀片)43(參照圖7B)將螢光體層3切削成俯視大致柵格形狀。 藉此,於附螢光體層之光半導體元件集合體9中,於螢光體層3去除後之部分形成間隙44。 其次,如圖7D所示,於反射層形成步驟中,於間隙44、及相鄰之複數個光半導體元件2之間形成反射層4。 例如,如第1實施形態中所述,實施利用反射層轉印片材之轉印、或反射組合物之清漆之灌注。其後,螢光體層3及/或反射層4於含有熱硬化性樹脂、且為B-階段狀態或A-階段狀態之情形時,例如藉由烘箱等實施進一步之加熱,使螢光體層3及/或反射層4硬化(完全硬化,C-階段化)。 藉此,獲得附反射層及螢光體層之光半導體元件集合體10。 其次,如圖7F所示,於切斷步驟中,將附反射層及螢光體層之光半導體元件集合體10切斷(單片化)。 藉此,獲得附二層之元件1。 <作用效果> 於第2實施形態之附二層之元件1中,將反射層4相對於光半導體元件2及螢光體層3之兩者以與該等之左右方向外側及前後方向外側接觸之方式而配置。因此,可將自螢光體層3及光半導體元件2之側面23放射或反射之光向上側反射。因而,指向性及正面照度良好。 又,反射層4與光半導體元件2之側面23之整個面接觸。因此,指向性及正面照度更佳。 又,附二層之元件1滿足B<X之關係式(3)。因而,正面照度更佳。 又,螢光體層3具有配置於向光半導體元件2之外側延伸之假想面6上之外側部分32。因此,螢光體層3之下表面相對於光半導體元件2之發光面21變大。因而,在將螢光體層3配置於光半導體元件2之發光面21時(例如參照圖7B),即便假設螢光體層3自光半導體元件2之發光面21於左右方向或前後方向偏移,亦可抑制於光半導體元件2之發光面21上產生未被螢光體層3被覆之非被覆部分。因而,螢光體層3之外側部分32可確實地被覆光半導體元件2之發光面21。其結果,於左右方向及前後方向上,可謀求螢光體層3相對於光半導體元件2之位置精度之提高。 繼而,附二層之元件1係藉由對二極體基板等電極基板7進行安裝而用以製造發光二極體裝置等光半導體裝置8之零件,根據該附二層之元件1,可謀求位置精度之提高,並且可製造具有良好之指向性及正面照度之光半導體裝置8。 又,附二層之元件1在安裝於電極基板7之前,能夠與測試用機器連接等而進行發光性能(指向性、照度、色調等)之確認。因此,可預防當產生與所需之性能不相符之光半導體裝置8時併入至該光半導體裝置8中之電極基板7之回收作業等,因此附二層之元件1作為光半導體裝置8之製造用之零件為有用。 <第2實施形態之變化例> 於第2實施形態之變化例中,對與第2實施形態相同之構件及步驟標註相同之參照符號,省略其詳細之說明。 於圖6B之實施形態中,螢光體層3之外側部分32之側面沿上下方向以成垂直之方式而形成,但如圖8所示,例如螢光體層3之外側部分32之側面、進而反射層4之上部4a之內端面亦可形成為向上側變寬之楔狀。 圖8之實施形態亦包含於本發明,且發揮與圖1B之實施形態相同之作用效果。 又,螢光體層3係以使其上表面與反射層4之上表面成為同一平面之方式而形成,雖未圖示,但例如螢光體層3亦可以使其上表面位於較反射層4之上表面更靠上側或更靠下側之方式而形成。 該實施形態亦發揮與圖1B之實施形態相同之作用效果。 於本發明中,自指向性之觀點而言,較佳可舉出圖6B之實施形態(A=Y)、或螢光體層3之上表面位於較反射層4之上表面更靠下側之實施形態(A<Y)。即,較佳為滿足A≦Y之關係式(2)。 於圖6B之實施形態中,螢光體層3之上表面露出,但如圖9所示,例如亦可於螢光體層3之上表面配置擴散層5。 圖9之實施形態亦包含於本發明,且發揮與圖6B之實施形態相同之作用效果。自指向性及正面照度變得更佳之觀點而言,較佳可舉出圖9之實施形態。 又,於圖9之實施形態中,擴散層5係以使其上表面與反射層4之上表面成為同一平面之方式而形成,雖未圖示,但例如擴散層5亦可以使其上表面位於較反射層4之上表面更靠上側或更靠下側之方式而形成。 於本發明中,自指向性之觀點而言,較佳可舉出圖9之實施形態(A+C=Y)、及擴散層5之上表面位於較反射層4之上表面更靠下側之實施形態(A+C<Y)。即,較佳為滿足A+C≦Y之關係式(4)。 <第3實施形態> 參照圖10A~圖10B,對本發明之附二層之元件1之第3實施形態進行說明。 於第3實施形態中,對與第1實施形態及第2實施形態相同之構件及步驟標註相同之參照符號,省略其詳細之說明。 如圖10A~圖10B所示,附二層之元件1具備光半導體元件2、螢光體層3、及反射層4。 螢光體層3係以被覆光半導體元件2之發光面21之全部、及側面23之一部分之方式而配置於光半導體元件2之上側及側部。螢光體層3一體地具備配置於光半導體元件2之上側之內側部分31、及配置於內側部分31之外側之外側部分32。 外側部分32具有於上下方向延伸之俯視大致矩形框狀。外側部分32具備上側部分32a與下側部分32b。又,外側部分32於上側部分32a及下側部分32b之間,包含沿發光面21向光半導體元件2之左右方向及前後方向之外側延伸之假想面6。 外側部分32之下側部分32b以與光半導體元件2之側面23之上部接觸且被覆該側面23之上部之方式配置於光半導體元件2之外側。即,下側部分32b之內周端面與光半導體元件2之側面23之上部接觸。上側部分32a係以其下端與下側部分32b之上端一體地連結、且朝向上側之方式而形成。 反射層4相對於光半導體元件2及螢光體層3之兩者配置於左右方向外側及前後方向外側。反射層4具有於上下方向延伸之俯視大致矩形框狀。 反射層4具有上部4a、及配置於上部4a之下側之下部4b。 上部4a配置於螢光體層3之左右方向外側及前後方向外側,與螢光體層3之側面之整個面接觸,且被覆該側面之整個面。 下部4b中,其上端與上部4a之下端一體地連續,且以朝左右方向內側及前後方向內側變得較上部4a更寬幅之方式而形成。下部4b配置於光半導體元件2之左右方向外側及前後方向外側,與光半導體元件2之側面23之下部接觸,且被覆該側面23之下部。 <第3實施形態之製造方法> 參照圖11A~圖11G,對第2實施形態之附二層之元件1之製造方法進行說明。第3實施形態之附二層之元件1之製造方法例如具備暫時固定片材準備步驟、暫時固定步驟、螢光體層形成步驟、螢光體層去除步驟、反射層形成步驟、及切斷步驟。 首先,如圖11A所示,於暫時固定片材準備步驟中,與圖2A同樣地準備暫時固定片材40。 其次,如圖11B所示,於暫時固定步驟中,與圖2B同樣地將複數個光半導體元件2於左右方向及前後方向彼此隔開間隔而暫時固定於固定片材40上。 其次,如圖11C所示,於螢光體層形成步驟中,將螢光體層3以被覆光半導體元件2之上部之方式配置於間隔件45上。 具體而言,首先,將間隔件45配置於暫時固定片材40上。 其後,準備於剝離片材上配置有螢光體層3之螢光體轉印片材,繼而,以將光半導體元件2之上部埋設於螢光體層3中之方式對間隔件45按壓螢光體轉印片材且積層,繼而,將剝離片材自螢光體層3剝離。 關於螢光體轉印片材之製作,作為第3實施形態之螢光體轉印片材之螢光體層,較佳為使用較第1實施形態中使用之螢光體轉印片材之B-階段狀態之螢光體層之硬化程度更進一步之B-階段狀態的螢光體層。即,較佳為以使第3實施形態之螢光體層之儲存剪切彈性力高於第1實施形態之螢光體層之儲存剪切彈性力之方式進行調節。藉此,如圖11C所示,可藉由螢光體層3而被覆光半導體元件2之僅上部,且螢光體層3無需暫時固定片材40之支持便可使其形狀維持為平板狀。 如此般,光半導體元件2之發光面21整個面及側面23之上部藉由螢光體層3被覆。即,可獲得附螢光體層之光半導體元件集合體9。 其次,如圖11D所示,於螢光體層去除步驟中,與圖2D同樣地將附螢光體層之光半導體元件集合體9之螢光體層3之一部分去除。藉此,於附螢光體層之光半導體元件集合體9中,於螢光體層3去除後之部分形成間隙44。 其次,如圖11E及圖11F所示,於反射層形成步驟中,於間隙44、及相鄰之光半導體元件2間之間隔46中形成反射層4。 具體而言,如圖11E所示,例如將保護片材47配置於附螢光體層之光半導體元件集合體9之上表面,繼而,將附螢光體層之光半導體元件集合體9配置於真空腔室48內部等真空密閉空間49,繼而,將反射組合物之清漆4a以包圍附螢光體層之光半導體元件集合體9之方式配置於暫時固定片材40上,繼而,解除真空密閉空間49之真空狀態而恢復為大氣壓下。藉此,反射組合物之清漆4a藉由大氣壓之壓力而流入至間隙44及間隔46並填充。 其後,剝除保護片材47,繼而,將反射組合物之清漆4a加熱乾燥,形成反射層4。 其後,螢光體層3及/或反射層4於含有熱硬化性樹脂、且為B-階段狀態或A-階段狀態之情形時,例如藉由烘箱等實施進一步之加熱,使螢光體層3及/或反射層4硬化(完全硬化,C-階段化)。 藉此,如圖11F所示,於暫時固定片材40上積層複數個光半導體元件2、螢光體層3、及反射層4。即,獲得附反射層及螢光體層之光半導體元件集合體10。 其次,圖11G所示,於切斷步驟中,與圖2F同樣地將附反射層及螢光體層之光半導體元件集合體10切斷(單片化)。 繼而,如圖11G之假想線所示,將暫時固定片材40自光半導體元件2剝離。 藉此,獲得附二層之元件1。 第3實施形態之附二層之元件1亦發揮與第1實施形態之附二層之元件1相同之作用效果。再者,自光之提取效率變得良好之觀點而言,螢光體層3較佳可舉出與光半導體元件2之側面23整個面接觸之第1實施形態之附二層之元件1。 又,螢光體層3係以使其上表面與反射層4之上表面成為同一平面之方式而形成,雖未圖示,但例如螢光體層3亦可以使其上表面位於較反射層4之上表面更靠上側或更靠下側之方式而形成。 又,於第3實施形態中,雖未圖示,但亦可於螢光體層3上具備擴散層5。 [實施例] 以下表示實施例及比較例而更具體地說明本發明,但本發明不受實施例及比較例之任何限定。於以下記載中使用之調配比例(含有比例)、物性值、參數等具體之數值可代替上述「實施方式」中記載之與其等對應之調配比例(含有比例)、物性值、參數等該記載之上限值(作為「以下」、「未達」而定義之數值)或下限值(作為「以上」、「超過」而定義之數值)。 (螢光組合物之調製) 於各實施例及各比較例之螢光組合物中,以成為相同之色度(CIE,y=0.31)之方式將聚矽氧樹脂(商品名「OE6635A/B」,東麗道康寧公司製造,折射率1.54)34~45質量份、螢光體(商品名「YAG432」,Nemoto Lumi-Materials公司製造)8~30質量份、玻璃(SiO2 /Al2 O3 /CaO/MgO=60/20/15/5(質量%),平均粒徑20 μm,折射率1.55,填充材料)35~46質量份、及奈米二氧化矽(薰製二氧化矽,平均粒徑20 nm,商品名「R976S」,日本Aerosil公司製造)1質量份以使全部量成為100質量份之方式混合,調製螢光組合物。 (反射組合物A之調製) 將聚矽氧樹脂(與上述相同)65質量份、玻璃(與上述相同)30質量份、氧化鈦(商品名「R706」,Dupon公司製造,平均粒徑0.36 μm,光反射成分)4質量份、及奈米二氧化矽(與上述相同)1質量份混合,調製反射組合物A。 (反射組合物B之調製) 將聚矽氧樹脂(與上述相同)39質量份、玻璃(與上述相同)30質量份、氧化鈦(與上述相同)30質量份、及奈米二氧化矽(與上述相同)1質量份混合,調製反射組合物B。 (擴散層之製作) 將聚矽氧樹脂(與上述相同)39質量份、玻璃(與上述相同)30質量份、二氧化矽(球狀熔融二氧化矽,「FB-3SDC」,Denka公司製造,平均粒徑3.4 μm,折射率1.45,光擴散性無機粒子)30質量份、及奈米二氧化矽(與上述相同)1質量份混合並攪拌脫泡,調製擴散透明組合物(清漆)。 將擴散透明組合物塗佈於聚酯膜上,以90℃加熱30分鐘,藉此製造硬化狀態之擴散層。 (實施例1~10及比較例1~3) 作為光半導體元件,使用左右方向長度及前後方向長度(發光面)分別為1143 μm、且上下方向長度為150 μm之LED元件。使用上述螢光組合物及反射組合物A、B,按照圖2A~圖2F、圖7A~圖7E或圖12~圖13,以成為表1中記載之形狀及尺寸之方式製造實施例及比較例之附反射層及螢光體層之光半導體元件。再者,關於實施例10,於圖7A中準備螢光體層之後將半硬化狀態之擴散層配置於螢光體層之下表面,於圖7D中亦使擴散層硬化,除此之外,按照圖7A~圖7E而製造附反射層及螢光體層之光半導體元件。關於比較例3,不設置反射層而製造附螢光體層之光半導體元件。 對所獲得之各實施例及各比較例,測定以下項目。 (厚度之測定) 螢光體層及擴散層之厚度係由測定計(線性規,Citizen公司製造)測定。 (反射層之反射率之測定) 塗佈反射組合物A及B及使其硬化,製作測定用之厚度100 μm之反射層A及B。於該反射率測定用之反射層A及B中,使用紫外可見近紅外分光光度計(UV-vis)(「V-670」,日本分光公司製造),利用積分球之光路確認方法(波長範圍380~800 nm)測定450 nm波長下之反射率。將結果示於表1。 (反射層及擴散層之透光率之測定) 塗佈擴散透明組合物及使其硬化,製作測定用之厚度100 μm之擴散層。於上述測定用之反射層A及B以及測定用之擴散層中,使用分光光度計(U-4100,日立High-Tech公司製造)測定波長450 nm下之透光率(%)。 其結果,反射層A及B之透光率為20%以下,擴散層之透光率為60%以上。 (色度之測定) 藉由瞬間多測光系統(「MCPD-9800」,大塚電子公司製造)於下述測定條件下測定色度(CIE,y)。 電流值:300 mA 電壓:3.5 V 曝光時間:19 ms 累計次數:16次 (半值角、配向角、及正面照度之測定) 藉由瞬間多測定系統(「MCPD-9800」,大塚電子公司製造)於下述條件下測定半值角、配向角及正面照度。 電流值:300 mA 電壓:3.5 V 測定距離:316 mm 曝光時間:300 ms 累計次數:1次 樣本設置之水平角:90° 垂直角:-90°~90° [表1] 再者,上述發明係作為本發明之例示之實施形態而提供,但其僅為例示而不應限定性解釋。藉由該技術領域之本業者而明確之本發明之變化例包含於下述申請專利範圍。 [產業上之可利用性] 本發明之附反射層及螢光體層之光半導體元件可應用於各種工業製品,例如可用於白色光半導體裝置等光學用途等。<First Embodiment> In FIG. 1B, the upper and lower directions on the paper surface are up and down (first direction, thickness direction), the upper side on the paper surface is on the upper side (first direction side, thickness direction side), and the lower side on the paper surface is lower side ( On the other side in the first direction and on the other side in the thickness direction). The left-right direction of the paper surface is a left-right direction (an example of a second direction orthogonal to the first direction and a direction orthogonal to the vertical direction), the left side of the paper surface is the left side (the second direction side), and the right side of the paper surface is the right side (the second Direction on the other side). The paper thickness direction is the front-back direction (a third direction orthogonal to the first direction and the second direction, and an example of a direction orthogonal to the vertical direction). The front side of the paper surface is the front side (the third direction side), and the paper surface is deep. The side is the rear side (the other side in the third direction). Specifically, according to the direction arrow of each figure. A first embodiment of an optical semiconductor device with a reflective layer and a phosphor layer (hereinafter also referred to as a device with only two layers) according to the present invention will be described with reference to FIGS. 1A to 1B. The element with two layers is not an optical semiconductor device (light-emitting device), that is, it does not include a substrate (electrode substrate) included in the optical semiconductor device. Specifically, the element with two layers includes an optical semiconductor element, a phosphor layer, and a reflective layer (reflective member), and includes a diffusion layer as necessary. The element with two layers preferably includes an optical semiconductor element, a phosphor layer, and a reflective layer, or includes an optical semiconductor element, a phosphor layer, a reflective layer, and a diffusion layer. That is, the two-layered element is configured so as not to be electrically connected to electrodes provided on the substrate of the optical semiconductor device. In addition, the element with two layers is a part of an optical semiconductor device, that is, a component used to make an optical semiconductor device, and a component that is separately circulated and is industrially available. As shown in FIGS. 1A to 1B, the element 1 with two layers includes an optical semiconductor element 2, a phosphor layer 3, and a reflective layer 4. The optical semiconductor element 2 is, for example, an LED (light emitting diode element) or an LD (semiconductor laser element, Laser Diode) that converts electric energy into light energy. Preferably, the optical semiconductor element 2 is a blue LED that emits blue light. On the other hand, the optical semiconductor element 2 does not include a rectifier (semiconductor element) such as a transistor having a technical field different from that of the optical semiconductor element. The optical semiconductor element 2 has a substantially flat plate shape in the left-right direction and the front-rear direction. The optical semiconductor element 2 has a substantially rectangular shape in a plan view (preferably a substantially square shape in a plan view). The optical semiconductor element 2 includes a light emitting surface 21, an opposing surface 22, and a side surface 23. The light emitting surface 21 is an upper surface of the optical semiconductor element 2. The light emitting surface 21 has a flat shape. A phosphor layer 3 (described below) is provided on the light emitting surface 21. The facing surface 22 is a lower surface of the optical semiconductor element 2 and is a surface on which the electrode 24 is formed. The facing surface 22 is arranged at a lower side opposite to the light emitting surface 21 at an interval. The electrode 24 is provided with a plurality (two), and has a shape protruding slightly from the facing surface 22 toward the lower side. The side surface 23 connects the peripheral edge of the light emitting surface 21 and the peripheral edge of the facing surface 22. The size of the optical semiconductor element 2 can be appropriately set. Specifically, the thickness (length in the up-down direction) is, for example, 0.1 μm or more, preferably 0.2 μm or more, more preferably 10 μm or more, and, for example, 500 μm or less, preferably It is 200 μm or less. The length of the optical semiconductor element 2 in the left-right direction and / or the front-rear direction is, for example, 200 μm or more, preferably 500 μm or more, and, for example, 3000 μm or less, and preferably 2000 μm or less. The phosphor layer 3 is arranged on the upper side and the side of the optical semiconductor element 2 so as to cover the light emitting surface 21 and the side surface 23 of the optical semiconductor element 2. The phosphor layer 3 has a substantially rectangular shape in plan view (preferably a substantially square shape in plan view), and is formed so as to include the optical semiconductor element 2 when projected in the vertical direction. The phosphor layer 3 includes an inner portion 31 disposed on the upper side of the optical semiconductor element 2 and an outer portion 32 disposed on the outer side of the inner portion 31. The inner portion 31 has a substantially flat plate shape in the left-right direction and the front-rear direction, and is formed so as to have the same shape as the optical semiconductor element 2 in a plan view. That is, the entire lower surface of the inner portion 31 is in contact with the entire surface of the light emitting surface 21 of the optical semiconductor element 2 and covers the entire surface of the light emitting surface 21. The outer portion 32 has a substantially rectangular frame shape in a plan view in the vertical direction. The outer portion 32 includes an upper portion 32a and a lower portion 32b. The outer portion 32 is located between the upper portion 32a and the lower portion 32b, and includes an imaginary surface 6 extending along the light emitting surface 21 in the left-right direction and the front-rear direction of the optical semiconductor element 2. That is, the outer portion 32 is divided into an upper portion 32 a and a lower portion 32 b in the vertical direction by the virtual surface 6. The upper portion 32a of the outer portion 32 is disposed outside the inner portion 31, and the peripheral end edge of the inner portion 31 is integrally continuous with the inner peripheral end edge of the upper portion 32a. The lower portion 32b of the outer portion 32 is in contact with the side surface 23 of the optical semiconductor element 2 and is disposed on the outer side of the optical semiconductor element 2 so as to cover the side surface 23. That is, the inner peripheral end surface of the lower portion 32 b is in contact with the entire side surface 23 of the optical semiconductor element 2. The thickness of the inner portion 31 of the phosphor layer 3, that is, the distance between the light emitting surface 21 and the upper surface of the phosphor layer 3 in the up and down direction (A shown in FIG. 1B) is, for example, 10 μm or more, preferably 50 μm or more, and It is, for example, 300 μm or less, and preferably 150 μm or less. The ratio of the distance A in the up-down direction to the length (distance in the orthogonal direction) in the left-right direction or the front-rear direction of the light emitting surface 21 is, for example, 1: 100 to 30: 100, and preferably 5: 100 to 15: 100. The length in the left-right direction or the front-rear direction of the outer side portion 32 of the phosphor layer 3, that is, the edge (point m) of the light emitting surface 21 of the optical semiconductor element 2 and the outer edge (on the imaginary surface 6 of the phosphor layer 3) The distance (point X) in the left-right or front-rear direction (X shown in FIG. 1B) is, for example, 10 μm or more, preferably 50 μm or more, more preferably 70 μm or more, and, for example, 2000 μm or less, preferably It is 1500 μm or less, more preferably 500 μm or less, and even more preferably 150 μm or less. The ratio of the distance X to the length in the left-right direction or the front-rear direction of the light emitting surface 21 is, for example, 1: 100 to 150: 100, preferably 5: 100 to 100: 100, and more preferably 7: 100 to 50: 100. The phosphor layer 3 is formed of a phosphor composition containing a phosphor and a resin, for example. The phosphor performs wavelength conversion of light emitted from the optical semiconductor element 2. Examples of the phosphor include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light. Examples of the yellow phosphor include (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Silicate phosphors such as Eu (BOS, barium orthosilicate), such as Y 3 Al 5 O 12 : Ce (YAG (yttrium aluminum garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (鋱 -aluminum-garnet): Ce) and other garnet-type phosphors having a garnet-type crystal structure, such as nitrogen oxide phosphors such as Ca-α-SiAlON. Examples of the red phosphor include CaAlSiN 3 : Eu, CaSiN 2 : Nitride phosphors such as Eu. Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape. The average value of the maximum length of the phosphor (average particle diameter in the case of a spherical shape) is, for example, 0.1 μm or more, preferably 1 μm or more, and, for example, 200 μm or less, and preferably 100 μm or less. Phosphors can be used alone or in combination of two or more. The mixing ratio of the phosphor is, for example, 10% by mass or more, preferably 20% by mass or more, and, for example, 80% by mass or less, and preferably 70% by mass or less with respect to the fluorescent composition. The resin is a matrix in which the phosphor is uniformly dispersed in the fluorescent composition. Examples of the resin include a curable resin and a thermoplastic resin. Preferably, a curable resin is mentioned. Examples of the curable resin include thermosetting resins such as a two-stage reaction-curable resin and a one-stage reaction-curable resin. The two-stage reaction hardening resin has two reaction mechanisms. In the first-stage reaction, it can be B-staged (semi-hardened) from the A-stage state, and secondly, in the second-stage reaction, it can be B-staged. C-staged (completely hardened). That is, the two-stage reaction-curable resin is a thermosetting resin that can be brought into a B-stage state by a moderate heating condition. The B-stage state refers to the state between the liquid A-stage state and the fully cured C-stage state of the thermosetting resin. The hardening and gelation progress slightly, and the compressive elastic modulus is smaller than the C-stage state. The semi-solid state or solid state of the compressive elastic modulus of the state. The 1-stage reaction-curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state in the first-stage reaction. Such a one-stage reaction-curable resin includes a thermosetting resin that can stop the reaction in the middle of the first-stage reaction to change from the A-stage state to the B-stage state, and can be further advanced thereafter. After heating, the first-stage reaction was started, and C-staged (completely hardened) was performed from the B-staged state. That is, the thermosetting resin includes a thermosetting resin that can be brought into a B-stage state. In addition, the one-stage reaction-curable resin may include a thermosetting resin that cannot be controlled in such a way that the one-stage reaction is stopped halfway, that is, cannot be brought into a B-stage state, but can be switched from A at one time. -C-staged (completely hardened) in the staged state. As a thermosetting resin, the thermosetting resin which can be made into a B-stage state is mentioned preferably. Examples of the thermosetting resin that can be brought into the B-stage state include polysiloxane resin, epoxy resin, polyurethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin. Wait. Examples of the thermosetting resin that can be brought into the B-stage state include a silicone resin and an epoxy resin, and more preferably a silicone resin. Examples of the polysiloxane resin include a phenyl-based polysiloxane resin containing a phenyl group in a molecule, and a methyl-based polysiloxane resin containing a methyl group in a molecule. The thermosetting resin can be used alone or in combination of two or more. The blending ratio of the resin is the remainder of the blending ratio of the phosphor (and additives), and is, for example, 20% by mass or more, preferably 30% by mass or more, and, for example, 90% by mass or less with respect to the fluorescent composition. It is preferably 80% by mass or less. The fluorescent composition may contain a known additive (described below) such as light diffusing particles (described below), a filler (described below), and shake-imparting particles (described below) in an appropriate ratio. When the light diffusing particles are contained, the blending ratio of the light diffusing particles is, for example, 1% by mass or more, preferably 10% by mass or more, and, for example, 60% by mass or less with respect to the fluorescent composition. 50% by mass or less. When the filler is contained, the blending ratio of the filler to the fluorescent composition is, for example, 1% by mass or more, preferably 10% by mass or more, and, for example, 60% by mass or less, and preferably 50% by mass or less. . When the shake-stabilizing particles are contained, the blending ratio of the shake-stabilizing particles is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, and, for example, 10% by mass or less with respect to the fluorescent composition, preferably 3% by mass or less. The reflective layer 4 is disposed on the outer side in the left-right direction and the outer side in the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3. The reflective layer 4 has a substantially rectangular frame shape in a plan view extending in the vertical direction. The inner peripheral edge (surface) of the reflective layer 4 is in contact with the entire surface of the side surface of the phosphor layer 3 and covers the entire surface of the side surface. The reflective layer 4 is disposed so as to include the optical semiconductor element 2 and the phosphor layer 3 when projected in the left-right direction or the front-rear direction. The upper edge of the reflective layer 4 coincides with the upper surface of the phosphor layer 3 in the vertical direction, and the lower edge of the reflective layer 4 coincides with the lower surface of the phosphor layer 3 and the opposite surface 22 of the optical semiconductor element 2 in the vertical direction. Consistent. That is, the reflective layer 4 is formed in such a manner that its upper surface becomes the same plane as the upper surface of the phosphor layer 3, and its lower surface becomes the lower surface of the phosphor layer 3 and the facing surface 22 of the optical semiconductor element 2 becomes same plane. The reflective layer 4 preferably satisfies the following formula (1), more preferably satisfies the following formula (1 '), and even more preferably satisfies the following formula (1 "). 90 ° <θ 1 <160 ° …… (1) 100 ° < θ 1 <160 ° ... (1 ') 100 ° <θ 1 < 150 ° …… (1 ") θ 1 A straight line L1 (see FIG. 1B) that connects the end edge (point m) of the light emitting surface 21 of the optical semiconductor element 2 and the inner end edge (point n) of the upper edge of the reflective layer 4 in the left-right direction or the front-rear direction in plan view, and The angle formed by the light emitting surface 21. The distance Y between the light emitting surface 21 of the optical semiconductor element 2 and the inner edge (point n) of the upper edge of the reflective layer 4 (ie, the point of intersection of the inner edge of the reflective layer 4 and the virtual surface 6 (point k)). The distance Y from the inner edge (point n) of the upper edge of the reflective layer 4 is, for example, 10 μm or more, preferably 50 μm or more, more preferably 150 μm or more, and, for example, 800 μm or less, preferably It is 500 μm or less, and more preferably 250 μm or less. When the distance Y is equal to or more than the above lower limit, the color tone can be made good, and the color unevenness can be reduced. On the other hand, by setting the distance Y to be equal to or less than the above-mentioned upper limit, heat dissipation can be improved, and the reliability of the element 1 with two layers can be improved. Furthermore, in the first embodiment, the relational expression (2 ') of A = Y is satisfied. In addition, the reflective layer 4 extends in the vertical direction at a substantially right angle to the facing surface 22 of the optical semiconductor element 2. That is, from the viewpoints of ease of manufacture, directivity, and illuminance, the angle θ formed by the surface of the inner edge of the reflective layer 4 and the lowermost surface of the phosphor layer 3 2 For example, it is 88 ° or more and 92 ° or less, and preferably 90 °. From the viewpoint of directivity, the length of the reflective layer 4 in the left-right direction or the front-rear direction (in particular, the left-right direction or the front-rear direction length of the upper edge, D shown in FIG. 1B) exceeds, for example, 0 μm, and preferably 50 μm or more. , More preferably 100 μm or more, and, for example, 500 μm or less, and more preferably 300 μm or less. The distance from the inner edge of the lower edge of the reflective layer 4 to the edge of the opposing surface 22 of the optical semiconductor element 2 in the left-right direction or the front-rear direction (B in FIG. 1B) is, for example, more than 0 μm, preferably 10 μm or more, more preferably 50 μm or more, even more preferably 70 μm or more, and, for example, 2000 μm or less, preferably 1500 μm or less, more preferably 500 μm or less, and even more preferably 150 μm or less. The reflectance of the reflective layer 4 when it is set to a thickness of 100 μm and is irradiated with light having a wavelength of 450 nm is, for example, 70% or more, preferably 80% or more, more preferably 90% or more, and, for example, 100% or less. By setting the reflectance within the above range, the front illumination can be made better. Regarding the measurement method of the reflectance, the reflectance can be obtained by measuring the reflectance at a wavelength of 450 nm using an ultraviolet-visible near-infrared spectrophotometer and using an optical path confirmation method of an integrating sphere. The light transmittance of the reflective layer 4 when the thickness is 100 μm and is irradiated with light having a wavelength of 450 nm is, for example, 20% or less, and preferably 10% or less. The method for measuring the light transmittance is described in detail in the examples. The reflection layer 4 is formed of a reflection composition containing a light reflection component and a resin, for example. The light-reflecting component is a particle that does not transmit light and reflects it, and examples thereof include white particles such as white inorganic particles and white organic particles. From the viewpoint of illuminance and durability, white inorganic particles are preferably cited. Examples of the material constituting the white inorganic particles include oxides such as titanium oxide, zinc oxide, zirconia, and aluminum oxide, such as lead white (basic lead carbonate), carbonates such as calcium carbonate, and clay minerals such as kaolin. From the viewpoint of illuminance, oxides are preferred, and titanium oxide is more preferred. The average particle diameter of the light reflection component is, for example, 0.1 μm or more, preferably 0.2 μm or more, and, for example, 10 μm or less, and preferably 2.0 μm or less. In the present invention, the average particle diameter of the particles is calculated as a D50 value, and specifically, it is measured by a laser diffraction type particle size distribution meter. The content of the light reflecting component is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and, for example, 50% by mass or less, and preferably 30% by mass or less with respect to the reflection composition. . The resin is a matrix in which the light-reflecting component is uniformly dispersed in the reflective composition. For example, the resin is the same as the resin contained in the fluorescent composition. The blending ratio of the resin is the remainder of the blending ratio of the light-reflecting components (and additives). For example, it is, for example, 10% by mass or more, preferably 20% by mass or more, and more preferably 25% by mass or more with respect to the reflection composition. For example, it is 99% by mass or less, preferably 75% by mass or less, and more preferably 50% by mass or less. The reflective composition may contain additives such as light diffusing particles, fillers, and shake-imparting particles in an appropriate ratio. The light-diffusing particles are transparent particles that diffuse light, and examples thereof include particles having a high refractive index difference from a resin. The refractive index difference between the light-diffusing particles and the resin is, for example, 0.04 or more, preferably 0.10 or more, and, for example, 0.50 or less. Thereby, the diffusion of light in the reflective layer 4 can be improved, and the reflectance can be further improved. Specific examples include light-diffusing inorganic particles, light-diffusing organic particles, and the like. Examples of the light-diffusing inorganic particles include silicon dioxide particles and composite inorganic oxide particles (such as glass particles). The composite inorganic oxide particles are preferably glass particles. Specifically, they contain silicon dioxide, or silicon dioxide and boron oxide as main components, and they also contain aluminum oxide, calcium oxide, zinc oxide, strontium oxide, magnesium oxide, and oxide. Zirconium, barium oxide, and antimony oxide are used as auxiliary components. The content ratio of the main component in the composite inorganic oxide particles is, for example, 40% by mass or more, preferably 50% by mass or more, and, for example, 90% by mass or less, and preferably 80% by mass or less with respect to the composite inorganic oxide particles. . The content ratio of the sub-component is the remainder of the content ratio of the above-mentioned main component. Examples of the light-diffusing organic particles include acrylic resin particles, styrene resin, acrylic-styrene resin particles, polysiloxane resin particles, polycarbonate resin particles, benzoguanamine resin particles, Polyolefin resin particles, polyester resin particles, polyamide resin particles, polyimide resin particles, and the like. The refractive index of the light diffusing particle is, for example, 1.40 or more and 1.60 or less. The refractive index difference between the light-diffusing particles and the resin is, for example, 0.04 or more, preferably 0.10 or more, and, for example, 0.50 or less. The refractive index is measured by, for example, an Abbe refractometer. As the light-diffusing particles, from the viewpoint of light-diffusing properties and durability, light-diffusing inorganic particles are preferred, and silicon dioxide particles and composite inorganic oxide particles are more preferred. The average particle diameter of the light diffusing particles is, for example, 1.0 μm or more, preferably 5.0 μm or more, and, for example, 100 μm or less, and preferably 50 μm or less. When the reflection composition contains light diffusing particles, the content ratio of the light diffusing particles is, for example, 1% by mass or more, preferably 10% by mass or more, and more preferably more than 20% by mass with respect to the reflection composition. For example, it is 50% by mass or less, and preferably 40% by mass or less. The filler is transparent particles and particles having a low refractive index difference from the resin. Specifically, it is a particle whose refractive index difference with a resin is 0.03 or less, preferably 0.01 or less. Thereby, the transparency of the reflective layer 4 can be ensured, and the rigidity of the reflective layer 4 can be improved. The refractive index of the filler is, for example, 1.40 or more, preferably 1.45 or more, and for example, 1.60 or less, and preferably 1.55 or less. Examples of such a filler include particles of the same material as the light-diffusing particles, preferably inorganic particles, and more preferably, silicon oxide particles and composite inorganic oxide particles (glass particles, etc.). The average particle diameter of the filler is, for example, 1.0 μm or more, preferably 5.0 μm or more, and for example, 100 μm or less, and preferably 50 μm or less. Furthermore, among the particles used in the present invention, even if the light-diffusing particles or the filler are the same material, they can be appropriately distinguished based on the refractive index difference with the resin. When the reflection composition contains a filler, the content of the filler relative to the reflection composition is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably 20% by mass or more, and 50, for example. Mass% or less, more preferably 40 mass% or less. The shake-stabilizing particles are particles for imparting or improving shake properties to a reflective composition. From the standpoint of reflectivity, nanometers such as smoked silica (smoke silica) are preferred. Silicon oxide, etc. As the smoked silica, there are, for example, hydrophobic smoke silica whose surface is hydrophobized with a surface treatment agent such as dimethyldichlorosilane and polysiloxane, and hydrophilic smoke dioxide without surface treatment. Either silicon can be used. The average particle diameter of nanometer silicon dioxide (especially smoked silicon dioxide) is, for example, 1 nm or more, preferably 5 nm or more, and, for example, 200 nm or less, and preferably 50 nm or less. The specific surface area (BET (Brunauer–Emmett–Teller) method) of nanometer silica (especially smoked silica) is, for example, 50 m. 2 / g or more, preferably 200 m 2 / g or more, for example, 500 m 2 / g or less. When the reflection composition contains shake-giving particles, the content of the shake-giving particles in the reflection composition is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, and, for example, 10% by mass or less. It is preferably 3% by mass or less. The half-value angle of the light emitted from the element 1 with two layers attached is, for example, 130 degrees or less, preferably 125 degrees or less, more preferably 120 degrees or less, and, for example, 90 degrees or more, and preferably 100 degrees or more. The method of measuring the half-value angle is described in detail in the examples. The alignment angle (COA) of light emitted from the element 1 with two layers attached is, for example, 0.10 degrees or less, preferably 0.05 degrees or less, more preferably 0.03 degrees or less, and, for example, 0.01 degrees or more. The method of measuring the alignment angle is described in detail in the examples. The frontal illuminance of the light emitted from the element 1 with two layers attached is, for example, more than 60%, preferably 100% or more, more preferably 110% or more, even more preferably 120% or more, and 130% or less, for example. The method of measuring the frontal illumination is described in detail in the examples. <Manufacturing Method of First Embodiment> A manufacturing method of the element 1 with two layers in the first embodiment will be described with reference to FIGS. 2A to 2G. The manufacturing method of the element 1 with two layers of the first embodiment includes, for example, a temporary fixing sheet preparation step, a temporary fixing step, a phosphor layer formation step, a phosphor layer removal step, a reflection layer formation step, and a cutting step. First, as shown in FIG. 2A, in a temporary fixing sheet preparation step, a temporary fixing sheet is prepared. A known or commercially available sheet can be prepared as the temporary fixing sheet 40, and for example, the sheet 40 includes a support substrate 41 and a pressure-sensitive adhesive layer 42 disposed on the support substrate 41. Examples of the supporting substrate 41 include a polymer film such as a polyethylene film and a polyester film (PET (polyethylene terephthalate)), for example, a ceramic sheet, such as a metal foil. The pressure-sensitive adhesive layer 42 is disposed on the entire surface of the upper surface of the support substrate 41. The pressure-sensitive adhesive layer 42 has a sheet shape on the upper surface of the support substrate 41. The pressure-sensitive adhesive layer 42 is formed of, for example, a pressure-sensitive adhesive whose pressure-sensitive adhesive force is reduced by processing (for example, irradiation of ultraviolet rays or heating). The thickness of the pressure-sensitive adhesive layer 42 is, for example, 1 μm or more, preferably 10 μm or more, and, for example, 1000 μm or less, and preferably 500 μm or less. Next, as shown in FIG. 2B, in the temporary fixing step, the plurality of optical semiconductor elements 2 are temporarily fixed to the temporary fixing sheet 40 at intervals from each other in the left-right direction and the front-rear direction. Specifically, the opposing surfaces 22 of the plurality of optical semiconductor elements 2 are pressure-sensitively bonded to the upper surface of the pressure-sensitive adhesive layer 42. At this time, the optical semiconductor element 2 is pressed against the pressure-sensitive adhesive layer 42 such that the plurality of electrodes 24 are buried in the pressure-sensitive adhesive layer 42. Next, as shown in FIG. 2C, in the phosphor layer forming step, the phosphor layer 3 is disposed on the temporarily fixed sheet 40 so as to cover the optical semiconductor element 2. Specifically, a phosphor transfer sheet in which the phosphor layer 3 is arranged on the release sheet is prepared, and then the optical semiconductor element 2 is arranged so that the optical semiconductor element 2 is buried in the phosphor layer 3. The temporary fixing sheet 40 is pressed against the phosphor transfer sheet and laminated, and then the release sheet is peeled from the phosphor layer 3. With regard to the production of the phosphor transfer sheet, for example, a fluorescent composition and a solvent are prepared, a varnish of the fluorescent composition is prepared, and the varnish is applied to the surface of the release sheet and allowed to dry. Thereafter, when the fluorescent composition contains a thermosetting resin that can be brought into a B-stage state, the fluorescent composition is B-staged (semi-cured). Specifically, the fluorescent composition is heated. Thereby, the phosphor layer 3 is formed on the release sheet. In this manner, the light emitting surface 21 and the side surface 23 of the optical semiconductor element 2 and the upper surface of the temporarily fixed sheet 40 (the upper surface exposed from the optical semiconductor element 2) are covered with the phosphor layer 3. That is, the optical semiconductor element assembly 9 with a phosphor layer is obtained. Next, as shown in FIG. 2D, in the phosphor layer removing step, a part of the phosphor layer 3 of the optical semiconductor element assembly 9 with a phosphor layer is removed. . Specifically, the phosphor layer 3 between the optical semiconductor elements 2 adjacent to each other is removed so that the phosphor layer 3 has a desired size. For example, the phosphor layer 3 is cut into a substantially grid shape in plan view by using a wide wafer dicing machine (dicing blade) 43 (see FIG. 2D). Thereby, in the optical semiconductor element assembly 9 with a phosphor layer, a gap 44 is formed in a portion after the phosphor layer 3 is removed. Next, as shown in FIG. 2E, in the reflective layer forming step, the reflective layer 4 is formed in the gap 44. Specifically, a reflective layer transfer sheet in which a reflective layer 4 having a desired pattern is arranged on a release sheet is prepared, and then the optical semiconductor element with a phosphor layer is assembled so as to fill the reflective layer 4 into the gap 44. The body 9 presses and laminates the reflective layer transfer sheet, and then peels the release sheet from the reflective layer 4. For the reflection layer transfer sheet, for example, a reflection composition and a solvent are prepared, a varnish of the reflection composition is prepared, and the varnish is applied to the surface of the release sheet and allowed to dry. Thereafter, when the reflective composition contains a thermosetting resin that can be brought into a B-stage state, the reflective composition is B-staged (semi-cured). Specifically, the reflective composition is heated. Thereby, a reflective layer 4 is formed. Thereafter, the reflective layer 4 is patterned by a known method so as to have a pattern corresponding to the gap 44. Furthermore, instead of using a reflective layer transfer sheet, the varnish of the reflective composition may be directly poured into the gap 44 and the varnish may be dried by heating. Thereafter, when the phosphor layer 3 and / or the reflective layer 4 are in a B-stage state or an A-stage state containing a thermosetting resin, the phosphor layer 3 is further heated by, for example, an oven or the like. And / or the reflective layer 4 is hardened (fully hardened, C-staged). As a result, a plurality of optical semiconductor elements 2, a phosphor layer 3, and a reflective layer 4 are laminated on the temporarily fixed sheet 40. That is, an optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is obtained. Next, as shown in FIG. 2F, in the cutting step, the optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is cut (singulated). Specifically, the reflective layer 4 is cut between the optical semiconductor elements 2 adjacent to each other as shown by an imaginary line in FIG. 2E. As a result, the optical semiconductor elements 2 are singulated for each of the plurality of optical semiconductor elements 2. In order to cut the reflective layer 4, for example, a cutting device using a disc-shaped wafer dicing machine having a narrow width, for example, a cutting device using a cutting tool, such as a cutting device such as a laser irradiation device, is used. . Then, as shown by an imaginary line in FIG. 2F, the temporary fixing sheet 40 is peeled from the optical semiconductor element 2. Thereby, the element 1 with two layers is obtained. Furthermore, as shown in FIG. 2G, the element 1 with two layers is flip-chip mounted on an electrode substrate 7 such as a diode substrate to obtain an optical semiconductor device 8 such as a light emitting diode device. The electrode substrate 7 has a substantially flat plate shape. Specifically, the electrode substrate 7 is formed of a laminated board in which a conductor layer is laminated on a top surface of an insulating substrate as a circuit pattern. The insulating substrate includes, for example, a silicon substrate, a ceramic substrate, a plastic substrate (such as a polyimide resin substrate), and the like. The conductor layer is formed of a conductor such as gold, copper, silver, or nickel. The conductive layer includes an electrode (not shown) for electrically connecting to the singular optical semiconductor element 2. The thickness of the electrode substrate 7 is, for example, 25 μm or more, preferably 50 μm or more, and, for example, 2000 μm or less, and preferably 1000 μm or less. <Effects> In the element 1 with two layers in the first embodiment, the reflective layer 4 is disposed on the outside of the left-right direction and the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3. Therefore, light emitted or reflected from the side surface 23 of the phosphor layer 3 and the optical semiconductor element 2 can be reflected upward. Therefore, directivity and frontal illumination are good. The phosphor layer 3 is in contact with the entire surface of the side surface 23 of the optical semiconductor element 2. Therefore, light extraction efficiency becomes good. In addition, the phosphor layer 3 has an outer portion 32 arranged so as to include an imaginary surface 6 extending to the outer side of the optical semiconductor element 2. Therefore, when the phosphor layer 3 is arranged on the light-emitting surface 21 of the optical semiconductor element 2 (for example, refer to FIG. 2C or FIG. 2D), it is assumed that the phosphor layer 3 is in the left-right direction or the front-rear direction from the light-emitting surface 21 of the optical semiconductor element 2. The shift can also suppress the occurrence of uncoated portions on the light-emitting surface 21 of the optical semiconductor element 2 that are not covered by the phosphor layer 3. That is, the outer side portion 32 of the phosphor layer 3 can surely cover the light emitting surface 21 of the optical semiconductor element 2. As a result, it is possible to improve the positional accuracy of the phosphor layer 3 with respect to the optical semiconductor element 2 in the left-right direction and the front-rear direction. Furthermore, the element 1 with two layers is a component for manufacturing an optical semiconductor device 8 such as a light emitting diode device by mounting an electrode substrate 7 such as a diode substrate. According to the element 1 with two layers, it is possible to obtain The positional accuracy is improved, and an optical semiconductor device 8 having good directivity and frontal illuminance can be manufactured. In addition, before the element 1 with two layers is mounted on the electrode substrate 7, it can be connected to a test device or the like to confirm the light emitting performance (directivity, illuminance, hue, etc.). Therefore, it is possible to prevent the recovery operation of the electrode substrate 7 incorporated into the optical semiconductor device 8 when the optical semiconductor device 8 that does not meet the required performance is generated. Therefore, the element 1 with two layers is used as the optical semiconductor device 8. Manufacturing parts are useful. <Modified Example of First Embodiment> In the modified example of the first embodiment, the same components and steps as those of the first embodiment are denoted by the same reference numerals, and detailed descriptions thereof are omitted. In the embodiment of FIG. 1B, the optical semiconductor element 2, the phosphor layer 3, and the reflective layer 4 are formed into a substantially square shape in a plan view, but for example, a part or all of them may be formed into a substantially rectangular shape in a plan view. In this case, it is selected so that the distance X between the edge (point m) of the light emitting surface 21 of the optical semiconductor element 2 and the outer edge (point k) of the light emitting surface 21 of the phosphor layer 3 becomes the shortest. Points m and k. Then, θ is determined according to the selected point m, point k, and the side sectional view at this time. 1 , Θ 2 , A, B, D, X, Y, L1, etc. Then, on the condition that the point m and the point k are selected so that at least X becomes the shortest, it is preferable to satisfy the expressions (1) to (2 '). Furthermore, the above-mentioned θ is determined in a side sectional view orthogonal to the selected side sectional view. 1 In other cases, it is more preferable to satisfy the expressions (1) to (2 '). In the embodiment of FIG. 1B, the phosphor layer 3 is formed such that the upper surface of the phosphor layer 3 and the upper surface of the reflective layer 4 are the same plane, but as shown in FIG. 3, for example, the phosphor layer 3 may be formed thereon. The surface is formed so as to be located on the lower side than the upper surface of the reflective layer 4. In the embodiment of FIG. 3, the relational expression (2 ") of A <Y is satisfied. In addition, in the embodiment of FIG. 1B, the phosphor layer 3 is formed so that its upper surface and the upper surface of the reflective layer 4 are the same plane. 4, for example, as shown in FIG. 4, for example, the phosphor layer 3 may be formed such that its upper surface is positioned higher than the upper surface of the reflective layer 4. In the embodiment of FIG. 4, Y < The relational expression of A. The embodiments of FIGS. 3 and 4 are also included in the present invention, and exhibit the same functions and effects as the embodiment of FIG. 1B. In the present invention, from the viewpoint of directivity, preferably, 1B (A = Y) and the embodiment of FIG. 3 (A <Y). That is, it is preferable to satisfy the relational expression (2) of A ≦ Y. When the relational expression (2) of A ≦ Y is satisfied, The vertical distance (Y-A) from the inner edge (point n) of the upper edge of the reflective layer 4 to the upper surface of the phosphor layer 3 is, for example, 100 μm or less, preferably 50 μm or less, and, for example, is 0 μm or more. When the distance is within the above range, operability can be improved. Further, it is possible to easily hold and transport using a transport device such as a transport collet. In the embodiment of Fig. 1B, the upper surface of the phosphor layer 3 is exposed, but as shown in Fig. 5, for example, a diffusion layer 5 may be disposed on the upper surface of the phosphor layer 3. The diffusion layer 5 has a left-right direction and a front-rear direction. It has a substantially flat plate shape and is formed so that it has the same shape as the inner portion 31 of the phosphor layer 3 in a plan view. The upper surface of the diffusion layer 5 is in the vertical direction and coincides with the upper edge of the reflective layer 4. That is, The diffusion layer 5 is formed such that the upper surface and the upper surface of the reflective layer 4 are on the same plane. The thickness of the diffusion layer 5 (length in the vertical direction, C in FIG. 5) is, for example, 10 μm or more, It is preferably 50 μm or more, for example, 240 μm or less, and preferably 150 μm or less. The light transmittance of the diffusion layer 5 when the thickness is 100 μm and is irradiated with light at a wavelength of 450 nm is 60% or more, for example. It is preferably 80% or more, and for example, 100% or less. The diffusion layer 5 is formed of, for example, a diffusing transparent composition containing a transparent resin and light diffusing particles. Examples of the transparent resin include the same resins as those in the reflective layer 4 Preferably, polysiloxane resin is used. The blending ratio of the resin is, for example, 5 mass% or more, preferably 10 mass% or more, more preferably 25 mass% or more, and, for example, 99 mass% or less, and preferably 80 mass% or less with respect to the diffusing transparent composition. More preferably, it is less than 50% by mass. Examples of the light diffusing particles are the same as the above-mentioned light diffusing particles in the reflective layer 4. Among them, from the standpoint of good light transmittance and forward diffusivity, it is preferably Light-diffusing inorganic particles having a high refractive index difference from transparent resins (such as polysiloxane resins) are mentioned, more preferably, silicon oxide particles, composite inorganic oxide particles, and even more preferably, silicon oxide particles and composite inorganic oxides. The content ratio of the light diffusing particles is, for example, 1% by mass or more, preferably 20% by mass or more, more preferably 50% by mass or more, and 95% by mass or less with respect to the diffusive transparent composition, for example. It is preferably 90% by mass or less, more preferably 75% by mass or less, and even more preferably 40% by mass or less. Moreover, the diffusion-transparent composition may contain well-known additives, such as a filler and shake-giving particle | grains, in an appropriate ratio. Examples of the filler include the same ones as those described for the reflective layer 4, and preferably include silicon oxide particles and composite inorganic oxide particles (glass particles, etc.). When the filler is contained, the content of the filler is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably 20% by mass, or 50% by mass or less with respect to the diffusing transparent composition. It is more preferably 40% by mass or less. Examples of the shake-stabilizing particles include the same ones as the shake-stabilizing particles in the reflective layer 4, and nano-silicon dioxide is preferred. When the shake-stabilizing particles are contained, the blending ratio of the shake-stabilizing particles is, for example, 0.1% by mass or more, preferably 0.5% by mass or more, and, for example, 10% by mass or less, more preferably 3% by mass or less. The embodiment of FIG. 5 is also included in the present invention, and exhibits the same effects as the embodiment of FIG. 1B. From the viewpoint that the directivity and the front illuminance become better, the embodiment shown in FIG. 5 is preferable. In the embodiment of FIG. 5, the diffusion layer 5 is formed so that the upper surface and the upper surface of the reflective layer 4 are the same plane. Although not shown, for example, the upper surface of the diffusion layer 5 may be used. It is formed so as to be located on the upper side or lower side than the upper surface of the reflective layer 4. In the present invention, from the viewpoint of directivity, the embodiment (A + C = Y) in FIG. 5 and the implementation in which the upper surface of the diffusion layer 5 is positioned lower than the upper surface of the reflective layer 4 are preferred. Form (A + C <Y). That is, it is preferably an embodiment that satisfies the relational expression (4) of A + C ≦ Y. Furthermore, the distance (Y- (A + C)) between the inner end edge (point n) of the upper end edge of the reflective layer 4 and the upper surface of the diffusion layer 5 is, for example, 100 μm or less, preferably 50 μm or less, and, for example, It is 0 μm or more. When the distance is within the above range, operability can be improved. In addition, it is possible to easily hold and transport using transport equipment such as a transport collet. <Second Embodiment> A second embodiment of the element 1 with two layers of the present invention will be described with reference to Figs. 6A to 6B. In the second embodiment, the same components and steps as those in the first embodiment are denoted by the same reference numerals, and detailed descriptions thereof are omitted. As shown in FIGS. 6A to 6B, the element 1 with two layers includes an optical semiconductor element 2, a phosphor layer 3, and a reflective layer 4. The phosphor layer 3 is disposed on the upper side of the optical semiconductor element 2 so as to cover the light emitting surface 21 of the optical semiconductor element 2. The phosphor layer 3 has a substantially flat plate shape in the left-right direction and the front-rear direction. The phosphor layer 3 has a substantially rectangular shape in plan view and is formed so as to include the optical semiconductor element 2 when projected in the up-down direction. The phosphor layer 3 includes an inner portion 31 disposed on the upper side of the optical semiconductor element 2 and an outer portion 32 disposed on the outer side of the inner portion 31. The inner portion 31 has a substantially flat plate shape in the left-right direction and the front-rear direction, and is formed so as to have the same shape as the optical semiconductor element 2 in a plan view. That is, the entire lower surface of the inner portion 31 covers the entire surface of the light emitting surface 21 of the optical semiconductor element 2. The outer portion 32 is disposed on the outer side of the inner portion 31, and the peripheral end edge of the inner portion 31 and the inner peripheral end edge of the outer portion 32 are integrally continuous. The outer portion 32 has a substantially flat plate shape in a substantially rectangular frame shape in a plan view, and has the same thickness (length in the vertical direction) as the inner portion 31. The outer portion 32 is arranged on the virtual surface 6. That is, the lower surface of the outer portion 32 coincides with the virtual surface 6. The ratio of the length in the left-right direction or the front-rear direction of the outer portion 32 to the inner portion 31 is, for example, 1: 100 to 50: 100, and preferably 7: 100 to 25: 100. The reflective layer 4 is disposed on the outer side in the left-right direction and the outer side in the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3. The reflective layer 4 has a substantially rectangular frame shape in a plan view extending in the vertical direction. The reflective layer 4 includes an upper portion 4a and a lower portion 4b disposed below the upper portion 4a. The upper portion 4a is disposed on the outer side in the left-right direction and the outer side in the front-rear direction of the phosphor layer 3, contacts the entire surface of the side surface of the phosphor layer 3, and covers the entire surface of the side surface. That is, the inner peripheral end surface of the upper portion 4 a is in contact with the entire side surface of the phosphor layer 3. The upper portion 4a is formed so as to include the phosphor layer 3 when projected in the left-right direction or the front-rear direction. Specifically, in the vertical direction, the upper end edge of the upper portion 4a (the upper end edge of the reflection layer 4) is consistent with the upper surface of the phosphor layer 3, and the lower end edge of the lower portion 4b is consistent with the lower surface of the phosphor layer 3. An upper end of the lower portion 4b is integrally continuous with a lower end of the upper portion 4a, and is formed so as to become wider than the upper portion 4a toward the inner side in the left-right direction and the inner side in the front-rear direction. The lower portion 4 b is disposed on the outer side in the left-right direction and the outer side in the front-rear direction of the optical semiconductor element 2, contacts the entire surface of the side surface 23 of the optical semiconductor element 2, and covers the entire surface of the side surface 23. That is, the inner peripheral end surface of the lower portion 4 b is in contact with the entire surface of the side surface 23 of the optical semiconductor element 2. The lower portion 4b is formed so as to include the optical semiconductor element 2 when projected in the left-right direction or the front-rear direction. Specifically, in the vertical direction, the upper end edge of the lower portion 4b is consistent with the light emitting surface 21 of the optical semiconductor element 2, and the lower end edge (lower end edge of the reflective layer 4) of the lower portion 4b is consistent with the opposing surface 22 of the optical semiconductor element 2. That is, the reflective layer 4 is such that its upper surface is the same plane as the upper surface of the phosphor layer 3, and its lower surface is the same plane as the lower surface of the phosphor layer 3 and the facing surface 22 of the optical semiconductor element 2. Way to form. The reflective layer 4 preferably satisfies the above formula (1), more preferably satisfies the above formula (1 '), and even more preferably satisfies the above formula (1 "). In the reflective layer 4, the light emitting surface of the optical semiconductor element 2 The distance Y in the up and down direction of the inner end edge of 21 and the upper edge of the reflective layer 4 is the same as in the first embodiment. That is, in the second embodiment, the relational expression (2 ') of A = Y is satisfied. Within the reflective layer 4 Angle θ formed by the edge surface and the lowermost surface of the phosphor layer 3 2 The length in the left-right direction or the front-rear direction of the reflective layer 4 (especially the length in the left-right direction or the front-rear direction of the upper edge) D is the same as that of the first embodiment. The distance B from the inner edge of the lower edge of the reflective layer 4 to the edge of the facing surface 22 of the optical semiconductor element 2 in the left-right direction or the front-back direction is 0 μm. The distance X is the same as in the first embodiment. The distance B in the left-right direction or the front-rear direction satisfies the relational expression (3) where B <X. <Manufacturing Method of the Second Embodiment> A manufacturing method of the element 1 with two layers in the second embodiment will be described with reference to Figs. 7A to 7E. The manufacturing method of the element 1 with two layers in the second embodiment includes, for example, a phosphor layer preparation step, an optical semiconductor element placement step, a phosphor layer removal step, a reflection layer formation step, and a cutting step. First, as shown in FIG. 7A, the phosphor layer 3 is prepared in the phosphor layer preparation step. For example, the phosphor layer transfer sheet in the phosphor layer forming step in the first embodiment is used. Next, as shown in FIG. 7B, in the step of arranging the optical semiconductor elements, a plurality of optical semiconductor elements 2 are arranged on the phosphor layer 3 at intervals in the left-right direction and the front-rear direction. Specifically, a plurality of optical semiconductor elements 2 are arranged on the phosphor layer 3 so that the upper surface of the phosphor layer 3 is in contact with the light emitting surface 21 of the optical semiconductor element 2. Thereby, an optical semiconductor element assembly 9 with a phosphor layer is obtained. Next, as shown in FIG. 7C, in the phosphor layer removing step, a part of the phosphor layer 3 of the optical semiconductor element assembly 9 with the phosphor layer is removed. For example, as described above in the phosphor layer removing step of the first embodiment, the phosphor layer 3 is cut into a roughly grid shape in plan view using a wide wafer dicing machine (dicing blade) 43 (see FIG. 7B). Thereby, in the optical semiconductor element assembly 9 with a phosphor layer, a gap 44 is formed in a portion after the phosphor layer 3 is removed. Next, as shown in FIG. 7D, in the step of forming the reflective layer, a reflective layer 4 is formed between the gap 44 and the adjacent plurality of optical semiconductor elements 2. For example, as described in the first embodiment, the transfer of a sheet using a reflective layer or the pouring of a varnish of a reflective composition is performed. Thereafter, when the phosphor layer 3 and / or the reflective layer 4 are in a B-stage state or an A-stage state containing a thermosetting resin, the phosphor layer 3 is further heated by, for example, an oven or the like. And / or the reflective layer 4 is hardened (fully hardened, C-staged). Thereby, the optical semiconductor element assembly 10 with a reflection layer and a phosphor layer is obtained. Next, as shown in FIG. 7F, in the cutting step, the optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is cut (singulated). Thereby, the element 1 with two layers is obtained. <Effects> In the element 1 with two layers in the second embodiment, the reflective layer 4 is in contact with both the optical semiconductor element 2 and the phosphor layer 3 so as to be in contact with the left-right outer side and the front-rear outer side. Way to configure. Therefore, light emitted or reflected from the side surface 23 of the phosphor layer 3 and the optical semiconductor element 2 can be reflected upward. Therefore, directivity and frontal illumination are good. The reflective layer 4 is in contact with the entire surface of the side surface 23 of the optical semiconductor element 2. Therefore, directivity and frontal illumination are better. In addition, the element 1 with two layers satisfies the relational expression (3) of B <X. Therefore, the front illumination is better. In addition, the phosphor layer 3 includes an outer portion 32 on an imaginary surface 6 extending to the outer side of the optical semiconductor element 2. Therefore, the lower surface of the phosphor layer 3 is larger than the light emitting surface 21 of the optical semiconductor element 2. Therefore, when the phosphor layer 3 is arranged on the light emitting surface 21 of the optical semiconductor element 2 (for example, refer to FIG. 7B), even if the phosphor layer 3 is shifted from the light emitting surface 21 of the optical semiconductor element 2 in the left-right direction or the front-rear direction, It is also possible to suppress the occurrence of uncoated portions on the light-emitting surface 21 of the optical semiconductor element 2 that are not covered by the phosphor layer 3. Therefore, the outer side portion 32 of the phosphor layer 3 can surely cover the light emitting surface 21 of the optical semiconductor element 2. As a result, it is possible to improve the positional accuracy of the phosphor layer 3 with respect to the optical semiconductor element 2 in the left-right direction and the front-rear direction. Next, the element 1 with two layers is a component for manufacturing an optical semiconductor device 8 such as a light emitting diode device by mounting an electrode substrate 7 such as a diode substrate. According to the element 1 with two layers, it is possible to obtain The positional accuracy is improved, and an optical semiconductor device 8 having good directivity and frontal illuminance can be manufactured. In addition, before the element 1 with two layers is mounted on the electrode substrate 7, it can be connected to a test device or the like to confirm the light emitting performance (directivity, illuminance, hue, etc.). Therefore, it is possible to prevent the recovery operation of the electrode substrate 7 incorporated into the optical semiconductor device 8 when the optical semiconductor device 8 that does not meet the required performance is generated. Therefore, the element 1 with two layers is used as the optical semiconductor device 8. Manufacturing parts are useful. <Modified Example of the Second Embodiment> In the modified example of the second embodiment, the same components and steps as those of the second embodiment are denoted by the same reference numerals, and detailed descriptions thereof are omitted. In the embodiment of FIG. 6B, the side surface of the outer portion 32 of the phosphor layer 3 is formed vertically in the up-down direction, but as shown in FIG. 8, for example, the side surface of the outer portion 32 of the phosphor layer 3 is further reflected. The inner end surface of the upper part 4a of the layer 4 may be formed in a wedge shape which becomes wider toward the upper side. The embodiment of FIG. 8 is also included in the present invention, and exhibits the same effects as the embodiment of FIG. 1B. The phosphor layer 3 is formed such that the upper surface of the phosphor layer 3 and the upper surface of the reflective layer 4 are on the same plane. Although not shown, for example, the phosphor layer 3 may have its upper surface positioned more than the reflective layer 4. The upper surface is formed closer to the upper side or lower side. This embodiment also exhibits the same effects as the embodiment of FIG. 1B. In the present invention, from the viewpoint of directivity, the embodiment shown in FIG. 6B (A = Y) or the upper surface of the phosphor layer 3 on the lower side than the upper surface of the reflective layer 4 is preferred. Embodiment (A <Y). That is, it is preferable to satisfy the relational expression (2) of A ≦ Y. In the embodiment of FIG. 6B, the upper surface of the phosphor layer 3 is exposed, but as shown in FIG. 9, for example, a diffusion layer 5 may be disposed on the upper surface of the phosphor layer 3. The embodiment of FIG. 9 is also included in the present invention, and exhibits the same effects as the embodiment of FIG. 6B. From the viewpoint that the directivity and the front illuminance become better, the embodiment shown in FIG. 9 is preferable. In the embodiment of FIG. 9, the diffusion layer 5 is formed so that the upper surface and the upper surface of the reflective layer 4 are the same plane. Although not shown, for example, the upper surface of the diffusion layer 5 may be used. It is formed so as to be located on the upper side or lower side than the upper surface of the reflective layer 4. In the present invention, from the viewpoint of directivity, the embodiment (A + C = Y) in FIG. 9 and the implementation in which the upper surface of the diffusion layer 5 is positioned lower than the upper surface of the reflective layer 4 are preferred. Form (A + C <Y). That is, it is preferable to satisfy the relational expression (4) of A + C ≦ Y. <Third Embodiment> A third embodiment of the element 1 with two layers of the present invention will be described with reference to Figs. 10A to 10B. In the third embodiment, the same reference numerals are given to the same components and steps as those in the first and second embodiments, and detailed descriptions thereof are omitted. As shown in FIGS. 10A to 10B, the two-layered element 1 includes an optical semiconductor element 2, a phosphor layer 3, and a reflective layer 4. The phosphor layer 3 is arranged on the upper side and the side of the optical semiconductor element 2 so as to cover all of the light emitting surface 21 and a part of the side surface 23 of the optical semiconductor element 2. The phosphor layer 3 integrally includes an inner portion 31 disposed on the upper side of the optical semiconductor element 2 and an outer portion 32 disposed on the outer side of the inner portion 31. The outer portion 32 has a substantially rectangular frame shape in plan view extending in the vertical direction. The outer portion 32 includes an upper portion 32a and a lower portion 32b. The outer portion 32 includes an imaginary surface 6 extending between the upper portion 32 a and the lower portion 32 b along the light emitting surface 21 in the left-right direction and the front-rear direction of the optical semiconductor element 2. The lower portion 32 b of the outer portion 32 is disposed on the outer side of the optical semiconductor element 2 so as to contact the upper portion of the side surface 23 of the optical semiconductor element 2 and cover the upper portion of the side surface 23. That is, the inner peripheral end surface of the lower portion 32 b is in contact with the upper portion of the side surface 23 of the optical semiconductor element 2. The upper portion 32a is formed so that its lower end is integrally connected to the upper end of the lower portion 32b and faces the upper side. The reflective layer 4 is disposed on the outer side in the left-right direction and the outer side in the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3. The reflective layer 4 has a substantially rectangular frame shape in a plan view extending in the vertical direction. The reflective layer 4 includes an upper portion 4a and a lower portion 4b disposed below the upper portion 4a. The upper portion 4a is disposed on the outer side in the left-right direction and the outer side in the front-rear direction of the phosphor layer 3, contacts the entire surface of the side surface of the phosphor layer 3, and covers the entire surface of the side surface. An upper end of the lower portion 4b is integrally continuous with a lower end of the upper portion 4a, and is formed so as to become wider inward in the left-right direction and inward in the front-rear direction than the upper portion 4a. The lower portion 4 b is disposed on the outer side in the left-right direction and the outer side in the front-rear direction of the optical semiconductor element 2, contacts the lower portion of the side surface 23 of the optical semiconductor element 2, and covers the lower portion of the side surface 23. <The manufacturing method of 3rd Embodiment> The manufacturing method of the element 1 with 2 layers of 2nd Embodiment is demonstrated with reference to FIG. 11A-FIG. 11G. The manufacturing method of the element 1 with two layers in the third embodiment includes, for example, a temporary fixing sheet preparation step, a temporary fixing step, a phosphor layer forming step, a phosphor layer removing step, a reflecting layer forming step, and a cutting step. First, as shown in FIG. 11A, in the temporary fixing sheet preparation step, the temporary fixing sheet 40 is prepared in the same manner as in FIG. 2A. Next, as shown in FIG. 11B, in the temporary fixing step, the plurality of optical semiconductor elements 2 are temporarily fixed to the fixing sheet 40 at intervals in the left-right direction and the front-rear direction in the same manner as in FIG. 2B. Next, as shown in FIG. 11C, in the phosphor layer forming step, the phosphor layer 3 is disposed on the spacer 45 so as to cover the upper portion of the optical semiconductor element 2. Specifically, first, the spacer 45 is arranged on the temporarily fixed sheet 40. Thereafter, a phosphor transfer sheet in which the phosphor layer 3 is arranged on the release sheet is prepared, and then the spacer 45 is pressed against the phosphor 45 so that the upper portion of the optical semiconductor element 2 is buried in the phosphor layer 3. The body transfer sheet is laminated and laminated, and then the release sheet is peeled from the phosphor layer 3. Regarding the production of the phosphor transfer sheet, as the phosphor layer of the phosphor transfer sheet of the third embodiment, it is preferable to use B, which is more than the phosphor transfer sheet used in the first embodiment. The hardening degree of the phosphor layer in the -stage state is further enhanced. That is, the storage shear elastic force of the phosphor layer of the third embodiment is preferably adjusted so as to be higher than the storage shear elastic force of the phosphor layer of the first embodiment. Thereby, as shown in FIG. 11C, only the upper portion of the optical semiconductor element 2 can be covered by the phosphor layer 3, and the shape of the phosphor layer 3 can be maintained in a flat shape without the support of the temporary fixing sheet 40. In this manner, the entire surface of the light emitting surface 21 and the upper portion of the side surface 23 of the optical semiconductor element 2 are covered with the phosphor layer 3. That is, an optical semiconductor element assembly 9 with a phosphor layer can be obtained. Next, as shown in FIG. 11D, in the phosphor layer removing step, a part of the phosphor layer 3 of the optical semiconductor element assembly 9 with a phosphor layer is removed in the same manner as in FIG. 2D. Thereby, in the optical semiconductor element assembly 9 with a phosphor layer, a gap 44 is formed in a portion after the phosphor layer 3 is removed. Next, as shown in FIGS. 11E and 11F, in the step of forming the reflective layer, the reflective layer 4 is formed in the gap 44 and the interval 46 between the adjacent optical semiconductor elements 2. Specifically, as shown in FIG. 11E, for example, the protective sheet 47 is disposed on the upper surface of the optical semiconductor element assembly 9 with a phosphor layer, and then the optical semiconductor element assembly 9 with a phosphor layer is disposed in a vacuum. The vacuum-tight space 49 such as the inside of the chamber 48 is then placed on the temporarily fixed sheet 40 so as to surround the varnish 4a of the reflective composition so as to surround the optical semiconductor element assembly 9 with a phosphor layer. Then, the vacuum-tight space 49 is released The vacuum state is restored to atmospheric pressure. Thereby, the varnish 4a of the reflective composition flows into the gap 44 and the space 46 and is filled by the pressure of the atmospheric pressure. Thereafter, the protective sheet 47 is peeled off, and then the varnish 4a of the reflective composition is dried by heating to form the reflective layer 4. Thereafter, when the phosphor layer 3 and / or the reflective layer 4 are in a B-stage state or an A-stage state containing a thermosetting resin, the phosphor layer 3 is further heated by, for example, an oven or the like. And / or the reflective layer 4 is hardened (fully hardened, C-staged). Thereby, as shown in FIG. 11F, a plurality of optical semiconductor elements 2, a phosphor layer 3, and a reflective layer 4 are laminated on the temporarily fixed sheet 40. That is, an optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is obtained. Next, as shown in FIG. 11G, in the cutting step, the optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is cut (singulated) in the same manner as in FIG. 2F. Then, as shown by an imaginary line in FIG. 11G, the temporary fixing sheet 40 is peeled from the optical semiconductor element 2. Thereby, the element 1 with two layers is obtained. The second-layered element 1 of the third embodiment also exhibits the same function and effect as the second-layered element 1 of the first embodiment. In addition, from the viewpoint that the light extraction efficiency becomes good, the phosphor layer 3 preferably includes the element 1 with two layers of the first embodiment in contact with the entire side surface 23 of the optical semiconductor element 2. The phosphor layer 3 is formed such that the upper surface of the phosphor layer 3 and the upper surface of the reflective layer 4 are on the same plane. Although not shown, for example, the phosphor layer 3 may have its upper surface positioned more than the reflective layer 4. The upper surface is formed closer to the upper side or lower side. In the third embodiment, although not shown, a diffusion layer 5 may be provided on the phosphor layer 3. [Examples] The present invention will be described more specifically below with reference to examples and comparative examples, but the present invention is not limited to the examples and comparative examples. Specific numerical values such as blending ratios (including ratios), physical property values, and parameters used in the following descriptions can replace the corresponding blending ratios (including ratios), physical property values, and parameters described in the above-mentioned "Embodiment" Upper limit value (values defined as "below", "not reached") or lower limit value (values defined as "above", "exceeded"). (Preparation of Fluorescent Composition) In the fluorescent compositions of Examples and Comparative Examples, a polysiloxane resin (trade name "OE6635A / B"", Manufactured by Toray Dow Corning, refractive index 1.54) 34 to 45 parts by mass, phosphor (trade name" YAG432 ", manufactured by Nemoto Lumi-Materials) 8 to 30 parts by mass, glass (SiO 2 / Al 2 O 3 / CaO / MgO = 60/20/15/5 (mass%), average particle size 20 μm, refractive index 1.55, filler material) 35 to 46 parts by mass, and nanometer silicon dioxide (fumigated silicon dioxide, average A particle diameter of 20 nm, trade name "R976S", manufactured by Japan Aerosil Corporation) 1 part by mass was mixed so that the entire amount became 100 parts by mass to prepare a fluorescent composition. (Preparation of reflection composition A) 65 parts by mass of polysilicone resin (same as above), 30 parts by mass of glass (same as above), titanium oxide (trade name "R706", manufactured by Dupon Corporation, average particle diameter 0.36 μm (Light reflecting component) 4 parts by mass and 1 part by mass of nanometer silicon dioxide (same as above) were mixed to prepare a reflection composition A. (Preparation of reflection composition B) 39 parts by mass of polysilicone resin (same as above), 30 parts by mass of glass (same as above), 30 parts by mass of titanium oxide (same as above), and nanometer silicon dioxide ( Same as above) 1 part by mass was mixed to prepare the reflection composition B. (Production of diffusion layer) 39 parts by mass of polysiloxane resin (same as above), 30 parts by mass of glass (same as above), and silicon dioxide (spherical fused silica, "FB-3SDC", manufactured by Denka Corporation , An average particle diameter of 3.4 μm, a refractive index of 1.45, 30 parts by mass of light-diffusing inorganic particles), and 1 part by mass of nanometer silicon dioxide (same as above) are mixed and degassed by stirring to prepare a diffusion transparent composition (varnish). The diffusion transparent composition was coated on a polyester film and heated at 90 ° C. for 30 minutes, thereby manufacturing a hardened diffusion layer. (Examples 1 to 10 and Comparative Examples 1 to 3) As the optical semiconductor element, LED elements each having a length in the left-right direction and a length in the front-back direction (light-emitting surface) of 1143 μm and a length in the vertical direction of 150 μm were used. Examples and comparisons were made using the above-mentioned fluorescent composition and reflective composition A and B in accordance with FIGS. 2A to 2F, 7A to 7E, or 12 to 13 so as to have the shapes and dimensions described in Table 1. An example is an optical semiconductor device with a reflective layer and a phosphor layer. Furthermore, regarding Example 10, a diffusion layer in a semi-hardened state was arranged on the lower surface of the phosphor layer after preparing the phosphor layer in FIG. 7A, and the diffusion layer was also hardened in FIG. 7D. 7A to 7E to manufacture an optical semiconductor device with a reflective layer and a phosphor layer. In Comparative Example 3, an optical semiconductor device with a phosphor layer was manufactured without providing a reflective layer. For each of the obtained examples and comparative examples, the following items were measured. (Measurement of thickness) The thickness of the phosphor layer and the diffusion layer was measured with a measuring meter (linear gauge, manufactured by Citizen Corporation). (Measurement of Reflectivity of Reflective Layer) The reflective compositions A and B were applied and cured to prepare reflective layers A and B having a thickness of 100 μm for measurement. In the reflection layers A and B for the reflectance measurement, an ultraviolet-visible near-infrared spectrophotometer (UV-vis) ("V-670", manufactured by Japan Spectroscopy Corporation) was used, and an optical path confirmation method of an integrating sphere (wavelength range) was used. 380 ~ 800 nm) Measure the reflectance at 450 nm. The results are shown in Table 1. (Measurement of light transmittance of reflection layer and diffusion layer) A diffusion transparent composition was applied and cured to prepare a diffusion layer having a thickness of 100 μm for measurement. In the reflective layers A and B for measurement and the diffusion layer for measurement, the light transmittance (%) at a wavelength of 450 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Tech). As a result, the light transmittance of the reflective layers A and B was 20% or less, and the light transmittance of the diffusion layer was 60% or more. (Measurement of chromaticity) The chromaticity (CIE, y) was measured by an instant multi-photometry system ("MCPD-9800", manufactured by Otsuka Electronics Co., Ltd.) under the following measurement conditions. Current value: 300 mA Voltage: 3.5 V Exposure time: 19 ms Accumulated times: 16 times (measurement of half-value angle, alignment angle, and frontal illuminance) Using the instantaneous multi-measurement system ("MCPD-9800", manufactured by Otsuka Electronics Corporation) ) The half-value angle, alignment angle, and frontal illuminance were measured under the following conditions. Current value: 300 mA Voltage: 3.5 V Measuring distance: 316 mm Exposure time: 300 ms Accumulation times: 1 Horizontal angle of sample setting: 90 ° Vertical angle: -90 ° ~ 90 ° [Table 1] The above invention is provided as an exemplary embodiment of the present invention, but it is merely an example and should not be interpreted in a limited manner. Variations of the present invention, which are obvious to those skilled in the art, are included in the following patent application scope. [Industrial Applicability] The optical semiconductor device with a reflective layer and a phosphor layer of the present invention can be applied to various industrial products, for example, it can be used for optical applications such as white optical semiconductor devices.

1‧‧‧附二層之元件 1‧‧‧ with two layers of components

2‧‧‧光半導體元件2‧‧‧Optical Semiconductor Element

3‧‧‧螢光體層3‧‧‧ phosphor layer

4‧‧‧反射層4‧‧‧Reflective layer

4a‧‧‧上部4a‧‧‧upper

4b‧‧‧下部4b‧‧‧lower

5‧‧‧擴散層5‧‧‧ diffusion layer

6‧‧‧假想面6‧‧‧imaginary noodles

7‧‧‧電極基板7‧‧‧ electrode substrate

8‧‧‧光半導體裝置8‧‧‧ Optical Semiconductor Device

9‧‧‧光半導體元件集合體9‧‧‧ optical semiconductor element assembly

10‧‧‧光半導體元件集合體10‧‧‧Optical semiconductor component assembly

21‧‧‧發光面21‧‧‧ light emitting surface

22‧‧‧對向面22‧‧‧ opposite

23‧‧‧側面23‧‧‧ side

24‧‧‧電極24‧‧‧ electrode

31‧‧‧內側部分31‧‧‧ inside part

32‧‧‧外側部分32‧‧‧ outside part

32a‧‧‧上側部分32a‧‧‧upper part

32b‧‧‧下側部分32b‧‧‧ lower part

40‧‧‧暫時固定片材40‧‧‧ temporarily fixing sheet

41‧‧‧支持基材41‧‧‧Support substrate

42‧‧‧感壓接著劑層42‧‧‧Pressure-sensitive adhesive layer

43‧‧‧晶圓切割機43‧‧‧ Wafer Cutting Machine

44‧‧‧間隙44‧‧‧ Clearance

45‧‧‧間隔件45‧‧‧ spacer

46‧‧‧間隔46‧‧‧ interval

47‧‧‧保護片材47‧‧‧protective sheet

48‧‧‧真空腔室48‧‧‧vacuum chamber

49‧‧‧真空密閉空間49‧‧‧Vacuum enclosed space

A‧‧‧距離A‧‧‧distance

B‧‧‧距離B‧‧‧ Distance

C‧‧‧厚度C‧‧‧thickness

D‧‧‧長度D‧‧‧ length

k‧‧‧外端緣k‧‧‧ outer edge

L1‧‧‧直線L1‧‧‧Straight

m‧‧‧端緣m‧‧‧ edge

n‧‧‧內端緣n‧‧‧inner edge

X‧‧‧距離X‧‧‧distance

Y‧‧‧距離 Y‧‧‧distance

θ1‧‧‧角度θ 1 ‧‧‧ angle

θ2‧‧‧角度θ 2 ‧‧‧ angle

圖1A~圖1B係本發明之附反射層及螢光體層之光半導體元件之第1實施形態,圖1A表示俯視圖,圖1B表示圖1A之A-A之剖視圖。 圖2A~圖2G係圖1之附反射層及螢光體層之光半導體元件之製造方法之步驟圖,圖2A表示暫時固定片材準備步驟,圖2B表示暫時固定步驟,圖2C表示螢光體層形成步驟,圖2D表示螢光體層去除步驟,圖2E表示反射層形成步驟,圖2F表示切斷步驟,圖2G表示安裝步驟。 圖3係第1實施形態之變化例,其表示螢光體層之上表面位於較反射層之上端更靠下側之形態。 圖4係第1實施形態之變化例,其表示螢光體層之上表面位於較反射層之上端更靠上側之形態。 圖5係第1實施形態之變化例,其表示於螢光體層之上表面具備擴散層之形態。 圖6A~圖6B係本發明之附反射層及螢光體層之光半導體元件之第2實施形態,圖6A表示俯視圖,圖6B表示圖6A之B-B之剖視圖。 圖7A~圖7E係圖6之附反射層及螢光體層之光半導體元件之製造方法之步驟圖,圖7A表示螢光層準備步驟,圖7B表示元件配置步驟,圖7C表示螢光層去除步驟,圖7D表示反射層形成步驟,圖7E表示切斷步驟。 圖8係第2實施形態之變化例,其表示將螢光體層之側面形成為隨著朝向上側而成為寬幅之形態。 圖9係第2實施形態之變化例,其表示於螢光體層之上表面具備擴散層之形態。 圖10A~圖10B係本發明之附反射層及螢光體層之光半導體元件之第3實施形態,圖10A表示俯視圖,圖10B表示圖10A之A~A之剖視圖。 圖11A~圖11G係圖10之附反射層及螢光體層之光半導體元件之製造方法之步驟圖,圖11A表示暫時固定片材準備步驟,圖11B表示暫時固定步驟,圖11C表示螢光體層形成步驟,圖11D表示螢光體層去除步驟,圖11E表示反射層形成步驟(反射層形成前),圖11F表示反射層形成步驟(反射層形成後),圖11G表示切斷步驟。 圖12係比較例之附反射層及螢光體層之光半導體元件,其表示未於螢光體層之側部設置反射層之形態。 圖13係比較例之附反射層及螢光體層之光半導體元件,其表示螢光體層不具備向光半導體元件之外側延伸之外側部分之形態。1A to 1B are a first embodiment of an optical semiconductor device with a reflective layer and a phosphor layer according to the present invention. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along A-A of FIG. 1A. FIG. 2A to FIG. 2G are the steps of the manufacturing method of the optical semiconductor device with the reflective layer and the phosphor layer of FIG. 1, FIG. 2A shows the preparation steps for temporarily fixing the sheet, FIG. 2B shows the temporary fixing steps, and FIG. 2C shows the phosphor layer FIG. 2D shows a phosphor layer removing step, FIG. 2E shows a reflective layer forming step, FIG. 2F shows a cutting step, and FIG. 2G shows a mounting step. FIG. 3 is a modification example of the first embodiment, and shows a form in which the upper surface of the phosphor layer is positioned lower than the upper end of the reflective layer. FIG. 4 is a modification example of the first embodiment, which shows a state in which the upper surface of the phosphor layer is positioned higher than the upper end of the reflective layer. FIG. 5 is a modification example of the first embodiment, and shows a form in which a diffusion layer is provided on the upper surface of the phosphor layer. 6A to 6B are a second embodiment of the optical semiconductor device with a reflective layer and a phosphor layer according to the present invention. FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along B-B of FIG. 6A. FIGS. 7A to 7E are steps of a method for manufacturing an optical semiconductor device with a reflection layer and a phosphor layer in FIG. 6. FIG. 7A shows a preparation step for a fluorescent layer, FIG. 7B shows a component arrangement step, and FIG. 7C shows a fluorescent layer removal. FIG. 7D shows a reflection layer forming step, and FIG. 7E shows a cutting step. FIG. 8 is a modification example of the second embodiment, and shows a form in which the side surface of the phosphor layer is widened as it faces the upper side. FIG. 9 is a modification example of the second embodiment, and shows a mode in which a diffusion layer is provided on the upper surface of the phosphor layer. 10A to 10B are a third embodiment of the optical semiconductor device with a reflective layer and a phosphor layer according to the present invention. FIG. 10A is a plan view, and FIG. 10B is a cross-sectional view of A to A of FIG. 10A. FIGS. 11A to 11G are process diagrams of a method for manufacturing an optical semiconductor device with a reflective layer and a phosphor layer in FIG. 10, FIG. 11A shows a preparation step for temporarily fixing a sheet, FIG. 11B shows a temporary fixing step, and FIG. 11C shows a phosphor layer FIG. 11D shows the phosphor layer removal step, FIG. 11E shows the reflection layer formation step (before the reflection layer formation), FIG. 11F shows the reflection layer formation step (after the reflection layer formation), and FIG. 11G shows the cutting step. FIG. 12 shows an optical semiconductor device with a reflective layer and a phosphor layer of a comparative example, and shows a state where a reflective layer is not provided on the side of the phosphor layer. FIG. 13 shows an optical semiconductor device with a reflective layer and a phosphor layer in a comparative example, and shows a form in which the phosphor layer does not have an outer portion extending to the outer side of the optical semiconductor device.

Claims (8)

一種附反射層及螢光體層之光半導體元件,其具備: 光半導體元件,其具有發光面及相對於上述發光面於上下方向隔開間隔而對向配置之對向面; 螢光體層,其至少被覆上述發光面;及 反射層,其相對於上述光半導體元件及上述螢光體層之兩者,而配置於與上述上下方向正交之正交方向外側;且 上述螢光體層具有: 內側部分,其配置於上述光半導體元件之上側;及 外側部分,其配置於沿上述發光面向上述光半導體元件之外側延伸之假想面上或以包含上述假想面之方式而配置。An optical semiconductor element with a reflective layer and a phosphor layer includes: an optical semiconductor element having a light-emitting surface and an opposite surface disposed opposite to each other at intervals in the vertical direction with respect to the light-emitting surface; Covering at least the light-emitting surface; and a reflective layer, which is disposed outside the orthogonal direction orthogonal to the up-down direction with respect to both the optical semiconductor element and the phosphor layer; and the phosphor layer has: an inner portion Is disposed on the upper side of the optical semiconductor element; and the outer portion is disposed on an imaginary plane extending along the light emitting surface outside the optical semiconductor element or in a manner including the imaginary plane. 如請求項1之附反射層及螢光體層之光半導體元件,其滿足下述式(1)及(2): 90°<θ1 <160°……(1) A≦Y……(2) (式中,θ1 表示連結上述光半導體元件之上述發光面之端緣與上述反射層之上端緣之內端緣之直線、與上述發光面所成之角度; A表示上述發光面與上述螢光體層之上表面之上下方向距離; Y表示上述發光面與上述反射層之上端緣之內端緣之上下方向距離)。For example, the optical semiconductor device with a reflective layer and a phosphor layer in claim 1, which satisfies the following formulas (1) and (2): 90 ° <θ 1 <160 ° …… (1) A ≦ Y …… (2 ) (Where θ 1 represents an angle formed by a straight line connecting the end edge of the light emitting surface of the optical semiconductor element with the inner end edge of the upper edge of the reflective layer and the light emitting surface; A represents the light emitting surface and the above The distance between the upper and lower directions of the upper surface of the phosphor layer; Y represents the distance between the upper and lower edges of the light emitting surface and the upper end edge of the reflective layer). 如請求項1之附反射層及螢光體層之光半導體元件,其中上述反射層於100 μm厚度之以450 nm波長之光照射時之反射率為80%以上。For example, the optical semiconductor device with a reflective layer and a phosphor layer of claim 1, wherein the above-mentioned reflective layer has a reflectance of more than 80% when it is irradiated with light having a wavelength of 450 nm with a thickness of 100 μm. 如請求項1之附反射層及螢光體層之光半導體元件,其滿足下述式(3): B<X……(3) (式中,B表示上述光半導體元件之上述對向面之端緣、與上述反射層之下端緣之內端緣之距離; X表示上述光半導體元件之上述發光面之端緣、與上述螢光體層之上述假想面上之外端緣之上述正交方向距離)。For example, the optical semiconductor device with a reflective layer and a phosphor layer in claim 1, which satisfies the following formula (3): B <X ... (3) (where B represents the opposite surface of the optical semiconductor device. The edge, the distance from the inner edge of the lower edge of the reflective layer; X represents the orthogonal direction of the edge of the light emitting surface of the optical semiconductor element, and the outer edge of the imaginary plane of the phosphor layer; distance). 如請求項1之附反射層及螢光體層之光半導體元件,其中上述反射層接觸於上述光半導體元件之上述發光面與上述對向面之間之側面整個面。For example, the optical semiconductor device with a reflective layer and a phosphor layer according to claim 1, wherein the reflective layer is in contact with the entire side surface between the light emitting surface and the facing surface of the optical semiconductor device. 如請求項1之附反射層及螢光體層之光半導體元件,其中上述螢光體層接觸於上述光半導體元件之上述發光面與上述對向面之間之側面整個面。For example, the optical semiconductor device with a reflective layer and a phosphor layer according to claim 1, wherein the phosphor layer is in contact with the entire side surface between the light emitting surface and the facing surface of the optical semiconductor device. 如請求項1之附反射層及螢光體層之光半導體元件,其進而具備配置於上述螢光體層之上側之擴散層。For example, the optical semiconductor device with a reflective layer and a phosphor layer according to claim 1, further comprising a diffusion layer disposed on the upper side of the phosphor layer. 如請求項7之附反射層及螢光體層之光半導體元件,其滿足下述式(4): A+C≦Y……(4) (式中,C表示上述擴散層之上下方向長度)。For example, the optical semiconductor device with a reflective layer and a phosphor layer according to claim 7, which satisfies the following formula (4): A + C ≦ Y... (4) (where C represents the length in the up-down direction of the diffusion layer).
TW106119939A 2016-07-07 2017-06-15 Photosemiconductor element with reflection layer and phosphor layer TW201813139A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016134688 2016-07-07
JP??2016-134688 2016-07-07
JP2017046042A JP2018014480A (en) 2016-07-07 2017-03-10 Optical semiconductor element with reflective layer and phosphor layer
JP??2017-046042 2017-03-10

Publications (1)

Publication Number Publication Date
TW201813139A true TW201813139A (en) 2018-04-01

Family

ID=61019579

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106119939A TW201813139A (en) 2016-07-07 2017-06-15 Photosemiconductor element with reflection layer and phosphor layer

Country Status (2)

Country Link
JP (1) JP2018014480A (en)
TW (1) TW201813139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739384A (en) * 2018-07-18 2020-01-31 亮锐控股有限公司 Light emitting device
TWI685988B (en) * 2018-06-01 2020-02-21 宏齊科技股份有限公司 Handheld electronic device and color temperature tunable flip-chip type light-emitting element thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902360B2 (en) * 2017-02-17 2021-07-14 日本特殊陶業株式会社 Wavelength conversion member
JP6959548B2 (en) 2018-10-04 2021-11-02 日亜化学工業株式会社 Light emitting device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685988B (en) * 2018-06-01 2020-02-21 宏齊科技股份有限公司 Handheld electronic device and color temperature tunable flip-chip type light-emitting element thereof
CN110739384A (en) * 2018-07-18 2020-01-31 亮锐控股有限公司 Light emitting device
CN110739384B (en) * 2018-07-18 2023-03-21 亮锐控股有限公司 Light emitting device

Also Published As

Publication number Publication date
JP2018014480A (en) 2018-01-25

Similar Documents

Publication Publication Date Title
TWI749058B (en) Thin sheet for covering the optical semiconductor element
EP3410497B1 (en) Light-emitting device and method of manufacturing same
TWI695054B (en) Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light emitting device
EP2824721B1 (en) Light emitting device
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
TW201813139A (en) Photosemiconductor element with reflection layer and phosphor layer
JP2012222320A (en) Manufacturing method of light emitting element transfer sheet, manufacturing method of light emitting device, the light emitting element transfer sheet, and the light emitting device
US10141488B2 (en) Lighting device
KR20120110050A (en) Producing method of light emitting diode device and light emitting diode element
JP6361645B2 (en) Light emitting device
JP5224890B2 (en) Light emitting device and method for manufacturing light emitting device
EP2743999A2 (en) Light emitting device package including phosphor film, method of manufacturing the same, and lighting apparatus using the same
TW201108470A (en) Light-emitting device
WO2018008197A1 (en) Photosemiconductor element with reflection layer and phosphor layer
JP2011014555A (en) Light-emitting device
WO2017221606A1 (en) Optical semiconductor element having phosphor layer, and method for manufacturing optical semiconductor element
JP5738541B2 (en) Optical semiconductor device
EP2317547A1 (en) Kit for optical semiconductor encapsulation
WO2017221607A1 (en) Optical semiconductor device with phosphor layer
KR20130100718A (en) Light-emitting device, lighting device, light-emitting device assembly, and method for producing light-emitting device
JP5779220B2 (en) Phosphor and light emitting device including the same
JP2017227772A (en) Phosphor layer sheet, and method of manufacturing optical semiconductor element with phosphor layer
TWI824331B (en) Thin sheet for covering the optical semiconductor element
US11996502B2 (en) Method of manufacturing light-emitting device including step of curing sealing member while applying centrifugal force
JP2018041857A (en) Optical semiconductor element coated with phosphor layer and light diffusion layer